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SYN_ESIS OF POLYSTYRENE-BASED CATIONIC COPOLYMERS AND _EIR

COLLO_AL PROPERT_S INWATER

Y}_ Deng*, Zegui Yan and Ning Yang

Institute of Paper Science and Technology, 500 I0th St. NW, Atlanta, GA 303 I8, USA

Abstract

A series of polystyrene-based cationic copolymers were s_thesized by two d'tfferent

methods: (I) solution copolymerization of styrene and vinylbenzyl t 'nmethy_onium chlodde

(VB_C) 'm et_ol, and (II) surfactant free em_sion copolymerization of styrene _d

vinylbenzy! c_odde (VBC) 'm water followed by reaction with tdmet :hylamine. The resets

indicated that the different synthesis methods wo_d reset in d'_erent po_er structures and,

therefore, affect the solubility and coUoid_ properties of the copolymers in water. For the

copolymers prepped by method (H), pmi_ cross '._,_g was observed. The copolymers made

by t_s method are almostwater-'insoluble. In contrast, the copol_ers made from dkect

copolymerization of styrene and VB_C in ethanol are water-soluble or dispersible, but the

solub',_ty and the pmicle size of _croaggregates formed by these copolymers 'm water strongly

depend on the charge density and the temperature. One of the import ant resuks from this study

is that u_o_ cogoid_ particles with a very s; :_ panicle size (30 - 50 nm) caa be obt .'amedby

_spers'mg polystyrene-based catiomc copolymers 'm water Mthom ad_g _y surfactants.

Keywords: Cationic, Hy_ophobicity, Polystyrene, Copolymer, Solubility, Colloid, _cene,

_croaggregate.
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Introduction

Cationic polymeric latexes have shown potential applications in many fie]ds, including

papermaking [1-6], paper coat'mg [7-8], and a_esion [9]. Recent s_es [4-6] indicated that

the cationically charged polystyrene latexes could be used as effective papermaking retention

aids or sizing agents. However, it was £o,and that the particle size and charge density of

'polymeric latex are two critic_ factors affecting the performance of the latex. As a

paperm_g retention _d or sizing agent, it was found [4-6] _at the most effective p_icle

size of these latexes is in the range of 30 to 50 nm. Although emulsion polymerization is the

most convenient technology for m_ng uni£orrn latexes, this method can generally produce

only a cationic polystyrene latex with a particle size larger than 150 nm, which is not effective

as a paperma_ng additive agent. In order to reduce the particle size, microemulsion

polymerization technique has to be employed [4-6]. Although the particle size of cationic

polystyrene-based latex can be well controlled by microemulsion polymerization, the high

surfactant consumption and the diffic_ty in latex clarification after polymerization are two

major problems. Instead o£ direcdy synthesifing a latex using emulsion or microem_sion

polymerization, it was shown in our previous study [6] that linear cationic polystyrene

polymers obt_ned by solution polymerization of styrene and cationic VBTMAC monomers in

ethanol could form stable colloidal aggregates in water with a particle size of 30 to 50 nm and

a similar structure as cationic polystyrene latex. A previous study _so 'indicated that these

colloidal aggregates are effective papermaking retention aids and sizing agents.

It has been well known that charged copolymers With a hydrophobic backbone can

form stabie colloid_ particles in water if the charge density and polymer structure are well

con, oiled [10,11]. Poly(styrene-co-VBTMAC) is a typic_ cationic_ly charged hydrophobic

copolymer. _e hydrophobic polystyrene tends to aggregate and _e hydrophilic VBTMAC

tends to dissolve in water. As a result, this copolymer is expected to form stable colloids in

water if the hydrophobic/hydroPhilic forces are well balanced.

Poly(styrene-co-VBTMAC) copolymers have been synthesized previously via

copolymerization o£ styrene and cationic monomers [9,12], and via quatenfization of



copolymer of styrene and VBC with trimethylamine [9,13-16]. This class of polymers has

been studied as curing agents for epoxy resins [9]i, as cat_yst support'rog agents [I 5, I6], and as

antibacterial agents [12, I7]. However, the colloidal properties of these copolymers in water

have not been reported 'm t :heliterature. In t_s study, a series of poly(styrene-co-VBT_C)

copolymers with varied charge densities was synthesized using two different methods. The

relations_p among the polymerization conditions, polymer structure, charge density, and the

colloidal properties of copolymers in water was studied.

