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The mass transfer equation describing the process of gel polarized ultra-

filtration is solved using an integral method. The agreement between the closed

form integral method solution and the exact numerical solution is excellent while

the widely used film theory deviates considerably.
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SCOPE

Membrane ultrafiltration has gained increasing recognition over the past

decade as a simple and convenient process for concentration, purification and

separation of moderate to high molecular weight solutes from solutions. The

main advantage is that ultrafiltration does not involve a phase change or inter-

phase mass transfer. Basically, ultrafiltration involves the pressure-activated

separation of chemical constituents which have different permeability through a

membrane. As a pressurized solution flows past a selective membrane, solvent

permeates through the membrane while rejected solute accumulates in the vicinity

of the membrane. In order for the criterion of steady state mass transfer to be

satisfied, the net rate of convective transport toward and parallel to the membrane

surface must equal the rate of transport by diffusion away from the membrane

surface. The net result is a layer of solution adjacent to the membrane surface

of substantially greater solute concentration than that of the bulk solution

within the channel.

The phenomenon of concentration polarization always operates to reduce the

efficiency of the ultrafiltration process. It does so by decreasing the effec-

tive pressure gradient (by increasing osmotic backpressure at the membrane sur-

face) and, when solute concentrations become large enough, by forming a gelatinous

matrix structure upon the membrane surface. This "gel" layer offers an additional

hydraulic resistance to solvent flow. When a laminar flow ultrafiltration system

is operated in the "gel polarized" region, permeate flux rates are governed pri-

marily by the transport mechanisms of forced convection and molecular diffusion.

Pressure dependence is secondary - increase in pressure merely increases gel thick-

ness with little effect on permeate flux. Objective of this paper is to develop a

reliable closed form relationship for the limiting flux due to gel polarization.
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CONCLUSIONS AND SIGNIFICANCE

The agreement between the closed form integral method solution and the more

exact numerical solution, for the case of constant diffusion coefficient, is

excellent, deviations being less than 1 percent. However, the widely used film

theory underpredicts flux by 20 and 30 percent for F = 15 and 50, respectively,
-g

where F is the ratio of the gel concentration to the feed concentration.
-g

In the case of concentration dependent diffusion coefficient, the integral

method is satisfactory. Film theory results still deviate from the exact solution

though not as much as in the case of constant diffusion coefficient.

On the basis of film theory, the plot of permeate flux against feed concen-

tration on a semilog graph should yield a straight line. This line when extrapo-

lated to zero flux gives the gel concentration. In view of the significant devia-

tions between film theory results and exact solution, such an extrapolation is

not valid and may underpredict gel concentration. We recommend that either experi-

mental data should be taken over a wider range of feed concentration so that

extrapolation could be reliable, or more exact theory should be used to determine

gel concentration.
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PREVIOUS DEVELOPMENTS

A quantitative prediction of solvent flux requires an analysis of the basic

transport mechanisms which take place within the ultrafiltration system. Currently,

the most widely accepted model is that advanced by Michaels (1968) using film

theory principles. The film theory model is formulated on the assumption that

axial convection in the mass equation may be accounted for in an indirect way.

Constant fluid properties are assumed, and the model when applied to the gel-

polarized region assumes wall concentration to be constant and equal to gel concen-

tration of the solute material. Therefore, the mass balance equation reduces to:

ac a2c
v = D -- (1)

where the boundary conditions are

at y = 0 (membrane surface), c = c (2a)

and when solute rejection at the membrane surface is complete,

ac
- |vw = D - (2b)

_W -g -g. =0Q

at y > 6(x), c = Bg, (2c)

where 6(x) equals the mass transfer boundary layer thickness.

Upon integration and substitution of the boundary conditions one gets

D C

v I| = ( -In (3)i-w' 6(x) c

For small values of Iv |, D/6(x) may be defined as the mass transfer coef-
-w - -

ficient, k. The value of k is characteristically calculated by solving the solute

balance equation where transverse convection has been neglected:
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ac a2c

u = D (4)

for either constant wall concentration or constant wall flux boundary condition.

