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ABSTRACT

Charge-transfer complexes were found to occur between kraft lignin
and an added model quinone, 3,5-di-tert-buty1-1,2-benzoquinone.
The occurrence of charge-transfer interactions was also apparent
in an oxidized kraft lignin with an increased quinone content. In

these systems, free phenolic groups within the lignin were con-
sidered the donor moieties and ortho-quinones the complementary
acceptor moieties. Carbon-14 labeling revealed that the quinone
content of the investigated kraft lignin averaged 3%. These

quinones were determined to have a molar absorptivity of 528
L/mol-cm. Upon sodium borohydride reduction of this lignin, only
one-third of the absorbance decrease could be accounted for by
this number of quinones. The remaining two-thirds of the decrease
in absorbance was assigned to the disruption of charge-transfer
complexes. The quinones, therefore, played a dual role as a chro-
mophore by participating as acceptor species in these complexes.

INTRODUCTION

A major drawback to the kraft pulping process is the dark-

colored pulps which are obtained. This dark color requires the

pulps to be extensively bleached for many end uses. As is well

known, the dark color of kraft pulps originates with' residual

lignin not removed during the pulping process. 'In the area of

G. S. Furman's present address is: Kimberly-Clark Corporation,
Neenah, WI 54956
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absorption. Also, a relationship was observed between the absor-

bance at the CT maximum and the concentration of the quinone which

was added to the lignin. As is shown by Fig. 3, the absorbance

linearly increased at low quinone concentrations before leveling

off at higher concentrations. In Fig. 3, the quinone concentra-

tion is plotted as a ratio according to the phenolic content of

the lignin. Both this relationship and the effect of acetyla-

tion pointed to the fact that free phenolic groups in the kraft

lignin were acting as donating moieties in this CTC.

[Fig. 3 here]

Substitution of a model phenol in place of the kraft lignin

in the above system substantiated the results that were found.

Again, a CT absorption was observed, this time between 2-methoxy-

4-methylphenol and 3,5-di-tert-buty1-1,2-benzoquinone. This

complex had a maximum absorption at 428 nm in n-hexane, with a

molar absorptivity of 131 L/mol-cm (assuming complete complexation

of the quinone). The CT absorption band between the model phenol

and quinone was substantially reduced in intensity (79 L/mol-cm)

and slightly shifted to shorter wavelengths (424 nm) when the

phenol was acetylated.

CTC's in Oxidized Kraft Lignin

In another line of investigation, ortho-quinone structures

were incorporated into kraft lignin by a periodate oxidation

method. These structures were retained in the kraft lignin when

the periodate oxidation was quenched by the addition of ethylene

glycol:

NaIO 4 HOCH2CH2OH
Kraft Lignin +- > > "Quinone Lignin"

H , 0°C
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The presence of ortho-quinones in the ligninwas verified by

visible, FTIR, and 13C NMR spectroscopy. The oxidized lignins

were much darker in appearance than the original lignins. Visible

spectra revealed the increase in absorbance was centered near 430

nm. The r-ff* absorption band of ortho-quinones occurs'in this

region of the spectrum. FTIR spectra of the oxidized lignins
-1

(see Fig. 4) showed a strong new absorption band at 1663 cm-1.

Otting and Staiger found the carbonyl stretching band of ten
-1 13

ortho-benzoquinones occurred from 1667 to 1656 cm . C NMR

spectra of reductively acetylated, periodate oxidized lignins

revealed an upfield shift in the phenolic acetate carbonyl peak

(Fig. 5), resulting from steric crowding in the newly formed

ortho-diacetate structures. The steric crowding effect was con-

firmed in model compounds.

[Fig. 4 and 5 here]

The dark color of the periodate oxidized kraft lignin is evi-

denced by the visible spectra in Fig.6 and by the difference

spectrum, between the oxidized and original lignins, in Fig. 7.

The rationale behind the incorporation of quinones within kraft

lignin was to enhance the likelihood of CT interactions. The

skewed shape of the.difference band in Fig. 7.led to speculation

that this band was composed of two separate components, the

quinone band and a CT band.

