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Abstract

Scientists have been working to create robots that perform man-
ual work for years. However, creating machines that can navigate
themselves and respond to their environment has proven to be diffi-
cult. One integral task to such research is to estimate the position of
objects in the robot’s visual field.

In this project we examine an implementation of computer vision
depth perception. Our application uses color-based object tracking
combined with model-based pose estimation to estimate the depth of
specific objects in the view of our Pioneer 2 and Power Wheels robots.
We use the Camshift algorithm for color-based object tracking, which
uses a color-histogram and gradient density climbing to find the object.
We then use the POSIT algorithm, or Pose from Orthographic Scaling
with ITerations, to estimate the pose of the object based on a model.
Although pose consists of a translation vector and rotation matrix, we
are only concerned with the z-component of the translation vector as
it is an estimation of depth.

Our results show that distortions caused by the environment re-
sult in inaccurate distance estimations. These distortions include re-
flections of the object off surfaces such as a linoleum floor. However,
when no such distortions are present, the application is rather well
behaved and returns consistent, accurate depth estimations.

An advantage of the application is that it can be run in real-time
for both standard web cameras and more expensive higher quality
cameras. It can also be used with stored image files.
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1 Introduction

Consider a robot that needs to determine how to navigate around an obstacle
in its path. The robot first needs to be able to detect the obstacle, determine
how far away the object is, and calculate the best path around it. The
second of these three tasks, determining how far away the object is, can be
accomplished easily with relevant equipment such as a laser range-sensor.
However, when a robot relies entirely on its vision, other techniques must be
employed.

There are two main tasks to estimating the depth of an object from a sin-
gle video sequence, tracking the object, and estimating the position of the
tracked object. Object tracking is a problem that has been studied by many.
Some solutions to object tracking include segmentation [3] [2], motion vector
calculations [2], and density gradient estimation [4]. Pose estimation is the
problem of determining the translation and rotation of an object in an image
with respect to the camera. The translation obtained from pose estimation
is the position of the object and pose estimation can therefore be used for
the second task involved in depth estimation. Methods for pose estimation
include genetic algorithms [5], stereo cameras [2], and algebraic methods with
projections [6]. This study uses an adaptive version of density gradient esti-
mation for object tracking with an iterative implementation of the algebraic
methods for pose estimation.

In this project we consider the case when a robot has only a single camera
and wishes to estimate the distance to an object in its field of vision. The
method we use for object tracking is called the Camshift algorithm [1], and
relies on color histograms and density gradient estimation. The method
for pose estimation we use is called POSIT [6], and uses properties of the
camera and a model of the object to algebraically estimate the pose while
iteratively improving its estimate. The application we developed can be used
with inexpensive web cameras, very expensive high quality cameras, or stored
images on the hard disk.

Although the motivation for this research was to improve the accuracy of
a Monte Carlo Localizer in the robots, this project is not concerned with
the actual integration of the application for this purpose. This goal of this
project is to create an application for object depth perception.
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The results of this project show that, when there are no distortions in the en-
vironment, the error in the reported distance, that is the difference between
the estimated and measured distances, is normal. By normal we mean it is
Gaussian with mean values close to zero and relatively low standard devia-
tions. Thus, the estimations in these cases gave predictably reliable estima-
tions of depth. However, 32% of the environments in which we collected data
showed significant distortions and inaccurate measurements. These distor-
tions mostly consisted of reflections of the object off the floor which confused
the color-tracker into tracking the object and its reflection, effectively dou-
bling the perceived size of the object. In order to make use of this application,
non-reflective surfaces will need to be placed underneath the objects.

In Section 3 we give a general view of the field of computer vision and what it
entails. We also discuss other methods for object tracking and pose estima-
tion, as well as mathematical functions needed to understand the Camshift
algorithm. In Section 2 we discuss the robotics system at Macalester College
and what motivated this research. We then go on to discuss the Camshift and
POSIT algorithms in Section 5. Then in Section 6 we discuss the design and
components of our application. In Sections 7 and 8 we discuss the results of
our work provide a conclusion. In Section 9 we discuss possible future work.
The source code for our application is provided in the appendices.

1.1 Aim

The aim of this project is to create an application which can extract range
information from color intensity images. We do this by estimating the dis-
tance between the camera and a predetermined object in the robot’s visual
field: an orange cone. Before we can estimate the object’s distance, we must
first determine where the object is in the image. To answer this question, we
need a method to detect and track the object when it appears in the robot’s
visual field. We then need a method to estimate the position of the object
with respect to the camera.

The algorithms we chose to use are the Camshift algorithm and the POSIT
algorithm. The Camshift algorithm is color-based object tracker, meaning it
tracks objects based on an initial seed of color pixels. The POSIT algorithm
uses a model of the object, the location of the object in the image, and
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intrinsic properties of the camera to iteratively improve its estimate of the
object pose (rotation and translation).

2 Motivation

The robotics project at Macalester College uses Monte Carlo Localization,
which relies on sensor information from a robot to determine where that
robot is in a map of the Olin-Rice Science Center at Macalester College. The
sonar sensors which are used are unreliable and return inaccurate range infor-
mation, which created the need for additional sensors to be incorporated into
the localizer. The only other sensors onboard the robots were cameras, which
led us to investigate computer vision. Because of how Monte Carlo Local-
ization works, it is easier to incorporate depth information into the localizer
because it can be treated similar to how the sonar information is treated.
Therefore, we chose to look into extracting some sort of range information
from the cameras, which led us to investigate estimating the depth of known
objects in the visual field of a robot. To explain the motivation behind our
research, we describe Monte Carlo Localization and the Macalester robotics
system in the next two sections.

2.1 Monte Carlo Localization

The Monte Carlo methods are a set of algorithms that rely on repeated ran-
dom sampling to calculate results. This probabilistic approach is favorable
when it is impossible to deterministically calculate an exact result. Monte
Carlo Localization (MCL) is an approach to robot localization that uses a
statistical particle filter. Robot localization determines the position and ori-
entation of a robot as it moves through a known map of its world. MCL is a
particle filter because it randomly generates possible points on the map and
then eliminates points with low probability of being the actual position of
the robot [7]. An example of this in action is shown in Fig. 1. Each point, or
sample, is represented by x and y coordinates, an angle of orientation, and
an associated probability. By eliminating samples with low probability, gen-
erating new samples based on previous ones, and updating current samples,
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the MCL algorithm can narrow samples down to only those near the actual
location of the robot [8]. An illustration of this process is shown in Fig. 1(a)
and Fig. 1(b).

(a) An initial set of samples (b) A set of samples after
several iterations

Figure 1: MCL samples converging on robot location

While moving, the robot reports information about its motion: a distance
traveled and an angle turned. However, this motion alone cannot be used to
accurately estimate the position of the robot. This technique, known as dead
reckoning, can only work if the initial location of the robot is known and the
motion information is extremely accurate. If the motion information has even
a little error, this error will accumulate after a while and result in completely
inaccurate estimates of the location. MCL is therefore more useful for most
common robots where often the data reported about the motion does not
always agree with the actual movement [8].

MCL therefore uses both motion and sensor information together to generate
better samples from iteration to iteration. MCL changes the probability of
each sample based on the motion and sensor information measured by the
robot, and then eliminates low-probability samples [8].

Motion information consists of measurements of the distance moved and the
angle turned sent by the robot. When this data is sent from the robot
to the localizer, the localizer uses it to update the location of each of the
samples. MCL could simply move each sample by the motion reported from
the robot, but as mentioned this data is inaccurate. Therefore a better
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way to update a sample is by randomly selecting a distance and angle from
normal distributions centered at the distance and angle values reported from
the robot. Therefore, each sample moves randomly with a mean movement
equal to the motion values reported by the robot [7].

Sensor information can be in many different forms depending on the types of
sensors. For example, robots can have range sensors such as sonar or radar,
vision sensors such as a camera or infrared imager, or localizing sensors such
as GPS devices. In each of these cases the measured values for each sensor
must be compared to the calculated values for each of the samples. Given
the sensor measurement, the probability of a sample is altered depending on
how close the measured sensor value is to the calculated sensor value for that
sample [7]. The localizer used at Macalester College relies on range data
from sonar sensors onboard the robots. Therefore, during each iteration, the
sonar distances are calculated for each sample and compared to the values
reported by the robot.

Between iterations, the localizer eliminates low-probability samples and bi-
ases towards samples closer to the actual location of the robot. This is done
by randomly selecting samples from the old set such that higher-probability
samples are more likely to be selected. These are combined with a small set
of new samples generated near the believed location of the robot to create
the sample set for the next iteration [8].

Because of the need to calculate sensor information for each sample and
compare it to measured values, the easiest way to incorporate vision sensors
into the localizer is if the data consists of a kind of range data to a known
object in the robot’s field of view, such as a cone. We can then calculate the
distance between each sample and the nearest known object and compare this
distance to the reported value from the robot. Therefore, in this project we
create an application to extract the depth of an object using only the camera
as a sensor. This depth can then be used to update sample probabilities
similar to how the sonar sensor measurements are used currently.
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2.2 The Macalester Robotics System

The Robotics Lab at Macalester College is headed by Professor Susan Fox. It
consists of three robots, two of which are ActivMedia Pioneer 2 robots named
Lauren and Humphrey. These have 16 sonar sensors positioned around their
bodies and Sony cameras mounted on their backs. A picture of Lauren is
shown in Fig. 2(a).

The third robot is a retrofitted Fisher-Price Power Wheels toy car as shown
in Fig. 2(b). The toy has been modified with sonar sensors, a linear-actuator
for steering, a webcam, and micro-controllers for interface with an onboard
laptop. This robot is named Borg, after the late computer scientist Anita
Borg. The laptop onboard Borg is a Dell Latitude running Ubuntu, while
the computers onboard Humphrey and Lauren are older, slower machines
running Red Hat.

Because of the age of the computers onboard Humphrey and Lauren, local-
ization or vision algorithms cannot be run onboard due to computational
latency. A desktop in the lab remotely runs these algorithms and inter-
faces with the mobile robots via wireless networks. Humphrey and Lauren
both have wireless antennas and are capable of connecting to wireless com-
puter networks. We therefore send sensor and motion information over the
Macalester network to the desktop computer which sends back instructions.
The Monte Carlo Localizer is run remotely on this desktop as well as a
learning-based path finder written by Professor Susan Fox.

Since the robot controllers are written in Python, but the localizer and our
vision application are written in C++, the popen Python module is used
to spawn separate processes. This allows the Python process to control
the subprocesses by reading from and writing to their input and output
streams.

Currently, Borg does not run the MCL algorithm nor does she have a map
of her world. We use Borg to test this project’s vision application and to
run simple condition-based decision algorithms. The MCL algorithm is used
solely with Humphrey and Lauren. For more information on robotics at
Macalester College see Anderson-Sprecher [9] and Stamenova [8].

The current localizer has one major problem, the sonar sensors return inac-
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curate data. This is because the walls in Olin-Rice, the science building at
Macalester College, are reflective, and often the sonar pings are not returned
to the sensors. This obviously confuses the MCL algorithm. In order to
improve the localizer, we needed a method to incorporate the other available
sensor devices: the cameras. If we could use the cameras as range finders
and estimate distance based on images, we could use this information in the
localizer similar to how we use the sonar data.

(a) Lauren, one of the two Pioneer 2 robots (b) Borg, the retrofitted Power Wheels
robot

Figure 2: The two types of robots at Macalester College

3 Background

According to Bradski and Kaehler [2], computer vision is the transformation
of two-dimensional image data into a decision or a new representation. It
is easy to underestimate the difficulty of this problem because vision comes
naturally to humans. Humans have a fully integrated system for vision with
large reliance on feedback and automatic control. The human eyes auto-
matically adjust to focus and aperture. The human brain is able to identify
and select important parts of an image and suppress others. The brain is
also able to cross-reference images with years of experience. Computers do
not have such an integrated system nor do they have such a vast corpus of
past experiences. To computers, images are simply a matrix of numbers, as
shown in Fig. 3. The computer’s goal is to make some decision about the
image, such as “there is an orange cone in the scene”, or “There is a person
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standing 500 centimeters away.” To give a sense of the field of computer vi-
sion, we discuss some basic topics of digital imaging including vision sensors,
image representation, and color spaces. We then discuss a few applications
of computer vision.

Figure 3: How a computer represents an image
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3.1 Vision Sensors

There are many different types of digital vision sensors. Each is used to create
an image that contains some information about the scene. Some sensors
detect range information while others simply take color images. Some sensors
can even take pictures of the inside of the human body. In general, though,
images consist of a two-dimensional array of binary data in which each cell in
the array makes up a pixel, or picture element. We provide a basic description
of range cameras, normal light-sensing cameras, and video cameras here.
For more information on types of vision sensors see Shapiro and Stockman
[10].

Range cameras use electromagnetic radar beams to detect depth information
in the scene. Each pixel of the image therefore represents the depth of the
object at that location in the image. Such images contain information about
the surface of objects in the scene, and can more accurately represent motion
than intensity images [10].

Light-sensing camera sensors consist of a two-dimensional array of light sen-
sors on a chip. These sensors detect the intensity of light that hits them. A
major type of camera sensor is the charge-coupled device (CCD). In CCD
cameras, the light hits a photoelectric cell producing an amount of charge
depending on the intensity of the light. The charge is converted to binary
data using a shift register, or CCD [11].

Video cameras are simply normal cameras that record sequences of images, or
frames. The standard rate for frame sequencing is 30 fps (frames per second).
Humans cannot detect change fast enough to notice the change from frame
to frame, and therefore the sequence gives the illusion of motion [10]. For
this project, standard color video cameras are used, however our application
can track objects in still images as well.

3.2 Image representation

Each pixel in an image is represented by binary data. This data can be one
value or a combination of a few values. These values are usually represented
in a single 8-bit byte of data, meaning they can be between 0 and 255.
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In grayscale, an image is a single two-dimensional array of pixels, where each
pixel is represented by a single byte. This byte represents the intensity of
the pixel. An example of a grayscale image is shown in Fig. 4(a).

Binary images are images where each pixel is either a zero or one. Depending
on the encoding, zero could represent the absence of a pixel and one could
represent the presence of a pixel. Therefore, the image would be white where
there are no pixels and black where there are. An example of a binary image
is shown in Fig. 4(b).

Color images contain more information that just intensity or the presence of
a pixel. Color images must encode the color of each pixel. There are several
color systems for doing this, two of which are discussed in Section 3.3. The
standard color system, Red-Green-Blue, represents each pixel by 24-bits (3
bytes). Each byte represents a red, green, or blue value for the pixel. The
combination of these three values gives us the color of the pixel. Fig. 4(c)
shows an example of an RGB image. Our application uses color images in
order to track objects based on their color. However, we convert the color
images to grayscale images that represent probability, as will be described in
Section 5.

(a) Grayscale Image (b) Binary Image (c) RGB Color Image

Figure 4: An image of a cone in three modes

3.3 Color Spaces

The standard basis for color is the Red-Green-Blue (RGB) color space, which
can encode 16 million different colors, a number far greater than the number
of human-discernible colors. The RGB system uses three bytes to represent
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color, one for the red value, one for the green value, and one for the blue value.
Therefore the encoding of any arbitrary color can be made by a combination
of the primary red, green, and blue colors. For example, full red with full
green gives yellow (255, 255, 0). Equal proportions of all three colors give
different shades of gray (x, x, x) [10]. The graph of this color space is shown
in Fig. 5(a). Note that the origin of this color cube corresponds to the color
black.

(a) RGB Color Cube (b) HSV Color Hexicone

Figure 5: RGB and HSV Color Spaces, Images used with permission of
Bradski [1]

The Hue-Saturation-Value (HSV) color space separates out intensity (value)
from color (hue) and saturation. This color space is often also called Hue-
Saturation-Intensity (HSI). HSV basically is obtained by projecting the RGB
color cube along its principle diagonal. Note that the diagonal arrow in Fig.
5(a) corresponds to the vertical y axis of the HSV color hexicone in Fig.
5(b), but in opposite direction. Fig. 5(b) shows the Hue-Saturation-Value
color space. This color space is less susceptible to changes in lighting than
the RGB color space [1]. This is because the perceived color of objects in the
world can vary greatly due to changes in lighting, however the underlying
hue changes less than the actual red, green, and blue values. For this reason,
our application uses the HSV color space and RGB images must be converted
to HSV before tracking can be applied.
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3.4 Applications

Computer Vision has many applications. To give a general understanding of
the significance of the field, we give descriptions of a few applications in this
section.

