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Abstract

The overall flotation deinking process can be divided into four basic microprocesses' (1) colli-
sion or capture of an (ink) particle by an air bubble, (2) adhesion of an (ink) particle to the air
bubble by sliding, (3) development of a three-phase contact at the air bubble/water/particle
interface, and (4) bubble/particle stability or instability after an aggregate is formed; each
of these microprocesses have an associated probability that they will occur successfully in a
flotation cell.

In this paper, the associated probabilities of each microprocess are employed in the
development of a kinetic-or population balance-type model of the overall flotation process.
The overall model contains two kinetic contants: The first, k_, governs the overall probability
of a free ink particle successfully intercepting and adhering to an air bubble; the second, k2,
is a measure of the probability that a bubble/particle aggregate pair will become unstable
and split to yield a "new" free ink particle.

The solution to the kinetic model is presented in terms of k_ and k2, which are them-

selves functions of system parameters such as bubble and particle physical properties (e.g.,
diameter, density), fluid properties (e.g., viscosity, surface tension), etc. From this solu-
tion, a definition of a theoretical flotation efficiency, as well as other system performance
parameters, are presented.

Key words: flotation deinking, population balance model, microprocess probabilities, bub-
ble/particle interaction, process e_ciency



Contents

I Introduction: The Basic Sequence of Events in

Flotation Deinking ............................... 1

II The Probability Distributions Associated with the Individual Ele-

mentary Processes ............................... 7

i) Probability of Capture of an Ink Particle by a Bubble . . ....... 8

ii) Probability of Adhesion by Sliding ................... 16

iii) Probability of Extension of the Three-Phase Contact ......... 30

iv) Probability of Aggregate Stability .................... 32

v) Summary of the Basic Results ...................... 37

III A Population Balance-Type Model and Its
Predictions .................................... 40

i) Basic Simplifying Assumptions ..................... 40

a) CollisionFrequency....................... 40

b) The Number of Bubbles and Ink Particles in a Control Vol-
ume per Unit Time ....................... 42

ii) The Differential Equation Governing the Evolution of the
Number of Free Ink Particles ...................... 45

iii) Integration of the Basic Model Equation ................ 48

iv) Some Predictions of the Basic Model .................. 51

v) Characterizing the Efficiency of the Flotation Deinking Process . . . 55

vi) SelectedPredictions ........................... 58

IV Conclusions .................................... 60

References .................................... 62

Appendix: The Thin-Film Equations ................... 65
Tables ....................................... 71

Figures ...................................... 76



I Introduction: The Basic Sequence of Events in
Flotation Deinking.

Flotation deinking is a separation process which employs swarms of air bubbles to separate

ink particles from a wastepaper pulp suspension. The flotation technique itself has been

widely used for more than a century in the mineral processing industry. During the past

30 to 50 years, the flotation process has been adapted to the pulp and paper industry for

the separation of ink particles, toner particles, and other undesirable particles from cellulose

fibers during the recycling of wastepaper products. As pointed out by, e.g., Paulsen et al.

[1] "although considerable progress has been made in applying flotation to paper recycling,

many significant questions remain, including' (1) details of the phenomenological nature of

the process and the fundamental mechanisms which underlie it; (2) the ways in which the

hydrodynamics, the physico-chemical nature, and the operating parameters of the system

interact; and (3) theoretical and model descriptions of the overall process."

In the flotation process, swarms of small bubbles rise through agitated liquid tanks with

suspended pulp and contaminant particles. The bubbles preferentially attach to naturally or

chemically hydrophobized contaminant particles, carrying them to a froth layer at the surface

of the agitated tank where they are removed. Flotation cells were originally designed for

mineral flotation and these cells were used to separate ink particles from wastepaper in the

1950s (McCool [2], Ferguson, [3]). Since then, flotation cells have been specifically designed

for flotation deinking with cell designs varying with respect to their geometry, operating

parameters, and flow configurations; despite the many design differences, however, they all

operate on similar principles, and in all modern flotation systems three separate processes

take place in tandem: (1) aeration, whereby air bubbles are introduced into the grey pulp;

(2) mixing, where bubbles and stock are intimately mixed to maximize bubble/particle



interation; and (3) separation, where bubbles and bubble/particle aggregates are allowed to

separate from the bulk mixture and are skimmed away.

In this paper, we focus our efforts on the theoretical modelling of the overall flotation

deinking process. Early efforts at modelling flotation processes focused on the mineral pro-

cessing industry; the survey paper of Woodburn [4] is a good source for such work, while

more recent efforts are discussed in the monograph of Schulze [5] who noted that the basic

aim of physically describing the essential microprocesses in the overall flotation process was

to enable one to construct a flotation model that would permit "the major aspects of the

flotation process to be described by a set of differential equations." One consistent theme

in the modelling of flotation has been to treat the overall process as a multistage proba-

bility process; such an approach is directly tied to the idea of treating the overall flotation

mechanism as a sequence of microprocesses. As indicated in Pan et al. [6], the sequence of

microprocesses in flotation deinking is based on the "relative hydrophilic and hydrophobic

tendencies of finely divided solid phases (the ink particles) towards water and air bubbles."

Flotation chemicals (surfactants) are added to the pulp mixture in a flotation cell so that

the surface of the ink particles becomes hydrophobic which, in turn, helps the ink particles

attach to the air bubbles that are injected into the cell to aerate the pulp mixture. As for

the sequence of microprocesses themselves, these can generally be ordered as follows: (a) the

approach of a particle to a_ air bubble with the subsequent collision with, or interception

of, the particle by the bubble (for particles the size of a typical ink particle, the main focus

here is on the zone of possible interaction which is created when the particle approaches to

within a sufficiently small distance of the bubble); (b) the formation of a three-phase contact

angle after sliding of the particle along the thin liquid film which separates the particle from

the bubble and subsequent thinning and rupture of this film; and (c) the stabilization of the



bubble/particle aggregate and its transport to the froth layer for removal.

Early work on modelling the overall flotation process includes the work of Gaudin [7],

Schuhmann [8], and, especially, Sutherland [9]. As recently as 1992, Pan et al. [6] have

written that how the overall flotation deinking process events are "controlled hydrodynami-

cally, how they depend on operating parameters or variables such as bubble size and bubble

size distribution or temperature, and how they are influenced by the chemical nature of the

system are all questions of considerable interest but which can not be answered from a the-

oretical standpoint at the present time. Models are needed to combine these (elementary)

process parameters to help understand the mechanisms of flotation."

Schulze [5] credits Bilsing [10] with being among the first to try to combine, in a kinetic-

or population growth-type model, the concept of a hierarchival process structure with the

probabilities of the individual elementary processes by using a kinetic equation of the form
dc

d-_ = kc, where c would represent the concentration of free particles in a flotation cell and

the rate constant k would depend on the number of bubble/particle 'collisions' per unit time

(in a control volume of the cell) as well as on the probabilities associated with the individual

flotation processes. The model which we elaborate on in this paper follows the pattern of

the basic strategy delineated above, but is more in accord with the formulation of logistic

population growth models as opposed to the simple exponential-type population growth

(or kinetic) model described above. Even more elaborate (partial differential equation)

transport balance models, which involve not only time variations in particle concentrations

due to bubble/particle aggregate formation and destruction, but also account for convection

and diffusion processes, have been hinted at by Schulze [5] and, more recently, by Plate and

Schulze [11].

We now elaborate further on the elementary processes that occur in flotation deinking;



detailed mathematical models for each of the individual processes described below will be

sketched in §II. To begin with (Fig. 1), we note that for bubble/particle collisions with

respect to particles of the size considered in this report, interception of a particle by a

bubble can only take place if the trajectory of the particle is within a streaming tube of

radius R_, the so-called capture radius. As we will specify in §II, the interception probability

is then given by (_Rc/_RB)2, and the determination of an expression for Rc then depends on

whether one models the flow in the flotation cell around a particular bubble as a Stokes flow,

a potential flow, or a flow intermediate to these.

Insert Fig. 1. .

With particles the size of prototypical ink particles removed by flotation (-- 20-200 _m),

attachment of a particle to a bubble by means of an impact collision appears to be an

insignificant event. Thus, in our formulation of the problem, we will not speak of the

probability of collision but only of the probability of capture or interception of a particle by

a bubble. On the other hand, unlike, e.g., Pan et al. [12], we will not refer to the process

of attachment of an ink particle to a bubble by virtue Of the particle sliding over the film

surrounding the bubble as a 'collision' process; rather we will, like Schulze [13-15] refer to

this as an adhesion process and label, in §II, the probability associated with it as Pasl for

_'probability of adhesion by sliding." It turns out that adhesion by sliding will usually occur

not only when the inertia of the particle is relatively insignificant but when the bubble is

(said to be) completely rigid, i.e., completely covered with surfactant through absorption.

During the process of sliding of the particle along the surface of the thin (liquid) film,

which separates the particle from the bubble, the film (usually referred to as the 'disjoining'

film), with an initial thickness of ho may thin down to a critical thickness at which point

rupture of the film occurs with the then (possible) subsequent development of the three-



phase contact between the particle, liquid film, and bubble (Fig. 2). When the particle

slides over the surface of the disjoining film around a bubble a certain minimal time, the

so-called induction time, Ti, is required for the disjoining film to thin to the point where film

rupture can occur. Thus, if _-sl represents the sliding time, then _-sl __ _-i must hold, and,

moreover, (Fig. 1) adhesion by sliding must occur for the touching angle q_T in the range
7F

Insert Fig. 2

If an ink particle successfully adheres to a bubble, then the next microprocess of concern

is the stability or instability of the bubble/particleaggregate against the stresses experienced

during elevation into the froth layer; this process is governed by the ratio of the adhesive

forces Fad between the particle and the bubble to the detaching forces Fdet and leads to the

specification of a probability P_tab, which will be delineated in §II. The determination of the

forces Fd_t depends in a critical fashion on how one models the acceleration generated in

the (usually) turbulent flow field in the flotation cell. As noted by Schulze [5], most mineral

flotation cells have been designed in such a fashion as to produce "mainly vertical upward

flows above the rotor-stator region (in the cell) which are turned into tangential flows at the

boundary of the froth layer. In addition there are turbulent circulating flows at the froth

boundary." Thus, the flow in the flotation cell as a whole is a superposition of both directional

and turbulent flows. Because of the existence of different types of flows in the flotation cell,

the bubbles that are introduced into the cell for the purpose of aerating the pulp, as well as

any bubble/particle aggregates which form, move in flows which are non-turbulent in some

regions and highly turbulent in others. The entire situation is further complicated by the

fact that not only is the actual bubble motion governed by the involved nature of the flow

field in the flotation cell, but also by the reality of having to deal with bubble surfaces that



are not solid; in the limiting situation where the bubble is covered by an adsorption layer of

surfactant, and is not too large, the bubble will behave (approximately) like a solid particle

because of its quasi-rigid surface.

Other forces which contribute to the stability (instability) of a bubble/particle aggregate

in the flotation cell are the force of gravity, the static buoyancy force of the immersed part

of the bubble, the hydrostatic pressure of the liquid above the contact area of the particle

at the fluid interface between the particle and bubble after formation of the three-phase

contact (Fig. 2), the capillary force exerted on the three-phase contact, and the capillary

pressure in the gas bubble which acts on the contact area of an attached particle. The ratio

of detachment forces Fde, to attachment forces Fad which characterizes the stability of the

aggregate turns out to be a (dimensionless) similarity parameter, which is analogous to the

so-called Bond number (Schulze, [13]). The expression for P_t_b, which is presented in §II, is

based on this Bond numberand is, in large measure, attributable to the recent experimental

work of Plate [16].

Several authors have pointed out the often significant differences that exist between

flotation deinking and mineral flotation. As Pan et al. [6] point out, "ink and toner particles

are inherently very hydrophobic whereas pulp fibers are inherently hydrophilic, and so a

necessary condition for flotation is more or less naturally met." Schulze [14] notes that in both

mineral flotation and flotation deinking cells "more or less the same interaction processes

should occur between fioatable particles and air bubbles in a high turbulent field ... (so that)

the microprocesses in flotation deinking cells are the same as in classical mineral flotation

cells. But one of the features of flotation deinking is the presence of fibrous material of low

density along with printing ink particles of usually small size and low density. In spite of the

considerable degree of hydrophobicity of ink particles, their flotation recovery is by no means



as effective as the flotation of mineral particles where inertial forces play a dominant role

in the interaction process with gas bubbles." Schulze [14] concludes that "the fundamental

problems which we are confronted within flotation deinking are, therefore: the nonuniform,

heterogeneous surface properties of ink particles with low weight and small size and the high

density of stock suspension where fibers form a quasielastic network." Although we will not

consider the issue of the high density of fibers in the pulp suspension, we will take into

account, in the modelling of the various microprocesses, the issues related to the surface

properties of ink particles and their relatively small size as compared with typical mineral

particles.

