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Image analysis of an LWC paper reveals wire mark
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ABSTRACT Microscopic observations were combined with image analysis to investi-

gate the causes of apparently random "speckles" and "blotches" in a lightweight

coated publication paper printed on a four-color web offset press. Observations

indicated that the speckles were areas of lower print density lying over areas

of greater coating thickness, and FFT analysis with an image analyzer showed

that much of the higher frequency print density variation corresponded exactly

to the forming fabric pattern. Thus, some of the small-scale print nonuni-

formities often attributed to the coating process itself are actually caused by

the basesheet. We think the forming fabric pattern can be used in future image

analysis studies to help investigate other coating and printing problems.

Image analysis, microscopy, wire mark, print defects, coatingKEYWORDS:
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Introduction

New coating methods for lightweight coated publication papers have resulted in

greatly improved runnability, but printers, forced by increased market demands,

have complained of problems with washed-out print and increased speckle and

mottle caused by nonuniform ink absorption, backtrapping, orange peel in the

coating, etc. The work reported here is part of a larger effort directed at

investigating the fundamental causes of these problems. This paper describes

our work toward determining whether some print density variations could be

ascribed to characteristics inherent in the basesheet or whether the print

density variations should be attributed to other causes.

A print sample of particular interest to a cooperating company was fur-

nished to us for this work. This sample was a portion of the blue sky in an

advertisement printed on an LWC paper. Figure 1 is an enlarged view of a por-

tion of the sample. It had been printed on a four-color web offset press

(sequence B-C-M-Y); the second color down was a solid cyan, followed by a 50 per-

cent magenta halftone with the screen angled at -25° from the vertical (machine

direction). The sample had a distinct speckled and mottled appearance, as well

as a barely visible diagonal pattern at -27° from the vertical. We define

"speckle" as a very small area of low ink density, typically less than 1 mm in

size, whereas "mottle" is a blotchiness in the ink density, typically 2 mm or

larger.

Figure 1 here

We used both microscopic analysis and image analysis techniques in this

study. Although it has been used for many years in other industries [most

notably aerospace (1)], the true potential of image analysis is only recently
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being utilized by the paper industry; only a few works have been published which

describe practical applications (2-7). Some work has been reported on the

analysis of print dot patterns in the graphic arts (8,9), but none could be

found which utilized an image analyzer to study specific printing problems

related to the manufacture and coating of a basesheet.

Microscopic examinations

The print uniformity of the submitted sample was very uneven when print com-

ponents with dimensions up to about 4 mm were considered (Fig. 1). Study with

an ordinary light microscope showed the individual nonuniformities to be asso-

ciated with different densities of magenta ink over the solid cyan. The magenta

ink dots in the low density areas also had ill-defined borders. The magenta ink

density variations had no apparent pattern except for the faint 27° diagonal

lines mentioned earlier. It was not possible to determine whether the under-

lying cyan had similar ink density variations, but the cyan layer did exhibit

some speckle and mottle in other areas of the print form where it was not

printed over.

Using a novel beta radiographic technique, Parker and Attwood (10,11)

showed the basesheet to have large variations in localized basis weight and/or

density, primarily arising from the forming process. Recently, image analyzers

have been used to more easily study these kinds of variations in the basesheet

(3,4,6,7). Our own microscopy work with blade coated lightweight publication

papers revealed very large variations in the basesheet and coating, along with

large differences in surface appearance within a small distance. For example,

the SEM micrograph labeled as Fig. 2 shows that the coating thickness of our

sample varied between 4 micrometers and 20 micrometers within several hundred
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micrometers, and Fig. 3 shows the remarkable variation in the surface appearance

between the thick and thin coating areas. Microscopic study invariably revealed

that the thick coating spots were "pools" filling in the low, thin spots of the

basesheet rather than small areas of the basesheet with high coating absorbency.

Our initial expectation was that the smooth (thicker) coating areas would be

associated with areas of higher print density (due to greater ink holdout), but

the opposite turned out to be true for a multicolored print. We felt that

localized variations in coating thickness [which may also affect binder migra-

tion (12,13)] caused the print speckle in this sheet, but it was evident that a

vast amount of microscopy would be required to prove whether variations in the

print density always corresponded to variations in the coating thickness due to

a nonuniform basesheet. We therefore resorted to image analysis to determine

how much, if any, of the observed variations (and the hypothesized concomitant

coating thickness variations) corresponded to the forming fabric pattern.

Figures 2 and 3 here

Image analysis

All image analysis work was performed on a Tracor Northern image analyzer at

their facility in Middleton, Wisconsin. The print sample (Fig. 1) was illumi-

nated under direct overhead tungsten lighting to minimize the effects of coating

topography and ink gloss patterns. We therefore believe that the camera was

essentially registering only print density variations. The camera image output

was stored and manipulated in memory as a 512 by 512 pixel array with one of 256

levels of gray assigned to each pixel; the pixel resolution was limited by the

camera we used rather than by the machine. The digitial image was processed for

uneven lighting effects, but no other enhancement techniques were employed.
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Figure 4 is the resulting digitized image (magnified) as copied from the CRT

screen. Note that the only obvious pattern is created by the magenta halftone

dots aligned orthogonally. The general speckled and blotchy appearance of the

original is also apparent, but other patterns, including the 27° diagonal men-

tioned earlier, appear to be absent.

