
Macalester College
DigitalCommons@Macalester College

Geography Honors Projects Geography Department

May 2005

Mapalester:Powerful, East-to-Use GIS Software
Under Development
Brent Hecht
Macalester College

Follow this and additional works at: http://digitalcommons.macalester.edu/geography_honors

Part of the Geography Commons

This Honors Project - Open Access is brought to you for free and open access by the Geography Department at DigitalCommons@Macalester College.
It has been accepted for inclusion in Geography Honors Projects by an authorized administrator of DigitalCommons@Macalester College. For more
information, please contact scholarpub@macalester.edu.

Recommended Citation
Hecht, Brent, "Mapalester:Powerful, East-to-Use GIS Software Under Development" (2005). Geography Honors Projects. Paper 5.
http://digitalcommons.macalester.edu/geography_honors/5

http://digitalcommons.macalester.edu?utm_source=digitalcommons.macalester.edu%2Fgeography_honors%2F5&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.macalester.edu/geography_honors?utm_source=digitalcommons.macalester.edu%2Fgeography_honors%2F5&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.macalester.edu/Geography?utm_source=digitalcommons.macalester.edu%2Fgeography_honors%2F5&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.macalester.edu/geography_honors?utm_source=digitalcommons.macalester.edu%2Fgeography_honors%2F5&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/354?utm_source=digitalcommons.macalester.edu%2Fgeography_honors%2F5&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.macalester.edu/geography_honors/5?utm_source=digitalcommons.macalester.edu%2Fgeography_honors%2F5&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarpub@macalester.edu

'jMopolesten Simple, Powerfu, GrS Softwore
Under Development"

GlSsoftwsre powerful > eosy-to- use > free

Geography Honors Prolect
Computer Science Capstone

Brent Hecht
Advisor: Dr. Laura Smith, Geography

Comp. ki. First Reader: Dr. Susan Fox
Comp. Sci. Second Reader: Dr. Libby Shoop

l.INTRODUCTION

l l. PuRposE oF THE MAPALESTER PRoJEcr2

1.1.1 ANrr,vsrs oF rHE K-12 EDUcArtoN TARGET MARKET........3

I.I.2 ANALYSIS oF THE NON-PROFITS TARGET MARKET,.,...8

l . l .3 ANALysrs oF THE PERSoNAL UsE TARGET MARKET....9

I.2 INTRODUCTIoN To THE GISCIENCE ENGINEERING OF MAPAL8ST8R...............I3

1.3 INrRoDUcrroN ro GIS13

2. BASIC ENGINEERING OT' MAPALESTER..................

2.1 INrRoDUcrroNrorHEENGINEERINGoFMAPALESrER....................16
2.2 WHAr rs REALBASTC? 16
2.4THE CHALLENGES OF MY CHOSEN ARCHITECTURE,.....I9

3. THE OBJECT-ORIENTED STRUCTURE OF MAPALESTER23

3.1 ANOveRvrEworrHEOBJECr-ORJENTEDSTRUCTURE...23
3.2Tnn INTERFACE SysrEM.........23
3.3 THB DATA INTERAcTToN Sysrsu28
3.4 THB PnoD
3.5 Tse DATABASE SysrEM.........36

4. THE DESIGN AND IMPLEMENTATION OF MAPALESTER'S FEATURE SET........................45

4.1. SuppoRT oF A vARrETy oF FILE FoRMArs45
4.1.I GeNsnnL IssuEs RELATED To FILE Fonuer SuppoRT..................46
4.I .2 GrNrNnL ISSUES RELATED IO VECTON FILE FORMAT SUPPORT ...,......48
4.I.3 SHAPEFI
4.1.4 SuppoRr ron THr ".PRJ" ExrENsIoN...............56

4.2.1 TP.e BRUTE FoRcE AppRoAcH61
4.2.2T*ts R-Tnrn AppnoAcH..............64

4.3.1DoucI-n
4.3.2 THETRTVTAL AppRoAcH....................73
4.3.3 Tsn HrnsHsencsR"/SNoEYINK SPEED-UP......73
4.4 ITUNES.LIKE DATABASE FUNCTIONALITY...............74
4.5 Pprue MBRTDTAN CoNVERsIoN on, "THn GIS THAT Acrs LIKE A GLoBE, Nor A MAP"....................75
4.5.1 PoINr SuppoRr rN GISPIN76
4.5.2 PoLYLTNE AND PoLycoN Supponr IN GISpIN ..'......'......78
4.6 PROJECTION CONVERSIONFUNCTIONS .,..,...79
4.7 A Srrlerr SUBSET oF OTHER PLANNED FEATURES...... '84
4.7.I INcoRpoRArroN oF rHe NarroNnr MAp AppLIcArroN PnocneMMINc INrennece (APD..............85
4.7.2 PRovrDrNG EAsy Accnss ro Cnsus Dere85
4.7.3 Dnrt FrLE-SHARTNG Usnc rHn GuurELLANETWoRK................ '.......85
4.7.4 INIBnNnrIoNALIZATIoN....................86

5.2 ACKNoWLEDGEMENTS.. '........89

6.l BIBLIOGRAPHY

t6

Mapalester Research Project Page I

1. Introduction

1.1. Purpose of the Mapalester Proiect

Over the past nine monthsn I have been developing a new GIS software

application named Mapalester, after my soon-to-be alma mater. The goals of the research

project with Mapalester as its product are defined by the three target markets of the

product: K-12 education, non-profits, and individual/personal use. I identified these

markets as markets that had one or more needs for GIS software that is/are currently

unmet by the body of cunently-available GIS software. These unmet needs vary widely

among the markets, and I struggled at first to identiff a reasonable set of development

goals that would equip Mapalester with the functionality that would meet all three of

these markets' needs. In the en4 however, I was able to construct four broad

development goals to which I aligned my design and programming efforts. First,

Mapalester needs to be powerful. In other words, if Mapalester is not able have some

basic set of GIS functionality, Mapalester will be more or less useless to all three of

Mapalester's target markets. Second, Mapalester must be easy-to-use. Thir4 Mapalester

must work on both the Mac and PC platforms. Finally, Mapalester must be available for

free.

In the subsequent parts of the introduction, I will discuss the specific unmet GIS

needs of each of the target markets and will explain how these four development goals -

when fully implemented in Mapalester - will enable Mapalester to meet those needs. A

diagram of the needs and markets is found in figure 1.Ia. To confine this discussion to

merely the inhoduction of this paper is to falsely reduce the complexity and, in many

cases, the immensely troubling nature of the unmet GIS needs in the three target markets.

However, the focus of this project - at least at this stage - is not to explore in depth the

effects of a powerful, easy-to-use,Mac-compatible, and free GIS on these target markets.

Rather, this project is by and large a GlScience software engineering project. The

subsequent discussion is intended to provide some context for my GlScience software

engineering work. A very valuable direction of future research would be to examine

these target markets and development goals in greater detail. My hope is that this future

Mapalester Re seaxch Proj ect Page2

reseaxch will eventually be enabled with empirical data from observing the effects of

Mapalester after its release.

Figure 1.14 - The unmet needs of Mapalester's target markets.

Moreover, before this more detailed discussion of the reasoning behind

Mapalester's basic design, it is important to note that embedded in the goals and target

markets of Mapalester is an inherent commitment to helping leveling the social playing

freld by removing socioeconomic barriers to the incredibly powerful tool that is GIS.

This commitrnent is similar to that present in an Al Gore speech cited by Elwood (2002)

"[GIS will] help communities help themselves by putting more
control, more information, more decision-making power into the
hands of families, communities, and regions to give them all the
freedom and flexibility they need to reclaim their own unique place
in the world." (State Cartographers Office 1998)

1.1.1 Analysis of the K-12 EducationTarget Market

At fust, it may seem ridiculous to think of Geographic Information Systems in the

context of primary and secondary education. Today, GIS is often thought of as acomplex,

professional- and academic-level tool. After all, GIS is taught at the undergraduate level,

and masters deglees in GIS are becoming widely available in most countries with

Target Market Unmet Need

K-12 Education Software to increase adoption of GIS as a

method of teaching existing ourriculum

Non-profits Software to empower non-profits with the

same GIS capabilities as for-profit

companies and government.

Personal Use Software to facilitate the long-overdue

transition of GIS from the lab to the

consrrner desktop.

Hecht Mapalester Research Project

graduate-level Geography programs. Indeed, for most of its uses, GIS is a very powerful

- and correspondingly complex - tool. Howevero as documented by Kerski, Baker,

Bednarz, and others, GIS can have many helpful applications in primary and secondary

education curriculum. "Since the First National Conference on the Educational

Application of Geographic Information Systems in t994, researchers and educators have

repeatedly identified the merits. ...of including GIS in elementary and secondary

classrooms." (Baker, Bednarz 2004) Kerski skillfully distinguishes the applications of GIS

that are helpful at aK-I}level from the applications at higher levels of education through

a simple categorization method (emphases are my own):

"GlS is used in three major ways in education at the
elementary, secondary, and university level. First teaching about
GIS dominates at the university level, where courses in methods
and theory of GIS are taught in geography, engineering, business,
environmental studies, geology, and in other disciplines. Every
major university and most community colleges in the USA host a
GIS program. Second, teaching with GIS is emphasized at the
elementary and secondary level, where GIS is increasingly used to
teach concepts and skills in earth science, geography, chemistry,
biological science, history, and mathematics courses. Finally, GIS
is used as a fundamental research tool in all institutes of higher
education in geography, demography, geology, and other
disciplines." (Kerski 2004)

Despite these widely acknowledged benefits and well-defined role of GIS in the

K-12 market, all those with knowledge of GIS in education agreethat efforts to

incorporate GIS into the K-12 curriculum have mostly failed thus far. In the context of the

infamous "Innovation Adoption Curve," Baker and Bernardz note that GIS in education

has not made it past the early adopter phase in K-12 education. In other words, "GIS

education is still struggling to win a wider audience among those educators who serve as

role models and opinion formers for the majority of teachers, characterized by respectable

early adopters" (Baker, Bednarz 2004).

Mapalester Research Project

Sanr'adon

T*eItl

GIS adoplion

E!.ly Arbpt rr

Figure 1.1.1& - The Ionovatiotr Adoptiotr Curve for GIS ys. col|lput€rr io K-12 educrtioo'

Therefore, stated broadly, the unmet need of the K-12 education GIS market a

GIS technology that will enable schools to successfully teach with GIS, forcing the

progression of GIS technology along the innovation adoption curve in the K-12 market.

In other words, the goal for Mapalester is to facilitate the incorporation of GIS into the K-

I 2 curriculum. Each of the four development goals mentioned above is designed to

empower Mapalester with the characteristics and features necessary to fill this void in the

K-12 GIS market. In the subsequent paragraphs, I will elaborate upon the exact manner in

which the four design goals of Mapalester help to meet this need.

The frst design goal - that Mapalester must be a reasonably powerful GIS - is an

absolutely essential prerequisite for any GIS software that attempts to help incorporate

GIS into the cuniculum of K- 12 education. In order for Mapalester to be an option for K-

12 GIS, it must have the entire set of basic GIS functionality required in the use of GIS in

the K-12 curriculum. Rather then identiff the exact set of functions necessary for K-12

education, I have assumed that K-12 requires the same basic set of functionality as the two

other target maxkets. I have defined this basic set of fimctionality as all of the features that

I was taught in two semesters of undergraduateJevel GIS. This includes features ranging

from basic raster and vector GIS tasks to raster-based spatial analysis to geocoding. After

Hecht Mapalester Research Project Page 5

this basic set is completed, it would be an interesting extension of research to try to fine

tune Mapalester's functionality for the needs of the education market. I have done some

initial thinking - based on the literature and on my own assumptions - on what this fine-

tuning would entail, a description of which can be found in section 4.6.

Judging from existing literature, the most important design goal for the K-12

market is ease-of-use, my second design goal. From the literature, it seems that the largest

barriers to incorporation of GIS into the K-12 market lie in the complexity of currently

available GIS software. This complexity inhibits the adoption of GIS in nearly all phases

of the education process - from in-service professional development to the development

and implementation of lesson plans to students' learning of the curriculum through GIS.

The third design goal is almost exclusively for the K-12 education market.

According to Quality Education Data (QED), in 2003, 28 percent of the installed base of

the computers in K-12 schools in the United States is made up of Apple Macintoshes.

While more recent data suggests that Dell is far outselling Apple in this market (41

percent to 14 percent), Macs will remain a large portion of the K-12 education market for

a long time to come. Moreover, Apple has made regaining the lead in the K-12 education

market a high priority in recent months, and has had some success at doing so. As such,

the design goal that Mapalester must be able to work on both PCs and Macs is an essential

design goal for the education market.

When fust investigating the K-12 GIS market and its unmet needs,I assumed that

the most important design goal would be extremely low cost. However, at least according

to the K-12 GIS literature, cost does not seem to be the pre-eminent barrier to adoption of

GIS into the curriculum. Rather, as mentioned above, the complexity of use of currently

available GIS software seems to be the largest such barrier. In fact, in Kerski's seminal

paper on GIS in the K-12 market, he does not identi$ cost at all as a significant reason

why GIS has not made it past the early adopter stage in the innovation adoption curve.

This omission probably revolves around his reliance on a survey sample that only included

registered owners of the top three GIS applications who listed their occupation as K-12

educators. A helpful path of future research would be to delve into the immense body of

literature covering the "digital divide" in education and to apply findings from this

literature to a GIS context. Kerski does mention, however, that only 5 percent of

Hecht Mapalester Re search Proj ect

American high schools have access to GIS software. As such, while the "free availability"

development goal may not have much of an effect for these 5 percent and the likely

smaller percentage of American middle schools and schools located in other countries that

implement GIS, it will play at least some role in GIS adoption in the vast majority of this

target market. It is no doubt a lot easier to convince a school administration to invest in

GIS when it costs nothing to do so. Figure LLIb shows the approximate cost of

implementing GIS using in a K-12 environrnent. Note that the prices are essentially rental

fees; the software must be renewed each year for the price seen in figure l.l.lb.

Approrimate ANI{UAL Cost to
Equlp 3O Computeno In K-12 Lab

$1,000

$900

$800

$700

$600

$s00

$400

$300

$200

$r00

$0
Idrisl Killmaniaro ESRI

GIS Product

Maplnfo

Figure l.l.lb - Cort to equip 30 coaputen i[s K-12 computcr lrb or chtrroon for onc ycar. Cllrk
Lrbs, dcveloper ofldrisi, hrs I diffcrrtrt priclrg scheme thrn thc ESRI (Envirotrmc rl Systems

Rcs€erch ltr3titutc) and Maplnfo, rnd thc $900 figure is an ertimrte b8scd on thc mrny pricing plans
ofered by Clar|(Labs.

If we localize the innovation adoption curve to a sample individual school, it is

easy to see that it would be irnpossible to make it past the early adoption phase wilhout the

administration making the very basic element of GIS adoption - the GIS software its€lf -

available to the early and late majority population of teachers. Indeed, in a personal

Hecht Mapalester Research Project Page 7

interview, Sara Damon, ateacher at Stillwater High School in Stillwater, MN indicated

that while there are relatively steep discounts available for schools that want to buy GIS

software, a free software package would be a huge boon to schools and school districts

that have not yet invested in GIS software.

1.1.2 Analysis of the Non-Profits Target Market

According to Elwood (2002), authors in the GIS literature have found that

"information technologies and GlS...benefit [non-profits and community groups] by

expanding participation in decision-making processes and by increasing their political

power." (Elwood 2002). Although Elwood identifies some nuanced problems with their

analyses, Elwood more or less agrees with these authors' conclusions. However, Elwood

also notes that for GIS to allow for true empowerment of non-profitsr, there must be

some way to free the non-profim that use GIS from the external power structures that

often accompany the use of GIS. For instance, for many non-profits to utilize GIS in

their activities, they must either obtain funding to purchase GIS software or they have to

rely on GIS "shops" and colleges and universities. Thanks to its core development goals,

Mapalester will be able to simultaneously benefit the non-profit community in the ways

identified above and free non-profits from the external oversight and confol that usually

accompanies GIS adoption.

Because of my dedication to making Mapalester into a "powerful" GIS software

application, Mapalester should be able to benefit non-profits in the ways identified in the

GIS literature by Elwood. As long as Mapalester can provide most, if not all, of the GIS

features and functionality required by non-profits, Mapalester will inherent$ result in

these benefits, according to the literature.

Mapalester provides GIS power to non-profits without the negative side effects of

currently available commercial GIS software applications through the "free" and "easy-

to-use" development goals. Obviously, by making Mapalester a free download, non-

profits wishing to utilize GIS no longer will have to rely on outside funding sources.

' I wiil group together non-profits and community groups under the umbrella title ofnon-
profits for the remainder of the paper.

Hecht Mapalester Research Project Page 8

However, another barrier to GIS usage in non-profits is likely the complexity of existing

GIS software. Even free GIS software is useless to a non-profit unless there is someone

in the organization who knows how to use it. Lack of GIS experience could drive non-

profits back into the arms of external groups, even if free GIS software is available.

Therefore, similar to the benefits of the "ease-of-use" goal for the K-12 education market,

Mapalester should both decrease the amount of training necessary to use GIS and, in the

process, increase the number of people in a given organization who are capable of using

GIS. Hopefully, Mapalester will be able to do so enough that a large number of non-

profits will be able to internalize their GIS operations.

1.1.3 Analysis of the Personal Use Target Market

Despite having been widely used for over thirty years, GIS has yet to make the

jump from the business office, government center, and laboratory of academia to the

desktop of the consumer. Simply stated, the goal of Mapalester in the context of this

target market is to be the springboard on which GIS can make that jump. The two main

reasons that GIS cannot be used on the personal computer are price and compatibility.

The "free" and "Mac-compatible" development goals directly target these causes. Also,

the "powerful" development goal is a prerequisite for the other two goals. Ease-of-use

does not generally play a role for the GIS fan who wants to use GIS for her or his

personal use. In the subsequent paragraphs, I will discuss the impact of the "free" and

"Mac-compatible" development goals on this target market.

Before I engage in this discussion, however, an examination of hardware

requirements of GIS in the context of the average consumer's personal computer is

appropriate. In other words, one possible reason that GIS could not be used on personal

computers is that personal computers generally do not have the "horsepower" to handle

GIS. This possible rernon, however, is completely rebuffed by the table in figure 1.1.3a.