The method of solution is analogous to the corresponding Leveque heat transfer

solution. Assuming a linear axial velocity profile, the results for a parallel

plate system may be given as

/D 2 al 1/3

k = A - (5)

where

A = 0.776 (for constant wall concentration)

A = 0.942 (for constant wall flux)

and a = 3 <u>/h

In summary, it can be seen that the film theory analysis is a patching

method by which axial dependence, which appears explicitly through the term,

u 3c//x, is replaced by one which arises implicitly through the boundary layer

thickness 6(x).

One of the first extensive studies on ultrafiltration using the film theory

was published by Blatt, et al. (1970). These investigators used natural macro-

molecular solutions such as casein, albumin and plasma, and their studies confirmed

the existence of the pressure-independent gel-polarized region. Their data dis-

played trends in system performance as predicted by film theory, however, quanti-

tative agreement was not good. The main drawbacks of their experimental procedure

were undeveloped flow at the entrance, pulsating flows due to the use of peristaltic

pump and inconsistencies and ambiguities in reported system design (Blatt, 1978).

It is recommended that their data be used only as a secondary source of informa-

tion.

�
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Goldsmith (1971) did some experiments using Dextran and Carbowax solutions.

His work pointed out the importance of considering the osmotic pressure effect at

the membrane surface. His data were analyzed by solving two simultaneous equations,

one derived from the film theory,

c - cP

Iv I = k in (6a)

and the other was a phenomenological law, relating permeate flux to the effective

driving force,

Iv | =A (Ap - Arr) (6b)

Goldsmith was primarily interested in the study of solute rejection phenomenon.

Both parallel plate and stirred cell systems were studied in laminar and turbulent

flow. Since only partially-developed flow was attained in the test unit, the mass

transfer coefficient expression of

kd d 1/2
= 0.6641/3D 0.664 (Re 8 Sc3 (6c)

was used. Because of the fact that reported data were mainly in the pre-gel region

and the membranes used were very permeable to solute molecules, Goldsmith's data

are not relevant to the present work.

Kozinski and Lightfoot (1972) developed a theoretical model for predicting per-

meate flux through a rotating disk taking into consideration concentration dependent

diffusivity and viscosity. Experimental data agreed reasonably well with theory

although some hysteresis in permeate flux measurements was found. This phenomenon

was attributed to solute polymerization in the concentration layer adjacent to the

membrane surface. They extended their model to parallel plate systems and considered

Blatt's thin channel ultrafiltration data for serum albumin. Their model consistently
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underpredicted experimental flux measurements by more than 40%. Misinterpreta-

tion of Blatt, et al.'s experimental system together with the limitations of

their data, as mentioned earlier, may have been responsible for the apparent

disagreement.

Mitra and Lundblad (1978) published data taken in a parallel plate system

with immune serum globulin and human serum albumin. They attempted to correlate

data using a film theory model in the following form:

|v I = Al <u>B ln (7)
_w c

where A1 and B1 are constants. Consistent agreement was found for the value of B1,

but the value of A1 was variable with a 21% standard deviation.

Shen and Probstein (1977) reported a theoretical treatment of the parallel

plate system. Their model, like Kozinski and Lightfoot's, considered both concen-

tration-dependent viscosity and diffusivity. Considering the general mass equation,

Shen and Probstein utilized a Leveque combination of variables technique. Resulting

ordinary differential equations were solved numerically to calculate flux rates.

Through comparison of calculated values, they state that the variable fluid property

numerical solution can be approximated by a modified film theory. The modification

simply amounts to replacing the value of the diffusion coefficient evaluated at cB

by one evaluated at c .

Shen and Probstein applied their modified film theory model to Blatt's serum

albumin data. Data values were extrapolated into the gel-polarized region (extrapo-

lated to limiting values) and were checked by us to be correct. Similar extrapolated

values were obtained by Kozinski and Lightfoot. However, Kozinski and Lightfoot,

as well as Shen and Probstein appear to use a value for the bulk velocity (<u>)
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which, in actuality, is the recirculation rate. Realistic values should be 25% of

the recirculation rate.