Figure 4 here

A Fast Fourier Transform (FFT) was applied to the image array in Fig.

4, and the resulting power spectral density plot is shown in Fig. 5. Each spot

of light represents a repetitive pattern found in the image. Pattern frequency

is indicated by the distance from the center of the spectral density plot; lower

frequency patterns are represented by dots close to the origin, while higher

frequency patterns are represented by dots farther away. The angle each spot of

light makes with the axes indicates the inclination which that particular pat-

tern has in the image. Note, however, that the power spectral density plot is

rotated clockwise by 90°; for example, the horizontal axis in the original image

is represented as a moderately bright vertical line in Fig. 5. Because

quadrants are symmetrical, the patterns found in opposite quadrants are mirror

images of each other.

Figure 5 here

Figure 5 shows about 20 points bright enough to stand out from the

background noise. The four brightest points, orthogonally positioned, have a

frequency of 5.2 cycles/mm according to the analyzer. The angles and the dot

frequency agree exactly with the magenta dot pattern as seen in the digital

image (Fig. 4) and also as measured under the microscope. Dimmer outer points
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are also orthogonally positioned and represent weak harmonics of the fundamental

magenta dot pattern. These harmonic patterns are easily visible to the image

analyzer but are extremely difficult to discern with the naked eye (Fig. 4).

Several points closer to the origin are of greater interest for this

study. Notice the moderately bright pair of points in the middle of the cloud

of noise, about 27° from the horizontal in Quadrants I and III. When one of

these points is tightly encircled by the cursor, only the patterns within the

cursor border are displayed, masking unwanted frequencies and almost all of the

noise; the image analyzer showed a frequency of 1.1 cycles/mm for this par-

ticular point. The display of the frequency/angle combination selected by the

cursor is shown in Fig. 6. The diagonal pattern stands out dramatically. Note

that this pattern matches the twill angle and spacing of the forming fabric

after adjustment for basesheet changes in the paper machine (see Fig. 7a and 7b,

also Table 1). Some type of interference pattern also appears to be super-

imposed on the twill pattern in Fig. 6. This pattern will be discussed later.

Figures 6 and 7 and Table 1 here

The image analyzer cursor was next used to encircle the brightest point

on the vertical axis in Fig. 5. This point had a higher frequency (1.7 cycles/

mm) but a lower intensity than the twill pattern. This horizontal pattern is

shown superimposed over the twill pattern in Fig. 8; it agrees very well with

the measured frequency of the forming fabric CD component after a small adjust-

ment for draw along the paper machine (Table 1). It is interesting to note how

the horizontal component reduces or even cancels the twill component in some

areas and vice versa. Other areas have equally strong horizontal and twill com-

ponents which result in diamond shapes. Superimposed over all this is the
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interference pattern already mentioned. The brightest point on the horizontal

axis (1.1 cycles/mm) was analyzed next. The frequency of this relatively weak

point agrees very well with the measured frequency of the MD component of the

forming fabric (Table 1).

Figure 8 here

Figure 9 demonstrates another interesting interactive capability of the

image analyzer; it is a two-colored display of the forming fabric pattern in the

digitized image (Fig. 4) after certain items have been masked for better clarity.

After correcting for uneven tone density, we overlaid the frequencies from the

polar spectral density plot that corresponded to the forming fabric MD and CD

components. We then classified the gray levels in the resulting image into two

bins and colored them for better visibility and displayed the image seen in Fig.

9. We are convinced that the discontinuities in the fabric pattern are not

artifacts; we could slightly enhance or degrade their appearance in the final

image, but overall, the image analyzer had limited manipulative abilities.

Figure 9 here

It is intriguing that the light-colored areas in Fig. 9 are the right

size and shape to correspond to the "blotchiness" seen in the original print.

Some CD orientation is also apparent. However, it is not possible to discover

the source of the light-colored areas without further investigation (e.g., com-

parison with similar basesheet formation images).

'Comments and implications

Others did not believe the wire mark was causing the print speckle, but instead

felt the problem was originating in the coating process itself. However, the
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image analysis work just described, coupled with our microscopy work, now makes

us quite certain that the forming fabric can create periodic, high-frequency

variations in the coating thickness which result in differences in ink recep-

tivity ("speckle") in the coated sheet. The work demonstrated in Fig. 9 also

makes it clear that there are many areas where the fabric pattern is overwhelmed

by a blotchy pattern very similar to the mottled pattern seen in the printed

sample. Unfortunately, the source of the blotchiness is not immediately obvious

since it is comprised of random low frequency components which cannot yet be

attributed directly to any paper machine component. (The interference pattern

in Fig. 6 does not appear to correspond to the blotchy pattern in Fig. 9.) It

would have been interesting to determine how well the blotch patterns correlated

to basesheet formation.

