Macalester College
Digital Commons@Macalester College

Geography Honors Projects Geography Department

May 2005
Mapalester:Powerful, East-to-Use GIS Software
Under Development

Brent Hecht
Macalester College

Follow this and additional works at: http://digitalcommons.macalester.edu/geography honors
& Part of the Geography Commons

Recommended Citation

Hecht, Brent, "Mapalester:Powerful, East-to-Use GIS Software Under Development" (2005). Geography Honors Projects. Paper S.
http://digitalcommons.macalester.edu/geography_honors/$

This Honors Project - Open Access is brought to you for free and open access by the Geography Department at Digital Commons@Macalester College.
It has been accepted for inclusion in Geography Honors Projects by an authorized administrator of Digital Commons@Macalester College. For more

information, please contact scholarpub@macalester.edu.

http://digitalcommons.macalester.edu?utm_source=digitalcommons.macalester.edu%2Fgeography_honors%2F5&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.macalester.edu/geography_honors?utm_source=digitalcommons.macalester.edu%2Fgeography_honors%2F5&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.macalester.edu/Geography?utm_source=digitalcommons.macalester.edu%2Fgeography_honors%2F5&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.macalester.edu/geography_honors?utm_source=digitalcommons.macalester.edu%2Fgeography_honors%2F5&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/354?utm_source=digitalcommons.macalester.edu%2Fgeography_honors%2F5&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.macalester.edu/geography_honors/5?utm_source=digitalcommons.macalester.edu%2Fgeography_honors%2F5&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarpub@macalester.edu

“Mapalester: Simple, Powerful GIS Software
Under Development”

asier

GIS software powerful > easy-to-use > free

Geography Honors Project
Computer Science Capstone

Brent Hecht
Advisor: Dr. Laura Smith, Geography

Comp. Sci. First Reader: Dr. Susan Fox
Comp. Sci. Second Reader: Dr. Libby Shoop

1. INTRODUCTION 2

1.1. PURPOSE OF THE MAPALESTER PROJECTccvviiiietreiiiiirerereersressseesseesssessssssssnrssssnsnersnat sosssessssssnssssssaesonns
1.1.1 ANALYSIS OF THE K-12 EDUCATION TARGET MARKET....
1.1.2 ANALYSIS OF THE NON-PROFITS TARGET MARKET
1.1.3 ANALYSIS OF THE PERSONAL USE TARGET MARKET......cc.ccocemreeenncranee

1.2 INTRODUCTION TO THE GISCIENCE ENGINEERING OF MAPALESTERcoccvvrierveirersenaresseessensecssmnsesansse 13
1.3 INTRODUCTION TO GIS .vvreerrrireereerierereeessesesnsnsarssusssessessssassesssstasesssssesscssesassassensasassesossessossassessssences 13

2. BASIC ENGINEERING OF MAPALESTER 16

2.1 INTRODUCTION TO THE ENGINEERING OF MAPALESTERccveeverresseeseeeseesressnsesnersessenssaassessesssssenssrsssossoss
2.2 WHAT IS REALBASIC?coveriererenecceesererssessrnesssesssesssnsnnesessesnssones
2.4 THE CHALLENGES OF MY CHOSEN ARCHITECTUREu...ooveiiineeseernssesserseeeescssemssnsnesssnssssssssessessesnssmsassssesn

3. THE OBJECT-ORIENTED STRUCTURE OF MAPALESTER 23

3.1 AN OVERVIEW OF THE OBJECT-ORIENTED STRUCTURE
3.2 THE INTERFACE SYSTEMcoormrereinrrenircrerireesecsssneseessaensnne
3.3 THE DATA INTERACTION SYSTEM ..
3.4 THE PROJECTION SYSTEM
3.5 THE DATABASE SYSTEM ...uooierueresreessersersnessessissassesssersossossssssssesssssesssssssssessstsasnensasssesnesnsesssssasssessassessassnes

4. THE DESIGN AND IMPLEMENTATION OF MAPALESTER’S FEATURE SET ...cccccucuiesinenns 45

4.1. SUPPORT OF A VARIETY OF FILE FORMATS ...vecveierruenirnesrrersecrsessessesassstsesesssssrnessessessaseseesesssssonsansoressassns
4.1.1 GENERAL ISSUES RELATED TO FILE FORMAT SUPPORTcvcvverenes
4.1.2 GENERAL ISSUES RELATED TO VECTOR FILE FORMAT SUPPORT
4.1.3 SHAPEFILE SUPPORT ..c..ervesrtermenserusssessessnsssrssessssnesssssesessesessessssssassnssns
4.1.4 SUPPORT FOR THE “.PRJ” EXTENSION.......
4.2 SPATIAL INDEXING ...ovvevverererreseeseerencsesserennes
4.2.1 THE BRUTE FORCE APPROACHccocrcun..
4.2.2 THE R-TREE APPROACH.....c.coc0erveereenrerernnes
4.3 LINE SIMPLIFICATION
4.3.1 DOUGLAS-PEUCKER
4.3.2 THE TRIVIAL APPROACHcovererirviceessiennenne

4.3.3 THE HERSHBERGER/SNOEYINK SPEED-UP....

4.4 ITUNES-LIKE DATABASE FUNCTIONALITY ...ccoveerrvicrveueersessseseseessressonsersossenssssessssassenessuessssssssassasonassrnssen

4.5 PRIME MERIDIAN CONVERSION OR, “THE GIS THAT ACTS LIKE A GLOBE, NOT A MAP”cccnneneee. 75

4.5.1 POINT SUPPORT IN GISPINoiioeiireiririciiierieeccnessssnseseseesseee s saasssssnessssnannassnsssassstesssranssssnsssasassesnans

4.5.2 POLYLINE AND POLYGON SUPPORT IN GISPINoccovivrrrierecereeesersreressssssttsonsesssessonsesesessasssssssransnsssonse

4.6 PROJECTION CONVERSION FUNCTIONScovvvvreneireeccrnnes

4.7 A SMALL SUBSET OF OTHER PLANNED FEATURES

4.7.1 INCORPORATION OF THE NATIONAL MAP APPLICATION PROGRAMMING INTERFACE (API).............. 85

4.7.2 PROVIDING EASY ACCESS TO CENSUS DATA

4.7.3 DATA FILE-SHARING USING THE GNUTELLA NETWORKceouecrucercernrerenrarrscsssescesesseecsssssssnsassssssssnnes 85

4.7.4 INTERNATIONALIZATION ...covivvivrisurereessesserseessesssinsssssssessseressesssessssssassessassstonenenesonssasesssssessnsosssranassssasnese 86
5.1 CONCLUSION 87

5.2 ACKNOWLEDGEMENTS ...c.vivvterieriereassessecssessersesssesesstsssessossessassessssssssssesassssssstasssssessssasssssesssssssonsesssassaassnns 89
6.1 BIBLIOGRAPHY 89

Hecht : Mapalester Research Project Page 1

1. Introduction

1.1. Purpose of the Mapalester Project

Over the past nine months, I have been developing a new GIS software
application named Mapalester, after my soon-to-be alma mater. The goals of the research
project with Mapalester as its product are defined by the three target markets of the
product: K-12 education, non-profits, and individual/personal use. I identified these
markets as markets that had one or more needs for GIS software that is/are currently
unmet by the body of currently-available GIS software. These unmet needs vary widely
among the markets, and I struggled at first to identify a reasonable set of development
goals that would equip Mapalester with the functionality that would meet all three of
these markets’ needs. In the end, however, I was able to construct four broad
development goals to which I aligned my design and programming efforts. First,
Mapalester needs to be powerful. In other words, if Mapalester is not able have some
basic set of GIS functionality, Mapalester will be more or less useless to all three of
Mapalester’s target markets. Second, Mapalester must be easy-to-use. Third, Mapalester
must work on both the Mac and PC platforms. Finally, Mapalester must be available for
free.

In the subsequent parts of the introduction, I will discuss the specific unmet GIS
needs of each of the target markets and will explain how these four development goals —
when fully implemented in Mapalester — will enable Mapalester to meet those needs. A
diagram of the needs and markets is found in figure 1.1a. To confine this discussion to
merely the introduction of this paper is to falsely reduce the complexity and, in many
cases, the immensely troubling nature of the unmet GIS needs in the three target markets.
However, the focus of this project — at least at this stage — is not to explore in depth the
effects of a powerful, easy-to-use, Mac-compatible, and free GIS on these target markets.
Rather, this project is by and large a GIScience software engineering project. The
subsequent discussion is intended to provide some context for my GIScience software
engineering work. A very valuable direction of future research would be to examine

these target markets and development goals in greater detail. My hope is that this future

Hecht Mapalester Research Project Page 2

research will eventually be enabled with empirical data from observing the effects of

Mapalester after its release.

Target Market

Unmet Need

K-12 Education

Software to increase adoption of GIS as a

method of teaching existing curriculum

Non-profits

Software to empower non-profits with the
same GIS capabilities as for-profit

companies and government.

Personal Use

Software to facilitate the long-overdue
transition of GIS from the lab to the

consumer desktop.

Figure 1.1a — The unmet needs of Mapalester’s target markets.

Moreover, before this more detailed discussion of the reasoning behind

Mapalester’s basic design, it is important to note that embedded in the goals and target

markets of Mapalester is an inherent commitment to helping leveling the social playing

field by removing socioeconomic barriers to the incredibly powerful tool that is GIS.

This commitment is similar to that present in an Al Gore speech cited by Elwood (2002)

“[GIS will] help communities help themselves by putting more
control, more information, more decision-making power into the
hands of families, communities, and regions to give them all the
freedom and flexibility they need to reclaim their own unique place
in the world.” (State Cartographers Office 1998)

1.1.1 Analysis of the K-12 Education Target Market

At first, it may seem ridiculous to think of Geographic Information Systems in the

context of primary and secondary education. Today, GIS is often thought of as a complex,

professional- and academic-level tool. After all, GIS is taught at the undergraduate level,

and masters degrees in GIS are becoming widely available in most countries with

Hecht

Mapalester Research Project Page 3

graduate-level Geography programs. Indeed, for most of its uses, GIS is a very powerful
— and correspondingly complex — tool. However, as documented by Kerski, Baker,
Bednarz, and others, GIS can have many helpful applications in primary and secondary
education curriculum. “Since the First National Conference on the Educational '
Application of Geographic Information Systems in 1994, researchers and educators have
repeatedly identified the merits.....of including GIS in elementary and secondary
classrooms.” (Baker, Bednarz 2004) Kerski skillfully distinguishes the applications of GIS
that are helpful at a K-12 level from the applications at higher levels of education through

a simple categorization method (emphases are my own):

“GIS is used in three major ways in education at the
elementary, secondary, and university level. First, teaching about
GIS dominates at the university level, where courses in methods
and theory of GIS are taught in geography, engineering, business,
environmental studies, geology, and in other disciplines. Every
major university and most community colieges in the USA host a
GIS program. Second, teaching with GIS is emphasized at the
elementary and secondary level, where GIS is increasingly used to
teach concepts and skills in earth science, geography, chemistry,
biological science, history, and mathematics courses. Finally, GIS
is used as a fundamental research tool in all institutes of higher
education in geography, demography, geology, and other
disciplines.” (Kerski 2004)

Despite these widely acknowledged benefits and well-defined role of GIS in the
K-12 market, all those with knowledge of GIS in education agree that efforts to
incorporate GIS into the K-12 curriculum have mostly failed thus far. In the context of the
infamous “Innovation Adoption Curve,” Baker and Bernardz note that GIS in education
has not made it past the early adopter phase in K-12 education. In other words, “GIS
education is still struggling to win a wider audience among those educators who serve as
role models and opinion formers for the majority of teachers, characterized by respectable
early adopters” (Baker, Bednarz 2004).

Hecht Mapalester Research Project Page 4

Saturation

COFR TR

el

Majority

Take-off

GIS adaption
-—— Early Adopters

Figure 1.1.1a — The Innovation Adeption Curve for GIS vs. computers in K-12 education.

Therefore, stated broadly, the unmet need of the K-12 education GIS market a
GIS technology that will enable schools to successfully teach with GIS, forcing the
progression of GIS technology along the innovation adoption curve in the K-12 market.

In other words, the goal for Mapalester is to facilitate the incorporation of GIS into the K-
12 curriculum. Each of the four development goals mentioned above is designed to
empower Mapalester with the characteristics and features necessary to fill this void in the
K-12 GIS market. In the subsequent paragraphs, I will elaborate upon the exact manner in
which the four design goals of Mapalester help to meet this need.

The first design goal — that Mapalester must be a reasonably powerful GIS - is an
absolutely essential prerequisite for any GIS software that attempts to help incorporate
GIS into the curriculum of K-12 education. In order for Mapalester to be an option for K-
12 GIS, it must have the entire set of basic GIS functionality required in the use of GIS in
the K-12 curriculum. Rather then identify the exact set of functions necessary for K-12
education, I have assumed that K-12 requires the same basic set of functionality as the two
other target markets. [have defined this basic set of functionality as all of the features that
I was taught in two semesters of undergraduate-level GIS. This includes features ranging

from basic raster and vector GIS tasks to raster-based spatial analysis to geocoding. After
Hecht Mapalester Research Project Page 5

this basic set is completed, it would be an interesting extension of research to try to fine

tune Mapalester’s functionality for the needs of the education market. I have done some
initial thinking — based on the literature and on my own assumptions — on what this fine-
tuning would entail, a description of which can be found in section 4.6.

Judging from existing literature, the most important design goal for the K-12
market is ease-of-use, my second design goal. From the literature, it seems that the largest
barriers to incorporation of GIS into the K-12 market lie in the complexity of currently
available GIS software. This complexity inhibits the adoption of GIS in nearly all phases
of the education process — from in-service professional development to the development
and implementation of lesson plans to students’ learning of the curriculum through GIS.

The third design goal is almost exclusively for the K-12 education market.
According to Quality Education Data (QED), in 2003, 28 percent of the instalied base of
the computers in K-12 schools in the United States is made up of Apple Macintoshes.
While more recent data suggests that Dell is far outselling Apple in this market (41
percent to 14 percent), Macs will remain a large portion of the K-12 education market for
a long time to come. Moreover, Apple has made regaining the lead in the K-12 education
market a high priority in recent months, and has had some success at doing so. As such,
the design goal that Mapalester must be able to work on both PCs and Macs is an essential
design goal for the education market.

When first investigating the K-12 GIS market and its unmet needs, I assumed that
the most important design goal would be extremely low cost. However, at least according
to the K-12 GIS literature, cost does not seem to be the pre-eminent barrier to adoption of
GIS into the curriculum. Rather, as mentioned above, the complexity of use of currently
available GIS software seems to be the largest such barrier. In fact, in Kerski’s seminal
paper on GIS in the K-12 market, he does not identify cost at all as a significant reason
why GIS has not made it past the early adopter stage in the innovation adoption curve.
This omission probably revolves around his reliance on a survey sample that only included
registered owners of the top three GIS applications who listed their occupation as K-12
educators. A helpful path of future research would be to delve into the immense body of
literature covering the “digital divide” in education and to apply findings from this

literature to a GIS context. Kerski does mention, however, that only 5 percent of

Hecht Mapalester Research Project Page 6

American high schools have access to GIS software. As such, while the “free availability”
development goal may not have much of an effect for these 5 percent and the likely
smaller percentage of American middle schools and schools located in other countries that
implement GIS, it will play at least some role in GIS adoption in the vast majority of this
target market. It is no doubt a lot easier to convince a school adminisiration to invest in
GIS when it costs nothing to do so. Figure 1.1.1b shows the approximate cost of
implementing GIS using in a K-12 environment. Note that the prices are essentially rental

fees; the software must be renewed each year for the price seen in figure 1.1.1b.

Approximate ANNUAL Cost to
Equip 30 Computers in K-12 Lab

$1,000
$900
$800
$700
$600
$500
$400
$300
$200 +
$100
$0

Cost

Idrisi Kilimanjaro ESRI MaplInfo

GIS Product

Figure 1.1.1b — Cost to equip 30 computers in a K-12 computer lab or classroom for one year. Clark
Labs, developer of Idrisi, has a different pricing scheme than the ESRI (Environmental Systems
Research Institute) and MapInfo, and the $900 figure is an estimate based on the many pricing plans
offered by Clark Labs.

If we localize the innovation adoption curve to a sample individual school, it is
easy to see that it would be impossible to make it past the early adoption phase without the
administration making the very basic element of GIS adoption — the GIS software itself -

available to the early and late majority population of teachers. Indeed, in a personal

Hecht Mapalester Research Project Page 7

interview, Sara Damon, a teacher at Stillwater High School in Stillwater, MN indicated
that while there are relatively steep discounts available for schools that want to buy GIS
software, a free software package would be a huge boon to schools and school districts

that have not yet invested in GIS software.

1.1.2 Analysis\of the Non-Profits Target Market

According to Elwood (2002), authors in the GIS literature have found that
“information technologies and GIS...benefit [non-profits and community groups] by
expanding participation in decision-making processes and by increasing their political
power.” (Elwood 2002). Although Elwood identifies some nuanced problems with their
analyses, Elwood more or less agrees with these authors’ conclusions. However, Elwood
also notes that for GIS to allow for true empowerment of non-profits', there must be
some way to free the non-profits that use GIS from the external power structures that
often accompany the use of GIS. For instance, for many non-profits to utilize GIS in
their activities, they must either obtain funding to purchase GIS software or they have to
rely on GIS “shops” and colleges and universities. Thanks to its core development goals,
Mapalester will be able to simultaneously benefit the non-profit community in the ways
identified above and free non-profits from the external oversight and control that usually
accompanies GIS adoption.

Because of my dedication to making Mapalester into a “powerful” GIS software
application, Mapalester should be able to benefit non-profits in the ways identified in the
GIS literature by Elwood. As long as Mapalester can provide most, if not all, of the GIS
features and functionality required by non-profits, Mapalester will inherently result in
these benefits, according to the literature.

Mapalester provides GIS power to non-profits without the negative side effects of
currently available commercial GIS software applications through the “free” and “easy-
to-use” development goals. Obviously, by making Mapalester a free download, non-

profits wishing to utilize GIS no longer will have to rely on outside funding sources.

' I will group together non-profits and community groups under the umbrella title of non-
profits for the remainder of the paper.