Originally, Shen and Probstein's calculated flux rates shown in Table 1 of

their report agree extraordinarily well with experimental rates. This gives the

impression that the modified film theory is accurate. By using the correct values

of <u>, the percent error slips from approximately 11% to 30%. This is not good

agreement by any means. An interesting fact to note is that the corrected film

theory predictions are consistently lower than actual flux rates.

In summary, it appears that the widely used film theory model may not repre-

sent an accurate method for the calculation of limiting flux rates in the gel-

polarized region. Flux predictions from film theory must be compared with a more

exact theory. This information will then be used in the interpretation of existing

data of Shen and Probstein.

THEORETICAL DEVELOPMENT

The general mass balance equation of

may be transformed to an ordinary differential equation by a method described by

Shen and Probstein (1977). This method is analogous to the Leveque solution for

laminar flow with constant heat flux at the wall. Assuming constant fluid viscos-

ity, the following mathematical development pertains to a parallel plate system

where x is measured longitudinally along the membrane surface and y is measured

transverse to the membrane surface. Consistent with a thin mass transfer boundary

layer as compared to the channel half width (Sc > 500), a linear axial velocity

may also be assumed. The respective velocity components are written as

I
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3<u>
u = axial velocity = h (9a)

v = transverse velocity = - v (9b)
-- --w

where is the limiting permeate flux at the membrane surface. Boundary condi-

tions are identical to those previously mentioned for the film theory model applied

to the gel-polarized region with the exception that y is taken to infinity as the

upper limit, namely

Transforming the mass balance equation into dimensionless variables using the

following relationships
-1/3

where a = 3<u>/h, and V = positive permeate constant. The resulting equation may

be expressed
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where the transformed boundary conditions are

dF

at n=O, F = F , - V F = (14a)
-- -g -w-g d_=

and,

at n= o , F = 1 (14b)

Upon integration of the dimensionless solute balance equation with the appro-

priate boundary conditions the following equation results

F -w|F = 1 - Vw /°f -- * exp i X / dn (15)-g - o 2 D

If one makes the simplification of constant diffusion coefficient, Equation

(15) becomes

- = 1 - V exp (- 1 3 ) · exp(-V w)dn (16)F -W 3 -W
-2g - o

Equation (15) is identical to the relationship derived by Shen and Probstein

(1977). Equation (15) may be approximated by an infinite series solution for small

values of V . The series solution may be expressed in terms of the gamma function-w

/ n/3> +3

- ()n+1 )(_ r( (17)
F n=1

where b = 3 V 3
--W

The first 6 terms of Equation (17) are:

1/F = 1 - 1.288 V + 0.939 V 2 - 0.499 V 3 + 0.215 V 4 - 0.078 V 5 + 0.025 V 6 (18)
-g -w - w -w -w -w -w

For large values of V , Equation (15) may be approximated by carrying out
-w

appropriate integration by parts:

1/F = 2/V 3 - 40/V 6 + 2.24 x 103/V 9 - 2.46 x 105/V 12 + 3.85 x 107/V 15 (19)
-g -w -w -w -w -w-
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For Equations (15) through (19), values of V are typically within the range

of 0 to 10 with V varying directly with F . A graphical comparison of the approxi-
-w -g

mate equations with regard to the numerical solution of Equation (16) are shown in

Fig. 1 and 2. Equations (18) and (19) are plotted under the titles approximation

(1) and integration by parts, respectively. As shown in Fig. 1 and 2, Equation (18)

is reasonable for F less than 4 while Equation (19) is accurate for F greater

than about 70.

In lieu of the limited applicability of the approximate solutions, an integral

method was applied to the mass balance equation

3<u> 3c c

-h - vW a-= - D-F (20)

where the boundary conditions are

ac
at y=6(x),c B= -B =0 (21a)

and
ac

at y = 0, c = c -|v |c = D - (21b)

Integrating Equation (20) with respect to y from y = 0 to y = 6 yields:

3<u> dd6
h d | ydy - Bdx = Jvwy B (22)

