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THE INSTITUTE OF PAPER CHI4ISTRY

Appleton, Wisconsin

THE MOLECULAR PROPERTIES OF NATURALLY OCCURRING POLYSACCHARIDES

THE EFFECT OF ION BINDING ON THE MOLECULAR PROPERTIES OF LOW
MOLECULAR WEIGHT POLYSACCHARIDES

SUMMARY

Diffusion experiments have been conducted in the Spinco Model E electro-

phoresis-diffusion apparatus using the Rayleigh diffusiometer. The diffusion co-

efficients of the cellodextrins from cellobiose through cellopentaose in water

are reported. These results are combined with measurements taken from other

sources to provide a picture of the molecular weight dependence of diffusion co-

efficients for the polysaccharides from glucose through cellohexaose.

The cellodextrins are examined in the light of the theoretical equations

of Kirkwood and Riseman for the dependence of diffusion coefficients on molecular

weight for rigid rod and random coil polymers. By fitting the theoretical dif-

fusion equation for the rigid rod to glucose and cellobiose, the diffusion co-

efficient of cellohexaose may be predicted to within 14%.

The dependence of diffusion coefficients on molecular weight is also

described by means of a semiempirical equation suggested by Longsworth. The

results of the diffusion of cellobiose in the presence of aqueous sodium chloride

are used in conjunction with this empirical relation to estimate the apparent

molecular weight of cellobiose in this solution. The apparent molecular weight

is then used in combination with a theoretical expression for the sedimentation

equilibrium of a solute in the presence of supporting electrolyte. From this

analysis the binding coefficient for cellobiose in the presence of a sodium

chloride supporting electrolyte has been calculated.
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An extensive analysis of Rayleigh fringe patterns has been conducted.

From this analysis the concentration dependence of the diffusion coefficient of 

cellobiose has been determined. The results of fringe analysis on cellotriose

and higher members of the cellodextrin series indicate that the samples are poly-

molecular. This polymolecularity is thought to be the result of progressive

bacterial decomposition of the cellodextrins in water. The degree of polymolecu-

larity is low and fortunately does not complicate the conclusions drawn concerning

the molecular weight dependence of diffusion coefficients, partial specific volumes,

and ion binding effects. Fringe analysis is thought to provide an excellent means

of detecting impurities and may rival chromatographic techniques in sensitivity.

The effect of molecular weight on the partial specific volume of cello-

dextrins in water has been examined. A decrease in partial specific volume is

observed as one proceeds from glucose to cellotriose. This has been attributed

to the replacement of intermolecular distances with carbon-oxygen bond distances.

A simple quantitative theory has been devised to account for this decrease. The

partial molar volume of a given member of the series is taken to be the sum of the

partial molar volumes of the anhydroglucose units plus an additional partial molar

volume associated with the ends of the molecule.

Above cellotriaose the partial specific volume increases with increasing

molecular weight. This is attributed to increased volume requirements of the

higher homologues resulting from co-operative motion between anhydroglucose units.

At high molecular weights partial specific volumes are known to become independent

of molecular weight. This fact has been used to estimate the portion of the partial

specific volume increase resulting from co-operative motion between molecular seg-

ments. This has been treated on a simple theoretical basis and is given quantitative

I
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expression. Using partially methylated cellulose as a basis, the extra partial

molar volume associated with the co-operative motion of a polymer segment in the

cellulose molecule was estimated.

Finally, diffusion coefficients obtained by three different experimental

techniques were compared. Diffusion measurements taken in the Spinco Model E

electrophoresis-diffusion instrument employing the Rayleigh diffusiometer are

the most accurate. Measurements conducted in the Spinco Model H ultracentrifuge

using the transient state analysis of Van Holde and Baldwin are less accurate.

Diffusion experiments conducted in the ultracentrifuge using synthetic boundary

cells in conjunction with the Rayleigh optical system are at present the least

accurate of the techniques.
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INTRODUCTION

Since this is the final report on Project 2256 it might be well to

review.some of the general problems in the physical chemistry of polysaccharides

and to place the present work in proper perspective. Organic and biochemical

studies allow us to determine the chemical behavior, configuration, and the chemi-

cal structure of the sugar units comprising the polysaccharide. A large amount

of work of this nature is available on a large number of naturally occurring

polysaccharides. We have at present, however, a scarcity of information concern-

ing the physicochemical nature of these substances. Specifically, we lack infor-

mation on the size, shape, and hydrodynamic properties of the polysaccharides.

This is particularly true of the hemicelluloses, and the plant hydrocolloids.

The long-range goal of our research work in this area is, therefore, to help fill

the scientific void in this area.

The size, shape, and hydrodynamic properties of polysaccharides are

most intimately related to the frictional resistance that the polymer offers to

the flow of solvent. It is for this reason'that the frictional properties of

high polymers in solution have received considerable theoretical and experimental

attention over the years. The transport properties of diffusion, sedimentation

in a gravitational field, and viscosity of polymers in solution are controlled

primarily by the friction coefficient of the molecule which, in turn, is dependent

on the molecular size and conformation of the polymer chain. It is not surprising,

therefore, that studies of polymeric transport have been given considerable atten-

tion. 

The importance of the friction coefficient is readily demonstrated by

considering the well-known Svedberg equation for the determination of molecular

I I

1l'

A



The Pioneering Research Committee
Pioneering Research Program Page 5
Project 2236 Report Seven

weights through the use of the ultracentrifuge. The sedimentation velocity of a

molecule in a gravitational field may be expressed by the sedimentation coeffic-

ient given by (1, 2)

M(l - Vp)
r~ So =N f (1

ao

where

S is the sedimentation coefficient at infinite dilution
-o

v is the partial specific volume of the polymer molecule

p is the density of the solvent

Na is Avogadro!'s number:

f is the friction coefficient of the molecule at infinite dilution.-o

The diffusional transport of the same polymer molecule may be given by the well-

known formula of Einstein (3)

D kT (2)
o

where k is Boltzmann's constant, and T is the absolute temperature. Upon elim-

ination of the friction coefficient from Equations (1) and (2), the Svedberg

equation (4) for the determination of molecular weights is obtained; that is,

S RT
M0 (3)

Do(l - vp

. This equation is strictly valid only at infinite dilution and applies only to

i.'.:'Simple two-component systems consisting of solvent and solute. It .is apparent

i.7.ccfrom a comparison of Equations (1), (2), and (3) that the friction coefficient

& > molecular weight are closely related.

f~vf'rp '
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As long as one is restricted to two-component systems, the transport

properties of diffusion and sedimentation yield information about the polymer

molecule which can be readily interpreted. In many polysaccharide systems,

notably the hemicelluloses, one must use solvents that contain supporting electro-

lytes. Certain hemicelluloses are only soluble in water in the presence of strong

caustic or in the presence of complexing agents. In such mixed solvents there is

a tendency for the supporting electrolyte (e.g., sodium hydroxide) to associate

with the polymer molecule in such a manner that there is some doubt as to whether

or not one can obtain a reliable measure of molecular weight of a polymer under

these conditions. The nature of this interaction is such that it is present

even at infinite dilution so that one can only determine an apparent value for

the molecular weight. Any determination of the frictional properties of poly-

saccharides in the presence of supporting electrolytes will also have to include

.consideration of these ion-binding effects. Until the binding phenomena and its

relation to frictional properties are understood, studies in mixed solvents will

always yield information of uncertain value. It was with these facts in mind

that the present study on the effects of ion binding on the frictional and molecu-

lar properties of polysaccharides was initiated.

In our original proposal for research on the molecular properties of

naturally occurring polysaccharides, we planned to study the homologous series

of oligosaccharide alditols. These were to have been prepared from the corre-

sponding cellodextrin series. Since the preparation of the alditols would have

resulted in the destruction of our entire cellodextrin starting material it was

felt that the wise procedure would be to examine the cellodextrin series first

and then proceed to the alditol series. It should be pointed out that the

preparation of the cellodextrins is a laborious and time-consuming procedure and

hence these polysaccharides are extremely valuable.

II
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There are at present no studies on the molecular and frictional prop-

erties of the cellodextrins and certainly no knowledge of the behavior of these

oligosaccharides in the presence of a supporting electrolyte. For this reason

most of our research has been devoted to an examination of the cellodextrins in

water and in water in the presence of sodium chloride as a supporting electrolyte.

This report contains the results of partial specific volume measurements

and diffusion experiments on the cellodextrins from cellobiose through cellopenta-

ose. These results have been supplemented with measurements on glucose and cello-

hexaose obtained from other sources. Certain generalizations can be drawn from

the results of these measurements which should apply to low molecular weight poly-

saccharides.

