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Abstract

People face the problem of sound source localization and separation in situations 
where they attempt to localize and focus on a source of sound among a dissonance of 
conversations and background noise. This paper synthesizes a sound source localization 
routine. We utilize a general source separation technique, Independent Component 
Analysis.. Particularly, basic ICA was applied to separate mixtures of low frequency, 
narrow band, non-Gaussian signals by using closely spaced uni-directional microphones. 
The localization routine worked with an average condition number of 10. The routine was 
tested on data collected in a laboratory. 
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Chapter 1

Introduction

1.1 The Cocktail Party Problem

People are generally able to discern the direction that a sound is coming from 

using two ears. The combination of the slightly different signals that arrive at the ears 

enables us to deduce, intuitively, the direction of the sound. Similarly, a biologically 

inspired sound localization system can be built by making use of an array of 

microphones, which are hooked up to a computer. In addition, such a system of 

microphones can be made to extract any particular sound from a mixture of sounds 

produced simultaneously by several sources. Such a situation is reminiscent of the 

“cocktail party problem”, in which a person attempts to focus on a single speaker among 

a dissonance of conversations and background noise. 

Source Localization is a very well established technique that has a wide range of 

applications. Blind signal separation is still a very current area of research, with no 

generally acceptable solution. My project consisted of studying the benefits and 

limitations of these existing techniques, and applying them to solve the problem of sound 

source separation and localization. 

1.2 Source Localization Techniques:- The GPS

The applications of source localization techniques range from remote sensing to

the Global Positioning System. The mathematical details of these applications are 

basically variations of a triangulation scheme: 1. using multiple sensors, which detect a

signal emitted by the source  to be localized, or 2. using multiple emitters, whose signals 

is sensed by the sensor (eg. GPS receiver) to be localized. 

In this project we attempt to localize a single sound source by using four 

microphones, which are placed at the tips of a possibly irregular tetrahedral. The 

minimum number of microphone needed depends on the dimension of the space in which 

the source is constrained to, such as a line or a plane. In an ordinary situation, the source 

can be located anywhere in the three dimensional space. Hence, as will be elaborated 

later, a minimum of four microphones is needed to accomplish the localization of a 
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source to a point. The use of more microphones would increase the accuracy of the 

localization of the source at the cost of computational time; however, we shall see that the 

marginal benefit of using more microphones than the minimum required is not worth the 

cost. 

1.3 Blind Signal Separation

The need for Blind Signal Separation arises in many situations. For instance, 

electrocardiogram sensors record a mixture of pulses from different parts of the body. 

One needs to be able to extract the individual source pulses, which resulted in the 

detection of mixtures of signals at the surface of the body. Such problems demand the 

development of blind signal separation techniques. 

Unlike some other signals, there is no general technique that is applicable to blind 

sound source separation. [1] The separation techniques which claim generality are overly 

complicated and do not necessarily perform perfect signal separation. Therefore, we 

intend to limit this project to a semi-blind sound source separation problem. 

We have studied the feasibility of various source separation techniques. 

Independent Component Analysis is the major technique that is considered. The 

technique assumes that the source signals, which constitute the observed mixtures, are 

independent and identically distributed (i.i.d.).  Hence, it assumes a particular probability 

density function for the source signals. Despite its applicability in other fields, this 

method cannot be applied directly to audio separation for reasons that will be discussed in 

Chapter 3.4. In the past decade, researchers have come up with various advanced

extensions of Independent Component Analysis. Some of these extensions are studied. 

However, we have tested a more original way of implementing basic Independent 

Component Analysis by making use of closely spaced uni-directional microphone 

clusters with certain restrictions, which are discussed in Chapter 3.6. 

1.4 Overview of the Project

The geometry of sound localization problem was studied before building a robust 

triangulation routine, which relies on a normalized cross correlation routine that 

computes delays between arrival times of signals at different microphones. The sound 
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localization routine was tested thoroughly, and worked as desired. The testing involved a 

set up of the reverse problem. In the reverse problem we aspire to find the locations of 

each of the microphones; we do this by performing separate recordings of sources, which

are placed at several known locations. This helped to estimate the sensitivity of the 

routine to misspecifications of location coordinates, which mainly stem from distance 

measurement errors. 

A microphone cluster was set up in a lab with coordinates, where the microphones 

were placed at the corners of a tetrahedral. A sound localization experiment was done 

whose results proved the measured success of the sound localization routine written in 

MATLAB. 

A significant amount of time was spent studying blind source separation 

techniques, particularly Independent Component Analysis. Among the extensions of ICA, 

the Lambert FIR matrix approach and Torkkola’s neural network based approach were 

considered. Finally, we resorted to using the basic ICA developed by Bell & Sejnowski in 

1995 with some modifications of our experimental set up, which made the sound 

separation process only a semi-blind one. The results of this experiment were successful 

despite the specificity of the case that we dealt with. As mentioned above ICA relies on 

an assumption regarding the probability density function of the source signals. Thus, the 

sensitivity of ICA to misspecifications of the pdf were also studied. 
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Chapter 2

Sound Source Localization

2.1 The Geometry of the Problem

Analyzing the geometry of the problem is important; because it allows us to 

address the following issues. Any source localization system can be prone to 

bewilderment regarding the location of the source due to aliases. Aliases arise when we 

do not have enough sensors or when the geometric placement of the sensors makes some 

of them redundant. The problem of aliases can be solved by adding more sensors to our 

localization system. However, consideration of the geometry of the problem allows us to 

add microphones economically. That is, we can determine the minimum number of 

microphones needed for any given situation. 

In some cases, we may need to constrain the degree of freedom of the source of 

sound. This allows us to do simple experiments by using even smaller number of 

microphones than the number of microphones that we would need to localize a source in 

3D. It is evident that no blind source localization can be achieved using one microphone. 

So, we start by looking at how we need to constrain our source of sound, assuming that 

we only have two microphones. 

Microphone 2

Microphone 1

Line of aliases

A

B

Figure 1Geometry of two microphones in a plane:- Points A and B are examples of aliases.
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The only way that a source can be localized to a point using two microphones is if 

the source is constrained to a line that passes through the two microphones. If this 

constraint is lifted, the precision of the system degrades. Figure 1 gives us some idea of 

the locus of points of aliases of two microphones and a source that is constrained to a 

plane that also contains the microphones; the black dashed line and points A and B on 

Figure 1 are good examples of aliases. We generalize the depiction of aliases by using 

Figure 2, which is generated by a MATLAB program included in Chapter 4.3.1. The loci 

of points of aliases depicted in Figure 2 are hyperbolas. Consequently, the loci of points 

of aliases which are associated with the localization of a source in 3D using two 

microphones are hyperboloids. 

Figure 2 Locus of points of aliases of two microphones in a plane.

We consider adding a third microphone to our system; because, we want to 

ameliorate the constraints placed on the source. Such constraints were imposed to make 

the system precise to a point. Adding a third microphone on a line that passes through the 

A

B
Mic 1

Mic 2
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previous two microphones results in redundancy. Thus, the three microphones should not 

all be on a single line. 

Three microphones placed at the corners of a triangle may seem to be adequate to 

localize a source to a point in a plane. However, this is not true. The location of the point 

would be determined as an intersection of three hyperbolas and/or planes. Such a system 

is over determined and a solution may not exist. The source localization system has its 

inherent measurement imprecision, which emanate from the limited sampling capabilities 

of our data acquisition system and the imprecision in measuring the locations of our 

sensors. The consequence of this imprecision and over determinacy is possible 

inconsistency of the system, which is illustrated in Figure 3. 

Figure 3 Inconsistency resulting from the imprecision and over determinacy of the system. Note the 
widening error bars, which result from the imprecision of time delay measurement for a source that 
is far away from pairs of microphones compared to their separating distance.

In Figure 3, each pairs of the three microphones make different claims about the 

location of the source. For instance, microphone 1 and 3 believe that the source is located 

on a line that perpendicularly bisects the line segment which connects them. Each of the 

Mic 3
Mic 1

Mic 2

Sound 
Source
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other two pairs of microphones believes that the source is located on the two different 

hyperbolas illustrated above. Optimization is needed to find a common ground for these 

inconsistent claims. The details of the optimization routine are discussed in Chapter 2.3. 

