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ABSTRACT

Transmission electron microscopy and image analysis were used to quantify the

distribution of pore volume through the thickness of coating films. Clay

coatings applied to nonporous media dried at high rates were found to have 2%

greater pore volume than those dried at a significantly lower rate. Coatings

dried at higher rates were found to be denser near the surface and bulkier

through the center.
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INTRODUCTION

In the last 15 years, science has made considerable strides toward

understanding the art of coating technology. Recently, emphasis has been

placed on how components of the coating system interact to affect product

quality. For example, it has been demonstrated that coater geometry affects

the fluid properties within the coater (1). Coating structure has been found

to influence print density uniformity in the finished product (2,3). Drying

rate or drying strategy has been shown to affect coated sheet properties (4-

8). The list goes on; however, little work has been done to determine how

process variables influence pigment packing and to what extent the packing

structure may affect the coating properties.

The importance of the particle packing structure at the surface of the coating

has been shown to be important to the microgloss of the coating (9).

Smoothness and uniform density are required for even ink transfer during

contact printing. The packing density of the coating is also important to its

optical properties; pore size distributions have been shown to correlate with

scattering coefficients (10). However, little is known about how the packing

structure relates to coating strength or how the packing structure changes

through the thickness of the coating; even less is known about how the density

distribution is affected by the substrate or the process variables. This

study is directed toward developing a laboratory technique for quantifying the

pore volume distribution through the thickness of a coating layer with

emphasis on the effect of drying rate on the distribution.
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MATERIALS AND METHODS

Delaminated Georgia kaolin clay was dispersed in distilled water (adjusted to
pH 8 with 0.1 M NaOH) to 60% solids. No dispersant was added to the clay

beyond that in the clay as shipped. The Brookfield viscosities of the
coatings were about 0.3 Pa's (300 cP) at 100 rpm.

Coatings were applied to a plastic substrate using Bird bars (0.004" and 0.01"
clearances) and a #10 Meyer rod. Coat weights obtained from the three
metering devices were approximately 50, 100, and 20 g/m 2, respectively.

Temperature was used to control the drying rate. The rate of drying was
determined by measuring the time that elapsed between when the coating was
applied and when the wet-like appearance of the surface disappeared [the first
critical concentration, or FCC (11)].

The solids concentration at the FCC was determined by measuring the moisture
content of scrapings obtained from the coating as it reached its gloss
transition point. The 60% solids delaminated clay coatings were found to
reach the FCC at 77% solids.

Identical coatings were dried in an oven under slight vacuum at room
temperature and at 120°C. A bright light was mounted in the back of the oven
so that the gloss point could be observed easily. Coatings dried at 120°C
reached the FCC after 17 ± 4 seconds. The same weight coating dried at 21°C
reached the FCC after 230 ± 17 seconds, corresponding to drying rates of 1.54
kg/m 2hr and 0.12 kg/m2 hr, respectively.

Triangular samples, 7 mm at the base and 10 mm in height, were cut from the
center of the coated plastic sheet for cross sectioning. A large rectangular
sample was also cut from the sheet adjacent to the triangles to be used for
oil absorption analysis (12). Finally, twenty 1-by-2-cm pieces were cut from
each coating to be used for mercury porosimetry tests.

The triangular samples were embedded with an ultralow-viscosity resin. Thin
cross sections of the embedded samples were cut with a diamond knife.
Sections were collected on single-hole nickel grids according to the technique
described by Abad (13).

Photomicrographs were taken at various magnifications with a transmission
electron microscope (TEM). Pore volume distributions of the coating cross
sections were determined from the photomicrographs using image analysis. The
methods are described below.

Pore Volume Measurements

The technique used to measure the pore volume distribution through the coating
thickness was similar to that used by Climpson and Taylor (10) and that of
Andersson (14,15). Thin cross sections of the coating were photographed at
high magnification and the resultant micrographs were analyzed using image
analysis.
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Digitized images (512 x 512 pixels) of coating cross sections were obtained

from the photomicrographs via a video camera and frame grabber housed with the

image analysis system. Each pixel was assigned a grayscale value between 0

(black) and 255 (white). Particles and pores in the digitized images were

distinguished by their gray value. Figure 1 shows a photomicrograph of a

coating cross section.

Figure 1. Composite photomicrograph of a coating cross section. 14,000x.
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A binary image of the cross section is created by shifting the grayscale

values. Grayscale values for pixels that make up the pigment were shifted to

0, while the grayscale values for the pores were shifted to 255. Figures 2

and 3 show a digitized image of a portion of a coating cross section and its

corresponding binary.

_

Figure 2. Photograph of a digitized image of a cross section of a coating

(enlarged).
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Figure 3. Photograph of the binary image created from the grayscale image
shown in Figure 2.