This table shows that there is nothing special about GIS that makes it require extra

hardware compared with a sample of standard consumer PC applications. The table also

shows that nearly all home PCs made in the last several years or so should be able to run

Mapalester Research Project

D6.Etl.o SDatrB tErt6l llamorr Elilrlr

l?urs{.7)O0o or iP iDCflIlr I56MB rtr
trrlo flr t(P I A ! H H ? I?AHE gtTtt B

IrElEls 3 vT. 2000, or l(P IDDTIHU i56t{8 r/r
8/f6E hT- 2OC{ or lP rrr taME

rcrtrfo 7.8 rB/tlF. hT- lORl or XP UE t2HE 103$tB
t 3 E 9 E VP atGll,

GIS satisfactorily. In other words, the installed base of consumer PCs is more than ready

for GIS.

Figure 1.1.3a - System requirements for a sample of consumer software applications and the leading
GIS software applications. The current t:trilllffJC configuration from Dell is included for

Figure 1.1.3b displays the price of the leading GIS software applications for the

average consumer. The cost of several industry-standard consumer software applications

are provided for comparison. It is easy to see that, at best, GIS software ranks among the

most expensive of consumer software applications, and at worst, well outside the

consumer software price range. Note that ESRI (Environmental Systems Research

Institute) charges three times as much for ATcGIS 9 with Spatial Analyst as Adobe does

for its entire suite of creative applications that includes such powerful tools as Photoshop,

Illustrator,InDesign, Golive, and Acrobat. Obviously, cost is a very important banier to

the adoption of GIS on the consumer desktop. As such, the "free" design goal will make

Mapalester Research Project Page

Mapalester a very appealing product within this target market.

Figure l.l.3b - Prices wcre gathcred from s vsricty ofsources includilg tbe manufacturer and thc
nanufrcturcr's pricc on AEazoD.coE.

Even for students, for whom software is cheaper thanks to academic licensing and

who will likely make up an important portion of the personal use target market,

Mapalester's price will be very appealing. Figure l.l.3c is the student pricing analogy to

figure 1.1.3b. Despite the significant student discounts provided by some ofthe GIS

providers, Mapalester will still save students at least $250. In additiotu students using

Mapalester will not be subject to some ofthe restrictive usage policies that often

accompany student discounts. For instance, the academic discount for REALbasic, the

software used to program much of Mapalester, demands that no commercial software be

produced with the copy ofthe software purchased with the academic discount.

Full Pric€ for a Single Lic€ns€ of Leadang GIS Apps
and Other Consum€r Software Appllcatlons

Product

$4,s00

$ ++,ooo
R $3,soo
=; Se.ooo
S, $z,soo
I $z,ooo
I sr,soo
E $1,ooo
E $soo

$o

Hecht Mapalester Research Project Page I I

Stud€nt Price for a Slngle Llcense of Leading GIS App3
and Oth€r Consum€r Software Appllcatlonc

$4,s00
? $4,oooo
R $3,soo
E $3,000q

S, $2,soo
I fz,ooo
? sr,soo
g $1,000

i $soo
$0

*Eg
E ' €

' 6 9

E E
o

Y

6 " g E € F
T E E E g
= d E E

l ! o
E E

o 0 | E
o ! =
9 t h E- o l)

I a -
o
E(J

Product

Figure Ll.3c - Prices werc grthcrcd froD e variety ofsourccs ildudirg the manufrcturcr rod thc
manufscturer's price on Grrdwrre,com, t lcadbrg diltributor ofstudqrt-discoutrtod softw8re.

Mrpltrfo studert discount pricirg wrs |rot casily svsilsble,

The "Mac-compatible" development goal is also essential to the personal use

target market. As of this writing there are no viable, modem GIS software applications

available for the Macintosh platform. At one poinl ESRI developed GIS software for the

Mac, but the last version was released with Mac OS compatibility is ArcView 3.0.

MAPublisher ($999, Avenza Software) is still regularly updated and released, but it is

distributed as a plug-in for Adobe lllustrator and Macromedia Freehand, In other words,

MAPublisher is intended almost entirely for cartographic purposes, not GIS purposes. As

such, the Macintosh GIS market is essentially open for Mapalester's taking. According

lo market researoh firm IIrc (Dalrymple 2005), Apple had about 2.88 percent ofthe

United States desktop marketshare and 4.99 percent ofthe United States portable

computer marketshare in the fourth quarter of 20(M. The oorresponding figures for

Apple's global marketshare were 1.75 percent and 2.93 percent,

Hecht Mapalester Research Project Page 12

1.2 Introduction to the GlScience Engineering of Mapalester

Now that the context for Mapalester has been established, most the remainder of

the paper is dedicated to the GlScience of Mapalester. The paper is divided into four

parts. The first section is this introduction to the paper. In the second section, I will

discuss the basic engineering structure of Mapalester, the decisions behind this sffucture,

and my reasoning behind each of the decisions. The focus of the third section is a

description of the heavily object-oriented structure of Mapalester. The fourth section is

dedicated to detailed analyses of the computational geography, computer science, and

software engineering behind some of the key functionality of Mapalester. This section,

which cov€rs both completed and work-in-progress functionality, is quite large and is

subdivided into subchapters, each of which covers a specific feature or feature set.

Finally, the fifth section will conclude the paper with an analysis of the success of the

Mapalester research project thus far and a discussion of the project's future.

However, before launching into a discussion of technical aspects of Mapalester, it

is helpful, due to the computer science context of this paper, to engage in a brief

discussion on the history, use, promise, and current state of GIS technology.

1.3 Introduction to GIS

In the shortest terms possible, a GIS, or Geographic Information System, provides

a "technology and method" (Kerski 2004) to "visualize, analyze, and display" (ESRI

2005) spatial data, or data that can be linked to a location. Some estimates suggest that

up to 80 percent of all data has such a component (ESRI 2005). Much in the same way

that graphs help people visualize non-spatial data" a GIS allows its users to view and

analyze data linked to a location within its spatial context. Applications for GIS exist in

nearly every single discipline within the social and natural sciences, as well as in a large

number of commercial, government, and non-profit operations. Obviously, with such a

large and diverse group of users, important examples of applications of GIS are quite

common. Fire and police departrnents around the world are using GIS to improve and

Hecht Mapalester Research Proj ect Page 13

make more efficient their provision of emergency services. Political campaigns use GIS

to analyze socioeconomic spatial data in order to more accurately target their limited

funding. Similarly, the major national news services all used GIS to aid in predicting the

turn-out of the 2004 U.S. presidential election. Thousands of companies have used GIS

to assist in location planning and delivery management. The United States military uses

GIS for a vast array of tactical activities. More relevant to the target markets of

Mapalester, non-profit organizations that can afford GIS are using it to empower

themselves with a means of visualizing and analyzing data in way they were never able to

before. Civic Builders, a non-profit in New York that is dedicated to locating new

charter schools where they will serve the New York community the best, has used GIS to

"greatly facilitate their analyses.'? (Keohane 2005) Also in New York City, The Robin

Hood Foundation, which is dedicated to helping rid the city of poverty, "initiated a major

redirection of resources" (CNrIr{P 2005) after using GIS to analyze current funding sites.

Moreover, CMAP, or CommunityMapping Assistance Project, is aNYPIRG project

entirely dedicated to helping non-profits empower themselves with GIS. The immense

potential of GIS has been making news lately. 1n2004, the U.S. Department of Labor

listed GIS as one of the three "most important emerging and evolving fields" (Gewin

2004). The other two listed were biotechnology and nanotechnology.

How exactly does GIS enable such a diverse array of uses? In the context of this

paper, the best way to answer this question is through several examples. A business

would use GIS to help locate a new store by combining data layers of all of the variables

it would consider important to such a decision and then finding the site that optimizes all

of these variables. For example, a person wishing to open a small retail business that sold

ethnic foodstuffs in a large city would get ethnicity data by block group from the U.S.

census and zoning data from a local zorung authority, and would use GIS to find the

optimum location for her or his store in the city. A larger company or franchise would

probably have a much larger array of data to optimize. In another example, for a study on

Christian contemporary music,I used GIS to significantly enhance my knowledge of the

subject. By creating a database of over 500 large concerts by famous Christian

contemporary musicians and referencing those concerts by their location in a process

called "geocoding," I was able to develop a map of the density of the popularity of

Hecht Mapalester Research Project Page 14

Christian contemporary music. Using the same methodology - but with already-existing

spatially-referenced data sets - I created maps for a variety of demographic variables and

churches of a variety of denominations. I then ran regressions on these density grids and

the Christian contemporary music density grid" and was able to determine which of these

factors had a causal relationship with the location of Christian music concerts. Although

GIS is most often used with data in the context of small and large-scale locations on the

surface of the Earttr, it has also been employed in such diverse applications as studying

the human brain(Zwlavsky et. al.2004). Any data that can be defined as attributes of a

location, no matter how large-scale or unrelated to the traditional discipline of geography

(like information about areas of the brain), can be visualized, analyzed, and displayed in a

GIS.

Geographic Information Systems are commonly defined in the literature as having

four components: hardware, software, data, and personnel. The personnel in the system

ask the geographic question, the hardware and software provide the technology for

answering that question, and the data provides the information. Mapalester provides the

software and, to some extent, the data parts of the system; the user of Mapalester is

expected to supply any data not included with Mapalester, hardware, and the personnel

part of the system. GIS is commonly mistakenly thought to refer to "geographic

information software," but in fact, the software is only one of the four essential parts of

any geographic information system. Similarly, GIS is often confused with GPS, or

Global Positioning Systems. Although GPS units axe one of several ways in which the

spatial component of data is collected, GPS is a field separate from that of GIS.

Mapalester Research Project Page 15

2. Basic Engineering of Mapalester

2.1 Introduction to the Engineering of Mapalester

The most critical aspect of the core engineering structure of Mapalester is the

division of coding into trvo very distinct parts with a very specific and limited interface

between the two. Most of the front-end work and some of the algorithmic code is in a

programming language called REALbasic. The majority of the algorithmic code, as well

as all of the lower-level functionality,is in C++. The REALBasic integrated development

environment (IDE) offers an impressive but somewhat limited C++ plug-in interface that

allows most C** code to run in the REALBasic front-end, but the communication

between the REALbasic interface and the C+r code is restricted by the application

programming interface (API) for the REALbasic plug-in. The interface is also limited by

the abstraction-oriented development style inherent to plug-in architectures.

In the remainder of this section, I will provide a brief description of REALbasic

and the REALbasic plug-in API. I will also discuss the reasoning behind the decision to

use this REALbasic/C++ two-part architecture given the original goals and target markets

of Mapalester. This discussion will include a response to criticisms over my choice not to

use Java for the project. I will also discuss the specific challenges encountered due to the

architecture.

2.2 What is REMbasic?

In the words of REAL Software, the developer of REALbasic, "REALbasic is the

powerful, easy-to-use tool for creating your own software for Macintosh, Windows, and

Linux." In other words, REALbasic is an integrated development environment (IDE) that

allows prograrnmers to generate native code for Macintosh, Windows, and Linux from a

single set of code in the REALbasic language. Probably the closest analogy to the

REALbasic language and IDE is Microsoft's VisualBasic language and IDE, although

elements of Java (especially the heavily object-oriented focus) and C++ can be found in

the REALbasic language as well. For those readen who are unfamiliar with these

products, figure 2.2a shows code that sums the squares of the first l0 integers and returns

Hecht Mapalester Research Project Page 16

the value to the user. While REALbasic and VisualBasic have nearly identical code in

this case, they diverge significantly in more complicated algorithms and when objects

become involved.

Figure 2.2s - The four sets of code all do the same thing, but they are written in different languages.

2.3 lVhy RB/C++?

One of the primary engineering goals of Mapalester is to make it cross-platform.

The reasoning behind this goal arises primarily out of the need of the K-12 schools target

market. The goal is also rooted in two elements not as central to the mission of the

research project. Firsf there is no viablg modern GIS available for the Mac besides a

VisualBasic

Sub firstlOlntegers0
Dim i, sum As Integer

sum=0
F o r i = 0 T o 9

s u m : s u m * i ^ 2
Next

MsgBox (sum)

End Sub

REALbasic

Sub firstl0lntegers0
Dim i, sum As Integer

sum:0
F o r i = 0 T o 9

s l l l n : sum* i ^2
Next

MsgBox (str(sum))

End Sub

C++

#include <iostream>

int main (int argc, char * const argv[]) {

int sum, i;
for (i = 0; i < 10; i++X

sum=sum+ i * i ;
)

std::cout << sum;
return 0;

)

Java

public class SumSquares {

public static void main (String args[]) {

int i, sum;
sum = Q;
for (i = 0; i < 10; i++X

sum=sum+ i * i ;
)

System. out.println(Integer. toSting(sum)) ;
)

)

Hecht Mapalester Research Proj ect Page 17

non-user friendly port of the UNIX-based GRASS open source system that is notoriously

difficult to use. Second, while I am by no means inexperienced at using and developing

software on a PC, my design sensibilities are much more suited to Macintosh

development.

The cross-platform development goal left me with three options for my

development platform. First,I could attempt to produce a maximally portable core set of

code and then develop the portions that are platform dependent (interface, drawing

engine) for each platform. Second, I could use Java, alanguage with which I was very

familiar. Thir{ I could use REALbasic, and its C+r plug-in architecture if necessary. I

eliminated the first option quickly, as I was not familiar enough with the Mac or

Windows APIs to not force most of my development time into learning those APIs.

Also, as this was a funded research project, I needed to have something to show for my

work as I progressed, not just a pile of portable code without an interface or an interface

without much GIS functionality. This left me with the choice of either Java or

REALbasic. In the end I chose REALbasic over Java for the following reasons. First,

Java is notoriously slow and while REALbasic is also sluggish compared to some other

languages, the C++ plug-in architecture would allow me some leeway. Many functions

in GIS require the processing and display of millions of pieces of data in microseconds,

and thus speed is a very important factor. Second, with REALbasic, I could develop

interfaces that were native to each platform, whereas Java interfaces always look

somewhat foreign and awkward. Considering that ease-of-use is one of the three primary

goals of Mapalester, a comfortable interface is a very important factor.

However, before considering interface familiarity as a factor, I went looking for

any Java-based programs that would be used extensively by any non-profit, K-12 school,

or personal users. After all, if these users are familiar with the quirks of the Java

interface, then Java might provide an equally comfortable interface for Mapalester's

target users. While it is hard to predict the activities of the personal user category, the

only application that I could find that I assumed that my other target markets would use

that was programmed in Java was Limewire, a music-sharing program. REAL Software

realizes that it shares a certain market with Java and publishes a "REALbasic vs. Java"

comparison on its website. On this site, it lists the problems with Java's interfaces in

Hecht Mapalester Research Project Page 18

more detail. REAL Software is correct to point out that "unlike Java, REALbasic

provides fully native controls with native behavior on all supported platforms." It also

states that "REALbasic compiles to native machine code for each platform elirninating

the need for virtual machines, special installers and environmental variable settings" and

that "REALbasic provides access to the unique features of each platform such as ActiveX

and the Registry on Windows and Apple Events and Keychain on Mac OS X." For these

two reasons, despite being more familiar with Java, I decided to choose the REALbasic

route.

Figure 23a - REAL Softlyare has e high opinion of its project comp.red with competiog languages.
It w8s the target markets of Mapalester tbst determitred my choice of progr8mmitlg hnguage more

thatr any sort ofjudgment oftbe lsnguages themselves. Image from
http://www.r€alsoftw&re.com/realbrsic/compare/

2.4 The challenges of my chosen architecture

I encountered three main problems due to my choice of engineering architecture,

although I believe that the collection of obstacles would be greater in number and

difficult if I had chosen a different architecture. In order of difficulty the problems were

(l) I needed to refamiliarize myself with REALbasic and learn nearly every aspect of the

language, (2) I needed to negotiate what algorithm and object-oriented content would be

long until pu evohc?

C' Begin your evolution today.
Clkk lo go lo our odln! store.

Hecht Mapalester Research Project Page i9

in the C++ plug-in format and what would be in the pure REALbasic format, and (3) I

needed to learn C#.

While I had engaged in minor programming projects using REALbasic prior to

Mapalester, I had never worked extensively in REALbasic. In additio4 it had been quite

a while since I had used the REALbasic integrated development environment. As such,

prior to starting on the Mapalester project I spent several weeks working with the

REALbasic environment and refamiliaizingmyself with the language. I also spent much

time in the REALbasic language reference guide, a text that became a great resource as

the project continued. When I started programming Mapalester, I did not have the depth

of knowledge in REALbasic to complete the REALbasic portion, but I had the

background and familiarity with the necessary resources to learn most anything I needed.

The second problem, deciding what I would implement in REALbasic and what I

would implement in C**, plagued me for a long time. Essentially, the REALbasic plug-

in API allows me to $eate a Mapalester API with which to work in REALbasic. But

what do I implement in the API and what do I leave in REALbasic? My initial guideline

involved the factors of speed and low-level access. Due to the fact that REALbasic

performs automatic garbage collection, its code tends to run slower than native C+r code

in the REALbasic format. As such, my initial ventures into C++ coding were motivated

by the running speed of several important functions, such as projections (section 3.4) and

data drawing (section 3.2). Additionally, REALbasic struggles with recursive algorithms

(algorithms that call themselves) that reach depths of around 50 or more function calls.

Since many of the important algorithms are recursive, it was faster to run these

algorithms in C++ code than in REALbasic. Theoretically, since all of these algorithms

are tail-recursive, I could have made iterative versions of all of them. In fact, I did

implement iterative versions of some recursive algorithms, most notably, the line

generalization algorithms (section 4.3). However, it became quite tedious and difficult to

make these conversions, especially since I could run the recursive versions in C++ and

achieve acceptable performance.

I soon discovered that I could speed up some algorithms, especially those that

load in and process data files, by accessing memory and disk data ata low level.

However, REALbasic offers no byte-level or bit-level access to binary data, either on

Hecht Mapalester Research Proj ect Page20

memory or on disk. The lowest-level access REALbasic provides is at the word level.

As such, the level of memory and disk access became an important factor for the

programming language decision as well.

It turned out that these two factors - speed and low-level access - in combination

with Mapalester's object oriented structure, led to a simple and very important rule for

code separation that I now use as a successful "rule of thumb". As is discussed in gxeater

detail in section 3.3, Mapalester considers spatial information on the shape level and on

the data layerldataset level. The shape level deals with individual shapes (points,

polygons, etc) and their vertices. The data layer level represents an entire set of shapes

such as, for instance, the set of polygons that represent counties in Minnesota.