The molecular weight dependence of partial specific volume has certain

trends that may make it possible to predict the partial specific volumes of

simple linear polysaccharides. A minimum has been observed in the curve of

partial specific volume versus degree of polymerization, and a theory has been

devised to explain this on a semiquantitative basis.

Diffusion coefficients have been examined as a function of molecular

weight and the results interpreted in the light of theoretical equations for

diffusion. The results of the molecular weight dependence of diffusion coeffic-

ients in water have been used in conjunction with diffusion coefficients obtained

in the presence of supporting electrolytes to obtain an estimate of the ion-bind-

ing coefficient necessary for the interpretation of ultracentrifuge'experiments.

An analysis of skewness of Rayleigh fringes from diffusion experiments

has been presented and the results have been used to determine the concentration
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dependence of diffusion coefficients for cellobiose and to test the purity of the

remaining cellodextrins.

During the last report period we had intended-to carry out sedimentation

velocity experiments in the ultracentrifuge. Four sedimentation experiments were 

conducted in double sector synthetic boundary cells using the Rayleigh interference

optical system. No accurate sedimentation coefficients could be obtained because 

of the rapid diffusion of the boundaries compared to the rate of sedimentation.

Apparently, future sedimentation experiments will have to be conducted in single

sector synthetic boundary cells using the schlieren optical system and maximum

allowable gravitational fields. Budget considerations did not allow us to repeat

this phase of the research work.

i
. l I~~~
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THEORETICAL BACKGROUND

THERMODYNAMICS OF IRREVERSIBLE PROCESSES

According to the thermodynamics of irreversible processes, (5, 6) dif-

fusion in a multicomponent system can be represented in terms of fluxes J. and

S -
generalized forces or affinities Xk. The Ji represent the flow of solute species

i passing one square centimeter of a plane perpendicular to the direction of flow.

The units of J. are g./sq. cm. sec. The plane to which J. is referred is called

the frame of reference. The symbol J. will be used for the diffusion flux referred
--1

to the local center of mass.

For systems not too far from equilibrium, the fluxes are postulated to

be linear functions of the generalized forces. This can be expressed in the gen-

eral form,

Ji LikXk (4)
k

where the Lik are phenomenological coefficients. The coefficients L.i represent

direct effects and the'Li represent coupled effects. If a "proper choice" of
-ik

fluxes and affinities has been made the phenomenological coefficients will be

symmetric, i.e.,

Lik i (5)

This fundamental theorem is due to Onsager (7, 8).

The generalized forces are chosen so that,

T = J'.X (6)
1 1

1
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where 8 is the rate of entropy production and the dot indicates the scalar product

of the vectors. For a diffusing species the generalized force is the negative

gradient of the chemical potential (4),

xi -V .' (7)

Whenever the diffusion of solute species is considered, one must pay

careful attention to the frame of reference. Whenever there is a volume change

on mixing there will be bulk flow of the solute species in addition to diffusional

transport. For the present we will only consider relations between the reference

frame fixed at the local center of mass and the reference frame fixed on the

diffusion cell. If V is the velocity of the mass fixed reference frame with

respect to the cell fixed reference frame, then

J.' = . - c.v (8)
1 1 1

where J! and Ji have been defined previously.

In the work reported herein we are.interested in the diffusion of a

simple sugar in water. For such a simple two-component system, the diffusion

flux becomes,

jL 1 -L1 1 . (9

According to Fick's first law (4)

J1 -D1 VC 1 (1

If there is no volume change on mixing, Equation (8) can be written as (4),

J =T /V (1.11l

)

0)

1)

II

i

I

I

i

I
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where v is the partial specific volume of the solvent and p is the density of the
-o

solution. Upon substituting Equation (11) into Equation (10) and comparing the re-

sult with Equation (9) we, find that,

D1 = L11 (al/aCl)4PT YoP (12)

The chemical potential can be written as,

= i° + RT in yC (13)

where p is the chemical potential in the standard state, 4 is the chemical poten-

tial and y is the activity coefficient on the concentration scale. Upon taking

the partial derivative of the chemical potential with respect to concentration

f and substituting into Equation (12) one obtains,

(.7C~y (14)It~~ D -k= T L + CEinT v]p (14)
|f ac-jT,P VoP

where the quantity /jC has been replaced with the friction coefficient f. The

subscript 1 has been dropped since we are dealing with a single solute species.

Tests of Equation (14) have proven difficult because of the difficulty

in determining the concentration' dependence of the friction coefficient. A simpli-

Iying assumption that can be made is that f is proportional to the viscosity of

the solution so that,

f/fo = n/no (15)

where r is the viscosity of the solution and ro is the viscosity of the solvent.

When Equation (15) is substituted into Equation (14) one finds that,

DI Do + c -WCTP v p (16)0 lnyT OP N°
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where D is given by Equation (2) which is Einstein's result,

D = kT/f (2)

Agreement of Equation (16) with experimental results has been very good

for aqueous solutions of glycolamide (9), a-alanine (10) and urea (11) to concen-

trations as high as 0.5 molar. Fair agreement has been observed for aqueous

sucrose (12) up to concentrations of 0.2 molar. Poor agreement is found for n-

butanol in water (13).

MOLECULAR THEORY OF DIFFUSION

At the present time we have not completed our survey on the molecular

theories of diffusion; however, it seems profitable to give a discussion in terms

of what we have found thus far. Riseman and Kirkwood (14) have discussed the use

of the statistical mechanics of irreversible processes in connection with the

Brownian motion and hydrodynamic properties of polymer molecules.

The general theoretical treatment is based on a'polymer molecule composed

of 2n + 1 identical structural elements attached to a rigid or flexible framework

consisting of reference frames numbered from -n to +n. There are 2n bond vectors

b of magnitude b directed from element I - 1 to I > 1 and from elements A to X + 1

for I < - 1. A friction coefficient C is associated with each structural element

and will depend on the nature of the fluid and the structure of the element.

The theory results in the following expression for the translational

diffusion coefficient of a rigid rod;

D = (kT/C z)[l + 2X in (z-l)] (17)

I



The Pioneering Research Committee
- Pioneering Research Program Page 13
Project 2256 Report Seven

where z = 2n and = /(6ntob),

with,

C = the friction coefficient of the structural unit

n' = the viscosity of the solvent

b = the magnitude of the bond vector

i n = an integer as discussed above

~i ~ The corresponding case of a random coil polymer has also been solved

and the translational diffusional coefficient is given by,

kT (1 +l/2)
D 3=^(l 0 z1/ 2 ) (8s)

where X. = /[(6(3)1/2 1 b

Our use of the results of Kirkwood and co-workers (14) will be limited

to a test of translational diffusion equations; however, it should be pointed out

that theoretical expressions are available for the rotary diffusion coefficients

of rodlike and random coil polymers. In addition, theoretical expressions are

available for the intrinsic viscosity, real and imaginary components of the complex

shear modulus and complex intrinsic viscosity of solutions containing rigid rod

and random coil molecules. All of these quantities are related through the friction

coefficient of the structural element, 6.
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EXPERIMENTAL MATERIALS AND PROCEDURES

MATERIALS

The cellobiose used in diffusion experiments was obtained from Eastman

Organic Chemicals. The rest of the cellodextrins used in the present work were

made available to us through the courtesy of Dr. N. S. Thompson and Mr. W. Bliesner.

The cellodextrins prepared by Mr. Bliesner were obtained by chromato-

graphic separation. The separation was accomplished on a column containing an

adsorbant composed of a 50-50 mixture of charcoal (Darco G-60) and Cellite (Cell-

ite 545). The adsorbant was pretreated with stearic acid-ethanol solutions. The

adsorbant and the use of a stearic acid-pretreatment is similar to that reported

elsewhere (16, 17).

Whatman cellulose powder was hydrolyzed with fuming hydrochloric acid

according to the method of Jermyn (15). The solution resulting from the acid

hydrolysis was neutralized with sodium bicarbonate and filtered to remove salts

and undissolved materials. The resulting filtrate containing the cellodextrins

was added to the column and washed with distilled salts and glucose. The cello-

dextrins were then eluted with a solution consisting of 40% ethanol by volume.

The individual members of the cellodextrin series were then purified by the pro-

cedure described by Wolfram and Dacrons (18).

At one point in the preparation, the samples were inadvertently subjected

to bacterial attack. The solutions were heated to destroy the bacteria and since

all sugars were recrystallized to constant melting or decomposition points they

were still considered to be suitable for the present work.

I
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Several sources of water were used during the course of this work.

Partial specific volume measurements were conducted in distilled water obtained

from an ordinary Barnstead laboratory still. The water used in diffusion experi-

ments on cellobiose was distilled water obtained from the distillation of deion-

ized water containing alkaline potassium permanganate.

r. 