[Fig. 6 and 7 here]

That there was indeed a CT component present in this lignin

was demonstrated by the effects of solvent, pressure, and deriva-

tization on the oxidized lignin's spectrum. Charge-transfer

complexes in solution are influenced by the polarity of the

solvent surrounding them. For the weak w-ir CT interactions con-

sidered here, increases in solvent polarity result in slight red
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shifts and decreases in intensity of the CT absorbance band.17

Difference spectra between the periodate oxidized, or "quinone

lignin," and the original kraft lignin in the solvents 2-methoxy-

ethanol and DMF are shown in Fig. 8. In terms of physical

constants DMF is the more polar solvent, having both a dielectric

constant and a dipole moment which are approximately twice as
18

large as those for 2-methoxyethanol. As shown in Fig. 8, the

absorption maximum was slightly red-shifted in DMF, occurring at

434 nm, compared to 430 nm in 2-methoxyethanol. At the maximum,

the absorbance was 25% more intense in 2-methoxyethanol than in

DMF. The solvent behavior of the difference band, therefore,

indicated the presence of a CTC in the quinone lignin.

[Fig. 8 here]

Changes in ambient pressures also have relatively strong

influences on weak CTC's. Offen has summarized these effects.

In short, CT absorption maxima shift red and increase in intensity

with increasing external pressures. In this study, solutions of

the quinone and original kraft lignins were subjected to pressures

up to 360 MPa. Their resultant spectra were then examined for

indications of CT behavior. The difference band between the

quinone lignins and original lignins in 2-methoxyethanol, see Fig.

9, increased in intensity and showed a general red shift at high

pressures. Since difference spectra are compared in Fig. 9, in-

creases in the lignin's absorbances due to the increased concentra-

tions of the lignin solutions at these high pressures canceled

out. The pressure behavior of the quinone lignin in 2-methoxy-

ethanol again indicated the presence of CTC's.

[Fig. 9 here]

Finally, derivatization of the quinone lignin provided quali-

tative evidence of the presence of CTC's in this lignin. The

derivatizations included acetylation and reductive acetylation of
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the quinone lignin. The results of these acetylations are shown

by the visible spectra given in Fig. 10. Both derivatizations

significantly reduced the visible absorbance of the quinone lignin.

[Fig. 10]

In the case of acetylation, free phenolic groups in the

lignin were derivatized to the corresponding acetates. Since free

phenolic groups are involved as donating moieties in the proposed

CTC, this would necessarily disturb these complexes. When model

acceptors were added to acetylated kraft lignin, the observed

CTC's were completely eliminated. The effect of acetylation was

similar for the quinone lignin; the decrease in absorbance was

caused by the disruption of CTC's. In the case of reductive ace-

tylation, besides the removal of CTC's due to the acetylation of

phenolics, quinones were reduced to catechols and then also acety-

lated. Consequently, two chromophore types were removed from the

lignin, and, as shown in Fig. 10, reductive acetylation had the

greater effect in reducing the lignin's absorbance.

According to the above analysis, proper subtraction of the

lignin spectra in Fig. 10 will yield the individual absorption

bands of the quinone and CTC chromophores. These difference

spectra are presented in Fig. 11. The spectrum (A-C) is a measure

of both the quinone and CTC chromophores, the spectrum (A-B) is a

measure for the CTC's in the quinone lignin, and the spectrum

(B-C) a measure for the quinones in this lignin. The derivatiza-

tions, therefore, were successful in separating the difference

band into its two component absorptions.

[Fig. 11 here]

CTC's in Kraft Lignin

The observance of CTC's when quinonoid model compounds were

added to kraft lignin and within oxidized kraft lignin pointed out

the CT capabilities of kraft lignin. The occurrence of CTC's in
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unaltered kraft lignin should also be expected. However, since

the quinone content in the original kraft lignin was much smaller

than in the oxidized lignin, evidence for the occurrence of CTC's

was more difficult to obtain. In order to ascertain if CTC's were

present in the original lignin, the following approach was taken.

