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ABSTRACT

In this paper, we computationally investigate the relationship between pressure fluctuations

upstream the blade nip and nonuniformities of the wet-film thickness.

The motivation for this study comes from earlier investigation of the flow in the pond of

short-dwell coaters. Although these coaters are very popular in surface treatment of paper, the

trend toward increasing coating speed is hindered by the difficulty in maintaining uniform coat-

weight profile in the cross-machine direction (CD). Past studies suggest that three-dimensional

hydrodynamic instability inside the short-dwell pond, where the flow becomes unsteady and

nonuniform as coating speed increases, is a major contributor to coat-weight nonuniformities in

the CD.

In this and other blade coating systems, disturbances upstream of the blade generate a

nonuniform wavy coating color layer entering the blade nip with the moving web. Consequently,

the normal stress upstream the blade, which affects the pressure-driven flow, becomes

nonuniform in the CD, and subsequently, generates coat-weight nonuniformities. The effect and

significance of the pressure fluctuations upstream of the blade on coat-weight nonuniformities

is the central issue addressed in this study.
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INTRODUCTION

The objective of coating processes is to apply a coating color to a moving web to produce

a smooth and uniform surface for good printability. Increasing demand for light-weight coated

paper has generated the trend toward increasing machine speed while reducing coat weight in

blade coaters. Meeting this trend, short dwell-time coaters (SDC) have gained popularity over the

past 10 years. In SDC the flexible blade acts both as a boundary of the coating color reservoir

(SDC pond) and as a metering unit (Fig. 1). SDC have advantages of compactness, low color

penetration, long blade life, and less sheet break due to low blade loading. But movement toward

'Correspondence concerning this article should be addressed to C.K. Aidun, Institute of

Paper Science and Technology, 575 14th Street, N.W., Atlanta, GA, 30318.

H. Miura is currently a Research Engineer with Mitsubishi Corp., 5007 Itozaki-cho, Mihara,

Hiroshima Pref., 729-03, Japan.
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further increase of coating speed with SDC has been hindered by difficulty in maintaining

uniform coat-weight profile in the CD. In its extreme case, an uneven coat-weight profile appears

as a patterned surface characterized by streaks of 1 to 3 cm wide running along the machine

direction (MD). We should note that this length scale (- 1 cm) is orders of magnitude larger than

the blade gap (- 30-50 pm) and that these streaks have, in general, less coat weight than the rest

of the coated surface. The streaks are estimated to have 15 to 50 percent deficit in coat-weight

relative to the rest of the coated surface. This is in contrast to streaks caused by a solid particle

blocking the blade gap, or skip coating, where the streaks essentially have no coating. Wet

streaks occur when the machine speed increases above a critical limit for a given coating color

viscosity. Pilot coater trials (Triantafillopoulos and Aidun, 1990 and Li, 1990) show that this

limiting speed decreases by increasing the percentage solids, and consequently, the low-shear

viscosity of the coating color.

Experiments with Newtonian fluids and a through-flow lid-driven cavity simulating the

pond of a short-dwell coater (Aidun et al., 1991a and Benson and Aidun, 1991) revealed the

sequence of transitions from steady state (SS) to time-periodic (TP), and eventually, a state with

more than one fundamental frequency (see Fig. 2) referred to, from now on, as the "unsteady

state." This state seems to follow a quasi-periodic state (QP) at Re - 1000 and is characterized

by a broad band of frequencies. ° The mushroom-shape structures which appear at the unsteady

state (Fig. 2d) could be an initial state of Gortler-like vortices observed by Koseff and Street (5)

"The measurements by Benson and Aidun (1991) suggest a SS--TP--QP---chaotic sequence

of transitions. Rigorous stability analysis is required to map the transitions more accurately and

to establish the sequence of instabilities to unsteady nonperiodic (chaotic) flow.
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state (Fig. 2d) could be an initial state of Gortler-like vortices observed by Koseff and Street (5)

in a confined lid-driven cavity flow at Re = 3200. It is important to note that the length scale of

the mushroom-shape vortices (Fig. 2d) is the same as the width of the wet streaks discussed

above. Also, the dynamical characteristics of the streaks correspond to the rapid motion of these

structures in the pond. Based on these observations, we conclude that these structures are an

important factor in generating the streaks.