Several interactions are likely occurring between the sheet and the

four-color offset press to cause the print defects described earlier. We

believe that a significant portion of the speckle is caused by localized coating

absorptivity variations which are, in turn, associated with coating thickness

variations (and possibly enhanced by local binder migration). We think the low

absorptivity over the coating thick spots leads to nonuniform ink tack buildup

in the exact pattern of the forming fabric. When the magenta halftone is

printed, the ink dots either trap poorly over the resulting low tack areas of

the underlying cyan or they are trapped back off by the following yellow blanket

(13,14). The "speckled" appearance seen in the print can result from either

mechanism, and the fundamental cause is localized variability in the coating

absorptivity. The same mechanisms may also be occurring for the larger blotchy

areas, although the work reported here did not establish that. It should also

be pointed out that we think coating thickness variations probably lead to
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significant print density variations only when the coating absorptivity varies

along with the thickness. That is, some coating formulations may not be as sen-

sitive to thickness variations and may, therefore, not lead to the kind of print

density variations seen here. Also, other variables such as base paper destruc-

turing (15) and drying strategy (16,17) can ultimately affect coating and print

density variations.

Another intriguing aspect of this work was the possible interaction of

the coating absorptivity pattern with the overlaid pattern of magenta ink dots.

This is suggested by the appearance of a moire-type pattern in Fig. 6. Although

this type of image distortion is known to occur as an artifact of the FFT trans-

formation, a moire pattern might also have resulted from the chance overlay of

one of the secondary magenta dot patterns on the coating absorptivity pattern

caused by the twill in the forming fabric (we found the magenta dot frequency

almost an exact multiple of the twill frequency, and the secondary screen angle

almost the same as the twill angle). Since this hypothesis lacks definitive

experimental evidence, we must consider the idea to be speculative; nonetheless,

we think it conceivable the twill pattern led to ink dot density variations

which were reinforced by a moire pattern induced by the magenta screen angle and

frequency. This result, if true, does not mean the printer must avoid screen

conditions similar to the fabric twill, but it does provide further incentive

for manufacturing basesheets with less noticeable forming fabric patterns and

more uniform coatings.

Finally, the forming fabric pattern should be useful for future work

since it provides a built-in coordinate system for image analysis studies of

paper and coatings on a microscopic scale. For example, we think it should be
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possible to utilize this same technique in future studies of microscale binder

migration. If binder migration actually occurs, and if the amount and/or com-

position of the surface binder is different for thick and thin coating spots,

then a map of coating binder (however obtained) should contain the same forming

fabric pattern when viewed by an image analyzer. If the binder map agreed

well with observed print density patterns, there would be strong evidence that

microscale binder migration is an additional significant factor in print

quality.

Summary

Microscopic and image analyses were used to prove that the basesheet somehow

contributed to higher-frequency print nonuniformities in a lightweight coated

publication paper printed on a four-color web offset press. While the exact

mechanisms are still under study, we found that a significant portion of the

print variations in this paper were created by periodic variations in the

coating thickness which, in turn, corresponded exactly to the forming fabric

pattern in the basesheet. Areas of low print density were found to lie exactly

over areas of greater coating thickness. We feel that one of the more

exciting aspects of this work was the realization that the wire mark could be

viewed in the print with an image analyzer and used as a built-in coordinate

system for correlating thick coating spots with areas of low print density.

Local binder migration to these areas in the coating may or may not prove to

be an additional factor in the highly variable surface absorptivity observed

here, but this work once again demonstrates the importance of creating a uni-

form basesheet and coating if the best offset print quality is to be

obtained.
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1. Comparison of frequencies.

Adjusted Measured
for from Measured

From fabric basesheet printed by image
measurements changes sample analysis

CD component 1.79 1.71 1.69 1.67
MD component 3.23 3.10 2.94 NA
Twill component 1.08 1.10 1.10 1.10
Twill angle 29° 270 27° 27°



1. Somewhat enlarged photo of LWC print from the problem area.





3. SEM view showing surfaces of thick and thin coating areas.



5. Power spectral density plot of the digitized image in Fig. 4.

6. Image analyzer display showing the twill component inherent in the print

sample shown in Fig. 1 and 4.



Fabric Component

6x
7. (a) Photo of forming fabric

used in this study.
used to make the basesheet for the LWC paper

(b) Low angle incident light photograph of basesheet (wire side) made on

the fabric shown in Fig. 7(a).



8. Image analyzer
sample.

display showing the twill and CD components in the printed

9. Two-color display of the MD and CD fabric components superimposed to show
the blotchy ink density patterns; ax. 100 pm/pixel effective resolution.