First the actual number of quinones present in this lignin was

determined. Next an absorbance was assigned to this number of

quinones, based on their calculated molar absorptivity. Finally,

additional absorbance present in the quinone region of the

spectrum that could not be directly assigned to the quinones was

assigned to charge transfer interactions.

The concentration of quinones in the original kraft lignin was

determined by a carbon-14 labeling technique. In this technique,

outlined below, quinones were labeled as radioactive acetates.

The activity of the lignin was, therefore, directly related to the

concentration of the quinones present in it.

Kraft (CH3CO)20 (CH3 C) 20 Reductively
Lignin >-Acetylated > Acetylated

CH5N >Kraft C5H5N, Zn *Kraft
Lignin Lignin

The activities from several sets of lignins are given in Table

1. The control lignins were exposed to the radioactive acetic

anhydride but not under reducing conditions. They served to

establish the background radiation introduced to the lignins from

acetate exchange and impurities. The raw data, in counts per

minute (cpm), were converted to disintegrations per minute (dpm)

from the determined efficiencies of the samples. The "Net DPM"

values were obtained by subtracting the control dpm values from

the corresponding sample dpm values after normalizing the samples

to an activity per mg basis. The "Actual DPM" values are dpm

values for the samples on a total weight basis. From these values

and the specific activity of the radioactive acetic anhydride

(1.62 x 104 Bq/mmol), the number of millimoles of labeled acetic

anhydride incorporated within the lignin samples was calculated.
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This value was equal to the millimolar quantity of quinones in the

sample, since each acetic anhydride molecule contained two

radioactive carbons, and since there were two sites for acetyla-

tion in each quinone. Finally, the quinone concentration for each

sample was calculated by dividing the molar quantity of quinones

by the molar quantity of acetylated lignin in that sample. For

the original kraft lignin, the quinone concentration averaged

3.05%. Other quinone concentrations in Table 1 follow the

expected trends.

[Table 1 here]

A molar absorptivity was calculated for the quinones in the

original kraft lignin from their concentration and a corresponding

absorbance. The absorbance was obtained from the difference

spectrum between the acetylated and reductively acetylated origi-

nal kraft lignins. This spectrum revealed the quinone maximum

occurred at 431 nm, with an intensity of 0.026 AU (2-methoxy-

ethanol as solvent.) Substituting the values of concentration and

absorbance into Beer's Law, a molar absorptivity of 528 L/mol-cm

for the quinones in the original kraft lignin was calculated.

This value was similar to the molar absorptivities found by
2

Imsgard and coworkers for the ortho-quinones of acetoguaiacone

and isoeugenol (600 and 741 L/mol-cm, respectively).

Once the molar absorptivity and the concentration of the

quinones in the original kraft lignin were known, the percentage

of absorbance at the quinone maximum actually due to quinones, and

the percentage of absorbance due to their participation in CTC's,

was calculated. Spectra resulting from the sodium borohydride

reduction of the lignin, which removed quinones and consequently

CTC's, were used to calculate the total absorbance due to these

two chromophores. Difference spectra between the original and

sodium borohydride reduced kraft lignins revealed a drop in absor-

bance averaging 0.01 AU (at 431 nm). The proportion of this

-9-
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absorbance decrease actually due to the removal of the quinone

absorbance from the sample was calculated to be 0.0284 AU or 31.2%

of the total.

The remainder of the decrease in absorbance caused by sodium

borohydride reduction was assigned to CTC's in which the quinones

were participating as acceptor species. This meant the major

portion (68.8%) of the absorbance decrease at 431 nm was due to

the removal of CTC's. If every quinone is assumed to be par-

ticipating in CT complexation, a molar absorptivity for the

complex of 1163 L/mol-cm may be calculated. This assumption is

reasonable, considering the high phenol to quinone ratio in the

original kraft lignin. This molar absorptivity is typical of the
12,13

values found for other phenol-quinone CTC's.