If we have 3 microphones and a source in 3D, then the system would only be able to 

localize the source to some simple closed curve, which resembles an ellipse, after 

optimization.

Having four microphones and a source in 3D would give us a situation similar to 

the one illustrated in Figure 3, except for its increased dimensional complexity. The line 

would be a plane and the hyperbolas would be replaced by hyperboloids. It is essential 

that the four microphones are placed at the tips of some sort of a tetrahedral in order to 

avoid redundancy of microphones. Placing all four microphones on a plane degrades the 

precision of the system by producing aliases, which we are trying to avoid.

2.2 Detecting Delays: Cross Correlations

The time delay of a signal between two microphones is the difference between the 

times of arrival of the signal at the two microphones. We studied the geometry of the 

problem by assuming that we know the time delay of the source between any pair of 

microphones. Cross correlation is a routine signal processing technique that can be 

applied to find such time delays by using the two copies of a signal registered at a pair of 

microphones as inputs.

A cross correlation routine outputs set of cross correlation coefficients, which 

correspond to different time delays. These coefficients are sum of products of 

corresponding portions of the signals, as one signal slides on top of another one. Each 

cross correlation coefficient corresponds to a particular possible time delay of a signal 

between the two microphones. The maximum cross correlation coefficient indicates the 

portions of the signals with the maximum correlation. Therefore, the maximum 

coefficient can be used to deduce the time delay between the two copies of the same 

signal recorded by a pair of microphones. We have used a normalized version of the cross 

correlation coefficients formula, which is shown in Equation 1. The signals that we are 

cross correlating are x and y. The signals can be represented as row vectors and their 



15

components are referred to by using indices. The mean of these signals is denoted by m

with subscripts indicative of the signal considered. 

Equation 1 Normalized Cross Correlation Coefficients

2.3 The Source Localization Routine

This routine takes the geometry of the problem into consideration. It also uses the 

cross correlation routine that is described above. The source localization routine is 

implemented so that it could easily be working on simulated or real data. Regarding the 

simulation, sound is mixed by performing vector additions in MATLAB, and ignoring 

complex reverberant features of rooms which bring about the difference between the 

simulated and real data results. The original commented code for the simulation routine is 

provided in the Chapter 4.1. 

Figure 4 The mechanism of the source localization routine

The source localization routine can take in any number of signals; in our case, it 

takes in four signals, which are either recorded by a microphone in a lab or simulated by 

Rt =
HÚiHxi - mxL*Hyi+t - myLL###################################################HÚiHxi - mxL2 *Hyi - myL2L

S = ArgMinâ
m,n
Hgmn - hmnL2

Data acquisition by 4 non-
planar set of  microphones

Multiple cross correlations are done between 
each pair of signals. This gives the time delay of 
the signal between each pair of microphones. 

etc…

A=(X1, Y1, Z1)

g12

S=(X, Y, Z) is the only unknown

B=(X2, Y2, Z2)

g12=Distance(A,S)-Distance(B,S)

  A
    B

  C
  

t12 , t13 , …

Apply Nelder-Mead 
(Simplex) Optimization 
to find S = (X, Y, Z)

hmn=speed of sound * tmn
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MATLAB with a predefined geometry inputted into the routine. The routine cross 

correlates each pair of signals received to generate a set of time delays between each pair 

of microphones. This time delay information is multiplied by the speed of sound to give 

information that encapsulates the conceived constellation of the source with respect to the 

four microphones, whose location is already known. 

The goal of the routine is finding the coordinates of the source in a three 

dimensional space. So far the routine has determined the difference in path length as 

sound travels from the source to any pairs of microphones. This difference in path length 

is always expressed in terms of the coordinates of the source that we hope to find and the 

known coordinates of the microphones. Due to the overdetermined nature of the system

and inherent measurement imprecision a value may not exist that defines the variables 

which represent the coordinates of the source. Therefore, we have to carry out a one 

dimensional optimization to find the coordinates of the source. The optimization involves 

minimizing the difference between: the path length difference in terms of the coordinates 

of the source, and the corresponding number that is found as a result of the cross 

correlation procedure. This optimization is carried out by applying the standard Simplex 

optimization scheme in MATLAB; it should be noted that other optimization methods 

could be implemented. Figure 4 illustrates the source localization routine described. 

2.4 Experimental Setup

The source localization routine was tested by sound recording experiments done 

in a laboratory. We setup a fixed coordinate system in the laboratory. Four microphones 

were placed at the tips of an imaginary tetrahedral, whose sides are about 2m long. The 

microphones were hooked up to a computer, which ran a Lab View program. The 

program saved four of signals from the microphones into a spreadsheet for later 

processing by the MATLAB source localization routine. Several sound recording 

experiments were done by placing a source of sound at various locations in the 

laboratory. 
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2.5 Results of Source Localization

The source localization routine was tested on signals simulated for a geometry 

that consists of microphones placed at tips of a tetrahedral and a source that could be 

placed anywhere in 3D. The source localization routine turned out being robust with a 

condition number in order of magnitude of 1, for sources that are close to the center of 

the tetrahedral. This means a percent error introduced into the locations of the 

microphones gets amplified by a factor with order of magnitude of 1 before manifesting 

itself as a percent error in the location of the source determined. 

However, we should emphasize that the condition number varied erratically for 

sources that are placed far away from the center of the tetrahedral. We hypothesize that 

the robustness is dependent on the region of the source because of the geometry of the 

problem, which is illustrated in Figure 3. As shown in Figure 3, the width of the 

hyperbolic stripes widens as we go further out from the geometrical center of the 

microphone clusters. A slight misspecification of the location of the microphone makes 

the wider part of the hyperbolic stripes to sweep a larger area than the area swept by the 

narrower part of the hyperbolic stripes. Therefore, location of a source far from the center 

of the microphone clusters is miscalculated as a result of even the slightest error in 

measurement of the location of the source. The erratic behavior of the condition number 

of the source localization routine is definitely one of the questions that arose out of this 

project for future research.

The robustness of the source localization routine, which is region specific, is the 

justification used to use the minimum number of microphones in our experiments;

because the marginal benefit of a fifth microphone is not demanded for most applications, 

in which the source is known to be in a region that would keep up the robustness of the 

routine. Basically, we can afford to use only the minimum number of microphones as 

long as the source is within the imaginary tetrahedral formed out of the microphones. 

In addition to simulation testing, the routine was tested on data collected in a lab 

as explained in Chapter 2.4. The condition number of the routine was in order of 

magnitude of 10 for data that came from the lab. It is hypothesized that the degrading 

robustness has to do with the reverberation in the lab, which is hard to model while 

simulating signals. The reverberations can make our cross correlation procedures to yield 
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inaccurate time delay information. This problem could be ameliorated by using better 

data acquisition cards and/or performing the localization in an anechoic environment. 

Addition of a fifth microphone could also be an alternative improvement; however, we 

were satisfied with the robustness of the system with four microphones. 
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Chapter 3

Sound Source Separation

3.1 The Geometry of the Problem

Unlike the localization techniques used, our source separation techniques rely on 

differences in the intensity of sound signals recorded by microphones placed at different 

distances from the source. The intensity of sound signal is known to be proportional to 

the inverse square of the distance from the source of sound. However, this relationship 

may not be observed in a signal recorded in a closed space because of the reverberations 

and the interferences that result. This is particularly the case when there is a periodic 

pattern within the signals. 

In this project, we only deal with the extraction of two sources from two mixtures 

that they formed. Therefore, the sources have to be constrained to a certain geometric 

region so that the two mixtures are distinct. This constraint can be lifted very easily by 

adding additional microphones; therefore, the source separation that we do is still blind, 

but computationally simpler than the usual problem encountered.

The loci of points of aliases that arise in this problem are different from the ones

discussed in Chapter 2.1; because Independent Component Analysis relies on intensity 

difference information. In the case of two microphones and two sources in 3D, we would 

have to make sure that we do not get the same exact mixtures at the two microphones. 

Therefore, the sources should not be placed on the plane that perpendicularly bisects the 

line segment that connects the two microphones; because it is the locus of points of 

aliases for our system. 