3.4.1 Multimedia Database Search

There are many examples when large collections of digital images or video se-
quences are useful. For example, the popular video sharing website YouTube,
or the image search feature of Google, both need to be able to query a
database of multimedia content and find relevant results. Many solutions
to this problem use human-entered meta-data to index the images: text
that describes the contents of the images. However, content-based database
querying has many applications. For example, if a user wants to find im-
ages in a database that are similar to a particular image, or the military
wants to search a database of satellite images for troop movement, content-
bases searching would be useful [12]. The applications of such technology are
vast.

3.4.2 Computer-Aided Diagnosis

In medicine, images of the human body are used to make diagnoses of dis-
ease. Such images are obtained using radiation other than visible light in
order to noninvasively capture images of the inside of the human body. Such
devices include MRI, or Magnetic Resonance Imaging, Ultrasound, and X-
ray images. Current research is being conducted to create computer systems
that aid in the diagnosis of diseases by processing such images. Computer vi-
sion techniques are often used to aid in data presentation and measurement
in medical imaging. However, recent research has started using computer
vision for actual diagnosis. Fuentes-Pavon et al. [13] created a system to seg-
ment ultrasound images in order to apply diagnostic criteria to discriminate
between malignant and benign breast tumors [13].
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3.4.3 Surveillance Systems

Surveillance systems have started using computer vision to detect suspicious
behavior in security surveillance cameras. Researchers have developed tech-
nology to detect suspicious activity such as abandoned luggage or the pres-
ence of a weapon. Such technology could be used in airports and transport
stations to detect possible terrorist activity [14]. When a single surveillance
operator is in charge of many cameras it becomes impossible to monitor all
activity. Such vision systems have the potential of assisting operators to
select which cameras to monitor.

Similarly, Automated Teller Machines (ATM) have been built to scan the
human eye to determine identity and detect stolen debit cards [10].

3.4.4 Robotic Vehicle Navigation

Robotic Vehicle Navigation is what this project falls under. However, this
project deals with small indoor robots rather than full-sized cars. One
somewhat famous use of computer vision for vehicle navigation was the
DARPA Grand Challenge. The Defense Advanced Research Projects Agency
(DARPA) sponsored the Grand Challenge to inspire innovation in unmanned
ground vehicle navigation. The Challenge consisted of a 142-mile course
through the Mojave desert. The race gave a prize of one million dollars
to the team whose robot could successfully navigate the course in the least
amount of time. In the first year, no team completed the course. In 2005,
the challenge was repeated and Stanford University’s “Stanley” robot, shown
in Fig. 6, won with a time just under 7 hours. Stanley depends heavily on
radar imaging and vision algorithms [15].

3.4.5 Game Interfaces

Much research has been conducted toward user interfaces for video games
that rely on computer vision. Such systems rely on images to track move-
ments of the operator and translate the movements into gaming controls.

Microsoft Corporation is currently working on a project called Project Na-
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Figure 6: Stanley, the robot that won the DARPA grand challenge, Image
used with permission of Bradski & Kaehler [2]

tal for their Xbox gaming console, that eliminates the need for hand-held
controllers. The gaming console is completely controlled through a vision
device that sits on top of the television and tracks movements of the user.
Users will be able to drive cars by mimicking the appearance of holding a
steering wheel, kick a ball by actually kicking, and browse through items by
swiping their hand like turning a page of a book. This interface is scheduled
to be released around the end of 2010 [16]. The technology for such a de-
vice relies highly on computer vision. The vision sensors in this device are
range cameras that have been adapted from Israeli ballistic missile guidance
systems [17].

3.5 OpenCV

For this project, to avoid recreating algorithms already implemented and
available, we use the OpenCV API in our implementation. Computation-
ally optimal implementations of basic versions of Camshift and POSIT exist
in OpenCV and our application utilizes them. OpenCV stands for Open
Computer Vision, and is an open-source library containing algorithms for
image processing and computer vision. The library, available for Linux,
Mac OS, and Windows, is written in C and C++. However, current de-
velopment exists to create libraries for Python, Ruby, MATLAB, and other
languages. OpenCV was designed to be computationally optimized in order
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to support real-time applications. OpenCV also contains a general-purpose
Machine Learning Library since vision and machine learning often go hand-
in-hand [2].

The major goals of the developers of OpenCV were to prevent researchers
from having to reinvent the wheel by giving them the basic algorithms, to
provide a common code base for researchers in order to improve portability,
and to advance commercial applications of computer vision [2].

4 Related Work

4.1 Object Tracking

Object Tracking is a topic within Computer Vision that deals with recogni-
tion and tracking of moving objects in a scene. These objects can be known
and recognized from a stored model or can be recognized based on features
such as shape, color, or texture. Tracking deals with determining the loca-
tion of the object in the image even if the object changes position between
consecutive images such as in a video sequence. Tracking can also deal with
prediction of object location based on trajectory. There are several different
techniques for object detection and tracking. The techniques we looked at,
and discuss here, are segmentation, and optical Flow. The Camshift algo-
rithm, which is what is used in this project, uses another method known as
density gradient estimation, which we discuss in Section 5.

4.1.1 Segmentation

Segmentation is aimed at partitioning the image into similar regions, or seg-
ments. A segmented image is shown in Fig. 7. This can be applied to
object tracking in different ways. For example, if the object interior has a
unique configuration of segments, then each new image frame is segmented
and the tiles belonging to the object are identified. Two methods for image
segmentation are Mean Shift and Graph-cuts [18].
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(a) The original color image (b) A segmented version of the image

Figure 7: Segmentation by graph-cuts

Mean Shift Segmentation

Comaniciu and Meer [19] propose the Mean Shift approach to find clusters
of image pixels based on color and location. The algorithm starts with a
large number of clusters randomly placed on the image. These clusters are
small windows of pixels. Each cluster is iteratively moved along the mean
shift vector of their interior pixels. This mean shift vector is discussed more
in Section 5.1.3, however it basically finds the centroid of the given cluster
window, then re-centers the window over the centroid. The centroid of an
image is similar to the center of mass of an object, where image intensities are
analogous to physical mass. During this process some clusters are merged.
The algorithm finishes when all clusters stop moving or move less than a
given threshold. The final positions of the clusters are the segments of the
image [18]. This technique is similar to the technique we used for object-
tracking because of its hill-climbing approach. However, our approach is
based on an application of Mean Shift to object tracking that operates on a
search window and does not require computation on the full image.

Graph-Cuts

Image segmentation can also be seen as a problem of graph partitioning. In
this approach, a graph, G, is created such that there is a vertex for each
pixel in the image and a weighted edge between each adjacent pixel. The
segmentation algorithm then partitions G into disjoint subgraphs by pruning
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the weighted edges. The weight of each edge is calculated by some similarity
between the nodes such as color, brightness, or texture. Two example criteria
for pruning the edges are the minimum cut [20] and the normalized cut
[21].

Image segmentation requires processing the entire image for each new frame.
This can be computationally expensive especially for high-resolution images.
Because of this, segmentation is too slow to be run in real-time which is why
we rejected it as a solution to our problem.

4.1.2 Optical Flow

Another approach to object tracking that we considered is the optical flow
method. Unlike our method, optical flow calculates the velocity of specific
pixels based on their intensity changes between image frames. Optical flow
finds a velocity of each pixel in the frame, this is equivalent to finding the
displacement of a given pixel between consecutive image frames. If the veloc-
ity for every pixel in the image is calculated, a dense optical flow is created.
Calculating dense optical flow is hard, which is why sparse optical flow is
sometimes used. Sparse optical flow tracks a smaller subset of the image
pixels [2].

Lucas-Kanade Optical Flow Algorithm

Lucas and Kanade [22] developed an algorithm for optical flow tracking,
known as the Lucas-Kanade (LK) optical flow algorithm. LK works by mak-
ing three assumptions:

Brightness Constancy: A pixel of an object image does not change ap-
pearance as the object moves around the scene from frame to frame.

Temporal Persistence: An object will move slowly relative to the time
interval between frames. This means an object’s movement between
frames will be small.

Spatial Coherence: Neighboring points in the scene are assumed to be on
the same surface, have the same motion, and have neighboring image
projections.
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Eq. 1 simply formalizes the first assumption, that pixel intensity, I(x, y, t),
does not change over time.

Ixvx + Iyvy + It = 0 (1)

In this equation, vx and vy are the components of the optical flow vector ~v,
and are both unknowns in this equation. The terms Ix and Iy are the spacial
derivatives across the first frame, while It is the derivative between images
over time. For derivation of Eq. 1 see Bradski & Kaehler [2].

Because there are two unknowns in this equation, a unique solution cannot be
obtained from measurements of a single pixel. LK therefore uses a small box
of pixels around each point and tracks the entire box instead. This produces
a system of equations that can be solved for vx and vy [2].

This produces a flow vector for a single point. LK calculates the vectors for
multiple points on an object and tracks its movement through the scene. LK
is fast enough to be used in real-time, but it may not be robust enough for
our purposes. LK works nicely for static cameras, but with moving cameras,
where the object may move in and out of the visual field, LK may loose its
tracked points between frames. In addition to these reasons, we rejected this
method mainly because it does not provide any information on the perceived
size of the object, which our method for depth estimation needs.

4.2 Depth Estimation

3-D Pose is a term referring to the combined translation and rotation of an
object. This can be in reference to the initial position and orientation of the
object or to some model of the object. In computer vision, pose estimation
is often used to determine the position and orientation of an object with
respect to the camera. In the following sections we describe how depth is
calculated from stereo cameras and a method we looked at for estimating an
object’s pose using a genetic algorithm. This project uses another method
that relies on a model that will be discussed in Section 5.
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4.2.1 Depth From Stereopsis

The aim of this project is to determine the depth of an object in the robot’s
visual field. One common way of doing this that we researched is called
stereopsis and uses two separate cameras.

Stereopsis is the process that takes two slightly different projections of the
world, such as the projections on the retinas of human eyes, and produces a
sense of depth. This concept is used to compute the depth of an object using
stereo cameras. The basic idea is that the disparity between the location of
the object in the left and right images is inversely proportional to the object
depth [2]. The object depth is therefore calculated by Eq. 2 where Z is the
depth, f is the focal length, T is the distance between the cameras, and d
is the disparity. However, in order for this estimate to be accurate the two
images must be perfectly rectified and aligned, as well as taken at the exact
same moment. This configuration is illustrated in Fig. 8.

Z =
fT

d
(2)

Figure 8: An ideal stereo camera rig for depth perception

This method makes the problem very complex because of the many issues
associated with rectifying images of two separate cameras. We rejected this
method because we are working with only one camera.
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4.2.2 Genetic Algorithm Approach

A genetic algorithm (GA) is a optimization technique to solve computation
problems that mimics the behavior of biological evolution. Toyama, Shoji,
and Miyamichi [23] use a GA to determine the pose of an object based on
a known model of the object. The fitness function for their implementation
takes a given pose, orients the model in that pose, and projects the model
onto a plane to compare with the image. Their method compares four edges
from the image and the model projection to determine fitness rather than
comparing all edges. According to their results they obtain a good solution
in over 5000 iterations [23].

Although the approach by Toyama et al. [23] is similar to ours in that they
utilize a model of the object, their approach assumes that edge detection on
the image is robust enough to accurately distinguish between object edges
and background edges. This is a safe assumption in a controlled environment
such as in front of a white screen. However, in the real world edge detection is
simply not robust enough. Furthermore, at 5000 iterations, even the smallest
population sizes will take prohibitively too much time to be used with a 30
fps video stream. Our approach is able to estimate good approximations of
object pose using intrinsic properties of the camera in only a few iterations,
as will be described in Section 5.

5 Method

The algorithm we used for object tracking is called Camshift, and is based
on another algorithm called Mean Shift. The algorithm we use for pose
estimation is called POSIT, and is an iterative improvement on the POS
algorithm. These algorithms are implemented in the OpenCV library, on
which our modified versions are based. In the following sections we describe
the methods behind them.
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5.1 Color-Based Object Tracking

The problem with most conventional color tracking algorithms is that they
attempt to deal with irregular object motion due to perspective. That is, ob-
jects farther from the camera move slower and appear smaller than objects
closer to the camera. The algorithms also try to deal with image noise, dis-
tractors, occlusions, and other lighting variations. All of these considerations
make other algorithms computationally complex and infeasible for use in a
real-time object tracker. The algorithm we use solves these problems using
a relatively computationally cheap approach.

The color tracking algorithm we used was first developed by Bradski [1], and
was intended as a face tracking algorithm for use in user interfaces. The
algorithm is called Camshift, or Continuously Adaptive Mean Shift, and the
name comes from the basis algorithm Mean Shift. The Mean Shift algorithm
is a robust technique to find the mode, or peak, of probability distributions
by climbing density gradients [24]. The mean shift algorithm estimates the
gradient using image moments calculated on the search window. The main
difference between Mean Shift and Camshift is that Mean Shift operates on
a fixed search window size while Camshift resizes its search window at each
iteration.

In order to apply Mean Shift to images, we must convert the images to a
probability density function. This requires some sort of mapping between
pixel intensity and probability. In order to do this we use the hue from
the HSV color space. As mentioned, HSV is less susceptible to changes in
lighting than RGB. However, if we refer back to the HSV color hexicone
in Fig. 5(b), we see that at very low intensity, saturation is also very low,
which can cause hue to become very noisy. Pixels can also have inaccurate
hues when intensity is very high, such as sunlight. We therefore set very
high intensity and very low intensity pixels to zero. To create the probability
density function, we then use a histogram of pixel hues from a seed image
segment, as described in Section 5.1.1.
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5.1.1 Calculating the Backproject

The Mean Shift algorithm and subsequently the Camshift algorithm work
by climbing the gradients of a probability distribution. Therefore, to apply
this to images we must convert the image to a probability distribution. We
do this by using a histogram of colors for the target object. This histogram
consists of a certain number of color bins (we arbitrarily use 32 bins) each
representing a color range. This histogram is created based on the hues of a
seed of pixels from an image of the object, which can come from a selection
of pixels from a frame in the video sequence or an input file containing pixel
color values. Each pixel of the seed is placed into one of the bins based on
its hue, which are then normalized, or converted to percentages of the overall
seed. Thus the value of any given bin represents the probability that a pixel,
whose color would be in that bin, is a pixel on the object. A graphical
representation of such a histogram is show in Fig. 9.

Figure 9: Histogram created from a seed of orange cone pixels

Using the histogram, we can calculate the probability for each pixel in a new
frame from the video sequence and thus create a discrete two-dimensional
probability function called the backproject. This backproject is stored as a
grayscale image with dimensions equal to those of the color image frames.
Unlike the color frames, whose pixels consist of color intensity values, the
grayscale intensity of each pixel in the backproject is a value between 0 and
255 and represents the probability of the pixel in the same xy-coordinate of
the image frame [1]. An example of an image and its corresponding back-
project, as calculated using the histogram from Fig. 9, are given in Fig.
10.



5.1 Color-Based Object Tracking 23

(a) Orange Cone (b) Backproject of Orange Cone

Figure 10: An image of a cone and its corresponding backproject

5.1.2 Moment Functions

Moment Functions are used by the Mean Shift algorithm to estimate the
density gradient for an image. They are also used by the Camshift algorithm
to resize its search window and calculate the elliptical shape descriptors of the
region. These functions are used in statistics, mechanics, and image analysis.
In statistics, moments are calculated on a probability density function and
represent different properties of the function. The zero-, one-, and two- order
moments represent the total probability, the expectation, and the variance
respectively. In mechanics, moments calculated for a spatial distribution of
mass tell us certain properties of the mass. Similar to statistics, the zero-,
one-, and two-order moments tell us the total mass, the centroid position, and
the inertia values respectively. In image analysis we can treat the image as a
two-dimensional intensity distribution. Furthermore, as described in Section
5.1.1 above, we can convert intensity values to probabilities using a color
histogram. We can then take moments of these distributions to tell us certain
properties of the image such as the total area, the centroid coordinates, and
the orientation. In image analysis we are really only interested in low-order
moments because higher-order moments are more sensitive to noise [25].