Hecht Mapalester Research Project Page 8

However, another barrier to GIS usage in non-profits is likely the complexity of existing
GIS software. Even free GIS software is useless to a non-profit unless there is someone
in the organization who knows how to use it. Lack of GIS experience could drive non-
profits back into the arms of external groups, even if free GIS software is available.
Therefore, similar to the benefits of the “ease-of-use” goal for the K-12 education market,
Mapalester should both decrease the amount of training necessary to use GIS and, in the
process, increase the number of people in a given organization who are capable of using
GIS. Hopefully, Mapalester will be able to do so enough that a large number of non-

profits will be able to internalize their GIS operations.

1.1.3 Analysis of the Personal Use Target Market

Despite having been widely used for over thirty years, GIS has yet to make the
jump from the business office, government center, and laboratory of academia to the
desktop of the consumer. Simply stated, the goal of Mapalester in the context of this
target market is to be the springboard on which GIS can make that jump. The two main
reasons that GIS cannot be used on the personal computer are price and compatibility.
The “free” and “Mac-compatible” development goals directly target these causes. Also,
the “powerful” development goal is a prerequisite for the other two goals. Ease-of-use
does not generally play a role for the GIS fan who wants to use GIS for her or his
personal use. In the subsequent paragraphs, I will discuss the impact of the “free” and
“Mac-compatible” development goals on this target market.

Before I engage in this discussion, however, an examination of hardware
requirements of GIS in the context of the average consumer’s personal computer is
appropriate. In other words, one possible reason that GIS could not be used on personal
computers is that personal computers generally do not have the “horsepower” to handle
GIS. This possible reason, however, is completely rebuffed by the table in figure 1.1.3a.
This table shows that there is nothing special about GIS that makes it require extra
hardware compared with a sample of standard consumer PC applications. The table also

shows that nearly all home PCs made in the last several years or so should be able to run

Hecht Mapalester Research Project Page 9

GIS satisfactorily. In other words, the installed base of consumer PCs is more than ready

for GIS.

OpamatingSystem [Processor TMemory =~~~ IStorsge |
Tunes 4.7 2000 ar XP SOCMMz 156M8 nfa
OtTice Professionsl 2003 12000 or XP 233MHz 123MB 400MB
ArcGIS B NT, 200C, or XP 80CMHz 256MB n/a
idrisi 9B/ME, NT, 2000 or XF__|n/a 128MB GO0MB
98/ME, NT, 2000 or XP_[n/a 32MB 103MB
Deli's $299 PC %P 2.4Ghz 256MB 40GB

Figure 1.1.3a — System requirements for a sample of consumer software applications and the leading
GIS software applications. The current bottom-line PC configuration from Dell is included for
comparison.

Figure 1.1.3b displays the price of the leading GIS software applications for the
average consumer. The cost of several industry-standard consumer software applications
are provided for comparison. It is easy to see that, at best, GIS software ranks among the
most expensive of consumer software applications, and at worst, well outside the
consumer software price range. Note that ESRI (Environmental Systems Research
Institute) charges three times as much for ArcGIS 9 with Spatial Analyst as Adobe does
for its entire suite of creative applications that includes such powerful tools as Photoshop,
Ilustrator, InDesign, GoLive, and Acrobat. Obviously, cost is a very important barrier to

the adoption of GIS on the consumer desktop. As such, the “free” design goal will make

Hecht Mapalester Research Project Page 10

Mapalester a very appealing product within this target market.

Full Price for a Single License of Leading GIS Apps
and Other Consumer Software Applications

$4,500
'g" $4,000
. R $3,500
| =E. $3,000
< $2,500
32,000
2 $1,500
8 $1,000
& $500
$0

Idris|

Kilimanjaro

Adobe

Spatial
Analyst)
Creative Suite

Mapinfo

Professional
Microsoft
Office
Standard
Premium

2
@

Dreamweaver

Macromedia

g
5

Figure 1.1.3b — Prices were gathered from a variety of sources including the manufacturer and the
manufacturer’s price on Amazon.com.

Even for students, for whom software is cheaper thanks to academic licensing and
who will likely make up an important portion of the personal use target market,
Mapalester’s price will be very appealing. Figure 1.1.3c is the student pricing analogy to
figure 1.1.3b. Despite the significant student discounts provided by some of the GIS
providers, Mapalester will still save students at least $250. In addition, students using
Mapalester will not be subject to some of the restrictive usage policies that often
accompany student discounts. For instance, the academic discount for REALbasic, the
software used to program much of Mapalester, demands that no commercial software be

produced with the copy of the software purchased with the academic discount.

Hecht ~ Mapalester Research Project Page 11

‘ Student Price for a Single License of Leading GIS Apps
|
|
|

and Other Consumer Software Applications

$4,500
' ‘g $4,000
2 $3,500
‘£ $3,000
<« $2,500
& $2,000
=]
£ $1,500
.g $1,000
& $500
$0
SEC H O) 85 g
228 £s T 1 §25
nas 2 F 862 £ D TOE
S c o o -l = < g
< £ g Z g L
(é = =z v 9 g S0
< X =90 ﬁ
(o} o
Product

Figure 1.1.3¢ — Prices were gathered from a variety of sources including the manufacturer and the
manufacturer’s price on Gradware.com, a leading distributor of student-discounted software.
Maplnfo student discount pricing was not easily available. i

The “Mac-compatible™ development goal is also essential to the personal use
target market. As of this writing, there are no viable, modern GIS software applications
available for the Macintosh platform. At one point, ESRI developed GIS software for the
Mac, but the last version was released with Mac OS compatibility is ArcView 3.0.
MAPublisher ($999, Avenza Software) is still regularly updated and released, but it is
distributed as a plug-in for Adobe Illustrator and Macromedia Freehand. In other words,
MAPublisher is intended almost entirely for cartographic purposes, not GIS purposes. As
such, the Macintosh GIS market is essentially open for Mapalester’s taking. According
to market research firm IDC (Dalrymple 2005), Apple had about 2.88 percent of the
United States desktop marketshare and 4.99 percent of the United States portable
computer marketshare in the fourth quarter of 2004. The corresponding figures for
Apple’s global marketshare were 1.75 percent and 2.93 percent.

Hecht Mapalester Research Project Page 12

1.2 Introduction to the GIScience Engineering of Mapalester

Now that the context for Mapalester has been established, most the remainder of

the paper is dedicated to the GIScience of Mapalester. The paper is divided into four

parts. The first section is this introduction to the paper. In the second section, I will
discuss the basic engineering structure of Mapalester, the decisions behind this structure,
and my reasoning behind each of the decisions. The focus of the third section is a
description of the heavily object-oriented structure of Mapalester. The fourth section is
dedicated to detailed analyses of the computational geography, computer science, and
software engineering behind some of the key functionality of Mapalester. This section,
which covers both completed and work-in-progress functionality, is quite large and is
subdivided into subchapters, each of which covers a specific feature or feature set.
Finally, the fifth section will conclude the paper with an analysis of the success of the
Mapalester research project thus far and a discussion of the project’s future.

However, before launching into a discussion of technical aspects of Mapalester, it
is helpful, due to the computer science context of this paper, to engage in a brief

discussion on the history, use, promise, and current state of GIS technology.

1.3 Introduction to GIS

In the shortest terms possible, a GIS, or Geographic Information System, provides

a “technology and method” (Kerski 2004) to “visualize, analyze, and display” (ESRI
2005) spatial data, or data that can be linked to a location. Some estimates suggest that
up to 80 percent of all data has such a component (ESRI 2005). Much in the same way
that graphs help people visualize non-spatial data, a GIS allows its users to view and
analyze data linked to a location within its spatial context. Applications for GIS exist in
nearly every single discipline within the social and natural sciences, as well as in a large
number of commercial, government, and non-profit operations. Obviously, with such a
large and diverse group of users, important examples of applications of GIS are quite

common. Fire and police departments around the world are using GIS to improve and

Hecht Mapalester Research Project Page 13

make more efficient their provision of emergency services. Political campaigns use GIS
to analyze socioeconomic spatial data in order to more accurately target their limited
funding. Similarly, the major national news services all used GIS to aid in predicting the
turn-out of the 2004 U.S. presidential election. Thousands of companies have used GIS
to assist in location planning and delivery management. The United States military uses
GIS for a vast array of tactical activities. More relevant to the target markets of
Mapalester, non-profit organizations that can afford GIS are using it to empower
themselves with a means of visualizing and analyzing data in way they were never able to
before. Civic Builders, a non-profit in New York that is dedicated to locating new
charter schools where they will serve the New York community the best, has used GIS to
“greatly facilitate their analyses.” (Keohane 2005) Also in New York City, The Robin
Hood Foundation, which is dedicated to helping rid the city of poverty, “initiated a major
redirection of resources” (CMAP 2005) after using GIS to analyze current funding sites.
Moreover, CMAP, or Community Mapping Assistance Project, is a NYPIRG project
entirely dedicated to helping non-profits empower themselves with GIS. The immense
potential of GIS has been making news lately. In 2004, the U.S. Department of Labor
listed GIS as one of the three “most important emerging and evolving fields” (Gewin
2004). The other two listed were biotechnology and nanotechnology.

How exactly does GIS enable such a diverse array of uses? In the context of this
paper, the best way to answer this question is through several examples. A business
would use GIS to help locate a new store by combining data layers of all of the variables
it would consider important to such a decision and then finding the site that optimizes all
of these variables. For example, a person wishing to open a small retail business that sold
ethnic foodstuffs in a large city would get ethnicity data by block group from the U.S.
census and zoning data from a local zoning authority, and would use GIS to find the
optimum location for her or his store in the city. A larger company or franchise would
probably have a much larger array of data to optimize. In another example, for a study on
Christian contemporary music, I used GIS to significantly enhance my knowledge of the
subject. By creating a database of over 500 large concerts by famous Christian
contemporary musicians and referencing those concerts by their location in a process

called “geocoding,” I was able to develop a map of the density of the popularity of

Hecht Mapalester Research Project Page 14

Christian contemporary music. Using the same methodology — but with already-existing

spatially-referenced data sets — I created maps for a variety of demographic variables and
churches of a variety of denominations. I then ran regressions on these density grids and
the Christian contemporary music density grid, and was able to determine which of these
factors had a causal relationship with the location of Christian music concerts. Although
GIS is most often used with data in the context of small and large-scale locations on the
surface of the Earth, it has also been employed in such diverse applications as studying
the human brain (Zaslavsky et. al. 2004). Any data that can be defined as attributes of a
location, no matter how large-scale or unrelated to the traditional discipline of geography
(like information about areas of the brain), can be visualized, analyzed, and displayed in a
GIS.

Geographic Information Systems are commonly defined in the literature as having
four components: hardware, software, data, and personnel. The personnel in the system
ask the geographic question, the hardware and software provide the technology for
answering that question, and the data provides the information. Mapalester provides the
software and, to some extent, the data parts of the system; the user of Mapalester is
expected to supply any data not included with Mapalester, hardware, and the personnel
part of the system. GIS is commonly mistakenly thought to refer to “geographic
information software,” but in fact, the software is only one of the four essential parts of
any geographic information system. Similarly, GIS is often confused with GPS, or
Global Positioning Systems. Although GPS units are one of several ways in which the

spatial component of data is collected, GPS is a field separate from that of GIS.

Hecht Mapalestef Research Project Page 15

2. Basic Engineering of Mapalester

2.1 Introduction to the Engineering of Mapalester

The most critical aspect of the core engineering structure of Mapalester is the
division of coding into two very distinct parts with a very specific and limited interface
between the two. Most of the front-end work and some of the algorithmic code is in a
programming language called REALbasic. The majority of the algorithmic code, as well
as all of the lower-level functionality,is in C++. The REALBasic integrated development
environment (IDE) offers an impressive but somewhat limited C++ plug-in interface that
allows most C++ code to run in the REALBasic front-end, but the communication
between the REALbasic interface and the C++ code is restricted by the application
programming interface (API) for the REALbasic plug-in. The interface is also limited by
the abstraction-oriented development style inherent to plug-in architectures.

In the remainder of this section, I will provide a brief description of REALDbasic
and the REALDbasic plug-in AP I will also discuss the reasoning behind the decision to
use this REALbasic/C++ two-part architecture given the original goals and target markets
of Mapalester. This discussion will include a response to criticisms over my choice not to
use Java for the project. I will also discuss the specific challenges encountered due to the

architecture.

2.2 What is REALbasic?

In the words of REAL Software, the developer of REALbasic, “REALbasic is the
powerful, easy-to-use tool for creating your own software for Macintosh, Windows, and
Linux.” In other words, REALbasic is an integrated development environment (IDE) that
allows programmers to generate native code for Macintosh, Windows, and Linux from a
single set of code in the REALbasic language. Probably the closest analogy to the
REALbasic language and IDE is Microsoft’s VisualBasic language and IDE, although
elements of Java (especially the heavily object-oriented focus) and C++ can be found in
the REALDbasic language as well. For those readers who are unfamiliar with these

products, figure 2.2a shows code that sums the squares of the first 10 integers and returns

Hecht Mapalester Research Project Page 16

the value to the user. While REALDbasic and VisualBasic have nearly identical code in

this case, they diverge significantly in more complicated algorithms and when objects

become involved.

VisualBasic
Sub first10Integers()
Dim i, sum As Integer

sum =0
Fori=0To 9

sum =sum+i”2
Next

MsgBox (sum)

End Sub

REALbasic
Sub first10Integers()
Dim i, sum As Integer

sum =0
Fori=0To9

sum=sum+i”"2
Next

MsgBox (str(sum))

End Sub

C++

#include <iostream>
int main (int argc, char * const argv([]) {

int sum, i;
for (i=0; 1< 10; i++){
sum = sum + i*i;

}

std::cout << sum;
return O;

Java

public class SumSquares {
public static void main (String args(]) {

int i, sum;

sum = Q;

for i=0;i < 10; i++){
sum = sum + i¥i;

}

System.out.printin(Integer.toString(sum));

}
}

Figure 2.2a — The four sets of code all do the same thing, but they are written in different languages.

2.3 Why RB/C++?

One of the primary engineering goals of Mapalester is to make it cross-platform.

The reasoning behind this goal arises primarily out of the need of the K-12 schools target

market. The goal is also rooted in two elements not as central to the mission of the

research project. First, there is no viable, modern GIS available for the Mac besides a

Hecht Mapalester Research Project

Page 17

non-user friendly port of the UNIX-based GRASS open source system that is notoriously

difficult to use. Second, while I am by no means inexperienced at using and developing
software on a PC, my design sensibilities are much more suited to Macintosh
development.

The cross-platform development goal left me with three options for my
development platform. First, I could attempt to produce a maximally portable core set of
code and then develop the portions that are platform depéndent (interface, drawing
engine) for each platform. Second, I could use Java, a language with which I was very
familiar. Third, I could use REALbasic, and its C++ plug-in architecture if necessary. 1
eliminated the first option quickly, as I was not familiar enough with the Mac or
Windows APISs to not force most of my development time into learning those APIs.
Also, as this was a funded research project, I needed to have something to show for my
work as I progressed, not just a pile of portable code without an interface or an interface
without much GIS functionality. This left me with the choice of either Java or
REALDbasic. In the end, I chose REALbasic over Java for the following reasons. First,
Java is notoriously slow and while REALbasic is also sluggish compared to some other
languages, the C++ plug-in architecture would allow me some leeway. Many functions
in GIS require the processing and display of millions of pieces of data in microseconds,
and thus speed is a very important factor. Second, with REALDbasic, I could develop
interfaces that were native to each platform, whereas Java interfaces always look
somewhat foreign and awkward. Considering that ease-of-use is one of the three primary
goals of Mapalester, a comfortable interface is a very important factor.

However, before considering interface familiarity as a factor, I went looking for
any Java-based programs that would be used extensively by any non-profit, K-12 school,
or personal users. After all, if these users are familiar with the quirks of the Java
interface, then Java might provide an equally comfortable interface for Mapalester’s
target users. While it is hard to predict the activities of the personal user category, the
only application that I could find that I assumed that my other target markets would use
that was programmed in Java was Limewire, a music-sharing program. REAL Software
realizes that it shares a certain market with Java and publishes a “REALbasic vs. Java”

comparison on its website. On this site, it lists the problems with Java’s interfaces in

Hecht Mapalester Research Project Page 18

more detail. REAL Software is correct to point out that “unlike Java, REALDbasic
provides fully native controls with native behavior on all supported platforms.” It also
states that “REALbasic compiles to native machine code for each platform eliminating
the need for virtual machines, special installers and environmental variable settings” and
that “REALDbasic provides access to the unique features of each platform such as ActiveX
and the Registry on Windows and Apple Events and Keychain on Mac OS X.” For these
two reasons, despite being more familiar with Java, I decided to choose the REALbasic

route.

Begin your evolution today.
Click 10 go to our online stare.

REALDbasic
Figure 2.3a — REAL Software has a high opinion of its project compared with competing languages.
It was the target markets of Mapalester that determined my choice of programming language more

than any sort of judgment of the languages themselves. Image from
http;//iwww.realsoftware.com/realbasic/compare/

2.4 The challenges of my chosen architecture

I encountered three main problems due to my choice of engineering architecture,
although 1 believe that the collection of obstacles would be greater in number and
difficult if I had chosen a different architecture. In order of difficulty the problems were
(1) I needed to refamiliarize myself with REALbasic and learn nearly every aspect of the

language, (2) I needed to negotiate what algorithm and object-oriented content would be

Hecht Mapalester Research Project Page 19

in the C++ plug-in format and what would be in the pure REALbasic format, and (3) 1
needed to learn C++.

While I had engaged in minor programming projects using REALbasic prior to
Mapalester, I had never worked extensively in REALbasic. In addition, it had been quite
a while since I had used the REALbasic integrated development environment. As such,
prior to starting on the Mapalester project, I spent several weeks working with the
REALbasic environment and refamiliarizing myself with the language. I also spent much
time in the REALbasic language reference guide, a text that became a great resource as
the project continued. When I started programming Mapalester, I did not have the depth
of knowledge in REALbasic to complete the REALbasic portion, but I had the
background and familiarity with the necessary resources to learn most anything I needed.