3.2 Projection Pursuit

Projection Pursuit is a source separation technique, which is reminiscent of 

Independent Component Analysis (ICA) that is used in this project. It is advantageous to 

study Projection Pursuit; because it is less complicated than ICA. On the other hand, 

Projection Pursuit is a serial method, which makes it inefficient for real applications. On 

the other hand, ICA takes sets of mixtures of sources as an input and returns sets of 

estimates of the sources at once, i.e. it is a parallel technique. 
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3.2.1 Modeling the Mixing Process

While modeling the sound mixing process, we develop notation that is  used 

consistently throughout the discussion of sound source separation using Independent 

Component Analysis. Sampled sound sources are usually represented as column vectors. 

Hence, we can represent the mixing process by defining a mixing matrix as follows. 

[s1, s2] * M = [m1, m2]

Equation 2 The Mixing Model

Here s1 and s2 stand for source 1 and source 2, whereas m1 and m2 are mixed signal 1 

and 2 that are recorded by the two microphones. The mixing matrix is two by two. In 

ideal situations, the mixing matrix depends on the geometry of the problem. The 

amplitude of sound signals is proportional to the inverse of the distance from the source 

to the point of recording. Therefore, the inverse of each component of the mixing matrix 

is proportional to the distance between each pairing of source and microphone possible. 

Once again, this is not quite true in reality because of the effect of interference  and 

reverberation. 

3.2.2 Unmixing

We are interested in extracting the sources from the mixtures. So, we extend the 

mixing model further and express the estimates of the source signals as a product of the 

unmixing matrix, which is the inverse of the mixing matrix, and the recorded signals. In 

Equation 3, y1 and y2 refer to the estimates of s1 and s2 respectively. 

[y1, y2] = [m1, m2] * U

Equation 3 The Unmixing Model

Evidently, retrieving y1 and y2 would be trivial if M, and hence U, was known. 

But, the mixing process is not known as we are working on a blind source separation 

problem. So, we can try different values of U (inverse of M) and pick the best estimate of 

the sources which results. The problem is determining which estimate of the source is a 

good one; because we do not know what the source is. 

If we assume that all the sources are sampled from the same probability density 

function, we can stop adjusting the components of U when the estimates of the sources 

have a probability density function that matches our assumption. If we are working on 

speech source signals, it is reasonable to assume that the sources are sampled from a 
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super-Gaussian probability density function; because speech signals are characterized by

a sequence of pauses in between words that result in a probability density function that 

peaks at zero. 

Kurtosis is the fourth statistical moment which measures how peaky the

probability density function of a signal is. The kurtosis of a Gaussian signal is zero and 

sub-Gaussian signals have a negative kurtosis, whereas, super-Gaussian signals are 

characterized by a positive kurtosis. In light of this, projection pursuit adjusts the 

components of U until the kurtosis of y1 and y2 are maximized. Analytic expression of 

the kurtosis of the estimates in terms of the components of U proves helpful in expediting 

the optimization needed to find U. [5] Optimization methods such as gradient ascent are 

used to find a value of U that maximizes the kurtosis of the estimates. 

3.3 Independent Component Analysis (ICA)

Independent Component Analysis can be considered as the extension of 

Projection Pursuit. It also makes assumptions about the probability density function of 

the source signals. Furthermore, it assumes that the source signals are statistically 

independent. Overall, ICA is capable of extracting sources that are independent and 

identically distributed, as long as it knows the probability density function of the i.i.d. 

signals. 

Independent Component Analysis, which is applied in this project, is the work of 

Bell and Sejnowski, who published a revolutionary article in the field of blind signal 

separation in 1995. [4] Their article has been eloquently rephrased in an introductory 

book written by James Stone. [5] The author of the book included a code that implements 

ICA. We customized his MATLAB code, which is included in Chapter 4.2. 

3.3.1 The Mechanism of ICA

ICA adjusts the components of U in order to make y1 and y2 as mutually 

independent as possible; because it is assumed that source signals are statistically 

independent of each other. Whereas, mixtures of source signals are not independent of 

each other as they are made out of the same underlying sources despite the different 

intensity of the constituents. 
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Bell and Sejnowski have suggested an information maximization approach in 

order to produce estimates of sources that are mutually independent of each other. [4] 

ICA assumes the probability and hence cumulative density function of the source signals; 

therefore, we can pass our preliminary estimates of the sources (y1 and y2) through the 

cumulative density function of the sources to get signals Y1 and Y2. Bell and Sejnowski 

have shown [4] that y1 and y2 become mutually independent if we can choose an 

unmixing matrix, U, which can maximize the joint entropy of Y1 and Y2. Furthermore, 

Bell and Sejnowski have expressed the joint entropy of Y1 and Y2 in terms of the 

components of U. Therefore, ICA maximizes the joint entropy of Y1 and Y2 by adjusting 

the value of U systematically. This results in estimates y1 and y2, which are as mutually 

independent as possible. 

3.3.2 Simulations to test ICA

We have customized James Stone’s ICA code and have gotten results that are 

shown in Figure 5. We can see that ICA reproduces the source signals with amplitude 

and order indeterminacy. 

Figure 5 Simulation done to test ICA. The six graphs to the left show the signals: Intensity vs. time 
/ms. The scatter plots to the right show the corresponding three pairs of signals to the left. 

s

M

m

y

U

Corresponding 
Scatter Plots.

Simulated Sound signals:- Amplitude vs samples.
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3.4 Limitations of ICA
Despite ICA’s success in separation of other kinds of signals (such as 

electrocardiogram applications, image separation), it is problematic when applied to 

audio separation. The major problem is that the mixing model that ICA relies on does not 

consider the time delays that are introduced between copies of signals recorded by 

different microphones. These time delays are very small compared to the sampling period 

of most data acquisition systems for signals that travel fast, such as light. However, the 

time delays that arise in this situation are not always smaller than the sampling period of 

our data acquisition system. Therefore, the mixing matrix can not be a sufficient way of 

modeling the mixing process. Therefore, ICA can not be directly applied to extract 

sources from mixtures collected by microphones that are placed wide apart in space. 

As we mentioned before, ICA relies on intensity difference information as 

opposed to time difference information. However, the intensity difference information is 

prone to distortion by interferences in a reverberant room. Once again, the mixing model 

that was discussed assumes an anechoic sound mixing environment. Hence, our results 

are expected to be negatively affected by reverberations in the environment. 

3.5 Traditional Extensions of ICA

3.5.1. Torkolla’s Delayed and Convolved Extension of ICA

This technique is designed to solve the delay problem that is outlined in the 

previous section. It implements the optimization of delay using a feedback neural 

network. We have implemented this extension of ICA solely from the description of the 

algorithm in the article published by Torkolla [2]. However, our results could not 

replicate the results that were reported in the article, hence, further progress in applying 

this technique was not possible.

3.5.2. Lambert’s FIR matrix algebra representation of sound mixing

This uses Finite Impulse Response filters, as opposed to numbers, as elements of 

the mixing matrix. This enables us to represent not only delays but also to model 

reverberant atmospheres. The FIR are basically implemented as vectors. Russel Lambert 

wrote his PhD thesis [3] on the applicability of such a representation for blind source 
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separation. The attempt to use this representation to implement ICA has not been 

successful. 

3.6 ICA Using Closely Spaced Uni-Directional Microphones

3.6.1 Overcoming the Limitation of ICA

In Chapter 3.4 we discussed the limitations of ICA when it is applied to audio 

signals. The first problem was that the time delay between copies of signals recorded at 

different microphones is not significantly smaller than the sampling period of our data 

acquisition system. This is a problem for audio separation because of the relatively low 

speed of sound. The conditions that are necessary for the success of ICA in signal 

separation are illustrated in Figure 6. Even though the speed of sound is small and 

invariant, we can physically minimize the gap between the microphones in order to 

minimize the time delay. If we place the microphones almost adjacent to each other with 

a gap of about 1cm, the time delay introduced is less than one tenth of the maximum

sampling period required for signals with frequency that is less than 1KHZ. The 

maximum sampling period is determined by the Nyquist Criteria, which states that the 

minimum sampling frequency is twice the maximum frequency component of th e signal.

Figure 6 Conditions of the delay problem
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Placing the microphones close to each other seems to solve the delay problem. 

However, it is at the cost of losing the intensity difference information that ICA relies on. 

Because, closely spaced omni directional microphones record exactly the same copy of 

signals. In other words, the microphones would be redundant. As a result we suggest the 

use of Closely Spaced Unidirectional Microphones which are aligned in different 

directions. Their physical orientation allows them to pick up different copies of the 

signals.

