
Macalester College
DigitalCommons@Macalester College
Mathematics, Statistics, and Computer Science
Honors Projects Mathematics, Statistics, and Computer Science

May 2006

Probabilistic Robot Localization using Visual
Landmarks
Peter E. Anderson-Sprecher
Macalester College, psprecher@gmail.com

Follow this and additional works at: http://digitalcommons.macalester.edu/mathcs_honors

This Honors Project is brought to you for free and open access by the Mathematics, Statistics, and Computer Science at DigitalCommons@Macalester
College. It has been accepted for inclusion in Mathematics, Statistics, and Computer Science Honors Projects by an authorized administrator of
DigitalCommons@Macalester College. For more information, please contact scholarpub@macalester.edu.

Recommended Citation
Anderson-Sprecher, Peter E., "Probabilistic Robot Localization using Visual Landmarks" (2006). Mathematics, Statistics, and Computer
Science Honors Projects. Paper 5.
http://digitalcommons.macalester.edu/mathcs_honors/5

http://digitalcommons.macalester.edu?utm_source=digitalcommons.macalester.edu%2Fmathcs_honors%2F5&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.macalester.edu/mathcs_honors?utm_source=digitalcommons.macalester.edu%2Fmathcs_honors%2F5&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.macalester.edu/mathcs_honors?utm_source=digitalcommons.macalester.edu%2Fmathcs_honors%2F5&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.macalester.edu/mathcs?utm_source=digitalcommons.macalester.edu%2Fmathcs_honors%2F5&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.macalester.edu/mathcs_honors?utm_source=digitalcommons.macalester.edu%2Fmathcs_honors%2F5&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.macalester.edu/mathcs_honors/5?utm_source=digitalcommons.macalester.edu%2Fmathcs_honors%2F5&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarpub@macalester.edu

Probabilistic Robot Localization
Using Visual Landmarks

Peter Anderson-Sprecher

Senior Honors Thesis

Macalester College
St. Paul, Minnesota

Department of Computer Science

Advisor — Prof. S. Fox
Second Reader — Prof. G. Schneider

May 1, 2006

Abstract

Effective robot navigation and route planning is impossible unless the

position of the robot within its environment is known. Motion sensors that

track the relative movement of a robot are inherently unreliable, so it is nec-

essary to use cues from the external environment to periodically localize the

robot. There are many methods for accomplishing this, most of which ei-

ther probabilistically estimate the robot’s movement based on range sensors,

or require having enough unique visual landmarks present to geometrically

calculate the robot’s position at any time.

In this project I examined the feasibility of using the probabilistic Monte

Carlo localization algorithm to estimate a robot’s location based off of occa-

sional visual landmark cues. Using visual landmarks has several advantages

over using range sensor data in that landmark readings are less affected by

unexpected objects and can be used for fast global localization.

To test this system I designed a robot capable of navigating Olin-Rice by

observing pieces of colored paper placed at regular intervals along the halls

as an extension of my summer 2005 research on RUPART. The localization

system could not localize the robot in many situations due to the sparse

nature of the landmarks, but results suggest that with minor modifications

the system could become a reliable localization scheme.

1

Contents

1 Introduction 4

2 Sensor input 5

2.1 Range sensors . 6

2.2 Vision sensors . 7

2.2.1 Landmark-based localization 7

2.2.2 Vision-based localization without landmarks 10

3 Localization systems 12

3.1 Instantaneous localization . 13

3.2 Continuous localization . 16

3.2.1 Monte Carlo Localization 17

4 RUPART 20

4.1 A first attempt at localization 20

4.2 A probabilistic localization scheme for RUPART using artifi-

cial landmarks . 22

5 Method 29

6 Results 30

6.1 Tracking . 31

6.2 Global localization . 33

6.3 Weaknesses of the system . 37

2

6.3.1 Robot motion error . 37

6.3.2 Sample error . 39

6.3.3 Vision sensor error . 40

6.3.4 False markers . 40

6.4 Conclusions and directions for future work 41

A Source code for Monte Carlo Localization 43

B Source code for navigation and localization in RUPART 52

C Source code for test run display window 75

3

1 Introduction

A primary task that one faces in any attempt to build a working robot is

localization, the act of determining a robot’s location within its environment.

If a robot’s location within some sort of map can be known at all times

then performing such things as route navigation and goal planning are quite

simple. Localization involves comparing data from an external sensor with

information about the robot’s environment in order to determine the robot’s

most probable location.

It is not sufficient to simply estimate the robot’s position through ”dead

reckoning,” or using motion sensors to measure movement from a known start

position. Due to the inherently unreliability of motion sensors, if the robot is

run for a long distance without performing any kind of localization it will be

impossible to have any meaningful data regarding the robot’s position. The

extent of motion sensor error is very dependent on the type of robot used,

but a small wheeled robot such as the Pioneer 2 robot used in this study will

have its assumed position be off by as much as 5 meters within a minute of

running. The task of compensating for these motion sensor errors during the

robot’s movement is called ”Tracking” and is an essential capability of any

localization system.

Furthermore, it is often necessary to determine where a robot is in an

environment without any knowledge of the robot’s starting position. This

task, called ”Global Localization,” is often described using a kidnapping

4

metaphor: you pick up the robot, blindfold it, and put it anywhere in the

environment and it must be able to determine its location. This is in general

much more difficult than simply maintaining the robot’s location. (Russel

908)

In this study I examine the feasibility of using distributed visual land-

marks to accomplish localization in a probabilistic fashion. Robots in large

building-type environments usually are designed to rely on range sensor (i.e.

sonar or laser) data for localization, simply because vision sensors usually re-

quire extensive placement of landmarks prior to running the robot. However,

there are also several distinct advantages of using visual landmarks instead.

2 Sensor input

There are two decisions that must be made when developing a localization

system. First, one must determine the nature of the sensor data that will

be used to compare against some known environment as well as the map or

other method for storing environmental data. Second, one must choose a

method for extrapolating from observed sensor data the most likely location

of the robot at a given time.

The two most often-used types of sensor data are visual, usually from

some sort of camera, and range, usually from sonar or laser sensors. There

are, however, many other potential sources for localization sensing. One no-

table example is the Global Positioning System, a localization system com-

5

monly used in automobiles and aircraft, which relies on timing signals from

satellites in geostationary orbit.

2.1 Range sensors

Range sensor data are probably the most widely commonly used sensors for

localization. Using data from range sensors has several advantages. First, it

requires virtually no processing before being used for localization, since range

sensors give an absolute distance to the nearest obstacle which can be easily

compared with a 2-dimensional map. Second, robots are almost universally

equipped with either sonar or laser range sensors, so a localization scheme

using range sensors can be easily adapted to work on just about any robot.

However, there are also disadvantages to using range sensors. Range

sensor based localization can be thrown off by unexpected and/or moving

objects, as well as objects that are too small to be taken into account in

a map but show up on range sensors. A classic example of this involves a

robot entering a ballroom full of people and trying to localize based on sonar

sensors emanating from the robot at leg level. In this case, the presence of

people will make the room look more like a small room or closet than an

open ballroom because most sonar readings will reflect off of people’s legs

instead of walls. If localization is attempted in this situation the robot will

believe that it is in another room entirely.

Using range sensor-based localization also makes global localization quite

difficult. A given set of sensor data may not be unique to one location within

6

the environment; many locations may yield similar sensor readings. For

example, if a robot is traversing the hallways of a standard office building, it

would be impossible to quickly determine which hallway the robot is in. The

robot would have to traverse several hallways and junctions before gathering

enough data to determine its position.

2.2 Vision sensors

Vision sensors, usually taking the form of a camera mounted on the robot,

are an alternative to range sensors that can help solve some of these issues.

Direct camera snapshots of the environment are not useful, however, since

the camera only gives a bitmap of what is seen at any given time, and there

is no easy way to map this bitmap onto knowledge about the surrounding

environment. To circumvent this problem, one must apply some sort of

preprocessing to the bitmap in order to extract useful data from the camera

before data obtained from vision sensors can be applied to localization.

2.2.1 Landmark-based localization

The easiest way to localize based on visual data is to find certain easily iden-

tifiable objects in the environment and pay attention only when one or more

of those are in the camera’s field of view. When any of these landmarks are

seen by the robot, the perceived locations of the landmarks can be compared

to their known locations within the environment and the robot’s position can

be deduced.

7

Landmarks used for localization can be either artificial or natural. An

artificial landmark is one that would not exist normally in the environment

but has been placed to aid localization. Natural landmarks, on the other

hand, are objects that are coincidental to the environment but still stand

out enough to be easily recognizable. (Murphy 326) For example, a robot

wandering through an office building might want to use a houseplant and a

poster as natural landmarks, since they are unique and stand out from the

background of the building.