Conveniently, all of the algorithms that have needed C++ speed thus far only concern

data related to the shape level. Likewise, the low-level access functions, while possible

to implement at the data layer level, can also be run at the shape level. As such, I

established a firm rule in order to avoid switching code back and forth between the

"Mapalester API" and the REALbasic use of that API. All classes and associated

algorithms that deal with the shape level must be coded in C++. All classes and

associated algorithms that deal with the data layer as a whole must be prograrnmed in

REALbasic. The REALbasic C*+ plug-in interface is used to navigate between the two

layers. This navigation is quite complicated, and too intricate and tangential to describe

here in detail.

It is interesting to note that even in topics that are seemingly relegated exclusively

to the realm of software engineering, the basics of geography become a factor. Prior to

establishing the aforementioned rule, my code was split betrveen REALbasic and C+r

through educated guessing and intuition. Once I grounded this software engineering in a

GlScience context, the choice of programming language become much simpler and well

defined.

The final and most difficult challenge related to the chosen development

architecture involved learning C#. While this process is by no means worthy of a long

description in this context, it is important to note that even just the C# portion of

Mapalester has been the largest programming project I have ever attempted in a language

other than REALbasic, or VisualBasic. A large portion of development time was spent

Hecht Mapalester Research Proj ect Page 21

reseaxching and learning appropriate memory management techniques, gaining a

functional understanding of pointers to pointers to pointers (etc), and comprehending

templates.

Mapalester Research Proj ect Page22

3. The Object-Oriented Structure of Mapalester

3.1 An Overview of the Object-Oriented Structure

In its current state, Mapalester is comprised of over 10,000 lines ofcode in four

languages (REALbasic, C+, SQL, XML) that are organized into an elaborate class

structure. In order to help the reader make sense of this structure and better understand

the overall architecture of Mapalester, I have divided the class structwe into several

subsections. The subsections operate mostly independently, but have key interactions

with each other. The four subsections, which I will discuss in the subsequent parts of this

chapter, are the interface system, the data interaction system, the projection systen! and

the database system. In each part, I will describe and analyze the architecture and basic

functionality of the subsection of the class structure being discussed. I will also detail the

subsection's primary interactions with other subsections.

tu!a.dr'.(-l

-* t-n

3.2 The Interface System

Hecht Mapalester Research Project Page 23

Figure 3.2e. The object-oriented nature ofthe interface ofMapalesfer can be seen in the above
screenshot. Notice the replication of windows and maps. Due to use of the object-oriented

architecture, such replicotion required almost no additional coding.

The REALbasic IDE contains a large variety of interface elements organized in an

efficient and logical class structure (Brandt 2004). In order to take advantage of the

benefits of this hierarchy while still modifuing the user interface elements to fit the needs

of Mapalester, I primarily used a subclassing methodology for most of my interface

classes. In total, Mapalester currently has more than twenty individual classes that are

subclassed from REAlbasic's interface classes. Most of these classes provide a very

specific functionality to a standard interface element. For example, Mapalester has many

bevel buttons that, when pressed, bring open the operating system's color chooser and

display the color chosen as a button icon. To implement this functionality in a portable

and reusable manner,I have simply subclassed REAlbasic's bevel button and input the

necessary code into the draw0 and actionQ methods of the subclass.

There are, however, several very important classes in the interface class structure

that have extensive algorithms contained within them: the GISWindow class, the

GlSMapElementlist, and the GlSFormatWindow. The GISWindow is the most

dominant feature in the user's experience with Mapalester. Each GISWindow contains

elements that interact with all three other class subsections, as well as elements that

access other parts of the interface class substructure. From GlSWindows, the number of

instances of which is only limited by available memory, users can access the spatial data

database (section 3.5), perform many GIS operations, and engage in layout, input and

export operations (section 3.3). Moreover, each GISWindow contains an instance of the

GlSMapElementlist (later in this section). The GlSFormatWindow is the only other

major site of program control (later in this section).

In addition to its key role in user interaction, the GISWindow also serves as the

document unit of Mapalester and is roughly analogous to a "project" in ESRI's GIS

products. When a user performs a load or save operation, it is the GISWindow that takes

control. Using an XMl-based format, the GISWindow recursively goes through all of its

members that need to save information, requesting that each member save its information

in a nested section of the resulting XML document. The reverse is done when the user

wishes to load a saved XML file. These members include everything from

Hecht Mapalester Research Project Page24

BackgroundlayerCanvas (see section 3.3) and, when completed, all of its

GlSlayoutElements (see section 3.3). Not all of the save functionality is complete, but

the basic system is established and is functioning for the GISWindow class itself, along

with a subset of its members. In figure 3.2b,Lhave included an example of the XML

content of a saved GISWindow. The structure of the XML file reflects well the object-

oriented structure of the interface system and other parts of the progftrm. It is also

important to note that when Mapalester is released, this structure will be released as an

open file format. The extension of files in this format is ".mmap."

< ?xml version-- " I .0 " encoding:'UTF-8 "? > <plist
version=n 1.0"><dict><key>gislYindow</key><dict><key>Left</key><integer> 334</integer><k"yrT
op</l<ey><integer>55</integer><key>Ilidth</key><integer>853</integer><key>Height</key><integ
er> 69 4 </integer> < key> Background Layer< /key> <dic t> < key> Fill
Color</key><dict><key>R</key><integer>255</integer><ley>G</key><integer>255</integer><key
> B < /key> < integer> 2 5 5 < /integer> < /dict> <key> B order
lfidth< /key> < in teger> 0 < /integer> <key> Border
Color</key><dict><key>R</key><integer>0</integer> <key>G</Ieey><integer>0</integer><key>B<
/key><integer>O</integer></dict><key>Use Color Fill</key><true/><key>Picure
Transparency</key> <real> I </real> <key> Picture Display
Method</key> <integer> 2 </integer> </dict> <key> Llbrary
Browser</key><dict><key> Map</key><dict><key> 1</key><integer> I4</integer><key>2</key><int
eger>2O</integer><key>3</key><integer> I5</integer><key>4</key><integer>22</integer><key> 5
</key><integer>26</integer><lcey>6</key><integer> I8</integer><key>7</kq><integer> I I</intege
r><key>8</key><integer>28</integer><key>9</key><integer>29</integer><lcey> I0</key><integer
> 30</integer><key> I I </key><integer> 3l </integer><key> I2</key><integer>24</integer><key> I j<

/kq><integer>2</integer><key> I4</key><integer> 3</integer><key> I5</key><integer>4</integer>
<ley> l6</ley><integer> 5</integer><key> l7</key><integer>6</integer><key> l8</key> <integer>7
</integer><key> I9</key> <integer>8</integer><key>20</key><integer>g</integer><key>21</key>
<integer> I0</integer><key>22</key><integer> I2</integer><kqt>23</key><integer> I3</integer><
key>24</key><integer> I6</integer><key>25</key><integer> l7</integer><key>26</key><integer>
19</integer> <key>27</lrey><integer>21</integer><kqt> 28</key><integer>25</integer><key>29</k
e1t><integer>27</integer></dict><key>Widths</key><dict><key> I </kcy><integer> I 55</integer> <k
ey>2</key><integer>76</integer><key> 3</key><integer>84</integer><key>4</key><integer>94</i
nteger><key>5</key><integer> 54</integer><key>6</key><integer>82</integer><key>7<ft,ey><inte
ger> 52</integer><key>8</key><integer> I l4</integer><key>9</keyr<integer> 109</integer><key>
10</lcey><integer> 104</integer> <key> I I </key><integer> 106</integer> <ley> 12</key><integer> l7
S</integer><key> I j</key><integer>&0</integer><key> l4</ley><integer> l0l</integer><key> l5</k
ey><integer> 129</integer><key> l6</key><integer> 138</integer><key> I7</key><integer> 144</int
eger><lrey> l8</key><integer> 13?</integer><key> l9</key><integer>83</integer><kq> 20</key><i
nteger>78</integer><key>21</key><integer>65</integer><key>22</key><integer>5?</integer><ke
y> 23</key><integer>S0</integer><key>24</key><integer>50</integer><key>25</key> <integer>50
</integer><key>26</key><integer>5?</integer><key>27</key><integer> 100</integer><key>28</ke
y><integer> 124</integer><key>29</key><integer>47</integer></dict></dict></dict></dict></plist

Figure 3.2b. This XML code represents a Mapalester saved document.

Mapalester Research Project Page25

The primary function of the GlSMapElementlist, which is only instantiated inside of

GlSWindows, is to provide access to a list of the VectorThemes of the currently selected

GISCanvas. From this list, via the GlSFormatWindow, users can make critical changes

to the content and display of each VectorTheme. Additionally, it is through the

GlSMapElementlist that users are able to manipulate the ordering of the data layers, a

key aspect of GIS functionality. To enable this ordering functionality, the

GlSMapElementlist contains a heavily modified implementation of abubble sort

algorithm that interacts with both the host GlSMapElementlist and the affected

GISCanvas. Users are also able to enable and disable VectorThemes through the

GlSMapElement list, functionality which comprises yet another cornerstone of GIS.

The GlSFormatWindow is a Mapalester-only feature. As a GIS lab assistant, it is

my perception that one of the gleatest failings of currently available GIS software is the

hiding of a vast anay of important features in non-context sensitive windows that can

only be accessed from deep within menus or through obscure buttons on the toolbar.

This failing, which is partially a result of the extension/module-based development of

many GIS packages, has two major ramifications. First and foremost, inexperienced

users are often unaware of important and powerful operations and settings that can be

applied in a given context. For the education market, this ramification is particularly

important. Wilder et. al. (2004), for instance, note that teachers learning GIS during in-

service sessions can tend to view GIS as simply a "digital map" device from which they

can print reference maps. Second, problems are often harder to solve as the important

information is not immediately available to the user. While some GIS packages have

made strides forward in solving these problems through the use of the contextual menu, I

believe that the GlSFormatWindow does a better job at providing quick and context-

sensitive access to all of the important operations, settings, and information. It does so by

making its large nr:rnber of panels visible or invisible based on the currently selected

element of the user interface. For instance, if the user has a GISCanvas selected, the

GlSFormatWindow would only display the panels that function with a GISCanvas. If the

user selected items in a GlSMapElement list, the GlSFormatWindow displays all of the

panels with controls that relate to the modification or display of VectorThemes. If the

user has selected seemingly disparate user interface elements, the GlSFormatWindow

Hecht Mapalester Research Pdect Page26

only displays panels relevant to all selected elements. In other words,

GlSFormatWindow displays the panels in the set resulting from the intersection of the

panels relevant to the selected elements. Both Microsoft Word 2004 for the Mac and

OmniGraffle by OmniSoft have similar, but not identical, features.

The GlSFormatWindow's functionality is implemented through the extensive use

of the class interface construct. Each and every panel that can be displayed in the

GlSFormatWindow has a corresponding class interface. For instance, the

ProjectionPanel is linked to the ProjectionPanellnterface, which is implemented by the

GISCanvas. Similarly, the BackgroundPanel corresponds with the

BackgroundPanellnterface, which is implemented by both the GISCanvas and the

BackgroundlayerCanvas. Each interface requires that classes that implement it have the

full set of the methods relating to the options in the panel. For instance, classes that

implement the BackgroundPanellnterface must be able to change the content of the

background display of the class. The beauty of the class interface methodology is that the

definition of what is the "background display" is entirely up to the context of the class.

The class must simply have a method called setBackgroundDisplay0 (and several others)

that can be called from the panel.

The five panels that are finished are the ProjectionPanellnterface, which is the

interface to the coordinate system functionality, the PicturePanellnterface, which is

exclusively dedicated to features in the PictureElement class (section 3.3); the

NamePanellnterface; which is central to nearly all aspects of the interface that use the

GlSFormatWindow; and the BackgroundPanellnterface, which is described above.

Cunently under development is the LayerFormatPanellnterface from which users will be

able to make a large portion of basic changes to layer symbology. Many more interfaces

are planned and will be implemented as I implement the features that the interfaces will

contain.

How does the GlSFormatWindow know what user interface elements are

selected, and thus what panels to display? The forefront GISWindow is in charge of

maintaining a stack of all selected elements of the user interface. This means that the

GISWindow also decides what is meant by "selected." For instance, if nothing is

selected, the GISWindow places the instance of the Backgroundlaye€lass on the stack,

Hecht Mapalester Research Project Page27

because this is the most intuitive choice based on the interface. Also, if the user selects a

member of the list in the GlSMapElementlist, the GISWindow pops all other elements of

the stack and pushes the corresponding VectorTheme on the stack because this is, given

the interface, intuitively what should occru. Each time the stack changes, the

GISWindow sends a message to the GlSFormatWindow, which is in effect a global

variable as only one instance of it may occur. The GlSFormatWindow then examines the

stack. When the GlSFormatWindow finds an instance of a class that does not implement

an interface corresponding to a panel, it makes that panel invisible. The panels that

remain are the panels that are implemented by all of the selected elements and are thus,

context-sensitive.

Other key classes related to user interaction with Mapalester are the MenuBar

class and the contextual menu classes. At the moment, all of these classes offer a rather

mandate set of features and a correspondingly standard set of algorithms. However, when

Mapalester is released, they will be semi-criticial to user interaction with Mapalester.

Both the menu bar and contexfual menus will provide access to important features

inaccessible through other means. For example, the insertion of a GISCanvas class into

the BackgroundlayerCanvas (section 3.3) - otherwise known as adding an additional

map frame to the document - will be a function exclusively available through the menu

bar and contextual menus. Also, because both the menu bar and contextual menus have

context-sensitive content, the classes that provide their functionality will probably share

code with the GlSFormatWindow in a manner that is yet to be established.

3.3 The Data Interaction System

To the user, all data interaction occurs within the context of the GISCanvas, the

class that provides the connection between the interface class structure and the data

interaction class structure. I will begin by discussing this class and its relatives, and will

then delve deeper into the class structure behind the functionality of what actually is

displayed in the GISCanvas.

The GISCanvas is a subclass of the GlSlayoutElement class. In each

GISWindow (section 3.2),the BackgroundlayeCanvas (section 3.2) maintains an array

Hecht Mapalester Research Project Page28

of GlslayoutElements placed inside the BackgroundlayerCanvas. Currently, there are

only two classes of the type GlSlayoutElement: the GISCanvas and the PictureElement

class. The PictureElement class represents a picture placed in the

BackgroundlayeCanvas by the user. As I implement more firnctionality in Mapalester,

the number of classes ofthe type GlSlayoutElemant will drastically increase. For

instance, soon under development will be a LegendElement and MapscaleElement,

which will be responsible for handling functionality related to the display and

manipulation of map legends and map scales, respectively. Figure 3.3a depicts the

relationship between all of the aforementioned classes in a semantic network.

Flgure 3.3a - Th3 Interface betwsen the data Intsractlon system and the Intorfac€ cla38
3tructure. MapscaleElemcnt and LegendEl€ment have yet to be impl€mented are are

deplcted as sample$ of futurs clsses of tyPe GlsLayoutElemsnt'

Hecht Mapalester Research Project PsEe ?9

A BackgroundlayerCanvas with all of the aforementioned GlSlayoutElements (and any

future ones) will be able to be printed and exported. As a side note, this means that I

have chosen to eschew the layout vieddata view construct common to ESRI products.

Now that the context in which the GISCanvas class operates has been established,

it is necessary to explain how the GISCanvas displays spatial data. The largest challenge

in designing the GISCanvas was making its functionality universal to all types of GIS

data that will eventually be supported. The answer to this challenge was making the

GISCanvas interact with the data it contains only on the layer level. Basically, each

GISCanvas has an array of VectorThemeso each of which are responsible for returning to

the GISCanvas an image (essentially, just a picture - like any JPEG) of what it looks like

given the extent of the GISCanvas. When I implement the RasterTheme class, this class

will also be responsible for simply returning an image of what it looks like in the given

extent. When the GlSCanvas's extent changes, say, because the user has zoomed inlout

or panned, the GISCanvas requests new pictures from each of the VectorThemes (or,

later, RasterThemes as well) contained within its VectorTheme stack. Essentially, every

time the GISCanvas redraws, all it does is pancake all of the returned images from the

VectorThemes on top of each in the correct order. This order corresponds to that which

the user manipulates using the GlSMapElementlist class (section3.2). Layers that have

been "turned ofP'in the GlSMapElementlist are skipped in this "pancaking" process.

How do the VectorThemes draw an accurate image of themselves in any given

extent? Each instance of the VectorTheme class is responsible for asking its C++ parent

class to query all of its VectorObjects (Pointobjects, PolylineObjects, or PolygonObjects)

to create the appropriate display. This query will eventually utilize an R-tree index (see

section 4.2) which is attached to every VectorTheme, but for now uses the brute force

approach outlined in section 4.2. Note that this interaction between the VectorTheme and

the corresponding Vectorobjects is the single most important interface between the C++

plug-in code and the REALbasic code. In fact, as touched upon above, the VectorTheme

is actually a subclass of a VectorThemeBase class implemented in the C+r plug-in. This

subclassing is the construct by which the two code bases interact. When the REALbasic

VectorTheme needs to update its cached picture, it simply calls the updateQ function,

Mapalester Research Proj ect Page 30

which has been programmed in the Q+* superclass and only deals with C+-r elements of

Mapalester.

Once this update0 function, which is provided a two-dimensional extent as a

parameter, has identified which VectorObjects it needs to draw using the spatial indexing

methods as noted above, the actual drawing process is quite simple. Since all coordinate

systems are treated as two-dimensional Cartesian planes in Mapalester (see section 3.4),

the update0 function first makes a new image the same size inpixels as the GISCanvas0

in which the VectorObject is located. The function next determines the scale of the

imagein the form of a uniVpixel ratio. This unit can be any angular or linear unit

because by the time the drawing process has begun and the update0 function has been

called, the projection engine has made all necessary arangements to convert all of the

VectorObjects and their constituent points in all the VectorThemes to the correct twc.

dimensional coordinate system for the GISCanvas. Next, using the scale as a guide, the

update0 function draws all the VectorObjects contained within the extent onto the image.

Finally, the image is returned to GISCanvas. This process is shown graphically in figure

3.3c. Figure 3.3b shows the whole data interface system class structure "behind" the

GISCanvas in a semantic network.

Mapalester ResearchProject Page 3l

Flgure 3.3b - A semantic network depicting the data Int€raclion systEm that operates
'b€hlnd" I GlSCanyas. Noto the dlvlsion of programming betYtesn C# and REALbasic.