There are a number of ways that flow instability in the pond upstream of the blade can

cause film thickness nonuniformities. These are summarized in Fig. 3. Air entrainment proposed

by Aidun (1989) is one of the prime candidates. The recent pilot coater experiments by Li and

Burns (1991) show a decrease in the streaks as the air accumulated inside the pond is removed.

The sequence of events leading to air entrainment in the form of small bubbles from a dynamic

contact line is revealed by Veverka and Aidun (1991) and Aidun et al. (1991b). We emphasize

that this mode of air entrainment in the form of air bubbles entering and accumulating inside the

pond occurs at machine speeds lower than the speed resulting in skip coating.

This paper focuses on the second mechanism represented in Fig. 3. A three-dimensional

(3-D) flow upstream of the blade results in some variations in the static pressure at the blade gap

entrance. Since a portion of the mass transfer into the blade gap is pressure driven, the variation

in static pressure could result in coat-weight variations. Here, we examine the importance of

temporal as well as spatial pressure variations in the cross-machine (spanwise) direction. This

requires solution of the equations governing the transient 3-D flow at the blade. All of the

previous computational analyses of blade coating assume no flow or variations in the third

dimension. A two-dimensional (2-D) analysis can be extremely useful in terms of predicting an
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average coat-weight and investigating the various blade coating features, such as substrate and

blade deformation (Pranckh and Scriven, 1988, 1990), coating color penetration into the substrate

(Chen and Scriven, 1989), and design of new coating application systems (Aidun, 1992).

Conclusions made from 2-D computations without including a stability analysis, however, could

be somewhat misleading. We now know that the solution of a steady, 2-D flow in the pond of

a short-dwell coater represents a solution branch which is locally unstable to a TP state at Re >

900 (Aidun et al., 1991a). Therefore, the 2-D SS solutions reported in previous studies

(Triantafillopoulos et al., 1988, 1989; Affes et al., 1990; and Conlisk and Foster, 1991) are

unstable to infinitesimal disturbances and do not represent a physical flow at Reynolds number

above 900.

Linear stability analysis of 2-D flows in slide coating (Christodoulou and Scriven, 1989)

have proved to be quite effective. In this study, however, to investigate the magnitude of the

meniscus nonuniformity in the spanwise direction due to pressure variations upstream of the

blade gap, we have to solve the full transient 3-D flow equations. Including the third dimension

in the analysis increases the computational cells by an order of magnitude. The added complexity

of solving the strongly nonlinear interfacial conditions at the free surface, which now has two

radii of curvatures, demands a careful setup of the domain and the boundary conditions for a

most efficient, and therefore, tractable problem. Since the main objective in this study is to

determine the significance of coat-weight variations caused by the pressure fluctuations upstream

the blade, we consider a nonporous smooth substrate (e.g., the backing roll) and neglect the

deformation of the substrate and the blade. This will isolate the effect of the third feature

introduced by Fig. 3, that is, nonuniform deformation of the substrate and the blade gap opening.
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This is a preliminary computational study in a continuing effort to analyze the various

mechanisms of large- and small-scale coat-weight nonuniformities with blade coating systems.

COMPUTATIONAL TECHNIQUE

In contrast to confined flows where the boundaries are well-defined and fixed in time, free

surface flow problems introduce an added complexity due to the a priori unknown location and

shape of the interface. Numerical algorithms for free surface problems normally start from an

initial condition and compute the shape of the interface according to the interfacial conditions.

There are two fundamental categories of computational techniques for free surface flow

calculations. One class requires that the interfaces coincide with the element or grid boundary,

and therefore, the elements adjacent to the interface are forced to deform with the free surface.

Finite element methods developed for free surface calculations fall within this class. This

technique works well for free surface flows with small deformations. But for large deformations,

the excessive deformation of the elements results in various problems including

the technique's inability to converge. In this situation, it is necessary to use strategic continuation

techniques and remeshing of the domain.