The second problem, deciding what I would implement in REALbasic and what I
would implement in C++, plagued me for a long time. Essentially, the REALDbasic plug-
in API allows me to create a Mapalester API with which to work in REALbasic. But
what do I implement in the API and what do I leave in REALbasic? My initial guideline
involved the factors of speed and low-level access. Due to the fact that REALbasic
performs automatic garbage collection, its code tends to run slower than native C++ code
in the REALDbasic format. As such, my initial ventures into C++ coding were motivated
by the running speed of several important functions, such as projections (section 3.4) and
data drawing (section 3.2). Additionally, REALbasic struggles with recursive algorithms
(algorithms that call themselves) that reach depths of around 50 or more function calls.
Since many of the important algorithms are recursive, it was faster to run these
algorithms in C++ code than in REALbasic. Theoretically, since all of these algorithms
are tail-recursive, I could have made iterative versions of all of them. In fact, I did
implement iterative versions of some recursive algorithms, most notably, the line
generalization algorithms (section 4.3). However, it became quite tedious and difficult to
make these conversions, especially since I could run the recursive versions in C++ and
achieve acceptable performance.

I soon discovered that I could speed up some algorithms, especially those that
load in and process data files, by accessing memory and disk data at a low level.

However, REALDbasic offers no byte-level or bit-level access to binary data, either on

-Hecht Mapalester Research Project Page 20

memory or on disk. The lowest-level access REALDbasic provides is at the word level.

As such, the level of memory and disk access became an important factor for the
programming language decision as well.

It turned out that these two factors — speed and low-level access — in combination
with Mapalester’s object oriented structure, led to a simple and very important rule for
code separation that I now use as a successful “rule of thumb”. As is discussed in greater
detail in section 3.3, Mapalester considers spatial information on the shape level and on
the data layer/dataset level. The shape level deals with individual shapes (points,
polygons, etc) and their vertices. The data layer level represents an entire set of shapes
such as, for instance, the set of polygons that represent counties in Minnesota.
Convenienﬂy, all of the algorithms that have needed C++ speed thus far only concern
data related to the shape level. Likewise, the low-level access functions, while possible
to implement at the data layer level, can also be run at the shape level. As such, I
established a firm rule in order to avoid switching code back and forth between the
“Mapalester API” and the REALDbasic use of that API. All classes and associated
algorithms that deal with the shape level must be coded in C++. All classes and
associated algorithms that deal with the data layer as a whole must be programmed in
REALDbasic. The REALbasic C++ plug-in interface is used to navigate between the two
layers. This navigation is quite complicated, and too intricate and tangential to describe
here in detail.

It is interesting to note that even in topics that are seemingly relegated exclusively
to the realm of software engineering, the basics of geography become a factor. Prior to
establishing the aforementioned rule, my code was split between REALbasic and C++
through educated guessing and intuition. Once I grounded this software engineering in a
GIScience context, the choice of programming language become much simpler and well
defined.

The final and most difficult challenge related to the chosen development
architecture involved learning C++. While this process is by no means worthy of a long
description in this context, it is important to note that even just the C++ portion of
Mapalester has been the largest programming project I have ever attempted in a language

other than REALDbasic, or VisualBasic. A large portion of development time was spent

Hecht Mapalester Research Project Page 21

researching and learning appropriate memory management techniques, gaining a

functional understanding of pointers to pointers to pointers (etc), and comprehending

templates.

Hecht Mapalester Research Project Page 22

3. The Object-Oriented Structure of Mapalester

3.1 An Overview of the Object-Oriented Structure

In its current state, Mapalester is comprised of over 10,000 lines of code in four
languages (REALDbasic, C++, SQL, XML) that are organized into an elaborate class
structure. In order to help the reader make sense of this structure and better understand
the overall architecture of Mapalester, I have divided the class structure into several
subsections. The subsections operate mostly independently, but have key interactions
with each other. The four subsections, which I will discuss in the subsequent parts of this
chapter, are the interface system, the data interaction system, the projection system, and
the database system. In each part, I will describe and analyze the architecture and basic
functionality of the subsection of the class structure being discussed. I will also detail the

subsection’s primary interactions with other subsections.

3.2 The Interface System

b Lmam, U e 1, T

TR P e T T T [T

i g W, it a1

et 2 1107, BT Vi
X 2 - L

o

MitS
2

cddisull Ce |

Hecht Mapalester Research Project Page 23

Figure 3.2a. The object-oriented nature of the interface of Mapalester can be seen in the above
screenshot. Notice the replication of windows and maps, Due to use of the object-oriented
architecture, such replication required almost no additional coding.

The REALbasic IDE contains a large variety of interface elements organized in an
efficient and logical class structure (Brandt 2004). In order to take advantage of the
benefits of this hierarchy while still modifying the user interface elements to fit the needs
of Mapalester, I primarily used a subclassing methodology for most of my interface
classes. In total, Mapalester currently has more than twenty individual classes that are
subclassed from REALbasic’s interface classes. Most of these classes provide a very
specific functionality to a standard interface element. For example, Mapalester has many
bevel buttons that, when pressed, bring open the operating system’s color chooser and
display the color chosen as a button icon. To implement this functionality in a portable
and reusable manner, I have simply subclassed REALbasic’s bevel button and input the
necessary code into the draw() and action() methods of the subclass.

There are, however, several very important classes in the interface class structure
that have extensive algorithms contained within them: the GISWindow class, the
GISMapElementList, and the GISFormatWindow. The GISWindow is the most
dominant feature in the user’s experience with Mapalester. Each GISWindow contains
elements that interact with all three other class subsections, as well as elements that
access other parts of the interface class substructure. From GISWindows, the number of
instances of which is only limited by available memory, users can access the spatial data
database (section 3.5), perform many GIS operations, and engage in layout, input and
export operations (section 3.3). Moreover, each GISWindow contains an instance of the
GISMapElementList (later in this section). The GISFormatWindow is the only other
major site of program control (later in this section).

In addition to its key role in user interaction, the GISWindow also serves as the
document unit of Mapalester and is roughly analogous to a “project” in ESRI’s GIS
products. When a user performs a load or save operation, it is the GISWindow that takes
control. Using an XML-based format, the GISWindow recursively goes through all of its
members that need to save information, requesting that each member save its information
in a nested section of the resulting XML document. The reverse is done when the user

wishes to load a saved XML file. These members include everything from

Hecht Mapalester Research Project Page 24

BackgroundLayerCanvas (see section 3.3) and, when completed, all of its

GISLayoutElements (see section 3.3). Not all of the save functionality is complete, but
the basic system is established and is functioning for the GISWindow class itself, along
with a subset of its members. In figure 3.2b, I have included an example of the XML
content of a saved GISWindow. The structure of the XML file reflects well the object-
oriented structure of the interface system and other parts of the program. It is also
important to note that when Mapalester is released, this structure will be released as an

open file format. The extension of files in this format is “.mmap.”

<?xml version="1.0" encoding="UTF-8"?><plist

version="1.0"><dict><key>gis Window</key><dict><key>Lefi</key><integer>334</integer><key>T
op</key><integer>355</integer><key>Width</key><integer>853</integer><key>Height</key><integ
er>694</integer><key>Background Layer</key><dict><key>Fill
Color</key><dict><key>R</key><integer>255</integer><key>G</key><integer>255</integer><key
>B</key><integer>255</integer></dict><key>Border

Width</key><integer>0</integer><key> Border
Color</key><dict><key>R</key><integer>0</integer> <key>G</key><integer>0</integer><key>B<
/key><integer>0</integer></dict><key>Use Color Fill</key><true/><key>Picture
Transparency</key><real>1</real><key> Picture Display
Method</key><integer>2</integer></dict><key>Llbrary

Browser</key><dict><key>Map</key> <dict><key> 1 </key><integer>14</integer><key>2</key><int
eger>20</integer><key>3</key> <integer>15</integer><key>4</key><integer>22</integer><key>5
</key><integer>26</integer><key>6</key><integer> 18</integer><key>7</key><integer>11</intege
r><key>8</key><integer>28</integer><key>9</key><integer>29</integer><key> 10</key><integer
>30</integer><key>11</key><integer>31</integer><key>12</key><integer>24</integer><key>13<
/key><integer>2</integer><key> 14</key><integer>3</integer><key>15</key><integer>4</integer>
<key>i6</key><integer>5</integer><key>17</key><integer>6</integer><key>18</key><integer>7
</integer><key> 19</key> <integer>8</integer><key>20</key><integer>9</integer><key>21</key>
<integer> 10</integer><key>22</key><integer>12</integer><key>23</key> <integer> | 3</integer><
key>24</key><integer>16</integer><key>25</key><integer>17</integer><key>26</key><integer>
19</integer><key>27</key><integer>21</integer><key>28</key><integer>25</integer><key>29</k
ey><integer>27</integer></dict><key>Widths</key> <dict><key> I </key><integer>155</integer><k
ey>2</key><integer>76</integer><key>3</key><integer>84</integer><key>4</key><integer>94</i
nteger><key>5</key><integer>54</integer><key>G6</key><integer>82</integer><key>7</key><inte
ger>52</integer><key>8</key><integer>114</integer><key>9</key><integer>109</integer><key>
10</key><integer>104</integer> <key>11</key><integer> 106</integer> <key>12</key><integer>17
S</integer><key> 13</key><integer>80</integer><key>14</key><integer>101</integer><key>15</k
ey><integer>129</integer><key>16</key><integer>138</integer><key>17</key> <integer>144</int
eger><key>18</key><integer>130</integer><key>19</key><integer>83</integer><key>20</key><i
nteger>78</integer><key>21</key><integer>G65</integer><key>22</key><integer>50</integer><ke
y>23</key><integer>50</integer><key>24</key><integer>50</integer><key>25</key><integer>50
</integer><key>26</key> <integer>50</integer><key>27</key><integer>100</integer><key>28</ke
y><integer>124</integer><key>29</key><integer>47</integer></dict></dict></dict></dict></plist
>

Figure 3.2b. This XML code represents a Mapalester saved document.

Hecht Mapalester Research Project Page 25

The primary function of the GISMapElementList, which is only instantiated inside of

GISWindows, is to provide access to a list of the VectorThemes of the currently selected
GISCanvas. From this list, via the GISFormatWindow, users can make critical changes
to the content and display of each VectorTheme. Additionally, it is through the
GISMapElementList that users are able to manipulate the ordering of the data layers, a
key aspect of GIS functionality. To enable this ordering functionality, the
GISMapElementList contains a heavily modified implementation of a bubble sort
algorithm that interacts with both the host GISMapElementList and the affected
GISCanvas. Users are also able to enable and disable VectorThemes through the
GISMapElement list, functionality which comprises yet another cornerstone of GIS.

The GISFormatWindow is a Mapalester-only feature. As a GIS lab assistanf, it is
my perception that one of the greatest failings of currently available GIS software is the
hiding of a vast array of important features in non-context sensitive windows that can
only be accessed from deep within menus or through obscure buttons on the toolbar.
This failing, which is partially a result of the extension/module-based development of
many GIS packages, has two major ramifications. First and foremost, inexperienced
users are often unaware of important and powerful operations and settings that can be
applied in a given context. For the education market, this ramification is particularly
important. Wilder et. al. (2004), for instance, note that teachers learning GIS during in-
service sessions can tend to view GIS as simply a “digital map” device from which they
can print reference maps. Second, problems are often harder to solve as the important
information is not immediately available to the user. While some GIS packages have
made strides forward in solving these problems through the use of the contextual menu, I
believe that the GISFormatWindow does a better job at providing quick and context-
sensitive access to all of the important operations, settings, and information. It does so by
making its large number of panels visible or invisible based on the currently selected
element of the user interface. For instance, if the user has a GISCanvas selected, the
GISFormatWindow would only display the panels that function with a GISCanvas. If the
user selected items in a GISMapElement list, the GISFormatWindow displays all of the
panels with controls that relate to the modification or display of VectorThemes. If the

user has selected seemingly disparate user interface elements, the GISFormatWindow

Hecht Mapalester Research Project Page 26

only displays panels relevant to all selected elements. In other words,
GISFormatWindow displays the panels in the set resulting from the intersection of the
panels relevant to the selected elements. Both Microsoft Word 2004 for the Mac and
OmniGraffle by OmniSoft have similar, but not identical, features.

The GISFormatWindow’s functionality is implemented through the extensive use
of the class interface construct. Each and every panel that can be displayed in the
GISFormatWindow has a corresponding class interface. For instance, the
ProjectionPanel is linked to the ProjectionPanellnterface, which is implemented by the
GISCanvas. Similarly, the BackgroundPanel corresponds with the
BackgroundPanellnterface, which is implemented by both the GISCanvas and the
BackgroundLayerCanvas. Each interface requires that classes that implement it have the
full set of the methods relating to the options in the panel. For instance, classes that
implement the BackgroundPanelInterfacé must be able to change the content of the
background display of the class. The beauty of the class interface methodology is that the
definition of what is the “background display” is entirely up to the context of the class.
The class must simply have a method called setBackgroundDisplay() (and several others)
that can be called from the panel.

The five panels that are finished are the ProjectionPanellnterface, which is the
interface to the coordinate system functionality, the PicturePanellnterface, which is
exclusively dedicated to features in the PictureElement class (section 3.3); the
NamePanellnterface; which is central to nearly all aspects of the interface that use the
GISFormatWindow; and the BackgroundPanellnterface, which is described above.
Currently under development is the LayerFormatPanellnterface from which users will be
able to make a large portion of basic changes to layer symbology. Many more interfaces
are planned and will be implemented as I implement the features that the interfaces will
contain.

How does the GISFormatWindow know what user interface elements are
selected, and thus what panels to display? The forefront GISWindow is in charge of
maintaining a stack of all selected elements of the user interface. This means that the
GISWindow also decides what is meant by “selected.” For instance, if nothing is

selected, the GISWindow places the instance of the BackgroundLayerClass on the stack,

Hecht Mapalester Research Project Page 27

because this is the most intuitive choice based on the interface. Also, if the user selects a

member of the list in the GISMapElementList, the GISWindow pops all other elements of
the stack and pushes the corresponding VectorTheme on the stack because this is, given
the interface, intuitively what should occur. Each time the stack changes, the
GISWindow sends a message to the GISFormatWindow, which is in effect a global
variable as only one instance of it may occur. The GISFormatWindow then examines the
stack. When the GISFormatWindow finds an instance of a class that does not implement
an interface corresponding to a panel, it makes that panel invisible. The panels that
remain are the panels that are implemented by all of the selected elements and are thus,
context-sensitive.

Other key classes related to user interaction with Mapalester are the MenuBar
class and the contextual menu classes. At the moment, all of these classes offer a rather
mandate set of features and a correspondingly standard set of algorithms. However, when
Mapalester is released, they will be semi-criticial to user interaction with Mapalester.
Both the menu bar and contextual menus will provide access to important features
inaccessible through other means. For example, the insertion of a GISCanvas class into
the BackgroundLayerCanvas (section 3.3) — otherwise known as adding an additional
map frame to the document — will be a function exclusively available through the menu
bar and contextual menus. Also, because both the menu bar and contextual menus have
context-sensitive content, the classes that provide their functionality will probably share

code with the GISFormatWindow in a manner that is yet to be established.

3.3 The Data Interaction System

To the user, all data interaction occurs within the context of the GISCanvas, the
class that provides the connection between the interface class structure and the data
interaction class structure. I will begin by discussing this class and its relatives, and will
then delve deeper into the class structure behind the functionality of what actually is
displayed in the GISCanvas.

The GISCanvas is a subclass of the GISLayoutElement class. Ineach
GISWindow (section 3.2), the BackgroundLayerCanvas (section 3.2) maintains an array

Hecht Mapalester Research Project Page 28

of GISLayoutElements placed inside the BackgroundlLayerCanvas. Currently, there are
only two classes of the type GISLayoutElement: the GISCanvas and the PictureElement
class. The PictureElement class represents a picture placed in the
BackgroundLayerCanvas by the user. As I implement more functionality in Mapalester,
the number of classes of the type GISLayoutElement will drastically increase. For
instance, soon under development will be a LegendElement and MapScaleElement,
which will be responsible for handling functionality related to the display and
manipulation of map legends and map scales, respectively. Figure 3.3a depicts the

relationship between all of the aforementioned classes in a semantic network.

Flgure 3.3a — The Interface between the data Interaction system and the interface class
structure. MapScaleElement and LegendElement have yet to be implemented are are
deplcted as samples of future clsses of type GlSLayoutElement.

Hecht Mapalester Research Project Page 29

A BackgroundLayerCanvas with all of the aforementioned GISLayoutElements (and any
future ones) will be able to be printed and exported. As a side note, this means that I
have chosen to eschew the layout view/data view construct common to ESRI products.
Now that the context in which the GISCanvas class operates has been established,
it is necessary to explain how the GISCanvas displays spatial data. The largest challenge
in designing the GISCanvas was making its functionality universal to all types of GIS
data that will eventually be supported. The answer to this challenge was making the
GISCanvas interact with the data it contains only on the layer level. Basically, each
GISCanvas has an array of VectorThemes, each of which are responsible for returning to
the GISCanvas an image (essentially, just a picture — like any JPEG) of what it looks like
given the extent of the GISCanvas. When I implement the RasterTheme class, this class
will also be responsible for simply returning an image of what it looks like in the given
extent. When the GISCanvas’s extent changes, say, because the user has zoomed in/out
or panned, the GISCanvas requests new pictures from each of the VectorThemes (or,
later, RasterThemes as well) contained within its VectorTheme stack. Essentially, every
time the GISCanvas redraws, all it does is pancake all of the returned images from the
VectorThemes on top of each in the correct order. This order corresponds to that which
the user manipulates using the GISMapElementList class (section 3.2). Layers that have
been “turned off” in the GISMapElementList are skipped in this “pancaking” process.
How do the VectorThemes draw an accurate image of themselves in any given
extent? Each instance of the VectorTheme class is responsible for asking its C++ parent
class to query all of its VectorObjects (PointObjects, PolylineObjects, or PolygonObjects)
to create the appropriate display. This query will eventually utilize an R-tree index (see
section 4.2) which is attached to every VectorTheme, but for now uses the brute force
approach outlined in section 4.2. Note that this interaction between the VectorTheme and
the corresponding VectorObjects is the single most important interface between the C++
plug-in code and the REALDbasic code. In fact, as touched upon above, the VectorTheme
1s actually a subclass of a VectorThemeBase class implemented in the C++ plug-in. This
subclassing is the construct by which the two code bases interact. When the REALbasic
VectorTheme needs to update its cached picture, it simply calls the update() function,

Hecht Mapalester Research Project Page 30

which has been programmed in the C++ superclass and only deals with C++ elements of

Mapalester.

