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ABSTRACT

Thermal destruction of waste from a pulp mill bleach plant is a
potential alternative to treatment and discharge; however, combustion of
chloride and chlorinated organic compounds could result in undesirable air
emissions. The objective of this work was to determine if combustion of
chlorine-containing bleach plant waste causes emissions of hydrochloric acid,
polychlorinated dibenzo-p-dioxins, (PCDD) and polychlorinated dibenzo-
furans (PCDF).

Small additions of chlorine-containing bleach plant waste to normal
black liquor feed stock did not result in detectable increases in HCl emissions
with incineration. Large additions (> 10% by weight of solids) increased HC1
emissions, possibly as a direct result of organochlorine combustion. The total
PCDD/F in flue gas increased by a factor of ten with a 1% addition of bleach
plant concentrate to black liquor. Comparisons of emitted PCDD/F and feed
liquor PCDD/F indicated a net formation of PCDD/F during combustion. The
emissions of PCDD/F may be a significant factor detracting from the feasibility
of thermal destruction of mixtures of chlorine-containing bleach plant waste
and black liquor in a standard recovery furnace.

INTRODUCTION

The production of unbleached kraft pulp includes a recovery cycle in
which used or "black" liquor from the pulp mill is incinerated and heat and
pulping chemicals are recovered. While pulp mill byproducts are easily
recovered, waste from bleach plants using chlorine-based bleaching chemicals

generally cannot go through the recovery cycle. There is a general concern
that incineration of the chlorine-containing effluents will cause harmful air
emissions, affect black liquor heating values and rates, and will cause scaling

and corrosion in evaporators, heaters, and boilers. Therefore, in the past it

t Currently at Weyerhaueser Company, Tacoma Washington 98477
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has been permissible and economical to biologically treat and then discharge

bleach plant waste into receiving waters.
However, public and legislative pressure has been growing to discharge

cleaner effluents, to reduce water usage, and to reduce the volume of effluent

discharged. This trend has renewed the interest of the industry in a "closed

mill technology," that is, technology that dramatically reduces or eliminates

effluents. One aspect of closed mill technology is the separation of water from

solids, using techniques such as ultrafiltration, to allow recycling of clean

water. Purification of bleach plant effluents generates a second stream which

must be disposed of: the bleach plant solids. The feasibility of thermal

destruction of these concentrated streams is a topic of great interest to the

pulp and paper industry.
Past research indicates that ultrafiltration concentrates of the first

alkaline extraction (El) stage may be suitable for incineration in a mixture

with black liquor (1,2,3). The El waste represents 25-50% of the total volume

of waste from the bleach plant. The extraction stage solids are composed of

approximately 45% carbon, 5% organochlorine, 10% chloride, and 10%

sodium, by weight. There is more organochlorine, more chloride, less

sodium, and less potassium in these bleach plant solids (BPS) than in black

liquor solids. The combustion heating values are comparable to black liquor

(1).
Emissions of chlorinated compounds can be significant with the

combustion of fuels that contain chlorine. Hydrochloric acid is a common

byproduct of combustion of coal, black liquor, and other fuels (4). Emissions

of HCl from kraft recovery furnaces range from nondetectable levels to nearly

100 ppm at 8% O2 (5). Polychlorinated dibenzo-p-dioxins and dibenzofurans
have also been detected in emissions from municipal waste incinerators (6)

and sludge incinerators (7). Reported average emissions of total PCDD and

total PCDF from three kraft recovery furnaces were low: 1.2 ng/Nm3 at 8% 02

for dioxins and 0.8 ng/Nm3 at 8% O2 for furans (8). As the chlorine content

of the feed increases, the potential for emission of chlorine-containing

compounds increases.
The objective of this work was to determine if addition of chlorine-

containing bleach plant solids to black liquor solids causes changes in
emissions of hydrochloric acid and PCDD/F upon combustion. Experiments
were conducted in a laboratory-scale furnace and a small pilot-scale furnace.