We have adopted a second class of computational techniques for free surface flows where

the fluid is convected through fixed grids, and the free surface can deform, according to the

interfacial conditions, independently of the grid system. This feature allows computation of flows

with large deformation and discontinuous surfaces to be routine. The grids which are crossed by

the liquid surface are partially full and have to be treated in a special manner. We use the

volume-of-fluid (VOF) techniques (Torrey et al., 1987) where the VOF in the surface cells is

I
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treated as an additional dependent function of position and time, F(x, t), governed by the

convective equation

DF
- = Un

Dt

(1)

where D/Dt is a material derivative, and u, is the fluid velocity normal to the free surface. This

equation follows from the kinematic condition requiring the free surface to be a streamline or a

material surface in 3-D flow problems. The value of F can vary from 0, for an empty cell, to 1,

for a full cell. This technique was used successfully in the past (Torrey et al., 1987) for

calculation of free surface problems where the tangential and normal viscous stress conditions

at the interface could be neglected. For problems where accurate computation of the free surface

deformation is not required, such as the drainage of a tank, surface stress conditions can be

neglected. In our application, however, we are interested in an accurate determination of the free

surface shape, and therefore, must include the complete nonlinear surface conditions. We apply

the full normal and tangential stress conditions given, respectively, by

-p + 2p ] -p + 2 a +
A an B I

(2)

I
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and

[L (_ + t = + n

(3)

Here, n and t are the normal and tangential directions with respect to the interface; o is the

surface tension; R1 and R2 are the radii of curvature. The brackets designated by subscripts A and

B correspond to the phases, such as liquid and air, forming the interface. In coating applications,

since the viscosity of coating fluid is orders of magnitude larger than the viscosity of air, we

neglect the normal and tangential viscous stresses of phase B (air) in Eqs. (2) and (3).

The continuity and full momentum equations are solved using finite difference techniques

based on SOLA (SOLution Algorithm) and the QUICK (Quadratic Upstream Interpolation for

Convective Kinematics) methods. The SOLA method, which was originally formulated by Hirt

et al. (1975), is a linear combination of first-order accurate upwind differences and second-order

accurate centered differences. The QUICK method, originally proposed by Leonard (1978) for

use of finite volume derivations, is a third-order accurate upwind differencing scheme which

possesses the stability of first-order upwinding but is free of its second-order numerical diffusion.

For a 2-D local (E,rn) coordinate system, Leonard fitted a six-point quadratic interpolation surface

with the form given by
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= C, + C2 C + C3
2 + C 4, + c 5 n 2 + C 6 nr

(4)

and yielded the QUICK formula given by

Q 2 (L + L) - (tc-2_-AuL) 2+ (T - 2*L e
2 8 24

(5)

The last term on the right-hand side, which represents a small upstream-weighed

transverse curvature effect, is reported to have negligible impact on the computed flow field

(Freitas et al., 1985). This term is neglected in our computation, yielding a one-dimensional form

of the interpolation where we lose a little accuracy but greatly simplify the computations.

A typical simulation in this study begins by specifying initial domain and applying an

initial value for the velocities and pressure in the computational domain with the appropriate

boundary conditions. The governing equations are then projected onto the discretized domain

using finite difference approximations, and the results are written in terms of the velocity and

pressure field at the current and next time steps, n and n+l, respectively, by

u "*1 = [u" + A8(-u" . Vu" + g + VVu")] - -VPn+l
P

(6)
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Substituting Eq. (6) into the continuity equation yields