Also note that VectorPoints and VectorPolygons aro both subclassos of othel
Vectorobjects. I have lmplement6d these tYvo classes In this manner In ord€rto maxlmally

ahars cods. In effect, a VectorPoint i6 a VectorMultiPoint wlth Just one polnt In it.
Slmllady, a VectorPolygon is a special case ofa VectolPolyline In whlch the flr3t and ths

last point are the same. lmplomenting the four Dssic georDetrlc types in a hleralchical
mann€r has saved me from writing thousands of linss of code throughout the program.

I
t
i

E
E

5

Hecht Mapalester Research Project Page 32

Sample GIS Canvas Layer
Cmrdlnale System: UTM Zone 1S

Scale: 100 metBrs/ pix6l

X"axlg

15 plxels
1ffi0 meters

Figure 3.3c - The basics of the actual drawing part of the update$ function.

3.4 The Projection System

Every spatial data set has some sort of coordinate system. This coordinate system

can be a projected coordinate system or an unprojected coordinate system. Spatial data in

a projected coordinate system have coordinates that are in some sort of x,y coordinate

system where x and y represent values in a Cartesian plane. Projected data have been

transformed using one of many projection equations, such as that for the Mercator

projection or the Lambert Conformal Conic projection. A common unit for projected

coordinate systems is the meter or the kilometer; all projected coordinate systems utilize

units of length. Spatial data in unprojected coordinate systems have coordinates that

represent degrees on some ellipsoid (or spheroid). A common unit for unprojected

Y-atdE

l0 plxels
INO n?€iters

Mapalester Research Project Page 33

coordinate systems is decimal degrees of longitude and latitude; all unprojected

coordinate systems utilize angular units. Unprojected coordinate systems are sometimes

incorrectly referred to as a data's "datum." Every projected coordinate system has an

underlying unprojected coordinate system or "datum", as the x and y values must be

generated from original degree values.

In order to be a viable GIS, Mapalester must have a robust projection system that

can convert between all of the coordinate systems in standard use. This is an immense

task. There are over thirty common projections, each with its own highly complex

equation. Many of the equations accept five or more variables in addition to the standard

latitude and longitude coordinate parameters. Additionally, there are an equally large

number of unprojected coordinate systems based on a variety of ellipsoid approximations

of the Earth. In order to display data accurately in the same view frame, Mapalester must

be able to convert data in any coordinate system to each and every ofthe other coordinate

systems. In order to implement such a projection system, code must be organized

efficiently in a simple but robust class structure.

The structure I eventually settled on for Mapalester is based on my research into

coordinate systems and my investigation into how coordinate information is stored, such

as in the ".prj" file discussed in section 4.1.4. Because all coordinate systems have some

sort of projection - even if that is'trnprojected" - the primary class of the projection

system is the ProjCS class. The ProjCS class is responsible for changing the projection of

the coordinate system whereas the GeoCS class takes care of converting the underlying

unprojected coordinate system, a process that mostly involves the science of "datum

conversion" but has other important aspects as well. No datum conversion functionality

has been implemented in Mapalester. As such, an error of about 800ft at large scales is

possible while currently viewingdata in Mapalester. There are four more classes that

make up the projection system: the Spheroid class, the PrimeM(eridian) class, the Datum

class, and the Unit class. Each is responsible for converting the elements of the

coordinate system that correspond to its name. The basic relationships among the classes

is depicted in figure 3.4ainthe form of semantic network.

Mapalester Re search Proj ect Page 34

u36
r!€3

Flgure 3.4a -A simpllfled semantic netwo* of the relationshlPs among ths claEtos of ths
prolectlon sy3tem. Noie that the projectlon systsm makea extonslvE use of C+++oded

functlon8, but no C++ coded cla3ses. Thls ls a malor departure from the ollglnal vsrsion
of the projectlon system, whlch had all of the code In REALbaeic. The REALbaslc code,

hoyrever, provgd too slow for the mors complicated functlons and algorithms, and thu8, a
switch to C++ waa n€oesaary. Thl3 change was also madg to fudhel enforce the rule that

REALbasic neyer have acceas to the Vectorobiects of a VcctorThsme. All of the
algortlhms shown roqulrs vertex-level access to the sPatial Infolmatlon of a Vectolobjgct,

and thus must be in C++ code according to the rule. The C++ codlng 13 not c,omPbte.

Every VectorTheme has an instance of a Proj CS class. In addition, the GISCanvas class

also has a ProjCS member. In order to accurately display the infonnation (or display the

information at all in many cases), the GlSCanvas's ProjCS and the VectorTheme's

ProjCS must rnatch completely. Meeting this condition is the prirnary function of the

projection system and is an excellent demonstration ofthe effectiveness oftle system's

obj ect-oriented structure.

Hecht Mapalester Research Project Page 35

The process of meeting the condition is as follows: when a VectorTheme is

loaded into a GISCanvas, the GISCanvas passes the VectorTheme's ProjCS instance to

the convertQ function of its own ProjCS instance. The convert0 function is the

command center for the projection conversion. If the projection, parameters of the

projection, or the GeoCS of the inputted ProjCS differs from that native to the

GISCanvas, the convertQ function tells the inputted ProjCS to unproject itself. Before

doing so, if the inputted ProjCS has a unit other than meters, the inputted data's unit must

be changed, as all the constants in the forward and reverse projection algorithms are in

meters. The inputted ProjCS then calls the appropriate reverse projection equation

function (section 4.6). If the GeoCS differs, the convert0 function then passes control to

the convert0 function of the ProjCS's GeoCS. In the GeoCS's convert0 function, the

datum (and its spheroid) and the primeM of the inputted ProjCS's GeoCS are converted

using the datum conversion functions and the prime meridian conversion algorithms

(section 4.5). The angular unit of the GeoCS may also be converted in the GeoCS

convert0 function, if necessary. The GISCanvas' GeoCS's convert0 function then

returns control to the GISCanvas' ProjCS0 function. If the inputted spatial data was

unprojected using the reverse equations, then the data must be projected using the

forward projection algorithms of the GlSCanvas's ProjCS. Finally, it may be necessary

to convert the unit of the forward projected data to match that of the GISCanvas' ProjCS.

The two coordinate systems will then match.

3.5 The Database System

There are two important determinants of the object-oriented structure of the

database system in Mapalester. The frst is the dual uses of the system at a fundamental

level. The database structure is not only used to manage attribute data inherent to every

GIS file, but also to manage those files themselves. Section 4.4 is dedicated to the

description of this second functionality. Not only did this dualism in intended function

reinforce the need for a clean and efficient object-oriented structure, but it also shaped the

design of the structure. The second major determinant of the structure of the database

objects is my choice of the Valentina database by Paradigma Software for the core

Hecht Mapalester Research Proj ect Page 36

database infrastructure2. Implementation of the iTuneslike GIS data file management

system, as well as provision of support for atfribute databases, has been greatly facilitated

by my choice of the Valentina database infrastructure as the framework for Mapalester's

object-oriented database structure. As an object-oriented relational database frameworlg

Valentina provides all of the low-level database functionality that would be too tangential

to GIS to program for this project. Valentina is available for a large number of

programming languages and it provides amazing support for REALbasic. In the

subsequent paragraphs, I will discuss the database class structure of Mapalester in the

context of these two determinants.

The class structure provided by Valentina for REALbasic forms the basis of

Mapalester's database class structure. There are several types of classes in the Valentina

framework. The VDataBase class represents a complete database. In its current state of

development, Mapalester only interacts with a single complete database, the library

database file located in the same folder as the application. The library database file holds

three different types of tables - the library browser table, the projection browser table,

and all the attribute data tables associated with the files available through the library

browser. The library browser table handles the iTunes-like library functionality

discussed in section 4.4. The projection browser stores all the coordinate system

information ever loaded into the program. In general, there will be as many of the third

type of tables as there are records in the library browser. In the case of shapefiles in the

library browser table, for instance, the associated table is copied directly from the DBF

portion of the shapefile. Each of these tables, no matter what type is represented by

either the VBaseObject class or a subclass when loaded into the program,. In order to

give each of these classes functionality specific to Mapalester, it was necessary to

subclass nearly all of the classes provided by Valentina. The VDataBase subclass used in

Mapalester, for example, is the appropriately naned LibraryVDatabase. The subclasses

of the VBaseObject that are used handle the two special tables in the LibraryVDatabase:

are the library browser table (BrowserVBaseObject) and the projection browser table

2 Note: in late March, 2005, Paradigma Software released Valentina 2.0, avery major
upgrade to the database framework that promises "incredible speed multipliers"
(Paradigma Software 2005) over former versions of Valentina. The current version of
Mapalester does not implement this database, but future versions will.

Hecht Mapalester Research Project Page 37

(Proj ectionVBaseObj ect).

are acoessed using the core

Figure 3.54 - A semrntic tr€twork ofthe drtrbsse clsss structure rbove the VField level

Each field in each ofthe objects of the VBaseObject type is derived from one of

Valentina's many field classes. Each of these freld classes handles a specific tyPe of

field; there are classes for Boolean field types (VBoolean), date field types (VDate)' all

sorts of number field types (double, integer, long, etc.), and string freld types (Vstring).

More interestingly, Valentina also provides classes for the blob (VBlob), object pointer

(VObjectPtr) and text data types (VText). The VBlob field allows Mapalester to store

large chunks of data in the database. This is particularly important because Mapalester

stores all of the spatial information for each record in the BrowserVBaseObject in a

VBlob field. Essentially, Mapalester stores all of the data in the ". shp" frle of a shapefile

The tables lirked to the recoids in the BrowserVBaseObject

VBaseObject.

Mapalester Research Project Page 38

in this field. The VObjectPtr enables the object-relational functionality in Valentina and

is used in Mapalester to link each record in the BrowserVBaseObject to the record in the

ProjectionVBaseObject table that stores the information relating to the coordinate system

in which the record in the BrowserVBaseObject is stored. Finally, the VText field is a

subclass of the VBlob field intended specifically to store text. A complete schema of the

two specific tables are found in figure 3.5b and c. The reasoning behind the inclusion of

each of the frelds in the BrowserVBaseObject is found in the description of the library

functionality in section 4.6. Details on the fields in the ProjectionVBaseObject can be

found in section 3.4.

Name Type
Size
(bvtes)

TableNumber VLono 32
AbstractField .Wext 8t92
ContactlnfoField VText LO24
GatherEndDateField VDate 64
GatherBeqinDateFieldVDate 64
RelevancyBeqinField VDate 64
RelevancvEndField VDate 64
RestrictedField Wext 128
LeqalField Wext 128
GeneralField Wext 8192
EditionField Wext 8192
URLFieId Wext LO24
KevwordsField Wext r024
NameField VStrins LO24
PublisherField VTeXt 8192
DataSourcesField VText LOz4
DataGroupField Wext 8192
GenreField VText 8192
IDCodeField Wext L024
ContentTvoeField VShort 1 6
VectorRasterField VBoolean 1
FileFormatField VShort 16
SpatialDataField VBlob variable
DataAddedField VDateTime tt2
Fi leNameField VStrino 256
FileSizeField VLonq 32
RecordNumberField VLono 32
minXField VDouble 64
maxXField VDouble 64
minYField VDouble 64

Mapalester Research Project Page 39

maxYField VDouble 64
oroiectionField VObiectPtr 32

Figure 3.5b - The schema for the BrowserVBaseObject.

Name Type
Size
(bvtes)

PEStrinq Wext to24
Pro iectedCoo rd ina tes ystem VStrinq 100
Projection VStrino 100
Geoo ra oh icCoordi nateSvstem VStrinq 100
Datum VStrino 100
AnqularUnit Vstrinq 100
LenothUnit VStrinq 100

No schema for the third type of table is specified because schemas will vary greatly

depending on the attribute database of the GIS file being represented. However, the

schemas of this type of table are currently restricted to fields incorporated in the DBF file

format because the only type of attribute database currently supported is that of the

shapefile, which is in the DBF file format. The DBF file format only supports fields of

the types "character" (interpreted as the VSting type), "numeric" (interpreted as the

Vlong type), "floating point binary numeric" (interpreted as the VDouble type), and

"logical" (interpreted as the VBoolean type). As an example, the schema for an attribute

database of a shapefile containing counties in the United States is given in figure 3.5c.

Name Tvpe
Size
(bvtes)

Name VStrinq 32
State Name VStrinq 25
State FIPS VStrins 2
Cntv FIPS VStrinq 3
FIPS VStrinq 5
Area VDouble 64
Poo1990 VDouble 64
Poo1999 VDouble 64

Figure 35c - The schema for the ProjectionYBaseObject.

Mapalester Research Project

Figure 3,5d - An example schema for the attrlbuae databss€ ofa thaPelile cotrtafulng countis in the
United Ststes.

Because the database system is quite intricate and difficult to explain out of its

programmatic context, figure 3.5fexplains what happens when a user adds a GIS file to

the library (see section 4.6) in a highly abstracted mamer.

Figure 35f - The database cla88 structure in action!

How does the user interact with the database class structure? In addition to the set

of classes for storing database information, there is a less elaborate set of classes for

viewing and modiffing that information. This set of classes provides the intersection

18 In

Hecht Mapalester Research Proj ect Page 41

between the database class structure and the interface class struch[e, and the remaining

portion of the section is dedicated to its description.

Like the foundation of the database class structure, the database interface class

structure is based on a thid-party product. In this case, the product is DataGrid by

Einhuger Software, which is distributed in the form of a REALbasic plug-in. DataGrid is

a small set of REALbasic classes designed to provide programmers with an easy way to

implement the visualization and modifrcation of Valentina databases3.

Due to the third-party nature of the database interface system's framework, the

database interface class structure is also heavily reliant upon subclassing. Primarily, the

three imporbnt classes in this structue axe all subclasses (either directly or indirectly

through another subclass) oflhe DataGrid class. Figure 3.5g shows the class structure of

the database interface system in more detail.

Figu re 3.5g- The class structure of Mspalcster's dstsbase itrterfsce system.

3 My reasoning for adopting a third-party solution is identical to my reasoning for
adopting the Valentina database: it would not have been a good use ofmy GIS honors
project time to spend several weeks to recreate a Valentina display outlet, probably with
worse results that\n I could get with DataGrid.

Hecht Mapalester Research Project Page 42

The MapalesterDataGrid class provides all of the functionality shared between the

LibraryBrowserDataGrid and the hojectionTableViewer, which at the moment is about

90 percont ofall the firnctionality in these two classes. All of these classes interact with

the LibraryVDatabase class through the use ofSQL (structured query language) queries.

These queries return a class in Valentina for RealBasic called VCursor, which contains

all ofthe databas€ infonnation relevant to the given query. In Mapalester's current state,

most of the queries that af,e conducted are simple'teturn all" from a specific table

queries. Since the class structure corresponds directly with the table stuctue of the

LibraryVDatabase, whenever each class needs to display data from the table to which it

corresponds, it simply performs a 'teturn all" query on that table. Figure 3.5h explains

this process graphically.

Hecht Mapalester Research Project Page 43

Figure 3.5h - A graphical view ofthe use of SQL as an interface between the database and the
datebase interface class structures.

As I implement more functionality into Mapalester, these queries will become

more complicated. For instance, the library will soon offer a context-sensitive spatial

search feature. In other words, the library will be able to operate in a mode in which it

only shows data relevant to the special extent being viewed in the selected GISCanvas.

For example, if someone is zoomed-in to the Twin Cities metro area" the library will hide

files that only include information about Europe or Asia, etc. This will obviously require

greater complexity of search queries, possibly requiring me to implement a subset of

spatial SQL via a C# plug-in to Mapalester. Similarly, as I implement simpler, text-

based searches for the LibraryDataGrid and the ProjectionDataGrid, much more

extensive SQL queries (hidden to the user through an easy-to-use interface) will be

necessary.

Mapalester ResearchProject Page 44

4. The Design and lmplementation of Mapalester's
Feature Set

Support of a variety of file formats

A primary characteristic of available GIS data is its extremely heterogeneous

nature. GIS data come in a variety of file formats, and even data in the same file format

canvary significantly in representation. GIS file formats can be loosely divided into two

groups, vector and raster. This section will focus on vector data, as it is the most difficult

to implement and has been the focus of the Mapalester's file format support thus far.

Additionally, it should be noted that the term "file format" is used loosely in this context,

as the specification for the currently dominant GIS vector data file format, Environmental

Systems Research Institute's (ESzu) shapefile, describes three separate files that make up

each shapefile. Moreover, since the shapefile specification was published in 1998 (ESRI.

1998), many new GIS features have necessitated the addition of more files to the de facto

specification, resulting in situations in which each shapefile can includes upward of nine

individual files, each supporting its own specific set of features.

Any GIS software package that aims to be "easy to use" must make the user

completely unaware of the complexity of GIS file formats. Ideally, a Mapalester user

should not need to know what type of file format she or he is using, or even if the file is a

vector or raster file. I have made some progress toward this goal. As of this writing,

Mapalester supports the shapefile, which, as mentioned above, is the most common file

format for vector GIS data. Mapalester also supports the ".prj" expansion of the shapefile

specification. A ".prj" file contains the metadata for the coordinate system of the

corresponding shapefile, making ".prj" files vital to the accurate display of spatial

information. I have also made progress toward supporting several other file formats,

including the formerly ubiquitous Arcllnfo exchange format, or ".e00" file, and the up-

and-coming XMl-based file formats. However, I have only done initial research into

raster file format support.

In the first part ofthis section, I will explain issues common to supporting any

spatial data file format. In the second part, I will do the same for vector data formats. I

Hecht Mapalester Re search Proj ect Page 45

will discuss the technical issues and techniques involved with supporting shapefiles in the

third part. The fourth part will cover similar issues for the ".prj" extension.

4.1.1 General Issues Related to File Format Support

In order to support a spatial datafrle format, Mapalester must be able to convert

data n the file format to Mapalester's internal data format. A consistent and permanent

internal data format enables me to easily add new data formats as the project progresses

and, later on, as they become newly available. In other words, the internal structure

enables an architecture with a type of abstraction similar to that of plug-in architectures

of programs like REALbasic and Photoshop. Because there are few similarities between

representations of vector and raster data, I have chosen to give Mapalester a two-part

internal representation, with one part dealing with vector information and the other

handling raster data. A diagram of the file format support architecture can be found in

figure 4.I.Ia.