The general moment generating function is defined as:

Φpq =

∫∫
Ψpq(x, y)f(x, y)dxdy (3)
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where Φpq is the moment of degree (p + q), Ψpq(x, y) is the kernel function
in x and y, and f is the density distribution. There are many different
kernel functions each producing moments of different uses. However, when
estimating the gradient of a density function we use geometric moments.
Geometric moments are moments with a kernel function of Ψpq(x, y) = xpyq,
and are denoted by Mpq rather than Φpq. From this point forward, the term
moment will be used interchangeably with geometric moment. Furthermore,
when working with discrete probability distributions such as the backproject,
we use summation to represent integration. Therefore, Eq. 4 shows the
geometric moment generating function for images [25]:

Mpq =
∑
x

∑
y

xpyqf(x, y) (4)

There are several different types of geometric moments. Silhouette moments
are calculated from a binary image and thus any pixel on the object has a
value of one while pixels outside the object have a value of zero. Boundary
moments are moments calculated using only boundary points of an object.
Standard moments are moments which have been normalized with respect
to scale, translation, and rotation. Range moments are moments calculated
on range images where each pixel corresponds to a distance to an object
[25].

Just as in physics and statistics, moments of different orders represent differ-
ent properties of the image’s distribution. There are two cases to consider,
the case where we calculate moments for the image itself, and the case were
we convert the image to a probability distribution. In the first case we are
dealing with intensity, in the second we are dealing with probability.

The zero-order moment, M00, is defined to be the total intensity or proba-
bility for the region of the image. The first order moments, M01 and M10,
are moments about the y and x axes respectively. Just as these moments
can be used to find the centroid of a physical object in physics, they can be
used to find the centroid of the image region, where the pixels’ intensities are
analogous to physical mass. The centroid is computed using the functions
xc = M10/M00 and yc = M01/M00 [25]:

(xc, yc) = (
M10

M00

,
M01

M00

) (5)



5.1 Color-Based Object Tracking 25

A property of the region’s centroid that is used in the Mean Shift algorithm,
is that the vector from the region’s center point to the centroid of the region
has the same direction as the gradient vector at the center point. The gra-
dient vector for a density function points in the direction of greatest slope.
Therefore, the gradient vector for the backproject will point towards higher
probability. Mean Shift uses this fact and climbs the gradient to find the
object.

Besides the gradient, Camshift also calculates the elliptical shape descriptors
of the region. These are the width, height and angle of an ellipse encom-
passing the region. In order to calculate these, Camshift needs to compute
moments that are independent of position, meaning in reference the region
centroid. These moments are called centralized moments and are denoted by
µpq. Eq. 6 shows the centralized moment generating function [25].

µpq =
∑
x

∑
y

(x− xc)p(y − yc)qf(x, y) (6)

The second order moments, µ02 and µ20, represent the variances about the
centroid in both axes. The covariance is given by µ11. Therefore, Eq. 7
shows the covariance matrix [25]:

cov =

[
µ20 µ11

µ11 µ02

]
(7)

The eigenvectors of this matrix correspond to the major and minor axis of
an ellipse encompassing the region. The eigenvectors, ~V1 and ~V2 are given in
Eq. 8.

~V1,2 =

 µ20−µ02±
√

4µ2
11+(µ20−µ02)2

2µ11

1

 (8)

Fig. 11 shows that the tangent function can be used to calculate the angle θ
of the ellipse. The angle of the region’s ellipse is the angle of the eigenvector
corresponding to the largest eigenvalue.
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Figure 11: Eigenvector of the covariance matrix

tan θ =
Vy
Vx

=
1

Vx
=

2µ11

µ20 − µ02 +
√

4µ2
11 + (µ20 − µ02)2

(9)

θ = arctan

(
2µ11

µ20 − µ02 +
√

4µ2
11 + (µ20 − µ02)2

)
(10)

The eigenvalues of the cov matrix are proportional to the squared length
of the eigenvector axes. Two different formulas for the eigenvalues exist,
one obtained using conventional algebraic eigenvalue computation, the sec-
ond obtained using positive-definite matrix diagonalization. The eigenvalues
obtained from the first method are shown in Eq. 11.

λ1,2 =
(µ20 + µ02)±

√
4µ2

11 + (µ20 − µ02)2

2
(11)

The second method uses positive-definite matrix diagonalization, and is the
method used by Camshift. In this method, cov is diagonalized into RDRT

where R is the rotation matrix through angle θ and D is the diagonal matrix
with the eigenvalues of cov on its diagonal.

D =

[
λ1 0
0 λ2

]
(12)

R =

[
cos θ − sin θ
sin θ cos θ

]
(13)
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Therefore, Camshift uses the property of diagonalizable matrices, (cov −
λI)x = 0 to solve for λ. In this equation, x is the eigenvector corresponding
to λ and I is the identity matrix. For simplicity we omit calculations, but
provide the formulas obtained [25]:

λ1 = µ20 cos2 θ + 2µ11 cos θ sin θ + µ02 sin2 θ (14)

λ2 = µ20 sin2 θ − 2µ11 cos θ sin θ + µ02 cos2 θ (15)

Note that these formulas are algebraically identical to those provided in Eq.
11, which can be verified by plugging in values for the unknowns.

Using the eigenvalues, Camshift can obtain elliptical shape descriptors for
the image region. Therefore, an ellipse drawn around the region would have
major and minor axis magnitudes of a and b respectively and an orientation
of θ. The angle θ can be calculated as already described, but the axes must
be calculated using the following formulas [25]:

a = 2

√
λ1

M00

(16)

b = 2

√
λ2

M00

(17)

Camshift uses these elliptical shape descriptors to track the object’s size and
orientation.

5.1.3 Mean Shift

The Mean Shift is a nonparametric estimator of density gradient [3]. Mean
Shift is used on density functions and nonparametric here refers to the fact
that it does not assume any structure of the data. Regardless of the defini-
tion, Mean Shift acts as an estimate of the gradient of a density function.
As mentioned, the gradient is the tangent vector to the density function in
the direction of greatest slope. The iterative process developed by Fukunaga
and Hostetler [26] is used to seek the local maximum in the density func-
tion. This process, also called the Mean Shift algorithm, involves iteratively
shifting a fixed-size search window to the centroid of the data points within
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the window [3]. In this way Mean Shift can hill-climb to a local mode. This
algorithm is proven to converge for discrete data [1]. Therefore, we use the
Mean Shift algorithm on the backproject to find the local mode, or peak, in
the density function, which translates to the point with the locally highest
probability of being the object. The Mean Shift algorithm can thus track
objects as they move in two degrees of freedom, translational along the x
and y axes [2]. Besides object tracking, Comaniciu and Meer [3] used Mean
Shift to segment images by way of data clustering [24], as described above in
Section 4.1.1. The Mean Shift procedure is demonstrated by the iterations
shown in Fig. 12 [2].

Figure 12: The motion of a Mean Shift search window as it moves over a 2-D
data set, Image used with permission of Bradski & Kaehler [2]

In the next two sections we will first describe how Mean Shift estimates
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density gradient and then the Mean Shift algorithm. For a formal proof of
the Mean Shift convergence see Comaniciu and Meer [3].

Density Gradient Estimation

Density gradient estimation refers to the use of Mean Shift to estimate the
gradient, or direction of maximum upward slope, for a density function, in
our case the backproject. We simplify the calculations by using a rectangular
search window [2]. Therefore, to obtain the gradient, we calculate centroid
of the search window. Recall that the centroid is calculated by the formula
from Eq. 5 reproduced here:

(xc, yc) = (
M10

M00

,
M01

M00

)

By subtracting the coordinates of the search window’s current center from
the coordinates of the centroid, we obtain a Mean Shift vector. As mentioned
in Section 5.1.2, this Mean Shift vector has the same direction as the gradient
of the density function at the center of the search window [3].

The Mean Shift Algorithm

The Mean Shift procedure is obtained by successively computing the Mean
Shift vector and translating the search window through that vector until con-
vergence. This means that the search window will end on the local mode, or
maximum. Thus the method is simply climbing the gradient until it reaches
the top, and can only go down. When we apply this to the backproject,
we get an algorithm to track objects using a fixed window size as shown in
algorithm 1 [1].
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Algorithm 1: MeanShift

Input: search window size and position and threshold
trackwindow ← inputed search window;
repeat

oldtrackwindow ← trackwindow;
Calculate M00, M10, M01;
xc ←M10/M00;
yc ←M01/M00;
dx← xc− trackwindow.center.x;
dy ← yc− trackwindow.center.y;
trackwindow.x← trackwindow.x+ dx;
trackwindow.y ← trackwindow.y + dy;

until difference between oldtrackwindow and trackwindow ≤ threshold ;

One can imagine that if a vision system is tracking a moving object between
successive image frames, for example a basketball as it is thrown, the object
will have moved from its location in the previous frame. If the object is still
at least partly within the search window, the hill climbing procedure will
move the search window to be centered on the object once again [1]. In this
way the search window tracks the object as it moves in the scene of a video
sequence.

5.1.4 Camshift

Camshift stands for Continuously Adaptive Mean Shift and was first devel-
oped as a perceptual user interface by means of face tracking. The name
Camshift, Continuously Adaptive Mean Shift, is derived from the fact that
it continuously resizes the search window. The Mean Shift algorithm was
designed for static distributions and was never intended as an object track-
ing algorithm. Thus, it does not take into consideration that the object’s
size will change if it moves along the z axis with respect to the image plane.
Camshift improves upon the Mean Shift algorithm with specific consider-
ations for object tracking. For example, Camshift tracks objects in four
degrees of freedom as opposed to Mean Shift’s two degrees of freedom, and is
designed to handle the dynamically changing distributions between consec-
utive images because it continuously resizes its search window. In addition
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to the x and y translation that Mean Shift trackers handle, Camshift tracks
the area of the object and the roll. The area is a function of the z trans-
lation because objects closer to the camera will appear larger than objects
farther from it. Additionally, Camshift tracks the roll, or the rotation about
the z axis. Finally, Camshift makes the search window somewhat expansive
in order to encompass the entirety of an object rather than smaller regions
around the Mean Shift location. For example, if tracking faces we want to
track the entire face and not fix on the nose or forehead [1].

Calculating the Search Window Size

To resize the search window, Camshift uses the area, given by the zero order
moment M00. The area is dependent on the z coordinate of the object’s loca-
tion, meaning the closer the object is to the camera the larger the area of the
object’s image. Therefore, Camshift uses a function of M00 to determine the
search window size for the next iteration. However, Camshift must first con-
vert M00 into units of pixels rather than intensity. Since M00 is summed from
grayscale intensities, converting it to pixels requires dividing by 256.

Since M00 corresponds to the area, Camshift can approximate the side length
by simply take the square root of the area. In addition, since Camshift
was designed with an expansive search window to encompass the nearby
connected distribution area, it doubles this side length and obtains [1]:

s = 2

√
M00

256
(18)

Since Camshift was first developed for face tracking, the search window is
resized to match the shape of a human face. Therefore, the search window
is set with a width of s and a height of 1.2s because the face is somewhat
elliptical in shape.

Calculating the Elliptical Shape Descriptors

In addition to the z axis, Camshift tracks the roll, or rotation about the
z axis. When dealing with a human face, the range of motion represented
by roll would be as if the person were to tilt their head from shoulder to
shoulder. The roll is simply the angle between the principle axis of an ellipse
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over the object and the horizontal. This can be calculated using formulas in
section 5.1.2, particularly if we look at Eq. 10, reproduced here:

θ = arctan

(
2µ11

µ20 − µ02 +
√

4µ2
11 + (µ20 − µ02)2

)

Using this equation we can calculate the roll of the object. We can also use
Eqs. 16 and 17 to determine the magnitudes of the major and minor axes of
such an ellipse. Again these formulas are reproduced here:

a = 2

√
λ1

M00

b = 2

√
λ2

M00

With these three elliptical shape descriptors we can draw a track ellipse
around the tracked object. This ellipse is more descriptive than the simple
search window because it shows the roll of the object as well. The search
window is a rectangle and simply shows the location and size of the object.
Examples of both are given in Fig. 13.

(a) Tracked Orange Cone (b) Backproject of Tracked Orange Cone

Figure 13: An image of a cone and its corresponding backproject with over-
lays of a pink rectangular search window and red ellipse
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The Camshift Algorithm

The Camshift algorithm invokes the Mean Shift algorithm in order to climb
the density gradient. However, Camshift resizes the search window be-
fore each consecutive iteration. Algorithm 2 shows the pseudocode for the
Camshift algorithm [1].

Algorithm 2: Camshift

Input: search window size and position
trackwindow ← inputed search window;
repeat

oldtrackwindow ← trackwindow;
M00 ← MeanShift(trackwindow);
s← 2

√
M00/256;

trackwindow.width ← s;
trackwindow.height ← 1.2s;

until difference between oldtrackwindow and trackwindow ≤ threshold ;

Advantages of Camshift Over Other Object Trackers

There are many advantages to Camshift over other object tracking algo-
rithms. Firstly, Camshift is able to deal with irregular object motion because
of the adaptive nature of the search window. To explain, many algorithms
have trouble with the fact that objects move at different speeds in the scene
depending on their proximity to the camera. Farther objects move slower and
appear smaller while closer objects move faster and appear larger. Camshift
will resize its window depending on the object size. Therefore, even though
the object is small when it is farther from the camera, its slow motion allows
Camshift to track it. Also, when objects are close to the camera their motion
is rapid, but because they have larger areas Camshift can catch the larger
movements. Therefore, Camshift is robust to irregular object motion due to
distance from the camera [1].

Furthermore, because Camshift uses a search window that climbs local dis-
tribution gradients, it will ignore outliers in the distribution. This also allows
it to tend to ignore distractors, or objects with similar hue elsewhere in the
scene. Once the Camshift has locked onto an object it will stay with that ob-
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ject unless the motion between two consecutive video frames is too great [1].
However, this also means that if Camshift locks onto a distractor, it will not
re-find the object automatically.

In addition, Camshift converges on the mode of the distribution and therefore
tends to ignore partial occlusions of the object. Since the search window will
be centered on the mode of the distribution, if we block part of the object,
the search window will remain over the visible portion of the object because
of its proximity to the previous mode. This makes Camshift robust to partial
occlusions [1].

Finally, because Camshift computes over pixels only in the search window, it
eliminates needless calculations over the entirety of the image, and therefore
can run fast enough to be used in real-time.

5.2 Model-Based Pose Estimation

The method we use to determine the pose of an object was first developed
by DeMenthon and Davis [6]. This method uses geometry and linear algebra
techniques to determine the pose of an object based on a model of the object’s
feature configuration. In other words, the user must define visible features
on the object as points in the object’s three-dimensional frame of reference.
These model points must consist of at least four non-coplanar points on
the object. For example, the model and feature points chosen for a cone
are shown in Fig. 14. These points are then tracked in the image and a
correspondence between feature points and model points is used to calculate
pose.