^p.*1 = V .[u" + A6(-u" . Vu" + g + vu")]

~~~~P~~~~~~~~~~~~(7)
(7)

Eq. (7), Poisson equation for pressure, is solved for the pressure field at the next time step

by the conjugate residual method. The resulting pressure field is then substituted into Eq. (6) to

provide the new velocity field. This procedure is continued until the desired time step is reached.

The accuracy of the technique described above has been intensively examined in a recent

study (McKibben and Aidun, 1991), using both confined and free surface flows, and solutions

are compared with the results in the literature.

We apply this technique to solve the 3-D flow of a highly viscous coating fluid at the

blade. The flow at the entrance side of the blade consists of a shear-driven (Couette-flow) and

a pressure-driven (Poiseuille-flow) component (Pranckh and Scriven, 1988, 1990).

We use the web speed, W, and the blade gap, h, for the velocity and length scales. We

use the convective time scale, h/W, and jiW/h for the pressure scale. From here on all of the

variables shall be considered as dimensionless unless otherwise stated.

The inlet velocity boundary condition at the blade gap (Fig. 4a) consists of Couette- and

Poiseuille-flow components given by

I
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w (x, y, ) 1 - x + -. x (x - 1) at z=0
2 dz

(8)

where the pressure gradient, dp/dz, can be a function of spanwise position, y, and time, t. The

problem considered here has two parameters, namely the Reynolds number, R - pWh/. and the

capillary number, Ca _ gW/a.

Analysis of flow at the blade nip involves mathematical treatment of a deforming

meniscus and a static contact point at the exit side tip of the blade. Local analysis of the flow

near the static contact point (Michael, 1958) in a die-swell problem shows that the discontinuity

in shear and stress results in a mathematical singularity in the continuum approximation. This

results in pressure and velocity gradients increasing without bound as r' ", where r is the distance

from the static contact point. The contact angle at this point is a major factor influencing the

shape of the meniscus. We treat this point in a special manner. The point is fixed at the sharp

corner of the solid, and the contact angle is determined from the equations and the interfacial

conditions. We have done a thorough examination of our technique for accuracy by solving the

die-swell problem and comparing the results with the literature. The results are reported by

McKibben and Aidun (1991).

2-D BASE CASE

We use a SS 2-D flow as an initial condition for the transient as well as the base case for

the 3-D analyses. In the 2-D cases, the surface tension effects are neglected. The flow entering
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the blade gap is assumed to be a parallel flow given by Eq. (8). The walls satisfy the no-slip

boundary condition, and the boundary condition downstream of the blade exit is given by

az

(9)

where (*) represents any dependent variable, and r is the total length of the domain in the z-

direction, as illustrated in Fig. 4b.

To examine the independence of the results from domain length and grid size, we

compute a test case at R = 19.2 and the blade thickness, t = 2.5. The initial condition for this

simulation is a linear velocity profile (no pressure gradient) under the blade, F = 1 for all the

cells inside the blade gap, and F = 0 for all the other cells. This indicates that the flow has

reached the static contact point (Fig. 4b) and is starting to form a meniscus upstream of the

blade. The transient equations are solved from this initial condition, and the results asymptotically

approach a SS condition. The problem is solved with the coarse as well as the fine grid system,

illustrated in Figs. 5a and 5b.

The evolution of the free surface from time 0 to 25 is shown in Figs. 6a and 6b,

corresponding to the coarse and the fine grids, respectively. The two free surface profiles at time

25 are compared in Fig. 7. Although the results are close to one another, the coarse grid shows

a slight numerical instability near the static contact point. This problem is resolved by refining

the gird in that region as shown by the surface curve computed with the fine grid system. The
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final thickness of the film has to be equal to .5. The value for the film thickness obtained from

the domain length 12.5 is .50025 at t = 25. Increasing the domain length and the final time, the

film thickness computed becomes .50001 at t = 45 (see Fig. 8).

We have also examined the accuracy of the results by noting the velocity profile at the

outlet boundary upstream of the domain. The flow far downstream has a constant velocity, u =

0, and w = 1.0. Table 1 shows the velocity profile of the film at various locations downstream

of the blade. The flow becomes essentially unidirectional at z - 20.

TP PRESSURE FLUCTUATION

In addition to the wet streaks which are coat-weight nonuniformities in the spanwise