Once this update() function, which is provided a two-dimensional extent as a
parameter, has identified which VectorObjects it needs to draw using the spatial indexing
methods as noted above, the actual drawing process is quite simple. Since all coordinate
systems are treated as two-dimensional Cartesian planes in Mapalester (see section 3.4),
the update() function first makes a new image the same size in pixels as the GISCanvas()
in which the VectorObject is located. The function next determines the scale of the
image in the form of a unit/pixel ratio. This unit can be any angular or linear unit
because by the time the drawing process has begun and the update() function has been
called, the projection engine has made all necessary arrangements to convert all of the
VectorObjects and their constituent points in all the VectorThemes to the correct two-
dimensional coordinate system for the GISCanvas. Next, using the scale as a guide, the
update() function draws all the VectorObjects contained within the extent onto the image.
Finally, the image is returned to GISCanvas. This process is shown graphically in figure
3.3c. Figure 3.3b shows the whole data interface system class structure “behind” the

GISCanvas in a semantic network.

Hecht Mapalester Research Project Page 31

progremmed in REALbaskc

prrogrammTe i G-+

o=

A

e
==

Figure 3.3b — A semantic network depicting the data Interaction system that operates
“hehind” a GISCanvas. Note the division of programming between C++ and REALbasic.
Also note that VectorPoints and VectorPolygons are both subclasses of other
VectorObjects. | have implemented these two classes In this manner in order to maximally
share code. In effect, a VectorPoint is a VectorMultiPoint with Just one point In it.
Similarly, a VectorPolygon is a spacial case of a VectorPolyline In which the first and the
last point are the same. Implementing the four basic geometric types in a hierarchical
manner has saved me from writing thousands of lines of code throughout the program.

ak

Hecht Mapalester Research Project Page 32

Sample GIS Canvas Layer

Coordinate System: UTM Zone 15
Scale: 100 meters / pixel

Y-axis

10 pixels
1000 meters

X-axis

15 pixels
1500 meters

Figure 3.3c - The basics of the actual drawing part of the update() function.

3.4 The Projection System

Every spatial data set has some sort of coordinate system. This coordinate system
can be a projected coordinate system or an unprojected coordinate system. Spatial data in
a projected coordinate system have coordinates that are in some sort of X,y coordinate
system where x and y represent values in a Cartesian plane. Projected data have been
transformed using one of many projection equations, such as that for the Mercator
projection or the Lambert Conformal Conic projection. A common unit for projected
coordinate systems is the meter or the kilometer; all projected coordinate systems utilize
units of length. Spatial data in unprojected coordinate systems have coordinates that

represent degrees on some ellipsoid (or spheroid). A common unit for unprojected

Hecht Mapalester Research Project Page 33

coordinate systems is decimal degrees of longitude and latitude; all unprojected

coordinate systems utilize angular units. Unprojected coordinate systems are sometimes
incorrectly referred to as a data’s “datum.” Every projected coordinate system has an
underlying unprojected coordinate system or “datum”, as the x and y values must be
generated from original degree values.

In order to be a viable GIS, Mapalester must have a robust projection system that
can convert between all of the coordinate systems in standard use. This is an immense
task. There are over thirty common projections, each with its own highly complex
equation. Many of the equations accept five or more variables in addition to the standard
latitude and longitude coordinate parameters. Additionally, there are an equally large
number of unprojected coordinate systems based on a variety of ellipsoid approximations
of the Earth. In order to display data accurately in the same view frame, Mapalester must
be able to convert data in any coordinate system to each and every of the other coordinate
systems. In order to implement such a projection system, code must be organized
efficiently in a simple but robust class structure.

The structure I eventually settled on for Mapalester is based on my research into
coordinate systems and my investigation into how coordinate information is stored, such
as in the “.prj” file discussed in section 4.1.4. Because all coordinate systems have some
sort of projection — even if that is “unprojected” — the primary class of the projection
system is the ProjCS class. The ProjCS class is responsible for changing the projection of
the coordinate system whereas the GeoCS class takes care of converting the underlying
unprojected coordinate system, a process that mostly involves the science of “datum
conversion” but has other important aspects as well. No datum conversion functionality
has been implemented in Mapalester. As such, an error of about 800ft at large scales is
possible while currently viewing data in Mapalester. There are four more classes that
make up the projection system: the Spheroid class, the PrimeM(eridian) class, the Datum
class, and the Unit class. Each is responsible for converting the elements of the
coordinate system that correspond to its name. The basic relationships among the classes

is depicted in figure 3.4a in the form of semantic network.

Hecht Mapalester Research Project Page 34

Figure 3.4a - A simplified semantic network of the relationships among the classes of the
projectlon system. Note that the projectlon systom makes extenslve use of C++-coded
functions, but no C++ coded classes. This is a major departure from the orlginal version
of the projection system, which had all of the code In REALbasic. The REALbasic code,
however, proved too slow for the more complicated functions and algorithms, and thus, a
switch to C++ was necessary. Thls change was also made to further enforce the rule that
REALbasic never have access to the VectorObjects of a VectorThems. All of the
algorithms shown require vertex-level access to the spatial information of a VectorObject,
and thus must be in C++ code according to the rule. The C++ coding Is not complete.

Every VectorTheme has an instance of a ProjCS class. In addition, the GISCanvas class
also has a ProjCS member. In order to accurately display the information (or display the
information at all in many cases), the GISCanvas’s ProjCS and the VectorTheme’s
ProjCS must match completely. Meeting this condition is the primary function of the
projection system and is an excellent demonstration of the effectiveness of the system’s

object-oriented structure.

Hecht Mapalester Research Project Page 35

The process of meeting the condition is as follows: when a VectorTheme is

loaded into a GISCanvas, the GISCanvas passes the VectorTheme’s ProjCS instance to
the convert() function of its own ProjCS instance. The convert() function is the
command center for the projection conversion. If the projection, parameters of the
projection, or the GeoCS of the inputted ProjCS differs from that native to the
GISCanvas, the convert() function tells the inputted ProjCS to unproject itself. Before
doing so, if the inputted ProjCS has a unit other than meters, the inputted data’s unit must
be changed, as all the constants in the forward and reverse projection algorithms are in
meters. The inputted ProjCS then calls the appropriate reverse projection equation
function (section 4.6). If the GeoCS differs, the convert() function then passes control to
the convert() function of the ProjCS’s GeoCS. In the GeoCS’s convert() function, the
datum (and its spheroid) and the primeM of the inputted ProjCS’s GeoCS are converted
using the datum conversion functions and the prime meridian conversion algorithms
(section 4.5). The angular unit of the GeoCS may also be converted in the GeoCS
convert() function, if necessary. The GISCanvas’ GeoCS’s convert() function then
returns control to the GISCanvas’ ProjCS() function. If the inputted spatial data was
unprojected using the reverse equations, then the data must be projected using the
forward projection algorithms of the GISCanvas’s ProjCS. Finally, it may be necessary
to convert the unit of the forward projected data to match that of the GISCanvas’ ProjCS.

The two coordinate systems will then match.

3.5 The Database System

There are two important determinants of the object-oriented structure of the
database system in Mapalester. The first is the dual uses of the system at a fundamental
level. The database structure is not only used to manage attribute data inherent to every
GIS file, but also to manage those files themselves. Section 4.4 is dedicated to the
description of this second functionality. Not only did this dualism in intended function
reinforce the need for a clean and efficient object-oriented structure, but it also shaped the
design of the structure. The second major determinant of the structure of the database
objects is my choice of the Valentina database by Paradigma Software for the core

Hecht Mapalester Research Project Page 36

database infrastructure”. Implementation of the iTunes-like GIS data file management
system, as well as provision of support for attribute databases, has been greatly facilitated
by my choice of the Valentina database infrastructure as the framework for Mapalester’s
object-oriented database structure. As an object-oriented relational database framework,
Valentina provides all of the low-level database functionality that would be too tangential
to GIS to program for this project. Valentina is available for a large number of
programming languages and it provides amazing support for REALbasic. In the
subsequent paragraphs, I will discuss the database class structure of Mapalester in the
context of these two determinants.

The class structure provided by Valentina for REALDbasic forms the basis of
Mapalester’s database class structure. There are several types of classes in the Valentina
framework. The VDataBase class represents a complete database. In its current state of
development, Mapalester only interacts with a single complete database, the library
database file located in the same folder as the application. The library database file holds
three different types of tables — the library browser table, the projection browser table,
and all the attribute data tables associated with the files available through the library
browser. The library browser table handles the iTunes-like library functionality
discussed in section 4.4. The projection browser stores all the coordinate system
information ever loaded into the program. In general, there will be as many of the third
type of tables as there are records in the library browser. In the case of shapefiles in the
library browser table, for instance, the associated table is copied directly from the DBF
portion of the shapefile. Each of these tables, no matter what type is represented by
either the VBaseObject class or a subclass when loaded into the program,. In order to
give each of these classes functionality specific to Mapalester, it was necessary to
subclass nearly all of the classes provided by Valentina. The VDataBase subclass used in
Mapalester, for example, is the appropriately named LibraryVDatabase. The subclasses
of the VBaseObject that are used handle the two special tables in the LibraryVDatabase:
are the library browser table (BrowserVBaseObject) and the projection browser table

2 Note: in late March, 2005, Paradigma Software released Valentina 2.0, a very major
upgrade to the database framework that promises “incredible speed multipliers”
(Paradigma Software 2005) over former versions of Valentina. The current version of
Mapalester does not implement this database, but future versions will.

Hecht Mapalester Research Project Page 37

(ProjectionVBaseObject). The tables linked to the records in the BrowserVBaseObject

are accessed using the core VBaseObject.

=
==

isa isa

&.

Figure 3.52 — A semantic network of the database class structure above the VField level.

Each field in each of the objects of the VBaseObject type is derived from one of
Valentina’s many field classes. Each of these field classes handles a specific type of
field; there are classes for Boolean field types (VBoolean), date field types (VDate), all
sorts of number field types (double, integer, long, etc.), and string field types (VString).
More interestingly, Valentina also provides classes for the blob (VBlob), object pointer
(VObjectPtr) and text data types (VText). The VBIlob field allows Mapalester to store
large chunks of data in the database. This is particularly important because Mapalester
stores ail of the spatial information for each record in the BrowserVBaseObject in a

VBIob field. Essentially, Mapalester stores all of the data in the “.shp” file of a shapefile

Hecht Mapalester Research Project Page 38

in this field. The VObjectPtr enables the object-relational functionality in Valentina and

is used in Mapalester to link each record in the BrowserVBaseObject to the record in the
ProjectionVBaseObject table that stores the information relating to the coordinate system
in which the record in the BrowserVBaseObject is stored. Finally, the VText field is a
subclass of the VBIlob field intended specifically to store text. A complete schema of the
two specific tables are found in figure 3.5b and c. The reasoning behind the inclusion of
each of the fields in the BrowserVBaseObject is found in the description of the library
functionality in section 4.6. Details on the fields in the ProjectionVBaseObject can be

found in section 3.4.

Size

Name Type (bytes)

TableNumber Viong 32
AbstractField VText 8192
ContactInfoField VText 1024
GatherEndDateField VDate 64
GatherBeginDateField | VDate 64
RelevancyBeginField | VDate 64
RelevancyEndField VDate 64
RestrictedField VText 128
LegalField VText 128
GeneralField VText 8192
EditionField VText 8192
URLField VText 1024
KeywordsField VText 1024
NamerField VString 1024
PublisherField VText 8192
DataSourcesField VText 1024
DataGroupField VText 8192
GenreField VText 8192
IDCodeField VText 1024
ContentTypeField VShort 16
VectorRasterField VBoolean 1
FileFormatField VShort 16
SpatialDataField VBlob variable

DataAddedField VDateTime 112
FileNameField VString 256
FileSizeField Viong 32
RecordNumberField Viong 32
minXField VDouble 64
maxXField VDouble 64
minYField VDouble 64

Hecht Mapalester Research Project Page 39

maxYField

VDouble

64

projectionField

VObjectPtr

32

Figure 3.5b — The schema for the Browser VBaseObject.

Size

Name Type (bytes)

PEString VText 1024
ProjectedCoardinateSystem VString 100
Projection VString 100
GeographicCoordinateSystem VString 100
Datum VString 100
AngularUnit VString 100
LengthUnit VString 100

Figure 3.5¢ -~ The schema for the ProjectionVBaseObject.

No schema for the third type of table is specified because schemas will vary greatly

depending on the attribute database of the GIS file being represented. However, the

schemas of this type of table are currently restricted to fields incorporated in the DBF file

format because the only type of attribute database currently supported is that of the
shapefile, which is in the DBF file format. The DBF file format only supports fields of

the types “character” (interpreted as the VString type), “numeric” (interpreted as the

VLong type), “floating point binary numeric” (interpreted as the VDouble type), and

“logical” (interpreted as the VBoolean type). As an example, the schema for an attribute

database of a shapefile containing counties in the United States is given in figure 3.5c.

Size

Name Type (bytes)

Name VString 32
State_Name VString 25
State_FIPS VString 2
Cnty_FIPS VString 3
FIPS VString 5
Area VDouble 64
Pop1990 VDouble 64
Pop1999 VDouble 64

Hecht Mapalester Research Project Page 40

Figure 3.5d - An example schema for the atiribute database of a shapefile containing counties in the
United States.

Because the database system is quite intricate and difficult to explain out of its
programmatic context, figure 3.5f explains what happens when a user adds a GIS file to
the library (see section 4.6) in a highly abstracted manner.

Figure 3.5¢ — The database class structure in action!

How does the user interact with the database class structure? In addition to the set
of classes for storing database information, there is a less elaborate set of classes for

viewing and modifying that information. This set of classes provides the intersection

Hecht Mapalester Research Project Page 41

between the database class structure and the interface class structure, and the remaining
portion of the section is dedicated to its description.

Like the foundation of the database class structure, the database interface class
structure is based on a third-party product. In this case, the product is DataGrid by
Einhuger Software, which is distributed in the form of a REALbasic plug-in. DataGrid is
a small set of REALbasic classes designed to provide programmers with an easy way to
implement the visualization and modification of Valentina databases”.

Due to the third-party nature of the database interface system’s framework, the
database interface class structure is also heavily reliant upon subclassing. Primarily, the
three important classes in this structure are all subclasses (either directly or indirectly
through another subclass) of the DataGrid class. Figure 3.5g shows the class structure of

the database interface system in more detail.

Figure 3.5g - The class structure of Mapalester’s database interface system.

* My reasoning for adopting a third-party solution is identical to my reasoning for
adopting the Valentina database: it would not have been a good use of my GIS honors
project time to spend several weeks to recreate a Valentina display outlet, probably with
worse results that\n I could get with DataGrid.

Hecht Mapalester Research Project Page 42

The MapalesterDataGrid class provides all of the functionality shared between the
LibraryBrowserDataGrid and the ProjectionTableViewer, which at the moment, is about
90 percent of all the functionality in these two classes. All of these classes interact with
the LibraryVDatabase class through the use of SQL (structured query language) queries.
These queries return a class in Valentina for ReaiBasic called VCursor, which contains
all of the database information relevant to the given query. In Mapalester’s current state,
most of the queries that are conducted are simple “return all” from a specific table
queries. Since the class structure corresponds directly with the table stucture of the
LibraryVDatabase, whenever each class needs to display data from the table to which it
corresponds, it simply performs a “return all” query on that table. Figure 3.5h explains
this process graphically.

Hecht Mapalester Research Project Page 43

Figure 3.5h — A graphical view of the use of SQL as an interface between the database and the
database interface class structures.

As I implement more functionality into Mapalester, these queries will become
more complicated. For instance, the library will soon offer a context-sensitive spatial
search feature. In other words, the library will be able to operate in a mode in which it
only shows data relevant to the special extent being viewed in the selected GISCanvas.
For example, if someone is zoomed-in to the Twin Cities metro area, the library will hide
files that only include information about Europe or Asia, etc. This will obviously require
greater complexity of search queries, possibly requiring me to implement a subset of
spatial SQL via a C++ plug-in to Mapalester. Similarly, as I implement simpler, text-
based searches for the LibraryDataGrid and the ProjectionDataGrid, much more
extensive SQL queries (hidden to the user through an easy-to-use interface) will be

necessary.

Hecht Mapalester Research Project Page 44

4. The Design and Implementation of Mapalester’s
Feature Set

4.1. Support of a variety of file formats

A primary characteristic of available GIS data is its extremely heterogeneous
nature. GIS data come in a variety of file formats, and even data in the same file format
can vary significantly in representation. GIS file formats can be loosely divided into two
groups, vector and raster. This section will focus on vector data, as it is the most difficult
to implement and has been the focus of the Mapalester’s file format support thus far.
Additionally, it should be noted that the term “file format” is used loosely in this context,
as the specification for the currently dominant GIS vector data file format, Environmental
Systems Research Institute’s (ESRI) shapefile, describes three separate files that make up
each shapefile. Moreover, since the shapefile specification was published in 1998 (ESRI.
1998), many new GIS features have necessitated the addition of more files to the de facto
specification, resulting in situations in which each shapefile can includes upward of nine
individual files, each supporting its own specific set of features.

Any GIS software package that aims to be “easy to use” must make the user
completely unaware of the complexity of GIS file formats. Ideally, a Mapalester user
should not need to know what type of file format she or he is using, or even if the file is a
vector or raster file. I have made some progress toward this goal. As of this writing,
Mapalester supports the shapefile, which, as mentioned above, is the most common file
format for vector GIS data. Mapalester also supports the “.prj” expansion of the shapefile
specification. A “.prj” file contains the metadata for the coordinate system of the
corresponding shapefile, making “.prj” files vital to the accurate display of spatial
information. I have also made progress toward supporting several other file formats,
including the formerly ubiquitous Arc/Info exchange format, or “.e00” file, and the up-
and-coming XML-based file formats. However, | have only done initial research into
raster file format support.

In the first part of this section, I will explain issues common to supporting any

spatial data file format. In the second part, I will do the same for vector data formats. I

Hecht Mapalester Research Project Page 45

will discuss the technical issues and techniques involved with supporting shapefiles in the

third part. The fourth part will cover similar issues for the “.prj” extension.