The algorithm, called POSIT, is an iterative improvement on another algo-
rithm called POS, which stands for Pose from Orthographic Scaling [6]. The
focal length of the camera, which can be obtained from camera calibration
algorithms, is needed to calculate the pose of the object based on a model [2].
POSIT invokes POS over many iterations, each time improving the input pa-
rameters to POS based on its previous outputs. This is akin to Newtons’s
method for finding the square root of a number.
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Figure 14: The model of a cone used for pose estimation

5.2.1 SOP and Perspective Projection

In order to understand these algorithms, one must understand the difference
between perspective projection and Scaled Orthographic Projection (SOP).
First, let us describe the pinhole camera model, which has the center of pro-
jection, O, behind the image plane, A, as shown in Fig. 15. Projection, here,
refers to the projection of the object points in three-dimensional space onto
the two-dimensional image plane. Perspective projection, or true perspective
projection, is when the image of Qi, an object model point, is considered to
be the intersection between the image plane and the line of sight from O to
the object point Qi, denoted qi. SOP ignores the depths of the object points,
and projects all object points onto a plane B, where B is parallel to the
image plane passing through the object point of reference, Q0. Therefore, in
SOP, the image of the object point Qi is pi rather than qi. The point pi is
the intersection between the image plane and the line of sight from O to Pi,
where Pi is the projection of Qi onto plane B. This method assumes that the
object is flat and that the image is scaled-down version of the flat object [6].
See Fig. 15 for a graphical representation of this.
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Figure 15: The pinhole camera model



5.2 Model-Based Pose Estimation 37

Therefore, in SOP, sometimes called the weak-perspective camera model, the
coordinates of point pi would be [6]:

xi =
f

Z0

Xi (19)

yi =
f

Z0

Yi (20)

Where Z0 is the z coordinate of the point Q0, the object reference point, in
the camera’s coordinate system. The term f is the camera focal length and
Xi and Yi are the x and y coordinates of the point Qi in camera coordinates.
In perspective projection these same equations would be [27]:

xi(pp) =
f

Zi
Xi

yi(pp) =
f

Zi
Yi

Notice in the perspective projection equations the focal length f is divided
by Zi rather than Z0 so that the depths of the individual object points are
considered. The factor s = f

Z0
is the scaling factor of the projection [6].

5.2.2 Perspective Equations

The objective of pose estimation is to determine a translation vector,
−−→
OQ0,

and a rotation matrix to convert points in the camera frame of reference to
the object frame of reference. Notice from Fig. 15 that vectors ~i, ~j, and
~k are the basis vectors for the camera’s frame of reference, let us call this
vector space α. Vectors ~u, ~v, and ~w are the basis vectors for the object’s
frame of reference, let us call this vector space β, and all points Qi are
known in this coordinate space. Therefore the rotation matrix consists of
column vectors equal to the unit vectors ~iβ, ~jβ, and ~kβ, where the subscript
β means in coordinates of the vector space β, or object coordinates. Notice
that ~kβ = ~iβ × ~jβ. Also notice that if the object point of reference, Q0, is
chosen to be one of the visible feature points, then its x and y coordinates
are obtained by scaling up the coordinates of point q0. Therefore X0 = Z0

f
x0

and Y0 = Z0

f
y0; here capital letters represent coordinates of Q0 and lower
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case letters represent coordinates of q0. Therefore the pose is fully defined
by ~iβ, ~jβ, and Z0 [6].

The system of equations to solve for these values is [6]:

−−−→
Q0Qi • ~I = xi(1 + εi)− x0 (21)

−−−→
Q0Qi • ~J = yi(1 + εi)− y0 (22)

Where
~I =

f

Z0

~iβ

~J =
f

Z0

~jβ

εi =
1

Z0

−−−→
Q0Qi • ~kβ

5.2.3 POS

As mentioned, POS stands for Pose from Orthographic Scaling. The main
idea is if εi has a value, then the system of equations in Eqs. 21 and 22
can be solved for ~I and ~J . This is what POS does, but it uses all of the
object model points provided. Therefore, Eqs. 21 and 22 for all model
points can be described as two linear systems of equations with ~I and ~J as
the unknowns:

A~I = ~x (23)

A ~J = ~y (24)

where matrix A consists of the object coordinates of each of the model points.
In addition, given the geometric configuration of the object points Qi, the

pseudoinverse of matrix A can be precomputed as B =
(
ATA

)−1
AT . Solv-

ing for ~I and ~J results in Eqs. 25 and 26 [6]:

~I = B~x (25)

~J = B~y (26)

Once POS has obtained ~I and ~J it will find the scaling factor s by averag-
ing the norms of these two vectors. The vectors ~iβ and ~jβ are obtained by
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normalizing ~I and ~J , and the vector ~kβ is found by the cross product ~iβ ×~jβ
resulting in the three column vectors of the rotation matrix, ~iβ, ~jβ, and ~kβ.
The scaling factor s is used to find the translation vector. Remember that
s = f

Z0
, therefore Z0 = f

s
. From this the other translation vector coordinates

are X0 = x0

s
and Y0 = y0

s
. Therefore the pose is given by:

~T =
−−→
OQ0 =

 X0

Y0

Z0

 and R =
[
~iβ ~jβ ~kβ

]
Notice that this pose is only as accurate as the value given to εi [6]. We then
use POSIT to improve upon this estimate.

5.2.4 POSIT

POSIT stands for POS with ITerations. This is because POSIT simply runs
iterations of POS, each time using the resulting pose to calculate more accu-
rate values for εi. POSIT starts by assuming εi = 0. Recall the formula for
εi:

εi =
1

Z0

−−−→
Q0Qi • ~kβ

Therefore, after each iteration, Z0 and ~kβ are used to calculate the next
εi. These iterations stop when the change in εi is below a threshold. The
pseudocode for POSIT is shown in algorithm 3 [6].
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Algorithm 3: POSIT

Input: Model Points Qi(Xi, Yi, Zi), Image Points qi(xi, yi), and threshold
Output: Translation vector and rotation matrix
N ←number of image points;
for i← 1 . . . N − 1 do εi(0) ← 0;
n← 1;
A← matrix of object coordinates Qi;

B←
(
ATA

)−1
AT ;

repeat
for i← 0 . . . N − 1 do

ith coordinate of ~x← xi(1 + εi(n−1))− x0;
ith coordinate of ~y ← yi(1 + εi(n−1))− y0;

end
~I ← B~x;
~J ← B~y;
s1 ← ||~I||;
s2 ← || ~J ||;
s← (s1 + s2)/2;
~iβ ← ~I/s1;
~jβ ← ~J/s2;
~kβ ←~iβ ×~jβ;
Z0 ← f/s;

for i← 1 . . . N − 1 do εi(n) ← 1
Z0

−−−→
Q0Qi • ~kβ;

n← n+ 1
until

∣∣εi(n) − εi(n−1)

∣∣ < threshold ;
X0 ← x0/s;
Y0 ← y0/s;

~T ←

 X0

Y0

Z0

;

R←
[
~iβ ~jβ ~kβ

]
;

return ~T and R
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6 Implementation

We built our implementation in C++ with a class called ColorTracker in-
voking the color tracking and pose estimation algorithms. The program that
displays the images and handles user I/O is called Capture.

6.1 The Video Sequence

As mentioned, the computers onboard Humphrey and Lauren, the Pioneer 2
robots, are too slow to perform significant computation onboard. Therefore,
just like the MCL algorithm, we needed to run the tracking remotely on
the Linux desktop. In order to gain access to the video stream from the
onboard cameras, we used Professor Fox’s implementation of server-client
python scripts communicating over TCP. The server script runs on the robot,
capturing images from the camera stream and storing them locally. On
the remote machine, a client script pulls the new images from the server.
This means the video stream we have is on the hard drive consisting of
separate consecutive JPEG images, and is not a webcam device like it is for
Borg, the Power Wheels robot. In order to handle both cases, we made two
subclasses of the ColorTracker object, namely CameraColorTracker and
FilesColorTracker. The only overridden methods in these subclasses are
the methods that handle obtaining the next frame of the video sequence.
For the CameraColorTracker object, the next frame is taken from a video
sequence. For the FilesColorTracker object, the next frame is taken by
incrementing a number in a filename and loading an image from the hard
drive using the new filename. Depending on command-line arguments, the
Capture program knows whether to instantiate the ColorTracker as either
a FilesColorTracker or a CameraColorTracker, and due to polymorphism
in C++ either can be used when a ColorTracker is expected.

6.2 The Capture Program

The Capture program is what invokes the computer vision methods and
displays the images of the video stream. In order to do both of these things
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simultaneously the program has two threads of operation, the display thread
and the I/O thread. The display thread handles invoking the methods from
the ColorTracker object in the right order. The I/O thread listens for
input on standard-in and handles different user input. We use standard-in to
control the device and modulate parameters such as reseting the window size
or toggling between displaying the backprojects or the image. The inputs of
‘f’ and ‘v’ will cause the program to output the search window information
and a vector to the object respectively. This is how a parent process can
access the location of an object being tracked in order to make decisions for
the robots behavior.

6.3 Loading the Histograms

In order to load a histogram to be used to generate the backprojects, we
need a seed, or a set of pixels of the object we wish to track. Each pixel
in this seed is placed into one of the 32 histogram bins based on its hue.
Initially we were using 16 bins, however we found that 32 bins improved the
accuracy and robustness of the tracker. The number 32 is arbitrary here and
we could use any number of bins. However, adding more bins results in more
computation.

The original method we used for seeding the program was to select a region of
the displayed video sequence using the mouse. This was handled by the dis-
play thread of the Capture program. However, we realized that this seed was
too small and did not include pixels of the object in different lighting.

One way we improved robustness of the algorithms was to allow the seed
to be made from images of the object in many different light settings and
with many different backgrounds. For example, we used an orange cone as
our object and took pictures of it using the robot’s camera in many different
locations around the building, or the robot’s world. We took pictures in dim
light, bright light, close to the camera, far from the camera, with brightly lit
windows in the background, with walls in the background, etc. This produced
a formidable reservoir of images to use. We then needed a way to combine
all of these images to be used as a single seed to the vision application. We
used a program that Professor Fox developed in MATLAB which loads each
image sequentially and prompts the user to select the region of pixels within
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the object. The program then saves all pixels selected to the single Comma
Separated Value (CSV) file, represented as RGB values. When we input this
CSV file to the vision application, the application must convert the values
to an RGB image, convert the image to an HSV image, then use the image
to create the histogram.

6.4 Re-finding the Object

The Camshift algorithm uses the search window from the previous frame as
the initial search window for the current frame. Therefore, if the program
loses the object for some reason, it will not re-find the object unless a part
of it appears within the boundaries of the search window. We found that
sometimes noise or similarly-hued objects in the background, such as the exit
sign in Fig. 16, can steal the search window if the program happens to lose
the object. In order to solve this issue we introduced a function that re-finds
the object by simply resetting the search window size to that of the entire
image. This way, after a few iterations the window will re-converge on the
object, given it is the largest of its hue in the scene.

6.5 Splitting the Search Window

Another anomaly we observed occurs when two objects of similar hue are in
the scene. If the two objects are close enough together the search window
will elongate and encompass both objects together as if they were one. This
is because the centroid of the two lies between them even though the actual
probabilities at the centroid are small. An example of this sitution is shown in
Fig. 17. To fix this we implemented a track window splitting function.

The splitting function calculates the total probability for a small region at the
center of the search window. If this total probability is lower than a threshold
then the window is split in half and the side with the largest probability is
taken as the new search window. We split the search window horizontally if
the width is less than the height, and vertically if the height is less than the
width.The tracker does sometimes jitter on an object if the center probability
is low. This is because the search window will be split, but then expand
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Figure 16: A similarly-hued object in the background steals the search win-
dow

Figure 17: A situation when the search window is stretched over two similarly
colored objects
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to its original size only to be split again. Despite the occasional jitter, this
function works remarkably well and we no longer have the issue of two objects
of similar color appearing as a single object.

6.6 Tracking Two Objects

We imagined the possible need to track two objects at the same time, such
as in Fig. 18. In order to track two objects, two CSV filenames must be in-
puted, each used to generate a different histogram. These filenames could be
different if tracking differently colored objects, or the same. The histograms
are used to generate two backprojects on the image frame. The first object
is tracked on the first backproject. The search window for the first object
is blacked out on the second backproject to avoid tracking the same object
in the case that the two histograms are similar. The second backproject is
then used to track another object. This is demonstrated in Fig. 19. This
could be extended to multiple objects, however the more objects we track the
more expensive the operation becomes. We are essentially running Camshift
twice per frame. Recall that we need to finish computation in 1

fps
of a second

where fps is the frame rate. For normal video frame rates, we have one 30th
of a second to finish both Camshift operations when tracking two objects.
When tracking many objects, this limit may cause the program to run in less
than real-time.

6.7 Thresholding

A problem that we ran into is that if the object, our cone, is not present in
the scene the vision application picks up the next highest probability pixels.
This causes a problem because if all pixels have low probability, but some
have slightly higher, those pixels will be wrongly tracked. This means that
if there is no cone in the scene, rather than determining so, the application
will pick up on noise pixels and track large groups of random noise. In
order to fix this we needed a way to depress low probability pixels to zero.
We accomplish this using a simple function for thresholding in the OpenCV
API. We set the value of pixels with probability less than a predetermined
threshold to zero. This helped, however noise is random and no matter
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Figure 18: An example of tracking two objects simultaneously

(a) The backproject for the first object (b) The backproject for the second ob-
ject

Figure 19: The backprojects when tracking two objects simultaneously
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which threshold level we chose it seemed that noise pixels would eventually
occur that had probabilities greater than the threshold. To account for this
we decided to simply look for the optimal threshold level, one that would
decrease the likeliness of high probability noise without causing dimly-lit
cones to go unnoticed. We determined this threshold experimentally.

6.8 Focal Length

One of the arguments required of the POSIT algorithm is the focal length of
the camera. This is used in the POSIT algorithm to determine the pose of
the object based on a model of the object. One common technique for de-
termining the focal length is to use camera calibration algorithms [2]. These
algorithms return intrinsic properties of the camera. A common technique
for camera calibration is to use a chessboard, which is a well known pattern,
and rotate and translate the board in front of the camera. Camera calibra-
tion algorithms use successive frames of this well known pattern to calculate
the camera’s intrinsic properties. However, using this technique, we never
managed to obtain a useful focal length. So we decided to experimentally
determine the best focal length. We measured a distance and placed the
object at that distance. We then varied the focal length by small intervals
until the distance returned from the POSIT algorithm was within satisfac-
tory error of the actual distance to the object. Although this is somewhat
reverse engineered, it works well for our application when the search window
accurately represents the object size, as will be shown in Section 7.
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6.9 Image Points

In order for POSIT to work properly, we use the model of the cone shown
in Fig. 20(a). However, POSIT also needs to know the corresponding image
feature points for each of these model points. In order to determine the
points on the cone we use a somewhat simplified approach. We assume that
the search window represents an orthographic projection of the cone onto the
image plane. Therefore, we do not account for distortions due to perspective.
This will result in inaccurate rotation matrices but the translation vector
should be relatively unaffected. The image points of the Camshift search
window that we use are shown in Fig. 20(b).
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(a) The model points on an orange cone
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(b) The search window with feature points
marked

Figure 20: The model points and their corresponding feature points

6.10 Distance Estimation

Although we are using the pose estimation algorithm POSIT, we are really
only interested in the Z0 value calculated. This is the z coordinate of the
translation vector returned by POSIT.
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Theoretically, if we place cones around the robots’ world, and include the
positions of these cones in the robots’ map of their world, then when a robot
sees a cone in their frame of vision they can estimate the distance to that
cone. This distance can be used by the MCL algorithm to more accurately
alter probabilities of MCL samples similar to how the sonar measurements
are used currently.
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7 Results

7.1 Data Collection

We collected data on both types of robots in three different locations in order
to vary light and surfaces. The locations were an open atrium, a hallway, and
the lab room. The atrium and the lab room both had natural and artificial
light. The hallway only had artificial light. The floor of the atrium was
carpeted while the other two locations had linoleum.

In each location, for both types of robots, we measured distances in front of
the robot and placed orange cones. We then collected data on the distance
estimated by the application. We took 1000 data points for each. For the
Pioneer 2 robot we used distances of 150, 200, 500, and 1000 centimeters.
For the Power Wheels robot we used distances of 200, 300, 500, and 1000
centimeters. The lab room is 5 meters by 5 meters so there was no way
to obtain data for 10 meters in that environment. We used different sets
of distances because the Power Wheels robot has its camera higher than
that of the Pioneer, and therefore it cannot see as close in front of it as the
Pioneer.

7.2 Distortions

One phenomenon that threw off the system and caused values to be inac-
curate were reflective floors. Floors that were tiled with surfaces, such as
linoleum, sometimes reflected the image of the cone and distorted the size
of the search window. This is shown in Fig. 21. The values returned in
such cases were unpredictable and were often much less than the actual dis-
tances.