EXPERIMENTAL

Effluents

Samples of E1 effluent from the first extraction stage and concentrated

black liquor (68% solids) were obtained from a softwood bleached kraft mill
using 15-20% C10 2 substitution. Chlorine-containing concentrate was
produced by ultrafiltration of the E1 effluent. Details of the ultrafiltration are
given in reference (9). Further concentration of the E1 concentrate to about

65% solids was accomplished in a rotary evaporator under N2 at 70-85°C.
Liquor mixtures were made by combining El concentrates with black liquor.
The amount of concentrate added is reported as a percentage of total dry
solids. Elemental compositions and heating values of the two materials are
given in Table 1.

Table 1. Compositions of black liquor and El concentrate, wt/wt% of solids.

Black Liquor El Concentrate

C 36.9 39.2

H 4.71 3.29
0 32.5 32.4
S 4.90 0.51

Na 18.5 14.2
Cl (Org) - 5.95
Cl (Inorg) 0.46 4.43
HHV 6,320 5,720 (BTU/lb)

NHV 5,250 5,340

Lab Scale Furnace

Emissions of HCl and PCDD/F from the combustion of liquor mixtures
were measured using the tube furnace shown in Figure 1. The furnace
temperature used for the tests was 800°C. Dry liquor solids (100-200 mg) were
placed in a ceramic boat which was inserted through the furnace door into the
end of the combustion tube. Air was drawn at 5 slpm through the tube.
Average residence time of the gases in the combustion tube was



approximately one second, which was considered to be sufficient time for

complete combustion of the volatilized gases to CO2 and H 2 0. After
combustion of the boat contents (2-5 minutes), the boat was removed and the

unburned ash residue was cooled, weighed, and analyzed for chloride.

QUARTZ REACTION TUBE
\ (L = 0.7 m, ID = 2.5 cm)

TEMPERATURE CONTROLLED
FURNACE

COOLER

CERAMIC COMBUSTION BOAT
(containing liquor sample)

Figure 1. Lab scale combustion furnace.

Mini-Pilot Scale Furnace
Measurements of emissions of PCDD/F during combustion of

mixtures of liquor solids were also made using the mini-pilot scale

combustion furnace shown in Figure 2. This reactor, which is described in

greater detail elsewhere (10), consisted of a vertical tube furnace placed above

a char bed furnace. Liquor of approximately 65% solids was converted to

droplets by a vibrating feed mechanism on top of the tube furnace. The

droplets (2-2.5 mm diameter) fell downward through upward flowing air and



65% SOLIDS
25 ml/min

VIBRATING DROPLET FORMER

-r
II - *

]

VIEWPORT -II

r- -- I

TO FLUE GAS CLEANUP,
SAMPLE GAS ANALYSIS,
AND ID FAN

4-- DROP TUBE FURNACE
WITH ELECTRICALLY HEATED
WALLS (950°C, ID = 10 cm, L = 4 m)

950°C
56 slpm

SECONDARY AIR

CHAR BED

4- ELECTRICALLY HEATED
WALLS (800°C)

PRIMARY AIR

Figure 2. Mini-pilot scale combustion furnace.

LIQUOR FEED TANK

r

i

N
1\1N .

. 1\1"'

1\1N. 11
""I

\\N
11

N
N
N
N
N

"N
'\'N

N

I

n

f



combustion product gases. The droplets were heated by convection from the
gases and radiation from the furnace walls. Furnace wall temperatures and

air preheat temperatures are indicated in Figure 2, and were regulated by
electronically controlled electric heaters.

Drying, swelling, partial pyrolysis, and limited char burning occurred as

the droplets descended through the tube furnace. The swollen char particles

collected in the char bed furnace, where preheated air was directed across the

bed surface to complete the combustion. The air split was 50% primary and

50% secondary. The total air rate was set according to the liquor rate, so that

there was approximately 20% excess air beyond that required for
stoichiometric combustion.

HCL Measurement
Concentrations of HC1 in the flue gas were measured for the lab scale

combustion tests. The gaseous products of combustion were drawn out of the
furnace, filtered, and bubbled through an acidic solution to capture HC1 as

dissolved chloride (adapted from EPA Method 26 (11)). The chloride
concentration of the solution was determined by ion chromatography, using

TAPPI Method T699.