II The Probability Distributions Associated with the
Individual Elementary Processes.

The process of flotation deinking is a macroprocess composed of a large number of individual

microprocesses that take place both simultaneously and successively in time and space in

a flotation cell. As Schulze [5] has indicated' '_drastic simplifications are necessary in the

modelling of the flotation process in order to describe the overall process clearly." In this

section, we focus our attention on describing the probability distributions which are associ-

ated with some of the key microprocesses. The various microprocesses to be considered will

be described in the following order:

(i) the approach of an ink particle to a bubble in the flow field which exists in a neighbor-

hood of that bubble and its possible interaction with the bubble.

(ii) the subsequent sliding motion of an ink particle on the surface of the thin liquid film

that forms around the bubble, the rupture of this film at some critical thickness hcrit,

and the almost immediate formation of a three-phase contact (TPC).



(iii) the stabilization (or destabilization) of the resultant bubble/particle aggregate with

respect to the external stress forces that act on it.

A key element in a formulation of the kinetic equation (governing the evolution of the

number of free ink particles per unit time in a given volume of the flotation cell), which

will not be considered in this section, is a description of the number Z of bubble/particle

collisions per unit time per unit volume; this particular issue will be addressed when we

discuss the simplifying assumptions that are built into the model in §III.

i) Probability of Capture of an Ink Particle by a Bubble

We begin by noting that in this section all ink particles and all bubbles in any given volume

of the flotation cell will be assumed to be perfectly spherical. As should be clear from Fig.

1, not all ink particles which move within the bubble projection domain of radius RB can

collide with or be intercepted by a bubble but, rather, only those within a so-called streaming

tube of limiting capture radius _R_. The derivation of expressions for R_ depends mainly on

the basic assumptions made about the relative sizes of the ink particle and the bubble, i.e.,

t:Ip vs. RB, and, especially, about the nature of the flow field in which the ink particle moves.

Many authors have noted that inertial forces play little or no role for ink particles, and, thus,

the collision or interception probability of such particles is much lower than that of particles

of normal (mineral-type) size because ink particles tend to follow, with little deviation, the

fluid streamlines in the flow field around the bubble; such considerations are built into the

expressions for Pc (which denotes the probability of capture of an ink particle by a bubble).

Particle _capture' by a bubble implies that a particle is close enough to a bubble to interact

with it. Capture does not mean a bubble/particle aggregate has necessarily formed. Many

authors have noted that capture efficiency depends both on particle and bubble size. The



probability of particle capture is higher the larger the particle size and the smaller the bubble

size. A particular problem with respect to flotation deinking is the fact that air bubbles

which are too small (about 0.1 mm according to Isler [17]) tend to adhere to fibers in a pulp

suspension, while only bubbles larger than approximately 0.3 mm possess sufficient bouyancy

to pass through the quasielastic fiber network in the suspension; such considerations will not

concern us here.

Several key quantities arise in discussing the flow field in a neighborhood of a bubble and

the ensuing expression for Pc; chief among them is the bubble Reynolds number Res'

vBdBp_ReB= (II.l)

where vB is the bubble rising velocity; dB -- 2RB is the bubble diameter; p_ is the density of

the liquid in a neighborhood of the bubble; and/_ is the dynamic viscosity of the liquid. Also

of importance is the constant C'B employed by many authors (e.g., Schulze and co-workers

[13-15]) to characterize the degree of bubble retardation (i.e., the degree to which a bubble

has its surface covered with a surface-retarding chemical); this constant is chosen so that a

completely retarded or rigid bubble corresponds to CB -- 1.

The other essential measure associated with the determination of the probability Pc is

the so-called Stokes number. The Stokes number, which is the ratio of the inertia force of

the (ink) particle to the viscous drag force of the bubble, is given by

9t_dB- 9p_d_

where dp - 2Rp and pp is the particle density. In the literature on flotation processes it

appears that the following criteria are generally accepted [13]'

(i) For St > 1, particle trajectories are, essentially, straight lines and most particles that

attach to bubbles do so as the result of a genuine collision process.



(ii) For 0.1 < St < 1, inertia forces play a role in any attachment process although actual

impact collisions are still possible; because of the existence of the inertia force, particle

trajectories will deviate slightly from the streamlines associated with the flow field

around the bubble.

(iii) For St _ 0.1, inertia forces no longer influence particle motion; there are basically

no impact collisions possible between particles and bubbles and particles follow the

streamlines in the flow around a bubble.

To make a determination of a form for Pc, we first define Pc to be the ratio of the number

of particles with Rv _ RB that encounter a bubble per unit time to the number of (ink)

particles that approach a bubble in a stream tube with cross section equal to _rR2 (see, e.g.,

Fig. 1); computing the aforementioned ratio, we easily find that

Pc- (II.3)

with /i_ the capture radius as depicted in Fig. 1. The expression for Pc, which is given

in (11.3), is deceptively simple because the elucidation of an expression for/_ is a far from

trivial exercise which depends on the shape of particle trajectories in the fluid flow around

the bubble, as well as the interactions which are possible between an (ink) particle and the

bubble surface; these, in turn, depend on the mass and inertia of the particle and on the

nature of the flow field in which both particle and bubble are immersed. In the literature

it is assumed that a particle is acted on only by static buoyancy, inertial, gravitational, and

drag forces; in other words, there are no centrifugal forces acting on the particle when it

flows around the bubble, and the particle is assumed not to perturb the flow field around

the bubble. Thus, at this stage of approach of an (ink) particle to a bubble, we consider

only the long-range hydrodynamic interaction as opposed to the short-range hydrodynamic

10



interactions which must be taken into account when, e.g., a particle is engaged in sliding

around the bubble over the thin liquid film which surrounds it. Consider, in Cartesian

coordinates, the forces (and their components) which act on a particle as it approaches a

single bubble in the flotation cell. If Vp represents the particle velocity with components Vpx

and Vpyand m is the inertial mass of the particle (i.e., the actual particle mass rap plus the

fluid mass accelerated with it), then for an (ink) particle approaching a bubble, we have, in

general,

dvpy _ --Fdy

dvpx
mdt = (Fg - Fb) - Fd_

where F_ and Fdy represent the drag froces in the x and y directions, respectively, and Fg-Fb

is the difference between the gravitational and buoyancy forces which act on a particle as it

approaches a single bubble in the flotation cell. We note that besides depending on pp, p_,

the dynamic viscosity/_, Rp, etc., the expressions in (II.4) depend in a critical fashion on

whatever form one assumes for the fluid velocity field u. To be somewhat more precise,

(II.4) can be written in the form

4 dvpx 4 s
--71't1_310p -- -- /kp_ -- ) (II 5)
3 dt _Tr_p -671-.£Rp(Vpx ti x

47rRp3 pp dVpy -- 67r/_gRp (Uy - Vpy) (II 6)3 dt

If (11.5), (11.6) are written in dimensionless form, then the key parameters which appear

are the Stokes number St and G, the (dimensionless) particle settling velocity, (or gravity

parameter) given by

$ -- 2t_2 (pp -- p£) g (II.7)
9/_tvB

Expressions for the capture radius R_ are, thus, based on the solution of initial-value problems
_...x

coupled with assumptions about the nature of the fluid flow field u, the magnitudes of the

11



key parameters, and some information relative to the degree of retardation of the bubble

surface. In fact, normal and tangential components of fluid flow across the bubble surface

change their values depending on the degree of retardation. For a movable bubble (CB -- 4),

it is known that [15]
Z

Ur _ RB' U_- const. (11.8)

where Ur, u¢ are, respectively, the radial and tangential components of the fluid velocity

vector, and z is the distance from the surface of the bubble. For a rigid bubble,

Ur r,_ _ U_b _'_ RB

Furthermore, in a Stokes flow (where, typically, ReB << 1), u¢ -- 0 at r -- RB, with r

measured from the center of the spherical bubble, while in the other extreme case, that of

a potential flow (typically, 80 < /i_eB < 500), we have u¢ > 0 at r -- Rs. We now note the

relevant relations which have been delineated in the literature for u_ and u_ beginning with

those associated with Stokes flow around the bubble: Dukhin et al. [18], quoting the work

of Hadamard and Rybczynski, employ the relations

u_ vB(1 -(2/z_+3c) RB eR3 )
= - + cos

2(_£-q- _) 7' 2(_£ --[- _)'T 3

(II.lO)

u¢, = VB(i_(2Iz_+3()RB (R_)sin¢+C) +

where C isa coefficientwhich depends on the mobilityof the bubble surface.For C >>/_g,

(II.10)may be reduced to

(u_s = VB 1 3RB2r_- 2r 3j COS
(II.11)

u_s = VB(1 3/{B4r 4r3R3) Sin_

12



The relations (II.11) would hold, e.g., for a gas bubble in water. For ( <</_ (the situation

that results if there is a highly viscous dispersing agent in the water), (II.10) assumes the

form

Urs vB(1 /r_B)
-- -- COS(_

(II.12)

_ = _(1 R_)si_2_
On the other hand, for the case of a potential flow around the bubble surface, the radial and

tangential components U_p, U,p have the form

T3 COS

(II._3)

(Uc)p ---- VB 1 + 2raj sine

However, in actual flotation machines, several authors have pointed out that an intermediate

bubble Reynolds number with 1 < ReB < 100 often applies; e.g., Yoon and Luttrell [19]

deduced the following expressions for the radial and tangential components of the velocity

field u, of the fluid:

U,r -- Uts VB 2 7'4 7'3 7'2 7'

(II._4)

3Re_ (RB R_ 2R}_)
-- + sin_3u,¢ -- U_s + vB 4 r r 3 r 4

where the components u_, u¢_ are given either by (II.11) for the case where ( >>/_t or by

(11.12) for the case where ( <</_ and

There do not appear to be expressions for the velocity field of the fluid which take into account

the presence of turbulent wakes and which can be used in order to model the capture radius

13



Rc; however, many models do account for the presence of turbulence, in a later stage of the

overall flotation process, i.e., in modelling the stability of a bubble particle aggregate.

We note that we are limiting our considerations here to the encounter between a single

(ink) particle and a single bubble. An assemblage of bubbles and particles behaves much

differently than a single bubble and particle (e.g., see Flint and Howarth, [20]) but no

satisfactory treatment of the problem to describe Rc for this situation has been addressed in

the open literature.

From the system of equations (II.5), (II.6) and associated initial conditions, coupled with

the expressions delineated above for the fluid velocity field, estimates have been developed

for the capture radius R_, which, subsequently, have been employed in (II.3) so as to yield

estimates for Pc. In this paper, we will limit ourselves only to those estimates which obtain

in the case where the Stokes number St, as defined by (II.2), satisfies St << 0.1, for this

is the situation which is most directly related to the one encountered in flotation deinking

cells. Thus, according to Dukhin et al. [18] as Well as Derjaguin et al. [21], Ahmed and

Jameson [22], and Yoon and Luttrell [19], for intermediate Reynolds numbers in the range

between 0.2 and 100, for rigid bubbles (CB = 1), and bubble sizes up to 1 mm

(3 4Re_72) R 2 (11.16)a- +

with the relation believed to be valid for particle sizes up to 100/zm. In Dukhin et al. [18]

and Derjaguin et al. [21], we also find the relations

Pcs-3 (i_P) 2 (II 17)

for a Stokes flow situation around the bubble with/_eB << 1 and an (assumed) completely

retarded bubble surface, while for a potential flow situation with 80 < Res < 500 and a

14



completely unretarded bubble surface, they deduce that

(ii
More refined results than those expressed by (II.16) - (II.18), which take into account the

influence of the critical film thickness which must be obtained in order for the film 'surround-

ina' the bubble to rupture (thus, leading to the formation of a three-phase contact between

(ink) particle, bubble, and fluid), have the form

P_ _- 79.4_ 6- 21n jrlp (II.19)

for a Stokes flow around the bubble, assuming the bubble to be completely retarded, and

______( hcrit ) 0'123P_ _- 1.78 Rp (11.20)

for a potential flow around the bubble surface with the assumption that the bubble is com-

pletely unretarded. We note that in as much as ]_crit _ Rp, in many situations encountered

in flotation cells, the approximate relation (II.19) implies that

-Pcs 2.2 {R_-_) 2
_- (11.21)

Because the expressions for P_ depend on the degree of bubble retardation, which can be

expected to be (at least) slightly different from bubble to bubble, as well as on the critical

film thickness hc_it, the best that one can expect to do in trying to model the overall process,

is to say that

p _ c_ ( Rp 2R--BB) (11.22)

'on the average' where a_ will vary from bubble to bubble within any volume element. If, to

a high degree of certainty we know that we are dealing, almost uniformly, with completely
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retarded bubbles in a volume element within a flotation cell, then a reasonable estimate for

ozc, is

3 4Re_ TM

a_m_ + 15 (11.23)

ii) Probability of Adhesion by Sliding

When a particle in a flotation cell approaches a bubble to within a close enough distance,

so that capture is possible, two kinds of interaction may occur (i) an impact (collision) in

which the surface of the bubble is strongly deformed - in which case an extended thin liquid

film forms about the bubble and the particle is repelled, unless, during the first contact,

attachment of the particle to the bubble takes place or (ii) sliding of the particle along

the surface of the thin liquid film surrounding the bubble with a resultant weak surface

deformation. In the latter case, which is the one most relevant for ink particles, whether

or not particle attachment takes place depends in a crucial manner on the duration of the

contact time of the particle with the liquid film surrounding the bubble in relation to the

drainage time (i.e., induction time Ti) of this film until its rupture; thus, the contact (or

sliding) time of the particle _-s_must be greater than or equal to ri.