Identifying blobs of uniform color is a function supported by most vi-

sion processing software, so an easy way to use artificial landmarks is to

deliberately place markers of different solid colors around the environment

in locations that are easily seen by the robot. Patterned artificial landmarks

are also often used because it is easier to make them uniquely identifiable

than it is with solid-color landmarks and the processing required to identify

them can be relatively minor.

While artificial landmarks have the advantages of being easily identifiable

and placed in useful locations, such placement can be troublesome. For

comparable accuracy the frequency of placement must be the same regardless

of the size of the environment. This means that large environments can be

particularly difficult. For example, a field for robotic soccer is quite easy

to mark so that several markers are visible at all times, but this would be

very difficult in an open building environment such as what I attempted

to have RUPART navigate. Fields for robotic soccer typically have over

8

5 landmarks in a field that is less than 10 square meters in size, so using a

comparable marker density in Olin hall (about 400 m2) would require several

hundred markers. In section 4, I explore the idea of using artificial landmark-

based localization with much more sparsely placed markers, but in general

this problem is very difficult. Because of this difficulty, artificial landmarks

are mostly used in small, controlled environments such as the fields used in

robotic soccer competitions. Localization techniques for robotic soccer are

described in more depth in section 3.1.

One way around these problems associated with placing artificial land-

marks in a large environment is to try to use only natural landmarks instead.

Several studies focus on the feasibility of identifying and tracking natural

landmarks for use in robot localization, notably the work done by Isard

(1999) on using the Conditional Density Propagation algorithm for natural

landmark identification.

However, while attractive in concept natural landmarks have several dis-

tinct disadvantages: first, they require more computational power to identify

than simple artificial landmarks, and second, it is hard to guarantee that

landmarks are globally unique (landmarks may be very similar to each other.)

For example, in an office environment there might be a brightly-colored poster

on the wall in one room and the same poster in an adjacent room. Unless the

robot knows ahead of time that there are identical landmarks in each room,

it could easily mistake its position.

Whether natural or artificial, visual landmarks solve many of the prob-

9

lems inherent to range and other similar sensors. While range sensors are

vulnerable to the effect of unexpected objects or room ”clutter,” visual sen-

sors using landmarks are not affected by these kinds of extraneous objects

since for successful localization they require only that the landmarks them-

selves be visible. Also, visual landmarks are often unique, making global

localization very easy when compared to systems using sonar sensors.

2.2.2 Vision-based localization without landmarks

Another way to use vision sensor data in localization is to avoid searching

for landmarks entirely and instead use the entire image as a reference for

localization. One way to accomplish this is to construct a Computer Aided

Design (CAD) model of the robot’s environment and compare images di-

rectly to that. This, however, is impractical both because it is impossible to

accurately model a real-world environment due to constant fluctuations and

object complexities and because it would be computationally expensive to

extract position data from comparing 2-D observations to such a model. It

is better to reduce the complexity of the data found in the composite 2-D

image maps and search for emerging trends that will be observed indepen-

dent of a particular location for the robot. (Krose 1) One standard method

for accomplishing this is that of Principal Component Analysis (PCA). The

idea behind PCA is that the vast majority of what the robot sees will not

be useful for localization. For example, a robot wandering down an office

hallway might see large blocks of unchanging color along the walls and the

10

floor, but it will also see regions of change near specific features on the wall

and along the boundary between the wall and the floor. If we can somehow

extract only those parts that are interesting, such as these regions of contrast,

it will be easier to compare observations and localize the robot.

PCA is a statistical technique that is used to reduce the dimensionality

of a dataset while preserving most of the information contained within it.

In its pure form, it operates on a high-dimensional dataset in the following

manner:

1. Subtract the mean of each of the data dimensions.

2. Calculate the covariance matrix of the data.

3. Order the eigenvectors by their eigenvalues. The eigenvector with the

highest eigenvalue is the principal component of the data set, and the

kth component corresponds to the vector with the kth highest eigen-

value.

(Smith 18)

Once the principal components have been identified, most of the less

important components can be discarded without losing much information.

When applied to robot vision, k sample images of d pixels each are collected

initially, and then the images are represented as k d-dimensional data vec-

tors. Then, PCA can be applied to the resulting d-dimensional data set.

The principal components will also take the form of d-dimensional data vec-

tors, which can also be interpreted as images similar to those collected in

11

real time. While for significant (80%) image reconstruction as many as 90

eigenvectors are needed, robot localization can be accomplished with around

15 eigenvectors. (Krose 9,15)

Before these observations can be used for localization, a number of train-

ing samples must be collected from known locations within the environment

for comparison with the robot’s observations during localization. Because

of this, PCA is most useful for robot localization when the environment is

small enough to maintain a high density of training samples without making

comparison tasks computationally expensive. Office environments several

hundred square meters in size can be easily supported, but if the environ-

ment becomes much larger then maintaining a sufficient density of training

samples would be difficult.

3 Localization systems

Regardless of the method used to collect and process the environment data,

there are many methods for extracting position data from whatever is learned

about the environment. One standard classification for these systems is that

of iconic versus feature-based, where the former consists of algorithms that

use sensor data with no pre-processing (i.e. raw sonar readings) while the

latter performs some kind of feature extraction (i.e. finding landmarks.)

(Murphy 377) Here we will use a slightly different classification: instanta-

neous localization algorithms, which use the robot’s current location and

12

sensor data collected at one, or perhaps two, instants in time, versus con-

tinuous localization algorithms, which use an aggregate of observations over

time.

3.1 Instantaneous localization

The most straightforward instantaneous localization method is pure geo-

metric localization, which involves taking the sensor data and geometrically

calculating a best estimate of the robot’s location based on what is known

about the environment.

Regardless of the exact method used, there are several advantages to

instantaneous localization:

1. There is no difference between global localization and tracking. The

robot’s position is calculated based solely on what is seen at one or

more locations and not dependent on the robot being near an assumed

position, so there is no penalty for not knowing the robot’s position at

the beginning.

2. Instantaneous localization is typically computationally inexpensive. No

information is kept from previous observations, so only a few calcula-

tions are needed to obtain the robot’s location. Because the robot’s

position must be triangulated based on its sensor data, instantaneous

localization is generally used with sensor data that can be traced to

identifiable sources with known locations. Range sensors, for exam-

13

ple, are a very poor choice since any set of observed distances could

correspond to a great number of different locations, while visual land-

marks are a very good choice since they can be uniquely identified and

correspond to exact points in space.

One very successful instantaneous localization system is the Global Posi-

tioning System (GPS), which uses timing signals from 24 satellites in orbit

around the globe as sensor input. These satellites each contain an atomic

clock that constantly broadcasts the current time, which allows a receiver to

determine the distance of each satellite by measuring the observed difference

in the propagation delay of the signals. The satellites are positioned such

that at least 4 are visible at any time, allowing for localization anywhere in

the world at any time.

Instantaneous localization can also be used with visual landmarks. It is

possible to triangulate the position of the robot after at least 2 measurements

of a single marker (assuming the distance traveled between observations is

known,) or after a single observation of at least 3 markers. However, the

former is less commonly used because parallax computations are susceptible

to minor error in either motion sensors or vision sensors. In section 5 I develop

and examine a possible alternative to geometric localization for situations in

which only one marker is visible at a time.

One situation in which geometric localization based on multiple markers is

used often is in the burgeoning field of robotic soccer competition. A robotic

soccer match usually consists of a number of robots in a small rectangular

14

field that attempt to get the ball into their team’s goal. The robots are

entirely autonomous during the event except for communication with the

other robots on their team, so naturally it is imperative that a very robust,

fast, and reliable localization scheme be available. (Beetz 1)

In this environment, the task of ensuring that many markers are visible

at all times is made easy by the fact that the field is relatively small and

can be prepared ahead of time. The field is marked with a minimum of one

distinctly colored post at each corner of the field, but usually more posts

along each side are used together with markers placed on distant walls which

give the robots an idea of absolute direction. Goals and the areas near goals

are also marked with special colors so that important goal-oriented tasks can

be easily accomplished. (Beetz 2)

Once the environment is prepared in this way, the robot can often deduce

its location from the perceived angles between known marker locations with

a straightforward geometric calculation. The robot will be able to know its

position with no prior information provided that the robot is able to see at

least three posts at any one time or two posts plus a marker that gives the

robot an idea of its absolute orientation.

However, even with an extensively marked environment it is difficult to

build a system capable of robust instantaneous localization in the manner

described above, both because readings from vision sensors can be somewhat

unreliable and because it is hard to ensure that the robot will be able to see

the requisite number of landmarks at all times. Because of this, many systems

15

for localization in robotic soccer such as the one implemented by Beetz et al.

are not pure instantaneous localization systems but instead use a combination

of multiple landmark locations, assumed position knowledge and odometry

data in the context of a probabilistic localization system as described in

section 3.2. Purely instantaneous localization systems are sometimes used

when an abnormally wide range of view is available for the robot, such as

in the work done by Marques and Lima using robots with omnidirectional

cameras.