The entire flue gas volume (5 slpm) was drawn through the HCl

sampling system. Measurements were also made of chloride in the rinsate of

the combustion tube, on the fume filter, and in the ash residue remaining in

the boat after combustion.

Concentrations of HC1 are reported in ppm @ 8% O2 in dry flue gas.

These values can be converted to g/kg (grams of HCl emitted per kilogram of

moisture-free solids combusted) by employing a conversion factor of 1 g/kg =
110 ppm @ 8% 02 in dry flue gas. This conversion factor was determined
based on the air requirement for stoichiometric combustion being 4.6 gram of

air per gram of liquor solids.

PCDD/F Measurement
The flue gas was drawn out of the furnace and through an impinger

filled with glass wool for removal of aerosol and particulates. The impinger

was submerged in a constant-temperature ice bath, which served to cool the

flue gas to approximately 50°C. The gas outflow from the impinger was
drawn through a 15 mm X 30 cm chromatography column packed with 20-25



g prepurified XAD-2 resin (Supelco). All fittings and components of the
sampling system to which the flue gas was exposed were made of either
quartz or Teflon.

After a combustion test, the XAD-2 columns and impinger contents
were extracted and cleaned up using the methods described in EPA RCRA
Method 8290 (12). Other sample system components (tubing, etc.) were rinsed
with toluene and analyzed. The PCDD/F in the impinger extracts and
rinsates contained condensed phase PCDD/F while the XAD-2 extracts
contained gas phase PCDD/F. The laboratory scale sampling included rinsates
from the combustion chamber which differed from the mini-pilot sampling
in which the contents of the combustion chamber could not be analyzed.

Amounts of tetra- through octachlorinated congeners in the sample
extracts and toluene rinsates were determined by high resolution gas
chromatography/mass spectrometry using selected ion monitoring. Ion
ratios and retention times were used for identification. Most of the XAD-2
columns were prespiked with 13 C-labeled PCDD/F surrogate standards prior
to flue gas sampling in order to monitor sampling efficiency, reproducibility,
and recovery. The surrogates included 2,3,4,7,8-pentachlorodibenzofuran
(PeCDF); 1,2,3,4,7,8-hexachlorodibenzo-p-dioxin (HxCDD); 1,2,3,4,7,8-
hexachlorodibenzofuran (HxCDF); and 1,2,3,4,7,8,9-(heptachlorodibenzofuran
(HpCDF). All of the surrogate recoveries fell between 86% and 99%, meeting

EPA criteria for acceptability (11). Coefficients of variation (100 x standard
deviation/mean) ranged from 3% to 21%. Surrogates were also spiked into
mixtures of the apparatus rinsates and impinger contents prior to extraction.
Variability in surrogate quantities in these samples represent analytical
variability. Recoveries were between 88% and 105% and coefficients of
variation ranged from 6% to 9%. All PCDD/F emission values reported are
corrected for analytical recoveries.

Concentrations of PCDD/F are reported in ng/dscm (nanograms of
PCDD/F per dry, standard cubic meter, 298 K, 1 atm) normalized to 8% 02 in
the flue gas. These can be converted to pg/g (picograms of PCDD/F emitted
per gram of moisture-free solids combusted) by employing a conversion factor
of 1 ng/dscm @ 8% 02 in flue gas = 6.1 pg/g.



For the lab scale tests, concentrations of PCDD/F and concentrations of
HCl were not measured simultaneously; separate combustion tests were
performed for each.

Toxicity equivalency factors (TEF) based on relative carcinogenicity of
the different congeners were used to generate comparisons of toxic
equivalences. The values used for TEF are based on Barnes, et al. (13).