Mapalester Research Project Page 46

fufly *N rb lorffi srFFort modrst

Figule 4.l.la - A generalized diagram of ilapaleste/s flle format 8uPport atchitecture.

As mentioned in the introduction, every spatial unit ofGIS data - vector or raster

- has two pads: spatial information and atFibute information. Mapalester must

understand both ofthese types of infonnation for both vector and raster at two levels.

The higher of the two levels is the object-oriented structure discussed in preceding

sections. The lower of the levels is wordlevel representation stored in memory or on

disk, depending on the situation. In the current implementation, the word-level

representation is always in memory. However, I have been carefrrl to use only

algorithms and structures that work just as well with data from a disk, or ftom a

combination of disk and memory. For now, given the relatively small sizes of the data

Hecht Mapalester Research Project Page 47

sets likely to be used by the target markets, disk-based data access is not a huge concern.

More details on disk and memory access of data can be found in the discussion of

indexing later in the paper.

4.1.2 General Issues Related to Vector File Format Support

Because shapefiles are the dominant and most coilrmon vector file format, I have

based the word-level vector internal representation very closely on the shapefile

specification. This applies for both spatial and attribute information. The similarity

between the two representations allows Mapalester to very quickly convert shapefiles

into the internal representation, thus minimizingprocessor cost for the most common of

such necessary conversions. The shapefile specification will be discussed in detail in the

subsequent section. However, for now, it is important to note that the internal

representation is an exact copy of the shapefile specification, with two major

modifications. First, while the shapefile specification requires a mixing and matching of

high and low byte order words in the spatial information portion, all words in the internal

representation must be in the byte order that is native to the host platform. In other

wordso in the Mac OS X version, all words must by high-to-low, and in the Windows

version, all words must be low-to-high. To leave the byte order in its original state would

mean having to perform a bye order conversion every time any data stored in a non-

native byte order is accessed, significantly slowing down critical processes. Second, the

internal representation ignores all shape headers and shape type specifications in spatial

information. This allows the use of these byes for other purposes, such as linked list

address information. All of the important information in the record header can be stored

in the object-oriented high-level representation, where it is more conveniently accessed

by Mapalester. While the shape type specifications found before every shape record in a

shapefile are theoretically necessary, ESRI makes clear that shapefiles should not include

more than one type of shape. (ESRI 1998). See figure 4.I.2a for a comparison between

the shapefile representation of the spatial information of a polyline and the representation

of the same data in Mapalester's intemal format. As of this writing, the internal

specification for attribute information is an exact copy of the shapefile's attribute

Hecht Mapalester Research Project Page 48

specification. This means that Mapalester uses the xllase file format for its internal

attribution information structure. See the subsequent section on shapefiles for more

information.

Spsilal Informatlon In Mapalealsr's
Inlamrl R€pt€aenallon

Figure 4.1.2a - The left side of this diagram shows the internal layout of the spatial part of
a shapefile. The corresponding diagram on the right demonstrates the layout of the spatial

part of the same sample shapefile in Mapalester's internal spatial data format. A much
more detailed explanation of this format can be found in the next part of this section.

Once the word-level configuration ofthe data matches that of the Mapalester

intemal specification, the second layer of file format support the object-oriented level -

takes over. While this level is described in much more detail in the preceding sections of

the paper dedicated to the object-oriented structure of Mapalester, I will briefly discuss

here how Mapalester builds the objects based on the word-level configuration. Because

the intemal specification holds with the shapefile's requirement that each file have only

Hecht

Spatlal Inloimallon In a Shspeflls

Mapalester Research Project Page 49

one tl,pe of shape, Mapalester starts building objects by creating the subclass of

VectorTheme (PolylineTheme, PointTheme, etc.) appropriate to the data in the file just

loaded. It then sweeps through the word-level specification, adding a new object of the

subclass of VectorObject appropriate to the shape type of the data for each new record

encountered. The constructor for VectorObjects requires a pointer to the start of the

spatial data and a pointer to the attribute data in the word-level specification, so as

Mapalester sweeps through the new data, it provides those pointers. Mapalester also adds

the appropriate bounding box information to each VectorObject. Finally, Mapalester

provides a linked list of the new Vectorobjects to the new VectorTheme, which then

creates an RTree index of the new objects.

4.1.3 Shapefile Support

The shapefile (.shp) specification was developed and made public by ESRI in

1998. The company created the format in response to criticisms of the shapefile's

predecessor, the Arc/Info exchange file format. The Arc/Info format is based on a

topological frameworh which is rooted in an entirely different spatial school of thought

than that of the shapefile, which is strictly nontopological in nature. The topological

structure will be discussed in a furure section covering the Arcllnfo format, but for now,

all that is important is that the topological structure of spatial data storage is inherently

expensive in both storage and in processing speeds of common tasks (ESRI 1998). As a

result, in the shapefile, ESRI adopted a shape-based structure in which each shape is

comprised of one or more vector coordinates (ESRI 1998). This structure has many

performance and storage benefits.

"Because shapefiles do not have the processing overhead of a topological
data struchrre, they have advantages over other data sources such as faster
drawing speed and edit ability...They also typically require less disk space
and are easier to read and write." (ESzu 1998)

The shapefrle specification describes three separate files for each shapefile. The

first and most important file is the ".shp" file, which contains all of the spatial

information for each shapefile. To put it simply, the ".shp" file is what makes shapefiles

geographic. A shapefile can describe information for one of fourteen types of shapes that

Hecht Mapalester Research Proj ect Page 50

range fiom zero-dimensional to three-dimensional. However, Mapalester only works

with four ofthe thtteen shapetypes for the following three reasons: (l) Mapalester does

not yet support three-dimensional data (2) only a portion ofthe one- and two-

dimensional shape types are used in practice, (3) and zero-dimensional shape types are

never used. It is the author's belief that restricting support to the fow shapetypes -

points, polylines, polygons, and multipoints - will result in very little if any functionality

loss for users in Mapalester's target markets. A description of the four supported shape

types can be found in figures 4.1.3a-d; these are critical to many aspects of Mapalester's

GIS capabilities due to Mapalester's reliance on the shapefile for its internal

representation of spatial information.

a

Figure4.1.3a- Four spatial objects oftho POINT shap€ type are shown above. Note that
each polnt has its own data rgcold.

o

Flgure 4.1.3b - Two spatlal obiects ofthe MULTIPOINT thape tyPe are shovvn above. Each
multlpoint lecord contains one or more point€. Multlpoinb are usefulwhen multlple

points have the samo atttibute information. For oxamPle, a flle of stores in a town could
be divlded Into multlpoint records, each of a certaln store type (laundry, rostaurant,

Curves, otc.)

l '

a

€ '

a '

Dst! Frcordt

Ddr Recordr

Mapalester Research Project Page 5l

DrbFrcon|l

Flgu.e 4.1.3c - Two spatlal objects oftfie POLYLINE 3hape type are shown above, Notea
polylng i3 not ths 6amo geometdc conoept as a llno, Each polylln€ 13 made up of one or
morc llne segmenb. Also notlce tiat each polyllne can be made of on€ or more part6
(ESRI, 1998). A part ls defln€d ai a serles of one or more lln€ tegm.nts (ESRI, 1998).

Parts ars generally only d€fln€d rvhen tyjo llne Bogment 3erlct arc dlijolnt but must reter
to the same attrlbute record. A slngle polyllne can have mllllon3 of parts that all refar to

the same rocord In tfie attrlbute Informatlon database, although In Practlco polyllnes raroly
havs more than tw€nty or so pans, At fl]tt, many peoPle wonder why the concept of part6

la necossary. A good example of a multlplefarts polyllne record would be a flle of toll
roads on tho East Coast of tho Unlted Stateg. Toll roads often have no.toll sectlons, but a
good polyllne shapeflle of thg3e road3 would keop all the toll part3 of a tfi€ same road In
tho 3ame polyllne. A descrlptlon In ths ca3e of polygons can b€ found In the subsequ€nt
dlagram. Also, tako anoth€r look at flgur€ 4"12si lt should b€ easier to undorstand why

the structurg of tho shapoflle ls tho way that lt b now that polyllnes have b€en descrlbed.

Mapalester Research Project Page 52

Figure 4.1.3d - Three objects of the POLYGON type are shown above. ESRI describes
shapefile polygons as "one or more rings" (ESRI 1998). The ring concept ls analogous to
the part concept in polylines. Note that the two parts of Mlchigan are separate rings, but
are part of the same polygon record. The points In a polygon are etored in an order such
that if someone were to walk along the lines connecting the vertices, the interlor of the

polygon would be on her or his right. Interestingly, the spatial Information for a polygon is
stored identically to that of the polyline; the last vertex in each ring is simply assumed to

connect to the first vertex.

The second file, the ".dbf' file, is a database file that contains all of the atfibute

information for each of the shapes. The ".dbf'file is in the standard xBase format, and

each record in the file corresponds to a shape in the ".shp" file. Finally, the ".shx" file is

an index of the ".shp" file. Each record in the ".shx" file points to the beginning of a

record in the ".shp" file. Because Mapalester does its own spatial indexing, the ".shx"

file is of limited use, although I have included code in Mapalester to read and utilize this

file if the need arises in later development. A diagram of how the spatial information is

split between the three files of a shapefile is shown in figure 4.L.3e.

Mapalester Research Proj ect Page 53

R.p.asrt|tlot| ot Bltury
Ilrtr ln the 'rltf flb

ReF.rdrtlon ol B|mry
Itstr h lh.'.!hf flb

Itltr h [t.'.dbtr flb

204 3t 6S2

2la 3 { | e

Rep..r.fltrton of BIr|| I . r i i+ l l B4a,!rC l!r Wasfr r{lon

erz/fl lidr | 8dr lrhr cn, I l'soqm 5flnoi

Figure 4.1,3e - Spatial obiect in a sample shapefile and lts data dlstribution across tho
three required flles in the shapefile specification.

All three files are binary files. The word-level layout ofthe ".shp" and ".slx" are

described in the aforementioned ESRI whitepaper. The ".dbf'format is a member of the

xBase complex of files, whose structure is modeled exactly off that of the dBASE format

designed by Ashton-Tate, and later continued by Borland (Bachmann 2000). The word-

level structure of the xBase format is public and is widely available online tkough a

number of sources (Bachmann 2000, others). In the C++ plug-in portion of Mapalester, I

have developed robust file readers for each of two ofthese three files (the DBF file reader

3a!6nD F4dord lor l{€lada

31b: l ! REaor{t lcr u/asnlrElon

t439? Pcyrpn|{0,o, | (1 , -1} | (5,5) | (s ,51 | (1 ,51 |O,4

l5r" l ' t RecDId lqr i4|nnescia.

Hecht Mapalester Research Proj ect Page 54

is currently under development, although a REALbasic version of the reader has been

implemented as a temporary measure). File writers are a trivial expansion of the reader

functionality.

Because, as mentioned above, the internal data representation is very similar to

the shapefile specification, the word-level transformation from shapefile to internal data

is quick and simple. The most difficult part of this transformation involves the

conversion from multiple byte-orders to the byte order native to the platform. As

discussed in previous sections, this is one of the few processes that is platform-specific.

For Intel processors (Windows), all byte-orders must be switched to little endian. For

IBM Power PC (Mac OS X), all byte orders must be switched to big endian. For Mac OS

X version of Mapalester, the three files mandated by the shapefile specification must be

run through the byte order swapper. Because xBase files are already little endiaru the

Windows version must only process the .shx and .shp files.

Perfonning this switch upon the first opening of the shapefile is much less

expensive in processor cost over the long run than leaving the data in its original format

and switching the byte order on the fly over and over again. The pseudocode for the brief

algorithm used to swap byte orders can be found in figure 4.1.3f. It must be applied on

all files that need byte order conversion.

function MAKE-CORRECT-WORD-ORDER (ptr-to-start-of-data, ptr-to-end-of-data\

input: ptr_to_start-of_data is a pointer to the first byte of the datia file loaded into

memory.
ptr_to_end-of_data is a pointer to the last byte of the data file loaded into

memory

for each longjtr or doublejft in the shapefile specification between ptr_to_start-of-data and

ptr_to_end_of_data

It is_Mac = true and specSayslslittleEndian (long_ptr or double_ptr) = true then

SWAP-EN D IAN (/ongJotr, 4) or SWAP- EN D IAN (dou b I e Jttr, 8l

if is_PC = true and specsayslsBigEndian((longjtr or doublejtrl = true then

SWAP- EN D IAN (long--ipfr, 4) or SWAP- EN D IAN (doub le itr, 8)

Mapalester Re search Proj ect Page 55

f uncti on SWAP-EN D IAN (l?rstByfe, I e n gth _to-sw a p)
inputs: firstByte is the address of the first byte of the series of bytes that is to be

swaPPed
Length_to_swap is the length of the contiguous series of bytes that is to be
swaPPed

ptr = frrstByte
for i = 0 to length_to_swapl2 - 1

temp = value_of(ptr + i) // pointer addition is defined as increasing the pointer by
one byte;this is implemented in C++ by using char
pointers

vaf ue-of(pfr + l) = value- of(ptr + length-to-swap - i - 1')
value-of(ptr + length_to_swap - i- 1l = 1s110

return

Figure 4.1.3j - Pseudocode for the MAKE-CORRECT-WORD-ORDER algorithm used to
convert byte orders.

MAKE-CORRECT-WORD-ORDER is a fast algorithm; it is O(n) if n is considered to be

the number of byte series where conversion is necessary. If we consider the number of

bytes to be swapped as n, the algorithm is only O(tlz)l The algorithm is fast in practice

as well. It converts millions of four-byte (long) and eight-byte (double) sequences in a

negligible amount of time that is barely noticeable to the user, even on the Mac OS X

platform on which more conversions must be performed because the majority of data in

the shapefile is stored in the little endian byte order. Only on abnormally large shapefrles

on the Mac OS X platform does MAKE-CORRECT-WORD-ORDER take more than one

second. This is not a problem, however, as MAKE-CORRECT-WORD-ORDER will

only be performed once for every shapefile loaded into Mapalester thanks to the database

structure described in previous sections ofthe paper.

convert byte orders.

4.1.4 Support for The " .Prj" Extension

The ".prj" extension of the shapefile specification includes critical metadata

describing the coordinate system information for the shapefile with the same non-

extension name in the same folder. In order to support the ".prj" extension, Mapalester

must be able to convert the data in ".prj" files to Mapalester's object-oriented projection

engine described in previous portions of this paper.

Hecht Mapalester Research Project Page 56

Unlike the ".shp," ".shx," and ".dbf'files of the shapefile specification, the ".prj"

file is a text file. Because of the high variability of text encodings and REAlbasic's

built-in ability to handle such encodings, the parser for the ".prj" file is programmed in

REALbasic code. (The projection engine itself, as mentioned above, will soon be

converted into C+r.) While text files in REALbasic may be easier to read and write due

to the lack of binary data problems described above, the parser of the ".prj" files involves

much more computer science than the ".shx", ".shp," and *.dbf'readers. Before

discussing the details of the parser, however, it is first necessary to describe the structure

of a standard ".prj" file.

The ".prj" file, due to the metadata it describes, exhibits a much more complicated

structure than that of the aforementioned files. While the *.shx", ".shp", and ".dbf' files

can be described with a simple linear definition of bytes and what they represent, the

".prj" file describes inherently hierarchical information, and must thus have a more

convoluted structure. Similar to the specification of many programming languages, the

".prj" specification is based around an EBNF (extended Bachus-Naur form) grammar

(ESRI, 2000). Figure 4.I.4adepicts this definition using a very slightly modified syntax

of pure BNF. Terminal symbols are depicted in bold.

<PRJ_FILE> ::= <PROJ_CS> I <GEO_CS>

<PROJ_CS> : := PROJCS[<NAME>,<GEO_CS>,<PROJECTION>,<PARAMETER>,<UN lT>l
<GEO_CS> ::= GEOCSI<NAME>,<DATUM>,<PRIMEM>, <UNIT>l

<DATUM> : := DATU M[<NAME>,<SPHEROID>l
<SPH ERIOD> : := SPHEROID[<NAME>,<DlGlT>,<OlGlT>l

<PRIMEM> ::= PRIMEMI<NAME>, <DlGlT>l

<NAME> "= "<ALPHA>"
<PROJECTION> ::= PROJECTIONI<NAME>I

<PARAMETER> ::= € | PARAMETERI<NAME>, <ALPHA>I I PARAMETERI<NAME>,

<ALPHA>1,<PARAMETER>

<UNIT> ::= UNIT[<NAME>, <ALPHA>I

<ALPHA> ::= any character except quotes I any character except quotes <ALPHA>

<DlGlT> ::= <TERM_DlGlT> I <TERM_DlGlT><DlGlT>

< T E R M _ D I G I T > : : = O l 1 l 2 l 3 l 4 | 5 l 6 l 7 l 8 l 9 1 .

Mapalester Research Proj ect Page 57

Figure 4.1.4a - The slightly extended BNF for the ".prj" file specification. Based on ESRI's
".prj" specification (ESRI 2000).

Because of the similarity between the ".prj" file specification and that of

programming languages, Mapalester's ".pq" file reader uses techniques similar to those

used in programminglanguage compilers. The reader first "tokenizes" the text from the

".prj" file using a discrete finite automata derived (DFA) from the one in figure 4.1.4b.

P I G I D I U I S

Figure 4.1.4b - The above discrete finite automata is implemented in the REALbasic ".prj"
file parser. Notice that the right bracket and comma characters are the only true token

delimiters.

The program then applies the grammar described in the EBNF in figure 4.I.4ato

organize all of the information in the tokens. This organization has the end result of

Mapalester Research Project

having an instance of the ProjCS class, which is described earlier in the pape\ with all of

the necessary parameters to understand the coordinate system in the ".prj" file. An

example of an inputted string from a ".prj" file and the resulting ProjCS class instance

can be found in figure 4.1.4c.