3.2 Continuous localization

There are also alternatives to using an instantaneous approach for localiza-

tion. Many algorithms do not use only what is seen by the robot at one or

two points in time, but instead use some sort of record of past observations

in order to maintain a running record of the robot’s most likely location.

Many of these methods are probabilistic, which is to say that they do

not compute the actual location of the robot at every step with certainty,

but instead keep track of the probability that the robot is in any particular

position and update that continuously. When the robot is relatively cer-

tain of its location, the probabilities will be very high at a particular point

and low everywhere else. (Russel 908) There are many probabilistic local-

ization methods, such as dynamic Bayesian networks, Kalman filters, and

Monte Carlo Localization. The localization system explained in chapter 5 is

based off of the Monte Carlo Localization algorithm, so we will examine that

16

particular algorithm in greater detail here.

3.2.1 Monte Carlo Localization

Probably the most common and easily implemented probabilistic localization

method is Monte Carlo Localization (MCL). MCL can draw on any kind

of sensor data: some kind of range sensor such as laser or sonar is most

common, but in section 4 we will look at how it can be used in conjunction

with environment data derived from visual cues.

MCL keeps track of a probability density function for the robot’s current

location based on a set of possible locations and how well its stored map data

match up with current sensor input. This probability density function is then

updated based on continuous observations of the robot’s environment.

It would be difficult to keep track of a continuous probability density

function over the entire map area, so a collection of representative points are

kept instead of the entire function. The density of these sample points should

correspond to the probability at any one point, i.e. the samples will cluster

at the location of greatest probability. An example of a typical sample point

distribuition can be seen in Figure 2.

The task of the algorithm is then to maintain and update these samples

in the following manner:

1. Update the samples in accordance with some known robot motion

model P (X1|X0, A0) where X is the robot’s position and A is the

robot’s movement since its previous location.

17

2. Give a weight Wi to each sample proportional to the probability that

the sample is correct. This is accomplished by using a sensor noise

model P (Z|Z ′) to compare the reading with expected readings at the

sample point.

3. Generate a new set of sample points based on these weights. New

sample points S ′ are taken from existing samples S where each sample

S ′
x is set to a sample Sy with probability Wy∑

Wi
.

This algorithm is typically used with range sensor data, because with

range sensors current information can always be compared with a 2-D map

for localization. This is in contrast to visual landmarks, which may only be

occasionally visible to the robot. Having range sensors be able to compare

data with a 2-D map also has the added benefit during tracking of ensuring

that the robot’s expected position always stays within corridors and does

not deviate across walls. Of course, there are several disadvantages to using

range sensor data for Monte Carlo localization: the system will still have

all of the weaknesses of range sensors such as vulnerability to unexpected

objects and difficulty accomplishing global localization.

A standard algorithm for Monte Carlo Localization using range sensors

is shown in Figure 1.

Figure 2 is a good example of what the distribution of the samples in

MCL looks like when there is little sensor data to go on and therefore all

samples are given roughly equal weight. The samples are spread out along the

18

function Monte-Carlo-Localization(a,z,N,model,map)

returns a set of samples

inputs:

a, the previous robot motion command

z, a range scan with M readings z1...zM

N, the mumber of samples to be maintained

Model, a probabilistic environment model with pose prior P(X0),

motion model P(X1|X0,A0), and range sensor noise model P(Z|Zhat)

Map, a 2D map of the environment

for i = 1 to N do

S[i] = sample from P(X1|X0 = S[i], A0 = a)

W[i] = 1

For j = 1 to M do

Zhat = Exact-Range(j,S[i],map)

W[i] = W[i] * P(Z = zj | Zhat = zhat)

S = Weighted-Sample-With-Replacement(N,S,W)

return S

Figure 1: MCL algorithm using range sensors (Russel 908)

19

direction perpendicular to the robot’s recent movement because the majority

of position error comes from error in the robot’s orientation, which naturally

causes perpendicular position error after moving a long distance. When

useful sensor data is available to the robot, the samples will usually converge

to a small area as seen in Figure 3.

4 RUPART

I developed several workable localization schemes in conjunction with my

summer 2005 research on RUPART. The primary focus of the research was

to develop a robot capable of navigating Olin hall at Macalester College by

using case-based reasoning to select immediate wandering behaviors as well

as long-term routes for the robot. However, since these ”routes” consisted of

a number of waypoints expressed in absolute coordinates that the robot had

to reach on its way to the goal, an effective localization scheme was necessary

for any kind of long-term navigation. (Fox 1) All research on RUPART was

done using ActivMedia Pioneer 2 robots, and testing was done within the

Olin science hall at Macalester College.

4.1 A first attempt at localization

The original localization scheme I developed for RUPART was an instanta-

neous localization system that used standard 8.5x11 pieces of brightly colored

paper carefully placed at regular intervals throughout the environment.

20

The robot ordinarily ran entirely on dead reckoning, and occasionally

paused at a marker to update its location based on the observation of a

marker. In an ideal run the robot conducted localization only when a goal

point with a nearby marker was reached in the course of normal navigation.

Once such a goal was reached, the localization routine consisted of facing

the marker and moving to within 75cm of the wall, at which time the robot

turned perpendicular to the wall using sonar and then calculated its position

based on a combination of its distance from the wall and the angle between

the robot and the marker.

However, this system depended heavily on markers being put up fre-

quently and with each marker paired with a goal location that signaled when

the robot must stop to localize. Furthermore, using sonar to orient the robot

with respect to the wall was not necessarily reliable, so unless markers were

put up at virtually every map point the robot would almost certainly lose

track of its next goal at some point due to accrued dead reckoning errors.

In this eventuality, the robot is forced to localize to the next marker that

it sees. It is assumed that the robot’s location is not in error enough to be

closer to a different marker than the one it is actually next to, so the marker

with the closest absolute location is assumed to be what the robot is seeing,

and localization is conducted in the same way as before. (Fox 4)

The most significant disadvantage to this kind of localization scheme is

that the robot is forced to stop for a significant amount of time whenever a

marker is seen. This can make any kind of navigational task very slow, which

21

prompted me to attempt a more elegant localization system as described in

the next section.

4.2 A probabilistic localization scheme for RUPART

using artificial landmarks

While stopping movement to establish a known position at every landmark

can be a successful localization scheme, a more attractive solution would

be to make a system that was able to extract localization information from

landmarks without altering the physical movement of the robot in any way.

Even without modifying the robot’s movement it will still naturally see and

recognize one of the landmarks fairly often, but such an observation yields

only an angle measurement between the robot’s orientation and the direction

of the currently observed landmark.

One way to transfer this information into a localization system is to use

Monte Carlo Localization with the observed angle of the marker as an al-

ternative to the standard range sensor data described in section 3.2. This

has several immediate advantages over the previous system used for RU-

PART: the robot will be able to localize without first needing to reach a goal

point near the marker, and it will no longer be necessary to interrupt robot

movement for the sake of localization.

It might also seem preferable to stop using visual landmarks altogether

and adopt a standard range sensor-based MCL system. However, there are

22

several distinct advantages of using visual landmarks that make it worth

investigating:

1. It is not necessary to build a detailed map of the environment in order

to use visual landmarks: all that is necessary is to place occasional

landmarks and record the absolute location of each of them.

2. There are none of the unreliability issues seen with range sensor data

when unexpected objects are introduced to the environment. As long

as the landmarks are visible, localization will be unhindered.

3. Since artificial landmarks can be made to be uniquely identifiable,

global localization is much easier than it is when using range sensor

data.

However, in order accommodate landmark data, the standard MCL algo-

rithm must be changed significantly. As before, given an initial set of samples

(either set to the robot’s initial position or distributed throughout the en-

vironment) we keep track of the movement of the robot by adjusting every

sample according to the robot motion model R(p), which in this case is based

off of estimates of the dead reckoning error of the robot. The robot has a

position that it updates continuously with regards to wheel motion sensors;

we can assume that this is correct to within some error margin E so that the

perceived motion from the dead reckoning sensors is ∆X ′ = dX +E. For the

Pioneer robots, the average is about plus or minus 2%.