Experimental

Materials

Styrene (Aldrich) was distilled under reduced press_e before use. Vinylbenzyl

chloride (m- and p- mixtures, Aldrich) was purified by passing through activated neutral

aI_num oxide (Al&ich) column. VinylbenzyI trimethyl_omum chloride (m/p 60/40,

Acros Organics), trimethylamine (40% aqueous solution, Al&ich) and 'mitiator 2,2'-

azobis(N,N'-id, methyleneisobutyr_ ._e) _hydroc_oride (VA-044, Wako P_e Chemicals)

were used as received. Ethanol and tetro:hy&ofuran (THF) were analytical grade and were

used as received.

Copolymer Synthesis

Method I: Solution copolymerization of styrene and VBTMA

Direct copolymerization of two monomers in ethanol was used to synthesize the

copolymers of styrene and VBTMAC as shown 'm Schematic I:



CH2_CH CH2_CH -_,C ._CH2--(_.H_n
VA -044

+ C2HsOH_

Cf Cf

CH2N+Me3 CH2N+Me3

· Schematic 1. Solution copolymefization of styrene and VBTMAC

A typical example is given as follows: a four-necked glass reactor equipped with a

magnetic stirrer was filled with 150 mL of ethanol, 108 mmol of styrene and 12 mmol of

VBTMAC. The solution was flashed wkh nitrogen for 30 minutes and thermostated at 60°C.

After stabilization of temperature, 0.7 mmol of VA-044 in 5 mL of deionized water was added.

The polymerization was camed out under nitrogen for 4 hours with constant stimng. The

mixture was then distilled under reduced pressure at 35°C to give the cationic copolymer. The

conditions used for the copotymefizations are given in Table 1.

Method II: Quaternization of styrene-VBC copolymer using trimethylamine

The styrene-VBTMAC copolymers were _so prepared by quatemization of styrene-

VBC copolymer in THF using trimethylamine as a quatem/zation agent as shown in

Sch em atic 2'

L [ JmL Cl.

lmt' I
Me3N_v

CH2C1 CH2N+Me3

Schematic 2. Quatemization of poly(styrene-co-VBC).

The styrene-VBC copolymers were prepared by surfactant free emulsion

polymerization using a cationic imtiator VA-044. In a typical surfactant free emulsion

polymerization of styrene and VBA, a four-necked glass reactor equipped with a mechanical



stkrer was filled with 150 mL of deionized water, 150 mmol of styrene and 16.7 mmoI of

VBC. The solution was flashed with mtrogen for 30 min and the_ostated at 60°C. After

stabilization of temperature, 0.83 mmol of VA-044 in 5 mL of deionized water was add. The

polymerization was carried out under mtrogen with a stirring speed of 400 rpm for 4 :ho_s.

The latex s._pension was centri_ged (Beckman L-80 ultracentri_ge) at 8,000 rpm for 30

minutes. The precipitates were then washed two times with ethanol and centrifuged again to

remove excess monomers and other imp_ities. The isolated copolymers were dried trader

vacuum at room temperature. The polymerization conditions for styrene and VBC copolymers

are given in Table 2.

The chloromethyI groups in the copolymers were treated with large molar excess (_10

fold) of trimethylamine, calculated from the added amount of VBC in the polymerization. The

dry poly(styrene-co-VBC) was &ssolved in THF (10 wt%) in a round-bottomed flask Mth

magnetic stirrer, excess of aqueous trimethy!amine was added and the flask was sealed and

gently agitated with a magnetic st'u"rer.

For the copolymers with low VBC comems (samples F and G m Table 2), the

copolymers were THF-soluble both before and after quatemization using trimethylamine. For

these copolymers, the quate_zation reaction was carried at room temperature for 24 hours,

then the solvent was evaporated and the product was dried under vacuum at 40°C.

For the copolymers with high VBC coments (samples H, I-l, I-2 and J in Table 2), the

copolymer precipitated from THF dur'mg the quatemization. However, these high-charged

copotymers are ethanol-soluble. For these polymers, the THF was poured out after

precipitation and 20 ,mi,, ethanol was added followed by I0 fold excess of aqueous

tr'nnethylam'me. The quatemization reaction was fi_her carried out in ethanol for another 24

hours. Afterwards, the excess of trimethylamine was removed by purging the mixture with

nitrogen. The solvem was distilled and the product was &led under vacuum at 40°C for

characterization.

