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ABSTRACT

A novel method to determine wet fiber flexibility using high-power ultrasonics was

investigated. The radiation force of an ultrasonic traveling wave field was used to

consolidate a pulp suspension into a mat and then elastically compact the mat. The

amo,ant of elastic compaction was determined using an image analysis system.

Compaction experiments, performed on a Kraft market pulp beaten to various levels,

were shown to correlate linearly with the pulp's handsheet density and strength.

INTRODUCTION

Wet fiber flexibility (WFF), which defines how easily a wet fiber bends, affects every

optical and physical property of paper, making it one of the most important properties to

papermakers [1]. Despite this importance, wet fiber flexibility is seldom measured to

control the papermaking process, because the available measurement methods are not

suitable for a mill environment and are not easily adaptable for on-line testing.
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Review of the literature shows that many individual fiber and ensemble property methods

have been developed to determine the flexibility of wood pulp fibers. Methods involving

the bending of single fibers using mechanical or hydrodynamic forces can provide very

accurate measurements [2-6]. However, they have severe limitations because they can

only test a single fiber at a time and many tests are necessary to obtain a population

average. Moreover, they are unsuitable for very short fiber testing.

Another approach which has seen a constant stream of improvements over the years

relates to the flexibility evaluation of dry fibers draped over a glass rod on a glass slide

[7-12]. Determination of how much the fibers bent during drying is done by measuring

the amount of optical contact between the slide and the fibers. Whereas this approach is

able to measure the flexibility of many fibers with a single test, results may be sensitive

to other fiber properties. The testing procedure would be difficult to modify for on-line

implementation.

Other types of flexibility tests have been developed using fundamental modes of

vibration [ 13,14] and structural methods [ 15]. More recently, fiber suspension flow

methods involving fibers passing through a slot perpendicular to a laminar flow channel

have been devised [16,17]. Dilution is required to allow single fiber detection using an

imaging system. The flow methods provide a noncontact means to classify a population

of fibers. Observations using fiber-fine mixtures have not been reported.

The present work proposes a novel method to determine the mean wet flexibility of a

fiber suspension. The method is based on the degree of compaction of a fiber suspension



subjected to an ultrasonic traveling wave field. It is hypothesized that acoustically-

induced fiber compaction under an elastic regime is related to wet fiber flexibility. The

degree of compaction can be determined by optical means. Adaptation to part of a flow

loop in a stock line for on-line monitoring can be envisioned because the use of an

acoustic force to compact flowing fibers excludes physical contacts.

Measurement principles and a description of the experimental methodology to determine

the degree of acoustic fiber compaction are next presented. Then, results relating the

degree of compaction to sheet parameters sensitive to wet fiber flexibility are reported

and discussed. The concept of a possible on-line implementation is also discussed.

MEASUREMENT PRINCIPLES

Consider a short section of a square cross-sectional channel flow in which two of the

walls are replaced by an ultrasonic transducer and a sound absorber. These two elements

are mounted on opposite sides so that, when the transducer is energized, a traveling

(unidirectional) wave field propagates from the transducer to the absorber and the

acoustic energy is fully absorbed by the absorber.

If a stationary fiber suspension is located in the modified channel flow section, it will

interact with the traveling wave field in such a way that the fibers will move away from

the transducer and be pushed against the absorber. This migration effect is similar to that

found in some earlier work related to the agglomeration of water suspended fibers in an

ultrasonic standing wave field [18,19]. Depending upon the level of acoustic power, the



suspension will quickly consolidate into a mat at the surface of the absorber. The

compaction phenomenon is best appreciated by referring to Fig. 1. This figure illustrates

the geometry of the transducer-absorber assembly and the location of the compacted fiber

mat at the surface of the absorber. Assuming that all fibers are part of the compacted mat,

pure water stands between the transducer and the mat.