3.6.2 Unidirectional Microphones

These are available in the market, and have a limited frequency band. We have 

unidirectional microphones with sensitivity from 100Hz to 1000Hz. The basic physical 

mechanism of these microphones is depicted in Figure 7. Sound that arrives at the back 

of the microphone hits the diaphragm on both sides at about the same time; therefore, it 

fails to register a pressure gradient on the diaphragm. On the other hand, the physical 

structure of the microphones prevents this from happening for sounds that come from any 

other directions, particularly from the front of the microphone. The polar pattern of 

directional microphones is in general frequency dependent. However, their manufacturers 

mitigate this problem by using complicated acoustic foams and holes, whose workings 

are not entirely clear. This results in a cardioid polar pattern that indicates low sensitivity 

at the back of the microphone. 

Figure 7 The basic physical mechanism of Unidirectional Microphones
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We have performed a polar pattern characterization experiment on our 

unidirectional microphones. Here is a description of the set up of the experiment. A 

monotone sound source with adjustable frequency was set up on a fixed stand 10 cm 

away from a unidirectional microphone set up on a stand with a degree of freedom for 

rotation. The back of the unidirectional microphone was oriented at certain angles from 0 

to 180 degrees with respect to the line joining the source with the microphone. At each 

angle of orientation of the microphone, the source played monotones at 10 frequencies 

ranging from 100 to 1000 Hz. The result of the experiment is depicted in Figure 8. As 

can be seen on the graph, the polar pattern of the unidirectional microphones turned out 

to be frequency independent for this frequency band. 

Figure 8 Characterization of the polar pattern of unidirectional microphones
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3.6.3 The New Geometry of the Problem

Consider the case where we have two closely spaced unidirectional microphones 

that are facing in opposite directions. In this situation, there are several source 

constellations, which should be restricted in order to record different copies of the 

mixture of source signals. For instance, the plane that perpendicularly bisects the cluster 

of these microphones, so that the front and back of each of the microphones is on 

opposite sides of the plane, makes the microphones redundant. Besides, this system can 

not separate sources that are on a line that also passes through the center of the 

unidirectional microphone cluster. Therefore, the sources should be placed in a way that

allows us to record different copies of the mixture of the sources using the two 

microphones. 

The microphone cluster set up discussed in the previous paragraph has the 

following shortcomings if each of the two sources are placed facing the front of each of 

the microphones. Because each of the recorded mixtures become dominated by a single 

source. Evidently, this makes source separation a trivial exercise as the mixtures 

themselves are good approximations to the sources. Therefore, we refrain from 

oversimplifying the problem by avoiding this configuration. 

An alternative configuration which provides us with sufficient source separation 

challenge while allowing us to record mixtures of signals that ICA can separate is 

described below. The unidirectional microphones are placed so that the lines that go 

through them from back to front form ninety degree with respect to each other. In this 

configuration, a source faces the front of one unidirectional microphone and the side of 

another one. This results in mixtures with fair proportions of the individual sources; thus, 

the source separation is not trivial as would be in the configuration discussed beforehand.

3.6.4 Results

This technique has proved to be a successful application of ICA by separating 

mixtures of two low frequency narrow band signals (a person counting 1 to 3 & ‘an alarm 

clock’). The use of better unidirectional microphones, with a broader band, is expected to 

give a better result. The two mixtures and the estimates of the narrow band non-Gaussian 

sources is illustrated in Figure 9.
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Figure 9 Results of source separation using Closely Spaced Unidirectional Microphones.  The graphs 
show sound signals: Intensity vs. time in units of 0.1ms. 

3.6.5 Evaluating the Results

The choice of the source signals for a plausible experiment was dependent upon 

two factors: the probability density function of the sources, and the frequency make up of 

the sources. The unidirectional microphones are frequency independent only for the range 

of frequencies from 100Hz up to 1KHz. Therefore, we had to use a signal generator to 

produce an alarm clock sound with the desired frequency range, and we used a low 

frequency speech. The alarm clock sound was chosen to have a similar probability 

density function as that of speech. However, the probability density function of the alarm 

clock sound has two more peaks in addition to the characteristic super-Gaussian peak at 

zero. Therefore, ICA’s assumption regarding the probability density function of the 

sources is not entirely valid in this case. Nevertheless, ICA was able to extract an 

estimate of the source signals as shown in Figure 9.

In light of this observed robustness of ICA, we assessed the sensitivity of ICA to 

misspecification of the probability density function of the sources. We took advantage of 

the customized ICA code, included in Chapter 4.2, to generate source signals that have a 
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probability density function similar to that of an alarm clock sound. Once again, such a 

probability density function has two more peaks than the zero peak that is characteristic 

of a super-Gaussian signal; from now on, we shall call such a signal a ‘pseudo super-

Gaussian signal’. We used the customized ICA code to mix two different pseudo super-

Gaussian narrow band signals illustrated at the top left corner of Figure 10. The sound 

signals are mixed with a small time delay, which would arise in a sound recording 

experiment using closely spaced unidirectional microphones. The signals and their 

mixtures as well as the corresponding probability density functions are shown in Figure 

10. The estimates of the source signals computed by ICA are also illustrated in the same 

Figure. 

Figure 10 Generating, mixing and separating ‘pseudo super-Gaussian’ narrow band signals. The six 
graphs to the left show signals: Intensity vs. time in units of 0.1ms.  The graphs to the right show the 
corresponding probability density functions of the signals to the left. 

Qualitatively, the estimates of the sources by ICA are not significantly different 

from the mixtures as shown in Figure 10. This is because ICA assumed that the source 

signals are super-Gaussian with a cumulative density function of hyperbolic tangent, 

while the sources are actually only ‘pseudo super-Gaussian’ as shown in the top right 

corner of Figure 10. 

We need to compare the result of this simulation experiment with a similar 

experiment where ICA’s assumption is more reasonable. For the second sound mixing 

and separating simulation, we modify the signals used in the previous experiment so that 

they have a super-Gaussian probability density function; then, we mix them in 

MATLAB. We shall discuss the technique used to transform a signal into its own variety 
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with a specified probability density function first before comparing and contrasting the 

results of the two sound mixing and separating simulations. 

Chapter 4.3.2 contains a program, which takes in two signals and transforms the 

first one to its own variety with a probability density function of the second model signal. 

This code was provided by Professor Kaplan. Our objective is to transform the pseudo 

super-Gaussian source signals to their super-Gaussian version. This can be achieved by 

the program in Chapter 4.3.2. The only missing part is a model super-Gaussian signal 

with a cumulative density function of hyperbolic tangent, which is consistent with ICA’s 

assumption. I have implemented the “Rejection / Acceptance method” to generate a 

model signal with a hyperbolic tangent c.d.f.; the MATLAB implementation is included 

in Chapter 4.3.3. Now, we shall discuss some of the details of the Rejection / Acceptance 

method. 

Rejection / Acceptance Method:-

This method [6] relies on choosing a Comparison Function, which is above the 

target pdf throughout the domain of both functions. Besides, the Comparison Function 

should have an analytic integral and an inverse for this integral. The Bell Sejnowski ICA 

assumes that source signals have a cdf characterized by the Hyperbolic Tangent function. 

Therefore, the target pdf is the square of a Hyperbolic Secant function. The comparison 

function in Equation 4 is used to simulate a Gamma distribution, and it can also be used 

for our desired distribution, suitably. 

f(x) = 1.5 / (1 + (x/2)^2)

Equation 4 Comparison function used in the Rejection / Acceptance method.

Look at Chapter 4.3.3 for more details regarding the implementation of the rejection / 

acceptance method. The method has been tested and worked as desired. Figure 12

illustrates the way one of my simulated pseudo super-Gaussian monotone signals had 

been modified to fit the Bell Sejnowski assumptions regarding the pdf of a signal. 
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Figure 11 This illustrates the rejection/acceptance method. Look at Chapter 4.3.3 for more details.

Figure 12 Testing the Rejection/Acceptance Implementation. The graphs show signals: Intensity vs 
time in units of 0.1ms. 
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Having discussed the mechanism of generating a super-Gaussian version of a 

pseudo super-Gaussian signal, we can resume our discussion of the sound mixing and 

separating simulation performed. The super-Gaussian versions of our original signals 

have been mixed and separated using ICA in a similar manner as the signals illustrated in 

Figure 10. The signals with a modified pdf are used in the second experiment. The results 

of the second experiment are illustrated in Figure 13. 