In diffusion measurements on cellotriaose and all higher members of the

ccllodextrin series the water was prepared as described by Bauer (19) for density

measurements with 6 place accuracy.

The water of highest purity was stored in polyethylene bottles which

had been leached for a total of six weeks in several changes of water distilled

from alkaline permanganate and including at least three changes of distilled water

of the highest purity (prepared as described by Bauer).

Solutions in all density and diffusion experiments were prepared in

calibrated volumetric flasks and were used directly from these flasks. The amount

of solute and the amount of solvent added to each flask were determined by weight.

In studying the effect of salt on the diffusion of cellobiose in water,

Baker analyzed reagent-grade sodium chloride was used.

PARTIAL SPECIFIC VOLUME

The determination of partial specific volume must be done with consider-

able care. This is particularly important in the ultracentrifugal determination

of molecular weights where the accuracy of the partial specific volume measurement

determines the accuracy of the molecular weight. For example, an error in the

determination of partial specific volume will cause an error three times as large

in the molecular weight.

-
-
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Care must be exercised in the choice of the pycnometer used in the

specific volume determination. In general, pycnometers of the Gay-Lussac type

are unsuitable for accurate density work. Those of the Sprengel-Ostwald type

are preferable. A Sprengel bottle (20) was used exclusively in the present experi-

ments. The bottle has a volume of 20.5 ml. and an additional 5 ml. are required

for proper filling.

The procedures required for accurate density determination have been

described by Bauer and Lewin (20) and by Kraemer (21). The reader is referred to

these authors for a detailed discussion. Only a brief discussion will be given

here. 

The Sprengel bottle was filled by attaching 7/27 female ground-glass

joints to the stems and then drawing solution into the bottle. The bottle was

then immersed in a constant temperature bath at 30.000 + 0.005°C. The height of

the liquid in the capillaries was adjusted by passing braided nylon fishline down

one capillary to the meniscus and thereby removing a portion of the liquid. The

capillary was subsequently dried in the same manner. The volume of the dilatometer

was determined by using distilled water and a value of 0.995646-g./cc. for the

density of water at 30.00°C. A typical calibration curve is shown in Fig. 1 where

the volume of the dilatometer is plotted as a function of the sum of the liquid

levels in the two capillaries.

The partial specific volume of the polymer is related to the correspond-

ing apparent property by the relation,

V'= 0v + C (19)

I
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where

.v is the partial specific volume of the polymer in ml./g.

0v is the apparent specific volume in ml./g.

C is the polymer concentration in g./ml.

The apparent specific volume is the quantity computed directly from experimental

measurements and is given by

0v i 1 - P (20)
o o(20)PO = Pb

or

1 100 (10 1)])0v = v -- - 1, (21)
¢v m V p O m

where

p is the density of the solvent in g./ml.

o is the density of the solution in g./ml.

m is the mass of solvent in the pycnometer in g.-o

m is the mass of solution in the pycnometer in g.

P is the per cent of polymer by weight

v is the volume of the pycnometer in ml.

In the present work it is assumed that the last term in Equation (19) is

negligible and, therefore, the partial specific volume and apparent specific

volume are identical. In actual practice the apparent specific volume is only

slightly concentration-dependent at concentrations less than 1 g./100 ml. For

very accurate work the measurements should be carried out at several concentra-

tions. Problems of accuracy and the labor involved prevented determinations at

more than a single concentration.

I
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In accurate dilatometric work it is necessary to correct for buoyancy

effects in weighing. The ratio of the true weight to the apparent weight is

given by,

1 + Pa (vi - w) =1 + R (22)

where

Pa is the density of air, in g./ml.

v. is the specific volume of the substance being weighed in ml./g.
-L1

v is the specific volume of the weights in ml./g.
-w

For the present work, the difference in R values for the weights m and m did not-o

exceed the permissible error in v and the correction was not applied. All weigh-

ings were carried out to 0.1 mg., however, and the same side of the balance arm

was used in all weighings. The weights were uncalibrated but the same weights

were used in all determinations.

THEORY OF FREE DIFFUSION

Free diffusion techniques were employed in the present experimental

program. A brief description of these will be given here. For a more complete

discussion the reader is referred to the excellent review article of Gosting (4).

The diffusion experiments were conducted in cells of the Tiselius type.

In free diffusion the experiments are conducted in a vertical rectangular cell.

A side view of such a cell is shown in Fig. 2. The bottom of the cell is filled

with a solution at a solute concentration of C2. The top of the cell is filled

with a less concentrated solution C or as in the case of experiments in the pres-

ent work with pure solvent. The density of Solution 2 is.always greater than

Solution 1 so as to avoid convective mixing of the solutions.

ai I
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At the start of the experiment a sharp boundary is formed at the inter-

face between the solutions. This is the condition existing at the start of the

experiment when t = 0. At some later time when t = t- the concentration within

the cell will be represented by the sigmoidal curve in Fig. 2. The concentration

gradient curve is also shown. In free diffusion the concentrations at the ends

of the cell are not permitted to vary.

If the diffusion coefficient is independent of concentration the course

of diffusion may be described by Pick's second law,

ac a2c
Cd =- D (23)

This second-order partial differential equation is readily solved for the case of

free diffusion. Integration of Equation (25) results in the following equation

for concentration;

x/[2(Dt) 1 /2]

C = C + (2/1/2) f [exp (P2)] dp

o

(24)

and for the concentration gradient,

C = [AC/2(lDt) /2] exp[-x 2 /4Dt] (25)

where C is the mean solute concentration, C = (C + C2 )/2 and AC is the initial

concentration difference across the boundary given by AC = C2 - C.

In our measurement of diffusion coefficients we employed the Rayleigh

diffusiometer of the Spinco Model H electrophoresis-diffusion apparatus. A

Simplified diagram of a typical Rayleigh diffusiometer is shown in Fig. 3. The

diagram represents a top view of the instrument. The viewer is looking down into

the diffusion cell.
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Monochromatic light from a point source S is focused by a long focal

length lens L onto a photographic plate P. Two vertical slots M allow one band

of light to pass through diffusion cell C and the other to pass through an iden-

tical reference cell C' filled with solvent. In the interferometer used in this

laboratory the reference cell C' is not present as a separate entity. The windows

of cell C have been extended beyond the edge of the cell. The extended windows

and the water in the thermostat form the reference path. The cylinder lens L-c
focuses each level of the cell to a corresponding level at the photographic plate

P so that rays deflected by the concentration gradient are brought back into the

proper level to interfere with rays from the reference path.

The resulting fringe patterns are shown in Fig. 4. The patterns are in

a horizontal position as they would be observed at the photographic plate in our

instrument. The left-hand side of the fringe pattern represents the top of the

cell and the right the bottom. The corresponding concentration curve is shown

below the fringe pattern.

The total number of fringes crossing the horizontal field is given by,

J a n (26)

where J is the total number of fringes, a is the cell thickness along the light

path, An is the refractive index difference across the initial boundary and X is

the wavelength of the monochromatic light. If the refractive index is a linear

function of concentration, each fringe represents a change in concentration given

by (C - C~1)/J. A linear dependence of refractive index on concentration is often

: ;: aesumed although corrections for nonlinearity are not difficult to make.
h..,.,.·..

tt*

>' '--.WRA ; -tf -* I
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TOP OF CELL BOTTOM OF CELL

I-

DB-20; Photos No. 1-10; J = 12.52; 6t = 213.9 sec.
| _ S ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~i Si=i- 
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1,i mThe two basic measurements needed for analysis of Rayleigh fringes are

the total number of fringes J and the horizontal location x. at which each fringe

j crosses the horizontal line of sight. A set of reduced cell co-ordinates, Z*,

are defined by,

j - J = (Z*) (27)

where $(Z*) is the Gaussian error function given by

Z*

(Z*) (2 fl[exp(_-2)] do (28)

Extensive tables of this function are available (22). For a two-component system

in which the refractive index is a linear function of concentration and in which

1/2
D is independent of concentration, Z* reduces to x/2(Dt)/. The diffusion co-

efficient can then be computed from the quantity,

. '~ x . ' 1 '

xJ- 2(1/2 (29)xj2MJ Z* 2(Dt) / (29)2MZ* - u V(

where M is the magnification factor for the Rayleigh diffusiometer. The diffusion

coefficient is then determined by averaging among a number of different fringe

pairs.

PROCEDURE FOR DIFFUSION EXPERIMENTS

Diffusion experiments were performed in a Spinco Model H Electrophoresis-

Diffusion instrument. The actual diffusion was allowed to take place in Tiselius

cells. Two sizes of cells were used; a 2-ml. micro cell and a 11-ml. standard cell.