23

Based on this, we build our robot motion model for translating a sample

S = (Sx, Sy, Sθ) to a new sample S ′ = (Sx + ∆Sx, Sy + ∆Sy, Sθ + ∆Sθ),

given previous assumed position R = (Rx, Ry, Rθ) and new assumed position

R′ = (Rx + ∆X, Ry + ∆Y, Rθ + ∆θ) as follows:

We first let

∆Parallel = ∆Xcos(Rθ) + ∆Y sin(Rθ)

∆Perp = ∆Y cos(Rθ) − ∆Xsin(Rθ)

Then,

∆Sx = ((∆Parallel ∗ cos(θ)) − (∆Perp ∗ sin(θ))) + Ex

∆Sy = ((∆Perp ∗ cos(θ)) + (∆Parallel ∗ sin(θ))) + Ey

∆Sθ = ∆θ + Eθ

However, since E for a particular sample is necessarily unknown we in-

stead apply a random error value from -7% to +7% to the sample. This will

yield an average deviation of 3.5%, which is about right given a real-world

average error of 2% since it is best to slightly overestimate error values. An

average error rate of 3.5% should allow for higher than average position error

without causing the samples to disperse too rapidly. Given this, we substi-

tute adding E with multiplying the perceived ∆S by a random value between

.93 and 1.07. Then we have

∆Sx = ((∆Parallel∗cos(θ))−(∆Perp∗sin(θ)))∗(1+((random[0, 1]∗
.02) − .01))

24

∆Sy = ((∆Perp∗cos(θ))+(∆Parallel∗sin(θ)))∗(1+((random[0, 1]∗
.02) − .01))

∆Sθ = ∆θ ∗ (1 + ((random[0, 1] ∗ .02) − .01))

If there are no visual environment data at a particular step, then all that

is necessary is to update the samples in accordance with the robot motion

model. However, this alone will not localize the robot, so if some sort of

visual cue is present then we must adjust the samples to give preference to

the ones that fit the sensor data more closely. In our system, all that we know

is the absolute position of the marker that is currently being observed within

the environment (markers are assumed to be uniquely identifiable from their

colors) and what the observed angle is between the marker and the forward

orientation of the robot. We then need to assign weights to the samples

based on how well they match this limited information.

In certain cases it is easy to tell that the robot has no chance of being in

the position described by the sample: this is always the case when the robot

is positioned behind the marker, as all markers are assumed to be flat pieces

of paper and therefore not visible except from the 180 degrees in front of

them. We also assume that markers are not visible from more than 5 meters

away (generous for 8.5”x11” pieces of paper,) so samples with a Euclidean

distance of more than 5 meters are similarly given a zero weight.

Otherwise, we assume that there is some possibility that the robot is

seeing it from the position designated by the sample, and then compare the

observed angle to the marker with the expected angle between the position

25

sample and the marker location. A reasonable method for assigning a weight

WS to a sample S is to use 1
|th−th′| , where th is the expected angle between the

robot and the marker (calculated from the relative positions of the sample

and the marker,) and θ′ is the angle observed by the robot. This is not a

direct estimation of P (θ|θ′), since for small values of |θ − θ′| the weight will

be much greater than one, but it should be proportional to the probability

and does give a heavy emphasis to values that match up closely, which is a

desirable trait.

However, there is a problem with this in that WS approaches infinity as

θ approaches θ′. This is easily fixed by letting the final weight for a sample

be 1
max(|θ−θ′|,θ0)

, where θ0 is assumed to be the lowest possible meaningful

measurement of theta for the marker. A value of θ0 = .1 should be practical

for most applications.

Once the weights are established, the weights must be converted to prob-

abilities for the purposes of creating the new sample set. We let Px = Wx∑
Wi

,

and then for each sample in the new sample set, set it to one of the old

samples Sx with probability Px.

There is also one other contingency that must be accounted for. It is

possible, either through having an initially unknown position or through

sensor accidents, that the robot will lose track of its position entirely and

all samples will be given a weight of zero on a particular pass. In this case

the samples must somehow be reset because otherwise it is unlikely that

meaningful localization will become possible again.

26

To solve this problem, whenever this happens we assign all samples to

random positions within the range of positions that would be given a high

weight for the currently observed marker. This means that all samples will

be within the 180-degree arc in front of the currently observed marker and

all orientations will be facing more or less in the direction of the marker.

Unfortunately, we cannot eliminate positions that are impossible because of

being behind or inside of a wall because the localization system does not have

a map of the environment. The effects of this system for global localization

are discussed further in section 6.2.

If the samples are updated in this fashion often enough, then the sample

set should quickly converge upon the actual location of the robot. However,

simply maintaining an accurate sample set is not sufficient for a completely

functioning localization scheme, as most navigation programs run on the

hardware position of the robot, rather than on the set of samples used for

localization. Thus, it is necessary to periodically set the hardware position

of the robot to whatever seems like the most probable position based on

the current sample set. Furthermore, if the samples are too spread out or if

none of them match current landmark data well, it would probably be better

to avoid changing the hardware position at all and instead wait until the

samples have had a chance to converge further.

An easy way to find the most probable location is to take the arithmetic

mean of the samples in the x, y, and theta dimensions. Of course, there may

be a number of outliers, so we also need to calculate the Euclidean distance

27

of each sample from this mean point and then remove the 10% of the samples

that are farthest from the mean point. Then, the mean is recalculated based

on this reduced set.

An alternative method for finding the most probable location can be used

if a marker is visible to the robot at the time it is being calculated. Samples

nearest to the correct position will naturally be given high weights, so the

mean position can be calculated based on only those positions that would be

given a high weight if localization were to be conducted at that time.

If more than about 10% of the samples fall more than 1 unit (for simplic-

ity, 1 radian is equal in magnitude to 1 meter) away from the calculated mean

point, then the samples are probably too spread out to extract any useful

data from and the robot should wait to reset its position. Furthermore, we

need to make sure that the sample matches observed data well (after all, it is

possible that the samples are clustered at an erroneous point.) This means

that if the mean point is compared with an observed marker and the sensor

data does not match what is expected (i.e. the mean point would be given

a low weight) then it is not reliable enough to use for updating. Otherwise,

if the samples are well clustered and the mean point appears to be accu-

rate, then the mean point is probably a good estimation of the actual robot

location and we can set the hardware position of the robot.

28

5 Method

All tests of the system were conducted in Olin hall at Macalester College

using one of Macalester’s ActivMedia Pioneer 2 robots. The robot’s sensors

consisted of 16 sonar sensors and one Sony PTZ camera. Markers for lo-

calization consisted of 8.5x11 inch pieces of colored paper that were placed

about 6 inches above the floor at 7 locations throughout hallways in Olin

hall.

RUPART was used as the primary behavior controller for the robot and

is a behavior-based control system implemented in python with the Pyro

system (Pyro) that uses case-based reasoning to select routes and behaviors

for the robot. Behaviors dictate primary motion, avoidance, and immediate

goal acquisition, while the route ensures that the next immediate goal will

be both easily attained using reactive control and will bring the robot closer

to its final destination. The localization task was treated as a behavior that

was always active and that performed localization once per second for the

duration of the run. The code for RUPART is in Appendix B. The MCL

system was implemented in c++ using SWIG to generate a wrapper for use

in the RUPART code, and can be seen in Apendix A.

Primary tests were conducted from the Macalester robotics lab to the

west end of the south hallway in Olin hall. Three markers were passed in

this case, two of which were approached by the robot head-on and one of

which was only seen alongside the robot as it went down the first hallway.

29

All three markers used in this test were uniquely identifiable by their colors.

In all cases 50 samples were maintained for localization.

The robot’s assumed position, currently observed marker (if one was

present,) and the position of all samples contained in the localization sys-

tem were recorded once per second for the duration of each run. Results

were analyzed by viewing them graphically using the display system listed

in Appendix C.

6 Results

The system works well in that the samples usually cluster near the robot’s

actual position, especially just after a marker has been seen. Using this sort

of data for probabilistic sampling has some inherent disadvantages, since

the information that can be compared to the environment is limited (all we

know is the angle between the robot and the marker.) This means that

at any particular point there are many points that could satisfy the angle

measurement, far more so than with range sensor based localization. The

robot must be able to see the marker while traveling past it in a way that

produces significant parallax in order to eliminate other possible locations

near the marker.

Furthermore, the system behaves quite differently when the localization

problem is tracking, where the robot’s initial position is known, versus global

localization, where the robot’s initial position is unknown.

30

6.1 Tracking

For reliable tracking, it is necessary to either have a navigation system that

is minimally dependent on localization, or to have a robot with low motion

sensor error. In the robot that was used for testing this system, motion

sensor error was relatively low, typically causing about 1 degree of error per

360 degree rotation. This enabled the robot to travel easily from one marker

to the next without having a significant loss of position. In this kind of

low-error environment, the best system for tracking is to rely on the motion

sensors most of the time, and update only when samples are closely clustered

together.

In the current system, tracking is possible as long as markers are seen

frequently enough to allow the samples to converge on the correct location.

After passing a single marker, the estimated position of the robot is usually

accurate to within 50cm and the robot’s estimated absolute orientation is

accurate to within about 5 degrees. However, an error of only a few degrees

can cause significant loss of position after a long distance is traversed.

Also, even when the robot leaves a marker with little or no position error,

the samples will quickly disperse. Figure 2 shows the samples 20 seconds

after seeing a marker. The X represents the robot’s position and all other

dots are the 50 samples currently maintained by MCL.