Now, if the compacted mat is no longer subjected to the traveling wave field, it will tend

to spring back due to the residual elasticity of the fiber network. Under cyclic conditions

for which the field is turned on and off continuously, the fiber mat will compress and

expand. Compression and expansion can be indefinite if an elastic regime exists. Using

an appropriate imaging technique, compressed and expanded fiber mats can be detected

and the degree of compaction can be quantified.

EXPE_MENTAL METHODOLOGY

Experimental Setup

A schematic diagram of the experimental setup is shown in Fig. 2. The apparatus

consists of a flow loop to provide a uniform consistency and constant temperature pulp

slurry (whole pulp) to an acoustic cell mounted in a 2-cm x 2-cm cross-sectional channel

flow. Tap water is used as the supporting medium. The cell height, and therefore, the

transducer-absorber assembly length are 10 cm (see Fig 1). The transducer is made of

several layers of a piezoelectric ceramic material; it is custom-designed to resonate at 150

kHz. The sound absorber is manufactured out of elastomer, nickel powder, and acrylic



microballoons. Glass windows normal to the transducer-absorber assembly are used for

illumination and imaging purposes. At the onset of transducer excitation using a

computer-controlled high-power AC source, a traveling wave field is produced in the

acoustic ceil. A miniature PVDF hydrophone can be mounted on a 3-D translation stage

located above the cell (not shown) to evaluate field uniformity and to determine the level

of acoustic power anywhere in the cell.

The amount of fiber mat compaction is captured using a CCD camera. An incandescent

light source is used to provide backlit illumination. Measurements are accomplished as

follows. First, the system captures and measures the area of a projection of the backlit

fiber mat when the acoustic field is on. Then, the field is turned off, and a second image

of the mat is captured and measured. The difference between the areas of the two images

is the amount of elastic compaction, i.e., Acomp. The consolidation area of the mat, Aco,s,

as measured from the second image, is used to normalize the compaction area. The

resulting ratio of the compaction area to the consolidation area is defined as percent

compaction as indicated in Eq. 1. This parameter is analogous to percent strain of a

tensile test.

I Ac°rap)
% Compaction - 1O0 (1)

ACons

An example of the images obtained during a typical test is shown in Fig. 3. Fiber mat

projected areas when the acoustic power is a) on and b) off are identified by the gray

areas. Black areas refer to pure water projected areas. When comparing a) and b), it is



clear that the fiber mat is compacted when the acoustic power is turned on. The acoustic

technique is very good as far pulp thickening is concerned. In this particular case, the

pulp consistency was set to 1%, and the mat consistency is almost twice as much when

the acoustic power is on. Fig. 3c shows the compacted area (vertical dark band), which

was obtained for illustrative purposes using an "Exclusive-OR" operation on a) and b).

Dark pixels in c) correspond to the same positions but different intensity pixels in a) and

b). A more quantitative approach was actually followed to determine the compacted and

consolidated areas.

Sample Preparation, Characterization, and Testing

Reported results were obtained using a market bleached Kraft softwood pulp. This pulp

was beaten to various levels in a Valley beater according to TAPPI standard T205.

Samples taken at each level were tested for CSF. A preliminary series of experiments

was first conducted to optimize experimental conditions for compaction observations.

Results were obtained at acoustic power levels of approximately 2.5 and 5.6 W_x_s and

pulp consistencies of 0.5 and 1.0 %. The flow loop system did not allow satisfactory

testing at consistencies in excess of 1%. Measurements were repeated five times for each

set of conditions. In order to gather some insights about the meaning of percent

compaction data, 200 g/m2 handsheets were prepared. Density was measured, and tensile

(TAPPI standard T494) and burst (TAPPI standard T403) tests were performed. The

handsheet properties are shown in Table 1.



RESULTS AND DISCUSSION

Values of percent compaction at 5.6 WRMSacoustic power, and 0.5 and 1% consistency

are shown plotted against handsheet density in Figs. 4 and 5, respectively. Tensile index

resets are displayed in Figs. 6 and 7. Excellent correlations are obtained in all cases,

including burst strength (not shown). Data suggest linear relationships. However, this is

not firmly established, and ad_tional observations are required to support this claim.