Since the diffusing boundary must be sharpened at the start of the experiment by

withdrawing solvent and solution from the diffusion boundary, the total amount of

I" _ �
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solution required for the operation of either cell is the same; approximately 25

ml. in either case. The main difference between the cells lies in the cell thick-

ness along the optical path. The micro cell has the shorter cell thickness and

will according to Equation (26) have a fewer number of total Rayleigh fringes,

other factors being equal.

The cells were filled using a layering technique as described by Gosting

(4). The bottom half of the U-shaped Tiselius cell is filled with solution and

the center section of the cell is isolated. Solvent is layered on top of the solu-

tion in one limb of the cell. The other limb is filled with solution. The cell

channels are then brought into alignment and a long stainless steel needle is

lowered into the system to the point at which the boundary is desired. Fluid is

withdrawn from the system by means of an automatic sampling system and as a result 

of the density difference between solution and solvent a sharp boundary will be

formed just below the tip of the needle.

When a sharp boundary is formed the sharpening procedure is stopped and

the needle is withdrawn. The time is noted and three photographs were taken as

soon as possible. Across any diffusing boundary there will be an integral number

of fringes plus a certain fraction of a fringe. These early photographs were used

to obtain fractional fringe data. It was generally not possible to see individual

fringes crossing the boundary on these early photographs.

All fringe patterns were recorded on Eastman Type M photographic plates

using 16-sec. exposures. The plates were developed in Eastman D-ll developer for 

5 minutes.

The first photograph on which individual fringes could be noted was

generally obtained after about 5 minutes of free diffusion, at which time the

I,___^

I
I

I
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fourth picture was taken. Three subsequent photographs were taken 15 minutes apart

and thereafter photographs were taken at progressively increasing time intervals.

FRINGE MEASUREMENT AND CALCULATIONS

The determination of fringe fractions and fringe positions were, for

the most part, carried out on a Gaertner traveling microscope although, in a few

early experiments with cellobiose, the Wilder microprojector, Model C was used.

The position of each fringe was determined several times and an average of at least

two readings were used to determine the fringe position.

; . ~There are several methods of fringe pairing that may be employed in the

;.computation of diffusion coefficients from Equation (29). In the present work we

-have employed the method of Longsworth (25, 24). The first fringe is paired with

,,the first fringe past the center of the pattern, the second with the second past

.ite center, etc. In this way diffusion coefficients are compared linearly across

. the boundary. By examining the time and concentration dependence of diffusion

coefficients calculated in this manner we can obtain information on the concentra-

tion dependence of diffusion coefficients and also obtain information on the pres-

.'."ence of impurities in the sample. This will be discussed in some detail in a

.,later section of this report.

The computations for diffusion coefficients were carried out on the IBM

1620 computer. Two programs were used in the computations and these Fortran

programs are given in Appendix I.

X· . ~ - The first program calculates the average diffusion coefficient D based

X7!on the reduced height-area ratio (4). This is computed from a knowledge of the

;i)eperimentally observed times t', the fringe number j, the total fringe number J,
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and the fringe locations jx and x. The second computer program is used to

correct for the finite thickness of the boundary at the time the needle is with-

drawn. This correction is made on the following basis.

If itis assumed that the boundary was essentially Gaussian at the time

sharpening was stopped, then one can show (25) that the following relation applies-

DA = DA(1 + At/t') (30)

where t is the true diffusion time, t' is the experimentally observed time, and

6t is a small time increment that must be added to t' to obtain the true time t.

The diffusion coefficient, DA, is the slightly erroneous diffusion coefficient

based on the times t' and D is the proper corrected diffusion coefficient. A-A

plot of D' versus l/t' will extrapolate linearly to the observed DA.

The second computer program is designed therefore to carry out this

extrapolation by the method of least squares. The diffusion coefficient DA is

represented as a function of t' according to Equation (30) and the resultant

slope is used to calculate the time correction. This is then used in the first

program and the computations are repeated. The entire procedure is repeated

until the time correction is less than one second.

I
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I

I
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EXPERIMENTAL RESULTS AND DISCUSSION

The results of the present experimental investigation will be given in

five sections. First, the results of our measurements on the partial specific

volumes of the cellodextrins will be given and interpreted in the light of a

theory which is developed. This will be followed by a discussion of the results

of diffusion experiments. Following this, several methods of determining diffusion

coefficients will be compared. Next, the usefulness of an analysis of fringe skew-

ness will be discussed. Finally, the results of our experiments on cellobiose will

be used to obtain the binding coefficient for cellobiose in aqueous sodium chloride

solutions.

<"R ESULTS OF PARTIAL SPECIFIC VOLUME MEASUREMENTS

The results of partial specific volume measurements on the cellodextrins,

!iZ 'V rose, raffinose, cycloheptaamylose, and methyl cellulose in water are given in

,%.Table I. The cellodextrins from cellobiose through cell6pentaose were determined

.- at 30.00 C. and are the results of the present research work. The sources of the

>.results on the other compounds are indicated in the appropriate footnotes.

J^j!~i~li'": Some rather interesting observations can be made when the partial specific

IV~olumes are plotted as a function of the degree of polymerization, D.P. Such a

$,Piot is shown in Fig. 5. The partial specific volume is seen to drop from a value

liiiif °0.621 ml./g. for glucose to a minimum value of 0.6109 ml./g. at a D.P. of 5,

d -or ^cellotriose. Above a D.P. of 5, the partial specific volume begins to rise

tQa value of 0.6279 ml./g. for cellopentaose at a D.P. of 5.

This rather strange behavior is readily explained on the following basis.

initial decrease in partial specific volume in going from glucose through the

I

_ � __�
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TABLE I

PARTIAL SPECIFIC VOLUMES OF THE CELLODEXTRINS, SUCROSE,
RAFFINOSE, AND CYCLOHEPTAAMYLOSE IN WATER

Compound

Glucosea

Molecular
Weight

Concentration,
moles/liter

180.16

Partial Specific
Volume, 7 V

ml./g. -

0.621

Partial Molar
Volume, V m

ml./mole

111.9

Cellobiose

Cellotrioseb

342.30

504.45

Cellotriose

Cellotetraose

Cellopentaoseb

Sucrosec

Raffinosec

666.59

828.73

0.03100

. 01910

0.0 960

0.01497

0.006213

342.30

594.52

Cycloheptaamylosed

Methyl cellulosee
(D.P. about 355)

aReference (24), temperature of 25°C.

Data from the present work, temperature of 30.00°C.

CReference (12).

Reference (26).

eReference (27).

o.6148

0.6109

0.6110

0.6132

0.6279

o.613

0.6078

210.4

308.2

308.2

408.5

520.3

209.9

0.627

306.6

0.729

1I
I

i

I

i1:

I

I j
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disaccharides of sucrose and cellobiose to the trisaccharides of raffinose and

cellotriose is due primarily to the replacement of intermolecular distances with l

the shorter carbon-oxygen atomic bond distances. The increase in partial specific

volume above a D.P. of 3 is due to the increased space requirements of the higher

members of the series. This increased space requirement has its origin in the co-

operative motion (28) of the structural unit of the molecule.

I

.3

I

With this qualitative reasoning in mind it is interesting to attempt a

theoretical interpretation of the experimental results. Assume that the partial

molar volume is made up of two additive parts. The first consists of the volume

associated with the anhydroglucose units and the second is the volume associated

with the ends of the molecule. The partial molar volume >V for the cellodextrins

can be represented by,

VN = NVa + 2VeN a e

0A

(31)

where N is the number of anhydroglucose units in the molecule, V is the partial

molar volume associated with an anhydroglucose unit and V is the partial molar
-e

volume associated with the end of the molecule. The terms V and V can be
-a -e

evaluated from the first three members of the cellodextrin series. The partial

molar volumes of glucose and cellobiose are known and one has two equations in

two unknowns from which one observes that V = 98.5 ml./mole and V = 6.7 ml./mole.
a -e

From the cellobiose and cellotriose' sugars one finds V = 97;8 ml./mole and

V = 7.4 ml./mole. The agreement between the values obtained from the three

sugars is extremely good and one is justified in using average values of V = 98.15
-a

ml./mole and V = 7.05 ml./mole.

I

¶l.1
Il

I

I

t
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The partial specific volume is given by,

NV + 2V
VN =N + MH + (32)a + OH

where M is the molecular weight of an anhydroglucose unit, MH is the atomic weight

of hydrogen and MOH is the molecular weight of the OH-group. The partial specifici' volumes of the cellodextrins are, therefore, given by

- N(98.15) + 2(7.05)
VN N(162.14) + 18.02 (3)

>-.:A test of Equation (33) is shown in Fig. 5 where the results of this analysis are

represented by the solid line for the first ten members of the cellodextrin series.

,The equation represents the first three members of the series quantitatively as

-jexpected and then fails on the higher members. It should, however, be pointed out

?/¢! t the partial specific volume calculated for cellopentaose by means of this

-p ormula is still within 3% of the experimental value.