The sliding process is the most complicated of all the microprocesses to model. To

estimate the probability of adhesion by sliding P_s_, we must model, first of all, the particle

motion in the flow field of the bubble as it slides (in an almost circular path) over the

surface. We must also model the drainage and subsequent rupture of the liquid film that

separates the particle from the bubble so as to be able to estimate the induction time Ti.

From the modelling of the sliding motion of the particle over the bubble surface, one may

predict the positional angle _ as a function of film thickness h. Since attachment of an ink

particle to a bubble must (see Fig. 1) take place in the angular range CT < _ < _r/2 where
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qST= qSIt=0is the 'touching angle,' a suitable nonnegative function of qSTshould serve as a

measure of t:'as_. One may deduce, using numerical computations, that the probability Pas_

depends strongly on hcrit (the film thickness just prior to film rupture), the assumptions one

makes about the flow field around the bubble (potential, Stokes, or an intermediate flow),

the degree of mobility of the bubble surface, the particle and bubble sizes, and the bubble

. rising velocity. The influence, in particular, of bubble rising velocity vB on Pas_ is evident

from thegraphs in Fig. 3, which are reproduced from Schulze [13]. To simplify matters, the

following assumptions have been made in the literature [13, 14]'

(i) the particles move in a quasistationary manner (i.e., inertial forces are negligible) on

an almost circular path across the bubble surface.

(ii) the sliding path L is much greater than the film thickness h, and, moreover, it is

assumed that dL/dt > dh/dr.

(iii) in the domain 0 < ¢ < 7r/2, the influence of the flow boundary laye r is negligible,

especially in the case of movable or unretarded bubbles.

(iv) the tangential component of the fluid flow can, as in the computation of Pc, be modeled

in the case of an unretarded bubble by potential flow and in the case of a completely

retarded bubble by the intermediate flow of Yoon and Luttrell, op.cit.

Insert Fig. 3

A force balance governs the sliding motion of the particle; however, while a complete set of

equations can be derived from the imposition of balance of forces (gravitational, centrifugal,

flow force, lifting force, and drag force), the solution of the associated initial value problems

can only be found numerically [6].
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As a consequence of assumptions (i)-(iv), delineated above, it follows that (see, e.g.,

Schulze [13]) the particle tangential velocity satisfies

dL
- = u_ + Vp_sin q_ (II.24)

VPq5- dt

where the particle settling velocity Vps iS given by

Vps - t_ep /Z£ / 2 p£ J:_p (II.25)

Some typical values for vs and Vp_are given in Table 1 with the particle 'Reynolds number'

defined as follows' Let

Ar - 8Rp3Apg/_p_ (11.26)

be the Archimedes number, where _- I_/p_. Then,

Ar 0.7143 (11.27)
_Rep- 13.9 , for 9 < Ar < 82, 500

Insert Table I

In polar coordinates, balance of forces in the radial direction reads (see Fig. 4)-

- F9_- F_ + FT.+ F_ + F_ - 0 (II.28)

with

Fs_ - 4_TrRp3Apgcos_ (II.29)

being the component of the (apparent) particle weight in the radial direction,

Fr - 6_'/_eRp2Vpr/ (hCB) (11.30)

being the resistive force generated during the drainage of the liquid film surrounding the

bubble surface (which is estimated by using the theory of capillary hydrodynamics for thin
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films),

Fc 3 2-- 4_rRpApVp_/3r (11.31)

being the centrifugal force acting on the sliding particle which (by assumption) moves on a

circular path with r = -RB + Rp + h,

F_ '0 6_r/z_RplU_I (11.32)

being the 'flow force' that acts on a sliding particle close to the bubble wall, and

FL _- 3.24tZ_RpVp_14Res (11.33)

being the driftage or lift force acting on the particle, where

Vprel -- nc) -- Vpsc) (11.34)

and

Res - 4$R2pt/t_t (11.35)

is the Reynolds number of shear for the flow around the bubble surface. The relation (11.33)

0%
has been established, e.g., in Clift et al. [23]. In (11.35), S is the shear gradient, i.e., S = Or '

which for a potential flow over the bubble surface has the form

R3Spot - VB 2r 4 sin qb (II.36)

and for an intermediate flow is

3RB + + /i_e_s k- sin ¢5 (II.37)
Sint- VB 4r 2 4r 4 T2 T4 T 5

Insert Fig. 4
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For balance of forces in the tangential direction, we have

where

4 a
Fg_ - _TrRpApgsin q5 (II.39)

is the component of the (apparent) particle weight in the tangential direction, and Fwd, which

is strongly dependent on the flow field, as well as the degree to which the bubble surface

is covered with surface-retarding molecules, is the drag force acting on the moving particle.

According to Goldman et al. [24] for a completely retarded bubble with (_p)
, > lO-s,

o16 (h)Rpp (11140)

For an unretarded bubble in a potential flow, most authors set Fwc) = 0. By manipulating

(II.24) - (II.40), we obtain the system of equations

I
k,4 I rl 2

_'* -- -hCB(go cos q5-t glVp_ g2Vp_elCRes) (II.42)dt R_ r

with

I 9o - 2ApgRp/9lz_

gl -- 2ApRp (11.43)

- O.1714/Rp
and

)___8 ln(_p) (11.44)

where qS(t)gives the location along the bubble surface, at time t, for the particle with touching

angle _T ----¢(0), and h(t) is the height of the disjoining film above that point on the bubble
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surface at the same time t. An analysis of (11.41), (11.42) shows that this system is of the

form

dt = F1(¢, h) (11.45)
dh

d--t'= F2(q_'h) (11.46)

The associated initial conditions are q_(0) - q_r, 0 < q_r < _r/2, and according to Dukhin

and Rulev [25],

h(O) -- ho - 2Rp(3/_tVpr/S(TCB) 1/2. (11.47)

By eliminating the time variable from (II.45), (11.46), we can write the equation for the

particle trajectory as
dh

= h)/F (¢,h) - h) (II.48)dC

For h > Rp, it may be deduced (Goren [26]) that (II.48) implies that the particle trajectory

coincides with a streamline of the fluid flow around the bubble surface, if the separation

between the particle surface and the bubble surface is larger than the particle radius Rp.

From (II.48) and the (initial) condition that h- h(0) - ho, for _- q_(0) - q_T,one may

obtain (at least, numerically) a solution h- hT(C))that can be inverted so as to produce the

associated functional relation _b- Ct(h). Our interest lies in being able to compute _crit,

which is the largest value of &T such that h_i, is reached in the interval &T < _ < Ir/2; the

thickness hcrit just prior to the rupture of the thin liquid film surrounding the bubble surface

must be determined experimentally.

A simple derivation of (11.30) may be obtained from the work of Derjaguin et al. [27]; it

depends on the following considerations, which are based on Fig. 5, showing the formation of

the thin film between the particle and the bubble surface with the resultant weak deformation

of the latter: using ideas from the capillary hydrodynamics of thin films, one assumes that
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the average pressure p in the film depends only on the radial distance x (in Fig. 5) and is

responsible for the resultant weak deformation of the bubble surface. At any point of the

surface, we have

p(x, t) - P_(x, t) (11.49)

where P_ is the capillary pressure caused by the deformation of the bubble surface. In

general,

x Ox_Xx ]
where we assume that h_ depends weakly on time and where a is the surface tension; h_ (x)

0h_

measures the warping of the bubble surface at x, and it is assumed that _ << 1. The

Navier-Stokes equation specialized to the thin film reads

02u Op= = (II.S )
/.zt0712 cgx Ox

where u(y) is the emux velocity (component) which is directed along the bubble surface. As

boundary conditions, we have

Z2 ) 0Uh+ 2R p -0, _(-hl)--0 (II.52)

with h being the distance between the particle and the nondeformed bubble surface (which

is assumed to be flat if the particle is much smaller than the bubble), while x2/2Rp is the

constant curvature of the particle surface. From (II.51), (11.52), one obtains

u(Y)- /_ Ox -+-hly-_ h-+-_ -hi h+ 2Rp (II.53)

Insert Fig. 5

For hi(x), Der]aguinet al., [27] obtain the equation

O3]g 1 [ 1 02 ]$1 1 cgh_ = 3/_ll)pr f (X) (II.54)
(_X 3 27 8272 Z 2 837 2 a
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with

f (x) -- x h_(O)+ h + 2Rp (11.55)

and the associated boundary data

Ohl Ohl
Ox - o, _ - o (II.56)

X----0 x--+oO

From (II.54), (II.56), we find that

__Rp X 2 2 h*

chhl _ 3 _£__Vpr/r_p _¥ 2r- --'X2 -Jr- t_p 372 -- X2 (II.57)

+ 2Rp (h* + _p (h* + _p)

with h*(x) - h_ (0)+ h(x). For the resistive (or drag) force generated during the drainage

of the liquid film surrounding the bubble, in the sliding process, we have, by (11.57),

Fr - JJ' P_dS, - fo_ P_2_rx dx
Ss

fo_ O (xOhl= 2_ _ w-:_)d__,.] ,AJ

(II.SS)
Obi o_

= 2_-c_:c-_z
0

67r /_£ R2 Vpr

4(h_ + h)

which is (II.30) with CB- 4.

The critical film thickness, h_ri,, is determined by the dynamics of the so-called disjoining

film between the particle and the bubble; disruption of this film is controlled by nonhydro-

dynamic interactions and forces such as London-Van der Waals dispersion forces, which act

to create a normal force in the disjoining film. This latter interaction is represented by the

disjoining pressure, which can be shown to be proportional to h-3, with the constant of
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proportionality a multiple of the Hamaker constant. As Pan et al. [12] note, "any region

of the disjoining film which is thinner than another region will experience a greater internal

pressure. This greater pressure will, in turn, tend to drive fluid from the thinner region,

causing further thinning, and, since the dispersion forces are attractive, eventual rupture."

If we consider a nondraining thin film with constant, homogeneous density and fluid viscos-

ity, then the following relations apply [1], where x now represents arc length measured along

the coordinate surface, while y measures distance normal to the particle surface (Fig. 6)'

0u 0v _ 0 where (u v) is the velocity field of the thin disjoining film
(i) _xx + a-y '

(ii) Equation (II.51) and ay = 0, where P_ is the disjoining pressure.

O2h A Be -'_h

(iii) P_ - -a_ + h3 1 - e-_h (II.59)

which generalizes (II.50) in that it accounts not only for the surface (interfacial) ten-

sion but also for London-Van der Waals dispersion and electrostatic interactions (with

B related to the strength of the electrostatic interactions and 1/_ the double layer

thickness).

(iv) The kinematic condition at the film interface:

Oh Oh (at - h) (II 60)Ot =v- y

and the boundary conditions'

(v) At the solid/film interface, i.e., y - 0 in Fig. 6, u - 0, while at the film/bubble

interface, i.e., at y -- h, either (a) _-xv- 0, signifying a completely free mobile surface

or (b) a tangentially immobile surface with _-xylarge and u - 0 or (c) conditions which
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result fro TM having a surface tension _, which is not constant but is, rather, a function

of position x. For now, we will assume the film/bubble interface to be completely

unretarded and will comment, below, on the situation mentioned in (b) and (c).