Nature of CTC's in Kraft Lignin

From the observations made on CT interactions in systems

involving kraft lignin, charge-transfer complexes in kraft lignin

may be generally described as follows. Interactions are predomi-

nantly between free phenolic and ortho-quinone structures in

lignin, acting as the donating and accepting halves of the

complex, respectively. CT interactions are expected to be pri-

marily intramolecular due to the steric constraints present be-

tween large lignin molecules. In addition, hydrogen bonding may

play an important role in attracting the two halves of the complex

into close proximity, thereby allowing CT interactions to occur.

EXPERIMENTAL

Lignin Isolation and Analysis

Loblolly pine chips were cooked to a kappa number of 39 employ-

ing the following conditions: effective alkali, 16%; sulfidity,

27.5%; final temperature, 173°C; cooking time, 3 h (90 min to

-11-



final temp.). The kraft lignin was isolated by acid precipitation

(pH 2-3 with H2SO 4 ) of the resultant black liquor. H2S was

removed from the acidified black liquor using a rotary evaporator,

and the precipitated lignin was then collected by centrifugation.

The lignin was washed to a neutral pH with distilled water, dried

thoroughly, and ground to a uniform powder.

Excess carbohydrate material was removed from the lignin based

on the carbohydrates insolubility in 2-methoxyethanol. In this

procedure, the lignin was dissolved in an excess of 2-methoxy-

ethanol (Mallinckrodt AR), and the insoluble carbohydrate material

filtered off. The lignin in solution was recollected by removal

of the 2-methoxyethanol on a rotary evaporator. The oily residue

was dried over P205 in a vacuum desiccator, treated with distilled

water, and collected by filtration. It was redried and ground to

a uniform powder.

Ash contents, elemental compositions, and methoxyl contents

were determined at the Microanalytical Laboratory of the Univer-

sity of Vienna, Waehringestrasse 38, A-1090 Vienna, Austria.

These contents were as follows: 63.46% C, 5.87% H, 26.49% 0,

3.53% S, 14.74% OMe, and 0.66% ash. Carbohyrate analyses were
20

determined by the alditol acetate method. The lignin contained

1.3% carbohydrates after the 2-methoxyethanol treatment, predomi-

nantly of the xylose variety. The phenolic hydroxyl content of

the kraft lignin (58 per 100 C9 units) was determined according to

the aminolysis method given by Mansson.

Instrumental Methods

Electronic absorption spectra were recorded on a Perkin-Elmer

320 Spectrophotometer. High pressure electronic spectra were

obtained on a modified Cary Model 14 spectrophotometer at the

University of California at Santa Barbara. The high pressure

optical cell, window assembly, and sample capsule have been
21

described by Dawson and Offen. Data storage and manipulation

-12-



were accomplished with Apple III computers interfaced to the

spectrophotometers. Solution spectra of lignin samples were

obtained in either spectroscopic grade DMF (Baker), or 2-methoxy-

ethanol (Burdick and Jackson).

Infrared spectra of lignin samples were recorded as KBr pellets

on a Nicolet 7199C Fourier Transform Infrared Spectrometer.

Carbon-13 NMR spectra were recorded on a Joel FX100 Fourier

Transform NMR Spectrometer using TMS as a reference. Spectra of

the reductively acetylated lignins, shown in Fig. 5, were obtained

in CDCL3 solution (200-300 mg/0.5-0.6 mL) using a 5 mm tube. For

these samples, 60,000 to 65,000 transients were accumulated using

70° pulses, one second apart. The spectra were recorded at a tem-

perature of 52°C.

Lignin Preparations

Lignin samples were acetylated in pyridine/acetic anhydride

(2:1 by volume). After standing overnight at room temperature,

the reaction mixtures were hydrolyzed over crushed ice. The ace-

tylated lignin precipitate was collected by suction filtration.

The lignin was then washed with cold distilled H20 followed by

cold 0.01N HC1 and cold distilled H20 again. It was then dried

over P205 and KOH.

Reductive acetylation of lignin samples was also carried out

in pyridine/acetic anhydride (2:1). Zinc dust (20-30% by weight

of lignin) was used as the reducing agent. The reaction flask,

equipped with a CaCl2 tube, was placed in a 100°C glycerol bath

for one hour. The mixture was continuously stirred during this

time. After cooling to room temperature, any excess Zn dust was

removed by filtration and washed with several mL of a 1:1 mixture

of acetic acid and pyridine. The combined filtrates were hdyro-

lyzed over crushed ice and the reductively acetylated lignin

collected as above.