Since wet fiber flexibility is one factor that increases handsheet density and strength, it is

hypothesized the test gives some measure of this fiber property. Consistency does not

show any effect on the measurements as is expected. This is attributed to the acoustic

force consolidating the pulp Suspension into a mat before the elastic compaction. When

comparing measurements obtained at 2.5 and 5.6 WRMS,the larger power was able to

produce a greater percent compaction, also as expected since this power level translates to

a larger acoustic force. The available equipment did not allow testing at larger acoustic

power levels and, hence, conditions for higher compaction levels (elastic and inelastic

regimes) could not be observed. One should note that a 5.6 WRMSpower level is a

relatively low power.

Sources of Error

As seen in Figs. 4-7, error bars indicate that the measurements are repeatable. The largest

source of error was due to the mat's not being uniformly compacted (see Fig. 3). This

problem was due mainly to the nonuniformity of the traveling field and directly related to



the transducer's properties, which were found to deteriorate during the course of the

project. A more uniform and energy-efficient _ansducer would produce a very well-

defined compacted area. As a matter of interest, a substantially improved and more

reliable transducer has since been tested. Other lesser sources of errors were the

resolution of the image analysis system (0.0765 cm2), the three-dimensional mat's having

been measured as two-dimension_ projection, and gravity effects on the mat.

On-line Implementation

An on-line implementation would involve the detection of the percent compaction in a

continuous mode. In this situation, flowing fiber suspensions would penetrate the

acoustic cell and be gradually compacted as they move into it. Measurements would be

collected near the exit of the acoustic cell, i.e., where the field provides maximum and

stable compaction (analogous to Fig. 3a) and just out of it, i.e., where the fiber mat is

released due to the absence of the field (analogous to Fig. 3b). Assuming that the

measurements co_d be extended to cover the :medium consistency range (up to 5%),

dilution would not be required.

CONCLUSIONS

Compactibility experiments were performed using a traveling wave field to consolidate a

pulp suspension into a mat and then elastically compact the mat. Percent compaction was

measured taking the ratio of projected compaction area to consolidation area. Results

from the compactibility experiments indicate that the percent compaction correlates with



sheet properties of strength and density and does not appear to be sensitive to consistency

variations. The method is believed to do this by measuring the wet fiber flexibility,

although fi_her verification from experiments using various furnishes is needed.
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Table 1. Handsheet properties.

BEATING CSF APPARENT DENSITY i TENSILE INDEX BURST STRENGTHi

TIME LEVEL Average Std.Dev. Average Std. Dev. Average Std. Dev.

(min) (ml) (g/cc) (g/cc) (Nm/g) (Nm/g) (psi) (psi)
0 635 0.588 0.045 18.8 0.2 33.0 1.2
5 580 0.597 0.023 22.7 0.6 52.3 0.9
10 440 0.630 0.046 25.3 0.4 65.9 1.6

15 370 0.648 0.031 36.5 1.8 74.2 0.9
20 335 0.660 0.013 41.2 0.9 90.0 0.6

i
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Fig. 1. Schematic diagram of the acoustic compaction phenomenon between the
transducer and absorber positions.
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a) Acoustic b) Acoustic c) "Exclusive-
Poweron Poweroff OR"

Operation

Fig. 3. Typical acoustic compaction results gathered using the imaging system. The
absorber is located on the left side of a) and b).
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Fig 5. Percent compaction vs. density at 5.6 W_s acoustic power and 1.0% consistency.
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Fig. 6. Percent compaction vs. tensile index at 5.6 WRMSacoustic power and 0.5% consistency.
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Fig. 7. Percent compaction vs. tensile index at 5.6 WRMSacoustic power and 1.0% consistency.
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