Applying basic stereological principles (16), the total pore volume of a cross
section was determined from the binary image by taking the ratio of the number
of pixels representing pores and the total number of pixels in the cross
section. Density distributions were obtained by dividing the cross sections
into 1-micron-thick levels and measuring the relative pore volume of each
level. The value of the relative pore volume for each level was plotted
against its corresponding position in the cross section. The resultant curve
was used as a measure of the pore volume distribution through the coating
thickness.

EVALUATION OF PORE VOLUME TECHNIQUE

Effect of Section Thickness

The thickness of a thin section of the coating cross section is critical to
the resolution of the analysis method. Because both the pigment structure and
the thin section are three dimensional, the section must be as thin as or
thinner than the smallest pores in the coating. A section that is too thick
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may have more than one layer of particles in it. When photographed, a pore

lying on top of a particle will look as though it were a particle, blinding

the pore to the analysis and biasing the results. Verification of this theory

is shown in Figure 4.

The data in Figure 4 were obtained from a coating whose total pore volume was

42% (oil absorption), of which 95% was contained in pores greater than 0.1

micrometer in size (mercury porosimetry). Sections greater than 100 nm showed

significantly lower pore volumes than the thinner sections. The accuracy of

the techniques discussed in the previous section deteriorates when the section

thickness approaches the size of the voids.
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Figure 4. Relative pore volume of a 20 g/m 2 100% delaminated clay coating on

a plastic film as measured by image analysis of cross-sections of various

thickness.

Effect of Sample Magnification

The magnification of the sample is also important. When digitizing the image,

there is some imprecision at the particle edges. Instead of a clean

transition from the gray shade of the particle to that of the pore space,

there is a gradual change. Due to the fuzziness at the particle edges, it is
difficult to choose the grayscale value at which to divide the particles and

the pores. At lower magnifications, fuzzy regions may contain a significant
portion of both the pores and the particles. An error in choosing the

dividing grayscale value could result in a significant error in the analysis.

At higher magnification, the width of the fuzzy region becomes insignificant

relative to the total number of pixels in either the pores or particles.

Errors in choosing the dividing grayscale value result in insignificant

changes in the analysis. Figure 5 shows the deterioration of the resolution

of the analysis method below 5000x.
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Figure 5. Relative pore volume of a coating layer versus micrograph

magnification.

High magnification has its disadvantages, however. At high magnifications,

the intensity of the electron beam is concentrated into a smaller area on the
sample, and the absorbed energy may cause an increase in temperature or

destruction of the thin section. In addition, the portion of the sample that

is captured in a micrograph gets smaller with increased magnification.

Because more micrographs are necessary to record a single cross section at

higher magnifications, the time consumed in the analysis is increased.

However, the gain in resolution by using higher magnifications outweighs the

cost of the analysis time and sample preparation.

Effect of Sampling Size

A set of micrographs comprising a cross section of a coating film at 14,000x

may include about 30 pm of sample length. Obviously, a single sample randomly

taken from a coating will not necessarily be representative of the entire
coating. From a single coating containing 40% voids, 16 separate samples were

taken from random locations. Cross sections were cut parallel to the y-axis

and micrographed. (The x-axis is the direction of coating application; the y-

axis is perpendicular to the application direction, and the z-axis passes

through the thickness of the coating.) The relative pore volumes of the

samples were determined by the image analysis technique. The variance of the

sample population was calculated from every combination of two or more
samples. The results are shown in Figure 6. It appears that eight or more

samples are necessary to obtain a representative sampling.
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Figure 6. Relationship of the variance in total relative pore volume and the
number of different samples analyzed from a single coating.

To determine if there were any specific orientations of the pores in the x-y
plane, two additional sets of eight samples were cut from the same coating
sample used to obtain the data in Figure 6. One set was sectioned parallel to
the x-axis and the other was sectioned at 450 to the x-axis. No significant
difference in total pore volume or pore volume distribution was found among
the three sets of samples.

Comparison to Other Techniques

Oil absorption techniques (12) and mercury porosimetry (17) have been employed
to determine the relative pore volume of each of the coatings analyzed in this
study. Neither method reveals any information about the distribution of pore
volume through the thickness, but each has been used to determine the total
pore volume of a sample. A comparison of results of using these methods with
two different coatings is shown in Figure 7.
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Figure 7. Total pore volume of two different coatings as determined by oil
absorption, image analysis, and mercury porosimetry.

In every case tested thus far, the oil absorption method and the image

analysis method have given the same results. The mercury porosimeter method

was found to be significantly different at the 95% level but not at a 90%

confidence level. In general, mercury porosimetry results showed about 2%

less relative pore volume than the other methods. Its sample-to-sample

standard deviation (1.6) was also greater than the other techniques. Data

from Climpson and Taylor's (10) work indicate similar results.

INFLUENCE OF DRYING RATE: RESULTS AND DISCUSSION

Although the study of the effect of process variables on the density

distribution is far from complete, the drying rate tests performed have

yielded some interesting results. The drying rates obtained by oven drying

(1.54 kg/m2 hr and 0.12 kg/m2 hr) are not those of industrial processes;

however, the rates differed from one another by about an order of magnitude.