4.1.1 General Issues Related to File Format Support

In order to support a spatial data file format, Mapalester must be able to convert
data in the file format to Mapalester’s internal data format. A consistent and permanent
internal data format enables me to easily add new data formats as the project progresses
and, later on, as they become newly available. In other words, the internal structure
enables an architecture with a type of abstraction similar to that of plug-in architectures
of programs like REALbasic and Photoshop. Because there are few similarities between
representations of vector and raster data, I have chosen to give Mapalester a two-part
internal representation, with one part dealing with vector information and the other
handling raster data. A diagram of the file format support architecture can be found in
figure 4.1.1a.

Hecht Mapalester Research Project Page 46

Ensfly sdded flle lormat support moduics

Figure 4.1.1a - A generalized diagram of Mapalester’s file format support architecture.

As mentioned in the introduction, every spatial unit of GIS data - vector or raster
- has two parts: spatial information and attribute information. Mapalester must
understand both of these types of information for both vector and raster at two levels.
The higher of the two levels is the object-oriented structure discussed in preceding
sections. The lower of the levels is word-level representation stored in memory or on
disk, depending on the situation. In the current implementation, the word-level
representation is always in memory. However, I have been careful to use only
algorithms and structures that work just as well with data from a disk, or from a

combination of disk and memory. For now, given the relatively small sizes of the data

Hecht Mapalester Research Project Page 47

sets likely to be used by the target markets, disk-based data access is not a huge concern.
More details on disk and memory access of data can be found in the discussion of

indexing later in the paper.

4.1.2 General Issues Related to Vector File Format Support

Because shapefiles are the dominant and most common vector file format, I have
based the word-level vector internal representation very closely on the shapefile
specification. This applies for both spatial and attribute information. The similarity
between the two representations allows Mapalester to very quickly convert shapefiles
into the internal representation, thus minimizing processor cost for the most common of
such necessary conversions. The shapefile specification will be discussed in detail in the
subsequent section. However, for now, it is important to note that the internal
representation is an exact copy of the shapefile specification, with two major
modifications. First, while the shapefile specification requires a mixing and matching of
high and low byte order words in the spatial information portion, all words in the internal
representation must be in the byte order that is native to the host platform. In other
words, in the Mac OS X version, all words must by high-to-low, and in the Windows
version, all words must be low-to-high. To leave the byte order in its original state would
mean having to perform a byte order conversion every time any data stored in a non-
native byte order is accessed, significantly slowing down critical processes. Second, the
internal representation ignores all shape headers and shape type specifications in spatial
information. This allows the use of these bytes for other purposes, such as linked list
address information. All of the important information in the record header can be stored
in the object-oriented high-level representation, where it is more conveniently accessed
by Mapalester. While the shape type specifications found before every shape record in a
shapefile are theoretically necessary, ESRI makes clear that shapefiles should not include
more than one type of shape. (ESRI 1998). See figure 4.1.2a for a comparison between
the shapefile representation of the spatial information of a polyline and the representation
of the same data in Mapalester’s internal format. As of this writing, the internal

specification for attribute information is an exact copy of the shapefile’s attribute

Hecht Mapalester Research Project Page 48

specification. This means that Mapalester uses the xBase file format for its internal
attribution information structure. See the subsequent section on shapefiles for more

information.

Spatial information in a Shapetile Spatial Information in Mapalester's
Internal Represenation

Figure 4.1.2a - The left side of this diagram shows the internal layout of the spatial part of
a shapefile. The corresponding diagram on the right demonstrates the layout of the spatial
part of the same sample shapefile in Mapalester’s internal spatial data format. A much
more detailed explanation of this format can be found in the next part of this section.

Once the word-level configuration of the data matches that of the Mapalester
internal specification, the second layer of file format support — the object-oriented level —
takes over. While this level is described in much more detail in the preceding sections of
the paper dedicated to the object-oriented structure of Mapalester, I will briefly discuss
here how Mapalester builds the objects based on the word-level configuration. Because

the internal specification holds with the shapefile’s requirement that each file have only

Hecht Mapalester Research Project Page 49

one type of shape, Mapalester starts building objects by creating the subclass of

VectorTheme (PolylineTheme, PointTheme, etc.) appropriate to the data in the file just
loaded. It then sweeps through the word-level specification, adding a new object of the
subclass of VectorObject appropriate to the shape type of the data for each new record
encountered. The constructor for VectorObjects requires a pointer to the start of the
spatial data and a pointer to the attribute data in the word-level specification, so as
Mapalester sweeps through the new data, it provides those pointers. Mapalester also adds
the appropriate bounding box information to each VectorObject. Finally, Mapalester
provides a linked list of the new VectorObjects to the new VectorTheme, which then

creates an RTree index of the new objects.

4.1.3 Shapefile Support
The shapefile (.shp) specification was developed and made public by ESRI in

1998. The company created the format in response to criticisms of the shapefile’s
predecessor, the Arc/Info exchange file format. The Arc/Info format is based on a
topological framework, which is rooted in an entirely different spatial school of thought
than that of the shapefile, which is strictly nontopological in nature. The topological
structure will be discussed in a future section covering the Arc/Info format, but for now,
all that is important is that the topological structure of spatial data storage is inherently
expensive in both storage and in processing speeds of common tasks (ESRI 1998). Asa
result, in the shapefile, ESRI adopted a shape-based structure in which each shape is
comprised of one or more vector coordinates (ESRI 1998). This structure has many
performance and storage benefits.

“Because shapefiles do not have the processing overhead of a topological

data structure, they have advantages over other data sources such as faster

drawing speed and edit ability... They also typically require less disk space

and are easier to read and write.” (ESRI 1998)

The shapefile specification describes three separate files for each shapefile. The
first and most important file is the “.shp” file, which contains all of the spatial
information for each shapefile. To put it simply, the “.shp” file is what makes shapefiles

geographic. A shapefile can describe information for one of fourteen types of shapes that

Hecht Mapalester Research Project ' Page 50

range from zero-dimensional to three-dimensional. However, Mapalester only works
with four of the thirteen shapetypes for the following three reasons: (1) Mapalester does
not yet support three-dimensional data, (2) only a portion of the one- and two-
dimensional shape types are used in practice, (3) and zero-dimensional shape types are
never used. It is the author’s belief that restricting support to the four shapetypes —
points, polylines, polygons, and multipoints — will result in very little if any functionality
loss for users in Mapalester’s target markets. A description of the four supported shape
types can be found in figures 4.1.3a-d; these are critical to many aspects of Mapalester’s
GIS capabilities due to Mapalester’s reliance on the shapefile for its internal

representation of spatial information.

Data Records

Figure 4.1.3a - Four spatial objects of the POINT shape type are shown above. Note that
each point has its own data record.

Data Records

»
PERE

Figure 4.1.3b — Two spatial objects of the MULTIPOINT shape type are shown above. Each
multlpoint record contains one or more points. Multipoints are useful when multiple
points have the same attribute information. For example, a file of stores in a town could
be divided Into multipoint records, each of a certain store type (laundry, restaurant,
Curves, etc.)

Hecht Mapalester Research Project Page 51

',‘ Data Records

Figure 4.1.3¢c - Two spatial objects of the POLYLINE shape type are shown above. Note a
polylne is not the same geometric concept as a line. Each polyline is made up of one or
more line segments. Also notice that each polyilne can be made of one or more parts
(ESRI, 1998), A part is defined as a serles of one or more line segments (ESRI, 1998).
Parts are generally only deflned when two line segment serles are disjoint but must refer
to the same attribute record. A single polyline can have miilions of parts that all refer to
the same record In the attribute information database, although In practice polylines rarely
have more than twenty or so paris. At flrst, many people wonder why the concept of parts
Is necessary. A good example of a multiple-parts polyline record would be a file of toll
roads on the East Coast of the Unlted States. Toll roads often have no-toll sections, but a
good polyline shapefille of these roads would keep all the toll parts of a the same road in
the same polyline. A description In the case of polygons can be found In the subsequent
diagram. Also, take another lock at figure 4.1.2a; It should be easier to understand why
the structure of the shapeflle Is the way that It is now that polylines have been described.

Grr

Hecht Mapalester Research Project Page 52

Figure 4.1.3d — Three objects of the POLYGON type are shown above. ESRI describes
shapefile polygons as “one or more rings” (ESRI 1998). The ring concept is analogous to
the part concept in polylines. Note that the two parts of Michigan are separate rings, but
are part of the same polygon record. The points in a polygon are stored in an order such

that if someone were to walk along the lines connecting the vertices, the interior of the

polygon would be on her or his right. Interestingly, the spatial information for a polygon is
stored identically to that of the polyline; the last vertex in each ring is simply assumed to
connect to the first vertex.

The second file, the “.dbf” file, is a database file that contains all of the attribute
information for each of the shapes. The “.dbf” file is in the standard xBase format, and
each record in the file corresponds to a shape in the “.shp” file. Finally, the “.shx” file is
an index of the “.shp” file. Each record in the “.shx” file points to the beginning of a
record in the “.shp” file. Because Mapalester does its own spatial indexing, the “.shx”
file is of limited use, although I have included code in Mapalester to read and utilize this
file if the need arises in later development. A diagram of how the spatial information is

split between the three files of a shapefile is shown in figure 4.1.3e.

Hecht Mapalester Research Project Page 53

(1.7)

(5.5)

(4. -1)
300 Aacord for Nevada
Representation of Binary Jipag Record [or Washingicn
Data In the ".ahp" flle 34592 | poiygon | 0.0 | 41 | 59 | 5.8 | @8 | oum
JEETH Aectrd 16 Minnesoia .
Representiation of Binary 204 31692
Data in the ".shx" filo 212 24592
Reprasentation of Binary {0 Rarord for VWashingion
R e ST {1248) s [Salt Lake City 3,500,000 Mormon

Figure 4.1.3e — Spatial object in a sample shapefile and Its data distribution across the
three required files in the shapefile specification.

All three files are binary files. The word-level layout of the “.shp” and “.shx” are
described in the aforementioned ESRI whitepaper. The “.dbf” format is a member of the
xBase complex of files, whose structure is modeled exactly off that of the dBASE format
designed by Ashton-Tate, and later continued by Borland (Bachmann 2000). The word-
level structure of the xBase format is public and is widely available online through a
number of sources (Bachmann 2000, others). In the C++ plug-in portion of Mapalester, 1
have developed robust file readers for each of two of these three files (the DBF file reader

Hecht Mapalester Research Project Page 54

is currently under development, although a REALbasic version of the reader has been

implemented as a temporary measure). File writers are a trivial expansion of the reader
functionality.

Because, as mentioned above, the internal data representation is very similar to
the shapefile specification, the word-level transformation from shapefile to internal data
is quick and simple. The most difficult part of this transformation involves the
conversion from multiple byte-orders to the byte order native to the platform. As
discussed in previous sections, this is one of the few processes that is platform-specific.
For Intel processors (Windows), all byte-orders must be switched to little endian. For
IBM Power PC (Mac OS X), all byte orders must be switched to big endian. For Mac OS
X version of Mapalester, the three files mandated by the shapefile specification must be
run through the byte order swapper. Because xBase files are already little endian, the
Windows version must only process the .shx and .shp files.

Performing this switch upon the first opening of the shapefile is much less
expensive in processor cost over the long run than leaving the data in its original format
and switching the byte order on the fly over and over again. The pseudocode for the brief
algorithm used to swap byte orders can be found in figure 4.1.3f. It must be applied on

all files that need byte order conversion.

function MAKE-CORRECT-WORD-ORDER (ptr_to_start_of _data, ptr_to_end_of_data)
input: ptr_to_start_of_data is a pointer to the first byte of the data file loaded into
memory.
ptr_to_end_of_data is a pointer to the last byte of the data file loaded into

memory

for each long_ptr or double_ptt in the shapefile specification between ptr_to_start_of_data and
ptr_to_end_of_data
if is_Mac = true and specSaysisLittleEndian(long_ptr or double_ptr) = true then
SWAP-ENDIAN(long_ptr, 4) or SWAP-ENDIAN(double_ptr, 8)
if is_PC = true and specSayslsBigEndian((long_ptr or double_ptr) = true then
SWAP-ENDIAN(long_ptr, 4) or SWAP-ENDIAN(double_ptr, 8)

return

Hecht Mapalester Research Project Page 55

function SWAP-ENDIAN (firstByte, length_to_swap)

inputs: firstByte is the address of the first byte of the series of bytes that is to be
swapped
Length_to_swap is the length of the contiguous series of bytes that is to be
swapped

ptr = firstByte
fori=0to length_to_swap/2 — 1
temp = value_of(ptr + i) /I pointer addition is defined as increasing the pointer by
one byte; thisis implemented in C++ by using char
pointers)
value_of(ptr + i) = value_of(ptr + length_to_swap —i-1)
value_of(ptr + length_to_swap —i— 1) = temp
return

Figure 4.1.3f — Pseudocode for the MAKE-CORRECT-WORD-ORDER algorithm used to
convert byte orders.

MAKE-CORRECT-WORD-ORDER is a fast algorithm; it is O(n) if n is considered to be
the number of byte series where conversion is necessary. If we consider the number of
bytes to be swapped as n, the algorithm is only O(n/2)! The algorithm is fast in practice
as well. It converts millions of four-byte (long) and eight-byte (double) sequences in a
negligible amount of time that is barely noticeable to the user, even on the Mac OS X
platform on which more conversions must be performed because the majority of data in
the shapefile is stored in the little endian byte order. Only on abnormally large shapefiles
on the Mac OS X platform does MAKE-CORRECT-WORD-ORDER take more than one
second. This is not a problem, however, as MAKE-CORRECT-WORD-ORDER will
only be performed once for every shapefile loaded into Mapalester thanks to the database

structure described in previous sections of the paper.

4.1.4 Support for The “.Prj” Extension

The “.prj” extension of the shapefile specification includes critical metadata
describing the coordinate system information for the shapefile with the same non-
extension name in the same folder. In order to support the “.prj” extension, Mapalester
must be able to convert the data in “.prj” files to Mapalester’s object-oriented projection

engine described in previous portions of this paper.

Hecht Mapalester Research Project Page 56

Unlike the “.shp,” “.shx,” and “.dbf” files of the shapefile specification, the “.prj”
file is a text file. Because of the high variability of text encodings and REALbasic’s

built-in ability to handle such encodings, the parser for the “.prj” file is programmed in
REALbasic code. (The projection engine itself, as mentioned above, will soon be
converted into C++.) While text files in REALbasic may be easier to read and write due
to the lack of binary data problems described above, the parser of the “.prj” files involves
much more computer science than the “.shx”, “.shp,” and “.dbf” readers. Before
discussing the details of the parser, however, it is first necessary to describe the structure
of a standard “.prj” file.

The “.prj” file, due to the metadata it describes, exhibits a much more complicated
structure than that of the aforementioned files. While the “.shx”, “.shp”, and “.dbf” files
can be described with a simple linear definition of bytes and what they represent, the
“.prj” file describes inherently hierarchical information, and must thus have a more
convoluted structure. Similar to the specification of many programming languages, the
“.prj” specification is based around an EBNF (extended Bachus-Naur form) grammar
(ESRI, 2000). Figure 4.1.4a depicts this definition using a very slightly modified syntax
of pure BNF. Terminal symbols are depicted in bold.

<PRJ_FILE> ::= <PROJ_CS> | <GEO_CS>

<PRQJ_CS> ::= PROJCS[<NAME>,<GEO_CS>,<PROJECTION> <PARAMETER>,<UNIT>]

<GEO_CS> ::= GEOCS[<NAME>,<DATUM>,<PRIMEM>, <UNIT>]

<DATUM> ::= DATUM[<NAME>,<SPHEROID>]

<SPHERIOD> ::= SPHEROID[<NAME>,<DIGIT>,<DIGIT>]

<PRIMEM> ::= PRIMEM[<NAME>, <DIGIT>]

<NAME> ::= “<ALPHA>"

<PROJECTION> ::= PROJECTION[<NAME>]

<PARAMETER> ::= € | PARAMETER[<NAME>, <ALPHA>] | PARAMETER[<NAME>,
<ALPHA>],<PARAMETER>

<UNIT> ::= UNIT[<NAME>, <ALPHA>]

<ALPHA> ::= any character except quotes | any character except quotes <ALPHA>

<DIGIT> ::= <TERM_DIGIT> | <TERM_DIGIT><DIGIT>

<TERM_DIGIT>:=0|1|2|3]4|5|6]7]8]|9].

Hecht Mapalester Research Project Page 57

Figure 4.1.4a - The slightly extended BNF for the “.prj” file specification. Based on ESRI's
“.prj” specification (ESRI 2000).

Because of the similarity between the “.prj” file specification and that of
programming languages, Mapalester’s “.prj” file reader uses techniques similar to those
used in programming language compilers. The reader first “tokenizes™ the text from the

“prj” file using a discrete finite automata derived (DFA) from the one in figure 4.1.4b.

any char except "

PIGIDIUIS

0-9 : A-Z

11,

Figure 4.1.4b — The above discrete finite automata is implemented in the REALbasic “.prj”
file parser. Notice that the right bracket and comma characters are the only true token
delimiters.

The program then applies the grammar described in the EBNF in figure 4.1.4a to

organize all of the information in the tokens. This organization has the end result of

Hecht Mapalester Research Project Page 58

having an instance of the ProjCS class, which is described earlier in the paper, with all of

the necessary parameters to understand the coordinate system in the “.prj” file. An
example of an inputted string from a “.prj” file and the resulting ProjCS class instance

can be found in figure 4.1.4c.

PROJCS["NAD_1983_UTM_Zone_15N",GEOGCS["GCS_North_American_1983".DATUM["D
_North_American_1983",SPHEROID["GRS_1980",6378137.0,298.257222101]], PRIMEM["Gre
enwich”,0.0],UNIT["Degree*,0.0174532925199433]], PROJECTION["Transverse_Mercator"],
PARAMETER(["False_Easting",500000.0],PARAMETER["Faise_Northing",0.0], PARAMETER
["Central_Meridian",93.0], PARAMETER["Scale_Factor",0.9996],PARAMETER] "Latitude_Of
_0Origin©,0.0],UNIT["Meter",1.0]]

ProjCS
has_a
has_a has_a
has_a GeoCS
‘ myGeoCS
\
Unit String has_a
myUnit projName L]
T] Unit
has;_a equais has_a myUnit
]
doubh r "Transversa_Mercator" I has_a
conversionFactor 2
T double
eq%als conversionFactor
T
10 equals
k4
0.0174532925199433
Dictionary
arams meM
P Spheriod myPrimei
mySpheriod
are_entries_of 7 has a
has_a v
nams = "False_Easting" ¢ has_a double
vakss = 5000000.0 double degOfisetFromGreenwich
name = “False_Nonhing™ a
vaiue = 0.0 / equals
name = "Central_Merialan” has a double
vale = -93.0 - f
& T 298.257222101
name = "Scala_Factor”
cale. uals
value = 0.93% 6378137.0 *)
name = "Latitude_o!_Ongm™
iy 298.257222101

Hecht Mapalester Research Project Page 59

Figure 4.1.4c — The figure above is the resulting ciass structure generated from the “.prj”
file containing text above the figure.