RESULTS AND DISCUSSION

HCl Emissions
The combustions in the lab scale furnace indicate the effect of large

additions of BPS to black liquor solids on HCl emissions (Figure 3). When
100% BPS was combusted, nearly 600 ppm of HCl was emitted. Despite the
high HCl concentrations, this emission represents only 5% of the total liquor
chlorine. This result is consistent with earlier reported chlorine trapping
data, which showed that most organic chlorine is trapped as NaCl rather than

' 600 A'
- 5.0 0
1 _ / ^- -500 |
w 4.0 /

400 '

3.0
.0 300 0

0
2.0 200 °

Wa / values at <10% are based .
1.0 - . ^ on detection limit of chloride 100 X

1 ZW * ion in HC1 trap

0.0, ' , ' ' ,' , 0
0 20 40 60 80 100

BPS in black liquor, % of dry solids

Figure 3. Effect of El concentrate addition on HC1 emissions from lab scale
black liquor combustion.



emitted as HC1 during pyrolysis of bleach plant solids that contain a molar

excess of sodium over chlorine (1). Levels of BPS less than 10% resulted in

HCl emissions less than 80 ppm in the laboratory studies. No detectable

increases were noted between 0% and 10% BPS, although sensitivity was

limited due to chromatographic interferences. Based on these detection

limits, less than 15% of the total chlorine in the black liquor solids (0% BPS)

and less than 5% of the chlorine in the 10% BPS mixture was converted to

HCl. On average, 55% of the black liquor chlorine was found as chloride in

the residue remaining in the ceramic boat after the test, and 33% was found

on the filter and the walls of the glass tubing.

Although this work and other research (2) shows that HCl emissions

may be limited when there are high molar ratios of sodium to chlorine, it is

important to consider the role of sulfur. A major route for the formation of

HCl during black liquor combustion occurs when sodium chloride volatilizes

from the bed, recondenses in the cooler portions of the furnace, and then

reacts with sulfur dioxide, as shown in the following reaction (16).

2 NaCl (s) + SO2 (g) + 1/2 02 (g) + H 2 0 (g) -- > 2 HC (g) + Na2SO4 (s)

The relatively high S/Na molar ratio in the black liquor (0.18) allows this

reaction to occur during normal black liquor combustion. The amount of

HCl produced by the sulfur dioxide pathway is highly temperature dependent;

lower bed temperatures result in a higher sulfidity in the flue gas (15) which

in turn will affect the extent to which NaCl can be converted to HC1.

Because of the relatively low molar ratios of S/Na in the bleach plant

solids (0.02) compared to black liquor, formation of HC1 by this mechanism is

likely to be minimal for mixtures with high levels of bleach plant solids, such

as existed in some of the laboratory scale experiments. The increase in HCl

production with large increases in BPS levels in the laboratory scale

experiments may have resulted from an alternative mechanism, such as

direct formation from the combustion of chlorinated organics.

Although the concentrations of the HC1 emissions and the average

percentage of black liquor chlorine emitted as HCl reported here are

consistent with those reported for 12 kraft recovery furnaces (0 - 96 ppm at 8%

02, 4.7%) (5), the precise level of HCl emissions measured in these tests

should not be considered to necessarily represent the HCl emission level of a



recovery furnace burning these liquors. Because the time, temperature, and
mixing histories of gases and particles in these furnaces will not be the same
as those in a given recovery furnace, the emission levels will not necessarily
be the same. However, it appears that HC1 emissions do not significantly
increase with small additions of bleach plant solids.

PCDD/F Emissions
The emissions of gas phase and condensed phase PCDD/F from lab

scale and mini-pilot scale combustions are tabulated in Tables 2 and 3.
The combustion of mixtures of bleach plant solids and black liquor

solids caused more PCDD and PCDF to be emitted than combustion of black
liquor alone. As shown in Figure 4, the addition of 1% BPS to the black liquor
increased the amount of total PCDD/F by an order of magnitude for both the

lab scale and the mini-pilot tests.

The extent of the effect of 0.5% BPS on PCDD/F emissions is less clear
because of differences in mini-pilot scale data and the lab scale data. The
mini-pilot scale data for the 0.5% mixture had an unusual pattern of emission
for the tetrachlorodibenzofurans compared to the other samples and
compared to other typical combustion emissions (17,18) and therefore the data
should be viewed with caution. Recoveries of labeled standards and
surrogates for the 0.5% BPS mini-pilot scale tests were comparable to the
other tests, which suggests that neither sampling nor analytical problems
were responsible for the anomaly.