It was expected that such extremes would produce differences in the coating

structure.

The pore volume distributions through the coating thickness are shown in

Figure 8. Both curves have the same general shape: dense area at

approximately 2 micrometers from the surface followed by a region of high bulk

which trails off near the coating base to a density similar to that of the

surface.
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Figure 8. The z-directional pore volume distribution of 20 g/m 2 coatings

dried at two different temperatures, 21 ° and 120°C.

The shape of the curves in Figure 8 can be explained if the colloidal

interactions of the particles are considered. Hoy (18) and Hiltner and

Krieger (19) have shown that particles along a boundary form regular packing

structures that are denser than those of a random packed system. Particles in

suspension generally are surrounded on all sides by other particles. As the

particles undergo translational and rotational diffusion, they interact with

neighboring particles. Each particle reacts to reduce the energy of the

interaction. To achieve minimum energy, the particles at the interface orient

so that a large face is parallel to the surface or so that the largest

possible surface does not have a neighbor. Assuming that the clay dispersion

is random and is not, for example, a "card house" structure (20), electric

double-layer interactions between the surface particles and the particles

below them will result in a significant parallel particle orientation. This

phenomenon was observed by Climpson and Taylor (10) and by Smart (21), who

studied packings of soils under compression. The parallel orientation

gradually fades with depth into the dispersion. Random dispersion of uniform

spheres has been reported to be restored after about 10 particle diameters

(18).

Figure 8 shows that the maximum density is just below the surface instead of

at the surface. The explanation lies in the measurement technique. The

boundary for the coating surface was created by drawing a line between the

high points on the surface. As a result, some air space above the coating is

considered part of the coating, causing an apparent drop in density. The

steepness of the initial drop is probably a good indication of the micro-

roughness.

The bulk of the coating, 4 to 8 pm from the surface, shows the much higher

bulk associated with more random structures, as would be created by out-of-

plane orientation of the particles. The photomicrograph in Figure 1 shows

this characteristic clearly. The substrate also acts as a boundary that
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restricts movement of the interface particles. A density profile similar to
that at the surface is expected. However, the density profile will probably
not be as great, since the particles adhere to the substrate as coating is
applied. As a result, the orientation of the interface particles may not be
as uniform as it was at the surface.

The average total pore volumes of the two coatings were 37.8% ± 0.4 and 36.6%
+ 0.3 for the high and low temperatures, respectively. Again, from properties
of colloidal suspensions, an explanation for the difference in volume can be
given. The reaction of the particles to interparticle forces is time
dependent. The rate of particle orientation is the function of the orienting
pressure (double-layer repulsion and surface tension forces) and the
translational and rotational diffusion rate of the particles. In the system
where the coating is dried quickly, the consolidation occurs too fast for some
particles to react to electric double-layer forces. As a result, there is a
smaller amount of parallel or structured packing and, thus, a greater void
volume. This is indicated by the shallower depth of dense regions near the
surfaces relative to the particles dried at a slower rate.

By the same arguments, the density near the surface of the coating should be
less for the coating dried at the higher rate. However, the opposite was
found. Other coatings dried at high rates have shown that the particles near
the surface have a smaller size distribution than similar coatings dried at
lower rates. Unpublished work by Eklund has found a similar response for
calcium carbonate coatings. Capillary transport may cause water to carry
small particles with it to the coating surface. However, there was no
evidence that this occurred in these coatings.

Alternatively, the high drying temperature may have caused a large temperature
gradient in the coating layer near the surface during drying. Because higher
temperatures increase the rate of translational and rotational diffusion and
lower the viscosity of the dispersing media, higher temperatures favor ordered
packing. A large temperature gradient near the surface could result in denser
packing near the surface compared to coatings dried at lower temperatures.

CONCLUSIONS

The image analysis method provides reliable results for quantification of pore
volume distribution through the thickness of a coating film. The accuracy of
the distribution is critically dependent upon the thickness of the cross
sections; resolution is lost when section thickness is larger than the
smallest significant fraction of the pores. The method is also dependent upon
the sample magnification; a too-low magnification may result in deterioration
of the accuracy of the analysis.

Coatings were found to vary in density from surface to substrate. The density
variation can be explained by interaction of colloidal particles near
boundaries.

Coatings dried at widely different temperatures and water removal rates were
found to have similar density distributions. Higher temperatures resulted in
greater total pore volume and denser, but shallower, regions near the coating
surface. The greater pore volume resulted from a more random structure caused
by limiting the time available for the particles to respond to interparticle
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and boundary interactions. It is not readily apparent what caused the
increased density near the coating surface.

Further indepth investigations into drying rate effects are in progress.
Coatings are being dried at constant temperature, and drying rates are being
controlled by changing the humidity of drying air blown over the surface of
the coating. Similar experiments are being performed on coatings made of
polystyrene latex. Study of particles of easily modeled geometry may lead to
a better understanding of the roles played by colloidal and hydrodynamic
forces in the coating layer during drying.
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