Characterization of the copolymers and colloids



IR and N_ spectroscopy: IR spectra were recorded on a Nicolet 550 FTIR

Spectrometer using _r discs. _3CNMR spectra were recorded on a Broker 400 MHz DMX

NMR Spectrometer wi_ high concentration solutions of copolymers in CDC13. The chemical

s_ft was c_ibrated using SiMe4.

Light scattering spectroscopy' The particle size of the cationic polymeric aggregates

was determined by photon correlation spectroscopy (PCS) at 25°C using a M_vem Zetasizer

3000 (10 mW 633 nm He-Ne laser at 90-de_ee angle). Z-average particle size was c_culated

by computer using Contin an_ysis software.

Colloid titration: The charge density of the catiomc polymers in water was determined

by colloid titration. One drop of 0.5% toluidine blue-O (Aldrich) solution was added to 10

100 mg/L sample. The mix_e was titrated to the colorimetric end po'mt with 0.0001 N

potassium polyvinyl s_fate (PVSK, N_co Co.). It shoed be noted that some copotymers

could not form a true solution in water. Therefore, the charge density of these copolymers

measured by colloid titration can o_y represent the apparent charge density of colloidal

aggregatesinwater.

Results and discussion

Catiom'c copo!y .mers synthesized 5om solution polwnerization (method i)

Em_sion polymerization has been employed for the copolymerization of styrene and

ionic comonomers [9,12,18-20]. However, because styrene is water-insoluble but ionic

monomer is water-soluble, the copolymer prepared by em_sion polymerization may contain

two different fractions, i.e., one has a ihigh styrene content and another has a _gh ionic

monomer content. This phenomenon has been reported by Kim et fl. [20] for styrene and

sodium styrene sul£onate (NaSS) system. In order to prepare homogenous random

poly(styrene-co-VBTMAC)s with different charge densities, the solution polymerization was

explored in this study. It should be noted that al_ough solution polymerization may overcome

the problems _at occurred in emulsion polymerization, it is difficult to find a good solvent for



the copolymers with various ratios of styrene and VBTMAC because the solubility of

polystyrene and polyVBT_C are significantly different 'm most solvents. In this study,

different solvents, including dioxane, THF, ethanol, and their mixtures were first tested. The

primary resuks suggested that among the solvents exam'med in this study, ethanol is the best

solvent for poly(styrene-co-VBTMAC) if t:he molar ratio of VBTMAC in the copotymers is in

the range of 10 to 30 percent. Although it is well kno_ that polystyrene is 'msoluble 'm

ethanol, a clear solution was obtained during the polymerization for all of the copolymers

listed in Table 1 except sample A (5 mol% VBTMAC based on tot_ monomers in the feeding

solmion). The increase in the solubility of polystyrene-based copolymer in ethanol results

from the introduction of charged units into the polymer backbone. During the synthesis of

sample A, small amounts of precipitates that were soluble in tetrahydroDaran (THF) were

found. This is probably due to the low cationic monomer ratio m this copolymer, thus

reducing the solubility of the copolymer in ethanol.

Cationic copolymers synthesized from quatemization (method II)

In ad_tion to the _rect polymerization of styrene and VBTMAC in ethanol, an

akemative method that 'revolves quatemization of copolymer poly(styrene-co-VBC) with

trimethylamine is also studied. In this method, poly(styrene-co-VBC)s with different VBC

ratios were first synt:hesized by em_sion polymerization, then the poly(styrene-co-VBC)s

were further modified with trimethylamine to give cationicalty charged poly(styrene-co-

VBTMAC)s.