This means that if the robot is localized to a position near a single marker,

then it cannot be guaranteed of still having accurate position data after

running on dead reckoning for a moderate distance. Fortunately, we can

31

Figure 2: Distributed sample points surrounding robot

expect that every time a marker is passed, the samples will converge to a

more precise grouping. A set of converged samples typical of what would be

used for resetting the robot’s position is seen in Figure 3.

It should be noted that while this kind of low motion sensor error rate is

typical for wheeled robots on flat, even surfaces, the results would be very

different for other systems in which legged robots were used or difficult terrain

had to be traversed. This would create far more noticeable sensor error, and

the same kind of sparsely marked environment would be very impractical

to use. In addition to adjusting the motion model to account for the new

environment, it would be necessary to significantly increase the frequency

of markers. It is likely that this kind of sparsely populated marker-based

localization would be impractical for such a system.

32

Figure 3: Sample points after resampling based on marker (Green X)

Most research involving mobile robots with high error rates bases local-

ization off of either range sensor data (sonar or laser sensors) or involve

environments where several markers are visible at all times. A classic exam-

ple of a high-error environment would a robotic soccer event in which the

robots undergo frequent collisions and the players are often legged robots.

The designers of robotic soccer teams usually get around this difficulty by

ensuring that several markers are visible at all times, such as in the work

done by Beetz et al.

6.2 Global localization

Global localization is ostensibly one of the great strengths of using artificial

markers for localization. Since it is possible to have every marker distinct

33

or with only a few repetitions, as soon as a marker is seen there is only a

small range of positions that the robot could possibly be in. This makes

absolute localization far easier than in the case of range sensor-based local-

ization or PCA techniques for vision-based localization, where given a single

observation there are a great number of places that the robot could be.

The system as implemented can easily localize to an approximate position

after observing a single marker, but only if there exists at least one sample

near the robot’s initial location. If such a sample exists, then upon seeing a

marker all other samples will quickly drop away and the robot’s position will

be known. However, if there is not a sample nearby then most of the samples

will merge to the sample most similar to the real robot, which likely will

be significantly different from the actual location. If all samples are either

behind the marker or more than 10 meters away from the marker, then the

samples cannot be adjusted at all, because they will all be given a weight of

zero. In such cases, the samples will probably never converge on the robot’s

location even after many markers are passed unless the samples are reset.

Then, of course, the problem is how to ensure that at least one sample is

near to the actual marker location. The method that is used in most range

sensor-based Monte Carlo Localization systems is to simply distribute all

samples throughout the system when the robot is started. (Russel 908) This

seems like the only option when nothing at all is known about the robot’s

location, but we would need a very large number of samples randomly dis-

tributed around the environment to have a decent chance of having one that

34

Figure 4: Initial distribution of points (samples are red dots, robot is blue
X)

is close to correct. Figure 4 shows a random sample distribution throughout

the Olin hall environment using 50 samples. These samples are obviously

too sparsely distributed to localize the robot.

Obviously, the number of samples needed to get an accurate location in

this size of an environment is very high.

In addition, this method is wasteful because as soon as a marker is ob-

served we know that the robot must be close to that marker, in front of that

marker, and in an orientation that gives the robot its observed angle to the

marker. We know that all locations that do not fit those criteria have a zero

probability of being correct and all positions within that area have a roughly

equal probability of being correct, we can update the samples to reflect the

new probability information. This gives a very high sample density within

35

Figure 5: Possible sample positions after observing a marker

that area, as seen in Figure 5.

In the current system, this conditional reset of the sample set is performed

whenever it is clear that the robot cannot be localized based on its current

sample set. If all samples are given a weight of zero during a particular

resampling event, then all samples are discarded and they are reset to random

positions within the semicircle in front of the marker, as shown in Figure 5.

This technique makes it often possible to accomplish global localization

after only a few marker observations, using only a few dozen sample points.

However, if the robot is only moving perpendicular to the marker, there will

be nothing to prevent spurious samples from being selected by the MCL

algorithm. The robot in Figure 5 is moving directly toward the marker, so

there is nothing to support the most correct samples, the result of which is

seen in Figure 6.

36

Figure 6: Erroneous sample clusters following global localization attempt

These sample clusters all have the same orientation relative to the marker

as the real robot had when the marker was visible, but they are wildly in-

correct in actuality and will not allow the robot to localize. Thus, global

localization is impractical unless the robot has more to go on than a single

marker.

6.3 Weaknesses of the system

6.3.1 Robot motion error

The robot motion model is faulty in that it assumes that motion sensor error

is random and occurs constantly over time. In reality, however, the exact

error seen by the motion sensors is very much dependent on its environment

at a particular time.

37

Firstly, the random drift seen as a robot moves across a surface is de-

pendent on the nature of the surface: smooth tile or concrete will generally

produce very low error rates, while shag carpet will produce high error rates.

The fact that average error rates vary depending on the environment means

that it is difficult to have an error model that accurately reflects the robot’s

error at any given time. On low-error surfaces, the samples will spread un-

necessarily to areas that the robot has no possibility of occupying, while on

high-error surfaces the robot’s real position will likely drift outside of the

bounds of the sample set, making good localization very difficult.

Also, the majority of critical motion sensor error does not come in the

form of random drift over time, but rather in the form of bursts of error

that will occur when the robot encounters certain kinds of difficult terrain.

For example, a robot might have little to no motion error when wandering

down a hallway, but as it goes over the lip of a doorway its position may

change significantly. Another good example of this kind of error is when a

robot mistakenly collides with an object, the robot will usually be noticeably

pushed or rotated, and when it backs up and continues on its way its posi-

tion may no longer be accurate. If the error is within the error rate of the

motion sensor model, then there is no difficulty with varying rates of error.

However, certain bursts of error such as those observed during collisions will

undoubtedly outstrip the capacity of the motion model to estimate and cause

a loss of position.

This problem could probably be partially fixed by adjusting the error

38

included in the robot motion model to allow for these bursts of error. If

the error rate for the samples followed a nonlinear distribution, then with

a sufficiently large number of samples even severe errors could be recovered

from. The robot motion model could also be designed to change when the

robot encounters certain high-error environments.

6.3.2 Sample error

The system assumes that at all times at least one sample is very near to the

robot’s current location. This is a flaw intrinsic to all MCL-based systems: if

it is believed that there is a zero probability of a robot being in a particular

location, then samples will not be generated in that position even when

evidence is presented that supports the robot being in that position. If the

closest sample is more than a few meters from the robot’s position, then

the robot motion model will not provide enough variation in the samples to

successfully obtain the robot’s location selective sample drift. The robot’s

motion error is low, so there would be a loss of position if, for example, the

robot were to be picked up and moved 2 meters in any direction. Then, even

if only the samples which moved closer to the robot were selected during

resampling, it would be a long time before the motion error of the robot

allowed the samples to catch up with the robot’s position. The current

system relies on situations like this eventually encountering a marker for

which all samples represent positions with zero probability (lying behind or

very far away from the marker) and thus forcing a sample reset as described

39

in section 4.2.

6.3.3 Vision sensor error

Landmark readings are not accurate enough to perform precise localization.

The ”position” of the landmark as seen by the robot is based off of the

center of the blob of color that is observed, but there are many factors that

can cause a marker to be only partially visible. Clipping from the edge of

the camera frame and the presence of glare or shadows might cause a portion

of the marker to go unrecognized. This is particularly noticeable when the

robot is passing a marker at short range, since when the visual diameter of

the marker is large a failure to recognize as little as 25% of the marker can

cause an error of several degrees in the perceived angle.

6.3.4 False markers

There is a slight hazard of false markers. If there is an object introduced to

the environment that is sufficiently similar in color to one of the markers used

for localization, then it is likely that the samples will be drastically skewed

in some unexpected direction. The system I implemented had the advantage

of giving a weight of zero to any sample that either appeared on the non-

visible side of a marker or was more than 10 meters away from a marker, so a

majority of accidental observations would be discounted. However, occasion-

ally a seemingly valid marker will be seen, and in those cases the sample set

will converge strongly toward whatever is closest to the spurious observation.

40

This will likely cause an irrecoverable loss of position and the robot will be

forced to perform global localization at the next observed marker.

6.4 Conclusions and directions for future work

Probabilistic localization is a practical system to use in conjunction with

visual landmarks. The nature of the landmarks makes it highly effective for

global localization, but measurements based off of a single marker are not

accurate enough to allow the robot to run for long distances without marker

observations. This means that the robot must be minimally dependent on

localization, the environment must be heavily marked, or some other method

must be used to assist tracking.