Insert Fig. 6

The conditions in (i)-(v), above, (see, e.g., Williams and Davis [28]) lead to the following

nonlinear partial differential equation for the film thickness h(x, t)'

c3t = 3_ Ox h3 Ox (II.61)

For the disjoining film model, with constant surfac e tension, and the case of a free, mobile

bubble/film interface, if we assume that electrostatic interactions are negligible (i.e., B - 0

in (II.59)) and then substitute from (II.59)into (II.61), we obtain

Ot = 3_ Ox h3_ -cr_-_x2 + _hA (II.62)

to which we must append an appropriate initial condition for h(x, t). As shown in the

ApPendix, both (11.54) and (I1.62) are just different local coordinate realizations of the same

partial differential equation when A - 0. The results indicated above are based on the

no-slip or free bubble/film interface boundary condition, and various differences are noted if

one uses the tangentially immobile interface condition instead; the main result to be noted is

that the rupture time is, on the average, four times greater for the rigid bubble as compared

with the free bubble. Paulsen et al. [1] illustrate the relationship between the predicted

disjoining film rupture time and basic input parameters of the model, namely, the initial

bubble/particle separation (which is controlled by the hydrodynamics of the situation), the

Hamaker constant A and surface tension cr (which are determined by the surface science and

physical chemistry of the system), and an (initial) perturbation wavelength.
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It is often necessary to generalize the disjoining film model to account for variable surface

tension ct. As noted by Paulsen et al. [1], "if a surfactant is present in the continuous, liquid

phase below its critical micelle concentration, its surface concentration along the disjoining

film/bubble interface can act to change the surface tension. Surface tension gradients along

the interface cause tangential forces known as the Marangoni effect." At the interface, the

relevant boundary condition for the variable _ takes the form

_O' __ _U

Ox -- -__y (y -- h) (11.63)

and, in place of (II.61), we have

oh1o[cgt -- 3/_t Ox h3 Ox + -_ _xx (11.64)

To (II.64), an appropriate initial condition for h(x,t), the boundary condition (II.63) at

y- h, and the boundary condition u- 0 at y- O, we now append a (linear) representation

for cr of the form

cr- cr0 + MF (II.65)

where M = cr_(F) is assumed constant; a0 is the surface tension of the liquid phase in

the absence of added surfactant; and F is the surface concentration of surfactant; then, a

transport equation for F is formulated in the form

OF c92F (:9

at = D_O'Z-Sz2 Ox (u,F) (II.66)

with us the velocity component of u restricted to the interface (surface) and Ds the diffusion

coefficient. The (constitutive) relation (II.65) can now be used to eliminate cr from (II.64)

and (II.59), thus leading to a system of evolution equations for the film thickness h(x, t)

and the surface concentration of surfactant F(x, t). At the film/bubble interface at y = h,
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the kinematic relation (II.60) and the (boundary) condition (II.63) must be satisfied, where

(u, v) is the two-dimensional velocity field of the disjoining liquid film between the particle

and the bubble; we must, of course, also specify an initial surfactant surface concentration

F0 as well as an initial condition for h. Several authors [1, 5] have postulated a mean initial

thickness for the disjoining film of ho and then assumed that with _ a small perturbation,

and/k a characteristic wavelength (of the order of magnitude of Rp),

ho - ho (1 +acos ( 27tx )) (I1.67)

with ho/A << 1, i.e., that the particle and bubble have advanced to within a distance A0 of

each other, so that nonhydrodynamic interactions become important, and that (at t- 0) a

perturbation then causes local thinning of the disjoining film. Numerical studies based on

the system of equations delineated above, and the assumption of a uniform initial surface

concentration, may be found in [1] where the authors show that it is Possible to follow the

change in surfactant concentration and its effect on the position along the film surface at

which rupture occurs.

Schulze [15] cites the following experimental result, which correlates the degree of particle

hydrophobicity with h_it:

]_crit -- 23.3[(_(1 - cos _A)] 0'16 (II.68)

where _A is the advancing contact angle. We must be careful, however, if we want to apply

the empirical result (II.68)' in the earlier paper [14], the empirical result presented for horst

is given as

h_it - 16.6[_(1 - cos 0A)] °'22 (II.69)

Indeed, Schulze notes [15] that the result (II.68) "has been obtained for a particular case. It

cannot be used generally for calculations of the critical thickness."
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We are now in a position to formulate an expression for the probability of adhesion by

slid'lng Pas_. With reference to Fig. 1, it is assumed that at time t - 0 the ink particle

touches or makes contact with the disjoining film surrounding the bubble surface; we set the

value of the position angle _5at t - 0 equal to ¢5T (the "touching angle"). The distance of

the center of the ink particle from the stagnation line through the center of the bubble when

position angle _- _T is denoted by RT. The essential idea behind the formulation of the

classical expression for Pas_ is this' attachment of an ink particle to a bubble is possible if

the critical film thickness hc_it is reached during sliding for a position angle _ in the range

_r < _ < 7r/2. As incoming ink particles, which are to have any chance of attachment

must contact the disjoining film with a touching angle _r between _r - 0 and _r - vt/2,

the larger _r can be, with attachment during the sliding process possible, the greater the

probability of adhesion by sliding; with this in mind, we define the critical position angle

_crit to be the largest touching angle _Sr that may be used as an initial condition in the

system (II.41), (II.42) so that h- hcrit will be reached at a position angle C)crit(see Fig. 7)

in the range q_T< _crit < 7l'/2, i.e.,

forsomeC)crit,¢T< _crit < 7l'/2} (II.70)

Insert Fig. 7

Thus, let us assume that for a particular set of conditions (i.e., given CB, VB, Rp, RB, etc.)

we have determined, experimentally, an empirical relation of the type (11.68) or (11.69) for

the critical film thickness h_t. From the system (11.41), (11.42), we determine a solution,

with ¢(0) - CT, and h(0) -- h0, in the form h - bT(C), where the T subscript denotes

the dependence of the functional relationship on the choice of _T; we must then attempt to

determine the largest value of CT such that the graph of AT(C) will intersect the line h - hcrit
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for a q) in the range q_T < _b< vt/2. The situation is depicted schematically in Fig. 8 following

a similar figure in Schulze [15]; the largest value of _T that yields an intersection of hr(_)

with the line h- h_it for _r < _ < _/2 is, by definition, _crit' Finally, the probability of

adhesion through the sliding process is defined as follows:

a} (II.7 )

However,

RT -- rT sin qST"_ (RB -+-Rp) sin qST (II. 72)

so with _r- _crit

P_s_ - PaTs_Icr=_, = sin2 _crit (II.73)

Insert Fig. 8

From the numerical results in Schulze [15], it is known that P_,_ (i) increases as -Rs decreases,

(ii) increases as vs decreases, (iii) decreases as/r_p increases, especially for values of Rp which

are small, (iv) increases as CB increases, and (v) increases as h_it increases. Also, the smaller

the relative velocity between the particles and the bubbles during the interaction, the longer

the sliding time and the greater the probability of attachment by sliding become. As an

illustration of the kind of results that may be obtained by using solutions of the system

(I1.41), (11.42), and the definition (I1.73), we show (in Fig. 3) the figure from Schulze [13],

which depicts for both the case of an intermediate flow with Cs - 1 as well as for the case

of a potential flow with CB -- 4, the probability of adhesion by sliding, P_s_, as a function

of lrlp, vB, and hcrit; among the conclusions that follow is the fact that the main influence

on P_,t is the bubble size as manifested by the real bubble-rising velocity vs: P_s_ is greater

with smaller Rs mostly because of the smaller associated value of vs. A summary of some
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results relative to the magnitudes of the various forces which act on sliding particles under

intermediate flow conditions is given in Table 2, which isreproduced from Schulze [15].
,

Insert Table 2

iii) Probability of Extension of the Three-Phase Contact

After the rupture of the thin liquid film which surrounds a bubble, a sufficiently large three-

phase contact (TPC) between the film, particle, and bubble (see, Fig. 2) must be formed in

a sufficiently short time _-tp_. As Schulze [13] has noted, "the formation of the primary hole

during the rupture of the thin film takes place in the microsecond or even nanosecond range

and it is therefore not so important for the kinetics of the flotation process ... the probability

of the further TPC expansion is important and depends on many influencing factors, above

all, the dynamics of dewetting. The driving power for both the enlargement of the hole and

the expansion of three-phase contact is the difference of the interface energies ... given by

the difference between the instant value ofthe dynamic receding contact angle _ and the

receding contact angle of equilibrium _sR_."

The importance of the time interval _-tpcis this' within the flotation cell external stress

forces will exert themselves on bubble/particle aggregates as a consequence of the existence

of turbulent vortices; the formation of a sufficiently large TPC in a sufficiently short time

_-tpcis required so that a requisite strong force of attachment will exist to prevent dissolution

of the aggregate. As a consequence of these considerations, for stable attachment after

film rupture, we must have 7-tpc _ 7-v where Tv is an average lifetime for turbulent vortices

within the flotation cell; the average lifetimes for laminar and nonlaminar vortices have been

estimated (Liepe [29], Albring [30]) as follows'

(i) for laminar vortices' % -- _-_ __ 0.6r2/z_ with _ the (liquid) kinematic viscosity and
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r_ ,_ RB + Rp

(ii) for nonlaminar vortices' Tv -- 7'vn_--_ 13rv2/3/e1/3 with e the mean (Kolmogorov) energy

dissipation in the flotation cell.

It has also been shown (Scheludko et al. [31]) that the velocity of expansion of the

(assumed circular) hole of radius rp after the rupture of the thin liquid film surrounding the

bubble is given by

drp = - 0s oo) (II.74)dt

where atpc is the so-called instantaneous mobility coefficient of the TPC, which, in general,

will itself depend on th e current value of rp and which has been shown, experimentally, to

depend in a very complicated fashion on the surface properties of the liquid film as well as on

all the external and frictional forces which act on the TPC. For these reasons, it is common

practice to use a constant mean value for atp_. Scheludko et al. [31] have estimated that

rtp__ R2V/(2Apg/3)/[a,p_3/2(1 - cos OsRoo)] (11.75)

For the probability of successful extension of the three-phase contact Schulze [13] assumes

an exponential distribution which, in its simplest form may be approximated as

In most of the elementary kinetic or population models that have been formulated prior to

this study, Ptp_ does not enter into the product of individual probabilities that constitutes the

relevant kinetic constants because Ptpc is, consistently, to within 1%, equal to one over a wide

range of particle sizes for particles with a smooth boundary. Tables 3 (taken from Schulze

[13]) and 4 (Schulze [32]) provide some information on the magnitudes of the individual

probabilities for bubble/particle formation and stability.
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Insert Table 3

Insert Table 4

iv) Probability of Aggregate Stability

Whenever the attachment that has formed between an ink particle and a bubble is stronger

than the sum of all the external stress forces which act on the aggregate, the bubble/particle

aggregate remains a stable entity on its journey to the froth layer. To compute the probability

P_t_b of bubble/particle aggregate stability, it is necessary to consider the force balance that

applies to the ink particles at the liquid/bubble interface; this force balance (Fig. 9) includes

the force of gravity exerted on the ink particle (i.e., the weight of the particle), the static

buoyancy force, the hydrostatic pressure force, the capillary force which is exerted on the

three-phase contact line, the capillary pressure in the air bubble itself that is exerted onto

the contact area between the particle and the bubble, and an additional detaching force

due to the acceleration a_ which the particle experiences in the turbulent flow field of the

flotation cell. An extended analysis of the force balance that affects aggregate stability has

been carried out by many authors (see, in particular, Schulze [13] and Hou and Hui [33],

and the references cited therein) with the following mathematical expressions for the z, or

vertical components of the individual forces that are involved'

(i) For the gravitational force Fg that acts on the ink particle (assumed to be spherical),

4

Fa - _'R3ppg (II.77)

(ii) For the static buoyancy force that acts on the immersed portion of the particle,

7l' 3 2

Fb- - cos ) (2+ (II.78)
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where o3is the angle in the particle, which is clearly indicated in Fig. 2. Some authors

(e.g., Hou and Hui [33]) make the simplifying assumption that the entire particle is

immersed in the liquid, which is equivalent to setting _ - _r in (II.78); in this case,

(II.78) simplifies to

4 a
ff'b- _TrRpptg (II.79)

so that grouping (11.77)and (11.79) together leads to an expression for the apparent

weight Fret of the ink particle, namely,

F_t - _4vrRpa(pp- p_) g (II.80)

(iii) For the hydrostatic pressure of the liquid of height z0 above the contact area of radius

rp (where ?'p -- /_p sin ¢- Rp sin w in Fig. 2),

Fnyd -- _rR2(sin2_) p_gzo (II.81)

(iv) For the capillary force exerted on the three-phase contact ih the z-direction,

F_ - -2VrRpcr sin oJsin(cu + _9) (11.82)

where _ is the contact angle.