PROJCSfNAD-1983_UTM_Zone_l5N',GEOGCSf'GCS-North-American-l983',DATUMt'D

_North_American_1983',SPHEROID['GRS_1980',6378137.0,298.257222101]I,PRIMEM['Gre

enwich',0.0l,UNlT['Degree-,0.0171532925199433]I,PROJECTION['Transverse_Mercator"],

PARAMETER["False_Eastrng',500000.0l,PARAMETERI"False-Northing',0.0],PARAMETER

["Central_Meridian",93.0],PARAtnETERI"Scale_Factor",0.9996J,PARAMETERf' Latitude_Of

_O ri g i n',0.01, UN lT[" M eter",1 .0]l

nrnc ='Felsa_Easfif
velra = i0mo00.o

nrnF .'cdtrNl-Mcddlfll"
v|lr! = .t$.o

namc ='sc8lr-Faclol'
ftrJa ! 0.9996

has_a

I
f--'*'*_-l
| ,rW* |---7--\-

has-a \
t- \=

I doulh I
t_____)_)_/

Ir,o/a I oouu*
(- | |
r

--------l-
equats

I q378137.0 | t

\ f
has_a I dqrbtc I

tr'
|) lfuottsetrnnorenwtatl

-/' €quals
I oouu* I +
| | lE:--]L---l-_-J

I
29,8.257?22101

|
equals

|
?98.25722101

|

Mapalester ResearchProject Page 59

Figure 4.1.4c - The figure above ls the resultlng class structure generated from the ".prl"
file containing text above the figure.

It is interesting to note the similarity between the class structure of the projection system

and the categories in the BNF gmrnmar. As mentioned in preceding sections, the class

structure for the projection engine is based on the nature of the data that the class

structure represents, and the ".prj" grammar very well represents the nature of the data it

structures. This means that one could learn about projection mathematics via the

grammar and someone who understands projection mathematics would understand the

grarnmar immediately. For example, a spheroid can be defined by the major axis and the

flattening, both of which are represented in the BNF. The details of projection

mathematics are beyond the scope ofthis section, so I will not discuss them further. See

sections 3.4 and 4.6 for more information.

4.2 Spatial Indexing

In any GIS softrvare package, a search through spatially referenced data for a

particular spatial location is an extremely common task. For instance, any time a user

pans or zooms in an instance of Mapalester's GISCanvas (section 3.3), Mapalester must

search through all of the data layers in the GISCanvas to identi$ which objects to draw

in the canvas and which fall outside of the canvas's extent. While it may be trivial to

search through a small number of spatial objects, GIS software often must scan through

thousands or millions of spatial objects in order to find all objects that fall within a

specified zone. As such, the issue of how to most efficiently perform these searches

arises. This section is dedicated to several spatial indexing approaches used in

Mapalester, each of which corresponds with a different technique for performing these

searches. Each part ofthis section describes a different indexing approach and discusses

the time and storage costs of the approach. At the time of this writing, most of the

development efforts are in this portion of the program.

Mapalester Re search Proj ect Page 60

4.2.1 The Brute Force Approach

The positives and negatives of the brute force approach are easy to describe. The

biggest advantage is that it is extremely easy to implement. It also can be somewhat

storage/memory efficient, depending on the specifics of the implementation. The sole, but

important, drawback is that it is very slow compared to other approaches, at least in

theory. The brute force approach to spatial indexing is simple: there is no index. When a

spatial search is performed, the search algorithm must simply go through all of the

available and relevant spatial objects, checking each object to see if it falls within the

spatial parameters of the search. Obviously, this is an O(n) process. When n is small,

this is not a problem, but when n is, sayn a million or more - a cornmon happenstance in

the world of GIS - slowdowns occur.

The brute force approach was the frst spatial indexing method used in

Mapalester. It was implemented as a temporary measure, as some sort of spatial search

method is a necessary stepping-stone to many other GIS processes. Surprisingly,

however, performance was satisfactory for all but the largest datasets in the collection of

sample vector datasets designed to echo the set of datasets likely to be used by my target

markets.

I believe this gap between the theoretical slowness and the relative speed in real

world tests is explained by my extensive use of the effective "bounding box" heuristic in

the implementation of the brute force method. The bounding box of a spatial object is

defined by the maximum and minimum coordinate for each dimension of the object. In

the context of the current, 2D-only version of Mapalester, this means that the bounding

box is the rectangle defined by the minimum x-coordinate, maximum x-coordinate,

minimum y-coordinate, and maximum y-coordinate. See figure 4.2.La for an illustration.

Mapalester Research Proj ect Page 61

{G rzl

(1t ,0 l

Flgure 4.2.1a - The boundlng box of a sampls spatlal obJect. Note that the box can
be defined by the upper left and lower rlght vertices. Ths x-coorClnate of the uppsr left

vertex ls the minlmum x-coordlnate of the spatlal objsci. The y-coordinate b the
maximum y-coordinate of the Bpatial object. For the lower light vertex, the x-coordlnate ls
defined by ihe maxlmum x.coordlnate ofthe obloct and the y-coordlnate is deflned by the

mlnlmum y+oordlnate ot the obJect.

For all of the spatial indexing approaches, the bounding box is used as an

approximation for spatial objects when running the search algorithm. While this heuristic

can result in false positives, as depicted in figure 4.2.1b, it will never cause any lalse

negatlves.

Hecht Mapalester Research Project Page 62

Figuro 4.2.1b - Despite the fact that the rectangle area of search ovorlaps wlth the
bounding box oftho spathl object from flguro 4.2.1a, the area of aearch does not actuatly
ovsrlap with the spatlal object ltsef. The sPatlal obJect will be roturned as a match tor the

search, but lt wlll bE a falso positlve.

The false positives are a small price to pay considering the massive reduction in

calculations per shape that results. Ifthe bounding box were not used, all of the search

algorithrns, no matter to which indexing approach they correspond, would have to use a

polygon intersection test algorithm in the case of polygonal and polylinear spatial objects'

Each iteration of this algorithm would be O(4p) (O'Rourke 2002), where p is the number

of points in the polygon or polyline and assuming the search area is always a rectangle

(with four vertices). This would make the search algorithm associated with the brute

force indexing approach O(4pn) in the case ofpolygon and polyline datasets , where p is

the maximum number ofvertices of the polygonVpolylines in the dataset and n is the

number ofpolygons/polylines in the dataset. Even tlte faster search algorithms associated

with the other spatial indexing approaches, in which n is replaced with smaller functions

of n, would stall extensively under such a heavy computation load. It is interesting to note

that the bounding box heuristic, due to its optimistic nature, is quite similar to the

admissible heuristic for heuristic search algorithms like A*.

Most likely, it is the impressive reduction in calculations per n that causes the

brute force search algorithm to perform so well against its competitors for all but the

Hecht Mapalester Research Project Page 63

largest datasets. Essentially, the number of calculations necessary to check if a

rectangular area of search overlaps with a bounding box is so few that it takes hundreds

of thousands of such comparisons in order for the time taken to be noticeable. Figure

4.2.Ic is a psuedocode version of the very simple algorithm needed to perform the

comparison.

function OVERLAP? (rect 1, rect2) returns Boolean

inputs: rectl is the search rectangle

rect2 is the bounding box ofthe spatial object being queried

if maxX(re ct 1\ < minX(rect 2)

return false

if minX(rectl) > maxX(rec9)

return false

if maxY(rectl) < minY(rec2)

return false

if minY(rectl) > maxY(rec0)

return false

return true

Figure 4.2.1c - The algorithm to determine if two rectangles (in this case, the search
rectangle and the bounding box of a spatial object) overlap. This algorithm is so simple in

theory and In practice that it is lmplemented in single two-line Inline function in the C++
plug-in portion of Mapalester.

4.2.2 The R-Tree Approach

In order to provide good performance for the key low-level functionality that is

spatial searching for all file sizes, it was necessary to abandon the brute force approach

and research other approaches to spatial indexing for futtre implementation in

Mapalester. The seminal paper by Guttman (1984) forms the foundation of most spatial

indexing research still done today. In this paper, Gutffnan defines a construct he calls the

"R-tree." While there have been many proposed improvements to the R-tree in recent

years, I decided that Guttman's construct would be a good place to start and implemented

Hecht Mapalester Research Proj ect Page 64

R-tree indexing. Because the R-tree deals with the spatial objects that make up data

layers (below the VectorTheme level, see section 3.3), and because R-trees require the

extensive use of recursive algorithms, all R-tree programming was done in the C+r

language.

The basic idea of the R-free is simple. The tree is comprised of three distinct

objects: non-leafnodes, leafnodes, and spatial objects. Every object in the tee has a

bounding box identical to those described in the preceding section. Every object in the

tree's bounding box is contained within the bounding box of its parent. Additionally,

Guttman (1984) identifies six more technical and specific properties of the R-tree as

follows (adapted to fit context):

(1) Every leaf node contains between m and M spatial objects unless it is

the root, where m is the minimum number of entries per node, M is the

maximum number of enffies per node, and m is greater than or equal to

one half of M.

(2) Every spatial object has a bounding box that is the smallest rectangle

that spatially contains the object.

(3) Every nonleaf node has between m and M entries unless it is the root

(4) Every non-leaf node and leaf-node has a bounding box that is the

smallest such box that contains all of the children of the non-leaf node

or leafnode.

(5) The root has at least two children unless it is a leaf.

(6) All leaves appear on the same level.

All of the algorithms used to operate on the R-hee are designed to maintain and

query a tree that conforms exactly to the aforementioned specific and broad requirements.

Obviously, since the R-tree is designed to make spatial searches more efficient, the most

important of such algorithms is the search algorithm. This algorithm happens to be the

simplest of all the algorithms connected with the R-tree. In short, the algorithm scans

recursively through the tree starting with the root and returns all the spatial objects within

Mapalester Research Project Page 65

the bounding box input into the search algorithm. The algorithm is described in more

detail in the following psuedocode:

function SEARCH(bounding_box) returns list of spatial objects

inputs: bounding_box is the input of the spatial search

SEARCH-REC(root, bounding_box, list)

return /lst

function SEARCH-REC(node, bounding_box, list)

inputs: bounding_box is the input of the spatial search

node is the node to be examined in this spatial search

/isf is the "global" list to which all positive results will be added

for each child in node

if overlaps(b o u n d i n g_b ox, g etBou nd i ng BoxOf(chlld)) = true then

lf isLeafNode(child) = false then

SEARCH-REC(ch ild, bo u ndin g_box\

else

append(/lst, child)

end lf

Figure 4.2.2a- The R-tree search algorithm

While the R-tree works beautifully and quickly even on polygon and polyline

files, the massive number of objects to insert in the R-tree with even a small point file

quickly overloads the R-free capabilities. Point entries are loaded into R-tree by making

their bounding boxes degenerate rectangles whose extent is a single point. While polygon

and polyline files may have more points total due to the massive number of vertices for

many polygons and polylines, they generally have less than 10,000 or so polygons or

polylines, which is the level at which bounding boxes are established, and thus the level

at which the R-tee indexes. As mentioned above, the R-tree is a data sffucture whose

processes get increasingly more expensive time-wise as more and more items are

Hecht Mapalester Re search Proj ect Page 66

inserted. As a result, in preliminary tests, the R-tree was up to twenty times slower than

the brute force approach for a point file with around 165,000 points. It is not uncommon

for point files to have that many points or more.

As such, it was necessary to find a way to reduce the number of bounding boxes

indexed for point datasets. I attempted three approaches to accomplish this goal, all of

which either had little impact on the number of bounding boxes indexed or made

bounding boxes that were so large that they eliminated most of the benefits of using the

R-tree to begin with. The frst approach simply grouped frpoints that were adjacently

stored in the points file. For all values of fr tested, the resulting bounding boxes were

either too large or the insert algorithm was too slow, or both. Obviously, I needed a more

intelligent approach. I next looked into point clustering algorithms in an effort to more

accurately group the points and thus minimize bounding box rectangles. The most

coflrmon type of clustering algorithm is the k-means algorithm, but this algorithm is

O(n') in the worst case. While it is often much better in practice, it would involve

rururing through all of the points at least several times and comparing each point with the

number of clusters desired. Such an algorithm would take more time than it takes to

insert the points individually. As such, I implemented a standard variant on the k-means

algorithm, often referred to as the one-pass k-means algorithm. The algorithm, modified

for the context of Mapalester, is depicted in pseudocode in figure 4.2.2b.

function ONE-PASS-K-MEANS(points, epsilon, c/usters) returns list of clusters

inputs: poinfs is the set of points to cluster

epsilon is the maximum distance a point can be from the geometric mean of a
cluster
c/usters is an array of clusters (implemented as MultipointObjects), initially empty

for each p in points

foundCluster = false

for each c in c/usfers

lf disfance(geometricMeanO\c), p\ < epsilon

add Po intToCl ustedc, p)

adjustMeanOEluste(c)

foundCluster = true

Mapalester Research Project Page 67

if foundCluster = false

cl= makeNewClustefl\

a dd Po i ntTo C luste(c,p)

a dj u st M e a n O fC I u ste r(c)

addToAnay(c, cl)

Figure 4.2.2b -A psuedocode implementation of a one-pass k-means algorithm.

In the worst case - when no point is within epsilon of anotherpoint - this algorithm is

O(n'), a significant improvement over the basic k-means algorithm. Additionally, the

worst case is very unlikely to occur if epsilon is chosen wisely. Note, however, that this

algorithm has much less accuracy than the basic k-means algorithm as points are not

reassigned as the geometric means shift. However, because this algorithm walks the line

between speed and accuracy very well, it was worth trying in Mapalester. Unfortunately,

despite a large number of tests, I was unable to find a context-sensitive equation for

epsilon that would not either cause the near worst-case performance to occur (and thus

also not reduce the number of bounding boxes to index) or that would not generate

bounding boxes that were so large that there was almost no point in using spatial

indexing. The final approach to clustering that I attempted was to combine the first two

approaches into my own algorithm. This algorithm's psuedocode appears in figure

4.2.2c.

function SLOPPY-K-MEANS(pornfs, epsilon, c/usters) returns list of clusters
polnfs is the set of points to cluster

epsilon is the maximum distance a point can be from the geometric mean of a

cluster

c/usters is an array of clusters (implemented as MultipointObjects), initially empty

cl = makeNewClusteo

for each p in pornts

lf distance(geometricMeanO(c), p) < epsilon

ad d Po i ntToCl u ste r(c, p)

adj u st M e a n O fC I u ste r(c)

foundCluster = true

Hecht Mapalester Re search Proj ect Page 68

cl= makeNewClustefl)

ad d Po i ntToC lusfe(c,p)

adj u st Me a nO fC I u ste r(c)

addToAnafic, cl)

return clusters

Figure 4.2.2c - A synthesis of the trivial and intelligent one-pass point clustering
algorithms.

Unfortunately, for all logical epsilon values attempted, this algorithm resulted in far too

many clusters, which meant that the number of bounding boxes was too great to have

much of an impact on the index insertion time. While I have not given up on the

combination of the R-tree with the point clustering approach, I have switched my

attention to the implementation of the R*-tree, which claims to handle points much more

efficiently than the basic R-tree. The R*-tee seems to be the most popular 2D-focused

derivative of the R-tree (Manolopoulous et. aL,2003), so I am hopeful that it will provide

good results.

4.3 Line Simplification

Line simplification algorithms are a portion of the computational answer to the

age-old art of generalization in cartography. Early cartographers had to determine the

level of detail in polylines (both those that stand on their own and those that are parts of

polygons) based on the scale of the map they were generating. For example, maps of the

entire United States generally do not need the detail of every tiny nook and cranny of the

eastern coastline. The idea behind line simplification algorithms is to automate this

process for the huge increases in available spatial data. In their book Generalization in

Dieital Cartoeraphy, McMaster and Shea (1992) describe line generalization algorithms

with the following definition: "As a general definition, simplification algorithms weed

from the line redundant or unnecessary coordinate pairs based on some geometric

criterion, such as distance between points or displacement from a centerline." (McMaster

and Shea 1992).

Hecht Mapalester Research Project Page 69

McMaster and Shea identifr four main benefits of line simplification in digital

cartography: (l) reduced plotting time for (now antiquated) digital plotters, (2) reduced

storage space, (3) faster vector to raster conversiorq and (4) faster vector processing for

operations such as translation, rotation, and rescaling. However, in my research, I have

found that, in the time since McMaster and Shea wrote their book, processing speeds

have increased enough to nulliff most of the benefits of simplification. In fact, in my

experience, many of the algorithms presented in their book add computation costs and

result in slower display and data processing speeds. As a result, Mapalester implements

only the most trivial of line simplification algorithms. The fust part of this section

identifies the results of multiple implementations of the classic Douglas-Peucker

algorithm. The second part describes the ftivial algorithm actually used in Mapalester.

Finally, the section closes with a description of the possibilities that lie with an enhanced

version of the Douglas-Peucker line simplification presented by Hershberger and

Snoeyink.

Before discussing the efhcacy of various line-generalization algorithms, however,

it is important to discuss a recently discovered use of line-generalization algorithms for

which an accurately generalized line, and not speed of algorithm, is the most important

factor. This use - reducing the size of extremely detailed vector data layers to a digital

capacity that is distributable, say, on the Internet - is an extremely high-level function,

however and may not even make the first version of Mapalester. The most famous

application of this use of line generalization has been the production of reasonably sized

U.S. census boundary files from the TIGER database (U.S. Census 2004).

4.3.1 Douglas-Peucker

One of the hallmarks of early GIS software and one of the most famous

algorithms in computational cartography is the Douglas-Peucker line simplification

algorithm. I initially assumed that an implementation of the algorithm would be a

necessary element of Mapalester. Additionally, early implementations of Mapalester

suffered from slow graphics display speeds, a problem that presumably would be solved

by having less detail to display, which is the result of line simplification algorithms. I

Hecht Mapalester Research Proj ect Page 70

initially implemented a recursive version of the algorithm, described by the pseudocode

in figure 4.3.Ia,which is adapted from Sunday (2002). Figure 4.3.1b shows the effect of

Douglas-Peucker on a sample line.

function BEGIN-SIMPLIFY(folerance, Iine\ returns generalized line

inputs: tolerance is the approximation tolerance for the algorithm, which in the case of

the Mapalester implementation, is measured in pixels

llne is the line to be generalized and contains a list of all of the points in the line.

DP-Sf MPLf FY (tolerance, /rne, fi rstVertexln(/rne), lastVertexln(/lne))

for each veftex ln line

If isMarked(vertex) = true then

add(veftex, newLine)

end if

next

return newLine

function DP-SIMPLIFY (tolerance, line, a, b)

i f a = b t h e n

return

end if

lineAB = getSegmentOfLine(/rne, a, b/

for each veftex in lineAB

if d istance Fro m(v e rtex, I i n e A B) > m a x D i sta nce SoFar

maxVertexSoFar = vertex

m ax D i sta n ceSoFar = d istiance Fro m (v e rte x, I i n e A Bl

end if

next

it maxDistanceSoFar > tolerance then

DP-SI M PLIFY (tole rance, I i ne, a, maxVe rte x So F a r)

DP-SI M PlIFY(tolerance, I in e, maxVerlexSoFar, b)

end if

Figure 4.3.1a - High-level psuedocode for the Douglas-Peucker algorithm.