An obvious distortion that can also occur in moving robots is when the object
is not completely in the view of the robot. These cases can also cause very
inaccurate distance estimations to be reported. Three such cases are shown
in Fig. 22.
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Figure 21: Reflective floors distort the object tracking and create inaccuracies

(a) The cone is too far left
of the robot

(b) The cone is too far right
of the robot

(c) The cone is too close to
the robot

Figure 22: Distortions due to the object not being completely in the field of
vision
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7.3 Bad Histograms

One thing worth mentioning, is that the system is dependent on the quality
of the histogram. This means that the inputed seed needs to include pixels of
the image from many different locations in many different light environments.
Bad histograms are those with little variation in color, and can cause the
object to be lost when it is farther away or in dimmer or brighter light
environments. An example of a histogram that has very little variation is
shown in Fig. 23. Fig. 24 shows an example of an object tracked with
this histogram that is too far away to register enough probability in the
backproject.

Figure 23: An example of a histogram with little variation
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Figure 24: The cone is so far away that its probability in the backproject is
less than the brightly lit wall
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7.4 Cases Without Distortions

Let us now examine the results of one of the cases without any distortion.
The case is for the Pioneer robot in the lab. Despite the presence of linoleum
floors, the fact that they were white linoleum floors made them less reflective.
An example of one frame is shown in Fig. 25. Notice that this frame shows
some distortion, which happened infrequently for less-reflective floors. The
data histogram for 1000 frames is shown in Fig. 26. On the x axis is the
difference between the measured distance and the estimated distance. Along
the y axis is the number of data points within that bin. Notice that an
envelope of the histogram is a Gaussian distribution with a mean of 0.11
centimeters and a standard deviation of 3.83 centimeters. This shows that
for this particular environment the vision application was able to accurately
estimate distances with almost normal error.

Figure 25: A frame from the lab environment with the cone 150 centimeters
away from the Pioneer 2 robot

If we then aggregate all the data collected for both robots, and all distances
and locations where distortions did not occur, we again see an almost Gaus-
sian fit with a mean of -8.69 centimeters and a standard deviation of 24.54
centimeters. The histogram for this data is in Fig. 27.



7.4 Cases Without Distortions 55

Figure 26: A frequency histogram of error for the lab environment at a
distance of 150 centimeters without distortion

Figure 27: A frequency histogram of error for all environments and distances
that did not show distortion
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7.5 Cases With Distortions

We now examine a case where distortion caused the results to be unreliable.
The environment is a hallway with green linoleum flooring. The robot is
Borg, the power wheels robot with a standard webcam. The distance in this
case is 500 centimeters. Notice from Fig. 28, that the application tracked
the cone and its entire reflection, effectively doubling the height of the cone.
Therefore we would expect the distance estimations to be shorter than the
measured value because the cone appears larger, and thus closer. From all
the cases we took data for, 32% of them contained distortion. This number
only reflects our choice of environments, however it fairly demonstrates that
these distortions are a significant source for error.

Figure 28: A frame from the hall environment with the cone 500 centimeters
away from the Power Wheels robot

A histogram of the data taken for this one case is shown in Fig. 29. No-
tice that, although the data appears to be somewhat Gaussian, the mean is
closer to -122 centimeters. Also, there are fewer histogram bars in this plot
meaning that the search window jittered causing the distance estimations to
jump.

A histogram of the error for all cases that had distortion is shown in Fig.
30. Notice that although some parts of this data appear Gaussian, values are
still very far from zero and jump unreliably. Furthermore, most of the data is
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Figure 29: A frequency histogram of error for the hall environment at a
distance of 500 centimeters with distortion

less than zero which means that the estimates were more often shorter than
the measured value, in many times around 800 centimeters shorter.

Figure 30: A frequency histogram of error for all environments and distances
that showed distortion



58 7 RESULTS

7.6 All Cases

If we now make a histogram of all data, both with and without distortion,
we see that the majority of the data showed good results. The application
is able to estimate the distance of the object accurately when there is no
distortion. Furthermore, the frequency of accurate results outweighed that
of inaccurate results. See Fig. 31 for the histogram of all data.

Figure 31: A frequency histogram of error for all environments and distances
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8 Conclusion

The goal of this project was to create an application for object depth per-
ception. The application we developed uses the Camshift algorithm to track
objects based on their color, then passes the location and size of the object
to the POSIT algorithm, which estimates the objects pose. Again, Camshift
uses density gradient estimation to hill-climb its way to the object. POSIT
uses a model of the object, algebraic techniques, and an iterative approach
to more accurately estimate the pose of the object.

In order to use the application on video streams with frame rates upto 30
fps, we needed algorithms that could perform on a single frame and could
complete their computation in at most a 30th of a second. Other solutions
to object tracking and pose estimation, such as segmentation and genetic
algorithms, were simply too slow or required multiple images. Thus, we
chose Camshift and POSIT over other methods because of their relative
speed in computation and the fact that efficient implementations of both
are available in OpenCV. Camshift solves many problems associated with
object tracking because of its adaptive search window, and POSIT is a fast,
accurate algorithm that can be performed on a single image.

From the data we gathered, we have shown that in most of the cases, the
application works well and returns accurate estimations of depth. However,
when there are reflections or occlusions of the object, the application will
return inaccurate data. This is unavoidable because of the nature of color
based tracking. These distortions can greatly effect the ability of Camshift
to track an object, because they change its perceived size. Furthermore, in
order for POSIT to accurately estimate the distance to the object, Camshift
must pass it accurate information about the size and location of the ob-
ject. Therefore, the performance of Camshift has more effect on the overall
performance of the system than that of POSIT.

In order to reliably integrate this application into the Monte Carlo Localizer
we would need to ensure that no cone will have reflections or occlusions caus-
ing its perceived size to be inaccurate. A possible solution to this problem,
that involves tracking features rather than color, is discussed in Section 9.2.
Another solution may simply be to place non-reflective surfaces underneath
the cones when positioning them around the map. We may also need to as-
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sociate an error or probability with each distance estimation to smooth out
the effect of bad estimations.

9 Future Work

9.1 Accurate Estimation of Focal Length

During our attempts to use camera calibration techniques to accurately es-
timate the focal length of the cameras, we were never able to obtain useful
values. Furthermore, the POSIT function takes a single focal length pa-
rameter, while the camera calibration algorithms returned a horizontal and
vertical focal length. The POSIT algorithm assumed square pixels when in
fact the image pixels were rectangular. Because we are consistent, our false
focal length works well. However this could be masking other inaccuracies of
the system. Some work to further pursue would be to transform the images
into square images, accurately estimate the focal length, and use this focal
length to estimate pose.

9.2 Feature Tracking Algorithms

One other shortcoming of our method is how we match feature points to
model points. We assume that the Camshift search window exactly encloses
the cone which it does not always do. One way to improve the system might
be to use visible features of the object, meaning features on the object that
cause recognizable pixel intensity variation, such as a corner. This would also
help solve the problems of distortions because the pose would be based on
only visible feature points and would ignore color reflection off the floor.

One possible way to detect suitable features would be to use SIFT features
that are trackable in the vicinity of the search window. SIFT, first developed
by Lowe [28], stands for Scale-Invariant Feature Transform. SIFT features,
as their name suggests, are invariant to scale and rotation. Therefore SIFT
features are relatively robust in detection [28]. If we used model points for
our cone that correspond to SIFT features, we might get a better estimation
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of pose from POSIT. One possible limitation of this is that there may not be
enough SIFT features on a cone to obtain four non-coplanar points. We may
have to choose a different object, while ensuring it is still highly contrastive
to its environment.

9.3 Kalman Filter

A possible technique we can use to improve the measurements from the
application is called a Kalman Filter, and is a mathematical technique to
estimate the state of a linear dynamic system. The Kalman Filter is named
after Rudolf E. Kalman, because of his seminal paper on the subject in
1960 [29]. The purpose of the Kalman Filter is to use observed measurements
over time that contain noise and inaccuracies to produce values that tend
closer to the true values of the measurements [30].

The Kalman filter combines the system’s dynamics model, the known control
inputs to the system, and sensor measurements to estimate the system’s state.
The system’s dynamics model comes from properties such as physical laws of
motion or other known properties of the system that can be used to predict
the next value [2].

If the Kalman filter were to be used to improve our application, the system’s
state would be the location and size of the object being tracked. The sys-
tem’s dynamics model would use the fact that the location and size of the
object should change proportionally to its speed and direction. Finally, the
sensor measurements would be the location and size of the Camshift search
window.

9.4 Integration of Vision Application into MCL

Finally, we need to integrate the vision application into the Monte Carlo Lo-
calizer, and test the improvement gained from the added sensors. This would
require knowing the exact position of cones in the map of Olin-Rice, which
we would measure manually. The basic idea is that the distance returned
from the vision application would be sent to MCL, which would then look
for those samples that have a cone in front of them at a similar distance.
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Because the application does not return 100% accurate data, we would also
want to incorporate some error estimation with the distances values. This
would allow the localizer to smooth out any false distance estimations passed
to it.
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A Source Code for the Capture Program

/******************************************************************************\

* Capture.h: header of Capture.cpp: *

* program to capture images from either a default webcam or *

* from files, and run several OpenCV algorithms on those images in order to *

* track objects by color and estimate their pose. *

* Written by Kayton Parekh and Susan Fox in Summer 2009 *

\******************************************************************************/

#ifndef CAPTURE_H_

#define CAPTURE_H_

#include <cv.h>

#include <highgui.h>

#include <math.h>

#include <pthread.h>

#include <cstring>

#include <iostream>

#include <stdlib.h>

#include <dirent.h>

#include <fstream>

#include "ColorTracker.h"

#include "CameraColorTracker.h"

#include "FilesColorTracker.h"

#define SRC_CAMERA 5

#define SRC_FILES 10

using namespace std;

// Variables marked by **shared** below are shared by both threads and

// control MUST be mediated through a lock.

// Locks

pthread_mutex_t colorTrackerLock = PTHREAD_MUTEX_INITIALIZER;

pthread_mutex_t stopLock = PTHREAD_MUTEX_INITIALIZER;

// Global variables

bool globStop = false;// **shared** sends when to quit b/w threads

bool verbose = false; // when to produce verbose output

bool logFlag = false; // if we want to log avi files

bool useMouseSelection = false;

int selectObject = 0;// when the mouse is selecting an object

int trackObject = 0; // when an object is being tracked

int picSource = SRC_CAMERA; // if we are using camera or files

// Used by Hough lines to store important lines

int lineTotal = 10;

int lineCount = 0;

CvPoint** importantLines = 0;

// Used to keep track of the folder and fileName

char picsFolder[100];

char picsFileName[100];

// Variables below are shared by both threads
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char wndName[] = "Edge";

char tbarName[] = "Threshold";

int edgeThresh = 1;

int imageOrigin = 0;

CvPoint origin;

ColorTracker* colorTracker; // **shared**

// Variable used by display function

CvRect selection;

//END GLOBAL VARIABLES

// =============================================================================

// DECLARATIONS OF FUNCTIONS

// edge detector functions

IplImage* edgeDetect( IplImage* image);

IplImage* lineDetect( IplImage* src);

bool betweenAngles(float theta, float lowBound, float highBound);

void setupHough();

void cleanupHough();

// I/O Functions

void* ioThread( void *ptr);

void updateSaveName(char *fileName, char* folder, char* wholepath);

void printVerbose(const string str);

// Display Functions

void* displayThread( void *ptr);

void onMouse( int event, int x, int y, int flags, void* param );

// END FUNCTION DECLARATIONS

#endif /* CAPTURE_H_ */

/******************************************************************************\

* Capture.cpp: a program to capture images from either a default webcam or *

* from files, and run several OpenCV algorithms on those images in order to *

* track objects by color, and estimate their pose. *

* Written by Kayton Parekh and Susan Fox, Summer 2009 *

\******************************************************************************/

#include "Capture.h"

/* =============================================================================

* This section contains the main function */

// -----------------------------------------------------------------------------

int main(int argc, char** argv ) {

char csvFileName1[100], csvFileName2[100];

bool loaded1 = true, loaded2 = true; // load success flags

//argument flags

bool doFile = false, seenFirst = false, seenSecond = false;

for ( int i = 1; i < argc; i++ ) {

// user entered -v on command-line
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if ( strcmp(argv[i], "-v") == 0 ) {

verbose = true;

}

// user entered -f on command-line

else if ( strcmp(argv[i], "-f") == 0 ) {

doFile = true;

}

// user entered -fv OR -VF on command-line

else if ( strcmp(argv[i], "-fv") == 0

|| strcmp(argv[i], "-vf") == 0 ) {

doFile = true;

verbose = true;

}

// this is the first csv filename we’ve seen

else if ( !seenFirst ) {

seenFirst = true;

strcpy(csvFileName1, argv[i]);

}

// this is the second csv filename we’ve seen

else if ( !seenSecond ) {

seenSecond = true;

strcpy(csvFileName2, argv[i]);

}

else {

cerr << "Invalid or too much command-line input!" << endl;

exit(0);

}

}

// Set up the right kind of color tracker based on command line input

if ( doFile ) {

picSource = SRC_FILES;

colorTracker = new FilesColorTracker();

}

else {

colorTracker = new CameraColorTracker();

}

// Set up histogram(s) and related variables

if ( !seenFirst ) { // If no csv files input

useMouseSelection = true;

}

else { // one or more csv files were input

loaded1 = colorTracker->loadHist(csvFileName1, OBJECT_FIRST);

colorTracker->showHistImage(OBJECT_FIRST);

if (! seenSecond ) { // exactly one csv file was input

colorTracker->resetWindow(OBJECT_FIRST);

}

else { // two csv files were input

colorTracker->trackTwoObjects(true);

loaded2 = colorTracker->loadHist(csvFileName2, OBJECT_SECOND);

if( strcmp( csvFileName1, csvFileName2 ) ) {

colorTracker->showHistImage(OBJECT_SECOND);

}

colorTracker->resetWindow(OBJECT_BOTH);

}

}
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//if loading failed print error and exit

// doesnt work because loading will be true no matter what

// cant get try-catch working right.

if(!loaded1){

cerr << "ERROR: could not load first csv file" << endl;

}

if(!loaded2){

cerr << "ERROR: could not load second csv file" << endl;

}

if(!loaded1 || !loaded2){

exit(0);

}

// user input to determine if we log or not

printVerbose("Log?(y/n): ");

char log[10];

cin >> log;

if( strcmp(log, "y")==0 || strcmp(log,"Y")==0 ){

logFlag = true;

}

// create the two threads

pthread_t thread1, thread2;

int threadval1, threadval2;

threadval1 = pthread_create(&thread1, NULL, displayThread, NULL);

threadval2 = pthread_create(&thread2, NULL, ioThread, NULL);

// wait for the threads to end

pthread_join( thread1, NULL);

pthread_join( thread2, NULL);

// Release the capture device housekeeping

delete colorTracker;

cerr << "finished main()" << endl;

return(1);

}

/* =============================================================================

* This section contains code for the input-output thread that

* communicates through standard io */

// -----------------------------------------------------------------------------

/* This function ignores its input, but it uses three

* global variables, which need to be locked before using:

* globStop: a boolean, that may be set to true by either thread

* capture: the camera capture device

* frame: the current picture taken by the camera */

void* ioThread( void *ptr) {

char wholeName[100];

char folder[80] = "/home/macalester/Desktop/Capture/pictures/";

char filenm[20] = "foo0000.jpg";

bool stop;

//LOCK: ------------------------------------

pthread_mutex_lock( &stopLock );
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stop = globStop;

pthread_mutex_unlock( &stopLock );

//UNLOCK: ----------------------------------

while( !stop ) {

char userInput;

if(cin.peek() != EOF){

cin >> userInput;

// q to quit

if (userInput == ’q’ || userInput == ’Q’ || userInput == EOF) {

//LOCK: ------------------------------------

pthread_mutex_lock( &stopLock );

globStop = true;

pthread_mutex_unlock( &stopLock );

//UNLOCK: ----------------------------------

}

// p to take a picture

else if (userInput == ’p’ || userInput == ’P’) {

updateSaveName(filenm, folder, wholeName);

//LOCK: ------------------------------------

pthread_mutex_lock( &colorTrackerLock );

int retVal = cvSaveImage(

wholeName,

colorTracker->getCurFrame()

);

pthread_mutex_unlock( &colorTrackerLock );