Following Doshi, et al. (1971), a concentration profile of the form

O(
c =EB + (c -c - (23)

was assumed. In order for the boundary condition of Equation (21b) to be satisfied,

n

7 (c - cB) D = |v | c (24a)
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therefore,

or, (24b)

nD c -C

-V I = 6

Substituting the assumed concentration profile into Equation (22) and completing

the integration yields

3<u>

h(n+l)(n+2)

d

dx (25)(62c - )) = IVwlsB
-g- -B-

Using Equation (24b) to eliminate |v | and rearranging gives

n-W)(n+)Dfh 
B

d
- ( 3 ) =dx

n(n+l)(n+2) D h c
--g- -7

2<u> c
_ _g

Integrating Equation (26), noting that at x=O, 6=0, gives

n(n+l)(n+2) D h c x
F27 7B D

(27a)
2<u> c

- -g

or,
2<u> c

- _g

1/3

(27b)

Transforming to dimensionless variables, using Equations (llb, 12b, and 12c)

one obtains F -1
-g

V =
-w F

-g.

or
F -1

V =
-w F

--

2n2

where K =(n+l)(n+2)
-- (n+l)(n+2)

(26)

Iv I'-w

1/3

2/3

r F/ 13/
IKFI

g )2/3
-Z-

(28a)

(28b)

6 3 =
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The value of n still remains to be determined. A comparison of numerically

calculated values of V vs. F to those calculated from the integral method for
-w -g

various values of n are shown in Tables 1 and 2 for D = 1.

It bears mentioning at this point that Probstein, Shen, and Leung (1978), in

a recent report apply an integral method to the general mass balance equation.

Their resulting equation for limiting wall flux is expressed as:

<u> D F 1

or, expressed in terms of V

It is apparent that their limiting flux equation is identical to Equation (28b)

for the case n = 2, K = 2/3.

In this analysis it was assumed that constant n was some function of F . The

integral method was applied again to ascertain the form of this function.

Multiplying Equation (20) throughout by y

and integrating with respect to y from y = 0 to y = 6 yields:

Substituting the concentration profile of Equation (23) and assuming linear

concentration dependency of diffusion coefficient, gives:
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Combining Equation (32) with Equations (24b) and (26), one gets

where

Converting to dimensionless variables and rearranging Equation (33)

2n 2

For values of B < 1 + 2/F , Equation (34) may be converted to a more usable

form:

For values of B > 1 + 2/F , it is assumed that n = o, K = 2.

For the case of constant diffusion coefficient, D = 1, A = 0, and B = 1,

Equation (35a) simplifies to:

n = .(1/4) [F + (F 2 + 24.F )1/ 2 ] (35b)

Comparison of the integral method with variable n and constant diffusion coef-

ficient is made with the numerical solution of Equation (16) in Table 3. Agreement

between calculated values is excellent with less than 1% error.

Use of the variable n integral solution in calculating flux rates is favored

over the more tedious approximate solutions to Equation (16) from the standpoint

of accuracy and wide-range of application.
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Numerical solutions of the film theory model [Equation (3) for constant wall

concentration and constant wall flux] along with the exact solution model are

plotted in Fig. 3. All solutions are for constant fluid properties. The range

of V values is from 0 to 7. This range is believed to encompass most probable

operating conditions. Results indicate that the film theory model agrees with

the exact solution for F < 4 when the constant wall concentration boundary

condition is used. It is also shown that for higher values of F , the exact

solution model consistently predicts higher permeate flux rates than do either

of the film theory models.

Even though in the gel-polarized region where the CWC boundary condition seems

reasonable, the CWF boundary condition gives better agreement, up to F ~ 12.

It is not clear why the CWF boundary condition gives better agreement than the CWC

boundary condition, which has been widely used. One may note that in the case of

pre-gel polarized model, which is somewhat analogous to the corresponding reverse

osmosis system, Gill, et al. (1965, 1971) have shown that the CWF boundary condition

is more realistic.

The effect of concentration dependent diffusion coefficient is shown in Fig. 4.

For the case of bovine serum albumin at pH 7.4, the parameter A can be estimated

to be:

c

A = -- ) = 0.187
- D

where

D(c) = (5.9 - 0.016c) x 10~7 [from Probstein (1978b)]

APPLICATION OF THEORY TO EXPERIMENTAL DATA

The availability of reliable data in the area of macromolecular ultrafiltra-

tion is rather limited. A characteristic problem encountered when comparing
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experimental flux rates with theory is the lack of a reliable value of the solute

"gel" concentration and the concentration dependent diffusion coefficient. Several

diffusional studies of bovine serum albumin have been reported by Keller, et al.