Mapalester Research Proj ect PageTl

Prc.Slmplilf lcaflon Poat€knpll[catlon

Figure 4.3.1b - The result of Douglas-Peucker on an example polyline with four vertices .

While simple and short, this algorithm has surprisingly high processor costs. The step

that requires the most computation is illustrated by the distanceFrom function in the

psuedocode. To determine the distance of a point from a line, it is necessary to use

vector arithmetic, which slows the algorithm significantly. In additiorq the distanceFrom

calculation must be performed n2 times in the worst case, where n is the number of

vertices in the input polyline. (The algorithm is O(n*m), where n is the number of

vertices in the input polyline and m is the number of vertices in the output polyline. The

aforementioned case is that in which no simplification occurs due to all vertex distances

exceeding the tolerance.) Moreover, for a large data layer, this algorithm must be

performed on thousands, or even tens of thousands, of polylines.

Taking the computational requirements of Douglas-Peucker into consideration, it

is no surprise that the time costs of performing the algorithm outweighed the

computational benefits of simplification, at least in the context of data display. The

performance of the algorithm is highly dependent on the tolerance value that is chosen.

However, for all tolerance values that resulted in reasonably accurate display, the

algorithm added time to the data display process.

In an effort to decrease the computational costs of the algorithm, I implemented

an iterative version of the algorithm. To do this, I employed standard techniques used to

convert tail-recursive algorithms like Douglas-Peucker. However, even the iterative

version proved more costly in the context of data display than no generalization at all.

Mapalester Research Project Page72

4.3.2 The Trivial Approach

Due to the failure of Douglas-Peucker to speed up data display and several other

operations,I instead implemented a trivial line simplification approach whenever

simplification was needed for speed reasons. For instance, in the case of data display, the

most expensive operation is the actual drawing of pixels. As such, my tivial

simplification data display algorithm is as follows:

function TRIVIAL-SlM PLIFY(ltne)

inputs: /ine is the line to be generalized and contains a list of all of the points in the line.

la st Point = fi rstVertexl n(li ne)

for each veftex ln line

Foint = getAppropriatePlotPoint(/rne)

if point does not equal /asfPolnf then

drawLine(/astPoint, poi nt)

end lf

lastpoint = point

next

Figure 4.3.2a- The trivial line simplification algorithm implemented in Mapalester.

4.3.3 The Hershbergerl Snoeyink Speed-Up

In 1994, Hershberger and Snoeyink proposed an improvement on the classic

Douglas-Puecker algorithm that improves the worst case performance from O(n2) to

O(n*log(n)). The algorithm is identical to Douglas-Puecker except it replaces the

distance calculation step identified above as a key performance issue in Douglas-Puecker

with a more advanced method of distance calculation that uses convex hulls. The

implementation cost of this speed-up is much higher and Hershberger and Snoeyink

themselves admit that "the statistical properties of cartographic data usually means that

the straight-forward implementation is slightly faster than the convex hull

implementation." (Hershberger,1994) While Hershberger and Snoeyink claim that their

simplifrcation algorithm "may be interesting" for parallel or interactive applications, none

Mapalester Research Project Page73

of these applications curently exist in Mapalester. As such, no attempt to implement the

speed-up in Mapalester will be made in the near future.

4.4 iTunes-Iike Database Functionality

Through my teaching assistant work, I determined a major weakness of existing GIS

software to be its reliance on Windows Explorer as the dominant data file organization

framework. The user is expected to more or less maintain a system of folders and files

that organizes her or his data. There are two main problems with this frameworlg

however. First, especially in a lab context, it is easy for this system to be invalidated by a

careless or creative user. Second, the user may miss certain similarities and patterns in

some of her or his data sets that could be identified by a more intelligent data file

organtzation system. As a result, I set out to develop a new system of data file

organization. Utilizing similar methodology to the manner in which I developed the

GlSFormatWindow - identiffing what has worked in other programs and modiffing it

for my purposes - I singled out two possible models for providing the user with the best

possible data file management features.

The first of these models was found in photo management software, the second in

music jukebox software. How do photo and music files relate to GIS data files? The

answer to this question lies in the fact that photo, music, and GIS files all carry a large

amount of metadata. Whereas a photo may have the capture date, the capture location,

and the resolution; and a music file may have the artist, album, and genre; a GIS file has

the data author, field descriptions, legal restrictions, edition, data group, and a great

number of other metadata fields. I was not pleased with how existing photo management

software allows its users to navigate through the metadata of photo files, primarily

because users of photo management software place a much higher value on previews of

the data along with display of attribute data than do GIS users. While previews are a

satisfactory supplemental feature, they need not be a core element of GIS data file

management. Music jukebox sofhvare applications, therefore, provide the better model

for GIS data. Out of a field of several excellent case studies, I identified the wildly

popular iTunes software made by Apple as having what I believe to be the best support of

Hecht Mapalester Research Project Page 74

metadata. I made this judgment for two reasons. First, iTunes by default loads music

files into a cental database when they are fust opened, and does not require original files

after that point. This frees the user from having to use Windows Explorer or the Mac OS

X Finder to organize data" and assures that the user's only interaction with music files is

through the iTunes metadata browser, not through location on the hard drive. In other

words, the user never needs to know where she or he stored a music file, just, for

example, who sings the song. Second, I believe iTunes strikes a good balance between

simplicity of interface and data management power. Primarily through a combination of

the use of the "playlist" and "library" concepts, iTunes provides relatively quick access to

music files while still supporting stringent organization and searching for music by

metadata fields.

Mapalester's GIS data file management system is heavily influenced by that in

iTunes. An additional benefit to the adoption of iTunes' system is that users familiar

with iTunes will feel right at home in Mapalester. The basis for the GIS file

management system is complete; users can view and edit metadata of loaded GIS files,

for example. The metadata fields supported in the library feature were determined

through the study of a sample of GIS file metadata and through consultation with

Professor Carol Gersmehl. While it is very easy to add/delete/modifu the fields, the

fields are likely stay as they are for the first release (see section 3.4 for more details).

Support for searching and data "playlists" will be simple to implement and will be in

the first released version.

4.5 Prime Meridian Conversion or, GIS that Acts Like a Globe, Not a
Mep"

A significant amount of development time has been dedicated to implementing a

feature that allows users to interact with Mapalester as they would with a globe, replacing

the map-based interactivity found in current GIS software. More specifically, this

feature, which is nicknamed "GISpin," enables users to interact with the world as a

continuous surface; users panning extents will never encounter an "edge" of the world, so

to speak. A key result of GISpin is that Mapalester will not require the world to be

"split" at a certain meridian. This "split" is very familiar to map viewers, and has been

Hecht Mapalester Re search Proj ect Page 75

identified in personal interviews with teachers as a means of marginalizing the portrayal

of certain areas of the world. For instance, most rnaps made in the United States split the

globe at the meridian that runs between Alaska and the eastern reaches of Russia. This

creates the impression that geographic processes are not continuous across the split

meridian. Given that one of Mapalester's target markets is the education market, it is

important for Mapalester to avoid supporting this impression.

GISpin is not yet complete, but will appear in the final version of Mapalester.

Implementation of the feature has been an interesting mix of projection and datum

mathematics and computer science techniques. This section is dedicated to describing

these techniques. Because of the nature of spatial data, implementation of this feature is

essentially comprised of two very different components. The first component, which has

been completed but not yet incorporated into the Mapalester interface, involves

implementing the functionality for point data layers. The second, and more difficult,

does the same for polyline and polygon data layers.

4.5.1 Point Support in GISpin

In principle, supporting points in "GISpin" is quite simple. There are many

technical, detail-oriented implementation difficulties surrounding the incorporation of

point GISpin into the projection system, but these are outside the scope of this paper. As

such, the simple theory will be the only element of the point support discussed.

Similarly, I will limit the discussion to data in'lrnprojected" or "geographic" coordinate

systems, because these systems use cornmonly known angular units like longitude and

latitude. It is important to note, however, that the same techniques can be adapted to

projected coordinate systems, with one major difference discussed at the end of this

subsection.

In their native form, unprojected coordinates have a latitude and longitude relative to

the equator and a given prime meridian, respectively. While the equator is defined as the

intersection between plane x and the surface of the earth where x is perpendicular to the

line segment that contains both poles (non-magnetic) and intersects this line at its

midpoint, the prime meridian is an arbitrary construct. In fact, the currently predominate

Hecht Mapalester Re search Proj ect Page 76

prime meridian * the meridian that passes through Greenwich, England - was not agreed

upon as the default prime meridian until the International Meridian Conference in 1884,

and certain other prime meridians are still used on occasion.

It is this arbitrary nature of the prime meridian from which GISpin derives its power.

Stated simply, GISpin makes the prime meridian the center of the current view extent and

adjusts the longitudinal coordinate of each point accordingly. In this way, if the current

view extent center is in eastern Russi4 around t79.5" East longitude using the Greenwich

meridian, Mapalester is able to easily project the points in, say, Alaska, on the right of the

180o line, accurately representing where they exist in the real world. Mapalester does

this by establishing the 0o line as the 179.5' East line, and adjusting all other points

accordingly. In current GIS software, these points would appear on the opposite side of

the possible view extent, just as in a world map.

It is important to consider the issues involved in transferring this methodology to

projected coordinate systems. The most important of these issues involves the infinite

distortion inherent to the periphery of the range of many projection equations. For

instance, in the standard Mercator projectiorL the south and north poles are projected to

infrnity. While this particular case is not problematic to GISpin because the latitudinal

display restriction can be maintained while rotating longitudes, the corresponding

drawback in transverse Mercator (which can be described as Mercator flipped on it side),

is highly problematic. Left unchecked, this problem could result in users scrolling

through infinitely extended extents at the periphery of the range of the projection

equation. This problem has an interesting solution, which has the convenient side effect

of helping to eliminate much of the confusion surrounding projections for new users.

Essentially, Mapalester simply changes the central meridian of the projection equation to

the center of the view frame. In the case of equations with trvo central meridians,

Mapalester uses the meridians that divide the view frame into three equal parts. This

methodology has the effect of reprojecting all points in the view frame to maximize the

benefits of the chosen projection, averting a common and hard+o-catch problem for new

GIS users. Interestingly, if this methodology is extended, it would be very easy to

implement an auto-projection system in Mapalester that would choose the best projection

for any given view frame. However, such a system would require a large amount of

Hecht Mapalester Research Project Page 77

human-computer interaction research or the construction of an expert system in order to

determine the best projection for every category and scale of view frame extent.

Nonetheless, it would provide an interesting avenue for graduate school research.

4.5.2 Polyline and Polygon Support in GISpin

The concepts behind polyline and polygon support in GISpin are identical to that

for points. After all, polylines and polygons are nothing but a series of ordered points

that are connected with lines. However, the manner in which computers construct and fill

polylines and connect the points in polylines, creates an enonnous road block to

implementing support for these geomeffic forms in GISpin. This problem appears only

when the view extent is large enough that a polyline or polygon that appears on the right

side of the view frame also appears on the left side of the frame. For instance, such a

situation would occur if the view frame is the maximum possible while using GISpin -

the whole world - and the center of the frame is aligned such that the United States is cut

off on the right side. In these situations, when Mapalester tries to draw a line segment

from the last vertex on the right side to the first vertex on the left side (or vice versa),

instead of drawing a line to the edge of the view frame on the right side and beginning

again on the left, Mapalester just draws a line all the way across the view frame.

Obviously, although the context for this bug is somewhat uncolnmon, the bug is still a

major showstopper.

After attempting many tivial and complicated workarounds, I determined the

solution to this bug to lie in one of the several line and polygon "spliffing" algorithms

available. Such algorithms will generate the set of polylines or polygons created by the

bisection of a polyline or polygon by a line. Mapalester would draw the polylines and

polygons output by this algorithm instead of the original polylines and polygons

described in the data layer. Unfortunately, these algorithms have high implementation

costs, especially when speed is such an enonnous factor. As such, I have not yet been

successful implementing these algorithms and, as a result, Mapalester still uses a map-

based view frame.

Mapalester Re search Project Page 78

Once I have completed the implementation of these polyline and polygon

bisection algorithms, they will have uses well outside GISpin. For example, as

mentioned above, a small number of data sets come in geographic coordinate systems

that incorporate a prime meridian other than the Greenwich meridian. In order to convert

such data sets to display correctly in a data frame with any other prime meridian, I will

need to use the algorithms to reconfigure the original coordinates of such data sets.

Additionally, the algorithm implementations will come in handy when I am

implementing such standard GIS features as layer intersections and clipping.

4.6 Projection C onversion F unctions

While I have discussed the structure and function of the coordinate system structure

in Mapalester in previous sections, I have yet to explain in detail the actual process of

projection conversion. This process is conceptually simpler than the structure of the

coordinate system, but just as complicated to implement. Projection conversion functions

can be separated into two broad categories, those that "project" and'hnproject." Each

map projection has one of each. The functions that "project", often referred to as

"forward direction" projection functions, take two angular-unit inputs (the longitude and

latitude, often abbreviated as ?,, and Q, respectively) and return two length unit outputs

(Cartesian coordinates usually in meters, often abbreviated as x and y, respectively). The

functions that *unproject," often called "reverse direction" projection functions, take

length coordinates as inputs and return angular units as outputs. The functions,

regardless of direction, often take other parameters as well. Common supplementary

parameters include the central meridian, latitude of origin, and standard parallels.

Projection conversion functions can also be categorized based on whether or not they

deal with the Earth as a spherical or ellipsoidal object. Those that view the Earth as a

spheroid are only used in very small-scale maps. The vast majority of commonly-used

projection conversion functions are those of the ellipsoidal persuasion.

When completed Mapalester will support the set of projection conversion functions

found in table 4.6a. The bolded functions are those that are already completed. The table

is based on the equivalent table for ESRI's AToGIS 9. Since data is sometimes

Hecht Mapalester Research Project Page 79

distributed in obscure projections, I have made supporting the widest possible collection

of projection conversion functions a high priority. A user not being able to input a

certain data set because the data set is projected in an unsupported projection violates

both the ease-of-use and powerful development goals.

NAME DIRECTION SHAPE
Aitoff both sphere
Albers Eoual Area Conic both el l ipsoid
Behrmann both sohere
Bonne both el l ipsoid
Cassini both el l ipsoid
Craster Parabolic both el l iosoid
Cylindrical Equal Area both el l ipsoid
Double Stereoqraphic both ellipsoid
Eckert I - VI both sphere
Eouidistant Conic both el l iosoid
Eouidistant Cvlind rical both sohere
Flat Polar Quartic both sohere
Gall Stereoqraphic both sphere
Gauss-Kruqer both ellipsoid
Gnomonic both sohere
Hammer-Aitoff both sphere
Hotine Two Point both elliosoid
Hotine Azimuth both el l iosoid
Krovak both el l ipsoid
Lambert Azimuthal Equal Area both ellipsoid
Lambert Conformal Conic both ellipsoid
Loximuthal both sohere
Mercator both elliosoid
Mil ler Cvl indr ical both sphere
Mol lweide both shoere
New Zealand Map Grid both el l ipsoid
Orthoqraohic both sphere
Plate Carree both sohere
Polyconic both elliosoid
Quartic-Authalic both sphere
Robinson both el l ipsoid
Sinusoidal both el l ipsoid
Stereoqraohic both el l ipsoid
Stereooraphic North Pole both el l ipsoid
Stereoqraohic South Pole both ellipsoid
Times both sohere
Transverse Mercator both elliosoid
Two-Point Equidistant both sohere
Van der Grinten I both sphere

Mapalester Re search Proj ect Page 80

Veftical near-side perspective both sohere
Winkel I both sDhere
Winkel I I both sohere
WinkelTr ioel both sohere

Figure 4.6a - Table of supported projections. Bold projections are finished.

Fortunately, I have set up the structure of the coordinate system engine in such a

way that adding new projection conversion functions is relatively easy. All that is

required is to essentially give the new projection a narne, enter the function into the code,

and optimize the function. Projection conversion functions are nothing more than

formulas. As such, I simply programmatically encode these formulas in REALbasic or

C+r code (The final version will only use C** code as all the data that needs to be

projected exists at a level below that of the map layer, and thus must be coded in C++

plug-in format. See section 3.3 for more details). My main source for the formulas has

been the seminal map projection book Map Projections - A Working Manual by John

Snyder of the USGS. An example of a formula from the book and its REALbasic code

equivalent can be found in figure 4.6b.

Transverse Mercator Forward Projection Conversion Formula for Spheroids:

Synder Formula

x-k,NfA+(l-T+ c)A3 t6+(5 -18r +Tz +72c +56e'2)As t lzo)

y = k"{M - M"+ Nt^nOIAz 12+ (5 -T +9c + 4cz)

Mapalester Research Project Page 8l

r- e2 sinz q)

e '2 =e2 (l - ez)

N = a l

T -tartz Q

C = e'2 cos'4

A = ()r- d)cosf
o2 ?o4M =af (t - i -A- - ,)o - (+.#. ffi+ ..)sin2f +5e6

256

, r5ea 45e6 .35e6(- - . . .)s ln4@ - (- + . . .)s lnb@ + . . . I'256 tOU
'3012

k": the scale on the cenaal meridian. This is a constant and is input into the formula. For the UTM

projection, this equal 0.9996, so this is the value always in Mapalester.

e: the eccenfiicity of the ellipsoid. This is defured by the datum of the GeoCS class of the same ProjCS

class.

a: the semi-major axis of the ellipsoid. This is defined by the datum of the GeoCS class of the same

ProjCS class.

Mo: "M calculated for $o, the latitude crossing the central meridian I, at the origin of the x,y

coordinates." (Snyder 1987) The cenfial meridian is also an input into the projection formula. For UTM

uses, this is the center of the given UTM zone.