//UNLOCK: ----------------------------------

if (!retVal) {

cerr << "Could not save: " << wholeName << endl;

cout << "NOFILE" << endl;

}

else {

cout << wholeName << endl;

}

}

// f to get the object info

else if (userInput == ’f’ || userInput == ’F’) {

string info;

//LOCK: -------------------------------------

pthread_mutex_lock( &colorTrackerLock );

colorTracker->getObjectInfo( &info );

pthread_mutex_unlock( &colorTrackerLock );

//UNLOCK: ----------------------------------

cout << info << endl;

}

// v to get the object vector

else if (userInput == ’v’ || userInput == ’V’) {

string info;

//LOCK: -------------------------------------

pthread_mutex_lock( &colorTrackerLock );

colorTracker->getObjectVector( &info );

pthread_mutex_unlock( &colorTrackerLock );

//UNLOCK: ----------------------------------

cout << info << endl;

}

// x to reset both object windows

else if (userInput == ’x’ || userInput == ’X’) {
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//LOCK: ------------------------------------

pthread_mutex_lock( &colorTrackerLock );

//need code to find object

colorTracker->resetWindow(OBJECT_BOTH);

pthread_mutex_unlock( &colorTrackerLock );

//UNLOCK: ----------------------------------

printVerbose("finding both");

}

// 1 to reset the 1st object window

else if (userInput == ’1’){

//LOCK: ------------------------------------

pthread_mutex_lock( &colorTrackerLock );

colorTracker->resetWindow(OBJECT_FIRST);

pthread_mutex_unlock( &colorTrackerLock );

//UNLOCK: ----------------------------------

printVerbose("finding 1st(red)");

}

//2 to reset the 2nd object window

else if (userInput == ’2’){

//LOCK: --------------------------------------

pthread_mutex_lock( &colorTrackerLock );

colorTracker->resetWindow(OBJECT_SECOND);

pthread_mutex_unlock( &colorTrackerLock );

//UNLOCK: ------------------------------------

printVerbose("finding 2nd(blue)");

}

// + to increase the threshold on the first backproject

else if (userInput == ’+’){

//LOCK: ------------------------------------

pthread_mutex_lock( &colorTrackerLock );

colorTracker->incBackProjectThresh(OBJECT_FIRST);

pthread_mutex_unlock( &colorTrackerLock );

//UNLOCK: ----------------------------------

}

// - to decrease the threshold on the first backproject

else if (userInput == ’-’){

//LOCK: ------------------------------------

pthread_mutex_lock( &colorTrackerLock );

colorTracker->decBackProjectThresh(OBJECT_FIRST);

pthread_mutex_unlock( &colorTrackerLock );

//UNLOCK: ----------------------------------

}

// m to increase the threshold on the second backproject

else if (userInput == ’m’ || userInput == ’M’){

//LOCK: ------------------------------------

pthread_mutex_lock( &colorTrackerLock );

colorTracker->incBackProjectThresh(OBJECT_SECOND);

pthread_mutex_unlock( &colorTrackerLock );

//UNLOCK: ----------------------------------

}

// l to increase the threshold on the second backproject

else if (userInput == ’l’ || userInput == ’L’){

//LOCK: ------------------------------------

pthread_mutex_lock( &colorTrackerLock );

colorTracker->decBackProjectThresh(OBJECT_SECOND);

pthread_mutex_unlock( &colorTrackerLock );

//UNLOCK: ----------------------------------
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}

// b to toggle between displaying backprojects or original image

else if (userInput == ’b’ || userInput == ’B’ ){

//LOCK: --------------------------------------------

pthread_mutex_lock( &colorTrackerLock );

colorTracker->toggleBackProjectMode();

pthread_mutex_unlock( &colorTrackerLock );

//UNLOCK: ------------------------------------------

}

// n to update frame in colorTracker,

// only valid if getting frames from files.

else if (picSource == SRC_FILES &&

(userInput == ’n’ || userInput == ’N’)) {

//LOCK: ------------------------------------

pthread_mutex_lock( &colorTrackerLock );

colorTracker->updateFrame();

colorTracker->resetPoseAverage();

pthread_mutex_unlock( &colorTrackerLock );

//UNLOCK: ----------------------------------

}

else {

cerr << "Input was: " << userInput << endl;

cout << "Valid commands are:" << endl;

cout << "\tq to quit" << endl;

cout << "\tp to take a picture and save to a file" << endl;

cout << "\tf to find current object’s location" << endl;

cout << "\tx to attempt to refind both objects" << endl;

cout << "\t1 to attempt to refind first(red) object"

<< endl;

cout << "\t2 to attempt to refind second(blue) object"

<< endl;

cout << "\t+ to raise threshold of first(red) object"

<< endl;

cout << "\t- to raise threshold of first(red) object"

<< endl;

cout << "\tm to raise threshold of second(blue) object"

<< endl;

cout << "\tl to lower threshold of second(blue) object"

<< endl;

cout << "\tb to toggle between backProjects" << endl;

if(picSource == SRC_FILES){

cout << "\tn to load next frame from files" << endl;

}

}

}

//LOCK: ----------------------------------

pthread_mutex_lock( &stopLock );

stop = globStop;

pthread_mutex_unlock( &stopLock );

//UNLOCK: --------------------------------

} // end while

//LOCK: ----------------------------------

pthread_mutex_lock( &stopLock );

globStop = true;

pthread_mutex_unlock( &stopLock );
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//UNLOCK: --------------------------------

cerr << "shutdown IO" << endl;

return ptr;

} // end function

// -----------------------------------------------------------------------------

/* decides what to name the file for the saving picture

* Takes in strings fileName , folder, and wholepath.

* counts how many files are in the folder and changes the filename

* accordingly, then puts ’folder/filename’ into wholepath.

*/

void updateSaveName(char *fileName, char* folder, char* wholepath) {

DIR *pdir;

struct dirent *pent;

int count = 0;

pdir = opendir(folder);

if (!pdir) {

cerr << "opendir failed for pictures\n" << endl;

return;

}

do{

pent = readdir(pdir);

if(pent)

count++;

}while (pent);

// we decrement2 so we don’t count the files . and .. in our count

count -= 2;

closedir(pdir);

int h, t, r;

if (count < 1000) {

h = count / 100;

r = count % 100;

t = r / 10;

r = r % 10;

fileName[4] = ’0’ + h;

fileName[5] = ’0’ + t;

fileName[6] = ’0’ + r;

}

else {

fileName[4] = ’X’;

fileName[5] = ’X’;

fileName[6] = ’X’;

}

strcpy(wholepath, folder);

strcat(wholepath, fileName);

}

/* -----------------------------------------------------------------------------

* Printer function that only prints to stdout if set to verbose(-v)

*/

void printVerbose(const string str){

if (verbose) {

cout << str << endl;



71

}

}

/* =============================================================================

* This section contains code for the display thread that shows a live

* image in a window on the screen. Also handles communication with the

* color tracking object.

*/

// -----------------------------------------------------------------------------

void* displayThread( void *ptr) {

bool stop;

//IplImage* edgeDetectImg = NULL;

IplImage* colorTrackedImg = NULL;

//IplImage* newFrame = NULL;

CvVideoWriter* videoWriter = NULL;

char aviFileName[80];

IplImage* frame;

IplImage* frameCopy;

// Create a window in which the captured images will be presented

cvNamedWindow( "RoboCam", 1 );

// determine name of avi file if we are logging

if(logFlag)

{

// decide what to Name the avi file for the recording

DIR *pdir;

struct dirent *pent;

int count = 0;

pdir = opendir("/home/macalester/Desktop/Capture/captured");

if (!pdir) {

cerr << "opendir failed\n" << endl;

return(0);

}

pent = readdir(pdir);

while (pent) {

count++;

pent = readdir(pdir);

}

// we decrement 2 so we don’t count the files . and ..

count -= 2;

closedir(pdir);

sprintf(

aviFileName,

"/home/macalester/Desktop/Capture/captured/capture%d.mpg",

count

);

printVerbose(aviFileName);

}

if(useMouseSelection){

cvSetMouseCallback( "RoboCam", onMouse, 0 );

}

//LOCK: ------------------------------------

pthread_mutex_lock( &stopLock );

stop = globStop;

//UNLOCK: ----------------------------------
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pthread_mutex_unlock( &stopLock );

//setupHough();

// Show the image captured from the camera in the window and repeat

while( !stop ) {

//LOCK: ----------------------------------------------------

pthread_mutex_lock( &colorTrackerLock );

if(picSource==SRC_CAMERA){

colorTracker->updateFrame();

colorTracker->resetPoseAverage();

}

frame = colorTracker->getCurFrame();

pthread_mutex_unlock( &colorTrackerLock );

//UNLOCK: --------------------------------------------------

if( !frame ) {

cerr << "ERROR: frame is null..." << endl;

break;

}

if(!frameCopy){

frameCopy = cvCreateImage( cvGetSize(frame), 8, 3 );

}

if(!useMouseSelection){

trackObject = 1;

}

if(logFlag){

if (!videoWriter) {

videoWriter = cvCreateVideoWriter(

aviFileName,

CV_FOURCC(’M’, ’P’, ’4’, ’2’),

30,

cvSize(frame->width,

frame->height)

);

}

}

if( trackObject ){

if( trackObject < 0 ){

//LOCK: ----------------------------------------------------

pthread_mutex_lock( &colorTrackerLock );

colorTracker->loadHistFromMouse(selection);

colorTracker->showHistImage(OBJECT_FIRST);

pthread_mutex_unlock( &colorTrackerLock );

//UNLOCK: --------------------------------------------------

trackObject = 1;

}

//call color track

//LOCK: ----------------------------------------------------

pthread_mutex_lock( &colorTrackerLock );

colorTrackedImg = colorTracker->colorTrack();

colorTracker->estimatePose(colorTrackedImg);

pthread_mutex_unlock( &colorTrackerLock );

//UNLOCK: --------------------------------------------------

//edgeDetectImg = edgeDetect(frame);

//cvOr(newFrame, colorTrackedImg, edgeDetectImg);

}

else{
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colorTrackedImg = frame;

}

if( selectObject && selection.width > 0 && selection.height > 0 )

{

cvCopy(frame, frameCopy, 0);

colorTrackedImg = frameCopy;

cvSetImageROI( colorTrackedImg, selection );

cvXorS( colorTrackedImg, cvScalarAll(255), colorTrackedImg, 0 );

cvResetImageROI( colorTrackedImg );

}

if(logFlag){

cvWriteFrame( videoWriter,colorTrackedImg);

}

cvShowImage( "RoboCam", colorTrackedImg );

// The following looks for key-presses in the window displaying

// the image

char c = cvWaitKey(10);

if (c == 27 || c == ’q’ || c == ’Q’) {

cout << c <<endl;

break;

}

if(c == ’w’ || c == ’W’){

pthread_mutex_lock( &colorTrackerLock );

colorTracker->incFocalLength(5);

pthread_mutex_unlock( &colorTrackerLock );

}

if(c == ’s’ || c == ’S’){

pthread_mutex_lock( &colorTrackerLock );

colorTracker->decFocalLength(5);

pthread_mutex_unlock( &colorTrackerLock );

}

//LOCK: ----------------------------------

pthread_mutex_lock( &stopLock );

stop = globStop;

pthread_mutex_unlock( &stopLock );

//UNLOCK: --------------------------------

} // end while

cvReleaseImage(&frameCopy);

//LOCK: ------------------------------------

pthread_mutex_lock( &stopLock );

globStop = true;

pthread_mutex_unlock( &stopLock );

//UNLOCK: ----------------------------------

cleanupHough();

if(logFlag)

cvReleaseVideoWriter( &videoWriter );

cvDestroyWindow("RoboCam");

cerr << "shutdown display" << endl;

return ptr;

} // end function

// -----------------------------------------------------------------------------

/* onMouse: a call-back for mouse events in the main window, it

* looks for the user to select a rectangular region, and then

* uses that as the target colors for the CAMSHIFT algorithm,
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* and as the starting window for the target object.

*/

void onMouse( int event, int x, int y, int flags, void* param )

{

//LOCK: ------------------------------------

pthread_mutex_lock( &colorTrackerLock );

IplImage* frame = colorTracker->getCurFrame();

pthread_mutex_unlock( &colorTrackerLock );

//UNLOCK: ----------------------------------

/* if( !image )selection

return;

*/

if( imageOrigin )

y = frame->height - y;

if( selectObject )

{

selection.x = MIN(x,origin.x);

selection.y = MIN(y,origin.y);

selection.width = selection.x + CV_IABS(x - origin.x);

selection.height = selection.y + CV_IABS(y - origin.y);

selection.x = MAX( selection.x, 0 );

selection.y = MAX( selection.y, 0 );

selection.width = MIN( selection.width, frame->width );

selection.height = MIN( selection.height, frame->height );

selection.width -= selection.x;

selection.height -= selection.y;

}

switch( event )

{

case CV_EVENT_LBUTTONDOWN:

origin = cvPoint(x,y);

selection = cvRect(x,y,0,0);

selectObject = 1;

trackObject = 0;

break;

case CV_EVENT_LBUTTONUP:

selectObject = 0;

if( selection.width > 0 && selection.height > 0 )

trackObject = -1;

break;

}

}

// -----------------------------------------------------------------------------

/* Helper to compute whether a given angle is between two boundaries

* The input angles are given in degrees

*/

bool betweenAngles(float theta, float lowBound, float highBound) {

return (theta > lowBound && theta < highBound);

}

// -----------------------------------------------------------------------------
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void setupHough() {

importantLines = new CvPoint*[lineTotal];

for (int i = 0; i < lineTotal; i++) {

importantLines[i] = new CvPoint[2];

}

}

// -----------------------------------------------------------------------------

void cleanupHough() {

for (int i = 0; i < lineTotal; i++) {

delete importantLines[i];

}

delete importantLines;

}

B Source Code for the ColorTracker Class

ColorTracker

ColorTracker.h

/******************************************************************************\

* ColorTracker.h *

* Color-based tracking using CAMSHIFT algorithm, modified *

* from the camshiftdemo.c that came with opencv *

* Written by Kayton Parekh and Susan Fox in Summer 2009 *

\******************************************************************************/

#include <cv.h>

#include <highgui.h>

#include <vector>

#include <iostream>

#include <sstream>

#include <fstream>

#define OBJECT_FIRST 1

#define OBJECT_SECOND 2

#define OBJECT_BOTH 3

using namespace std;

extern void printVerbose(const string str);

#ifndef COLORTRACKER_H_

#define COLORTRACKER_H_

class ColorTracker{

protected:

IplImage *frame;

virtual void setupQueryFrame();
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void setupColorTrack();

void setupPosit(double _focalLength);

private:

CvConnectedComp trackComp, trackComp2;

CvRect trackWindow, trackWindow2, selection;

CvBox2D trackBox, trackBox2;

IplImage *hsv, *hue, *mask;

IplImage *backProject, *histImg, *backProject2, *histImg2;

CvHistogram *hist, *hist2;

int hDims;

float hrangesArr[2];

float* hranges;

int vmin, vmax, smin;

int backProjectThresh1, backProjectThresh2;

bool trackTwoObj;

int lostObjectFlag; // **shared** when it’s lost the object

int backProjectMode; // **shared** if we want to see backProject

IplImage* image;

float sum[3];

int total;

CvPOSITObject *positObject;

std::vector<CvPoint3D32f> objectPoints;

CvMatr32f rotationMatrix;

CvVect32f translationVector;

CvTermCriteria terminationCriteria;

double focalLength;

int needResetWindow();

bool needSplitWindow(IplImage *thisBackProject,

CvBox2D thisTrackBox,

CvRect thisTrackWindow,

int minProbThresh);

// -------------------------------------------------------------------------

// splitTrackWindow tries to split the track window in two either

// vertically or horizontally and keeps the one with the larger area

void splitTrackWindow(CvRect* trackWindow,

CvBox2D* trackBox,

IplImage* backProject );

// -------------------------------------------------------------------------

// hsv2rgb takes a floating point value that represents the hue

// part of a pixel, and converts it to its rgp equivalent, with some

// fixed saturation and brightness

// taken straight from opencv camshiftdemo code

CvScalar hsv2rgb( float hue );

// -------------------------------------------------------------------------

/* trackSecondObject, when called, blackens out first object found

* and then finds a second object to be tracked

*/
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void trackSecondObject(IplImage* image);

public:

ColorTracker();

virtual ~ColorTracker();

// -------------------------------------------------------------------------

/* loadHist takes a fileName of a .csv file containing rgb values for

* a object to be tracked. x is 1 or 2 corresponding to first or second

* object. it then converts this data into a histogram that can be

* used by openCV. x can be either OBJECT_FIRST or OBJECT_SECOND to

* to determine which object this histogram will correspond to.