Probably the best way to fix most of the problems associated with using

visual landmarks would be to run the Monte Carlo algorithm off of a com-

bination of range sensor and visual landmark data. It would be possible to

base weights off of a combination of landmark data and sonar data when a

marker was present, and run exclusively on range sensor data if no marker

is present. This system would still be slightly vulnerable to some of the

hazards of range-sensor localization (such as error generated by unexpected

objects), but even if the robot’s position were lost completely due to this,

the robot would simply run on dead reckoning until global localization could

be accomplished using the visual landmark system at the next marker. Such

a hybrid system would eliminate most disadvantages of both systems, but

would require both a full map of the environment and a number of markers

41

placed at key locations.

Other possibilities for improvement might involve changing the nature

of the markers to minimize error. If the markers were composed of more

than one color, or there were several markers placed in close proximity, it

would be possible to reduce the error caused by partial views of a marker.

Localizing based on several markers in close proximity would also allow for

more accurate localization than is possible using a single marker.

In conclusion, probabilistic robot localization using sparsely distributed

visual landmarks could be a useful component of a working localization

scheme, but measurement error makes it impractical to such a system by

itself. The sensor data provided by occasional landmarks are simply not

sufficient to maintain an accurate guess of the robot’s position: a workable

system would require dense landmark placement. However, there are signif-

icant advantages in global localization and tolerance of unexpected objects,

which make visual landmarks attractive to use in conjunction with other

sensor data in probabilistic localization systems.

42

A Source code for Monte Carlo Localization

/*MonteCarlo.h
*Base class for Monte Carlo localization
*maintains and updates a set of samples
and provides a set of localization utilities/

#ifndef MONTE_CARLO_H
#define MONTE_CARLO_H

#include <stdio.h>
#include <math.h>
#include <stdlib.h>
#include <time.h>
#include <vector>

using namespace std;

/*Keeps track of a robot position (coordinate and orientation) *
* Used for robot and marker locations and orientations */

class Pos
{
public:

Pos(double _x = 0, double _y = 0, double _th = 0): x(_x), y(_y), th(_th) {}
double x,y,th;

};

/*Base class for monte-carlo localization
is initialized with markers and, optionally,
the number of samples to maintain*/

class MonteCarlo
{
public:

//MonteCarlooczliation initializer
//Ideally allow for start Pos to be initially undefined
MonteCarlo(Pos startPos, unsigned int nSamples = 20);

~MonteCarlo();

//Sample computations
double update(Pos newPos, double markerTh, Pos markerPos);

43

double update(Pos newPos);
void setToPos(Pos newPos);
void setRandPos(double minx,double miny,double maxx,double maxy);
void setRandPos(Pos markerPos, double markerTh = 0, double minWt = 0);
double getPrecision(Pos p, double threshold);
double getAccuracy(Pos p, Pos markerPos, double markerTh);
Pos getExpectedPos(double minWt, Pos markerPos, double markerTh);
Pos getExpectedPos();

//Logging
int startLogging(char *filename);
void stopLogging();

//Window functions
//void showWindow();

//accessors
void setNumSamples(int n);
const int getNumSamples();
const vector<Pos> getSamples();
void setErrorRate(double r) {errorRate = r;}
double getErrorRate() {return errorRate;}
static double random() {

return (double)rand()/(RAND_MAX);
}

private:
void updatePos(Pos newPos);
double updateSamples(double markerTh, Pos markerPos);
const Pos getMeanPos(vector<Pos> ps);
const double getEuclideanDist(Pos p1, Pos p2);

double errorRate;
double maxVisibleDist;
unsigned int numSamples;
Pos currentPos;
vector < Pos > samples;
//MCLWindow *window;
clock_t logStartTime;
FILE *logFile;

};

#endif

44

/* MonteCarlo.cpp
* Provides functions for MonteCarlo localization using visual landmarks*/

#include "MonteCarlo.h"

MonteCarlo::MonteCarlo(Pos startPos, unsigned int nSamples):
/* Takes a starting position for the robot and
* the number of samples to maintain
* many environmental constants are hard-coded here
* They are set to reasonable values for the Olin hall environment but will
* need to be changed if this is used in a different environment.*/

errorRate(.08), //8% error rate
maxVisibleDist(5), //Markers not visible from more than 5 meters
numSamples(nSamples),
currentPos(startPos),
samples(nSamples),
logFile(NULL) {

srand(time(NULL));
}

MonteCarlo::~MonteCarlo() {
fclose(logFile);

}

double MonteCarlo::update(Pos newPos, double markerTh, Pos markerPos) {
/* Applies the robot motion model and resamples with respect to a
* known marker position*/
if(logFile)

fprintf(logFile,"Time: %f\n",
(double)(clock()-logStartTime)/CLOCKS_PER_SEC);

updatePos(newPos); double d = updateSamples(markerTh, markerPos);
if(logFile) {

fprintf(logFile,"Pos: %f %f %f\n", newPos.x, newPos.y, newPos.th);
fprintf(logFile,"Marker %f %f %f at %f radians\n",markerPos.x,

markerPos.y,markerPos.th,markerTh);
fprintf(logFile,"Samples: %d\n",samples.size());
for(int i = 0; i < samples.size(); i++) {

fprintf(logFile,"%f %f %f\n",
samples[i].x,samples[i].y,samples[i].th);

}
fputc(’\n’,logFile);

}
return d;

}

double MonteCarlo::update(Pos newPos) {

45

/* Applies the robot motion model only*/
if(logFile)

fprintf(logFile,"Time: %f\n",
(double)(clock()-logStartTime)/CLOCKS_PER_SEC);

updatePos(newPos);
if(logFile) {

fprintf(logFile,"Pos: %f %f %f\n", newPos.x, newPos.y, newPos.th);
fprintf(logFile,"Samples: %d\n",samples.size());
for(int i = 0; i < samples.size(); i++) {

fprintf(logFile,"%f %f %f\n",samples[i].x,samples[i].y,samples[i].th);
}
fputc(’\n’,logFile);

}
return 0;

}

void MonteCarlo::setToPos(Pos newPos) {
/*Sets all samples to pos newPos */

for (unsigned int i = 0; i < samples.size(); i++) {
samples[i] = newPos;

}
}

void MonteCarlo::setRandPos(double xmin, double ymin, double xmax, double ymax) {
/* Randomly distributes samples across a space
* defined by the rectangle (xmin,ymin) to (xmax,ymax)*/
for(int i = 0; i < samples.size(); i++) {

Pos p(random()*(fabs(xmax-xmin))+xmin,random()*(fabs(ymax-ymin))+ymin,
(random()*M_PI*2)-M_PI);

samples[i] = p;
}

}

void MonteCarlo::setRandPos(Pos markerPos, double markerTh, double minWt) {
/* Randomly distributes samples across the polar space emanating
* from a marker defined by markerPos
* This does mean that samples will be denser nearer the marker, but we
* probably want that anyway*/
double mx = markerPos.x;
double my = markerPos.y;
double mth = markerPos.th;
for(int i = 0; i < samples.size(); i++) {

double r = random()*maxVisibleDist; //Out to maxVisibleDist
double th = (random()*M_PI)+(mth-M_PI_2); //Up to pi/2 radians
double robx = mx+(r*cos(th));
double roby = my+(r*sin(th));
double robth = (random()*2*M_PI)-M_PI; //atan2(roby-my,robx-mx)+

46

M_PI/3+(random()*M_PI*(4/3));
Pos p(robx,roby,robth);
double wt = getAccuracy(p,markerPos,markerTh);
if(wt < minWt) {

i--;
continue;

}
samples[i] = p;

}
}

void MonteCarlo::setNumSamples(int n) {
/*Changes the number of samples maintained
* Fills in with samples from old sample set if needed */
samples.resize(n);
for (int i = numSamples; i < n; i++) { //fill in the rest, if needed

samples[i] = samples[i%numSamples];
}
numSamples = n;

}

const int MonteCarlo::getNumSamples() { return numSamples; }
const vector<Pos> MonteCarlo::getSamples() { return samples; }

void MonteCarlo::updatePos(Pos newPos) {
/*Applies robot motion model, applying localization if marker is present
*Assume that Position is updated fairly often
*(at least 1/sec should be enough)
*but actual marker-based localization may have long intervals inbetween
*also, marker Positions are assumed to be known for now but this
*also should be changed if global localization is desired */
double dX = newPos.x - currentPos.x;
double dY = newPos.y - currentPos.y;
double dTh = newPos.th - currentPos.th;

//start by getting last travel in terms of last direction traveled:
//dParallel is forward with respect to the robot, and dPerp is
//orthogonal to that
double dParallel = dX*cos(currentPos.th) + dY*sin(currentPos.th);
double dPerp = dY*cos(currentPos.th) - dX*sin(currentPos.th);

//current movement error model has each coordinate (x,y,th)
//independent in error
//In reality the vast majority of error comes from th error, but
//this should be easily seen as long as updating is frequent
//Percentages are based on estimates, and should be updated more
//rigorously at some point