It is interesting to note the similarity between the class structure of the projection system
and the categories in the BNF grammar. As mentioned in preceding sections, the class
structure for the projection engine is based on the nature of the data that the class
structure represents, and the “.prj” grammar very well represents the nature of the data it
structures. This means that one could learn about projection mathematics via the
grammar and someone who understands projection mathematics would understand the
grammar immediately. For example, a spheroid can be defined by the major axis and the
flattening, both of which are represented in the BNF. The details of projection
mathematics are beyond the scope of this section, so I will not discuss them further. See

sections 3.4 and 4.6 for more information.

4.2 Spatial Indexing

In any GIS software package, a search through spatially referenced data for a
particular spatial location is an extremely common task. For instance, any time a user
pans or zooms in an instance of Mapalester’s GISCanvas (section 3.3), Mapalesfer must
search through all of the data layers in the GISCanvas to identify which objects to draw
in the canvas and which fall outside of the canvas’s extent. While it may be trivial to
search through a small number of spatial objects, GIS software often must scan through
thousands or millions of spatial objects in order to find all objects that fall within a
specified zone. As such, the issue of how to most efficiently perform these searches
arises. This section is dedicated to several spatial indexing approaches used in
Mapalester, each of which corresponds with a different technique for performing these
searches. Each part of this section describes a different indexing approach and discusses
the time and storage costs of the approach. At the time of this writing, most of the

development efforts are in this portion of the program.

Hecht Mapalester Research Project Page 60

4.2.1 The Brute Force Approach

The positives and negatives of the brute force approach are easy to describe. The
biggest advantage is that it is extremely easy to implement. It also can be somewhat
storage/memory efficient, depending on the specifics of the implementation. The sole, but
important, drawback is that it is very slow compared to other approaches, at least in
theory. The brute force approach to spatial indexing is simple: there is no index. When a
spatial search is performed, the search algorithm must simply go through all of the
available and relevant spatial objects, checking each object to see if it falls within the
spatial parameters of the search. Obviously, this is an O(n) process. When n is small,
this is not a problem, but when n is, say, a million or more — a common happenstance in
the world of GIS — slowdowns occur.

The brute force approach was the first spatial indexing method used in
Mapalester. It was implemented as a temporary measure, as some sort of spatial search
method is a necessary stepping-stone to many other GIS processes. Surprisingly,
however, performance was satisfactory for all but the largest datasets in the collection of
sample vector datasets designed to echo the set of datasets likely to be used by my target
markets.

I believe this gap between the theoretical slowness and the relative speed in real
world tests is explained by my extensive use of the effective “bounding box” heuristic in
the implementation of the brute force method. The bounding box of a spatial object is
defined by the maximum and minimum coordinate for each dimension of the object. In
the context of the current, 2D-only version of Mapalester, this means that the bounding
box is the rectangle defined by the minimum x-coordinate, maximum x-coordinate,

minimum y-coordinate, and maximum y-coordinate. See figure 4.2.1a for an illustration.

Hecht Mapalester Research Project Page 61

9,12) (6,12)

(0.7) (11, 7)

(3, 0) @0 (L0

Figure 4.2.1a — The bounding box of a sample spatial object. Note that the box can
be defined by the upper left and lowsr right vertices. The x-coordinate of the upper left
vertex Is the minimum x-coordinate of the spatial object. The y-coordinate is the
maximum y-coordinate of the spatial object. For the lower right vertex, the x-coordinate Is
defined by the maxlmum x-coordinate of the object and the y-coordinate is defined by the
minimum y-coordinate of the object.

For all of the spatial indexing approaches, the bounding box is used as an
approximation for spatial objects when running the search algorithm. While this heuristic

can result in false positives, as depicted in figure 4.2.1b, it will never cause any faise

negatives.

Hecht Mapalester Research Project Page 62

Figure 4.2.1b - Despite the fact that the rectangle area of search overlaps with the
bounding box of the spatial object from figure 4.2.1a, the area of search does not actually
overlap with the spatlal object itself. The spatlal object will be returned as a match for the

search, but It wlll be a false positive.

The false positives are a small price to pay considering the massive reduction in
calculations per shape that results. If the bounding box were not used, all of the search
algorithms, no matter to which indexing approach they correspond, would have to use a
polygon intersection test algorithm in the case of polygonal and polylinear spatial objects.
Each iteration of this algorithm would be O(4p) (O’Rourke 2002), where p is the number
of points in the polygon or polyline and assuming the search area is always a rectangle
(with four vertices). This would make the search algorithm associated with the brute
force indexing approach O(4pn) in the case of polygon and polyline datasets , where p is
the maximum number of vertices of the polygons/polylines in the dataset and n is the
number of polygons/polylines in the dataset. Even the faster search algorithms associated
with the other spatial indexing approaches, in which n is replaced with smaller functions
of n, would stall extensively under such a heavy computation load. It is interesting to note
that the bounding box heuristic, due to its optimistic nature, is quite similar to the
admissible heuristic for heuristic search algorithms like A*,

Most likely, it is the impressive reduction in calculations per n that causes the

brute force search algorithm to perform so well against its competitors for all but the

Hecht Mapalester Research Project Page 63

largest datasets. Essentially, the number of calculations necessary to check if a
rectangular area of search overlaps with a bounding box is so few that it takes hundreds
of thousands of such comparisons in order for the time taken to be noticeable. Figure
4.2.1c is a psuedocode version of the very simple algorithm needed to perform the

comparison.

function OVERLAP?(rectl, rect2) returns Boolean
inputs: rectl is the search rectangle
rect2 is the bounding box of the spatial object being queried

if maxX(rectl) < minX(rect2)

return false
if minX(rectl) > maxX(rect2)

return false
if maxY(rectl) < minY(rect2)

return false
if minY(rect1) > maxY(rect2)

return false

return true

Figure 4.2.1c - The algorithm to determine if two rectangles (in this case, the search
rectangle and the bounding box of a spatial object) overlap. This algorithm is so simple in
theory and in practice that it is implemented in single two-line inline function in the C++
plug-in portion of Mapalester.

4.2.2 The R-Tree Approach

In order to provide good performance for the key low-level functionality that is
spatial searching for all file sizes, it was necessary to abandon the brute force approach
and research other approaches to spatial indexing for future implementation in
Mapalester. The seminal paper by Guttman (1984) forms the foundation of most spatial
indexing research still done today. In this paper, Guttman defines a construct he calls the
“R-tree.” While there have been many proposed improvements to the R-tree in recent

years, I decided that Guttman’s construct would be a good place to start and implemented

Hecht Mapalester Research Project Page 64

R-tree indexing. Because the R-tree deals with the spatial objects that make up data

layers (below the VectorTheme level, see section 3.3), and because R-trees require the
extensive use of recursive algorithms, all R-tree programming was done in the C++
language.

The basic idea of the R-tree is simple. The tree is comprised of three distinct
objects: non-leaf nodes, leaf nodes, and spatial objects. Every object in the tree has a
bounding box identical to those described in the preceding section. Every object in the
tree’s bounding box is contained within the bounding box of its parent. Additionally,
Guttman (1984) identifies six more technical and specific properties of the R-tree as

follows (adapted to fit context):

(1) Every leaf node contains between m and M spatial objects unless it is
the root, where m is the minimum number of entries per node, M is the
maximum number of entries per node, and m is greater than or equal to
one half of M.

(2) Every spatial object has a bounding box that is the smallest rectangle
that spatially contains the object.

(3) Every non-leaf node has between m and M entries unless it is the root

(4) Every non-leaf node and leaf-node has a bounding box that is the
smallest such box that contains all of the children of the non-leaf node
or leaf node.

(5) The root has at least two children unless it is a leaf.

(6) All leaves appear on the same level.

All of the algorithms used to operate on the R-tree are designed to maintain and
query a tree that conforms exactly to the aforementioned specific and broad requirements.
Obviously, since the R-tree is designed to make spatial searches more efficient, the most
important of such algorithms is the search algorithm. This algorithm happens to be the
simplest of all the algorithms connected with the R-tree. In short, the algorithm scans
recursively through the tree starting with the root and returns all the spatial objects within

Hecht Mapalester Research Project Page 65

the bounding box input into the search algorithm. The algorithm is described in more

detail in the following psuedocode:

function SEARCH(bounding_box) returns list of spatial objects
inputs: bounding_box is the input of the spatial search

SEARCH-REC(root, bounding_box, list)
return list

function SEARCH-REC(node, bounding_box, list)
inputs: bounding_box is the input of the spatial search
node is the node to be examined in this spatial search
listis the “global” list to which all positive results will be added

for each child in node
if overlaps(bounding_box, getBoundingBoxOf(child)) = true then
if isLeafNode(child) = false then
SEARCH-REC(child, bounding_box)
else
append(list, child)
end if
end if
end if

Figure 4.2.2a — The R-tree search algorithm

While the R-tree works beautifully and quickly even on polygon and polyline
files, the massive number of objects to insert in the R-tree with even a small point file
quickly overloads the R-tree capabilities. Point entries are loaded into R-tree by making
their bounding boxes degenerate rectangles whose extent is a single point. While polygon
and polyline files may have more points total due to the massive number of vertices for
many polygons and polylines, they generally have less than 10,000 or so polygons or
polylines, which is the level at which bounding boxes are established, and thus the level
at which the R-tree indexes. As mentioned above, the R-tree is a data structure whose

processes get increasingly more expensive time-wise as more and more items are

Hecht Mapalester Research Project Page 66

inserted. As aresult, in preliminary tests, the R-tree was up to twenty times slower than
the brute force approach for a point file with around 165,000 points. It is not uncommon
for point files to have that many points or more.

As such, it was necessary to find a way to reduce the number of bounding boxes
indexed for point datasets. I attempted three approaches to accomplish this goal, all of
which either had little impact on the number of bounding boxes indexed or made
bounding boxes that were so large that they eliminated most of the benefits of using the
R-tree to begin with. The first approach simply grouped & points that were adjacently
stored in the points file. For all values of £ tested, the resulting bounding boxes were
either too large or the insert algorithm was too slow, or both. Obviously, I needed a more
intelligent approach. I next looked into point clustering algorithms in an effort to more
accurately group the points and thus minimize bounding box rectangles. The most
common type of clustering algorithm is the k-means algorithm, but this algorithm is
O(n") in the worst case. While it is often much better in practice, it would involve
running through all of the points at least several times and comparing each point with the
number of clusters desired. Such an algorithm would take more time than it takes to
insert the points individually. As such, I implemented a standard variant on the k-means
algorithm, often referred to as the one-pass k-means algorithm. The algorithm, modified
for the context of Mapalester, is depicted in pseudocode in figure 4.2.2b.

function ONE-PASS-K-MEANS(points, epsilon, clusters) returns list of clusters

inputs: points is the set of points to cluster
epsilon is the maximum distance a point can be from the geometric mean of a
cluster
clusters is an array of clusters (implemented as MultipointObjects), initially empty

for each p in points
foundCluster = false
for each c in clusters
if distance(geometricMeanOf(c), p) < epsilon
addPointToCluster(c, p)
adjustMeanOfCluster(c)
foundCluster = true

Hecht Mapalester Research Project Page 67

if foundCluster = false

¢1 = makeNewCluster()
addPointToCluster(c,p)
adjustMeanOfCluster(c)
addToArray(c, c1)

Figure 4.2.2b — A psuedocode implementation of a one-pass k-means algorithm.

In the worst case — when no point is within epsilon of another point — this algorithm is
O(n®), a significant improvement over the basic k-means algorithm. Additionally, the
worst case is very unlikely to occur if epsilon is chosen wisely. Note, however, that this
algorithm has much less accuracy than the basic k-means algorithm as points are not
reassigned as the geometric means shift. However, because this algorithm walks the line
between speed and accuracy very well, it was worth trying in Mapalester. Unfortunately,
despite a large number of tests, I was unable to find a context-sensitive equation for
epsilon that would not either cause the near worst-case performance to occur (and thus
also not reduce the number of bounding boxes to index) or that would not generate
bounding boxes that were so large that there was almost no point in using spatial
indexing. The final approach to clustering that I attempted was to combine the first two
approaches into my own algorithm. This algorithm’s psuedocode appears in figure

4.2.2c.

function SLOPPY-K-MEANS(points, epsilon, clusters) returns list of clusters
inputs: points is the set of points to cluster
epsilon is the maximum distance a point can be from the geometric mean of a
cluster
clusters is an array of clusters (implemented as MultipointObjects), initially empty
¢1 = makeNewCluster()
for each p in points
if distance(geometricMeanOf{c), p) < epsilon
addPointToCluster(c, p)
adjustMeanOfCluster(c)
foundCluster = true
else

Hecht Mapalester Research Project Page 68

¢1 = makeNewCluster()
addPointToCluster(c,p)
adjustMeanOfCluster(c)
addToArray(c, c1)

return clusters

Figure 4.2.2c - A synthesis of the trivial and intelligent one-pass point clustering
algorithms.

Unfortunately, for all logical epsilon values attempted, this algorithm resulted in far too
many clusters, which meant that the number of bounding boxes was too great to have
much of an impact on the index insertion time. While I have not given up on the
combination of the R-tree with the point clustering approach, I have switched my
attention to the implementation of the R*-tree, which claims to handle points much more
efﬁciently than the basic R-tree. The R*-tree seems to be the most popular 2D-focused
derivative of the R-tree (Manolopoulous et. al, 2003), so I am hopeful that it will provide

good results.

4.3 Line Simplification

Line simplification algorithms are a portion of the computational answer to the
age-old art of generalization in cartography. Early cartographers had to determine the
level of detail in polylines (both those that stand on their own and those that are parts of
polygons) based on the scale of the map they were generating. For example, maps of the
entire United States generally do not need the detail of every tiny nook and cranny of the
eastern coastline. The idea behind line simplification algorithms is to automate this
process for the huge increases in available spatial data. In their book Generalization in
Digital Cartography, McMaster and Shea (1992) describe line generalization algorithms
with the following definition: “As a general definition, simplification algorithms weed
from the line redundant or unnecessary coordinate pairs based on some geometric
criterion, such as distance between points or displacement from a centerline.” (McMaster

and Shea 1992).

Hecht Mapalester Research Project Page 69

McMaster and Shea identify four main benefits of line simplification in digital

cartography: (1) reduced plotting time for (now antiquated) digital plotters, (2) reduced
storage space, (3) faster vector to raster conversion, and (4) faster vector processing for
operations such as translation, rotation, and rescaling. However, in my research, I have
found that, in the time since McMaster and Shea wrote their book, processing speeds
have increased enough to nullify most of the benefits of simplification. In fact, in my
experience, many of the algorithms presented in their book add computation costs and
result in slower display and data processing speeds. As a result, Mapalester implements
only the most trivial of line simplification algorithms. The first part of this section
identifies the results of multiple implementations of the classic Douglas-Peucker
algorithm. The second part describes the trivial algorithm actually used in Mapalester.
Finally, the section closes with a description of the possibilities that lie with an enhanced
version of the Douglas-Peucker line simplification presented by Hershberger and
Snoeyink.

Before discussing the efficacy of various line-generalization algorithms, however,
it is important to discuss a recently discovered use of line-generalization algorithms for
which an accurately generalized line, and not speed of algorithm, is the most important
factor. This use — reducing the size of extremely detailed vector data layers to a digital
capacity that is distributable, say, on the Internet — is an extremely high-level function,
however and may not even make the first version of Mapalester. The most famous
application of this use of line generalization has been the production of reasonably sized
U.S. census boundary files from the TIGER database (U.S. Census 2004).

4.3.1 Douglas-Peucker

One of the hallmarks of early GIS software and one of the most famous
algorithms in computational cartography is the Douglas-Peucker line simplification
algorithm. I initially assumed that an implementation of the algorithm would be a
necessary element of Mapalester. Additionally, early implementations of Mapalester
suffered from slow graphics display speeds, a problem that presumably would be solved

by having less detail to display, which is the result of line simplification algorithms. I

Hecht Mapalester Research Project Page 70

initially implemented a recursive version of the algorithm, described by the pseudocode
in figure 4.3.1a, which is adapted from Sunday (2002). Figure 4.3.1b shows the effect of

Douglas-Peucker on a sample line.

function BEGIN-SIMPLIFY(tolerance, line) returns generalized line

inputs:

tolerance is the approximation tolerance for the algorithm, which in the case of

the Mapalester implementation, is measured in pixels

line is the line to be generalized and contains a list of all of the points in the line.

DP-SIMPLIFY (tolerance, line, firstVertexin(line), lastVertexin(/ine))
for each vertex in line

next

if isMarked(vertex) = true then
add(vertex, newline)
end if

return newline

function DP-SIMPLIFY (folerance, line, a, b)

Hecht

if a = b then
return
end if
lineAB = getSegmentOfLine(line, a, b)
for each vertex in lineAB
if distanceFrom(vertex, lineAB) > maxDistance SoFar
maxVertexSoFar = vertex
maxDistance SoFar = distanceFrom(vertex, lineAB)
end if
next
if maxDistanceSoFar > tolerance then
DP-SIMPLIFY(tolerance, line, a, maxVertexSoFar)
DP-SIMPLIFY(tolerance, line, maxVertexSoFar, b)
end if

Figure 4.3.1a — High-level psuedocode for the Douglas-Peucker aigorithm.

Mapalester Research Project

Page 71

Pre-Simpiification Post-Simpliification

Figure 4.3.1b — The result of Douglas-Peucker on an example polyline with four vertices .