direction, the film thickness can also develop a 2-D wavy profile due to temporal fluctuation

upstream of the blade. In this section, we examine the effect of the time-dependent fluctuation

of static pressure at the blade entrance on the film thickness.

We assume a sinusoidal pressure fluctuation given by

= (4P) 1 + .5 sin 2 )] 0 < t < 2T
dz dz T T

= (A) , t > 2T
dz dz

(10)

where (.) indicates a time-averaged magnitude, and T is the period of fluctuation.
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The inflow condition becomes time dependent according to Eq. (10), while the other boundary

conditions remain unchanged. Three cases were executed corresponding to the Reynolds numbers

of 12, 24, and 30. The blade gap was reduced to a more realistic value of 50 microns resulting

in a dimensionless blade thickness, T = 20. For a typical color viscosity of .05 Pa-s, density of

1.2 g/cm3, and a blade gap of .05 mm, the three cases presented in this section correspond to

coating speeds of 10, 20, and 25 m/s, respectively. The dimensionless average pressure gradient

is specified as (dp/dt) = -.5. In dimensional form, this pressure gradient

corresponds to -1 x 108, -2 x 108, and -2.5 x 108 (Pa/m) for the three coating speeds, respectively.

These values fall within the operating range of high-speed coaters of interest to this study.

Fig. 9 represents the computational domain and the grid system. Note that the vertical

direction is greatly scaled up in this and the following figures. The small roughness at the

meniscus surface is due to the interpolation of the F values in adjacent cells.

Fig. 10 shows the film thickness at 0.2 msec for the three cases considered. The film

thickness fluctuation is small, as expected. Note that integrating Eq. (8) shows that more than

91.7% of the mass flow rate through the blade gap is shear driven. Therefore, one could assume

that a 50% fluctuation in the static pressure results in about - 4% film thickness variation. The

film thickness variation from the average value plotted in Fig. 11 for each case shows a

maximum of 1% thickness variation. This is much smaller than the value predicted from a simple

linear analysis demonstrating the importance of the nonlinearities introduced by the meniscus

which reduces the full impact of the pressure fluctuations. However, the results show that

variations in thickness increase in the second cycle as the meniscus approaches a TP fluctuation.

I
I



15

PRESSURE GRADIENT VARIATION IN THE THIRD DIMENSION

The flow instability upstream of the blade results in pressure gradient variations in the

spanwise (cross-machine) direction. The purpose of the 3-D computations, presented in this

section, is to investigate the importance of the static pressure fluctuations on the film thickness

nonuniformity. Depending on the type of flow instability, the wavelength of the pressure variation

could vary from a millimeter to about a centimeter or more.

The effect of film thickness nonuniformities is most important in light-weight coating

where the blade gap is about 30 pim. The dimensionless parameters and a typical dimensional

value used for the 3-D computations are listed in Table 2. The Reynolds number and Capillary

number fall within the range of actual operating conditions. Although coating fluids are usually

shear thinning, here we assume a contact viscosity based on the typical value at high-shear rates

in the order of 106 1/s. The average value of the pressure gradient at the blade nip inlet is

estimated from the finite element computations by Pranckh and Scriven (1988) which is currently

the most complete analysis of 2-D blade coating.

The pressure fluctuation in the y-direction is approximated as a sinusoidal variation given

by

dp = | f + 0.5 cos ( nny )
dz dz Y(11

(Il)

where I]j indicates spatial average in the y-direction, and Y is the pressure fluctuation wave-
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length. The value of n could be 1 or 2, representing half-wave or full-wave fluctuations,

respectively.-" The pressure is again allowed to vary by 50% in magnitude. All of the

boundary conditions remain as before with the addition of symmetry plane conditions imposed

at the side walls, such that

u =.= - P= 0
ax ax ax

at y= Y± /2

In this series of computations, the main parameter is the spanlength, Y, which is varied

from 33.3 to 400 corresponding to a dimensional length of 1 mm to 1.2 cm. All of the 3-D

simulations start from a 2-D base case solution shown in Fig. 12 where the grid system and the

free surface are plotted. The final film thickness, calculated from integrating Eq. (8), is given by

0.5

Couette-flow

contribution

+ .12

Poiseuille-flow

contribution

= 0.62

Total

'"In our analysis, we have considered cases with a full-wave of pressure fluctuation to

examine any remote possibilities of symmetry breaking instabilities. None of the cases considered

in this study, however, became unsymmetric.

(12)

I
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The film thickness predicted computationally is 0.6206 which is accurate enough for all