It is apparent that an additional term must be added to the total molar

et/nd partial specific volumes if these quantities are to be treated on a quantita-

ive basis. This added volume is believed to have its origin in the added volume

$'~equired for the co-operative motion of the anhydroglucose units. For example,

o.a given motion of the end of the polymer molecule to take place, the remaining

._Wlits must move in a restricted manner. This will cause the members to sweep out

.rger volumes than if they were free to move-independently. If this additional

'lUI e is swept out faster than it is replaced by solvent molecules the partial

a&r and molar volumes will increase.

For the purpose of general discussion we will designate this additional

lal molar volume by the term V where the subscript c refers to co-operative

I
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motion of the anhydroglucose units. The partial specific volume can then be

expressed in the general form,

NV + 2Ve + V

vN = N + + Ma (34)
a MH+MOH

where, in general, the volume V will be a function of the degree of polymerization.

The authors have attempted to estimate V in several ways. One very

simple way is to assume that the molecules are rigid rods that sweep out a conical 

volume which cannot be refilled as fast as it is emptied. The rigid rod molecule i

is assumed to sweep out a volume equal to twice the volume of a cone given by,

2x(volume of cone) = 2[(i/5)(L sine 8)2( cos e )] (35)

where L is the length of the molecule given by L = NL where L is the length of 

a monomer unit which may be taken as 5.15 x 10 cm. The angle 8 is one half the

angle of the apex of the cone and N is Avagadro's number. The total volume per

mole is given by

V = V ( = (nxlO124/12) N L3N3 sin28 cos 6 (36) 

where V8 has the units of ml./mole.

For .the purpose of.estimation we.assume-that-V. is-equal to the differ- -8
ence between the experimentally determined partial molar volume and that calculated

from Equation (33). For cellotetraose V- is 1.8 ml./mole and 8 is 1°49 ' . If one

assumes that 8 is a constant for the remaining members of the series, V can be

calculated. The partial specific volume is then calculated by substituting the

results from Equation (36) into Equation (54).

_,_ . I

:j

I
I
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i
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I
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The partial specific volumes calculated on the basis of Equation (36)

are given by the dashed line in Fig. 5 for cellotetraose and higher sugars. For

the glucose, cellobiose, and cellotriose polymers the dashed and solid lines

are identical.

It is apparent that the increase in partial specific volume is predicted

only qualitatively. There are a number of ways in which improved estimates of

can be obtained. The methods are, however, quite involved and will not be worth

carrying out until the partial specific volumes of cellohexaose and celloheptaose

.,' are known. Rather than consider these methods in detail it seems more profitable

. to discuss the general features that a theory must have in order to describe the

-r t partial specific volume dependence on molecular weight.

X| ~ fi ' These general features can be predicted from what is known about the

| $ !partial specific volumes of high molecular weight polymers. First of all, the

partial specific volumes of high molecular weight polymers are known to be inde-

|!'! pendent of molecular weight. The reason for this lies in the manner which a high

A J secular tuweight polymer moves in solution.' -This movement is thought to take

plae by means of segmental jumps (28j involving short segments of the polymer

ba'ih 'In order for a segment to move in.solution there must be sufficient energy

I pace associated with the segment and its neighbors. This must involve a

1 certain amount of co-operative motion between segments.

i; . If the molecule is large enough one can assign an average size to the

B segment. As the result of a jump the segment will sweep out a volume V

Ih Eole of segments which cannot be refilled with solvent as it is emptied. If

4 ^ !t? re sents the number of segments in a molecule and N the number of anhydro-

Ofle units in the segment, then

I
-

all,
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Ns = N/Nm (37)

where N is the degree of polymerization.

In the limit as the molecular weight becomes large the extra molar 

volume resulting from co-operative-motion-becomes, - - -----

. = (N/N )V (38)

'41
and upon substituting into Equation (34) one finds

NVa+ 2V + (N/N ) Vs
- Ne (59)

N NM + M + MoH (39)

If the molecule is large enough MH, MOH' and 2V will be negligible compared

to the other terms in the expression and one has,

V + (V s/N) 
~~v··N ~~~~~= a m(40)aM

Since V and M are known and vN is in principle available from experiment one

can determine the ratio V /N. The partial specific volume, the volume of an

anhydroglucose unit and the molecular weight of an anhydroglucose unit are con-

stant and therefore the ratio V /N is a constant.
-s -m

The partial specific volume of the cellulose molecule in water is un-

known at high molecular weights because of the insolubility of the molecule. The

partial specific volume of partially methylated cellulose is available (21) for

a molecule with a D.P. of 355, a degree of substitution of 1.26, and a partial 

specific volume of 0.729 ml./g. For lack of anything better it is assumed that

for cellulose of high molecular weight vN = 0.729 ml./g., Ma = 162.14 and V = 98.15.

Substituting these values into Equation (40) one finds that V /NM = 8.45 ml./mole

for cellulose. 
: I

I
r

I
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The results of the discussion thus far are illustrated in Fig. 6, where

the experimental partial specific volumes and those computed by-Equations (32)

and (39) are indicated.

As the degree of polymerization decreases N will decrease and the co--s

operative motion between segments necessary for a given segment to move will de-

crease. The jump frequency (29) of a segment at the end of the molecule will in-

crease as will the volume swept out by the segment. In other words, V is expected
-s

to increase when the total number of segments in the molecule decreases far enough.

.This increase in V should be followed by a decrease as the number of co-operating
--s

-':. segments approaches zero. As the length of the molecule becomes much smaller than

4' .the length of a segment the partial specific volume should approach the values

reported for the cellodextrins.

4'i'.' :In summary, V should be negligible from a D.P. of 1 to 3. It should

:t: increase as the co-operative motion between anhydroglucose units increases and

then pass through a maximum and approach an asymptotic limit of (N/N )V as the

: molecular weight becomes large.

'' , RESULTS OF DIFFUSION EXPERIMENTS

~j.*: *^*^- The results of the diffusion experiments on cellobiose, cellotriose,-

cellotetraose, cellopentaose, and cellohexaose in water are given in Table II.

,& Where possible, the diffusion coefficients at several concentrations are reported.

*.. Diffusion coefficients of cellopentaose and cellohexaose are given at only one

,\^ ; ' concentration since there was insufficient time to study the effect of concentra-

~;V> tion on these samples. Time also did not permit experimental work to be conducted

'$14' on celloheptaose.
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The diffusion coefficients are reported in terms of DA, the diffusion ,

coefficient based on the reduced height-area ratio, along with the standard devia!

tion. The total number of fringes J and the zero time corrections At are reported

for all experiments conducted in the electrophoresis-diffusion instrument. The 

zero-time corrections are three to ten times larger than those reported by Gosting^

and Morris (12). This is due to the fact that the tip of our sharpening needle 

was blunt. Gosting and Morris used a specially shaped needle in their work on

sucrose.

The refractive index difference across the initial boundary, An, may be .'

calculated from the total number of fringes J, the cell thickness along the optical

path a, and the wavelength of the monochromatic light X, through the use of Equa- .

tion (26). The cell thickness was a = 0.6457 cm. for the 2-ml. micro cell and 'i

a = 2.596 cm. for the ll-ml. standard cell. The wavelength of the monochromatic .;

light is A = 5462.2 x 10 cm. The refractive index difference across the initial 

boundary was calculated from Equation (26) and may be expressed as a function of

concentration difference AC. The resulting expressions are given as follows,

2
Cellobiose An = 21.05 AC - 434 (AC)2 (41)

Cellotriose An = 12.46 AC + 2114 (AC)2 (42)

Cellotetraose An = 11.62 AC + 802 (AC)2 (43)

Cellopentaose An = 9.304- (44)

It is apparent from Table II that the diffusion coefficients of the

cellodextrins decrease with increasing molecular weight. In order to examine this

feature of the results more closely one can consider that the diffusing molecules

are spheres. Stoke's law may then be used to evaluate the friction coefficient in

Einstein's equation, Equation (2), with the result that the diffusion coefficient

'I

I

I
I

I

Wlt.

lF

4i
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for a sphere, D s is given by (4)

o = RT[6nT (3MV/4iNa)] /3 (45)

.S

where il is the viscosity of the solution, M is the molecular weight of the solute

' , and N is Avagadro's number. In the past, when this equation has been tested for

tt ' ssmall molecules it has not yielded accurate results. The failure of the equation

I., is due in part to the failure of Stoke's law when the size of the molecule approaches

,t r that of the solvent and in part to the neglect of hydration and asymmetry of the

molecules. For large molecules that are not too asymmetric, the product (MV) /3 is

approximately constant and for small molecules decreases with increasing molecular

v weight.

i: . By assuming V to be approximately the same for a large number of sub-

l s dances, Polson (30) simplified Equation (45) to yield,

= KM-/ (46)

;where K is an empirical constant. This was tested on a variety of compounds with

molecular weight range from 20 to 294,000 and was found to fail for molecular

eights below 1000. Poison and van der Reyden (31) carried out an empirical exten-

on of this equation to give a better fit of these data. This resulted in the

nation,

D = + K2M2' /+ KCM4 (47)

"ire 1, I, and 13 are empirical constants. Longsworth (23) has pointed out 

t this relation can be represented by the simpler expression,

l t D = A/(M'/3 B) (48)
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in which A and B are empirical constants. This has the advantage that a plot of',

DMl/3 versus D is linear. This expression can also be written in terms of molecu-le

lar volumes to yield,

D= '/(V/ 3 - B') (49)

where A' and B' are empirical constants. It should be pointed out that in spite '-'

of the fact that Equations (46), (47), (48), and (49) are empirical they still !A

have a useful relation to Equation (45) which has a molecular basis.