47

double th;
for (unsigned int i = 0; i < samples.size(); i++) {

th = samples[i].th;
samples[i].x += ((dParallel*cos(th))-(dPerp*sin(th)))*

(1+(random()*errorRate*2 - errorRate));
samples[i].y += ((dPerp*cos(th))+(dParallel*sin(th)))*

(1+(random()*errorRate*2 - errorRate));
samples[i].th += dTh*(1+(random()*errorRate*2 - errorRate));

}

currentPos = newPos;
}

double MonteCarlo::updateSamples(double markerTh, Pos markerPos) {
/* Applies particle filtering to samples
* Samples behind the marker and distant samples are given 0 weight,
* other samples are given 1/deltaTheta
* Returns the average weight*/
vector < double > wts(samples.size());
unsigned int i, j;
double d;
for (i = 0; i < samples.size(); i++) {

double dX = markerPos.x-samples[i].x;
double dY = markerPos.y-samples[i].y;
//if the sample is behind the marker, it can be ruled out entirely
if ((dX*cos(markerPos.th)) + (dY*sin(markerPos.th)) > 0 ||

sqrt(pow(dX,2)+pow(dY,2)) > maxVisibleDist)
wts[i] = 0;

else {
//Using P(th|th’) = 1/|th-th’|
d = 1/fabs(markerTh-(atan2(dY,dX)-samples[i].th));
wts[i] = (d > 10) ? 10 : d; //limit the weight to 10

}
}
//Normalize weights
double wtSum = 0;
for (i = 0; i < numSamples; i++)

wtSum += wts[i];
if(wtSum == 0) {
//Let’s reset to random positions near the marker
//if there are no valid samples

fprintf(stderr,"No possible samples, resetting near marker
(%f,%f,%f)\n",markerPos.x,markerPos.y,markerPos.th);

this->setRandPos(markerPos,markerTh,8);
return 0;

}
for (i = 0; i < numSamples; i++)

48

wts[i] /= wtSum;
//And resample
vector < Pos > oldSamples(samples);
double r = 0.0;
for (i = 0; i < samples.size(); i++) {

r = random();
for(j = 0; r > 0; j++) {

r -= wts[j];
}
samples[i] = oldSamples[j-1];

}
return wtSum/numSamples;

}

const Pos MonteCarlo::getMeanPos(vector<Pos> ps) {
/* Gets the mean of all samples */

int i;
int nPoses = ps.size();
double xsum = 0;
double ysum = 0;
double thsum = 0;
for (i = 0; i < nPoses; i++) {

xsum += ps[i].x;
ysum += ps[i].y;
thsum += ps[i].th;

}
Pos meanPos(xsum/nPoses, ysum/nPoses, thsum/nPoses);
return meanPos;

}

Pos MonteCarlo::getExpectedPos(double minWt, Pos markerPos, double markerTh) {
/* Expected pos is the mean of all samples better than minWt */
int i;
Pos meanPos;
int nSamples;

meanPos = getMeanPos(samples);
nSamples = samples.size();

vector<Pos> goodSamples(0);

for (i = 0; i< nSamples; i++) {
if(getAccuracy(samples[i],markerPos,markerTh) >= minWt)

goodSamples.push_back(samples[i]);
}

if (goodSamples.size() == 0) {

49

return Pos(-1,-1,-1); //No can do
}

meanPos = getMeanPos(goodSamples);
return meanPos;

}

Pos MonteCarlo::getExpectedPos() {
/* Alternatively, expected pos can be the mean with 10% thrown away to
* account for outliers*/

int i,j;
Pos meanPos;
int nSamples;

meanPos = getMeanPos(samples);
nSamples = samples.size();

vector<double> dists(nSamples);
vector<Pos> goodSamples(samples);
for (i = 0; i< nSamples; i++) {

dists[i] = getEuclideanDist(meanPos,samples[i]);
}
//grab the closest 90%
for (i = 0; i < int(nSamples*.1); i++) {

int maxIndex = 0;
double maxVal = 0;
for (j = 0; j < nSamples; j++) {

if (maxVal<dists[j]) {
maxVal = dists[j];
maxIndex = j;

}
}
goodSamples.erase(goodSamples.begin()+maxIndex);
dists[maxIndex] = 0;

}
meanPos = getMeanPos(goodSamples);
return meanPos;

}

double MonteCarlo::getPrecision(Pos p, double threshold) {
/*returns the percent of samples that are within threshold
* distance of a particular location */
int count = 0;
for (unsigned int i = 0; i < samples.size(); i++) {

if (getEuclideanDist(samples[i],p)<threshold)
count++;

}

50

return ((double)count/samples.size());
}

double MonteCarlo::getAccuracy(Pos p, Pos markerPos, double markerTh) {
/* Gets the weight that would be assigned to pos p if it were a sample
* This will be in the range [0,10] */
double w;
double dX = markerPos.x-p.x;
double dY = markerPos.y-p.y;
//if the sample is behind the marker, it can be ruled out entirely
if ((dX*cos(markerPos.th)) + (dY*sin(markerPos.th)) > 0 ||

sqrt(pow(dX,2)+pow(dY,2)) > maxVisibleDist)
w = 0;

else {
//Using P(th|th’) = 1/|th-th’|
double d = 1/fabs(markerTh-(atan2(dY,dX)-p.th));
w = (d > 10) ? 10 : d; //limit the weight to 10

}
return w;

}

const double MonteCarlo::getEuclideanDist(Pos p1, Pos p2) {
/* Returns the euclidean distance from pos1 to pos2
* within 3-dimensional space (x,y,th) where 1 radian = 1 meter */
return sqrt(pow(p1.x-p2.x,2)+pow(p1.y-p2.y,2)+pow(p1.th-p2.th,2));

}

//logging functions

int MonteCarlo::startLogging(char *filename) {
/* Starts writing log output to filename
* will stop when object is destroyed or stopLogging is called */
logFile = fopen(filename, "w");
if (logFile) {

logStartTime = clock();
return 1;

}
return -1;

}

void MonteCarlo::stopLogging() {
/* Stops logging and closes the logfile */

fclose(logFile);
}

51

B Source code for navigation and localization

in RUPART

CBRBrain.py
A Behavior-based control system based on pyro
#(http://www.pyrorobotics.org)

from pyro.brain.fuzzy import *
from pyro.brain.behaviors import *
from pyro.brain import select
from math import *
from behaviors import *
from BehavCBR import CBRRetriever
from copy import copy
from AriaPy import ArACTS_1_2, ArACTSBlob
from string import find
from time import sleep, time
from threading import Thread, Lock
from pathmap import *

#sony range -> ZOOM = 0,1023 PAN = -95,95 TILT = -25,25

#---
#Brain

class CBRBrain(BehaviorBasedBrain):
""" A behavior-based brain that stores

additional information and CBR capabilities"""
#--
#Initialization and destruction routines

def __init__(self,behaviors = {},engine = 0,startLoc = [0,0,0],\
goal = [],current_sonar = 16*[0],threshhold = 10,timeout = 7):

BehaviorBasedBrain.__init__(self,behaviors,engine)
self.history_size = 5
self.sonar_history = self.history_size*[current_sonar]
self.last_average = reduce(lambda x,y: x+y, current_sonar)
self.threshhold = threshhold
self.timeout = timeout
self.finalGoal = goal
self.markerLoc = []
self.goal = []
self.route = []
self.lastUpdate = time()
self.startLoc = startLoc #let’s save it for future reference
self.robot.localize(startLoc[0],startLoc[1],startLoc[2])
self.transVel = .2 #.3

52

self.rotVel = .2 #.3
self.camera = self.get(’/devices/ptz0/object’)
self.acts = ArACTS_1_2()
self.acts.openPort(self.robot.dev)
self.numChannels = 4
self.lock = Lock()
self.map = buildOlinMap()
self.addMarkers()
self.retriever = CBRRetriever(self.map, doNormalize = True)
self.lastMarker = ’’
self.prevGoalDist = 1000

#must disconnect from ACTS to prevent double-opening
def __del__(self):

BehaviorBasedBrain.__del__(self)
self.acts.closePort()

#(destroy is called on close and on brain Reload)
def destroy(self):

BehaviorBasedBrain.destroy(self)
self.acts.closePort()

#List markers here until a better system is devised
def addMarkers(self):

#current colors: {’Pink’:1, ’TGreen’:2, ’Orange’:3, ’Yellow’:4}
#markers are x,y,th,[color]
self.map.addMarker("Lab hall", [22,7.0,270,1])
self.map.addMarker("East T", [20,5.5,90,3])
self.map.addMarker("Study center", [5.25,10.2,0])
self.map.addMarker("East L", [32.2,6.5,180])
self.map.addMarker("Atrium center hall", [19,39,0])

self.map.addMarker("Atrium south hall", [5.25,41,0])
self.map.addMarker("Atrium north hall", [30,38.5,0])

self.map.addMarker("227 hall", [7,26.1,180])