While simple and short, this algorithm has surprisingly high processor costs. The step
that requires the most computation is illustrated by the distanceFrom function in the
psuedocode. To determine the distance of a point from a line, it is necessary to use
vector arithmetic, which slows the algorithm significantly. In addition, the distanceFrom
calculation must be performed n? times in the worst case, where n is the number of
vertices in the input polyline. (The algorithm is O(n*m), where n is the number of
vertices in the input polyline and m is the number of vertices in the output polyline. The
aforementioned case is that in which no simplification occurs due to all vertex distances
exceeding the tolerance.) Moreover, for a large data layer, this algorithm must be
performed on thousands, or even tens of thousands, of polylines.

Taking the computational requirements of Douglas-Peucker into consideration, it
is no surprise that the time costs of performing the algorithm outweighed the
computational benefits of simplification, at least in the context of data display. The
performance of the algorithm is highly dependent on the tolerance value that is chosen.
However, for all tolerance values that resulted in reasonably accurate display, the
algorithm added time to the data display process.

In an effort to decrease the computational costs of the algorithm, I implemented
an iterative version of the algorithm. To do this, I employed standard techniques used to
convert tail-recursive algorithms like Douglas-Peucker. However, even the iterative

version proved more costly in the context of data display than no generalization at all.

Hecht Mapalester Research Project Page 72

4.3.2 The Trivial Approach

Due to the failure of Douglas-Peucker to speed up data display and several other
operations, I instead implemented a trivial line simplification approach whenever
simplification was needed for speed reasons. For instance, in the case of data display, the
most expensive operation is the actual drawing of pixels. As such, my trivial

simplification data display algorithm is as follows:

function TRIVIAL-SIMPLIFY(fine)
inputs: Jine is the line to be generalized and contains a list of all of the points in the line.
lastPoint = firstVertexin(line)
for each vertex in line
point = getAppropriatePlotPoint(line)
if point does not equal /astPoint then
drawLine(/astPoint, point)
end if
lastPoint = point

next

Figure 4.3.2a — The trivial line simplification algorithm implemented in Mapalester.

4.3.3 The Hershberger/Snoeyink Speed-Up

In 1994, Hershberger and Snoeyink proposed an improvement on the classic
Douglas-Puecker algorithm that improves the worst case performance from o(n®) to
O(n*log(n)). The algorithm is identical to Douglas-Puecker except it replaces the
distance calculation step identified above as a key performance issue in Douglas-Puecker
with a more advanced method of distance calculation that uses convex hulls. The
implementation cost of this speed-up is much higher and Hershberger and Snoeyink
themselves admit that “the statistical properties of cartographic data usually means that
the straight-forward implementation is slightly faster than the convex hull
implementation.” (Hershberger, 1994) While Hershberger and Snoeyink claim that their

simplification algorithm “may be interesting” for parallel or interactive applications, none

Hecht Mapalester Research Project Page 73

of these applications currently exist in Mapalester. As such, no attempt to implement the

speed-up in Mapalester will be made in the near future.

4.4 iTunes-like Database Functionality

Through my teaching assistant work, I determined a major weakness of existing GIS
software to be its reliance on Windows Explorer as the dominant data file organization
framework. The user is expected to more or less maintain a system of folders and files
that organizes her or his data. There are two main problems with this framework,
however. First, especially in a lab context, it is easy for this system to be invalidated by a
careless or creative user. Second, the user may miss certain similarities and patterns in
some of her or his data sets that could be identified by a more intelligent data file
organization system. As a result, I set out to develop a new system of data file
organization. Utilizing similar methodology to the manner in which I developed the
GISFormatWindow — identifying what has worked in other programs and modifying it
for my purposes - I singled out two possible models for providing the user with the best
possible data file management features.

The first of these models was found in photo management software, the second in
music jukebox software. How do photo and music files relate to GIS data files? The
answer to this question lies in the fact that photo, music, and GIS files all carry a large
amount of metadata. Whereas a photo may have the capture date, the capture location,
and the resolution; and a music file may have the artist, album, and genre; a GIS file has
the data author, field descriptions, legal restrictions, edition, data group, and a great
number of other metadata fields. I was not pleased with how existing photo management
software allows its users to navigate through the metadata of photo files, primarily
because users of photo management software place a much higher value on previews of
the data along with display of attribute data than do GIS users. While previews are a
satisfactory supplemental feature, they need not be a core element of GIS data file
management. Music jukebox software applications, therefore, provide the better model
for GIS data. Out of a field of several excellent case studies, I identified the wildly
popular iTunes software made by Apple as having what I believe to be the best support of

Hecht Mapalester Research Project Page 74

metadata. I made this judgment for two reasons. First, iTunes by default loads music

files into a central database when they are first opened, and does not require original files
after that point. This frees the user from having to use Windows Explorer or the Mac OS
X Finder to organize data, and assures that the user’s only interaction with music files is
through the iTunes metadata browser, not through location on the hard drive. In other
words, the user never needs to know where she or he stored a music file, just, for
example, who sings the song. Second, I believe iTunes strikes a good balance between
simplicity of interface and data management power. Primarily through a combination of
the use of the “playlist” and “library” concepts, iTunes provides relatively quick access to
music files while still supporting stringent organization and searching for Iﬁusic by
metadata fields.

Mapalester’s GIS data file management system is heavily influenced by that in
iTunes. An additional benefit to the adoption of iTunes’ system is that users familiar
with iTunes will feel right at home in Mapalester. The basis for the GIS file
management system is complete; users can view and edit metadata of loaded GIS files,
for example. The metadata fields supported in the library feature were determined
through the study of a sample of GIS file metadata and through consultation with
Professor Carol Gersmehl. While it is very easy to add/delete/modify the fields, the
fields are likely stay as they are for the first release (see section 3.4 for more details).

Support for searching and data “playlists” will be simple to implement and will be in

the first released version.

4.5 Prime Meridian Conversion or, “The GIS that Acts Like a Globe, Not a
Map »

A significant amount of development time has been dedicated to implementing a
feature that allows users to interact with Mapalester as they would with a globe, replacing
the map-based interactivity found in current GIS software. More specifically, this
feature, which is nicknamed “GISpin,” enables users to interact with the world as a
continuous surface; users panning extents will never encounter an “edge” of the world, so
to speak. A key result of GISpin is that Mapalester will not require the world to be

“split” at a certain meridian. This “split” is very familiar to map viewers, and has been

Hecht Mapalester Research Project Page 75

identified in personal interviews with teachers as a means of marginalizing the portrayal

of certain areas of the world. For instance, most maps made in the United States split the
globe at the meridian that runs between Alaska and the eastern reaches of Russia. This
creates the impression that geographic processes are not continuous across the split
meridian. Given that one of Mapalester’s target markets is the education market, it is
important for Mapalester to avoid supporting this impression.

GISpin is not yet complete, but will appear in the final version of Mapalester.
Implementation of the feature has been an interesting mix of projection and datum
mathematics and computer science techniques. This section is dedicated to describing
these techniques. Because of the nature of spatial data, implementation of this feature is
essentially comprised of two very different components. The first component, which has
been completed but not yet incorporated into the Mapalester interface, involves
implementing the functionality for point data layers. The second, and more difficult,

does the same for polyline and polygon data layers.

4.5.1 Point Support in GISpin

In principle, supporting points in “GISpin” is quite simple. There are many
technical, detail-oriented implementation difficulties surrounding the incorporation of
point GISpin into the projection system, but these are outside the scope of this paper. As
such, the simple theory will be the only element of the point support discussed.
Similarly, I will limit the discussion to data in “unprojected” or “geographic” coordinate
systems, because these systems use commonly known angular units like longitude and
latitude. It is important to note, however, that the same techniques can be adapted to
projected coordinate systems, with one major difference discussed at the end of this
subsection.

In their native form, unprojected coordinates have a latitude and longitude relative to
the equator and a given prime meridian, respectively. While the equator is defined as the
intersection between plane x and the surface of the earth where x is perpendicular to the
line segment that contains both poles (non-magnetic) and intersects this line at its

midpoint, the prime meridian is an arbitrary construct. In fact, the currently predominate

Hecht Mapalester Research Project Page 76

prime meridian — the meridian that passes through Greenwich, England — was not agreed

upon as the default prime meridian until the International Meridian Conference in 1884,
and certain other prime meridians are still used on occasion.

It is this arbitrary nature of the prime meridian from which GISpin derives its power.
Stated simply, GISpin makes the prime meridian the center of the current view extent and
adjusts the longitudinal coordinate of each point accordingly. In this way, if the current
view extent center is in eastern Russia, around 179.5° East longitude using the Greenwich
meridian, Mapalester is able to easily project the points in, say, Alaska, on the right of the
180° line, accurately representing where they exist in the real world. Mapalester does
this by establishing the 0° line as the 179.5° East line, and adjusting all other points
accordingly. In current GIS software, these points would appear on the opposite side of
the possible view extent, just as in a world map.

It is important to consider the issues involved in transferring this methodology to
projected coordinate systems. The most important of these issues involves the infinite
distortion inherent to the periphery of the range of many projection equations. For
instance, in the standard Mercator projection, the south and north poles are projected to
infinity. While this particular case is not problematic to GISpin because the latitudinal
display restriction can be maintained while rotating longitudes, the corresponding
drawback in transverse Mercator (which can be described as Mercator flipped on it side),
is highly problematic. Left unchecked, this problem could result in users scrolling
through infinitely extended extents at the periphery of the range of the projection
equation. This problem has an interesting solution, which has the convenient side effect
of helping to eliminate much of the confusion surrounding projections for new users.
Essentially, Mapalester simply changes the central meridian of the projection equation to
the center of the view frame. In the case of equations with two central meridians,
Mapalester uses the meridians that divide the view frame into three equal parts. This
methodology has the effect of reprojecting all points in the view frame to maximize the
benefits of the chosen projection, averting a common and hard-to-catch problem for new
GIS users. Interestingly, if this methodology is extended, it would be very easy to
implement an auto-projection system in Mapalester that would choose the best projection

for any given view frame. However, such a system would require a large amount of

Hecht Mapalester Research Project Page 77

human-computer interaction research or the construction of an expert system in order to
determine the best projection for every category and scale of view frame extent.

Nonetheless, it would provide an interesting avenue for graduate school research.

4.5.2 Polyline and Polygon Support in GISpin

The concepts behind polyline and polygon support in GISpin are identical to that
for points. After all, polylines and polygons are nothing but a series of ordered points
that are connected with lines. However, the manner in which computers construct and fill
polylines and connect the points in polylines, creates an enormous road block to
implementing support for these geometric forms in GISpin. This problem appears only
when the view extent is large enough that a polyline or polygon that appears on the right
side of the view frame also appears on the left side of the frame. For instance, such a
situation would occur if the view frame is the maximum possible while using GISpin —
the whole world — and the center of the frame is aligned such that the United States is cut
off on the right side. In these situations, when Mapalester tries to draw a line segment
from the last vertex on the right side to the first vertex on the left side (or vice versa),
instead of drawing a line to the edge of the view frame on the right side and beginning
again on the left, Mapalester just draws a line all the way across the view frame.
Obviously, although the context for this bug is somewhat uncommon, the bug is still a
major showstopper.

After attempting many trivial and complicated workarounds, I determined the
solution to this bug to lie in one of the several line and polygon “splitting” algorithms
available. Such algorithms will generate the set of polylines or polygons created by the
bisection of a polyline or polygon by a line. Mapalester would draw the polylines and
polygons output by this algorithm instead of the original polylines and polygons
described in the data layer. Unfortunately, these algorithms have high implementation
costs, especially when speed is such an enormous factor. As such, I have not yet been
successful implementing these algorithms and, as a result, Mapalester still uses a map-

based view frame.

Hecht Mapalester Research Project Page 78

Once I have completed the implementation of these polyline and polygon

bisection algorithms, they will have uses well outside GISpin. For example, as
mentioned above, a small number of data sets come in geographic coordinate systems
that incorporate a prime meridian other than the Greenwich meridian. In order to convert
such data sets to display correctly in a data frame with any other prime meridian, I will
need to use the algorithms to reconfigure the original coordinates of such data sets.
Additionally, the algorithm implementations will come in handy when I am

implementing such standard GIS features as layer intersections and clipping.

4.6 Projection Conversion Functions

While I have discussed the structure and function of the coordinate system structure
in Mapalester in previous sections, I have yet to explain in detail the actual process of
projection conversion. This process is conceptually simpler than the structure of the
coordinate system, but just as complicated to implement. Projection conversion functions
can be separated into two broad categories, those that “project” and “unproject.” Each
map projection has one of each. The functions that “project”, often referred to as
“forward direction” projection functions, take two angular-unit inputs (the longitude and
latitude, often abbreviated as A and ¢, respectively) and return two length unit outputs
(Cartesian coordinates usually in meters, often abbreviated as x and y, respectively). The
functions that “unproject,” often called “reverse direction” projection functions, take
length coordinates as inputs and return angular units as outputs. The functions,
regardless of direction, often take other parameters as well. Common supplementary
parameters include the central meridian, latitude of origin, and standard parallels.

Projection conversion functions can also be categorized based on whether or not they
deal with the Earth as a spherical or ellipsoidal object. Those that view the Earth as a
spheroid are only used in very small-scale maps. The vast majority of commonly-used
projection conversion functions are those of the ellipsoidal persuasion.

When completed Mapalester will support the set of projection conversion functions
found in table 4.6a. The bolded functions are those that are already completed. The table
is based on the equivalent table for ESRI’s ArcGIS 9. Since data is sometimes

Hecht Mapalester Research Project Page 79

distributed in obscure projections, I have made supporting the widest possible collection

of projection conversion functions a high priority. A user not being able to input a

certain data set because the data set is projected in an unsupported projection violates

both the ease-of-use and powerful development goals.

Hecht

NAME DIRECTION ; SHAPE
Aitoff both sphere
Albers Equal Area Conic both ellipsoid
Behrmann both sphere
Bonne both ellipsoid
Cassini both ellipsoid
Craster Parabolic both ellipsoid
Cylindrical Equal Area both ellipsoid
Double Stereographic both ellipsoid
Eckert I - VI both sphere
Equidistant Conic both ellipsoid
Equidistant Cylindrical both sphere
Flat Polar Quartic both sphere
Gall Stereographic both sphere
Gauss-Kruger both ellipsoid
Gnomonic both sphere
Hammer-Aitoff both sphere
Hotine Two Point both ellipsoid
Hotine Azimuth both ellipsoid
Krovak both ellipsoid
Lambert Azimuthal Equal Area both ellipsoid
Lambert Conformal Conic both ellipsoid
Loximuthal both sphere
Mercator both ellipsoid
Miller Cylindrical both sphere
Mollweide both shpere
New Zealand Map Grid both ellipsoid
Orthographic both sphere
Plate Carree both sphere
Polyconic both ellipsoid
Quartic-Authalic both sphere
Robinson both ellipsoid
Sinusoidal both ellipsoid
Stereographic both ellipsoid
Stereographic North Pole both ellipsoid
Stereographic South Pole both ellipsoid
Times both sphere
Transverse Mercator both ellipsoid
Two-Point Equidistant both sphere
Van der Grinten I both sphere

Mapalester Research Project

Page 80

Vertical near-side perspective both sphere
Winkel 1 both sphere
Winkel II both sphere
Winkel Tripel both sphere

Figure 4.6a — Table of supported projections. Bold projections are finished.

Fortunately, I have set up the structure of the coordinate system engine in such a

way that adding new projection conversion functions is relatively easy. All that is

required is to essentially give the new projection a name, enter the function into the code,

and optimize the function. Projection conversion functions are nothing more than

formulas. As such, I simply programmatically encode these formulas in REALDbasic or

C++ code (The final version will only use C++ code as all the data that needs to be

projected exists at a level below that of the map layer, and thus must be coded in C++

plug-in format. See section 3.3 for more details). My main source for the formulas has

been the seminal map projection book Map Projections — A Working Manual by John

Snyder of the USGS. An example of a formula from the book and its REALbasic code

equivalent can be found in figure 4.6b.

Transverse Mercator Forward Projection Conversion Formula for Spheroids:

Synder Formula

x=kN[A+(1-T+C)A’ /6 +5 18T + T? + 72C + 56¢'*)A* /120)
y=k{M-M,6+Ntang[A*/2+(5-T+9C +4C?)

Hecht Mapalester Research Project

Page 81

e?=e*(1-¢%)

N =al+/(1-¢€*sin® §)
T=tan’¢
C=e"cos’¢
A=(A-A)cos¢

e* 3e* 5e° 3¢ 3e* 45¢°)
M=ad(l-———=-—~-)p—-(—+—+ +...)sin2¢ +
1 4 64 256)¢ (8 32 1024)sin2¢
15¢* 45¢° 35¢°
- —...)sind¢ - ...)sin6¢ + ...
(56 1004 Sm4e-Gpy t)sinée

k, = the scale on the central meridian. This is a constant and is input into the formula. For the UTM
projection, this equal 0.9996, so this is the value always in Mapalester.
¢ = the eccentricity of the ellipsoid. This is defined by the datum of the GeoCS class of the same ProjCS
class.
a = the semi-major axis of the ellipsoid. This is defined by the datum of the GeoCS class of the same
ProjCS class.
Mo = “M calculated for ¢, the latitude crossing the central meridian A, at the origin of the x,y

coordinates.” (Snyder 1987) The central meridian is also an input into the projection formula. For UTM

uses, this is the center of the given UTM zone.