practical purposes. The pressure adjacent to the substrate (i.e., at X = 0) is plotted in Fig. 13.

Results show a negative pressure at the blade tip which agrees with the results from parallel

blade setting computed by Pranckh and Scriven (1988).

We shall discuss the results for several 3-D cases as summarized in Table 3.

The pressure fluctuation wavelength, Y, ranges from 33.3 (1 mm) to 200 (6 mm). The last

two Cases, 9 and 10, are obtained with a half-wave fluctuation and a symmetry plane to simulate

a span that is 400 (1.2 cm) long. None of the Cases with full-waves showed any sign of

symmetry breaking instability. Based on this, we conclude that the flow remains symmetric with

respect to the y = 0 plane. We used the higher order accurate QUICK finite differencing scheme

for all Cases except 6, 7, and 8 where we used SOLA for comparison purposes. Also, to show

that the results are independent of the grid size in the y-direction, we increased the number of

grids by a factor of two and compared, the results. The results for Cases 2, 3, 5, and 10 are

presented in Figs. 14 to 17, respectively. We emphasize that the only physical parameter varied

is the spanwise wavelength of the pressure fluctuation. The effect of grid refinement from 20 to

10 cells in the y-direction on the film thickness and the pressure profiles is presented by Figs.

18 and 19, respectively. Also, the film thickness profile computed with the higher order QUICK

differencing scheme is.compared in Fig. 20 with results from Case 7 using SOLA.

Figs. 18, 19, and 20 show that although increasing the grid size and the order of

differencing provides more accurate results for the meniscus profile near the blade exit tip, these

changes have virtually no effect on the overall shape of the meniscus, as well as, the film
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thickness profile further downstream and the pressure profile under the blade. It demonstrates that

the overall feature of our computational results are not influenced by numerical artifacts.

Comparing the film thickness profiles for wavelengths, Y, of 33.3 (1 mm), 100 (3 mm),

200 (6 mm), and 400 (12 mm) shows (Fig. 21) that the nonuniformity in the film thickness

profile increases dramatically with the spanwise length of pressure variation. This is despite the

fact that the magnitude of the pressure gradient is the same for all Cases. 50% variation in

pressure gradient results in film thickness variation of less than 1% for 1 mm span and more than

15% for 1.2 cm span. The percentage variation in the rate of increase in the film thickness

nonuniformity is maximum when Y is changed from 1 mm to 3 mm, and it decreases from 6 mm

to 1.2 cm. This observation indicates that there is a critical wavelength at

about 2 cm which corresponds to the maximum film thickness nonuniformity. The remaining

issue is to explain the reason for this behavior.

Considering the y component of the Navier-Stokes Equation and noting that the length

and velocity scale in the x-direction is small, that is 0(6), it is easy to show from order of

magnitude analysis that the pressure gradient term is balanced mainly by

ap/ay a2v/ax 2

When we compute the RHS term from the computational results, we observe that its

magnitude does not greatly vary between the Cases considered in this study. Therefore, the value

of ap/3y is also of the same order. This implies that as the wavelength of the pressure fluctuation

I
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increases, the magnitude of the pressure gradient will increase. As we mentioned above, however,

at a critical wavelength the value of the pressure gradient will approach a plateau with a further

increase in Y.

Another important implication of the results of this study is the possibility of substrate

deformation (i.e., the web and the rubber layer of the backing roll) resulting in coat-weight

nonuniformities. Although substrate deformations are not considered in this work, the results of

pressure profiles in Fig. 16 show great spanwise variations on the web under the blade. This

could cause coat-weight nonuniformities due to nonuniform deformation of the web and the

rubber layer as discussed by Pranckh and Scriven (1988) for a 2-D blade system.

Water absorption of the web is another important issue which is not considered in this

work. The coating film with thickness variation just downstream of the blade perceives the

following two effects, immobilization caused by dewatering and leveling by surface tension, then

settles down to the final thickness as discussed by Bousfield (1991).

CONCLUSION

The present work is the first 3-D simulation to analyze the effect of pressure fluctuations

upstream of the blade on coat-weight nonuniformities downstream of the blade. The primary

result of this work is that the width of the domain, where pressure fluctuation is applied, greatly

influences the magnitude of the film thickness variation for the parameters considered. In other