The solubility of the poly(styrene-co-VBC) copolymers was first examined. Because

both polystyrene and poly(vinylbenzyl chloride) are THF-soluble polymers, it was expected

that copolymers of styrene and vinylbenzyl chloride should also be THF-soluble. However, it

was found that the copolymers of styrene and VBC could not be totally dissolved m THF. It

was also found that the solubility of the poty(styrene-co-VBC) decreased as the content of

VBC was increased. The polymerization temperature also sigmficantly affected the copolymer

solubility, i.e., the solubility was much lower for the copolymers made at 60°C compared to

that made at 50°C. The unus_ solubility of the copolymers in thek good solvent (THF) may



suggest .that the copolymers were parti_ly crossli_ed during the polymerization. It is

believed :that the crosslinking is through a chain transfer reaction between living polymer

radicals and c_oromethyl groups, which was reported by Verrier-Charleux et al. [18] in

emulsion polymerization of VBC. Accor_ng to their study, two possible radical transfer

reactions, in which hydrogen or c_orine is abstracted from the chloromethyl group, may occur

(Schematic 3). They _her suggested that path (a) was more favored than path ,_) by

calculating _zthebond disassociation energy. F_ermore, the presence of ,iithec_orine atom

could _so stabilize the q)-CHCI' radical, which makes the hydrogen abstraction more favored.

Obviously, _I of these chain transfers will result in a crossti_ing polymer. Because the chain

transfer reaction strongly depends on _e copolymerization temperature, the crosslinking

degree and the solubility of the copolymers in their good solvent shoed _so be a _mncfion of

the polymerization temperature, i.e., the higher the temperature, the higher the crossF,_ing

degree and _e lower the solubility of the copolymers.

m C

+

--c (a)

CHCI'
+ P7

CH2CI _ CH
+ RC

Schematic 3. Crossli_ing mechanism of poly(styrene-VBC).

In addition to the crossl;mking reaction, partial hydrolysis of VBC may also occur

during copolymerization. The hydrolysis of VBC has been reported previously by Verrier-

Charleux et al. [18]. However, the high resolution _3C NMR spectroscopy recorded by



copolymers G, H and I-I in CDCI3 s:bows no hydroxymethyl peak at 65 ppm (Figure 1), which

indicates that ;hy&olysis of the chloromethyl group is negligible for the copolymers prepared

in this study.

Akhough THF is a good solvent for both styrene homopolymer and styrene-VBC

copolymer, it may not be a good solvent for styrene-VBTMAC copolymer because cationically

charged polyVBTMAC has a Iow solubility in organic solvents. This was confirmed by the

precipitation of the copolymers H, I and J (VBTMAC contents are larger than 15 molar percent

for these copolymers) during the quaternization reaction. It should be noted that the

chloromethyi groups in the copolymer may not _ly react with tr'_ethyl_ne if the

copolymer was precipitated from the solution. In order to fully functionize ali of the VBC

repeat units wkh tr'nnethylam'me groups, the precipkated copolymer from THF was isolated

and then dissolved in ethanol, followed by further reaction with trimethylamine. The

completion of the conversion was proved by the disappe_ance of the -CH2CI band (1265 cm '_)

in IR spectra.

Because the copoly(styrene-co-VBTMAC)s contain a water-insoluble styrene

backbone and different contents of catiomcally charged VBTMAC, the copolymers c_ be

either water-soluble or insoluble depend'rog on the charge density, molecular weight, and

structure. Shuilar to other amph/p_lic copolymers, it is expected that poly(styrene-co-

VBTMAC) can form colloidal stable aggregates in water if the hydrophobicity and

hydrophlicity are well balanced.

The solubility of the copolymers prepared with method I is different from that of the

copolymers prepared with method II. For example, the copolymers prepared by the solution

polymerization (method I) could be easily dissolved or dispersed in water if t :hey contained a

reasonable amount of cationic monomer, but the copolymers made from method II were almost

water-insoluble except for hig_y charged samples with 30 molar percent of VBTMA in

feeding monomers. The significant _fference in the solubility between the copolymers made

from two different methods may be due to two reasons. First, as discussed above, the

copolymers from quate_zation of poly(styrene-co-VBC) were partially crosslinked.



Obviously, the crosslink of the copolymers will reduce their solubility in water. Second, the

copolymers made from quatemization may have a higher molecular weight __ that made

from solution polymerization because emulsion polymerization was employed in the first stage

of _e polymer preparation. It is well known that em_sion polymerization usually results in a

relatively high molec_ar weight polymer. Unfortunately, we could not success_ly measure

the molec_ar weight of the copotymers because the copolymers have _fferent charge

densities, which will significantly affect the molec_ar weight measurement using common

methods such as viscosity and gel permeation chromato_aphy.