*/

bool loadHist(char* fileName, int x = OBJECT_FIRST);

void loadHistFromMouse(CvRect selection);

void showHistImage(int object);

void getObjectInfo(string* retVal);

void trackTwoObjects(bool x);

void resetWindow(int lostObject);

virtual void updateFrame();

IplImage* getCurFrame();

void incBackProjectThresh(int object);

void decBackProjectThresh(int object);

void estimatePose(IplImage* frame);

void getObjectVector( string* retPtr );

void incFocalLength(int x);

void decFocalLength(int x);

void resetPoseAverage();

// -------------------------------------------------------------------------

// colorTrack takes an image and performs the CamShift algorithm on

// it. NOTE that it depends on global variables hist and trackWindow

// (among others) retaining their values from one call to the next...

IplImage* colorTrack();

void toggleBackProjectMode();

};

#endif /* COLORTRACKER_H_ */

ColorTracker.cpp

/******************************************************************************\

* ColorTracker.cpp *

* Color-based tracking object that uses the CAMSHIFT algorithm *

* Also Implements Pose estimation using POSIT algorithm *

* Written by Kayton Parekh and Susan Fox in Summer 2009 *

\******************************************************************************/

#include "ColorTracker.h"

// -----------------------------------------------------------------------------

// Constructor that simply assigns initial values to the global variables

ColorTracker::ColorTracker(){

hDims = 32;
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hrangesArr[0] = 0;

hrangesArr[1] = 180;

hranges = hrangesArr;

vmin = 230;

vmax = 256;

smin = 30;

backProjectThresh1 = 100;

backProjectThresh2 = 100;

trackTwoObj = false;

lostObjectFlag = 3; // when it’s lost the object

backProjectMode = 0; // if we want to see backProject

}

// -----------------------------------------------------------------------------

// requires a valid frame to run thus must call updateFrame to ensure this

// is used to set up global variables that will be needed for colortracking.

void ColorTracker::setupColorTrack() {

updateFrame();

histImg = cvCreateImage( cvSize(320,200), 8, 3 );

histImg2 = cvCreateImage( cvSize(320,200), 8, 3 );

hist = cvCreateHist(1, &hDims, CV_HIST_ARRAY, &hranges, 1);

hist2 = cvCreateHist(1, &hDims, CV_HIST_ARRAY, &hranges, 1);

hsv = cvCreateImage( cvGetSize(frame), 8, 3 );

hue = cvCreateImage( cvGetSize(frame), 8, 1 );

mask = cvCreateImage( cvGetSize(frame), 8, 1 );

image = cvCreateImage(cvGetSize(frame), 8, 3);

backProject = cvCreateImage( cvGetSize(frame), 8, 1 );

backProject2 = cvCreateImage( cvGetSize(frame), 8, 1 );

}

/*

* deconstructor simply releases several images, histograms\

* and windows possibly held

*/

ColorTracker::~ColorTracker(){

cvReleaseImage( &hsv );

cvReleaseImage( &hue );

cvReleaseImage( &mask );

cvReleaseImage( &backProject );

cvReleaseImage( &backProject2 );

cvReleaseImage( &image );

cvReleaseImage( &histImg );

cvReleaseImage( &histImg2 );

cvReleaseHist( &hist );

cvReleaseHist( &hist2 );

cvDestroyWindow( "First Histogram" );

cvDestroyWindow( "Second Histogram" );

cvReleasePOSITObject( &positObject );

}

/*

* should be overridden by child class,

* this method should contain the code to load

* the next frame, either from files or from the capture object.

*/

void ColorTracker::updateFrame(){

}
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// simple getter for the current frame

IplImage* ColorTracker::getCurFrame(){

return frame;

}

// should be overriddern by child class, this method should contain the code to

// setup the objects needed to obtain frames, i.e. capture object

void ColorTracker::setupQueryFrame(){

}

/*

* sets the value of retPtr to a string that is the location of the tracked

* objects, if only one object is being tracked returns zeros for data on

* second object

*/

void ColorTracker::getObjectInfo(string* retPtr){

stringstream ss (stringstream::in | stringstream::out);

ss << trackBox.center.x << " ";

ss << trackBox.center.y << " ";

ss << trackBox.size.width << " ";

ss << trackBox.size.height << " ";

ss << trackBox.angle << " ";

ss << frame->width << " ";

ss << frame->height << " ";

ss << trackBox2.center.x << " ";

ss << trackBox2.center.y << " ";

ss << trackBox2.size.width << " ";

ss << trackBox2.size.height << " ";

ss << trackBox2.angle;

retPtr->assign( ss.str() );

}

// -----------------------------------------------------------------------------

/* loadHist takes a fileName of a .csv file containing rgb values for

* an object to be tracked. x is OBJECT_FIRST or OBJECT_SECOND corresponding

* to first or second objects. it then converts this data into a histogram that

* can be used by openCV.

*/

bool ColorTracker::loadHist(char* fileName, int obj){

ifstream csvFile;

int r, g, b; //rgb values

char comma; // useless holder for commas between r,g,b values

int cnt = 0;

IplImage *colorDataHsv, *colorDataHue, *colorDataMask, *colorData;

// need try-catch IOExceptions, if fail then return false

// try catch not working

// count the number of data lines

csvFile.open(fileName);

csvFile >> vmin; // first line of csv file should be the vmin

while (!csvFile.eof()) { // count how many sets of rgb values their are

csvFile >> r >> comma >> g >> comma >> b; //r,g,b

cnt++;

}

csvFile.close();



80 B SOURCE CODE FOR THE COLORTRACKER CLASS

// create image that is one pixel high and "cnt" pixels wide

colorData = cvCreateImage(cvSize(cnt, 1), 8, 3);

// take each data line and convert it to a pixel in colorData

csvFile.open(fileName);

csvFile >> vmin;

for (int i = 0; i < cnt; i++) {

csvFile >> r >> comma >> g >> comma >> b;

//cout << i << " " << r << " " << g << " " << b << endl;

cvSet2D(colorData, 0, i, cvScalar(b, g, r, 0));

}

csvFile.close();

//prepare to create histogram

float maxVal = 0.f;

colorDataHsv = cvCreateImage( cvGetSize(colorData), 8, 3 );

colorDataHue = cvCreateImage( cvGetSize(colorData), 8, 1 );

colorDataMask = cvCreateImage( cvGetSize(colorData), 8, 1 );

cvCvtColor( colorData, colorDataHsv, CV_BGR2HSV );

cvInRangeS( colorDataHsv, cvScalar(0,smin,MIN(vmin,vmax),0),

cvScalar(180,256,MAX(vmin,vmax),0), colorDataMask );

cvSplit( colorDataHsv, colorDataHue, 0, 0, 0 );

//create histogram and assign it to hist or hist2 depending of value of obj

if(obj == OBJECT_FIRST){

cvCalcHist( &colorDataHue, hist, 0, colorDataMask );

cvGetMinMaxHistValue( hist, 0, &maxVal, 0, 0 );

cvConvertScale(

hist->bins,

hist->bins,

(maxVal ? 255. / maxVal : 0.),

0

);

}else if(obj == OBJECT_SECOND){

cvCalcHist( &colorDataHue, hist2, 0, colorDataMask );

cvGetMinMaxHistValue( hist2, 0, &maxVal, 0, 0 );

cvConvertScale(

hist2->bins,

hist2->bins,

(maxVal ? 255. / maxVal : 0.),

0

);

}

//release images used it the process

cvReleaseImage(&colorDataHsv);

cvReleaseImage(&colorDataHue);

cvReleaseImage(&colorDataMask);

cvReleaseImage(&colorData);

return true; // we return true in the hope that someday we will have

// mastered the use of try-catch statements in C++ and instead

// return false if IOExceptions are caught.

}

// this method is used to load the histogram from a mouse selection rather
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// than a csv file

void ColorTracker::loadHistFromMouse(CvRect selection){

cvCvtColor( frame, hsv, CV_BGR2HSV );

cvInRangeS( hsv, cvScalar(0,smin,MIN(vmin,vmax),0),

cvScalar(180,256,MAX(vmin,vmax),0), mask );

cvSplit( hsv, hue, 0, 0, 0 );

float maxVal = 0.f;

cvSetImageROI( hue, selection );

cvSetImageROI( mask, selection );

cvCalcHist( &hue, hist, 0, mask );

cvGetMinMaxHistValue( hist, 0, &maxVal, 0, 0 );

cvConvertScale(

hist->bins,

hist->bins,

(maxVal ? 255. / maxVal : 0.),

0

);

cvResetImageROI( hue );

cvResetImageROI( mask );

trackWindow = selection;

}

// simple setter for the trackTwoObjects flag, which determines if we are

void ColorTracker::trackTwoObjects(bool x){

trackTwoObj = x;

}

// this method resets one or both of the trackwindows to the size of

// the entire window depending of the value of lostObject.

void ColorTracker::resetWindow(int lostObject){

if (!lostObject){

return;

}

if (lostObject == OBJECT_FIRST || lostObject == OBJECT_BOTH){

trackWindow.x = 0;

trackWindow.y = 0;

trackWindow.width = frame->width;

trackWindow.height = frame->height;

}

if(lostObject == OBJECT_SECOND || lostObject == OBJECT_BOTH){

trackWindow2.x = 0;

trackWindow2.y = 0;

trackWindow2.width = frame->width;

trackWindow2.height = frame->height;

}

}

// -----------------------------------------------------------------------------

// colorTrack takes an image and performs the CamShift algorithm on

// it. NOTE that it depends on global variables hist and trackWindow

// (among others) retaining their values from one call to the next...

// if trackTwoObjects then colorTrack will make a call to trackSecondObject()

IplImage* ColorTracker::colorTrack() {

//make a copy of the frame that is in hsv mode

image->origin = frame->origin;

cvCopy(frame, image, 0);
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cvCvtColor( image, hsv, CV_BGR2HSV );

// calculate mask based on smin, vmin, and vmax

cvInRangeS( hsv, cvScalar(0,smin,MIN(vmin,vmax),0),

cvScalar(180,256,MAX(vmin,vmax),0), mask );

cvSplit( hsv, hue, 0, 0, 0 );

// calculate the backproject based on hue and hist

cvCalcBackProject( &hue, backProject, hist );

cvAnd( backProject, mask, backProject, 0 );

// help eliminate some noise by setting a thresh on backProject

cvThreshold(backProject, backProject,

backProjectThresh1, 255, CV_THRESH_TOZERO);

// run the camshift

cvCamShift(

backProject,

trackWindow,

cvTermCriteria(

CV_TERMCRIT_EPS | CV_TERMCRIT_ITER,

10,

1

),

&trackComp,

&trackBox

);

trackWindow = trackComp.rect;

// see if we need to split the track window of the second object

if ( needSplitWindow(backProject, trackBox, trackWindow, 10) )

{

printVerbose( "Splitting first trackWindow" );

splitTrackWindow(&trackWindow, &trackBox, backProject);

}

//display backProjects if in that mode

if( backProjectMode == OBJECT_FIRST)

{

cvCvtColor( backProject, image, CV_GRAY2BGR );

}

else if (backProjectMode == OBJECT_SECOND && trackTwoObj)

{

cvCvtColor( backProject2, image, CV_GRAY2BGR );

}

// dont know what this does but got it from camshiftdemo code

if( !image->origin ) {

trackBox.angle = -trackBox.angle;

trackBox2.angle = -trackBox2.angle;

}

// if we are tracking two objects, call trackSecondObject

if(trackTwoObj)

{

trackSecondObject(image);

}
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// now dray the trackWindow and

// trackBox(oval shaped not really a box onto the image)

cvEllipseBox( image, trackBox, CV_RGB(255,0,0), 3, CV_AA, 0 );

cvRectangle (

image,

cvPoint(trackWindow.x,trackWindow.y),

cvPoint(trackWindow.x+trackWindow.width,

trackWindow.y+trackWindow.height),

CV_RGB(255,0,255)

);

// determine if we have lost an object and

// if so reset that objects trackWindow

int x = needResetWindow();

if(x){

resetWindow(x);

}

return image;

}

// this method looks to see if either or both of the track objects are too small

// (meaning we have lost that object in the tracking) and returns integer

// corresponding to the result.

int ColorTracker::needResetWindow(){

int x = 0;

if( trackBox.size.width < 5 || trackBox.size.height < 5){

x = OBJECT_FIRST;

printVerbose("Reseting FIRST trackWindow...");

}

if(trackTwoObj){

if( trackBox2.size.width < 5 || trackBox2.size.height < 5){

if(x == OBJECT_FIRST)

x = OBJECT_BOTH;

else

x = OBJECT_SECOND;

printVerbose("Reseting SECOND trackWindow...");

}

}

return x;

}

// this method creates a window to show the

// histogram of the first, second or both objects

void ColorTracker::showHistImage(int object){

if(object == OBJECT_BOTH){

showHistImage(OBJECT_FIRST);

showHistImage(OBJECT_SECOND);

}else{

IplImage* histImage;

CvHistogram* histogram;

char windowName[25];

int yVal;

if(object == OBJECT_FIRST){
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strcpy(windowName,"First Histogram");

yVal = 1;

histImage = histImg;

histogram = hist;

}

else if(object == OBJECT_SECOND){

strcpy(windowName,"Second Histogram");

yVal = 255;

histImage = histImg2;

histogram = hist2;

}

cvNamedWindow( windowName, 1 );

cvMoveWindow( windowName, 650, yVal);

// Initialize the histogram image

cvZero( histImage );

// Set the displayed width each bin of the histogram has

int binWidth = histImage->width / hDims;

// Add rectangles to the histimg that reflect the size of the bins

// and the average color for each bin

for( int i = 0; i < hDims; i++ )

{

int val = cvRound(

cvGetReal1D(histogram->bins,i) * histImage->height/255

);

CvScalar color = hsv2rgb(i * (180.f / hDims));

cvRectangle( histImage,

cvPoint(i * binWidth, histImage->height),

cvPoint((i + 1) * binWidth, histImage->height - val),

color, CV_FILLED, 8, 0 );

}

//show the histImage

cvShowImage( windowName, histImage );

}

}

// this method is used to increment the

// backproject thresholds from outside the class.

void ColorTracker::incBackProjectThresh(int object){

if(object == OBJECT_FIRST || object == OBJECT_BOTH){

backProjectThresh1 += 5;

backProjectThresh1 = ( backProjectThresh1 > 255) ? 255

: backProjectThresh1;

cout<< "thresh1: " << backProjectThresh1 << endl;

}

if(object == OBJECT_SECOND || object == OBJECT_BOTH){

backProjectThresh2 += 5;

backProjectThresh2 = ( backProjectThresh2 > 255) ? 255

: backProjectThresh2;

cout<< "thresh2: " << backProjectThresh2 << endl;

}

}

// this method is used to decrement the

// backproject thresholds from outside the class.
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void ColorTracker::decBackProjectThresh(int object){

if(object == OBJECT_FIRST || object == OBJECT_BOTH){

backProjectThresh1 -= 5;

backProjectThresh1 = ( backProjectThresh1 < 0) ? 0

: backProjectThresh1;

cout<< "thresh1: " << backProjectThresh1 << endl;

}

if(object == OBJECT_SECOND || object == OBJECT_BOTH){

backProjectThresh2 -= 5;

backProjectThresh2 = ( backProjectThresh2 < 0) ? 0

: backProjectThresh2;

cout<< "thresh2: " << backProjectThresh2 << endl;

}

}

// -----------------------------------------------------------------------------

/* trackSecondObject, when called, blackens out first object found

* and then finds a second object to be tracked

*/

void ColorTracker::trackSecondObject(IplImage* image) {

//this next part if we are tracking different histogram

cvCalcBackProject( &hue, backProject2, hist2 );

cvAnd( backProject2, mask, backProject2, 0 );

cvThreshold(

backProject2,

backProject2,

backProjectThresh2,

255,

CV_THRESH_TOZERO

);