Toxicity equivalences are shown in Figure 5. The result is similar; total
toxicity increased by approximately one order of magnitude with the addition
of 1% BPS to the black liquor. The toxicity equivalents emitted in the mini-
pilot tests were largely due to emissions of 2,3,7,8-TCDF. The most toxic

congener, 2,3,7,8 TCDD, was not detected in any of the samples. The increase
in emissions of toxicity equivalents reflected higher 2,3,7,8-TCDF emissions as

well as emissions of other 2,3,7,8 substituted congeners, particularly PeCDD
and PeCDF.
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Figure 4. Effect of El concentrate addition on total PCDD/F emissions

from mini-pilot scale and lab scale black liquor combustion.
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Potential sources of PCDD/F in flue gas include 1) survival of feed

stream PCDD/F, 2) coupling of chlorinated aromatics, including

chlorophenols, during combustion and, 3) de novo synthesis in which

nonchlorinated compounds dissimilar in structure to PCDD/F react and

become chlorinated to form PCDD/F (19-21). All of these mechanisms are

possible in the combustion of the complex mixtures investigated in this

study.
In most cases, concentrations of PCDD/F in both the uncombusted

black liquor and the E1 concentrate were not at levels high enough to account

for the PCDD/F emitted during combustion. The concentration of total

PCDD/F in the black liquor was 56 x 10-15 mole/g solids and the concentration

in the bleach plant concentrate was 835 x 10-15 mole/g solids. In Table 4, these

feed levels are compared to the total PCDD/F measured in the combustion

emissions. Total mole PCDD/F per g of solids burned are compared because

one class of PCDD/F can serve as a precursor to another (e.g., furans can be

converted to dioxins, TCDD can be converted to OCDD).

Table 4. Comparison of total PCDD/F in the liquor mixtures to that emitted

from lab scale and mini-pilot scale combustion (all values in 10-15 mole/g

solids).

0% BPS 0.5% BPS 1.0% BPS

Feed liquor 56 60 64

Emissions, mini-pilot scale 12 44 413

Emissions, lab scale 548 3277 4291

At 1% BPS, levels of emitted PCDD/F exceeded the levels of feed

PCDD/F by one order of magnitude for the mini-pilot scale tests, and by two

orders of magnitude for the lab scale tests. In the lab scale experiments, the

amounts of emitted PCDD/F were 10 times greater than the feed levels for the

black liquor and 50 times greater for the 0.5% mixture. It is clear that PCDD/F

formation occurred in these instances.



By contrast, emitted PCDD/F levels were less than feed levels during

the combustion of black liquor and the 0.5% BPS mixture in the mini-pilot

studies. This result may reflect either a net destruction of PCDD/F during

mini-pilot scale combustion of the black liquor and the 0.5% mixture or a lack

of recovery of particulate-associated PCDD/F. Because large increases in

emitted levels were observed with increased BPS even when the feed

concentrations of total PCDD/F were similar, it seems unlikely that the

increase was simply due to feed PCDD/F. Therefore, it is probable that there

was incomplete recovery of particulate-associated PCDD/F in the mini-pilot

experiments.
The congener distributions are shown for PCDD (Figure 6) and PCDF

(Figure 7) in the emissions from the mini-pilot scale combustion. For

comparison, the distributions of PCDD and PCDF in the 1% BPS feed are

included (recall from Table 3 that feed concentrations are nearly the same for

0%, 0.5%, and 1.0% BPS). The congeners OCDD, OCDF, and HpCDF

dominated the composition of the feed. The major congeners in the

emissions were not as highly chlorinated. The concurrent decrease in OCDD

levels and increase in the less chlorinated congeners with higher BPS suggests

that dechlorination of the OCDD may have been the source of some of the

3.00
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Figure 6. PCDD emissions from mini-pilot scale combustion of liquor

mixtures (also included for comparison are feed PCDD levels).
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Figure 7. PCDF emissions from mini-pilot scale combustion of liquor
mixtures (also included for comparison are feed PCDF levels).

less chlorinated congeners. However, the less chlorinated congeners only
became prevalent in the emissions from the combustion of 0.5% and 1.0%
BPS mixtures; they were not prevalent in the emissions from the combustion
of black liquor alone. Therefore, constituents of the BPS may have promoted
dechlorination of OCDD. Alternatively, recovery of particulate-associated
OCDD in the feed may have been poor. In the case of the furans, there was
not enough OCDF in the feed to account for the less chlorinated congeners.