(v) For the force generated by the capillary pressure in the gas bubble that acts on the

contact area of the attached (spherical) ink particle,

F_ -- _rr2p_ _ _rR2 sin2_ RB 2ti_Bp_g (II.83)

and
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(vi) For the additional detaching force that is due to the acceleration experienced in the

turbulent external flow field in the flotation cell,

4 3

Fd- §_Rpppa_ (II.84)

where expressions for the acceleration field a_ depend on both the structure and the

intensity of the turbulent flow field, in particular, on the energy dissipation e in a given

volume element of the flotation cell. For aggregates where the particle size is smaller

than the bubble size, it has been determined [13] that

+ Rp) (II.85)

in the inertial region of the vortex, while for even smaller aggregates in the dissipation

region of a vortex flow,

1/4 (II.86)ac _ 0.52e3/4/zQ .

Insert Fig. 9

For the special case that is often realized in column flotation, where the bubble may flow

laminarly, ac in a first approximation depends only on the tangential motion of the particle

as it moves across the bubble surface

a c _ (nc) -+- VpsqS)2/(t_B + l_p) (II.87)

If, in (II.87), we use the approximation that is valid for a completely unretarded bubble in
3

a potential flow, namely, u_ _ _vB sin qS,then (II.87) becomes

)a c _ v B --1- Vps sin /(/lB + Rp) (11.88)
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We may simplify (11.88) even further by using only the maximum value which occurs at

= Ir/2, i.e.,
3

a? + +Rp) (II.Sg)

Remarks: The precise computation of the force balance associated with determining the

stability of bubble/particle aggregates is complicated by an incomplete knowledge of terms

like z0. Using the theory of capillary menisci (Schulze [5], Scheludko et al. [34]), zo - zo(Rp)

may be obtained by numerical integration of the Laplace equation arising in that theory

(Huh and Scriven [35]); this equation is known to have no analytical solution. Schulze [5]

credits Huh and Scriven [35] with the first complete numerical solution for bounded menisci

and indicates that the approach considering unbounded menisci simplifies the mathematical

treatment, and is easily justified in those cases where Rp << RB. By an unbounded menisci,

we mean one in which the direction associated with rp in Fig. 2 is not bounded by a solid

wall or influenced in any other way; this corresponds to the case of a particle at an infinitely

extended interface.

Among the observations which have been made that lead to a simplification of the analy-

sis of the force balance that controls the stability of bubble/particle aggregates are the

following (e.g., Schulze [13])'

(i) For contact angles _ < 7r/2 and particles with Rp < 150/_ra, it may be estimated that

the hydrostatic pressure of the liquid above the contact area of radius rp is negligible,

i.e., Fnyd _ O.

(ii) The maximum value of the remaining force of attachment, the capillary force F_
1

exerted at the three-phase contact, occurs when oJ- _* _ 7r- _0.
z
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Now let Faa = Fca + Fnyd denote the sum of the attachment forces, that F&t = F9 -

Fb + Fa + F_ denotes the sum of the forces that lead to detachment. If we characterize the

stability of the bubble/particle aggregate by the ratio,

Bo'- _ F&t = Fg - Fb + Fa + F_ (11.90)F_d F_ + Fhyd '

a dimensionless similarity parameter similar to the so-called Bond number (Schulze [13]),

use the expression (11.79) in lieu of (11.78) for the buoyancy force Fb, the assumption that

Fhyd _ 0, and, in place of F_, use the maximum value F_am at co - co*, we obtain the

approximate relation

Bo' _ 4R2(APg + ppa_)+ 3Rp sin 2co*f(RB) (11.91)16_sin_*sin(_*+ O)l

where

f(R_)- ('2_ 2R_p_g) (..92)RB

Following the experiments of Plate [16], a reasonable form for the probability of aggregate

stability is

P_,_b--1- exp [- ( F_ - F&t) (I1.93)Fdet

where

0 (Tr + _) (11.94)F_-2z-crRpsin(z--_)sin 0

or in view of the definition (11.90),

( _) (II.9s)Pstab--l-exp 1 Bo _ .

As a direct consequence of (11.90) and (I1.95), we may conclude that'

(i) As F&t -+ O, Bo' --+ O, and P_t_b-+ 1
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(ii)For FcZet<Fcam, Bo' < 1,so 0 < Pstab< 1

(iii) For Fa_t- Fc=_, Bo'- 1, and P_t=b -0

We reproduce in Fig. 10 a figurefrom Schulze [13]which isbased on (II.90),(I1.95)and

shows the probability of stability of bubble/particle aggregates as a function of particle size

Rp, contact angle 0, and mean energy dissipation e. Other experimental verifications of the

expression (II.95) have been published by Crawford and Ralston [36]. Using essentially the

same definitions of the individual detachment and attachment forces .as Schulze [13], Hou

and Hui [33] have studied the effects of varying the particle size Rp, the bubble size RB,

the contact angle 0, and the surface tension ct; parametric values for test cases in [33] were

chosen so as to correspond to the case of carbon black ink particles. The work in [33] is

based on the Fowkes [37] relation between contact angle, surface tension, and surface energy.

Insert Fig. 10

v) Summary of the Basic Results

In §III we delineate a kinetic model for the evolution of the number of free ink particles in

a volume element of a flotation cell; this model involves two 'kinetic' constants: kl - which

governs the overall probability of a free {nk particle successfully intercepting and adhering

to an air bubble and forming a stable aggregate with that bubble, and k2 - which measures

the probability that a bubble/particle aggregate (pair) will destabilize and split off a new

(free) ink particle. The kinetic (constant) kl is given by

]_1 -- ZPcPas£PtpcPstab (II.96)
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while for k2, we will have

k2 - Pd,,t_b -- 1 -- P**_b. (11.97)

In §III, we will discuss some of the results that are applicable for computing Z, the 'collision'

frequency (or number of bubble/particle collisions per unit time in a unit volume of the

flotation cell).

We now summarize the basic expressions for the individual microprocess probabilities

that enter into (11.96)and (II.97).

1) For the probability of capture of an ink particle by a bubble, we assume Pc to be given

by (11.22), i.e.,

Pc- c_(Rp/RB) 2 (11.22)

where for intermediate Reynolds numbers between 0.2 and 100, an assumed rigid bub-

ble, and bubble sizes of up to Imm, c_ has the (approximate) value in (II.23).

2) For P_,_, the probability of adhesion of an ink particle to a bubble through the sliding

process, we have (11.73), i.e.,

Pas_ - sin2 _* (11.73)crit

where ¢_it is defined by (II.70), namely,

- I for some _c_it, _T < c_c_it< 7r/2} (11.70)

with _T the touching angle and h_it the requisite film thickness in the (disjoining)

film between the particle and the bubble that is needed for film rupture. The quantity

hcrit is to be determined experimentally. To use (11.70), we must 'integrate' the system

(11.41), (11.42) to obtain h as a function of the position angle ¢ for the given initial

conditions h0 - h(0) and ¢)(0) - CT. By varying 6T, we then have to try to determine
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the largest value of qS(0) - qSTconsistent with being able to solve hcrit- h(_) for a

-- _crit in the range qST< _c_it < wi2.

3) For Ptpc, the probability of extension of the three-phase contact we avail ourselves of

the fact that computations (see, Table 3) clearly indicate that Ptpc -_ 1.0 to within 1%

over a wide range of particle sizes, provided the particle boundaries are idealized to be

smooth.

4) For P_t_b, the probability that a formed bubble/particle aggregate (pair) will remain

stable on its journey into the froth layer we have the expression (II.95), i.e.,

( ) (n.95)Pst_b--l-exp 1 Bo _

where the modified Bond number is given by (II.91) and (II.92) with w* m ir-0/2, and

a_ is given either by (11.85)in the inertial region of a (turbulent) vortex, (II.86)in the

dissipation region of a (turbulent) vortex, or (11.87) for the more or less laminar-type

conditions that seem to be prevalent in column flotation.

In view of (11.97),

k2 -- Pdestab -- exp (1 1Bo') (II.98)

so that as Bo' --+ O, k2 -+ O. If we set .Ptpc '_ 1 use (11.96), (11.22), (11.73), and (11.95) and

combine Pc, P_, and P,t_b, we obtain

2 1

kl--Zozc (_) sin 2 ¢:_it [1-exp (1 Bo')l (11.99)

where Z, the collision frequency will be elaborated in §III. In spite of the fact that the physical

parameters, i.e., Rp, RB, vB, e, ct, etc., enter into the determination of all the probability

functions which mediate the individual microprocesses, the analytical disparity between the
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way in which these parameters enter the expressions for the individual probabilities does not

allow for any major analytical simplification in the expressions for the kinetic constants kl

and k2.

III A Population Balance-Type Model and Its
Predictions.

In this section we construct a model for studying the evolution of the number of free ink

particles in a unit volume of the flotation cell; the model is based on a number of simplifying

assumptions which are delineated below.

i) Basic Simplifying Assumptions

a) Collision Frequency

Because of the low interception probability that governs the interaction between small par-

ticles (such as ink particles) and air bubbles, efforts are often made to increase the collision

frequency Z by increasing the intensity of turbulence in the flow field surrounding the bub-

ble; in doing this, however, one must be cognizant of the fact that increasing the turbulence

intensity in the flow regime also has the effect of helping to destabilize a bubble/particle

aggregate once one has formed. A frequently used model for the collision frequency Z in

flotation cells is the one attributed to Abrahamson [38], to wit

Z--5npnB(dp+dB) 22 + (III.l)

with r_p and nB being the number of particles and bubbles, respectively, per unit volume

of the flotation cell, while _p and vB are, respectively, the mean relative velocities of the
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particles and the bubbles in the flow field. According to the work of Liepe and MSckel [39],

these mean relative velocities vary with the turbulent energy dissipation e:

i/_2 + _2 __ 27/9 C4/9 /214/9 4/3
3 _/a 2/3F£_/_B4/9 (/kpB)4/3 -]- _P (/kpp) (III.2)

where Aps -- PB - P_ and App --/ap - p_.

Combining (III.l) with (III.2), we are led to the following expression for the collision

frequency Z:

C4/9 /:214/9 )4/3Z -- CzTl, pTI,B 1/3 2/3 (-]:_P -[- //_B)2 V/_B4/9 (/'XpB)4/3 -[- .L(,p (,,/kpp (III.3)
z,,_ p_

where Cz - 27/9 5
§. The analysis that produces (III.3) is not universally accepted, so, e.g.,

the work of Camp and Stein [40] leads to the expression

4
(i]_p -_ t_B ) 3 7%pTI,B (III.4)

for the number of bubble/particle collisions per unit volume of the flotation cell, while that

of Saffman and Turner [41] produces

Z- _ (t_p -Jr- tI_B)3TIpTI, B (III.5)

In the last two cases delineated above, what emerges is an expression for Z of the form

Z- kznpnB (111.6)

with

kz - rz(R_ + R_)xe_ (III.7)

for some constant of proportionality F z, which includes material properties, and some (posi-

tive) constants h and 7- As a rule, given the complicated nature of the flow field in a typical
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flotation cell, one may work with the general form

z - rze*npnBf RB;App,ApB) (III.S)

and then determine, empirically, for the situation in question, the values of F z, '/, and the

functional form of f. In the modelling which leads, e.g., to an expression like (III.l), all

possible collisions of all particles and bubbles present in a unit volume of the turbulent flow

field are taken into account. However, in the course of applying an expression like (III.l) to

the specific process of flotation deinking, it may be more appropriate to use not rip, the total

number of ink particles in a unit volume of the flotation cell at time t, but, rather, np/ - the

number of free ink particles in a unit volume of the flotation cell at time t.

b) The Number of Bubbles and Ink Particles in a Control Volume per Unit

Time

An arbitrary unit volume lyf in the flotation cell, with boundary OVf, is assumed for the

model development. We denote by rip(t) the total number of ink particles (both free and

attached) in lyf at time t, by nB(t) the total number of bubbles (both free as well as with ink

particles attached to them) in lyf at time t, by npy(_) the number of free ink particles present

in lyf at time t, by np(t) the number of ink particles in ]2f at time t which are attached to

bubbles in lyf, by n_(t) the number of bubbles in lyf at time t which have no ink particles

attached to them, and by n_(t) the number of bubbles in lyf at time t which have one or

more ink particles attached to them. Clearly, for any t > O,

and

a
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In general, if/k(t) denotes an average number of ink particles at time t, in the volume element