Transverse Mercator Forward Projection Conversion Formula for Spheroids:
REALbasic Code Derived from Synder Formula

// pre-calculate all the stuff you can

dim falseE as double = params.value("False_Easting") * myUnit.conversionFactor

dim falseN as double = params.value("False_Northing") * myUnit.conversionFactor

dim lamO0 as double = params.value("Central_Meridian") * myGeoCs.myUnit.conversionFactor

dim kO as double = params.value("Scale_Factor")

dim phi0 as double = params.value("Latitude_Of_Origin") * myGeoCs.myUnit.conversionFactor

dim Mo as double = a * ((1-€2/4 - 3*e4/64 - 5*e6/256)*phi0-(3*e2/8 + 3*e4/32 +
45%*¢6/1024)*sin(2*phi0)+ (15*e4/256 + 45*e6/1024)*sin(4*phi0) - (35*e6/3072)*sin(6*phi0))

dim term1 as double = (1-€2/4 - 3*e4/64 - 5*¢6/256)

dim term2 as double = (3*e2/8 + 3*e4/32 + 45%e6/1024)

dim term3 as double = (15*e4/256 + 45*¢6/1024)

dim term4 as double = (35*¢6/3072)

dim N, T, C, bigA, Mp as double
dim cosY, tanY as double

dim bound as integer = uBound(m)
dim tempBound as integer
dim i,j as integer

Hecht Mapalester Research Project Page 82

fori=1 to bound
tempBound = uBound(m(i).x)
for j = 1 to tempBound

m(i).projX(j) = m(i).projX(j) * myGeoCs.myUnit.conversionFactor
m(i).proj Y (j) = m(i).projY(j) * myGeoCs.myUnit.conversionFactor

cosY = cos(m{i).proj Y(j))
tanY = tan(m(i).proj Y(j))

// handle special cases
if m(i).projX(j) - lam0 >= nDiv2 then
m(i).projX(j) = aDiv2 - SMALLEST NUMBER + lam0
elseif m(i).projX(j) - lam0 <= -xDiv2 then
m(i).projX(j) = - aDiv2 + SMALLEST NUMBER + lam0
end if

if m(i).projY(j) < aDiv2 and m(i).projY(j) > -nDiv2 then
N = a/sqrt(1-e2*(sin(m(i).proj Y (§)))*2)
T =tanY"2
C = eprimesq*cosY"2
bigA = (m(i).projX(j) - lam0)*cosY
Mp = a * (term1*m(i).proj Y (j)-term2*sin(2*m(i).proj Y(j))_
+ term3*sin(4*m(i).proj Y(j)) - term4*sin(6*m(i).proj Y(j)))

m(i).projX(j) =kO0 * N * (bigA + (1 - T+ C)*(bigA"3)/6 + (5 - 18* T+ T2 + 72*C +
58*eprimesq)*(bigA~5)/120)
m(i).projY(j) =k0 * (Mp - Mo + N * tanY*((bigA~2)/2 + (5 - T + 9*C + 4*C"2) *(bigA"4)/24 + (61 -
58*T + T2 +600*C - 330*eprimesq)*(bigA~6)/720))
m(i).projX(j) = m(i).projX(j)*myUnit.conversionFactor + falseE
m(i).projY(j) = m(i).proj Y (j)*myUnit.conversionFactor + falseN
else
Mp = a * ((1-€2/4 - 3*e4/64 - 5*e6/256)*m(i).proj Y(j)- _
(3*€2/8 + 3*e4/32 + 45*¢6/1024)*sin(2*m(i).proj Y(j))_
+ (15*e4/256 + 45*e6/1024)*sin(4*m(i).proj Y(j)) - (35*e6/3072)*sin(6*m(i).projY(j)))
m(i).projX(j) =0
m(i).projY(j) = k0*(Mp - Mo)
m(i).projX(j) = m(i).projX(j)*myUnit.conversionFactor + falseE
m(i).projY(j) = m(i).proj Y(j)*myUnit.conversionFactor + falseN
end if
next
next

Figure 4.6b — The Transverse Mercator Forward Equation for Spheroids, and the corresponding
REALbasic code in Mapalester. Note that the formula does not take into consideration false easting
and northings, but the code does, for the purposes of support for the UTM coordinate systems.

Note that the layout of the formula in REALbasic differs somewhat from that
presented by Snyder. Because these functions, in the case of a large polygon file, for

instance, are run on millions of points in sequence, speed of operation is an essential

Hecht Mapalester Research Project Page 83

consideration while programming. Consequently, in keeping with the “speed is harder

than function” experience of this software engineering project, getting the projection
function working correctly usually is less difficult than getting the projection function
working at its maximum possible efficiency. One approach that I often used to speed up
the function was to pre-calculate all of the constants for the projection of any given map
layer prior to projecting all the vector objects in that map layer. The main goal is to take
as much out of the iterative loop as possible. In non-jargon terms, the goal is to only
calculate once the portions of the formula that need to be calculated only once. The
projection functions, as presented by Synder, frequently calculate these portions of the
formula with each point conversion.

One especially difficult aspect of projection function programming is the handling
of the special case coordinate input. Many of the projection conversion functions make
heavy use of trigonometric functions that have special or undefined values with certain
inputs. For example, the tan function used in figure 4.6b means that Mapalester must
handle the cases when the input angular values are either 7/2 or —n/2. If I do not, the
entire function will fail. In this case, I have chosen to make any input that is 7/2 or —n/2
the closest number possible to that value by adding or subtracting the smallest number

recognizable by a standard 32-bit personal computer (0.000000000000001).

4.7 A Small Subset of Other Planned Features

The features and functionality identified in the previous parts of section four of
are only a subset of the features and functionality that have been currently developed and
are an even smaller subset of the features that will appear in the final version of
Mapalester. Moreover, the features and functionality identified above are in large part
aimed at the “powerful” development goal identified in the introduction. In this final
part, I will describe a series of features and functionality that will appear in the final
version of Mapalester, but for which I have done little implementation work thus far. I
will also pay careful attention to identifying the reasons behind including these features

the context of the target markets and development goals identified in the introduction.

Hecht Mapalester Research Project Page 84

4.7.1 Incorporation of the National Map Application Programming Interface
(API)
One of the largest challenges to developing a free GIS software program is to find

data to distribute with the program. Even with the limited amount of free data available,
there are all sorts of data distribution issues. In order to fully meet my development goals
of producing a free (goal four) and powerful (goal one) GIS software application, it is
essential that I provide a substantial amount of free data with the GIS. The easiest way to
provide that data is to implement the National Map API. I discovered the National Map
API during a presentation by the United States Geologic Survey (USGS) on its National
Map web depository of spatial data. Implementation of the National Map API will allow
Mapalester users access to all data inside the National Map from within Mapalester’s
interface; to the user, the data may as well reside on the user’s hard drive. The data in the
National Map ranges from geological to hydrological to demographic to transportation to

administrative.

4.7.2 Providing Easy Access to Census Data

For the same reason that I have chosen to implement the National Map API, 1
have also made making U.S. census data easily available a high priority feature. It has
been my experience as a GIS teaching assistant, and my perception from the GIS
applications literature, that some of the desirable data for non-profit and K-12 education
GIS applications are U.S. census data. My goal for Mapalester is to make accessing
census data as easy as possible. The idea is that users should never have to visit the U.S.
census website itself; they should be able to get all the census data they need from within

Mapalester’s interface.

4.7.3 Data File-Sharing Using the Gnutella Network

In order to make even more free data available to Mapalester users, I hope to
implement a version of the Gnutella network within Mapalester. Through the network,
Mapalester users would be able to share the data sets that they create with other users

around the world. For instance, I would be able to share the point shapefiles of Christian

Hecht Mapalester Research Project Page 85

contemporary music concert locations that I created from primary sources for a recent

research project on the geography of Christian contemporary music, as well as the point
shapefiles of Bruce Springsteen concert locations I created for fun. Similarly, students in
a middle school science class could share GPS points that they collected along with

associated attribute data.

4.7.4 Internationalization

As I have programmed Mapalester, I have been careful to lay down the
framework to make it as easy as possible to produce versions of Mapalester in languages
other than English. I have done this by making heavy use of constants instead of directly
programming English language phrases into the source code. (A constant is essentially a
variable that can change its value based on the language of the operating system on which
Mapalester is running.) This will allow me to send someone a spreadsheet of all the
words and phrases that I need translated, have them translate that spreadsheet, and
directly input the translated phrases into Mapalester. In other words, once I finish the
English version of Mapalester, all I will need is a translator for any given language to
make a version of Mapalester for that language. Hillegass (2002) suggests that software
with an international audience be translated into at least English, French, Spanish,
German, Dutch, Italian, and Japanese. I also hope to produce versions in Mandarin,
Cantonese, Taiwanese, Russian, and Serbian.

Support for multiple languages certainly bolsters the ease-of-use development
goal and all of its benefits to Mapalester’s target markets. In addition, the distribution of
Mapalester in multiple languages will not only benefit Mapalester’s target markets, but it
will also grow the markets. Whereas the English version of Mapalester can only appeal
to the three target markets in English-speaking countries, support for other languages will

make Mapalester accessible to the target markets in other countries.

Hecht Mapalester Research Project Page 86

Constant name: EDITION

Tyipe: 'J!'_I',ri_ng E

Valus: a9
Access Scope: | Public (Anywhere using BrowserDatabas... I8
ot Language Value
Any efault Editan
T —T— |

Chas) (o) (o) @

ﬁm'— F
P M - =

i MINY = =
ﬁ,m--
iILHIHISI'EI-"'

i RECORDNUMBER - =
ﬁlﬂﬂmm- e

B A T] -

i1_' = g -

™ &

el

e———— ¥ | W R S (Ee—— - S — PR S

Figure 4.7.4a — A screenshot of the REALbasic constants interface shows how simple it is to add new
languages to Mapalester. If the operating system on which Mapalester is loaded is in Spanish mode,
Mapalester will display “Edicién” instead of “Edition” in the Library lnfo Browser window.

5.1 Conclusion

After nine months of attempting a project so challenging in both scale and
difficulty, I feel that I can conclude this paper with a reasonable amount of pride.
Granted, I did not meet the project’s original goal of releasing a product by this time.
However, I believe | have made more than satisfactory progress towards doing so given
the great number of unexpected challenges I have encountered along the way. I feel
confident that the project is in a state where it can be finished in a moderately small
amount of time. In addition, presenting the software and discussing it with members of

the target market have led me to believe that my hypotheses about the unmet needs of the

Hecht Mapalester Research Project Page 87

target markets are true. I already have a small number of people eagerly awaiting the

finished product.

On an individual level, the diverse array of knowledge and skills I gained during
this project will prove useful as I continue my career in GIScience. I know understand
the concepts behind coordinate systems well beyond the functional knowledge I had
before. I can write code in C++. I understand database systems and SQL. I know the
shapefile format and the reasons behind ESRI defining this way. My knowledge of DFLs
and BNFs, learned in the most theoretical of computer science classes, came into
practical use. I am now familiar with the trials and travails of computer software
engineering, not just computer science. The list goes on. This project has been a grand
adventure into both of my majors and has been a fitting and synthesizing finale to my
bifocal college career.

I find myself at this juncture very excited about the possibility of other students
heading down the same path. 1 believe that my progress in an attempt to recreate a very
expensive package of commercial software is evidence that, with a couple of
modifications, a similar effort in the future could be successful in the time allotted for this
project. This is a significant statement as I am essentially arguing that students with a
computer science background have the empowerment potential of producing free and
powerful software for groups with needs left unmet by the commercial market. In the
subsequent few paragraphs, I will identify and explicate the aforementioned changes that
I think will make similar projects more “profitable” in the future. These paragraphs can
also be read as funding recommendations for Keck grants and other summer funding

My strongest recommendation for engaging in a project like my own is to make
sure that there is more than one student working on the project. If the project is of the
same scale as Mapalester, two students should be sufficient, provided they are willing to
put in the time and effort necessary. With two students on the job, a software project like
Mapalester would probably make it more than twice as far, as collaborative computer
science projects tend to get past frustrating and work-stopping moments better than solo
projects.

The second recommendation is to make sure that there is at least a semi-expert in

the theories and techniques necessary for making the software, not just using the

Hecht Mapalester Research Project Page 88

software. In my case, I was expecting to make it past the programming of the basics of

GIS much faster than I did, and then rely on Dr. Laura Smith for her knowledge of spatial
statistics to implement higher-level GIS functions. Ideally, it would have been helpful to
also have a professor proficient in the computer science elements of basic GIScience to
get me through the trouble spots.

Finally, students who wish to engage in similar projects should, if possible, enroll
in at least an intro software engineering course at one of the ACTC schools. I had
something similar to this course during my time at UC San Diego, and I found elements
of it to be very helpful. I am sure further education on the engineering aspects of
computer science would have provided even more insight into how to approach the

problem of a massive programming project.

5.2 Acknowledgements

I would like to thank the following people for their help on my project: Dr. Laura
Smith, for her advising on both a professional and personal level; Jovana Trkulja, Paul
Singh, and Cole Akeson, for keeping me sane throughout my exciting, productive, and at
times frustrating summer on the Keck Grant; the Keck-Bigelow Foundation, for funding
much of my research; and Professor Carol Gersmehl, for providing me the GIS skills and

passion necessary to engage a project like Mapalester.

6.1 Bibliography

Bachmann, Erik. Xbase File Format Description. 2000 Available from
http://www.pgts.com.au/download/public/xbase.htm (last accessed 1/27 2005).

-Bachorski, Andy, Andy Fuchs, Bill Mounce, Brian Blood, and et. al. 2003. VALENTINA
Database Kernel. Paradigma Software, .

— — —2003. VALENTINA for REALbasic Reference. Paradigma Software, .
— — —2003. VALENTINA SQL. Paradigma Software, .

— — —2000. VALENTINA for REALbasic Tutorial. Paradigma Software, .

Hecht Mapalester Research Project Page 89

Baker, Thomas R., and Sarah W. Bednarz. 2004. Lessons Learned from Reviewing
Research in GIS Education. Journal of Geography 102:231.

Beckmann, Norbert, Hans-Peter Kriegel, Ralf Schneider, and Berhard Seeger. 1990. The
R*-Tree: An Efficient and Robust Access Method for Points and rectangles. SIGMOD
Conference 1:322.

Brandt, Dave. 2004. REALbasic Language Reference. Austin, TX: REAL Software, In.c.
Brandt, David. 2004. REALbasic User's Guide. Austin, TX: REAL Software, Inc.

CMAP. CMAP Case Study: Robin Hood Foundation. Available from
http://www.cmap.nypirg.org/case_studies/CS2/default.asp (last accessed 3/31 2005).

Dalrymple, Jim. 2005. Apple desktop market share on the rise; will the Mac mini, iPod
help? MacCentral.

Department of Defense. 1984. World Geodetic System 1984: Its Definition and
Relationships with Local Geodetic Systems.Report Number, NIMA TR8350.2.

Elwood, Sarah. 2002. GIS use in community planning: a multidimensional analysis of
empowerment.

ESRI. 2000. HowTo: Create projection metadata (.prj) files for shapefiles. Redlands,
CA: ESRI, Report Number, 14056.

— — —1998. ESRI Shapefile Technical Description: An ESRI White Paper.

— — —ArcGIS 8: Supported Coordinate Systems and Geographic Transformations.
Redlands, CA: ESRI, .

Estier, Theodore. About BNF Notation. In University of Geneva [database online].
Available from http://cui.unige.ch/db-

research/Enseignement/analyseinfo/ AboutBNF.html (last accessed 1/31 2005).
Gewin, Virginia. 2004. Mapping Opportunities. Nature 427:376.

Guttman, Antonin. 1984. R-Trees: A Dynamic Index Structure for Spatial Searching.
SIGMOD Conference 1:47.

Hecht, Brent. 2004. Classifying GIS Polyline Data Using Neural Networks.
— — —2004. Mapalester, Empowerment, and Radical Democratic Citizenship.

Hecht, Brent, and Ben Johson. 2003. Final Project for CS325 - Compilers: A Compiler
for Cabal.

Hecht Mapalester Research Project Page 90

Hershberger, John, and Jack Snoeyink. 1992. An O(n*log(n)) Implementation of the
Douglas-Peucker Algorithm for Line Simplification. Proceedings of the 5th International
Symposium on Spatial Data Handling 1:134.

Hillegass, Aaron. 2002. Cocoa Programming for Mac OS X. Boston, MA: Addison
Wesley.

Keohane, Georgia L., and CMAP. CMAP Case Study: Civic Builders. Available from
http://www.cmap.nypirg.org/case_studies/CS1/default.asp (last accessed 3/31 2005).

Kerski, Joseph, J. 2004. Analyzing the Earth With Geographic Information Systems.
National Speleological Society News.

Leeser, Miriam. Variants on the K-Means Algorithm. 1999 Available from
http://www.ece.neu.edu/groups/rpl/projects/kmeans/variants.html (last accessed
1/10/2005 2005).

McGrew, J. C., and Charles B. Monroe. 2000. An Introduction to Statistical Problem
Solving in Geography. United States of America: McGraw-Hill.

McMaster, Robert B., and K. S. Shea. 1992. Generalization in Digital Cartography.
Washington, D.C.: Association of American Geographers.

Mikalajunas, Peter. 1998. DBF File Structure.
Neuburg, Matt. 2001. REALbasic: The Definitive Guide. Sebastopol, CA: O'Reilly.

O'Rourke, Joseph. 1998. Computational Geometry in C. Cambridge, UK: Cambridge
University Press.

REAL Software. REALDbasic vs. Java. In REAL Software, Inc. [database online].
Available from http://www.realsoftware.com/realbasic/compare/java/ (last accessed 3/31
2005).

Russell, Stuart, and Peter Norvig. 2003. Artificial Intelligence: A Modern Approach.
Upper Saddle River, NJ: Prentice Hall.

Snyder, John P. 1987. Map Projections - A Working Manual. Washington, D.C.: United
States Government Printing Office.

State Cartographer's Office. 1998. Wisconsin Mapping Bulletin.Report Number, 24.
Sunday, Dan. Polyline Simplification. 2002 Available from

http://geometryalgorithms.com/Archive/algorithm_0205/algorithm_0205.htm (last
accessed 6/01 2004).

Hecht Mapalester Research Project Page 91

Theodoridis, Yannis. R-tree-Portal. 1/26/2005 Available from http://www.rtreeportal.org/
(last accessed 9/15 2004).

U.S. Census Bureau Geography Division, Cartographic Operations Branch. Scale,
Generalization, and Limitations of the Cartographic Boundary Files. In U.S. Census
[database online]. 2004 Available from http://www.census.gov/geo/www/cob/scale.html
(last accessed 3/25/2005 2005).

United States Geological Survey. 2003. Implementation Plan for The National Map.
Washington, D.C.: United States Departemtn of the Interior, Report Number, 1.0.

Wilder, Anna, Jonathan D. Brinkerhoff, and Teresa M. Higgins. 2004. Geographic

Information Technologies + Project-Based Science: Contextualized Professional
Development Approach. Journal of Geography 102:255.

Wise, Stephen. 2002. GIS Basics. London, England: Taylor & Francis.

Hecht Mapalester Research Project Page 92

	Macalester College
	DigitalCommons@Macalester College
	May 2005

	Mapalester:Powerful, East-to-Use GIS Software Under Development
	Brent Hecht
	Recommended Citation

	tmp.1118407534.pdf.K77sp