The relations of Longsworth have been tested for a variety of substances 

and it is, therefore, interesting to examine our experimental results in this nl

connection. Equation (48) may be tested by making a plot of Dv/3 versus D.

Such a plot is shown in Fig. 7 for glucose through cellopentaose. If we choose

to eliminate glucose from consideration, Equation (49) can be made to represent 

the cellobiose through cellopentaose sugars with an average deviation of 2%, by the 

relation

D = 2.385 x 105/(V 3 - 1.792) (50) 

A single relation of this form has been found to represent a number of aliphatic

amino acids, peptides, sugars, aromatic and heterocyclic amino acids at 1°C. with

an average deviation of 1.4% (23).

An analogous test can be made with Equation (48) by simply plotting

DM1/ 3 versus D. Again a straight line should be obtained if the equation is to

represent the experimental results. The results of a test of this equation are

shown in Fig. 8. It is apparent from the marked curvature of the plot that Equa-

tion (48) fails to represent the dependence of diffusion coefficient upon molecu-

lar weight.
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If we choose to omit glucose and cellohexaose from consideration, Equa-

tion (48) can be made to represent the cellobiose through cellopentaose data.

Over this restricted range, the relation,

D = 2.658 x 10-o/(M13 - 2.402) (51)

represents the data with an average deviation of less than 2%. The elimination

of glucose and cellohexaose from consideration is of course an arbitrary procedure.

#' ;. Our primary reason for doing this is to obtain a simple expression which may be

;i't used in our discussion of ion binding.
vit.

It is interesting to examine the molecular weight dependence of the

,-translational diffusion coefficient in the light of the molecular theory of Riseman

'and Kirkwood (14). It is desirable therefore to examine the experimental results

in terms of Equations (17) and (18). There is, however, some question as to what

to use for the value of n in these equations since the cellodextrins do not

s trictly fit the polyethylene-type chain structure on which these equations are

based.

For simplicity we shall assume that n is equal to N, the degree of polym-

1erization. When n = 1 we have the glucose molecule. On substituting the value of

,the diffusion coefficient for glucose into Equation (17) one finds,

D--kT-- - - - - c.s.D = - 6.86 x 10 sq. cm./sec.,\ -- (52)

In which the diffusion coefficient of glucose has been corrected to 30.00°C. For

-6
llobiose we can take D = 5.72 x 10 sq. cm./sec. and using the above value for

to find that, 2(2.303) 0 = 1.41 so that one has

n 6-686
n 6.86 x 10 - H ,i o 1 

- N 1-i- * .1 IS Y l

I

kI il

i

1.1
Si'

1,
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for the entire cellodextrin series. A similar treatment leads to the following 

expression for the random coil molecule;

D = 6.86 x lO6 1 + o.480 ] (54)
N N

The experimental results for the translational diffusion coefficients are compared .

in Fig. 9 with the theoretical results for the diffusion of rigid rods and random '.

coil molecules. As expected, the experimental results are closer to the rigid rod 

model than the random coil. For the rigid rod model the agreement between theory '

and experiment appears to be within 14% for cellohexaose. '

COMPARISON OF DIFFUSION METHODS

In the course of the present experimental program we have obtained

diffusion coefficients through the use of three different methods. The results

obtained by the three methods are given in Table III. Method I is the Rayleigh 

interference method applied to free diffusion in the Tiselius cell as described

in this report. Method II is the ultracentrifuge transient state method described 

by Van Holde and Baldwin (32) and is discussed in detail in Quarterly Report Three

(33).

Diffusion coefficients obtained by Method III are the result of ultra- 

centrifuge experiments using the Rayleigh optical system in conjunction with the 

double sector synthetic boundary cell. Free diffusion is made to take place in

the sector-shaped cell at low gravitational fields under conditions where sedimen-

tation is presumed negligible. The boundary is formed by layering solvent on top

of solution in the gravitational field. The results for this method were obtained

by Mr. J. Tostevin (34) on the Spinco Model E ultracentrifuge.
'I?

i

I,

i
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Figure 9. Mean Translational Diffusion Coefficient as a Function of
,4~ ~Molecular Weight. Test of Theoretical Kirkwood-Riseman

Equations for Rigid Rod and Random Coil Molecules
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The results obtained by Method I are considered to be the most accurate.

The transient state method, Method II, yields results that are approximately 2%

too high. Method III gives values that differ by as much as 5% from those of

Method I. Apparently, refinement of this method is still needed before high

accuracy results may be obtained. Ultimately, it should be nearly as accurate as

Method I.

i .i

A1' ~ At the present time Method II appears to be the preferred method of

obtaining diffusion coefficients in the ultracentrifuge, even with the limited

accuracy of the schlieren optical system.

ANALYSIS OF FRINGE SKEWNESS

Because of the unsymmetrical method of pairing fringes in the Longsworth

analysis scheme, the Rayleigh interference method is very sensitive to skewness of

the refractive index curve. There are three common causes of skewness of the re-

fractive index gradient curve. One is the concentration dependence of the refrac-

tive index increment discussed in the previous section. The other two are poly-

molecularity and concentration dependence of D.

?; ĴIn the Longsworth scheme (23), two fringes separated by about J/2 are

paired. From their separation (xjj x) and the corrected time, a diffusion

coefficient can be calculated from Equation (29). The mean concentration repre-

. sented by these fringes is computed from Equations (41), (42), (43), and (44).

In the process of moving through the fringe pairs a pattern of changes in D with

concentration is noted. If a single pure solute is present, this pattern will be

repeated for each photograph, that is, the skewness will not show a time dependence.

i n this case, a single experiment yields information on the concentration depen-

i dence of D over a range of about AC/4 to 3a/4, where AC is the initial concentration

l W. '. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~I
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difference across the initial boundary. Figure 10 shows the results of measure-

ments taken on three cellobiose solutions. One interesting observation to be

made is that the curve seems to go through a minimum at about a concentration of

about 7 to 9 moles per liter. This is not readily apparent from the data as shown .

in Table II. It should also be noted that the eight low and six high points in

Experiment DB-12 all resulted from the earliest fringe picture. Apparently, the

boundary still showed some skewness left over from the sharpening procedure.

If the solute oteis polymolecular or polydisperse consisting of materials

of different D, the pattern of changes in diffusion coefficient as fringes are

paired across the Rayleigh pattern will show a time dependence. Smaller, faster

moving molecules will diffuse out ahead of the larger ones, spreading t he edges radg t 

| of the boundary faster than the center. 

A good example of this is found with cellotriose. Four successive

experiments, DB-16, DB-17, DB-18, and DB-19 were conducted with this polysacchar- '

ide. In each experiment the cellotriose was in solution for approximately 24

hours. The results.of the first experiment, DB-16, are shown in Fig. 11 and have

the same general appearance as the cellobiose experiments.

After Experiment DB-16 was conducted, the sample was recovered from

solution by freeze drying. This procedure was repeated for each succeeding cello-

triose diffusion experiment. Three experiments later when Experiment DB-19 was

conducted the fringe analysis yielded the diffusion coefficient pattern shown in

Fig. 12. At short times, 536.25 seconds, the diffusion coefficient increases with

increasing concentration. As the diffusion experiment proceeds the curves gradually

rotate about a common point until the diffusion coefficient becomes a decreasing

function of concentration as indicated by the measurements taken after 42,746

I
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seconds of diffusion. It should be noted that the mutual center of rotation of l

the curves is located very close to the mean concentration and mean diffusion 

coefficient for the system. 