words, a wider region of pressure fluctuation causes bigger coat-weight nonuniformities.



20

Although in this study we have not considered deformation and water absorption of the web and

viscosity variation, the results provide important information regarding the large-scale streak

patterns due to pressure fluctuations upstream of the blade.
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NOTATION

Ca

F

h

P

R

R 1, R2

t

T

Capillary number (= pIW/o)

Cell fullness function

Blade gap

Magnitude of time step n to n + 1

Pressure

Reynolds number (- pWh/p)

Principle radii of curvature

Time

Period of pressure fluctuation
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un Fluid velocity normal to the interface

U, Fluid velocity tangent to the interface

u, v, w Velocity components in the x, y, and z directions

)°n Velocity field at time step n

W Coating speed

Y Spanwise pressure fluctuation wavelength

Greek Letters

v Kinematic viscosity

m1 ~ Dynamic viscosity

o Surface tension

T Blade thickness
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FIGURE CAPTIONS

Figure 1. Schematic of a short-dwell coater.

Figure 2. Sequence of transitions from (a) steady state to (b) time-periodic, (c) quasi-periodic,

and (d) unsteady state in a cavity simulating the pond of a short-dwell coater.

Figure 3. Summary of mechanisms which may lead to wet streaks.

Figure 4. Illustration of the (a) blade geometry and the coordinate system and (b) two-

dimensional cross section of the domain.

Figure 5. Illustration of the (a) coarse and the (b) fine grid systems for the two-dimensional

computations (number inside the arrow indicates the number of cells).

Figure 6. Evolution of the free surface for (a) coarse and (b) fine grids.

Figure 7. Comparison of the free surface computations using the fine and the coarse grid systems.

Figure 8. The steady state film thickness profile with the increased domain length.

Figure 9. Illustration of the grid system for the two-dimensional case with temporal pressure

fluctuation.
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Figure 10. Variation in surface thickness due to pressure fluctuation at the blade entrance at

Reynolds number, (A) R = 12, (B) R = 24, and (C) R = 36.

Figure 11. Film thickness deviation from the average value.

Figure 12. Illustration of the grid system and the free surface plot of the two-dimensional initial

condition for the three-dimensional computation.

Figure 13. Pressure profile adjacent to the substrate (i.e., at x = 0).

Figure 14. Results from case 2 showing (a) film thickness profile downstream of the blade and

(b) pressure profile under the blade.

Figure 15. Results from case 3 showing (a) film thickness profile downstream of the blade and

(b) pressure profile under the blade.

Figure 16. Results from case 5 showing (a) film thickness profile downstream of the blade and

(b) pressure profile under the blade.

Figure 17. Result from case 10 showing the film thickness profile downstream of the blade.
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Figure 18. Comparison of the film thickness profile upstream of the blade from computations

with 10 and 20 cells in the y-direction.

Figure 19. Comparison of pressure profile under the blade from computations with 10 and 20

cells in the y-direction.

Figure 20. Comparison of the film thickness profile upstream of the blade from computations

using SOLA and QUICK Finite Difference Methods.

Figure 21. Comparison of the spanwise film thickness profile for pressure variations having

wavelengths of 33.3 (1 mm), 100 (3 mm), 200 (6 mm), and 400 (12 mm).



Table 1. Velocity profile at three locations along the liquid film.

x z = 17.25 z = 19.75 z = 24.75

ux10 6 w ux10 6 w uxlO6 w
.1 -5.5 0.9999 -2.0 0.99995 -0.05 1
.2 -20.5 0.9997 -8.0 0.99990 -0.05 1
.3 -44.5 0.9995 -30.5 0.99985 -0.35 1
.4 -74.5 0.9994 -45.5 0.99985 -0.45 1



Table 2. Boundary and flow parameters for the three-dimensional
computation.

Parameter Dimensionless Dimensional

Speed of substrate, W 1 20 m/s

Blade gap, h 1 3x10 5 m

Blade thickness, _ lx10-3 m

Density, p 1200 kg/m3

Viscosity, t _.05 pa.s

Surface tension, o _ .05 N/m

(dp/dz) 1.44 -1.6x10 9 pa/m

R 14.4

Ca 20



Table 3. 3-D Cases (All of the Cases except 6, 7, and 8 use the
QUICK method).

Case CD-Span No. of Inflow Remarks
Length, Y Cells Pressure

in CD Fluctuation

1 - -None Base case (2-D SS)

2 33.3 (1 mm) 10 Full-wave

3 100 (3 mm) 20 Full-wave

4 100 (3 mm) 10 Full-wave Same result as Case 3

5 200 (6 mm) 20 Full-wave

6 33.3 (1 mm) 10 Full-wave SOLA

7 100 (3 mm) 20 Full-wave SOLA

8 200 (6 mm) 20 Full-wave SOLA

9 100 (3 mm) 10 Half-wave Equivalent to 6 mm Full-
wave

10 200 (6 mm) 20 Half-wave Equivalent to 12 mm Full-
wave
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Figure. 1. Schematic of a short-dwell coater



Figure 2. Sequence of transitions from (a) steady state to (b) time-periodic, (c) quasi-periodic, and (d)
unsteady state in a cavity simulating the pond of a short-dwell coater.
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