// Show the backProject pixels in orange

//cvSet(image, cvScalar(0, 255, 255, 0), backProject2);

// now black out the track box1 and try to track another object

// find coordinates of top left and bottom right

// points of a rectangle to black out but

// make it slightly bigger than the first trackWindow to avoid error

float tmpX1 = trackWindow.x - trackWindow.width / 2;

float tmpY1 = trackWindow.y - trackWindow.height / 2;

float tmpX2 = trackWindow.x + 1.5 * trackWindow.width;

float tmpY2 = trackWindow.y + 1.5 * trackWindow.height;

// test if we have gone out of bounds of the image and correct if so

tmpX1 = (tmpX1 < 0) ? 0 : tmpX1;

tmpY1 = (tmpY1 < 0) ? 0 : tmpY1;

tmpX2 = (tmpX2 > frame->width) ? frame->width : tmpX2;

tmpY2 = (tmpY2 > frame->height) ? frame->height : tmpY2;

// black out the area on the second objects backproject

cvRectangle (

backProject2,

cvPoint(tmpX1,tmpY1),
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cvPoint(tmpX2,tmpY2),

cvScalar(0,0,0,0),

CV_FILLED

);

//run cam shift for this second object

cvCamShift(

backProject2,

trackWindow2,

cvTermCriteria( CV_TERMCRIT_EPS | CV_TERMCRIT_ITER,

10,

1

),

&trackComp2,

&trackBox2

);

trackWindow2 = trackComp2.rect;

// see if we need to split the track window of the second object

if ( needSplitWindow(backProject2, trackBox2, trackWindow2, 10) ) {

printVerbose( "Probability fits on second box " );

splitTrackWindow(&trackWindow2, &trackBox2, backProject2);

}

// draw the trackWindow and trackBox onto the image

cvEllipseBox( image, trackBox2, CV_RGB(0,0,255), 3, CV_AA, 0 );

cvRectangle (

image,

cvPoint(trackWindow2.x,trackWindow2.y),

cvPoint(trackWindow2.x+trackWindow2.width,

trackWindow2.y+trackWindow2.height),

CV_RGB(255,0,255)

);

}

// -----------------------------------------------------------------------------

/* Compute the average probability for a 5x5 region around

* the center of the trackWindow, to see if the center is

* not on a matching color. If it is not on a matching

* color, then the track window might be streched around two different

* objects */

bool ColorTracker::needSplitWindow(IplImage *thisBackProject,

CvBox2D thisTrackBox,

CvRect thisTrackWindow,

int minProbThresh) {

int cnt = 0;

double prob = 0;

float yPos, xPos;

float centerX = thisTrackBox.center.x;

float centerY = thisTrackBox.center.y;

// float height = thisTrackBox.size.height;

// float width = thisTrackBox.size.width;

// float dW=0;

// float dH=0;

//

// // this following conditional is to determine the test region depending

// // on the orientation of the window

// if(height < width){
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// dW = 2;

// dH = (int)(height)/2;;

// }else if(height >= width){

// dW = (int)(width)/2;;

// dH = 2;

// }

// nested for loops to calulate avg prob at center of trackBox

for (int dx = -2; dx < 3; dx++) {

for (int dy = -2; dy < 3; dy++) {

yPos = centerY + dy;

xPos = centerX + dx;

if ( yPos >= 0

&& yPos < frame->height

&& xPos >= 0

&& xPos < frame->width ) {

prob = prob + cvGetReal2D(thisBackProject,

centerY + dy,

centerX + dx);

cnt++;

}

}

}

prob = prob / cnt;

// if center pixel is not the probability we want...

if (prob < minProbThresh &&

(thisTrackBox.size.width >= 5 || thisTrackBox.size.height >= 5)

)

{

return true;

}

else{

return false;

}

}

// -----------------------------------------------------------------------------

// splitTrackWindow tries to split the track window in two either

// vertically or horizontally and keeps the one with the larger area

void ColorTracker::splitTrackWindow(CvRect* trackWindow,

CvBox2D* trackBox,

IplImage* backProject ) {

float angle = trackBox->angle;

CvRect trackA;

CvRect trackB;

CvBox2D trackBoxA, trackBoxB;

CvConnectedComp trackCompA, trackCompB;

char aString[6];

char bString[6];

trackA.x = trackWindow->x;

trackA.y = trackWindow->y;

if (abs((int)angle) < 45) { // trackBox is more or less horizontal

printVerbose( "Splitting horizontal track window");
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strcpy(aString, "left");

strcpy(bString, "right");

trackA.width = max(1, trackWindow->width / 2);

trackA.height = trackWindow->height;

trackB.x = trackWindow->x + (trackWindow->width / 2);

trackB.y = trackWindow->y;

trackB.width = max(1, trackWindow->width / 2);

trackB.height = trackWindow->height;

}

else {

printVerbose( "Splitting vertical track window");

strcpy(aString, "upper");

strcpy(bString, "lower");

trackA.width = trackWindow->width ;

trackA.height = max(1,trackWindow->height / 2);

trackB.x = trackWindow->x;

trackB.y = trackWindow->y + (trackWindow->height / 2);

trackB.width = trackWindow->width;

trackB.height = max(1, trackWindow->height / 2);

}

cvCamShift(

backProject,

trackA,

cvTermCriteria(

CV_TERMCRIT_EPS | CV_TERMCRIT_ITER,

10,

1

),

&trackCompA,

&trackBoxA

);

trackA = trackCompA.rect;

cvCamShift(

backProject,

trackB,

cvTermCriteria(

CV_TERMCRIT_EPS | CV_TERMCRIT_ITER,

10,

1

),

&trackCompB,

&trackBoxB

);

trackB = trackCompB.rect;

/* pick the larger trackBox and set trackWindow to be

the corresponding window*/

float areaA = trackA.width * trackA.height;

float areaB = trackB.width * trackB.height;

// print out which half was kept:

if (areaA == areaB) {

printVerbose("SAME AREAS");

}

char tmp1[30] = " Keeping ";

char tmp2[10] = " window";
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if (areaA > areaB) {

strcat(tmp1,aString);

strcat(tmp1,tmp2);

printVerbose(tmp1);

*trackWindow = trackA;

*trackBox = trackBoxA;

}

else {

strcat(tmp1,bString);

strcat(tmp1,tmp2);

printVerbose(tmp1);

*trackWindow = trackB;

*trackBox = trackBoxB;

}

}

// -----------------------------------------------------------------------------

/* hsv2rgb takes a floating point value that represents the hue

* part of a pixel, and converts it to its rgp equivalent, with some

* fixed saturation and brightness

*/

CvScalar ColorTracker::hsv2rgb( float hue )

{

int rgb[3], p, sector;

static const int sectorData[][3]=

{{0,2,1}, {1,2,0}, {1,0,2}, {2,0,1}, {2,1,0}, {0,1,2}};

hue *= 0.033333333333333333333333333333333f;

sector = cvFloor(hue);

p = cvRound(255*(hue - sector));

p ^= sector & 1 ? 255 : 0;

rgb[sectorData[sector][0]] = 255;

rgb[sectorData[sector][1]] = 0;

rgb[sectorData[sector][2]] = p;

return cvScalar(rgb[2], rgb[1], rgb[0],0);

}

/* used to toggle the backProjectMode which is used to determine whether to

* display the backproject or hide it.

* Because OBJECT_FIRST and OBJECT_SECOND are defined to 1 and 2 respectively

* using modulo arithmetic works nicely.

*/

void ColorTracker::toggleBackProjectMode(){

int modulo;

if(trackTwoObj){

modulo = 3;

}

else{

modulo = 2;

}

backProjectMode = (backProjectMode + 1) % modulo;

}

void ColorTracker::setupPosit(double _focalLength){

objectPoints.push_back( cvPoint3D32f( 0.0f, 0.0f, 0.0f ) );

objectPoints.push_back( cvPoint3D32f( 0.0f, 11.5f, 3.75f ) );
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objectPoints.push_back( cvPoint3D32f( -7.5f, -11.5f, 3.75f ) );

objectPoints.push_back( cvPoint3D32f( 7.5f, -11.5f, 3.75f ) );

objectPoints.push_back( cvPoint3D32f( -7.5f, 11.5f, -3.75f ) );

positObject = cvCreatePOSITObject(

&objectPoints[0],

static_cast<int>(objectPoints.size()) );

rotationMatrix = new float[9];

translationVector = new float[3];

terminationCriteria = cvTermCriteria(

CV_TERMCRIT_EPS | CV_TERMCRIT_ITER,

100,

1.0e-4f

);

focalLength = _focalLength;

sum[0] = 0.0f;

sum[1] = 0.0f;

sum[2] = 0.0f;

total = 0.0;

}

void ColorTracker::resetPoseAverage(){

sum[0] = 0.0f;

sum[1] = 0.0f;

sum[2] = 0.0f;

total = 0.0;

}

void ColorTracker::estimatePose(IplImage* image){

float centreX = 0.5 * image->width;

float centreY = 0.5 * image->height;

float trackWinTransX = trackWindow.x - centreX;

float trackWinTransY = centreY - trackWindow.y;

float objWidth = trackWindow.width;

float objHeight = trackWindow.height;

std::vector<CvPoint2D32f> imagePoints;

imagePoints.push_back(cvPoint2D32f(

trackWinTransX + 0.5 * objWidth,

trackWinTransY - 0.5 * objHeight

));

imagePoints.push_back(cvPoint2D32f(

trackWinTransX + 0.5 * objWidth,

trackWinTransY

));

imagePoints.push_back(cvPoint2D32f(

trackWinTransX,

trackWinTransY - objHeight

));

imagePoints.push_back(cvPoint2D32f(

trackWinTransX + objWidth,

trackWinTransY - objHeight

));

imagePoints.push_back(cvPoint2D32f(

trackWinTransX,

trackWinTransY
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));

cvPOSIT(

positObject,

&imagePoints[0],

focalLength,

terminationCriteria,

rotationMatrix,

translationVector

);

sum[0]+= translationVector[0];

sum[1]+= translationVector[1];

sum[2]+= translationVector[2];

total++;

cvLine( image,

cvPoint(centreX,centreY),

cvPoint(centreX +translationVector[0], // wrong scale: centre is

centreY -translationVector[1]),// in pixels & vector is cm.

cvScalar(255,0,0)

);

}

/* sets the value of retPtr to a string that is the

* vector location of the first tracked object

*/

void ColorTracker::getObjectVector( string* retPtr ){

if(total == 0){

estimatePose(image);

}

stringstream ss (stringstream::in | stringstream::out);

ss << sum[0]/total << " ";

ss << sum[1]/total << " ";

ss << sum[2]/total;

retPtr->assign( ss.str() );

}

// the following are for debugging purposes

void ColorTracker::incFocalLength(int x){

focalLength += x;

cerr << "Flen: " << focalLength << endl;

}

void ColorTracker::decFocalLength(int x){

focalLength -=x;

cerr << "Flen: " << focalLength << endl;

}
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FilesColorTracker

FilesColorTracker.h

/******************************************************************************\

* FilesColorTracker.h: header for FilesColorTracker.cpp *

* Written by Kayton Parekh and Susan Fox in Summer 2009 *

\******************************************************************************/

#ifndef FILESCOLORTRACKER_H_

#define FILESCOLORTRACKER_H_

#include "ColorTracker.h"

#define SONY_FOCAL_LENGTH 410.0

class FilesColorTracker: public ColorTracker {

public:

FilesColorTracker();

virtual ~FilesColorTracker();

void updateFrame();

private:

char folder[80];

char filename[50];

char wholename[100];

int imgCnt;

void setupQueryFrame();

void updateLoadName(char *name, int num);

};

#endif /* FILESCOLORTRACKER_H_ */

FilesColorTracker.cpp

/******************************************************************************\

* FilesColorTracker.cpp: child of ColorTracker.cpp *

* color tracker object that takes frames from files on Hard Drive *

* Written by Kayton Parekh and Susan Fox in Summer 2009 *

\******************************************************************************/

#include "FilesColorTracker.h"

// FilesColorTracker is a child class of ColorTracker

FilesColorTracker::FilesColorTracker() {

setupQueryFrame();

setupColorTrack();

setupPosit(SONY_FOCAL_LENGTH);

}
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FilesColorTracker::~FilesColorTracker() {}

// setup query frame sets the file path and name

void FilesColorTracker::setupQueryFrame(){

imgCnt = 0;

strcpy(filename,"foo0000.jpeg");

strcpy(folder,"/home/kparekh/Desktop/RupartPyrobot/camera/PICS/");

}

/* update frame gets the next picture file from the folder path

* is coded to simply increment the number in file name and try

* load that file. if files go foo0000.jpeg to foo0002.jpeg this

* will try to load foo0001.jpeg and will fail.

*/

void FilesColorTracker::updateFrame(){

updateLoadName(filename, imgCnt++);

strcpy(wholename, folder);

strcat(wholename, filename);

cvReleaseImage(&frame);

frame = cvLoadImage( wholename, 1 );

int i;

for(i=0; i < 20 && !frame; i++){

cerr <<"FilesColorTracker.cpp ERROR: no file ";

cerr << filename << " found" <<endl;

updateLoadName(filename, imgCnt++);

strcpy(wholename, folder);

strcat(wholename, filename);

frame = cvLoadImage( wholename, 1 );

}

if(!frame && i == 20){

cerr << "ERROR: 20 bad filenames" << endl;

exit(0);

}

//cerr<<"loaded"<<endl;

}

/* Takes in a filename string and an integer

* and incorporates the integer into the string

* need to find a better way to do this!!

*/

void FilesColorTracker::updateLoadName(char *name, int num) {

int th, h, t, r;

if (num < 10000) {

th = num / 1000;

r = num % 1000;

h = r / 100;

r = r % 100;

t = r / 10;

r = r % 10;

name[3] = ’0’ + th;

name[4] = ’0’ + h;

name[5] = ’0’ + t;

name[6] = ’0’ + r;

}

else {
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name[3] = ’X’;

name[4] = ’X’;

name[5] = ’X’;

name[6] = ’X’;

}

}

CameraColorTracker

CameraColorTracker.h

/******************************************************************************\

* CameraColorTracker.h: header for CameraColorTracker.cpp *

* Written by Kayton Parekh and Susan Fox in Summer 2009 *

\******************************************************************************/

#ifndef CAMERACOLORTRACKER_H_

#define CAMERACOLORTRACKER_H_

#include "ColorTracker.h"

#define PHILIPS_FOCAL_LENGTH 1300.0

class CameraColorTracker: public ColorTracker {

public:

CameraColorTracker();

virtual ~CameraColorTracker();

void updateFrame();

private:

CvCapture *capture;

void setupQueryFrame();

};

#endif /* CAMERACOLORTRACKER_H_ */

CameraColorTracker.cpp

/******************************************************************************\

* CameraColorTracker.cpp: child of ColorTracker.cpp *

* color tracker object that takes frames from a camera video stream *

* Written by Kayton Parekh and Susan Fox in Summer 2009 *

\******************************************************************************/

#include "CameraColorTracker.h"

// CameraColorTracker is a child class of ColorTracker

CameraColorTracker::CameraColorTracker() {

setupQueryFrame();

setupColorTrack();
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setupPosit(PHILIPS_FOCAL_LENGTH);

}

CameraColorTracker::~CameraColorTracker() {

cvReleaseCapture( &capture );

}

// setup Query Frame creates the capture object to get frames from the camera

void CameraColorTracker::setupQueryFrame(){

// connect to any available camera

capture = cvCreateCameraCapture( CV_CAP_ANY );

if( !capture ) {

cout << "ERROR: capture is NULL" << endl;

exit(0);

}

// Set resolution on the camera

cvSetCaptureProperty(capture, CV_CAP_PROP_FRAME_WIDTH, 640);

cvSetCaptureProperty(capture, CV_CAP_PROP_FRAME_HEIGHT, 480);

}

// updateFrame gets the next frame from the capture object

void CameraColorTracker::updateFrame(){

frame = cvQueryFrame( capture );

}
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