The rather strange behavior of these curves in contrast to those shown

in Fig. 11 is due to the polydispersity of the sample at this point. Apparently,

during the experimental program the samples have become subjected to bacterial

attack. As we have pointed out previously, the cellodextrins were inadvertantly 

subjected to bacterial attack during preparation but were recrystallized to con- 

stant melting and decomposition points. This procedure appears to have yielded 

a very pure product since the first experiment, DB-16, shown in Fig. 11 did not

indicate any evidence of polymolecularity. Further bacterial action appears to

have been initiated during the time the succeeding diffusion experiments were

conducted.

Data obtained for cellotetraose and cellopentaose were also treated in

this manner. The results of fringe analysis on these samples indicate that they

were polydisperse and hence we were unable to obtain any information on the con-

centration dependence of these diffusion coefficients. If such information is to

be obtained, small amounts of a bactericide will have to be added to the diffusion

system. 

Fringe analysis is an excellent means of checking the polymolecularity 

of a polysaccharide. In many instances the preparative chemist must rely on '

melting point determinations or chromatographic techniques. A diffusion experi- '

ment with subsequent fringe analysis would be a useful addition to these techniques

and might even rival chromatographic analysis for detecting impurities. ,

I:
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In the present work we have used fringe analysis to detect the presence

of small amounts of impurities resulting from bacterial action. These would have

gone undetected if we had simply reported the mean diffusion coefficient as a

function of concentration as we have done in Fig. 13. The general concentration

dependence of diffusion coefficient is apparent but any information on sample

purity is lost.

ION BINDING

§1i- In Quarterly Report Six (35) we presented the results of several experi-

ments of the diffusion of cellobiose in the presence of sodium chloride. For

purposes of reference these results are repeated here in Table IV and Fig. 14.

It is apparent from an examination of Fig. 14 that the presence of 0.2958 molar

sodium chloride has depressed the diffusion coefficient of cellobiose in water by

about 1.5%. Since viscosity changes of the surrounding media can account for only

0.1% of this depression we are dealing with a small but very real ion-binding effect.

TABLE IV

DIFFUSION COEFFICIENTS FOR CELLOBIOSE IN 0.2958M NaC1
AT 30.00 + 0.02°C.

X1 06 Std. Dgv.
Ax x 100, Cell

! Ebcpt. AC, C, Lt, sq.cm./ sq.cm./ Size,
Code Compound moles/l. moles/l. sec. sec. sec. ml.

DB-13 Cellobiose 0.02778 0.01389 31.72 17 5.636 0.010 2

DB-14 Cellobiose 0.00832 0.00416 37.57 66 5.643 0.013 11

DB-15 Cellobiose 0.00286 0.00143 12.82 167 5.665 0.061 11

It is of interest to see how this small ion-binding effect will influence

molecular weights of cellodextrins determined in the ultracentrifuge in the presence

4,
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of sodium chloride as a supporting electrolyte. In order to do this, one may makei,

use of the results obtained from the theory of sedimentation analysis (36). me 'e

system under consideration is the ternary system consisting of a solvent (1)- i

macromolecular solute (2)-solvent (3). These numbers will be affixed as sub- 

scripts to quantities appearing in the following equations. For our system, sol- .- '

vent (1) will be water, the macromolecular solute will be a cellodextrin molecule, g

and solvent (3) will be a sodium chloride electrolyte. We will be interested in

the molecular weight determined in the ultracentrifuge fr6m a sedimentation equil- '

ibrium experiment in the limit as the molality -) O0 and under the conditions

that the ratio ml/m3 remainsconstant*. With these restrictions, the molecular

weight determined in the ultracentrifuge is given by

lim Rp + ; \
m2 O --- [1 + r (1 F- 72 P (55)

where PP is the apparent molecular weight in the presence of a supporting electro-n

lyte, -2 is the true molecular weight (i.e., in the absence of ion-binding effects),

v is the partial specific volume of the solute in the absence of supporting-2
electrolyte, v is the partial specific volume of the supporting electrolyte, and

p is the density of the tricomponent solution. The binding coefficient, r ' is

the number of grams of supporting electrolyte bound per gram of macromolecule. '.

The derivation of this equation assumes-that the concentrations within-the solution 

are known as a function of position in the gravitational field.

Assuming that Equation (51) is valid for cellobiose in the presence of

sodium chloride, one can estimate MPP since the diffusion coefficients of cellobiose

./i

*Molalities are used in this section since the resulting equations are simpler
than those based, on the concentration scale.

I

]
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are known in water and in sodium chloride solution. The true molecular weight is

known and the apparent molecular weight can be estimated so that Equation (55) can

be used to calculate the 'ion-binding:coefficient.

There is some question asto the proper values to use for the diffusion

coefficients at lnfinite'dilutigon2 'In describing the concentration dependence of

sedimentation coefficients, an equation of the following form is often used (36)

1 1 + ksC)

S O lkC
(56)

where S is the sedimentation coefficient at infinite dilution, and k is a con--c -s
II - - I - I -',1-\ -- - -I

stant. According To E3quations, (land () thins concentration depenaence snoula

also apply to diffusion coefficients since changes in S and D are due exclusively

to changes in the friction coefficient. By analogy one can write,

0 = Do kD :) (57)

where D 'is the diffusion coefficient'at infinite dilution and kD is a constant.

An extrapolation of diffusion coerfficints ,based on Equation (57) is shown in

2 Fzig. 15. Good agreement is observed for the diffusion of cellobiose in the

* ~ presence of sodium chloride. For,:cellobiose in water the equation falls at low

concentrations. Inasmuch as sedimentation equilibrium experiments are difficult

L ito perform at concentrations of the order of:0.l% by weight (0.001 mole/l. for

cellobiose) we have chosen to carry out the extrapolation based on the measure-

ments taken at higher concentrations. With this in mind we obtain values for D-o

5.65 x 106 sq. cm./sec. for cellobiose in the presence of sodium chloride and

D of 5.78 x 106 sq. cm./sec. for cellobiose in water. The corresponding

pparent molecular weight calculated from Equation (51) is an PP of 362. From

,this same equation, M2 is calculated as 346.
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i ~t ~ The partial specific volume of cellobiose v2 is taken as 0.6148 ml./g.

and for sodium chloride v can be estimated to be 0.301 ml./g.. If the density
,

of the solution p is taken as 1.00 g./ml. then one can calculate the ion-binding

coefficient to be r' = 0.023 g. NaCl/g. cellobiose.

In actual practice the effect of ion binding causes some additional

. difficulties in sedimentation experiments that are not represented by Equation

(55). The Rayleigh and schlieren optical systems are based on the detection of

refractive index gradients of the sedimenting species. This means that ion bind-

i ing will cause changes in refractive index and these must also be considered.

tJ When this is done, Equation (55) must be written as (36)

_lim 0 P M2 + [ + r '(a ) /a (58)m2-4 0 2 (l V~d)-3

where Q2 and a, are the specific refractive index increments, respectively, of

solute and supporting electrolyte on the molal scale. The apparent molecular

:' weight will therefore differ from that used in Equation (55) to calculate F'.

Since X2 and 12 are experimentally accessible quantities this should cause no

. difficulty.

.a ! f ~ This rather convenient means of estimating binding coefficients has one

. a''. serious drawback, namely, the neglect of hydration effects. We have no guarantee.

. .~that the presence of supporting electrolyte has not altered the hydration of cello-

> Piose and hence changed the diffusion coefficient. Until we are able to conduct

reliable experiments in the ultracentrifuge it will be impossible to evaluate the

S lidity of this calculational procedure.

' -'l
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NOMENCLATURE

C = friction coefficient of a structural unit

r = viscosity coefficient of the solution

qT = viscosity coefficient of the solvent

X = parameter in Kirkwood-Riseman theory, also the wavelength of light

P = chemical potential

p = reference state chemical potential

p = density of solution, g./ml.

p = density of air, g./ml.
Pa

p = density of solvent, g./ml.

0v = apparent specific volume, ml./g.
v

r = binding coefficient

8 = one half the apex angle of a cone

$(z*) =Gaussian error function

AC = concentration difference across a diffusing boundary in moles/liter

An = refractive index difference across a diffusing boundary

At = zero time correction for free diffusion experiment

X2 = refractive index increment of solute 2 on the molal scale

X3 = refractive index increment of solute 3 on the molal scale
+ J v i^- 1-·t ' '

v=^ ^ -

-^.*¢,
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= thickness of Tiselius all along the light path

= magnitude of the bond vector from the Kirkwood-Riseman theory

= bond vector from Kirkwood-Riseman theory

= friction coefficient of a molecule

= friction coefficient of a molecule at infinite dilution

= fringe number

= Boltzmann's constant

=concentration coefficient for diffusion

=concentration coefficient for sedimentation

=integer from Kirkwood-Riseman theory

= mass of solution

=mass of solvent

=molality of solute, 2

= an integer from Kirkwood-Riseman theory

= true diffusion time, sec.