(1971), Phillies, et al. (1976), and Doherty and Benedek (1974). Unfortunately,

results are often contradictory. It appears that the degree of the functional

dependence of the diffusion coefficient upon solute concentration is strongly

dependent upon solution pH.

If one accepts the functional form of the film theory model, it is possible

to extrapolate the value of c from ultrafiltration experiments. By measuring

limiting flux rates at several values of cB' the results are plotted semilogarith-

mically and a straight line is drawn through the data points. This line is extended

to the point of zero flux where the corresponding value of cB is taken to equal c .

In light of the developed integral solution, the potential error is apparent.

By using experimental flux rates at low values of cB, which is common in the litera-

ture, it is possible that an erroneous prediction of c will result. This process

is depicted in Fig. 5. This line of reasoning may be a possible explanation of

the fact that Porter (1972), using the film theory method of analysis, calculated

a change in the value of c from 45 g/100 cc to 28 g/100 cc for human serum albumin

by simply varying the channel height of his test unit.

Since the integral solution may be approximated by the film theory model at

values of F < 4, it is feasible to use the semilogarithmic, straight line extrapo-

lation of experimental flux rates at high values of cB in cases where c is approxi-

mately known. Whenever possible, it is recommended that an independent method be

used in the determination of c as done by Kozinski and Lightfoot (1972).
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The data of Probstein, et al. (1978a) were analyzed in terms of the constant

diffusion coefficient integral method solution. Numerical calculations of flux

rates using modified film theory were also included for purposes of comparison.

For the experiments involving bovine serum albumin at a pH of 7.4, we adopt their

value of c = 58.0 g/100 cc which is widely accepted. Instead of using their

value of D = 6.7 x 10-7 cm 2 /sec, we chose D = 4.8 x 10 - 7 cm 2 /sec. For the

experiments involving bovine serum albumin at a pH of 4.7, we chose D =3.35 x 10- 7

cm2/sec and c = 58.0 g/100 cc as opposed to their values of D = 5.6 x 10- 7 cm2 /sec

and c = 34.0 g/100 cc. Calculations are shown in Tables 4 and 5. Critical dimen-

sions of the test unit are: length(l) = 48.0 cm, width(w) = 7.62 cm, and half-

height(h) equals approximately 0.19 cm.

Modified Film Theory [Probstein, et al. (1978a)]

2/3 B C

Integral Method Solution

where K is defined by Equations (28b) and (35b).

It should be noted that while the selected values of D and c used in the

integral solution calculations are certainly within an expected range of values,

it is in no way implied that they are actual values. The calculations set forth

in Tables 4 and 5 are intended as an example to show that the integral solution

represents a viable method to calculate flux rates within the range of uncertainty

of the value of D . It is possible to revise above calculations by considering

concentration dependent diffusion coefficient, that is, using Equation (35a)
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instead of (35b) to evaluate n. Such numerical exercise is differed until more

accurate information on D and c is available. Important point is that the

straight line extrapolation of experimental data using film theory could give

misleading results.
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NOTATION

A = membrane pure water permeability constant (cm3/dyne-s)

a = 3<u>/h (l/s)

c = solute concentration (g solute/100 cc solution)

D = diffusion coefficient (cm2/sec)

d = hydraulic diameter of membrane channel (cm)

D = D(c)/D B

F = c/c

h = channel half-height (cm)

k = mass transfer coefficient (cm/sec)

1 = total length of membrane section (cm)

P = total pressure at a point (dynes/cm2)

Re = Reynolds number = <u>d/v

Sc = Schmidt number = v/D

u = axial velocity (cm/sec)

<u> = average axial velocity (cm/sec)

v = transverse velocity (cm/sec)

v | = limiting permeate velocity at membrane surface (cm/sec)

-w
Vw = positive permeate constant

w = width of flow channel (cm)

x = axial distance coordinate

= transverse distance coordinate

Greek Letters

6(x) = concentration (mass) boundary layer thickness

TT = osmotic pressure (dynes/cm2 )