_e influence of catiomcally charged VBTMAC on the solubility of the copolymers

prepared using method I is shown in Table 3. It can be seen that _e solubility of _the

copolymers in water consistently increases as the content of VBTMAC is :increased. For

example, samples A, B, and C (with 5, 10, and 15 molar percent of VBTMAC in feeding

monomers, respectively) are not water-dispersible at 40°C. However, at _e same temperature,

the sample D (with 20 molar percent of VBTMAC in feeding monomers) could be dispersed in

water and fora a stable colloidal dispersion. Light scattering measurements indicated that the

particle size of polymeric aggregates formed at 40°C is 51 nm for _s sample. I:t was _so

found that the colloidal particle was very stable (no pa_cle aggregation was found after h_f

year). The formation of these colloid_ aggregates is not surprising because the van der W_'s

forces between hydrophobic polystyrene backbones promote an aggregation, while the

electrostatic repulsion forces between cationic_ly charged VBTMACs protect the aggregates

from _imited growth of the particles. As a result, stable colloids were formed. When the

feeding fraction of VBTMAC is:_er increased to 30 molar percent (sample E), the

copolymer can be fiflly dissolved in water to give a tree solution at 25°C. _ese resets

suggest that the solubility of these copolymers increase with the increase in the charge density.

The influence of temperature on _e solubility of poly(styrene-co-VBTMAC) in water

is 'interesting. It can be seen from Table 3 and Figure 2 that the solubility of _1 the

copolymers in water increases as the temperature is increased. For example, samples C and D

formed stable colloidal dispersions in water, but they were _ly dissolved when temperature

was increased to 75 and 60°C, respectively.



It was found that not only the solubility of the copolymer but also the p ,articlesize of

the colloidal dispersion was significantly affected by temperature. Light sca_er'mg

measurement indicated that the particle size decreased as t:he temperature increased. Tbs is

consistent with the solubility of copotymers in water. The general conclusion from Table 3

and Figure 2 is that as the temperature is increased, the solubility of the copolymer increases

too, which results in a decrease in the particle size of colloidal aggregates.

It should be noted that the temperat:_es 'indicated in Table 3 and Figure 2 were the

temperatures used for copolymer solution preparation rather th_ particle size measurement.

In this study, ail of the particle sizes were measured at room temperature. It is very interesting

that akhough some samples could not be dissolved in water at room temperature, once they

formed a colloidal dispersion at high temperat_e they remained as a coltoid_ stable dispersion

even though the temperature w_ cooled down to room temperature. This phenomenon

suggests that at low temperature, the copolymer chains entangled each other 'm solid state anda

hgh solvation energy is needed to dissolve the copolymer. However, when the temperature is

increased the thermodynamic energy of polymer chains increases, result'rog 'm _ increase in

the solubility of copolymers in water. When the thermodynamic energy, van der WaaI's forces,

and electrostatic repulsion forces are bal_ced, stable colloids are formed. However, when the

temperature is cooled down, the electrostatic repulsion forces between colloidal particles

provide a high energy barrier between the particles, which protects the coagulation of t;he

colloidal particles. As a result, stable colloidal suspensions can be obtained through this

temperature change cycle.

The dependence of particle size of aggregates on the copoiymer concemration for

sample A is shown in Figure 3. It can be seen that the particle size increases as the copolymer

concentration is increased.

Theoretically, the charge density of the copolymers can be calculated using the

following equation by assuming that the conversion of the monomers is I00% during the

copolymerization



M_rmc + Minitiator

]gl- _rVBTMAC q-_rsty rene q-_initiator (1)

where M and W are the molar number and weight of the monomer or initiator in the feeding

solutions, respectively. It can be seen _om Figure 4 that the apparent charge density is

slightly higher than theoreticfl volume, partic_arly at low VBTMAC feeding ratio. Two

· possible reasons may be attributed to ,this result. First, the reactive ratio of VBTMAC in

ethanol may be higher than _at of styrene. In a case where conversion is less than 100%

(aborn 60% in this study), the charge density of the finfl products will be higher _an expected

from the monomer feeding ratios. Unfortunately, we did not study the polymerization

dynamics for this system. Second, because the copolymers had a t'_mted solubility in water,

the titration was conducted in a colloidfl suspension rather than a tree solution. This suggests

that the charge density obtained from colloid titration in this study shoed represent a surface

Charge of microaggregates of the copolymers rather than that of tree polymers. Because the

cationically charged VBTMAC and initiator repeat units prefer to stay on the surface of the

microaggregates and styrene repeat units prefer to stay in the core of the microaggregates, the

colloid titration result may not be the sine as the true ch_ge density in the copolymer chmns.