= experimentally observed diffusion time, sec.

= partial specific volume of a solution, ml./g.

= partial specific volume of solvent, ml./g.

= partial specific volume of solute, 2, ml./g.

= partial specific volume of solute, 3, ml./g.

= partial specific volume of the cellodextrins, ml./g.

="specific volume of a substance being weighed, ml./g.

specific volume of weights, ml./g.

x- = position of Rayleigh fringes

activity coefficient on the concentration scale

=parameter in Kirkwood-Riseman theory

i

FI
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C = concentration, moles/liter

C = mean concentration, moles/liter

CC2 = concentrations at cell ends in a free diffusion experiment

D = diffusion coefficient

D = diffusion coefficient at infinite dilution-o

-DA = true area average diffusion coefficient

D. = area average diffusion coefficient based on times, t'

G1 = glucose

G = cellobiose
-2

= cellotriose
~3

_G = cellotetraose

G5 = cellopentaose

G = cellohexaose-6

J = total fringe number

J! = flow of solute species i referred to the local center of mass,
- g./sq. cm. sec.

J. = flow of solute species i referred to the cell fixed reference frame,
- g./sq. cm. sec.

,K1,K3 = empirical constants

L = length of a rigid rod molecule

L = length of a monomer unit in the rigid rod molecule-o

L = phenomenological coefficient-ik

M = molecular weight 

M = molecular weight of an anhydroglucose unit-a

MH = atomic weight of hydrogen

M = molecular weight of an OH-group
-OH

LM = molecular weight of solute, 2

I

-, V
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Ma2p p = apparent molecular weight of solute, 2

N = degree of polymerization and number of anhydroglucose units in a
cellodextrin molecule

Na = Avcgadro's number

N = number of monomer units in a polymer segment

N = number of segments in a polymer molecule

P = pressure as a subscript, per cent solute by weight

R = gas constant

R. = Pa(v.-v )

S = sedimentation coefficient

%.' S = sedimentation coefficient at infinite dilution-0

T = absolute temperature

V = velocity of the mass fixed reference frame relative to the cell
fixed reference frame, ml./mole

l . V = partial molar volume of an anhydroglucose unit, ml./mole

t, Vc = partial molar volume due to co-operative motion between anhydroglucose
- V - units and between polymer segments, ml./mole

l : V = partial molar volume associated with the ends of a polymer chain,
.Il' , -e ml./mole

' tf V = partial molar volume of a cellodextrin molecule, ml./mole 

l{Bj Vs = partial molar volume of a polymer segment, ml./mole

, B Z* = reduced cell co-ordinates

1 ,, - i-
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APPENDIX I

FORTRAN PROGRAMS FOR THE CALCULATION OF DIFFUSION
COEFFICIENTS FROM RAYLEIGH FRINGE PATTERNS
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C THIS PROGRAM GIVES CALCULATIONS OF APPARENT DIFFUSION COEFFICIENTS

C FROM RAYLEIGH DIFFRACTION FRINGE DATA BY LONGSWORTHS METHOD.

C SUBSEQUENT PAIRINGS MAY BE MADE DROPPING THE FIRST AND LAST

C FRINGES USED IN THE PREVIOUS COMPUTATION.

C APPARENT DIFFUSION COEFFICIENTS AND THE RECIPROCAL OF TIME ARE

C PUNCHED ON CARDS FOR USE IN A LEAST SQUARES PROGRAM.

C A TOTAL OF NOT OVER 80 FRINGES MAY BE INCLUDED IN THE DATA.

CO=1.7787391

C 1-.802853

C2=.014605998

B 1=2.0262682

B2=.378538

B3=.0036995827

SP=2./SQR(3.14159)

C JF DATA IS IN CENTIMETERS, CM=I O

C IF DATA IS IN INCHES, CM=.3937

READ 1, CM

C F=MAGNIFICATION FACTOR

READ 1, F

C FS=TOTAL NUMBER OF FRINGES

C J=NUMBER OF FRINGES INCLUDED IN DATA

.C NPRS=NUMBER OF DIFFERENT PAIRINGS OF DATA

C NPTNS=TOTAL NUMBER OF FRINGE PATTERNS-

READ 1, FS, J, NPRS, NPTNS

C TC1, TC2,TC3, AND TC4 ARE TIME CORRECTIONS, NEEDED FOR CORRECT

C DIFFUSION COEFFICIENTS FOR EACH RESPECTIVE PATTERN

J~.

1 7

I
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51 READ 1, TC1, TC2, TC3, TC4

NP=O

The Pioneering Research Committee
Pioneering Research Program

Project 2236

C INDEX-CODE NUMBER OF THE EXPERIMENT

C NBR=CODE NUMBER OF THE FRINGE

C T=TIME

11 READ 1,INDEX, NBR

READ 1, T

PRINT 1, INDEX, NBR

PRINT 1,T

T=T+TCI+TC2+TC3+TC4

PRINT 1, T

PRINT 1,

NP=NP+1

M=J/2

K=M

N==1

DIMENSION A(80),H(80),FJ(80),Z(80),R(80)

DIMENSION DZ(40),DR(40),DELH(40),DELZ(40)

DIMENSION DEV(40)

DO 4 Ir1,J

C A(I)=FRINGE NUMBER

C H(I)=FRINGE POSITION

READ 1, A(I),H(I)

H( I)=H(I)/CM

FJ(I)=(2.*A(I)-FS)/FS

IF(FJ(1).)2,3,3

::.t',

,V

* Ii
; f , 

··.

I
I
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2 FJ(I)~-rJ(g)

3 S=LOG(2./(lIFJ(I)))

S SQ R(s)

Z( I)nS-~(S**2.*C2+s*C

S-SP/EXP(zc I)**2.)
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l+CQ)/(S**3-*83+S**2.*B2+s*B 1+1.)

R( I)=Q/S

C IF SENSE SWITCH 1 IS ON, THE COMPLETE TABLE OF STATEMENT 42C WILL BE PRINTED OUT

IF(SENSE SWITCH 1)42o4

PRINT 1,A( I),Hf( I),r.J( I),,z( 1)
4 CONTINUE

PRINT 1,

6 t1N.J-N+1

S=o.

U=0,

DO 9 I=N,K

L= +M

DELH( I)=HdJ()-H(L.)

IF(DELH(I)14,
15.15

14 DELH( I)1oE H )

15 DELZ(I)z( I)+z(L_)

DR( I)=R(L)-R( i)

Q=DELH( I)/DE.z( I)
C DAQ = DIFFUS~Iu COEFFICIENT FOR THE FRINGE

PAIR CONSIDERED
DAQ=(Q**2. )/(4~.*T*F**2.)

iI
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C THIS PROGRAM PERFORMS A LEAST SQUARES EXTRAPOLATION OF

C THE DIFFUSION COEFFICIENTS CALCULATED IN THE PROGRAM FOR

C THE ANALYSIS OF RAYLEIGH FRINGES TO INFINITE TIME

C DAPP IS THE APPARENT DIFFUSION COEFFICIENT

C RCIPT IS THE RECIPROCAL OF THE TIME

C NO IS THE NUMBER OF PAIRINGS

C NPAT IS THE NUMBER OF FRINGE PATTERNS ANALYZED

DIMENSION DAPP(100),RCIPT(100)

21 READ,NONPAT

ND=NO*NPAT

DO 20 NB=I,ND

20 READ,RCIPT(NB),DAPP(NB)

12 LS=I

NA=ND-NO+1

25 RSQ=O.

RS=O.

DSQ=O.

DS-O.

RDS=O.

DO 22 NB=LS,NA,NO

RSQ=RSQ+RCIPT(NB)**2.

RS=RS+RCIPT(NB)

DSQ=DSQ+DAPP(NB)**2.

DS=DS+DAPP(NB)

PRINT,RCIPT(NB),DAPP(NB)

22 RDS=RDS+DAPP(NB)*RCIPT(NB)
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P=NPAT

RMN=RS/P

DMN=DS/P

VARR-(RSQ-(RS*RS/P))/(P-I.)

B=(RDS-DS*RS/P)/(RSQ-RS**2./P)

VAR=(P- I.)*(VARD-B*B*VARR)/(P-2.)

DCORR=DMN-B*RMN

DELT=B/DCORR

PRINT,

C VAR IS THE VARIANCE

C B,IS THE SLOPE OF THE

C DELT IS THE ZERO TIME CORRECTION

C DCORR IS THE DIFFUSION COEFFICIENT AT INFINITE TIME

PRINT,VAR,B,DELT,DCORR

PRINT,

PRINT,

IF(NO-LS)24,24,23

23 LS=LS+1

NA=NA+ 

GO TO 25

24 PAUSE

GO TO 21

STOP

END
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