Transverse Mercator Forward Projection Conversion Formula for Spheroids:

REALbasic Code Derived from Synder Formula

// pre-calculate all the stuffyou can
dim falseE as double: params.valud"False_Easting") * myUnit.conversionFactor
dim falseN as double : params.value("False_Northing") * myUnit.conversionFactor
dim lam0 as double: params.value("Central_Meridian") * myGeoCs.myUnit.conversionFactor
dim k0 as double : params.value("Scale_Factor")
dim phi0 as double : params.value("Latitude_OlOrigin") * myGeoCs.myUnit.conversionFactor
dim Mo as double : 6* ((l-e2/4 - 3*e4164 - 5*e6/256)*phi0-(3*e2l8 + 3*4/32 +

45*e6/1024)*sin(2*phi0)+ (15*e4/256 + 45*e6/1024)*sin(4tphi0) - (35*e613072)*sin(6*phi0))
dim terml as double : (l-e2/4 - 3*e/.164 - 5*e6D56)
dim term2 as double : 13*e2l8 + 3*e4/32 + 45re6/1024)
dim term3 as double : (15*e4256 + 45*e6/1024)
dim term4 as double : (35*e6/30j2\

dimN, T, C, bigA, Mp as double
dim cosY, tanY as double

dim bound as integer: uBound(m)
dim tempBound as integer
dim ij as integer

Hecht Mapalester Research Proj ect Page82

for i: I to bound
tempBound = uBound(m(i).x)
for j : l to tempBound

m(i).projxO : m(i).projX(i) * myGeoCs.myUnit.conversionFactor
m(i).projYO : m(i).projYO * myGeoCs.myUnit.conversionFactor

cosY : cos(m(i).projYfi))
tanY : tan(m(i).projY(i))

// hondle special cases
if m(i).projX(i) - lam0 >= nDiv2 then
m(i).projXO : nDiv2 - SMALLEST-NUMBER + lamo

elseif m(i).projxO - lam0 <: -nDiv2 then
m(i).projX(f) :'nDiv2 + SMALLEST-NUMBER + lam0

end if

if m(i).projY(i) < rDiv2 and m(i).projYO > -nDiv2 then
N : a/sqrt(l -e2r(sin(m(i).projYc)))"2)
T: tanY^2
C = eprimesq*cosY^2
bigA = (m(i).projx[) - lam0)*cosY
Mp = a * (term 1 *m(i).proj Yfi)-term2 * sin(2 * m(i).projYf)_

+ term3*sin(4*m(i).projY(i)) - term4*sin(6*m(i).projYO))

m(i).projx0 = k0 r N t (bigA + (l - T + C)*(bigA^3y6 + (5 - I 8'r T + T^2 + 72* c +
58*eprimesq)*(bigA^5)/l 20)

m(i) . p ro jYo :k0* (Mp-Mo+1q*s6 f r (b ig { "2) /2+ (5 -T+9*c+4*c "2) * (b ig | ^4)124+(61 -
58*T + T^2 +600*C - 330*eprimesq)*(bigA^6)/720))

m(i).projxO : m(i).projx(i) *myUnit.conversionFactor + falseE
m(i).projYO : m(i).projYO*myUnit.conversionFactor + falseN

else
Mp = a * ((l-e2/4 - 3* e4164 - 5* e61256)+m(i).projY(D- _

(3* e2 / 8 + 3* e4 I 32 + 4 5* e6/ | 024)* sin(2 * m(i).projY(i)_
+ 05re41256 + 45*e611024)*sin(4*m(i).projY(i)) - (35*e6/3072)*sin(6*m(i).projY())

m(i).projX$:0
m(i).projYO: k0*(Mp - Mo)
m(i).projxO : m(i).projX(i)*myUnit.conversionFactor + falseE
m(i).projY(i) : m(i).projY(i)*myUnit.conversionFactor + falseN

end if
next

next

Figure 4.6b - The Transverse Mercator Forward Equation for Spheroids, and the corresponding
REALbasic code in Mapalester. Note that the formula does not take into considerstion false easting

and northings, but the code does, for the purposes of support for the UTM coordinate systems.

Note that the layout of the formula in REALbasic differs somewhat from that

presented by Snyder. Because these functions, in the case of a large polygon file, for

instance, are run on millions of points in sequence, speed of operation is an essential

Hecht Mapalester Research Project Page 83

consideration while programming. Consequently, in keeping with the "speed is harder

than function" experience of this software engineering project getting the projection

function working correctly usually is less difficult than getting the projection function

working at its maximum possible efficiency. One approach that I often used to speed up

the function was to pre-calculate all of the constants for the projection of any given map

layer prior to projecting all the vector objects in that map layer. The main goal is to take

as much out of the iterative loop as possible. In non-jargon terms, the goal is to only

calculate once the portions of the formula that need to be calculated only once. The

projection functions, as presented by Synder, frequently calculate these portions of the

formula with each point conversion.

One especially difficult aspect of projection function programming is the handling

of the special case coordinate input. Many of the projection conversion functions make

heavy use of trigonometric functions that have special or undefined values with certain

inputs. For example, the tan function used in figure 4.6b means that Mapalester must

handle the cases when the input angular values are either nl2 or -n/2. Itl do not, the

entire function will fail. In this case, I have chosen to make any input that is nl2 or -+/2

the closest number possible to that value by adding or subtracting the smallest number

recognizable by a standard 32-bit personal computer (0.000000000000001).

4.7 A Small Subset of Other Planned Features

The features and functionality identified in the previous parts of section four of

are only a subset of the features and functionality that have been currently developed and

are an even smaller subset of the features that will appear in the final version of

Mapalester. Moreover, the features and functionality identified above are in large part

aimed at the "powerful" development goal identified in the introduction. In this final

part, I will describe a series of features and functionality that will appear in the final

version of Mapalester, but for which I have done little implementation work thus far. I

will also pay careful attention to identiffing the reasons behind including these features

the context of the target markets and development goals identified in the introduction.

Mapalester Research Proj ect Page 84

4.7.1 Incorporation of the National Map Application Programming Interface
(APr)

One of the largest challenges to developing a free GIS software program is to find

data to distribute with the program. Even with the limited amount of free data available,

there are all sorts of data distribution issues. In order to fully meet my development goals

of producing a free (goal four) and powerful (goal one) GIS software application, it is

essential that I provide a substantial amount of free data with the GIS. The easiest way to

provide that data is to implement the National Map API. I discovered the National Map

API during a presentation by the United States Geologic Survey (USGS) on its National

Map web depository of spatial data lmplementation of the National Map API will allow

Mapalester users access to all data inside the National Map from within Mapalester's

interface; to the user, the data may as well reside on the user's hard drive. The data in the

National Map ranges from geological to hydrological to demographic to transportation to

administrative.

4.7.2 Providing Easy Access to Census Data

For the same reason that I have chosen to implement the National Map API,I

have also made making U.S. census data easily available a high priority feature. It has

been my experience as a GIS teaching assistant, and my perception from the GIS

applications literature, that some of the desirable data for non-profit and K-12 education

GIS applications are U.S. census data. My goal for Mapalester is to make accessing

census data as easy ils possible. The idea is that users should never have to visit the U.S.

census website itself; they should be able to get all the census data they need from within

Mapalester' s interface.

4.7.3 Data File-Sharing Using the Gnutella Network

In order to make even more free data available to Mapalester users, I hope to

implement a version of the Gnutella network within Mapalester. Through the network,

Mapalester users would be able to share the data sets that they create with other users

around the world. For instance, I would be able to share the point shapefiles of Christian

Hecht Mapalester Research Project Page 85

contemporary music eoncert locations that I created from primary sources for a recent

research project on the geography of Christian contemporary music, as well as the point

shapefiles of Bruce Springsteen concert locations I created for fun. Similarly, students in

a middle school science class could share GPS points that they collected along with

associated attribute data.

4.7 .4 Internationalization

As I have prograrnmed Mapalester, I have been careful to lay down the

framework to make it as easy as possible to produce versions of Mapalester in languages

other than English. I have done this by making heavy use of constants instead of directly

programming English language phrases into the sourc€ code. (A constant is essentially a

variable that can change its value based on the language of the operating system on which

Mapalester is rururing.) This will allow me to send someone a spreadsheet of all the

words and phrases that I need translated, have them translate that spreadsheet, and

directly input the translated phrases into Mapalester. In other words, once I finish the

English version of Mapalester, all I will need is a tanslator for any given language to

make a version of Mapalester for that language. Hillegass (2002) suggests that software

with an international audience be translated into at least English, French, Spanish,

German, Dutch, Italian, and Japanese. I also hope to produce versions in Mandarin,

Cantonese, Taiwanese, Russian, and Serbian.

Support for multiple languages certainly bolsters the ease-of-use development

goal and all of its benefits to Mapalester's target markets. In additioru the distribution of

Mapalester in multiple languages will not only benefit Mapalester's target markets, but it

will also grow the markets. Whereas the English version of Mapalester can only appeal

to the three target markets in English-speaking countries, support for other languages will

make Mapalester accessible to the target markets in other counffies.

Mapalester Re search Proj ect Page 86

Figure 4.7.4s - A screenshot of the REALb&sic constants interface shows bow simPle it is to add new
languages to Mrpsle$ter. Ifthe operoting system onwhich Mapalester is loaded isitrSpanish mode'

Mapelester will dirplay "Edici6n" instead of "Edition" in the Librsry lnfo Brows€r window.

5.1 Gonclusion

After nine months of attempting a project so challenging in both scale and

difficulty, I feel that I can conclude this paper with a reasonable amount ofpride.

Granted, I did not meet the project's original goal of releasing a product by this time'

However, I believe I have made more than satisfactory progress towards doing so given

the great number ofunexpected challenges I have encountered along the way. I feel

confident that the project is in a state where it can be finished in a moderately small

amount of time. In addition, presenting the software and discussing it with members of

the target market have led me to believe that my hypotheses about the unmet needs ofthe

Hecht Mapalester Research Project Page 87

target markets are true. I already have a small number of people eagerly awaiting the

finished product.

On an individual level, the diverse array of knowledge and skills I gained during

this project will prove useful as I continue my career in GlScience. I know understand

the concepts behind coordinate systems well beyond the functional knowledge I had

before. I can write code in C++. 1 understand database systems and SQL. I know the

shapefile format and the reasons behind ESRI defining this way. My knowledge of DFLs

and BNFs, learned in the most theoretical of computer science classes, came into

practical use. I am now familiar with the tials and travails of computer software

engineering, not just computer science. The list goes on. This project has been a grand

adventure into both of my majors and has been a fitting and synthesizing finale to my

bifocal college career.

I furd myself at this juncture very excited about the possibility of other students

heading down the same path. I believe that my progress in an attempt to recreate a very

expensive package of commercial software is evidence that, with a couple of

modifications, a similar effort in the future could be successful in the time allotted for this

project. This is a significant statement as I am essentially arguing that students with a

computer science background have the empowerrnent potential of producing free and

powerful software for groups with needs left unmet by the commercial market. In the

subsequent few paragraphs, I will identiff and explicate the aforementioned changes that

I think will make similar projects more "profitable" in the future. These paragraphs can

also be read as funding recommendations for Keck grants and other surnmer funding

My strongest recommendation for engaging in a project like my own is to make

sure that there is more than one student working on the project. If the project is of the

same scale as Mapalester, two students should be sufficient, provided they are willing to

put in the time and effort necessary. With two students on the job, a software project like

Mapalester would probably make it more than twice as far, as collaborative computer

science projects tend to get past frustrating and work-stopping moments better than solo

projects.

The second recommendation is to make sure that there is at least a semi-expert in

the theories and techniques necessary for making the software, not just usingthe

Hecht Mapalester Research Proj ect Page 88

software. In my case, I was expecting to make it past the programming of the basics of

GIS much faster than I di4 and then rely on Dr. Laura Smith for her knowledge of spatial

statistics to implement higher-level GIS functions. Ideally, it would have been helpful to

also have a professor proficient in the computer science elements of basic GlScience to

get me through the fiouble spots.

Finally, students who wish to engage in similar projects should, if possible, enroll

in at least an intro software engineering course at one of the ACTC schools. I had

something similar to this course during my time at UC San Diego, and I found elements

of it to be very helpful. I am sure further education on the engineering aspects of

computer science would have provided even more insight into how to approach the

problem of a massive programming project.

5.2 Acknowledgernents

I would like to thank the following people for their help on my project Dr. Laura

Smith, for her advising on both a professional and personal level; Jovana Trkulja" Paul

Singh, and Cole Akeson, for keeping me sane throughout my exciting, productive, and at

times frustrating summer on the Keck Grant; the Keck-Bigelow Foundation, for funding

much of my research; and Professor Carol Gersmehl, for providing me the GIS skills and

passion necessary to engage a project like Mapalester.

6.1 Bibliography

Bachmann, Erik. Xbase File Format Description. 2000 Available from
http://www.pgts.com.au/download/public/xbase.hrn (last accessed ll27 2W5).

Bachorski, Andy, Andy Fuchs, Bill Mounce, Brian Blood, and et. at.2003. VALENTINA
Database Kernel. Paradigma Software, .

VALENTINAfoT REALbasic Reference. Paradigma Software, .

VALENTINA SOL. Paradigma Software, .

VALENTINAfoT REALbasic TutoriaL Paradigma Software, .

Hecht Mapalester Research Project Page 89

Baker, Thomas R., and Sarah W. Bednarz. 2004. Irssons Learned from Reviewing
Research in GIS Education. Journal of Geography 102:231.

Beckmann, Norbert, Hans-Peter Kriegel, Ralf Schneider, and Berhard Seeger. 1990. The
R*-Tree: An Efficient and Robust Access Method for Points and rectangles. SIGMOD
Conference l:322.

Brandt, Dave. 2004. REALbasic Language Reference. Austin, TX: REAL Software,In.c.

Brandt, David. 2004. REALbasic User's Guide. Austin, TX: REAL Software,Inc.

CMAP. CMAP Case Study: Robin Hood Foundation. Available from
http://www.cmap.nypirg.org/case-studies/CS2/default.asp (last accessed 3l3l 2005).

Dalrymple, Jim. 2005. Apple desktop market share on the rise; will the Mac mini, iPod
help? MacCentral.

Department of Defense. 1984. World Geodetic System 1984: Its Definition and
Relationships with Local Geodetic Sysfens.Report Number, NIMA TR8350.2.

Elwood, Saratr. 2002. GIS use in community planning: a multidimensional analysis of
empowerment.

ESRI. 20C0. HowTo: Create projection metadata (.prj) files for shapefiles. Redlands,
CA: ESRI, Report Number, 1,{056.

1998. ESRI Shapefile Technical Description: An ESRI White Paper.

- - *ArcGIS 8: Supported Coordiwte Systenns and Geographic Transformations.
Redlands, CA: ESRI,.

Estier, Theodore. About BNF Notation. In University of Geneva [database online].
Available from http://cui.unige.ctr/db-
research/Enseignement/analyseinfo/AboutBNF.html (last accessed ll3l 2005).

Gewin, Virginia. 2004. Mapping Opportunities. Nature 427:376.

Guttman, Antonin. 1984. R-Trees: A Dynamic Index Structure for Spatial Searching.
SIGMOD Conference l:47 .

Hecht, Brent. 2ffi4. Classifying GIS Polyline Data Using Neural Networks.

- - -2004. Mapalester, Empowerment, and Ra.dical Democratic Citizenship.

Hecht, Brent, and Ben Johson. 2003. Final Project for CS325 - Compilers: A Compiler
for Cabal.

Hecht Mapalester Re search Proj ect Page 90

Hershberger, John, and Jack Snoeyink. 1992. An O(n*log(n)) Implementation of the
Douglas-Peucker Algorithm for Line Simplification. Proceedings of the Sth International
Symposium on Spatial Data Handling l:134.

Hillegass, Aaron. 2N2. Cocoa Programmingfor Mac OSX. Boston, MA: Addison
Wesley.

Keohane, Georgia L., and CMAP. CMAP Case Study: Civic Builders. Available from
http://www.cmap.nypirg.org/case_studies/CSl/default.asp (last accessed 3/31 2005).

Kerski, Joseph, 1.2004. Analyzing the Earth With Geographic Information Systems.
National Speleological Sociery News.

Leeser, Miriam. Variants on the K-Means Algorithm. 1999 Available from
http://www.ece.neu.edu/groups/rpUprojects/kmeans/variants.html (last accessed
1/10/2005 2005).

McGrew, J. C., and Charles B. Monroe. 2000. An Introduction to Statistical Problem
Solving in Geograpfty. United States of America: McGraw-Hill.

McMaster, Robert 8., and K. S. Shea. 1992. Generalizption in Digital Cartography.
Washington, D.C.: Association of American Geographers.

Mikalajunas, Peter. 1998. DBF File Structure.

Neuburg, Matt. 2@1. REALhasic: The Definitive Guide. Sebastopol, CA: O'Reilly.

O'Rourke, Joseph. 1998. Computational Geometryin C. Cambridge, UK: Cambridge
University Press.

REAL Software. REALbasic vs. Java. In REAL Software,Inc. [database online].
Available from http://www.realsoftware.com/realbasic/compare/javal (last accessen 3/31
200s).

Russell, Stuart, and Peter Norvig. 200.3. Artificial Intelligence: A Modern Approach.
Upper Saddle River, NJ: hentice Hall.

Snyder, John P. 1987. Map Projections - AWorking Manual. Washington, D.C.: United
States Government Printing Office.

State Cartographer's Office. 1998. Wisconsin Mapping Bulletin.Report Number, 24.

Sunday, Dan. Polyline Simplification. 2@2 Available from
http://geometryalgorithms.com/Archive/algorithm_0205/algorithm_D2O5.htm (last
accessed 6/01 2004).

Hecht Mapalester Research Project Page 9l

Theodoridis, Yannis. R-tree-Portal.112612005 Available from http://www.rtreeportal.org/
(last accessed 9ll5 2N4).

U.S. Census Bureau Geography Division, Cartographic Operations Branch. Scale,
Generalization, and Limitations of the Cartographic Boundary Files. In U.S. Census
[database online]. 2004 Available from http://www.census.gov/geo/www/cob/scale.html
(last accesse d 3 | 25 12005 2005).

United States Geological Survey. 2003. Implementation Planfor The National Map.
Washington, D.C.: United States Departemtn of the Interior, Report Number, 1.0.

Wilder, Anna, Jonathan D. Brinkerhoff, and Teresa M. Higgins.2OO4. Geographic
Information Technologies + Project-Based Science: Contextualized Professional
Development Approach. Journal of Geography lO2.,255.

Wise, Stephen. 2002. GIS Basics. London, England: Taylor & Francis.

Mapalester Research Project Page92

	Macalester College
	DigitalCommons@Macalester College
	May 2005

	Mapalester:Powerful, East-to-Use GIS Software Under Development
	Brent Hecht
	Recommended Citation

	tmp.1118407534.pdf.K77sp