Figure 13 Mixing and separating super-Gaussian (after modification of previously pseudo super-
Gaussian signals) narrow band signals. The six graphs to the left show signals: Intensity vs. time in 
units of 0.1ms.  The graphs to the right show the corresponding probability density functions of the 
signals to the left. 

Qualitatively, we can compare and contrast the success of the two experiments by 

looking at Figure 10 and Figure 13. Apparently, the results in Figure 13 are better 

estimates of the source signals than the ones in Figure 10. This is because of the 

invalidity of the assumption that ICA made regarding the probability density function of 

the sources. Under normal circumstances, quantization of ICA’s success is demanding 

because we actually do not know the sources that we think we are estimating. However, 

in this case it is possible to quantize the success by measuring the correlation between the 

sources and estimates of our simulation experiment. 

Specifically, we measure the correlation between each source-estimate pairing 

possible. We have two signals and their two estimates with order and amplitude 

indeterminacy. Therefore, we have four correlation coefficients, which are presented in 

the form of a two by two matrix. The correlation coefficients are returned by the program 

in Chapter 4.2 when it runs such sound mixing and separating simulations. The following 
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coefficients were returned, when ICA made a reasonable assumption (i.e. in the second 

experiment). 

    0.9973    0.5804
    0.1389    0.8510

Under ideal separation circumstances, two of the above four coefficients would be 1 and 

the others would be zero. One of the estimates is definitely far from being an ideal 

estimate. However, other estimate is definitely an apt approximation to the source. 

Overall, we have proved that ICA works reasonably well to separate mixtures that would 

come from closely spaced unidirectional microphones. 

In the first experiment, we had mixed two pseudo super-Gaussian signals before 

separating them. The quality of the separation is measured by the following coefficients. 

    0.9807    0.6508
    0.1956    0.7593

We can see that the quality of the separation degrades as the probability density of the 

sources deviates from ICA’s assumption. 

Therefore, we can conclude this section by noting that the idea of using closely 

spaced unidirectional microphones to implement ICA is valid. However, the frequency of 

the sources needs to be low enough for the unavoidable time delay between the closely 

spaced unidirectional microphones to be immaterial to the mixing model that ICA relies 

on. 

3.7 Source Separation Using Time Delay Information

In this part, we would like to simplify the problem by using only 2 microphones 

to separate a mixture of 2 sound sources. We use time delay information as opposed to 

intensity difference information used in ICA. Therefore, we should take the geometry of 

the problem discussed in Chapter 2.1 into consideration while setting up the experiment. 

For example, we won’t be able to separate mixtures of sources if both of the sources are 

placed on one of the hyperbolic curves shown in Figure 2; because there is no 

meaningful time delay information that we can extract by taking the cross correlations of 

the signals. 

For simplicity we use a configuration that is guaranteed to avoid such ‘alias 

problems’ discussed in the previous paragraph. The sound sources are placed on the 

opposite ends of the line, which perpendicularly bisects the segment that connects the 
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microphones. So, the two delay values that we usually get out of the cross correlation 

function have opposite signs This is an artifact of the implementation details of our 

Labview program. 

3.7.1 Modeling the mixing process∗∗∗∗:- 

Here we establish notation, and a model of the mixing process based on our setup of 

sources and microphones. 

S1 & S2 are vectors representing the two sound Sources which are played in the lab.

M1 & M2 are the two Mixtures of these sources recorded by the 2 microphones. 

X1 & X2 are approximations of S1 & S2, which we are trying to generate. 

According to our experimental setup described above, the following model describes the 

sound mixing process. 

M1 = S1 + a*S2(d)

M2 = a*S1(-d’) + S2

The two sources are placed close to the two microphones. So, M1 picks up S1 as it is. 

But, S2 gets delayed by an amount “d” and it is also attenuated by a factor “a” before it 

contributes to forming M1. The same argument describes the second equation above. 

Note that the delay values have opposite signs; because, the sound sources are placed on 

the opposite sides of the microphones. 

According to this model, we only need to find the values of d and d’ in order to 

generate an approximation of S1 and S2 from M1 and M2. The value of the attenuation 

factor is irrelevant as we will see later. 

3.7.2 Cross correlating the mixtures:-

We expect to see two distinct peaks, which correspond to the values d and d’, in 

the cross correlation of M1 and M2. We perform a ‘normalized’ cross correlation in order 

to enhance the visibility of these two peaks, i.e. Equation 1 is employed. We consider the 

two highest peaks of the cross correlation of M1 and M2 to deduce values for d and d’. 

These delay values are then used to shift M1 and M2 appropriately before adding them 

together to generate X1 and X2. Such a procedure is commonly known as the delay and 

sum technique. [7]

∗ This is the only section of Chapter 3, where we introduce a different mixing model. 
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3.7.3 Generating X1 and X2:-

X1 is the sum of a version of M1 (which is padded with d zeros at the beginning) & M2.

X2 is the sum of a version of M2 (which is padded with d’ zeros at the beginning) & M1.

Performing this addition should intensify one of the source signals. The other source 

signal stays there, but, it can be considered as a background noise when compared to the 

intensified signal. The generated signals X1 and X2 are displayed on a Lab View 

interactive program along with the recorded mixtures and the cross correlation graph. 

3.7.4 Conclusion:-

The biggest setback to this approach of separating mixtures of sounds is the 

difficulty of finding multiple peaks of the cross correlation function. Usually, there are 

false peaks, whose origins are not understood yet. Besides, the amplitude of the two 

sound sources should be comparable. Otherwise, the peak that would correspond to the 

delay-information of the quieter sound source would be hidden in the noisy cross 

correlation function. 

It has been possible to identify two reasonable peaks at times when the amplitudes 

of the two sources have been adjusted very well in order to match each other. In such 

cases, it is possible to observe a crude approximation of S1 and S2 through X1 and X2. 

The performance of the system (assuming the existence of a reliable cross correlation 

peak identification routine) could be improved by adding more microphones and hence 

considering more cross correlations.
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Chapter 4

Appendix

4.1 Source Localization Routine in MATLAB

This is a MATLAB routine that I wrote to implement the source localization 
routine described in Chapter 2. 

function [answer, condition] = localize1(simu, source, dataFile)
% Returns the estimated location of a single source from the delay 
% information calculated using the cross correlation function AND
% the condition number of this estimation.
% Works on any number of microphones used to collect the data.
% The locations of the microphones should be hardcoded.

% simu -> simulation? :: 1=simulation 0=real data
% source -> location [x, y, z]. This is crucial during simulation.
% dataFile -> EXCEL file saved by the LabView data acquisition program
% UNITS: Distance:- meters     Time:- seconds.

c = 340;    % Speed of sound

% Microphone Positions. This is experiment specific!
% [x1 y1 z1;
%  x2 y2 z2;
%  x3 y3 z3; ...
%  xn yn zn]
%%% MODIFY AS NEEDED
% MicLoc = [0.0, 0.0, 0.0; 1.0, 0.0, 0.0; 0.0, 1.0, 0.0; 1.0, 1.0, 
1.0];
MicLoc = [

     262, 0, 0;
         85, -145, 0;
         0, 0, 0;
         0, -145, -74        
         ];
% The following is an off value for the microphone locations. It helps
% us to estimate the condition number of the routine during 
simulations.
OffMicLoc =[
        262.5, 0.5, 0.5;

         85, -145, 0;
         0, 0, 0;
         0, -145, -74        
         ];
% Make a good guess for the location of the source.
Guess = mean(MicLoc, 1);

%%% Comment out ONE OF THESE TWO as necessary.
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% *1.   Work on real data.
if (simu==0)
    delays = generateDelays(dataFile, size(MicLoc,1))

% *2.   Work on simulated data for testing purposes.
% Specify the location of the source to get
% the delays in this microphone configuration.
elseif (simu==1)

%%%PUT SOURCE HERE for SIMULATION
    delays = simDelay(MicLoc, source);%%%MODIFY AS NEEDED
end

%%% Comment out ONE OF THESE TWO as necessary.
% If the system is NOT overdetermined, we have two ways of solving it.
% *1. Solve a system of non-linear equations using Newton's method.