12/, which are attached to bubbles in F/, that have ink particles attached to them,

-- a

In general, bubbles that have ink particles attached to them in ¥f will have more than one ink

particle attached as they move up toward the froth layer, with the number of ink particles

attached to a particular bubble varying with time (as well as from bubble to bubble); in

any case, it may be expected that the average measure /_(t) introduced above will satisfy

,X(t) _= 0, as well as ,X(t) >_ 1 for all t > 0. Also because of convection and diffusion of both

ink particles and bubbles, both into as well as out of the volume element ¥f, it is to be

anticipated that both/zB(t) _ 0 and i_p(t) -7/:O. We assume, here, for the sake of simplicity,

that

(a) rip(t) --np (const.), for t > 0 (111.12)

(b) nB(t) -nB (const.), for t > 0 (111.13)

(c) A(t)- 1, for t > 0. (III.14)

We also assume in this first model that

(d) nB _> np (III.15)

Now, set 3'(t)- n_(t)/np, so that 0 _< _,(t) <_ 1, for alit > 0, and

n[(t) - ?(t)np (111.16)

i.e., ?(t) represents the fraction of all ink particles at time t, in l;f, which are free so that

n_(t) - (1 - ?(t))np (111.17)
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In a similar fashion we set ((t) - nfB(t)/nB, SOthat 0 <_((t) _<1, for all t > O, and

(III.iS)

i.e., C(t) represents the fraction of all bubbles at time t, in Fy, which are free so that

n}(t) - (1 - ((t))nB (III.19)

Then, by virtue of (IIIi11),

m

(1 - 7(t))np - ,_(t)(1 - C(t))ns (III.20)

and, in view of (111.14),

nB = 1 ---7,/(_), alit > 0 (111.21)

The ideal goal in a flotation deinking apparatus would be that, for each volume element 1_/,

?(t) --+ 0, as t --+ cc (111.22)

or

a

rip(t) -+ rip, as t -+ oo (111.23)

From (111.21), however, it follows that if -/(t) -+ 0, as t -+ cc, then

or

lim ((t) - nB- np >_0 (III.25)
t-+oo nB

Using (111.24) in (III.18), it then follows that if ?(t) -+ 0, as t -+ oo,

lira nfs(t) - (lirn ((t))ns (111.26)t--+oo

-- nB -- np

-- nB -- np (as nf(t) --+ 0, for t --+ oo)

-- nB- n_ (for /k- 1).
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ii) The Differential Equation Governing the Evolution of the
Number of Free Ink Particles

Models for the evolution of the number of particles in a volume element of a flotation cell,

which are of a kinetic-or population growth-type, go back, at least, to the work of Sutherland

[9]; particularly noteworthy in this regard is the paper of Woodburn [4]. The book by Schulze

[5] contains numerous references to elementary mathematical models of the flotation process,

with most of them directly related to mineral flotation processes instead of flotation deinking.

Schulze [5] is careful to point out that the "generalized transport Balance equation for

flotation is still unsolved since it contains terms which cannot be expressed explicitly yet";

he presents as the generalized transport balance equation for flotation an equation of the

form

69_(Wiv/_i) -- div[77Zv[_i vi]- div[Di grad (mv/_i)]- Ci (III.27)

0
where _(mv_i) is the change with time of the mass of the i-th particle class in the volume

element under consideration; mv is the total particle mass in the volume element; t_i is the

mass fraction of the i-th class in the volume element; mv/_i vi is the convective flow of mass

of the i-th class in the volume element; v_ is the transport velocity of the i-th class in the

volume element; Di is the diffusion coefficient of the /-th class in the volume element; Di

grad (mv_i) is the diffuse mass flow of the/-th class in the volume element; and Gi is the

change of mass due to aggregate formation or destruction.

In flotation deinking we have i = 1, 2 with i = 1 referring to free ink particles and i = 2

referring to ink particles that adhere to bubbles; alternatively, i = 1 might refer to free ink

particles in a unit volume of the flotation cell, while i = 2 would refer to bubbles in the

unit volume under consideration that are either free or have ink particles adhering to them.

To date the models we are aware of (except for [11]) ignore all terms on the right-hand
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side of the general system (III.27) and, in addition, degenerate to a single equation (i.e.,

/ - 1) for the evolution of free ink particles; also, the expression for the surviving term Gl,

on the right-hand side of (III.28), is limited so as to represent only mass changes due to

aggregate formation with aggregate destruction being ignored. Thus, Schulze [13, 14] writes

the evolution equation in the form

d_pf
= - z_ _ Pcpap_ (III.2s)dt

where Pa represents the probability of adhesion (Pa - P_,_Ptp_). Missing from (111.28)is

an expression to account for the generation of free ink particles as a consequence of the

destruction of previously formed aggregates; this situation is remedied below where we make

use of the hypotheses reflected in the assumptions (111.12)-(111.15).

We begin by writing the kinetic equation in the form

-----kin f_fp,oB + k2n_ (111.29)d_

where the 'kinetic' constants kl and k2 are the positive numbers given, respectively, by

relations (II.96) and (II.9?); the presence of n f reflects the assumption that only a bubble

with no ink particle attached is free to capture an ink particle. This assumption will be

modified in future work.

We now return to (III.29); using the fact that, at time _,nf - nB -- n_, we obtain

dripf _- -k_._ +k__ +k_ (III.a0)dt

-- a

However, from (III.11), with A(t)- 1, n_- Up, so

=-k__ +_;(k_+k_) (III.31)dt

Into (111.31) we insert the fact that for alii > 0, n; -np- n_, in which case

dn_ _
-- --kl (nf) 2 + [kl (Up -- nB) -- k2]nf + k2np (111.32)dt
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We now availourselves of (111.16); with (.)- _-_(), (111.32)yields

_/(_:) -- --(klY/,p)_/2(t)-]-[kl(Tgp - nB) -- k2]_(_:)-Jr- k2 (III.33)

Next, we set

c_-np - nB < O, (111.34)

the strict inequality in (111.34) reflecting the strong form of the hypothesis (111.15), and

A- k:np > 0, B- c_k:- k2 < 0, C- k2 > 0 (111.35)

We also replace, fi(t) by --/(t) - F(t), in (111.33), in which case

f'(t) - AF2(t) + BI'(t) - C (111.36)

with the associated initial condition

r(0)- -,(0)- _(0) (:::.37)
np

To transform (111.36) to a more manageable form, we write

B 2 C'
B _ + )] (I::.38)_'(t)- A[(r(t)+ :-_) -(4A2 X

B 2 C

As 4A 2 + 7 > 0, there exists/_ > 0 such that

B 2 C

4A 2 + A _/_2

in which case, if we set
B

y(t) - F(t)+ 2-A (111.39)

then (111.38) becomes

_l(t) - A[y2(t)-/_2], t > 0 (III.40)
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with the associated initial condition

B
y(0)- nf(0) + (111.41)

np 2A

If y2(t) >/_2, for all t > 0, then as A > 0, we must have y(t) > 0, for all t > 0, which, in

turn, is equivalent to ;y(t) < 0, for all t > 0.

Remarks: In view of the definitions of A, B, and C, we have

y(*) -- Ttf(_) -']- [(Ttp- TtB)kl - k2] (111.42)
np 2npki

and

_! -
4np2k2 + _pki (III.4a)

while

y(O) - yo -(np - nB)k_ - k2 n_(O) (III.44)
2npki np

As ki, k2 > 0, and np _ nB, we must have Yo< 0.

iii) Integration of the Basic Model Equation

Subject to hypotheses (111.12)-(111.15), the evolution of the number of free ink particles in

the unit volume element lyf is governed by the initial value problem (111.40), (111.41). The

(positive) 'kinetic' constants ki and k2 are defined in terms of the 'collision' frequency Z

of particles and bubbles in lyf and the probabilities Pc, P_,l, Ptp_, and P,t_b governing the

individual microprocesses in the flotation deinking macroprocess; expressions for Pc, P_,l,

Ptp_,and P_tabare summarized in (11.22), (11.73), (11.76), and (11.95); thus, ki and k2 may be

determined in terms of all the measurable or computable basic parameters of the flotation

process, namely, /_p, /t_B, 0, e, (r, p£, pp, z2_,hcrit , etc.
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Because (111.40) is a separable, first-order equation, its integration may be carried out

explicitly so as to yield

l ln z-/_l] y(t)
-- - At, t > 0 (111.45)
2/z z +/_ yo

We now make the tentative assumption that y2(t) > /z2, for all t >- 0. Then, in lieu of

(III.45), we have

1 ,iii46,
for all t _>O, from which it follows, with

rio - yo -/_ (111.47)
yo+tZ

that

1 '5-/30¢2/_At

y(t) -/_1 - _oe2, At' t _>0 (III.48)

As k_ > 0, k2 > 0, and np _ nB, we have Yo < 0 so, with/_ the positive number given by

(III.43), yo -/_ < 0. We want a condition Which will guarantee that Yo+/_ < 0 so that/3o,

as given by (III.47), will satisfy/30 > 0. To this end, we note that as A > 0 and B < 0

Isl
yo+/z- -7(o) - 2-7+/_ (iii.49)

But

-- 4A 2 +7 > (III.50)

So (1II.49) and (III.50)imply that

yo+. >-7(0) (III.51)

On the other hand,

/_ < '2_ + V/_ (111.52)
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so that
r-'T-_

yo+. <-_(o)+__- (III.53)
Therefore,

-_(0) <yo+. < -_(0) + __ (m.54)

wher e by (111.37) 7(0) npf(0)
, -- > 0. It then follows from (111.54)that for < 7(0), i.e.,

7_p

for

npkl < np

we have Y0 +/_ < 0. To the list of hypotheses (a)-(d), i.e., (III.12)- (III.15) , we now add the

following condition on the number of (initially) free particles in the volume element ]2f.

(e) %_(0)> (III.55)

We also note that as Yo < 0,

_0-ly01+_ (III.56)lyol-
Thus, as/_o > 0, and _ > 0, we must have [Yol > t_, in which case/_o > 1.

To this point, we have shown that if y2(t) >/_2, for all _ > 0, integration of the initial-

value problem (111.40), (111.41) leads to the expression (111.48) for y(t), where _0, as defined

by (111.47), is strictly positive whenever (Ill.55) is satisfied. Using (111.48), we compute that

4/_/_oe2uAt

y(,)- (___0__)_ (III.57)
As /30 > 1, 1 - _o ¢2t_At-7/=0, for all t, and, therefore, as a consequence of (111.57), we have

f/(l) > 0, for all t. Using (111.48) and (Ili.57), it is an easy exercise to show that y(t) satisfies

(111.40) and (111.41). By local uniqueness for the solution of the initial-value problem, y(t)

as given by (111.48), is the solution of (111.40), (111.41). Thus, y(t) satisfies

A
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However, y(t) > 0, for all t, while A > 0, and, therefore, the unique solution of the initial-

value problem (111.40), (111.41) must conform to the hypothesis that y2(t) >/fi, for all t >_ 0,

provided condition (e) is satisfied.

iv) Some Predictions of the Basic Model

The fact that the solution (Ill.48) of the initial-value problem (III.40), (Ill.41) satisfies

y2(t) > /fi, for all t _> 0, can be used to derive an interesting relationship among n_(t),

n_(t), n_(t), and the ratio of the kinetic constants k2/kl. In fact, from the definition of y(t),

i.e.,

y(t)- + B
r_p 2A

and (III.43), which is equivalent to

I B k2 (111.59)t_- _ + npkl

we find that y2(t) > t_2 (Vt >_ 0) is equivalent to

_(t) [n_(t)npB]A>k--[k2 (hi.60)

Using the definitions of A and B, and recalling that c_ -np - nB, (111.60) becomes

k2(np 1) (111.61)

But, n g(i_) - oz -- TJ(_) -- (7%p -- T_B) -- n B -- 7%;(1_),or npf(t) -- c_ -- niB(t), as n;(t) -- n_(t).

Thus, (III.61) implies that

Thus, under hypotheses (a) - (e), the ratio, at time t, of the number of free ink particles in

Vf to the number of attached ink particles in Vf is greater than the ratio of k2/kl times the
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inverse of the number of free bubbles in l;f at time t. Because n_(t) < nB, in l f, at any

t __0, we may also conclude from (III.62) that we have the lower bound

npf(t) (k2) 1 (III.63)_(t) > _ _.