The distribution of PCDD and PCDF congeners found in the lab scale
tests is shown in Figures 8 and 9. The overwhelming predominance of the
hepta- and octachlorinated congeners in the lab scale emissions, in contrast to
the mini-pilot and other combustion emissions (17,18), suggests that reactions
occurred that were peculiar to the lab scale combustion system. The feed
distribution could not be solely responsible for the distribution because of the
considerably higher levels emitted. A possible explanation is that the fused
quartz of the reactor promoted formation of Cl2. This has been shown to
occur by way of the following reactions (22).

I
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4x NaCI + y SiO2 + x 02 -- > 2x Na20,ySiO2 + 2x C12

2x NaCI + y SiO2 + x H20 ---- > x Na20,ySiO2 + 2x HC1

4 HC + 0 2 ----- > 2 H 20 + 2 C12

Higher levels of molecular chlorine could have produced more highly

chlorinated PCDD/F. It is interesting that HpCDD/F and OCDD/F dominated

the PCDD/F distribution in the lab scale tests when so few other chlorinated

congeners were detected. This suggests that the availability of the OCDD/F

precursors were limited since lower chlorinated congeners were not detected.

Potential precursors to emitted PCDD/F are chlorophenols which were

measured in the bleach plant solids. There was approximately 200 nmole

chlorophenols per gram of concentrate solids, or 2 nmole chlorophenols per

gram of 1% BPS mixture. Although this concentration is high enough to

account for the production of the measured PCDD/F on a mass balance basis,

it may be too low to allow a fast enough coupling rate to account for PCDD/F

formation. It is possible that chlorophenols reacted with other aromatics

present in the liquor mixture to produce some of the PCDD/F that were

detected in the combustion emissions.

Overall, considerably lower amounts of total PCDD/F emissions were

detected from the mini-pilot scale tests than from the lab scale tests. There are

at least three possible reasons for the differences between the two systems.

The lower temperature of the laboratory tests (800°C compared to 950°C) may

have resulted in less destruction of feed PCDD/F. Second, much of the

PCDD/F that was originally present and/or newly formed in the mini-pilot

furnace may have been associated with particulates which adhered to

combustion walls or otherwise were not emitted from the furnace. As

described previously, in the lab scale tests the entire combustion chamber was

cooled and toluene-rinsed after each individual test, while it was impractical

to toluene-rinse the mini-pilot scale combustion chamber. A third possibility

is that higher quantities of chlorine in the lab scale experiments generated

from quartz-promoted reactions may have produced more PCDD/F.



SUMMARY

Adding small amounts (10% by weight of solids) of chlorine-containing

El concentrate to black liquor resulted in a feed with high amounts of

inorganic and organically-bound chlorine, but incineration of the mixtures

resulted in the release of less than 5% percent of the feed chlorine as HC1.

Because the sodium to chloride molar ratio was high, the bulk of the chlorine

was trapped as sodium chloride. Incineration of high levels (> 10% by weight

of solids) in the laboratory scale combustions resulted in an increase in HC1

emissions, possibly as a result of organochlorine combustion.

Flue gas emissions of total PCDD/F increased approximately tenfold

with a 1% addition of bleach plant concentrate to the black liquor in both the

lab scale and the mini-pilot scale black liquor combustion experiments.

Amounts of PCDD/F in the feed liquor were much less than amounts in the

combustion emissions and congener distributions were substantially

different. These results indicate that PCDD/F formed during combustion and

emissions were not a result of the survival of feed PCDD/F. Lab scale tests
yielded greater total levels of PCDD/F and higher levels of the more

chlorinated congeners than the mini-pilot scale tests. The differences may

have been due to differences in combustion temperatures, differences in

sample collection, or interactions with the quartz reactor.

The emissions of PCDD/F may be a significant factor detracting from

the feasibility of combining chlorinated bleaching effluents with black liquor

for disposal in the recovery furnace; although, it must be noted that values of
residence times and temperatures for these combustion tests were less than

the times and temperatures in a recovery furnace.
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