% % % answer = newtonMethod('ellipseFun', Guess, MicLoc, delays);

% *2. The above approach may fail if there are more than 3 microphones, 
due 
% to overdetermination. Here is a more general approach.
% Find the ArgMin of this function. 
global BUSHMicLoc;
global BUSHDelays;
if (simu == 0)
    BUSHMicLoc = MicLoc; % If this is not a simulation, use the values.
elseif (simu == 1)

% During simulation, use microphone values, which are slightly off.
    BUSHMicLoc = OffMicLoc;
end
BUSHDelays = delays;
answer = fminsearch(@ellipseMerit, Guess);

%%% ASSESS the accuracy of the answer. (we should know where the source 
is)
forwardError = (norm(answer - source))./(norm(source));
% estimate the backward error, which describes how accurately we know
% the location of the microphone & the delay. (sometimes, the accuracy
% of the speed of sound can be a factor too.)

% During real experiments Microphone locations are known to within 2cm.
% During simulation the uncertainty introduced should be entered in 
here.
if (simu == 0)
    backwardError = (2)./100; 
elseif (simu == 1)
    backwardError = (norm(MicLoc-OffMicLoc))./(norm(MicLoc));
end

% Evaluate the condition number of the problem.
condition = forwardError./backwardError;
%%display(condition);
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%%% SUGGESTED TESTING (based on simulation): 
% % % %Plot Merit vs z, constraining x&y to the exact souce coordinate.
% % % %EXPECT to see a minima, where z coincides with the source z-
coordinate!
meritVal = [];
for zValue = ((-
10.*abs(source(3)))+source(3)):((10.*abs(source(3)))+source(3))
    meritVal(end+1) = ellipseMerit([source(1), source(2), zValue]);
end
zValues = ((-
10.*abs(source(3)))+source(3)):((10.*abs(source(3)))+source(3));
figure(2); plot(zValues, meritVal); title('TEST: Merit vs z');

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function answer = generateDelays(dataFile, nMic)
% This automates the use of crossCorrN to find delays
% between pairs of signals. 
% It returns an array of delays.

% dataFile -> EXCEL file by the LabView data acquisition program. 
% nMic -> number of microphones used 

data = load(dataFile);

delays = [];
for k = 1:nMic

for j = k+1:nMic
        delays(end+1) = crossCorrN( data(:,k), data(:,j) );

end
end
answer = delays;
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function answer = simDelay(mPos, sPos)
% It computes the delay b/n signals recorded at different microphones. 
% It takes locations of microphones and the source.
% sPos -> [x y z]
% mPos -> [x1 y1 z1; 
%          x2 y2 z2; 
%          ... ;
%          xn yn zn]
% Works for any number of microphnes and a single source. 

% Speed of sound
c = 300;

nMics = size(mPos, 1);
delays = [];
%micPairs = []; We probably don't need this SUGGESTED labeling.

% Get the delay b/n all pairs of microphones.
for k = 1:nMics



40

    disToK = distance(sPos, mPos(k,:));
for j = k+1: nMics

        disToJ = distance(sPos, mPos(j,:)); 
        delays(end+1) = (disToK - disToJ)./c;

end
end

% Return the delays
answer = delays;
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function answer = crossCorrN(x, y, sampleRate, nSamples)
% It cross correlates the two signal parameters to find thier delay.
% It does a normalized cross correlation. This avoids ambiguities in 
% picking a maximum. 
% It makes advantage of reality (the fact that the delay can't possibly 
% be bigger than *0.2* second in a room) to hasten the program.

% x & y -> signals to be cross-correlated.
% sampleRate -> sample rate of data acquisition.
% nSamples -> number of samples in the data acquisition.

%%%% SET these appropriately!!!
if nargin == 2   % Default Data Acquisition values
    sampleRate = 15000;
    nSamples = 65000;
end

minD = nSamples-floor((0.1.*sampleRate)); % 0.1. B/c max(Delay)=*0.2* 
here
maxD = nSamples+floor((0.1.*sampleRate));

%%lengthR = maxD - minD +1; 
lengthR = length(x) + length(y) - 1;

% % % minD = 1;
% % % maxD = lengthR;
R = zeros(1, lengthR);

% Do a normalized cross correlation.

meanX = mean(x);
meanY = mean(y);
denominatorX = sum((x - meanX).^2);
denominatorY = sum((y - meanY).^2);

denominator = sqrt(denominatorX.*denominatorY);

% The following is the common 'sliding business' of cross correlation.
for t=minD:maxD
    numerator = 0;

for i =1:length(x)
        p = t - length(x);

if ((i+p <=length(y)) & (i+p>=1) )



41

            numerator = numerator + ((x(i)-meanX).*( y(i+p) -meanY));        
elseif (i+p<1) 

% Zero padding
            numerator = numerator + (x(i)-meanX).*( 0 - meanY);

else
            numerator = numerator + ((x(i)-meanX).*( 0 -meanY));        

end
end

    R(t) = numerator./denominator;
end

% Find the delay
[maxim, argmaxim] = max(R);
answer = nSamples - argmaxim;   % +ve -> D(x)>D(y) & -ve -> D(x)<D(y).
% Plot the cross correlation coefficients. (for verification by eye)
figure(1); plot(R,'.'); title('Cross-CorrelationN coeeficients');
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function answer = distance(a, b)
% implements the Euclidean distance formula to find
% the distance b/n the two points given.

if(length(a)~=length(b))
    error('Dimensions do not match!');
end
answer = sqrt(sum((a-b).^2));
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function answer = ellipseMerit(s)
% Defines a function to be minimized so as to localize a source.
% s -> sound source position.   [x y z] 
% m -> microphone positions. (known: in the reverse problem)
% [x1 y1 z1;
%  x2 y2 z2;
%  x3 y3 z3;
%  x4 y4 z4]
% Delays -> d12, d13, d14, d23, d24, d34

% Find a vector of differences b/n reported delays and (geometrically) 
% expected delays. Then, sum the squares of the vector.
% Because, we are aiming to minimize the sum of the squares in the 
over-
% determined case of more microphones than 3 (b/c we live in 3D).

global BUSHMicLoc;
global BUSHDelays;

vec = ellipseFun(s, BUSHMicLoc, BUSHDelays);
% In the future, divide each element by the PRECISION of the delay 
% estimation. This could be the full width at half maximum of our
% cross correlation coeeficients graph.
answer = sum(vec.^2);
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function res = ellipseFun(s, m, delays)
% s -> sound source position.   [x y z]
% m -> microphone positions. (known)
% [x1 y1 z1;
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%  x2 y2 z2;
%  x3 y3 z3;
%  x4 y4 z4]
% Delays -> d12, d13, d14, ... d23, d24,... d34...

nMic = size(m, 1);
% This is a clever way of calculating the # of Pairs of microphones.
nPairs = (nMic.^2 - nMic)./2;

% So, we will have as many equations as pairs of microphones.
res = zeros(nPairs,1);

% speed of sound
% Distance:- meters     Time:- seconds
c = 300;

% Equations
% We expect the delay reported by cross correlation to equal
% the difference between the distances of the source to each microphone
% divided by the speed of sound.

% Distances b/n microphones and the source.
Dis = zeros(nPairs,1);

h = 1;
for k = 1:nMic

for j = k+1:nMic
        diffD = distance(s, m(k,:)) - distance(s, m(j,:));
        Dis(h) = diffD;
        h = h+1;
%         if h>nPairs+1
%             error(); % needed only at debugging stage.
%         end

end
end

% The final equation
for k=1:nPairs

res(k)= Dis(k)./c - delays(k);
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function answer = loc1ConditionVis(z)
% Helps visualization of the condition number of localize1 routine
% as a function of source coordinates. 
% Due to our limitations to 3D visualization, user picks
% a plane where the sources will be examined upon, by specifying 
% a z value.

% z -> The above-mentioned z value.

figure(3);
cond = [];
xValues = [];
yValues = [];
for xVal = -2:2;
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for yVal = -2:2;
        [a, cond(end+1)] = localize1(1, [xVal, yVal, z]);
        xValues(end+1)=xVal; 
        yValues(end+1)=yVal;

end
end

plot3(xValues, yValues, cond, '*');
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

4.2 Customized Source Separation Code

DISCLAIMER:- The code that is written by James V. Stone, the author of 
Independent Component Analysis: a tutorial introduction is customized for our own use
as follows. [5]
function answer = icaDemo()
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%
% Demonstration code for "Independent component analysis: A Tutorial 
Introduction"
% JV Stone, MIT Press, September 2004.
% Copyright: 2005, JV Stone, Psychology Department, Sheffield 
University, Sheffield, England.    
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%
% CUSTOMIZED BY BINIYAM TESFAYE TADDESE.