As np> npf(t), at any time t __0 in ]?y, it is clear that (III.63) implies that

%¢) < _p_, t _>0 (m.64)

which provides an upper bound for the number of ink particles that attach themselves to

bubbles in the volume element 12I. We now write the solution (111.48), to the initial value

problem (111.40), (111.41), in the form

1 + !e-2uAt

,(t) - _ _0 IBI (III65)
1 e_2U,4t 2A

l-Y00

from which it follows, in view of (111.35), that

(k2 -[_p - 7gB]kl) (111.66)lim 7(t) - t_-
t-,c_ 2npkl

Substituting for/_ from (III.43) and recalling the definition of fi(t), we obtain the following

explicit form for the asymptotic limit of the number of free ink particles in ]2f-

lim npf(t) _ _ ([Tip-- TtB]kl-- k2)2 -]-' k2 (k2 -]-'[nB -- Ttp]kl)
(111.67)

,-_oo np 4np2k_ npkl 2npkl

With the 'kinetic' constants k_ and k2 given by (II.96) and (II.97), respectively. The asymp-

totic limit in (III.67) may be simplified by approximating the right-hand side of (III.67).

As

IBI /B _ c Isl
2A = V_-_ q A 2A'
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C k2
for -- small, (the expected situation) the mean value theorem yields

A klnp

4A2 + A = ., 5 -IBI
X-- 4A'"_'

so tha t

lim np/(t) __ k2 (III.69)
t-+oo np k2 -Jr- (n B -- np)kl

We may write (III.69) in the form

lira npf (t)__ nf, (III.70)' t-+oo oo

with

k2np (111.71)

so that the asymptotic limit nf, o_ is predicted to be independent of the initial number npf (0)

of free particles in Vf.

Directly from the expression for 7(t), and the fact that/3o > 0, A > 0, we have

-4/_2A/30e2_At

_(t) - (_0e2,At - 1)2 < 0 (111.72)

for all t > 0, so that the graph of ?(t) -npf(t)/np is monotonically, strictly decreasing for

all t > 0. Furthermore,

[ /30e2t_At+ 1 ];_(7i) -- 81_3A2/30 ¢2/_At (/30a2/_At - 1) 3 > 0 (II1.73)

so that the graph of 7(t) is convex for all t > 0; the initial slope of the graph of 7 is given by

-4/fiA/30

7(0)- (_0- 1) 2 < 0 (111.74)

By substituting from (111.47) into (111.74), and then replacing A, y0, and/_ by (the first

relation in) (111.35), (Ill.44), and (111.43), respectively, an algebraic expression may be ob-

tained for the initial rate of decrease of the number of free particles in the volume element l f,
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i.e., for/_pf(0), in terms of Up, nB, kl, and k2; a further substitution in the resulting expres-

sion for kl and k2 from (II.96) and (II.97) yields an algebraic expression for/_pf(0) in terms

of Up, nB, Z, Pc, Past, Ptpc, and Pstab. Finally, by substituting for the collision frequency Z,

and the individual probabilities that govern the various microprocess events in the flotation

cell, we may obtain an algebraic expression for the initial rate of decrease of the number

of free ink particles in lyf in terms of the basic parameters of the flotation process, i.e.,

rip, nB, pp, Pt, e, Rp, RB, (Y,_, Yt, hcrit, VB, etc.

Using the information in (III.72)-(III.Ta) and (III.69), the graph of fi(t) depicted in Fig.

11 follows. On this graph 7_ - (npf,_/np)is the asymptotic limit for large t, of npf(t)/np;

_(t) is the graph of the tangent line to fi(t) at t- 0, i.e.,

 f(0)
e(t)- (& t+ (III.n)-- T/,p

t is the time at which the graph of f,(t) intersects the asymptote 7- 700, i.e.,

- npt-- (/fo- 1) 2, (III.76)
4/_2A_o

and t* represents the time required for the ratio of the number of free ink particles to the

total number of ink particles in Fy to fallto a specified level 7,, '7oo < 7, < n_°_(0) i.e.
np

t*= 1 1 _ %+ +1

2___in _ ° T(ff*; + '2_) -1 (111.77)

Finally, _ is the level to which the ratio nf/np falls in a given time t.

Insert Fig. 11
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v) Characterizing the Efficiency of the Flotation Deinking Process

By referring to the graph of 7(t), we note various quantities which can be used to characterize

the effectiveness of the flotation deinking process as it applies to the removal of ink particles

in the volume element 'bf. First of all, since the greatest slope on the graph of fi(t) occurs

at t = O, we could characterize the effectiveness of the process by looking at

fo_ I_(o)1/_(o) (III.Ts)

Although .TOwill not usually be a number between zero and one (so that it does not represent

an 'efficiency' in the usual sense), it may still be of considerable interest to know under what

set of conditions one can maximize the initial (relative) rate of decrease of the number of

free ink particles in 'If. From (111.74),

4/_2A/3o

I-_(o)1- (/_o- m)= (III.79)

However,

(& _ 1)2_ 4_2/(lyol_ _)2

and, therefore,

I_(0)1-g(lyol_- _2) (In.80)

If we write ]Y0] in the form

lyo[-' '1B1+7(0)2A

then

lyol_- _ _ 7_(o)+I___1._(o) CA (IXI.81)

so that

1-_(o)1- AT'(O)+ IB[7(O)- C (III.S2)
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Substituting for A, B, and C from (III.35) and using the definition (III.78), we find that

._0 -- Tgpkl_(0 ) -'[- {(n B -- Tgp)k 1 -+- k2} -- (k2/_(0)) (III.83)

which shows that for fixed values of np, nB, kl, and k2, _o is a function of the initial ratio

npf (0)/rip, i.e., of npf (0) alone. If we set x -- npf (0), then

_(_) - k_p_+ [(_ - _p)k_+ k_]- k__, (III.sa)
X

so that f°'(x) - klnp + k2/x 2 > 0; thus, the relative initial ratio [_(0)1/_7(0)is strictly

increasing as the number of initially free ink particles in ¥1 increases (for fixed values of

np, nB, kl, and k2). A more interesting exercise would consist of fixing np, nB, and n_(0)

and studying how the expression for pro varies as one perturbs one or more of the basic

physical and/or geometrical parameters which enter into the structure of the kinetic constants

kl, k2, e.g., one could fix in the individual probabilities that govern the microprocesses, all

parameters such as Rp, RB, vB, ct, etc., and vary only the measure e of the turbulent flow

field in the flotation cell, so as to obtain _o _ .To(e); such exercises will be relegated to a

future paper.

Aside from the ratio _o, as given in (111.78), at least three other possible measures of

the effectiveness of the flotation process present themselves. A primary goal of the flotation

process, localized to the volume element Ff, is to drive the relative number of free particles

in Fy as low as possible; thus, one measure of the efficiency of the process would be the ratio

n y
_:Y- 1 % = 1 p,_ (III.ss)

By virtue of (II1.69), and the definition of _(0),

np ) k2 (111.86)
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It is an immediate consequence of (III.86), and the fact that npf,oo <np f (0), that for any initial

number npf(0) of particles in the volume element Fl, we have 0 < .%_ < 1, with f_ -+ 1

as k2 -+ 0. Obviously, it is possible to also express _e °° in (111.86) in terms of the basic

geometrical and physical parameters of the flotation deinking system, such as P_,/{B, rr, vB,

hcrit, etc., and to study the variation of _ with respect to variations in one or more of

these parameters.

The other two measures of the effectiveness of the flotation deinking model are connected

with the definitions of the points (t*, %) and (t, _) on the graph of fi(t) (Fig. 11). Recall

that t*, as given by (III.Z7), represents the time required for the ratio of the number of

free ink particles in lyf to the total number of particles in ]7y to fall to a specified level

7,, %¢ < 7, < n_(O). If, for example, one were to specify that 7, - -_, then (III.77)
np 2 np

yields

1 1 _ 2 T_p (III.87)

.
Again, one could substitute in (111.87) for the rate constants kl, k2, in terms of the physical

and/or geometrical parameters of the deinking process, and study, e.g., how ti/2 depends on

the particle radius/_, the bubble radius RB, the bubble rising velocity vB, etc.

Another effectiveness measure which is naturally suggested by the graph of fi(t) is con-

nected with the interpretation of the point (t, _) on this graph, i.e., for a given t > 0, _ is

the level to which the ratio np(t)/np fails in time t, i.e.,

^ [l+ ole -2uAl] IBI (111.88)ff --/_ 1 -- _ole -2uAl 2A

Since, for a given time t > 0, it is desirable to have the ratio n/(_) = ? as low as possible,
np

is a reasonable measure of the effectiveness of the flotation deinking process in the localized
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region lyf; substituting for kl and k2, again, in terms of the basic geometrical and physical

parameters of our model, one can, for fixed t, np, nB, and npf(0), seek to minimize _ as

a function of one or more of the fundamental parameters; such considerations will be the

subject matter of a future paper on the flotation deinking process.

vi) Selected Predictions

Predictions of flotation performance can be obtained by employing the solution (III.48) of the

initial value problem (III.40), (III.41) if values for selected physical parameters are chosen

(i.e., RB, Rp, VB, pp, Pt, e, ct, _, _it, nB, r_p, etc.). Before this is done, we note that not all

physical parameters are independent of each other, and following Schulze [32], we employ

dB -- (cr/p£) 0'6/e 0'4 to eliminate surface tension, ct, from the list of required parameters/

Additionally, Clift et al. [23] have shown that the terminal bubble rise velocity in pure

water is approximately 20-30 cm/s for 1 mm __ dB __ 20 mm and is lower for contaminated

water systems. Since a flotation cell will typically have surfactants and other contaminants

in the system, we assume the bubble rise velocity will be constant over a wide range of

bubble diameters and that it will be substantially below that of pure water. Therefore, we

assume a constant value of vB - 10 cm/s for these calculations. Liquid properties were also

assumed to be constant and correspond to those of water. The remaining system parameters

(RB, Rp, pp, e, _, q)crit,nB, rip) were chosen based on experimental and theoretical parametric

ranges utilized by other investigators for flotation studies [1, 6, 12-15, 32, 33, 42, 43]. Table

5 summarizes the fixed values, identified as standard conditions, employed in this study

and the parametric range if the parameter was varied from its standard value. Finally,

we employ the Liepe-MSckel correlation (III.3) for the collision frequency and assume that,

at time t - 0, all particles were free and unattached to bubbles in the unit volume (i.e.,
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Insert Table 5

Figure 12 displays flotation efficiency as a function of time for selected bubble radii while

all other parameters are held at constant standard conditions. For all but the smallest radii

(-Rs 0.1 mm), flotation efficiency rises rapidly to a constant value within approximately

2 seconds. This indicates that for a given unit volume, steady-state conditions are quickly

reached for the given conditions, and if a stable bubble/particle aggregate is formed within

this time, it will remain stable and rise to the flotation cell surface for removal. This figure

also indicates that for small bubble radii (on the order of 0.1 mm), flotation efficiency is

poor for the given fixed conditions, and as the bubble radius increases, flotation efficiency

improves and steady-state conditions are reached in a shorter time period.

Insert Fig. 12

Figures 13 and 14 show flotation efficiency at infinite time (i.e., we employ (III.67) in

the definition of flotation efficiency) as a function of bubble radius for selected turbulent

energy densities, e, and contact angles, _, respectively, while all other parameters are at

standard conditions. Both figures show that flotation efficiency is poor for small bubble

radii, but increases rapidly as the bubble radius increases. Efficiency is also reduced when

the turbulent energy density or contact angle is reduced. At small contact angles (Fig.

14), predictions may yield spurious results (efficiencies greater than 1 or less than 0) when

the bubble radius is small due to limitations and assumptions incorporated into the model

equations. These data were omitted from the figure, which results in efficiency predictions

for _ -- 20° and _ - 40° beginning at RB -- 0.25 mm and -Rs - 0.15 mm, respectively.

Predictions for other flotation performace parameters are ongoing and will be the topic
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of a future paper.

Insert Fig. 13

Insert Fig. 14

IV Conclusions.

The macroprocess of flotation deinking has been divided into four basic microprocesses' (1)

collision or capture of a particle by an air bubble, (2) adhesion of the particle to an air

bubble by sliding, (3) development of a three-phase contact at the air bubble/water/particle

interface, and (4) bubble/particle stability or instability after the aggregate has formed.

These microprocesses have been described in detail and their associated probabilities of

successful completion have been summarized.

A kinetic-or population balance-type model has been developed utilizing two kinetic con-

stants: the first, kl, governs the overall probability that a free particle willsuccessfully

intercept and adhere to an air bubble; the second, k2, describes the probability that a bub-

ble/particle aggregate will become unstable and separate to yield a "new" free particle in

the system. These kinetic constants were presented in terms of the individual micropro-

cess probabilities, which are themselves functions of system parameters such as bubble and

particle size and density, fluid viscosity, surface tension, etc.