1n = similarity variable
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r = gamma function

ATr = osmotic pressure difference across membrane (dynes/cm2 )

AP = total pressure difference across membrane (dynes/cm2)

)v = kinematic viscosity

Subscripts

g = at the gelling condition

w = at the membrane wall

B = at the bulk condition

P = at the permeate condition
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Table 1. Values of Integral Method Constant K
for Various Values of n

n K

1 0.3333

2 0.6667

3 0.9000

4 1.0667

5 1.1905

co 2.0000



Table 2. Comparison of Numerically
Values of V to those Calculated

-w

Integral Method for Various Valu

Numerical
integration

V
-w

4.64

3.53

3.00

2.60

2.32

2.11

Calculated
from the

VALUES of n

Integral
method

V (n-o)
- -

4.79

3.74

3.20

2.86

2.61

2.41

8.3 1.89

Integral
method

F
-g

V (n=5)
-w

58.0 4.03

29.0 3.14

19.3 2.70

14.5 2.41

11.6 2.20

9.7 2.03

1.94 2.24



Table 3. Comparison of Integral Method with Variable n
with Numerical Solution of Equation (15)

Integral Numerical
method integration

F n K V V
-g ~W -w

116.0 60.86 1.91 6.00 5.99

58.0 31.74 1.824 4.65 4.64

29.0 17.05 1.691 3.53 3.53

19.3 12.05 1.584 2.96 3.00

14.5 9.53 1.496 2.60 2.60

11.6 7.98 1.421 2.33 2.32

9.7 6.95 1.358 2.12 2.11

8.3 6.17 1.300 1.94 1.94

2.32 2.53 0.803 0.700 0.694



Table 4. Experimental Flux Rates with BSA at pH = 7.4 -
Probstein, et al. (1978), Probstein (1978)

Predicted flux x 104

Bulk
concentration

B (g/100 cc)-B

1.87

1.80

1.78

1.76

Average
velocity
(cm/s)

5.75

11.51

17.26

23.01

Experimental
h flux

(cm) (cm/s) x 10

0.190

0.190

0.190

0.190

3.00

3.67

4.17

4.67

Modified
film theory*

(cm/s)

2.95

3.76

4.32

4.77

= 6.7 x 10- 1 cm2/sec

= 58.0 g/100 cc

= 4.8 x 10- 7 cm 2 /sec

= 58.0 g/100 cc

Integral
method**
(cm/s)

2.87

3.67

4.22

4.66

K

1.71

1.72

1.72

1.72

c*D-g

**D
-g

-g



Table 5. Experimental Flux Rates with BSA at pH = 4.7 -
Probstein (1978)

Bulk
concentration
CB (g/100 cc)

2.44

2.57

2.74

3.88

4.23

4.42

4.42

3.11

3.16

Average
velocity
(cm/s)

12.15

18.22

24.29

10.93

16.40

16.40

21.87

5.85

9.35

h
(cm)

0.180

0.180

0.180

0.200

0.200

0.200

0.200

0.187

0.187

Experimental
flux

(cm/s) x 104

2.63

2.92

3.15

2.02

2.20

2.18

2.33

1.83

2.13

Predicted

Modified
film theory*

(cm/s)

2.63

2.95

3.16

2.02

2.22

2.17

2.39

1.85

2.14

flux x 104

Integral
method**
(cm/s)

2.63

2.94

3.15

2.00

2.19

2.14

2.35

1.83

2.12

= 5.6 x 10-7 cm2 /sec

= 34.0 g/100 cc

= 3.35 x 10- 7 cm2/sec

= 48.0 g/100 cc

K

1.64

1.62

1.61

1.51

1.48

1.46

1.46

1.57

1.56

*D
-g

c
-g

**D

-g

-g
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Fig. 1. Comparison of exact UF equation to approximate solutions.
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Fig. 2. Comparison of exact UF equation to approximate solutions.
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D(c) = (5.9-bc) x 10 7 cm2/sec

Fig. 4. Effect of increasing diffusional concentration dependence upon
integral method predictions.
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