% Basic Bell-Sejnowski ICA algorithm demonstrated on 2 speech signals.
% The default value of each parameter is given in [] brackets.

% [0] Set to 1 to hear signals.
listen=0; % set to 1 if have audio. 

% [1] Set random number seed.
seed=9; rand('seed',seed);  randn('seed',seed);

% [2] M = number of source signals and signal mixtures.
M = 2;      
% ### SET THESE OPTIONS! ###
simulation = 1;     % Are you working on real or simulated data?
gongChirp = 0;      % Set ONLY one of these to true. (Source types)
nonGausMonotones = 1; 
simultaneous = 1;   % Are the signals mixed with a delay?
integerDelay = 0;   % default = 0;

% ##################################################################
% Load data, each of M=2 columns contains a different source signal.
% ##################################################################s
% Each column has N rows (signal values). 
if simulation == 0

% [1e4] N = number of data points per signal.
    N = 65000;  
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% [10000] Fs Sample rate of speech.
    Fs=10000;

% Load file
    x = load('KutirNoise.xlc');
end

% ##################################################################
% Load standard matlab sounds (from MatLab's datafun directory) 
% ##################################################################
% Set variance of each source to unity. WHY? (This contradicts 
reality!)
% OBSERVATION: it doesn't quite work without normalizing the sources...
if simulation ==1

if gongChirp == 1
% $$$$$$$$$$ GONG + CHIRP
% [1e4] N = number of data points per signal.

        N = 1e4;        
% [10000] Fs Sample rate of speech.

        Fs=10000;        
        load chirp; s1=y(1:N); s1=s1/std(s1);
        load gong;  s2=y(1:N); s2=s2/std(s2);

end
if nonGausMonotones == 1

% $$$$$$$$$$ NON GAUSSIAN MONOTONES
% [65000] N = number of data points per signal.

        N = 65000; 
% [8000] Fs Sample rate of speech.

        Fs=1000;        
        fMonotone1 = 300;  % Frequency = [1000 Hz];
        fMonotone2 = 150;  % Frequency = [100 Hz];
        domain1 = 0: (((fMonotone1).*2.*pi)./Fs) : ( floor( 
(N./Fs).*(fMonotone1).*2.*pi ) );
        range1 = sin(domain1);  % frequency = 1000Hz

        domain2 = 0: (((fMonotone2).*2.*pi)./Fs) : ( floor( 
(N./Fs).*(fMonotone1).*2.*pi ) );
        range2 = sin(domain2);  % frequency = 500Hz

        s(1, :) = zeros(1, N);
        s(2, :) = zeros(1, N);

% Adjust the structure of the monotones as needed.
for k = 1:N

if mod(k, 5001) ==0
                s(1, (k-3000+1):k) = range1((k-3000+1):k)';

end
if mod(k, 10000) ==0

                s(2, (k-4000+1):k) = range2((k-4000+1):k)';        
end

end

% RESHAPE s!!! -> signals=column vectors.
        s = s'; s1=s(:,1); s2=s(:,2);

end
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% Combine sources into vector variable s.
    s=[s1,s2];

% Listen to speech signals ...
if listen   soundsc(s(:,1),Fs); soundsc(s(:,2),Fs);end;

% Make new MIXING MATRIX.
% A=randn(M,M); 

    A = [0.05, 0.09; 0.09, 0.05];    
% #######################3
% 1. SIMULTANEOUS MIXING
if simultaneous ==1

% Make M mixures x from M source signals s.
        x = s*A;

else
% #######################
% 2. NON-SIMULTANEOUS MIXING        
% Non instantenous sound propagation results in a delay
% at each microphone that is imputed to the source 

constelation. 
if integerDelay == 1
% #########
% Integer Delays.

            sMic1 = shiftSignals(s, [0, 0]);    % Pay attention to the 
sMic2 = shiftSignals(s, [0,0]);    % delay vectors!!

else
% #########
% NON-Integer Delays.                        

            sMic1 = shiftSignalsNI(s, [0, 0.0645]);    % Pay attention 
to the 
            sMic2 = shiftSignalsNI(s, [0.06, 0]);    % delay vectors!!            

end
% MIX

        xMic1 = sMic1*A(:,1);
        xMic2 = sMic2*A(:,2);        

% Form x
        x = [xMic1, xMic2];

end
end

% Listen to signal mixtures signals ...
if listen   soundsc(x(:,1),Fs); soundsc(x(:,2),Fs); end;

% Initialise unmixing matrix W to identity matrix.
%W = eye(M,M);
W = randn(M, M);

% Initialise y, the estimated source signals.
y = x*W;

if simulation == 1
% Print out initial correlations between 
% each estimated source y and every source signal s.

    r=corrcoef([y s]);
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    fprintf('Initial correlations of source and extracted signals\n');
    rinitial=abs(r(M+1:2*M,1:M))
end

% ********************************************************************
maxiter=200;    % [100] Maximum number of iterations.
eta=.2;     % [0.25] Step size for gradient ascent.

% Make array hs to store values of function and gradient magnitude.
hs=zeros(maxiter,1);
gs=zeros(maxiter,1);

% Begin gradient ascent on h ...
for iter=1:maxiter

% Get estimated source signals, y.
    y = x*W; % wt vec in col of W.  

% Get estimated maximum entropy signals Y=cdf(y).
    Y = tanh(y);

% Find value of function h. 
% h = log(abs(det(W))) + sum( log(eps+1-Y(:).^2) )/N;

    detW = abs(det(W));
    h = ( (1/N)*sum(sum(Y)) + 0.5*log(detW) );

% Find matrix of gradients @h/@W_ji ...
    g = inv(W') - (2/N)*x'*Y;

% Update W to increase h ... 
    W = W + eta*g;

% Record h and magnitude of gradient ...
hs(iter)=h; gs(iter)=norm(g(:));

end; W
% ********************************************************************

% PLOT change in h and gradient magnitude during optimisation.
figure(1);plot(hs);title('Function values - Entropy');
xlabel('Iteration');ylabel('h(Y)');
figure(2);plot(gs);title('Magnitude of Entropy Gradient');
xlabel('Iteration');ylabel('Gradient Magnitude');

if simulation ==1
    figure(3); title('Structure of -');
    subplot(3,M,1); plot(s1); title('source 1');
    subplot(3,M,2); plot(s2); title('source 2');
    subplot(3, M, 3); plot(x(:,1)); title('mixture 1');
    subplot(3, M, 4); plot(x(:,2)); title('mixture 2');
    subplot(3, M, 5); plot(y(:,1)); title('result 1');
    subplot(3, M, 6); plot(y(:,2)); title('result 2');

% Scatter Plot 
    figure(4); title('Scatter plot of -');
    subplot(3, 3, 1); plot(s1, s2); title('Source');
    subplot(3, 3, 5); plot(x(:, 1), x(:, 2)); title('Mixture');
    subplot(3, 3, 9); plot(y(:, 1), y(:, 2)); title('Result');

% Histograms /~pdf
    figure(5); title('Histograms of -');
    subplot(3, M, 1); hist(s(:,1),50); title('Source1');
    subplot(3, M, 2); hist(s(:,2),50); title('Source2');
    subplot(3, M, 3); hist(x(:,1),50); title('Mixture1');
    subplot(3, M, 4); hist(x(:,2),50); title('Mixture2');
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    subplot(3, M, 5); hist(y(:,1),50); title('Result1');
    subplot(3, M, 6); hist(y(:,2),50); title('Result2');
else
    figure(3); title('Structure of -');
    subplot(2, M, 1); plot(x(:,1)); title('mixture 1');
    subplot(2, M, 2); plot(x(:,2)); title('mixture 2');
    subplot(2, M, 3); plot(y(:,1)); title('result 1');
    subplot(2, M, 4); plot(y(:,2)); title('result 2');