The solution to the kinetic equation has been presented in terms of the kinetic constants

from which a theoretical flotation efficiency has been defined. Additional system perform-

ance parameters have also been presented in terms of the kinetic constants, which provide

supplemental measures of flotation system performance.

Several modifications to the basic model that have been presented in this paper will
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be considered in future work; among these modifications are the following: altering the

expression for the collision frequency Z between ink particles and bubbles in the volume

element Vf; allowing for a time-dependence relative to the total number of particles and

bubbles in the volume element lyf; modifying the assumption that, in Iff, 0nly one ink

particle can attach itself to a particular bubble; altering the probability distributions to

account for situations in which one has to deal with nonspherical ink particles; changing

the basic model from one governed by an ordinary differential equation to a system of such

equations; and transitioning from a system governed by ordinary differential equations to

one governed by partial differential equations so as to allow for convection/diffusion of both

ink particles and bubbles into and out of a typical volume element lyf in the flotation cell.
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Appendix: The Thin-Film Equations

In this paper, two forms of the equation which governs the thickness of the thin film

separating a particle from a bubble have been introduced, i.e., (11.54), (11.55), which is taken

from the work of Derjaguin et al. [27], as reported in Schulze [5], and (11.62), which is taken

from the work of Williams and Davis [28]. In this Appendix, we will indicate how (11.54),

(11.55), and (11.62) may be viewed as different coordinate realizations of the same coordinate

invariant equation
Oh cr

= V' [ha V (V 2h)] (Al)Ot 3/_

when one uses the capillary pressure

v h · (A2)

employs the appropriate interpretation of h, and uses mathematical assumptions that cor-

rectly reflect the particular nature of the physical problem at hand.

Consider, first of all, (I1.62); we claim that this equation is identical with (Al); when

the disjoining pressure is just given by the capillary pressure (A2), we employ the polar

coordinate system (r, 0) on the bubble surface SB, which is indicated in Fig. 15a, and we

take x = RBO, i.e., the arc length on a great circle of the spherical bubble as measured

from the north pole. Indeed, in the aforementioned coordinate system, if h is the distance

from the particle surface to the bubble surface (as measured along the radial line joining the

centers of the particle and the bubble) then

02h 1 Oh 1 02h
V2h = + - +

Or2 r2 002 (A3)
1 02h

r 2 002
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as h- h(O). However, with z- RBO,

Oh OhOx Oh

s_ = 0--_O0 = RB Oz

02h 0 ( Oh) Ox 02h3-__ =a_ R._ _-R}o_ _
so that

1 02h 02h
v2hl -- _- (A4)

s_ R_ 002 s_ Ox2

Thus,
02h

P_[sB - _ Ox----7 (A5)

Also,

- O,RB O0

so that

s. (A7)

= o,_bT_j
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Finally

( oh)v-(h_vP_l_.) - v. 0,_h__x_

= 7_'-__ _ · o,_h__j

= R. oo _h__} (AS)
0 Oah_

- & (_h_a-_j

= a_xx ha Ox sb
or

SB OX SB

Oah 0

as a Oxa = 0-_'P_ , by virtue of (A6)and (AT). From (A9), it follows directly that (11.62)
SB

is equivalent to (Al), (A2), in the chosen coordinate system on SB, with x- RBO.

Insert Fig. 15

For the derivation of (II.54), (11.55) from (Al), we use the local cylindrical coordinate

system shown in Fig. 15b; in this case it is assumed that the spherical particle is approaching

the bubble surface normal to that surface. The coordinate x in (II.54), (II.55) will coincide

with the local radial coordinate in Fig. 15b. The total distance between the particle surface

and the deformed bubble surface is given by

^ X2

h(x, t) - h(r, t) - hi (x, t)+ h(t) + (AIO)
2Rp

where h_ is the distance between the deformed bubble surface and the (originally) undeformed

bubble surface at (x, t); h(t) is the distance, at time t, between the particle surface and the

67



undeformed bubble surface at x -0; and x2/2_Rp is the distance, at radial coordinate value

x, between the particle surface and the tangent line to the particle surface through the point

on that surface which corresponds to x = 0. We have

=Vp (All)0t

where Vpis the velocity of approach of the particle to the bubble surface as measured along

the radial line joining the centers of the particle and the bubble. On the left-hand side of

(Al), therefore,

Oh Ohl
= + Vp__Vp (Al2)Ot Ot

Oh_
as it is assumed in [27] that Ot _- O. Next, in the coordinate system shown in Fig. 15b,

with x representing the local radial coordinate,

02h 1Oh 1 02h

v2h = Ox + - +z _xx z2002

_ la (ah) (Al3)= xOx z_

Oh
as _-_ -- 0. Thus, by comparing (Al3) with (II.50), we see, indeed, that (A2) holds provided

Rp 1 is small in comparison'with 1 Obi 02hi
x _x and Ox2 ;indeed, under those circumstances, by

(AIO)

c92h_ 92hl 1 C92hl

OZ 2 0372 + Rp 0372 (Al4)
lob l Ohl 1 ._lOhl

27 037 = 37 037 + Rp - Z 037

Thus, to the degree of approximation associated with (Al4), (Al3) becomes
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V2 h __ V2hl _ l O ( Ohl ]o_ x_/ (A_5)
Continuing, we have

v(v'h)= v(v=h_)

- _ 7_

-- OX3 q X OX2 X2 OX 0

and

v-[h_v (v'h)]- v. [h_v (v'h_)]
_o
x Ox xhs V _ ,l[v,h_)j (Al7)

,oI (o3 ,,o2 ,= xOx xh3 -_Ox3 x Ox2 x2 Ox

Byvirtueof(A_7)_d (A_2),therefore,(A_)_ssum_stheform

/fi;OX x h 3 mu' -- -- VpOx3 x O:r2 :r2 Ox

or

Ox xh* +Ox3 x Ox2 x 2 Ox o'

an integration of which yields

ax 3 4 - (Al9)x Ox2 x 2 Ox 2_
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Setting z - 0 in (Al9), we see that the constant of integration C - 0 so that

O3ht 102hl 1 c3hl (3/_tVp) xOx3 t = (A20):r Ox2 x2 Ox

which, by virtue of (Al0), is the same as (11.54), (11.55)if, in the expression (Al0) for h(x, t),

we follow Derjaguin et al. [27] and replace hi(z, t) __ hi(x) by hi(x, t) _ h_ (0). We note that

our derivation of (11.54), (II.55), from (Al), appears to be unique, the original derivation

of (11.54), (11.55) in [27] following from an approximate integration of the Navier-Stokes

equation for the thin film situation shown in Fig. 15b.
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Rp(/zm) 25 75 125 175 350

Vp_(Cm/s) 0.2 1.7 2.97 4.36 9.63

RB(mm) 0.25 0.5 1.0 1.5

VB(Cm/S) 5 10 22 30

TABLE 1- SOME TYPICAL PARTICLE SETTLING VELOCITIES, vps,
AND BUBBLE-RISING VELOCITIES, VB, IN WATER [13].
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I
I
m

Forces Intermediate flow conditions

(nN) t- 5ms ® t- 25ms ®

Far 23.4 6.6

F_ 5.1 1.4

FT 26.6 0.2

Fca 1.1 5.7 1

FL 0.S 2.5

Fg, 11.4 25.2

F_o, 53.4 202.2

Rp -- 75/_m; Vps -- 1.66cm s-l; pp -- 2.5g cm-3; RB -- O.05cm; VB -- 5cm s-l; ReB -- 50;
e

Re_ - 1.33; CB -- 1; a- 70mN m-l; _ -0.01g cm -1 s-l; hcrit -- 40nm.

Initial conditions at t- 0'_T - 19° and h(0) - 2.81/_m.

Particle gravity force in water- 26.0nN(2.6- 10-ag cm s-2).

(a) ¢ - 25.9°; u_ - -0.36cm s-_;u_ - 1.24cm s-_;G - 5.41s-_; ReB -- 0.12; Ah --
]_0 -- ]_crit -- 714.7nm; Vpr-- -1.9' lO-2cm $-1; ?)pc) -- 1.54cm $--1.

(b) ¢- 75.4°; u? --O.lcm s-l; u_- 2.74cm s-l; G- 12.08s-1; ReB --0.27;
Ah - -4.6nm; Vp_- 6.16- 10-6cm s-_; Vp_- 3.50cm s-1

TABLE 2: TYPICAL VALUES OF FORCES ON SLIDING PARTICLES AT
INTERMEDIATE FLOW CONDITIONS [15].
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Rp - 100/_m Rp - 10/_m

Smooth Rough Smooth

o

Pc 0.75 0.75 0.0075

P_,l 0.013 0.013 0.05

Ptp_ 0.99 1.0

P, tab 0.4 0.4 1.0

RB --0.05cm; vB- 10cm s-_; CB- 1; rigid sphere

TABLE 3- INDIVIDUAL PROBABILITIES FOR PARTICLE/BUBBLE
AGGREGATE FORMATION AND STABILITY [13].
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Minimum Maximum
Parametric Range StandardParameter Value Used in Value Used in
Utilized in this Study Conditionsthe Literature the Literature

Rp(/_m) 1 600 1-500 50

RB(mm) 0.15 2 0.1-5.0 0.5

pp(g/cm a) 1 7.5 1.0-3.0 1.3

p_(g/cm3) i i - i

vB(cm/s) i.25 30 - io

_,(cP) i i - i

e(W/kg) 1 130 1-400 iO

ct(dynes/cra) 35 73 dB --(O'/pg)0'6/C 0'4 dB --(O'/pg)0'6/cO'4

' O(degrees) 5 105 5-120 60

&_it(degrees) 33 72 5-85 60

ns - - 100-10000 1000

' np - - 1-1000 100

TABLE 5- PARAMETRIC RANGES OF THE VARIOUS FLOTATION
PARAMETERS ADDRESSED IN THE LITERATURE AND

UTILIZED IN THIS STUDY [1, 6, 12-15, 32, 33, 42, 43].

75



_., Rc _,_

' /
fluid es-...,L_streamlin

particle
I _ pathlines

g \
I

\ \
\

I \ particle

stagnation F._ \line _ \ \

I ho _ _ Rp
bubble \

\

\
\

I
I

i
I

I

Figure 1: A particle intercepting an air bubble at angle _T-
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t z g_ t z
particle particle

FT

bubble bubble

g

gravitational force resistiveforce during
(apparent particle weight) film drainage

tz tz
particle particle

Fc
bubble bubble

centrifugalforce flowforce

Z Z

particle Fw particle
FL

bubble bubble

lift force resistiveor drag force
Figure 4: Forces acting on a particle as it slides around a bubble.
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Figure 5' Schematic of the thin film formed between the bubble and particle.
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Figure 6' Thin film geometry employed by Paulesen et al. Ill.
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Figure 8' The relationship of _bc,.itwith respect to _bTand hcrit.
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(a) gravitational force g_ (b) static buoyant force

bubble bubble i_Fb

liquid · ·

Fg particle
particle

(c) hydrostatic pressure force (d) capillary force

Fhyd
bubble bubble Fca

Zo Zo
liquid liquid

particle particle

(e) capillary pressure force (f) drag (detaching) force

bubble
bubble

liquid liquid

F(_ particle particle
Figure 9' Forces acting on a bubble/particle aggregate. Fd
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Figure 10' Probability of bubble/particle aggregate stability, P,t_o, as a function of particle radius,
contact angle, and turbulent energy dissipation in a flotation cell for/i_B - 0.5 mm,
cr - 70 mN/m and pp - 2.5 g/cm a. (Reprinted with permission from H.T. Schulze,
"Flotation as a Heterocoagulation Process: Possibilities of Calculating the Probability
of Flotation," in Coagulation and Flocculation, B. Dobias (ed), p. 349. Copyright
(_1993, M. Dekker.)
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Figure 12' Flotation e_ciency as a function of flotation time for selected bubble radii, R B. All
other parameters are at standard conditions: P,_ - 50 _m, pp - 1.3 g/cra _, e -
10 W/kg, _- 60°, _it- 60 °, nB- 1000, and np- 100.
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Figure 13: Flotation ei_ciency at infinite time as a function of bubble radius, RB, for selected
turbulent energy densities, e. All other parameters are at standard conditions: P_ =
50 _m, pp -- 1.3 g/cra 3, 0 -- 60 °, _:rit -- 60°, nB -- 1000, and np - 100.
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