Periodate oxidation of kraft lignin was conducted in a manner

similar to that given by Marton and Adler. However, the oxidation

-13-



was halted by the addition of a large excess of ethylene glycol

instead of SO2 . Following addition of the ethylene glycol, the

reaction solution was stirred for a few minutes and then poured

into a large volume of cold distilled water. The precipitated,

oxidized lignin was concentrated by centrifugation and collected

by filtration. It was washed with cold distilled water and dried

over P205 and KOH in a vacuum desiccator.

Sodium borohydride reduction of kraft lignin was conducted

similarly to the procedure given by Marton.2 3

Labeling Techniques

Quinone groups in kraft lignin were tagged as carbon-13 or

carbon-14 acetates using the reductive acetylation procedure

outlined above. The reductive acetylations were performed on

kraft lignin which had been twice previously acetylated, and by

using the appropriately labeled acetic anhydride. Carbon-13

enriched (CH3*CO)20 (90%) was obtained from Stohler Isotope

Chemicals, Waltham, MA. Carbon-14 labeled (CH3*CO) 20 (liquid

under vacuum; specific activity 20 mCi/mmol) was purchased from

Amersham Corp., Arlington Heights, IL.

Activities of radioactive lignin samples were determined on a

Beckman LS 380 Liquid Scintillation System. The samples (40-50

mg) were dissolved in 10 mL of dioxane cocktail [naphthalene (100 g)

and 2,5-diphenyloxazole (5 g) in 1 liter of dioxane] and placed in

glass vials for counting. The efficiencies of these samples were

determined by the internal standard method.

Compounds

The compounds 2-methoxy-4-methylphenol and 3,5-di-tert-butyl-

1,2-benzoquinone were purchased from Eastman Kodak Company and

Aldrich Chemical Company, respectively. 1-Acetoxy-2-methoxy-4-

methylbenzene was synthesized from the corresponding phenol using

a method similar to that given by Ludwig and coworkers.2 5
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Kraft Li nin+'Quinone (

Kraft Lignin + Quinone (B)

Quinone (C)
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WAVELENGTH (nm)
Visible spectra of (A) kraft lignin [1.63 x 10-3M]
(C) 3,5-di-tert-butyl-l,2-benzoquinone [5.00 x 10-4M],
and (B) kraft lignin-plus quinone [same concentra-
tions]; 2-methoxyethanol as solvent.
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Difference Spectrum
B-(A + C)

arge-transfer band

XCT max = 494nm
e CT max - 360 lit/mol-cm

I I I I

450 500 550 600

WAVELENGTH (nm)

Figure 2. Difference spectrum from Fig. 1.
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Figure 3. Effect of quinone/phenol ratio on absorbance of CTC
between kraft lignin and 3,5-di-tert-butyl-1,2-benzo-
quinone.



Z

1200 800

WAVENUMBERS

FTIR spectrum of periodate oxidized (two minutes) kraft

lignin; ethylene glycol added to halt oxidation.

LU
0

m
0e

(a
<,

.111,

so

cosz

2400

Figure 4.

400

n1!02

1-

o

o



I .I I . I I I I I I

174 173 172 171 170 169 168 167 166 165 164
ppm

Figure 5. 13C NMR spectra of: (A) the acetylated kraft lignin and
of (B) the reductively acetylated periodate oxidized
kraft lignin.
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Figure 7. Difference spectrum from Fig. 6.
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Figure 8. Difference spectra between "quinone lignin" and origi-
nal kraft lignin; concentrations of subtracted lignins..
were 7.5 mg/25 mL of solvent.
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ethanol.
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Figure 10. Visible absorption spectra of 
quinone lignin, acety-

lated quinone lignin, and reductively acetylated

quinone lignin; concentration, 7.6 mg/
2 5 mL DMF.
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