% Scatter Plot    
    figure(4); title('Scatter plot of -');
    subplot(2, 2, 1); plot(x(:, 1), x(:, 2)); title('Mixture');
    subplot(2, 2, 4); plot(y(:, 1), y(:, 2)); title('Result');

% Histograms /~pdf
    figure(5); title('Histograms of -');
    subplot(2, M, 1); hist(x(:,1),50); title('Mixture1');
    subplot(2, M, 2); hist(x(:,2),50); title('Mixture2');
    subplot(2, M, 3); hist(y(:,1),50); title('Result1');
    subplot(2, M, 4); hist(y(:,2),50); title('Result2');    
end

% Print out final correlations ...
if simulation == 1
    r=corrcoef([y s]);
    fprintf('FInal correlations between source and extracted signals 
...\n');

rfinal=abs(r(M+1:2*M,1:M))
end

% Listen to extracted signals ...
if listen   soundsc(y(:,1),Fs); soundsc(y(:,2),Fs);end;
if simulation ==1 
    answer = [s1, s2, x(:, 1), x(:, 2), y(:, 1), y(:, 2)];
else
    answer = [x(:, 1), x(:, 2), y(:, 1), y(:, 2)];
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
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4.3 Miscellaneous

4.3.1 Geometry of Aliases

This is the MATLAB program that I wrote in order to generate the hyperbolas 
depicting the geometry of the problem in Chapter 2.1.
function answer = DelayGeometry()
% AUTHOR BINIYAM TESFAYE TADDESE.
% It plots the locations of aliases when localizing
% sound sources using 2 microphones applying the
% cross correlation function to find the delay time.

% Microphone locations.
xm1=10; ym1=20;
xm2=5; ym2=10;

gridS = 40;

Lxs1 = [];  Lys1 = [];
LdelayS1 = [];

for xs1=0:gridS-1 
for ys1=0:gridS-1 

%xs2=10; ys2=10;

        dm1s1=sqrt( (xm1-xs1).^2 + (ym1-ys1).^2 );
        dm2s1=sqrt( (xm2-xs1).^2 + (ym2-ys1).^2 );

        delayS1 = dm1s1 - dm2s1;
% Save the values for later plotting

        Lxs1(end+1)=xs1;
        Lys1(end+1)=ys1;
        LdelayS1(end+1)=delayS1;

end
end
figure(1);
plot3(Lxs1, Lys1, LdelayS1); hold on;
plot3(xm1,ym1,0,'g*'); hold on;
plot3(xm2,ym2,0,'r*');

% Do a contour plot
figure(2);
cLdelayS1 = reshape(LdelayS1,gridS,gridS);
contour3(cLdelayS1); hold on;
plot(xm1,ym1,'g*'); hold on;
plot(xm2,ym2,'r*');
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function answer = distance(a, b)
% implements the Euclidean distance formula to find
% the distance b/n the two points given.
x1 = a(1);
y1 = a(2);
z1 = a(3);
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x2 = b(1);
y2 = b(2);
z2 = b(3);
answer = sqrt((x1-x2).^2+(y1-y2).^2+(z1-z2).^2);

4.3.2 Transforming the pdf of a signal

DISCLAIMER:- The entire code in Chapter 4.3.2 is provided by Professor 

Daniel Kaplan. 

function t = histxform(x,y,seed)
% histxform(x,y) transforms x so that it has the same histogram as y
% while maintaining the order of the ranks in x
% x and y should be single column vectors
% histxform(x,n,s) transforms x to have a histogram of the type specified
% by n, with (optional) seed s.
% n == 1 ==> N(0,1)
% n == 2 ==> Uniform(0,1) --- this is deterministic
% n == 3 ==> Triangular(0,2)

% Make sure there are some contents
if any([ length(x) == 0 , length(y) == 0 ])

t = NaN;
error('Empty time series given to histxform')

end

% see if we want a to specify a specific distribution
if any([length(y) == 1,nargin==3])

if nargin==3
randn('seed', seed);
rand('seed', seed);

else
randn('seed', sum(100*clock));
rand('seed', sum(100*clock));

end
if y == 1

y = randn(size(x));
elseif y == 2

y = 0:1/length(x):1;
elseif y == 3 

y = rand(size(x)) + rand(size(x));
end

end

% convert everything to column vectors
[xr,xc] = size(x);
[yr,yc] = size(y);
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if yr == 1
y = y';

end
if xr == 1

x = x';
end

% make sure that y is long enough
while length(x) > length(y) 

y = [y;y];
end

% Here's the meat of the algorithm
% sort x into ascending order
[z,zi] = sort(x);
% same with y
ys = sort(y(1:length(x)));
% ii will find the original indices in x of each point in sorted x
[z,ii] = sort(zi);
% x would be z(ii), but we want the values from ys so
t = ys(ii);

% if the original was a single row, return a single row
if( xr == 1 )

t = t';
end

4.3.3 The Rejection / Acceptance Method

% AUTHOR: BINIYAM TESFAYE TADDESE. 
% DISCLAIMER: Based on theory on [6] Chapter 7. 

% This program produces a signal, which has a cdf characterized by the
% Hyperbolic Tangent Function, and hence with a pdf of square of the Hyperbolic
% Secant Function. The Bell Sejnowski ICA implementation assumes that
% a sound source signal is approximated by this distribution. 

% N is the length of the uniformly distributed signal that we WANT to make.
% b == 1 -> Plot the results. 

% 
@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@
@@@@@@@@@@@@@@@@@@@@@@@

% The Comparison Function used to simulate a Gamma Distribution could
% also be applied to simulate our distribution. The appropriate values 
% of the parameters are listed below. The Comparison Function is:
% f(x) = c0 / { 1 + (x-x0)^2 / a0^2 }. 
a0 = sqrt(2);
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x0 = 0;
c0 = 1.5;
% The area under the Comparison Function is given by sqrt(a0)*c0. 
% This area was made to be reasonably small.
area = c0.*sqrt(a0); 

% Pick a uniformly distributed sequence from 0 to the area under the
% Comparison Function. 
% The RATIO OF THE AREA under the sech(x).^2 TO our comparison function is
% 0.3. So, 70% of the random numbers we generate will be rejected! So, take
% this into consideration.
lengthOfSig = N; % copy N.
N = ceil((1./0.299).*(N));
U1 = rand(1, N); 

% Pass the uniformly distributed numbers through the inverse of the
% Integral of the Comparision function. So, if we think of the Comparison
% Function as a pdf, we are passing the uniformly distributed numbers
% through the inverse of the cdf. 
x = a0.*tan(pi.*U1);

% Pick another uniformly distributed numbers between 0 and f(x). 
U2 = rand(1, N).*( c0 ./ ( 1 + ((x-x0).^2)./(a0.^2) ) );

%%% The CRUX of REJECTION/ACCEPTANCE METHOD.
% U1 and U2 form a pair of randomly generated numbers, which lie under
% the Comparison Function and are uniformly distributed. 
% We need to REJECT those value of U2 that are above sech(x).^2 and ACCEPT
% those values of U2 that are below sech(x).^2. Because, sech(x).^2 is the 
% pdf that is being used to simulate the signal out of. 
% The corresponding members of x that are ACCEPTED will have a sech(x).^2 
% distribution!!!

Ucomp = [U1; U2; x]; 

acceptIndex = find(Ucomp(2,:)<((sech(Ucomp(3,:))).^2));

U = x(acceptIndex);

% The exact length (0.30*N) of our signal needs to be known. So, trim it
% as necessary. 
if (length(U) > lengthOfSig)
    U = U(1:lengthOfSig);
end

if b == 1
% Plot the signal simulated out of the pdf, sech(x).^2. 

    figure(1); plot(U); title('Signal with sech(x).^2 pdf');
    figure(2); hist(U, 1000); title('pdf of the signal, sech(x).^2');

% Plot the Comparison Functino if needed. 
    bbb = [-20:0.05:20];
    figure(3); plot(bbb, (c0 ./ ( 1 + ((bbb-x0).^2)./(a0.^2) )) ); hold on;
    plot(bbb, (sech(bbb)).^2 , 'r'); 
    title('The shape of the Comparison Function superimposed on sech(x).^2 (red)');
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% Return the signal with a sech(x).^2 distribution & its KURTOSIS, (if
% needed). We also need to return a column vector. 
kurtosis = (mean((U-mean(U)).^4)./(std(U).^4)) -3;

end
res = U'; 
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