Conclusions

Catiomcally charged poly(styrene-co-VBTMAC)s with different charge densities may

be synthesized by quatemization of poly(styrene-co-VBC) copolymer with trimethylamine and

by dkect polymerization of styrene andVBTMAC in ethanol. However, two methods reset in

different copolymer structures. The copolymers made by quatemization of poly(styrene-co-

VBC) were partially crossti_ed, and _ey are flmost water-'msoluble. In contrast, the

copo!ymers made from direct copolymerization of styrene with VBTMAC in eth_ol can be

dissolved or dispersed in water, but the solubility and cotloidfl particle size strongly depend on

the charge density and the temperature used for colloid preparation.



The aggregates formed by poly(styrene-co-VBT_C)s have a very small particle size

(30-5'0 nm) compared to that of catiomcally charged polystyrene latexes made _om emulsion

polymerization (> 150 nm). No surfactant is needed for preparing these very small and uniform

colloidal particles.
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Figure captions

Figure 1. 13C NMR of poly(styrene-co-vinylbenzyl chloride) (sample H) 'm CDC13 at 25°C.

Figure 2. Particle size as a fimction of dispersion temperature.

Figure 3. Particle size (sample A) as a function of dispersion concentration. The colloid

dispersions were prepared in boiled water.

Figure 4. Correlation between app_em charge density (_II line) _d theoretic_ c:,_ge

density calculated from fee&ng initiator and monomers (dot line).



Table 1. Solution polymerization conditions for poly(styrene-co-VBTMAC)s and thek

colloidal properties

Sample A B C D E

Styrene(mmol) 108 108 108 108 108

VBTMAC(mmol) 5.7 12 19 27 46

VA-044(mmol) 0.7 0.7 0.7 0.7 0.7

Ethanol (mL) 150 150 150 150 150

VBTMACratio(mol%)* 5 10 15 20 30

* Based on the totfl feeding monomers



Table 2. Emulsion copolymerization conditions for poly(styrene-co-VBC)s.

Sample F G H I-1 1-2 J

Styrene(mmoI) 150 150 150 150 150 i50

VBC(mmol) 3.I 7.9 17 27 27 64

VA-044(_ol) 0.76 0.79 0.83 0.88 0.88 I.i

H20 (mL) 150 150 150 150 150 150

Temp.(°C) 60 60 60 50 60 50

VBCratio(mol%)* 2 5 10 15 15 30

*Based on the total fee dingmonomers.



Table 3. Influence of dispersion temperature on cationic particle size*.

Sample Particlesize(nm)

25°C 40°C 60°C 70°C 75°C 80°C 90°C 100°C

A ..... 47 41 40

B .... 56 47 30 30

· C - - 92 34 + + + +

D - 51 + + + + + +

E + + + + + + + +

*Solution was prepared by _xing 1 g copotymer in 1 lker water for 1 hr at the fixed

temperature, then the solution was cooled to room temperature. _e particle size was

measured at 25°C. "-" indicates unstabte dispersion, "+" in_cates _1 dissolvation.
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Figure I. _3CNMR of poly(styrene-co-vinylbenzyl chloride) (sample H) in CDC13 at 25°C.



120

100 _ --a-- SamPle A

_.. Sample B

'_' 80 __ -.e-- SamPle C

N
60_

_.e
.__

40

20_

0 I i I t
50 60 70 80 90 100

Temperature (°C)

Figure 2. Particle size as a function of dispersion temperature.
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Figure 3. Particle size (sample A) as a _ction of dispersion concentration. The colloid
dispersionswerepreparedinboiledwater.
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Fibre 4. Correlation between apparem charge density of copolymer (_1t tine) and c_cUlated

charge density from feeding initiator and monomers (dot line).