#-------------------------------------
#CBR functions

#Adds a new case to the caselib
#Without args, will use current state
def grabCase(self,body = ’closest’,x = ’current’,y = ’current’):

if(x == ’current’):
x = self.robot.get(’/robot/x’)

if(y == ’current’):
y = self.robot.get(’/robot/y’)

activeStates = []

53

for s in self.states.keys():
if self.states[s].status == 1:

activeStates.append(self.states[s].name)
ind = [self.getLastSonar(),self.getAvgSonar(),self.robot.dev.getVel(),\

self.robot.dev.getRotVel(),[x,y],self.goal,activeStates]
if(body == ’closest’):

body = apply(self.retriever.retrieve,ind)[0]

print "Added case:"
print "Index:"
print ind
print "Body:"
print body

ind.append(body)
apply(self.retriever.addCase,ind) #Add the case to caseLib

#saves current case library to fname
def save(self,fname):

self.retriever.saveCaseLib(fname)

#loads current case library from fname
def load(self,fname):

self.retriever.loadCaseLib(fname)

#find which marker is nearest the current location
def findNearestMarker(self,color = False):

print "Color = ", color
closest = ’’
closeVal = 1000
rPose = [self.get(’/robot/x’),self.get(’/robot/y’)]
for loc in self.map.getMarkedLocs():

mPose = self.map.getMarker(loc)
if(len(mPose) >= 4 and color and color != mPose[3]):

print "Skipping..."
continue #if the marker is the wrong color, skip

dist = hypot(mPose[0]-rPose[0],mPose[1]-rPose[1])
if(closeVal > dist):

closeVal = dist
closest = mPose

return closest, closeVal

#Update if the average sonar distance has changed
#significantly since last CBR execution
def needUpdate(self,current_state):

sonar_reading = current_state.get(’/robot/range/all/value’)
self.sonar_history.append(sonar_reading)

54

self.sonar_history.pop(0)
avg = reduce(lambda x,y: x+y, sonar_reading)
blobSize = self.getBlobSize()
#if the robot has no current goal, get it from the route
#print "Current state is ", current_state.name
if(self.goal == []):

current_state = self.getNextGoal(current_state)

#if the robot has reached its goal, get the next one,
#or localize if there is a marker here
elif(self.reachedGoal()):

visited = self.route[0]
print "Reached Goal ", self.route.pop(0)

if(self.markerLoc and visited != self.lastMarker):
current_state.goto(’ReLocalize’,current_state.name)
self.lastMarker = visited
self.goal = []
return -1
else:

current_state = self.getNextGoal(current_state)

#If we find an unexpected marker, we have probably missed the last goal
elif(blobSize > 200 and self.route != []):
print "Testing for marker.."
nearest = self.findNearestMarker()
if(nearest[0] != self.lastMarker and \
nearest[1] <
hypot(self.get(’/robot/x’)-self.goal[0],self.get(’/robot/y’)-self.goal[1])):
print "Unexpected marker found.
Relocalizing to marker near", nearest[0]
self.markerLoc = self.map.getMarker(nearest[0])
self.lastMarker = nearest[0]
current_state.goto(’ReLocalize’,current_state.name)
self.route = []
self.goal = []
return -1
#

#Call the CBR system if appropriate
if((fabs(avg - self.last_average) > self.threshhold) \
or (time()-self.lastUpdate > self.timeout))\

and isinstance(current_state,CBRState):
self.lastUpdate = time()
self.last_average = reduce(lambda x,y: x+y, sonar_reading)
return self.CBR(current_state)

return -1

55

#Tests whether the goal is reached: in order
#for it to be reached the following must occur:
#1: The robot must be within 1m of the goal
#2: The robot must be traveling away from the goal
#(Thus finding the closest point to the goal that the robot traverses)
def reachedGoal(self):

dist = self.goalDist()
dx = dist-self.prevGoalDist
self.prevGoalDist = dist
return (dx > 0 and dist < 1.0)

#CBR retriever; currently never causes state change but
#will adjust speeds and weights
def CBR(self,current_state,update = True):

body, matchVal =\
self.retriever.retrieve(self.getLastSonar(),self.getAvgSonar(),\

self.robot.dev.getVel(),self.robot.dev.getRotVel(),\
[self.robot.get(’/robot/x’),self.robot.get(’/robot/y’)],\

self.goal,[current_state.name],self.finalGoal)
if(update):

if(body[0] == "behavior"):
print "Decision: staying in state Wander."
self.transVel = body[2]
self.rotVel = body[3]
current_state.goto(’Wander’,body[4])

elif(body[0] == "route"):
print "Set route", body[2]
while type(body[2][0]) != str:
#Get rid of extraneous location coords

body[2].pop(0)
self.route = body[2]
self.getNextGoal(current_state)

return matchVal

#Trash the current goal/markerLoc and get the next one from the route
#If current_state is provided, trigger the appropriate behavior
def getNextGoal(self, current_state = 0):

if(self.route == []):
#if there is no route, cannot go anywhere,
#so stop the robot and wait for inspiration

self.goal = []
self.markerLoc = []
if(self.states[’Wait’].status == 0):

print "Waiting..."
if(current_state):

self.states[current_state.name].goto(’Wait’)
return self.states[’Wait’]

56

return current_state
else:

print "Setting goal..."
print "Route = ", self.route
self.goal = self.map.getLoc(self.route[0])
self.markerLoc = self.map.getMarker(self.route[0])
self.prevGoalDist = 1000
print "Goaldist = ", self.goalDist(), "\n";
if(current_state and self.goalDist() > .6):

self.states[current_state.name].\
goto(’FaceGoal’,current_state.name)

return self.states[’FaceGoal’]
return current_state

#--
#Localization and Vision utilities

#Locates a blob if one exists, returns False otherwise
def findBlob(self):

b = ArACTSBlob()
maxArea = 30
blobExists = False
channel = 0
for i in range(self.numChannels):

#print "Channel ", i, " ", self.acts.getNumBlobs(i+1)
if(self.acts.getNumBlobs(i+1) > 0):

self.acts.getBlob(i+1,1,b)
if(b.getArea() > maxArea):

blob = b
channel = i+1
maxArea = b.getArea()
blobChannel = i+1
blobExists = True

if(blobExists):
#print "maxArea = " + str(maxArea)
return blob, channel

return False, False

#(deprecated)
#determine whether the camera can see a blob or not

def blobExists(self):
self.lock.acquire()
be = self.findBlob
self.lock.release()
if(be):

57

return True
return False

#Returns th, color of blob
#(current color vals are Pink:1, Green:2, Orange:3, Yellow:4)
def getBlobInfo(self):

self.lock.acquire()
blob, color = self.findBlob()
self.lock.release()
if(type(blob) == ArACTSBlob):

return int((blob.getXCG()-80)*\
((48.8-((self.camera.getZoom())*(44.5/1023)))/160)),color

else:
return False,False

#Gets the color of the currently tracked blob
def getBlobColor(self):

self.lock.acquire()
color = self.findBlob()[1]
self.lock.release()
return color

#Gets the angle that the currently tracked blob is on
def getBlobTh(self):

self.lock.acquire()
blob = self.findBlob()[0]
self.lock.release()
if(type(blob) == ArACTSBlob):

return int((blob.getXCG()-80)*\
((48.8-((self.camera.getZoom())*(44.5/1023)))/160))

else:
return False

#Gets the size of the current blob
def getBlobSize(self):

self.lock.acquire()
blob = self.findBlob()
self.lock.release()
if(type(blob) == ArACTSBlob):

return blob.getArea()
else:

return False

#gets the angle and size of the current blob [th, size]
def getBlobAll(self):

self.lock.acquire()
blob = self.findBlob()

58

self.lock.release()
if(type(blob) == ArACTSBlob):

return int((blob.getXCG()-80)*\
((48.8-((self.camera.getZoom())*(44.5/1023)))/160)), blob.getArea

else:
return False

#assumes the robot is facing a wall in position as per ReLocalize/ReLocalize2
#Will set th to the angle facing the wall, and will approximate x and y
#FIX: x and y are off because of the camera’s placement at the front
#of the robot-
#a few calculations should take care of this, though it is not imperative

#Camera X,Y is [.11,0]
def doLocalization(self):

markerLoc = self.getMarkerLoc()
th = markerLoc[2]+180
if(th >= 360):

th -= 360
frontDist = self.get(’/robot/range/front/value’)
frontTh = self.get(’/robot/range/front/thr’)
frontPos = self.get(’/robot/range/front/ox,oy’)
for d in frontPos: #divide all by 1000 (sonar pos given in mm..)

for i in d.keys():
d[i] /= 1000

#increase the distance to reflect the distance
#from the center of the robot to the sonar
frontDist = [x+frontPos[0][’oy’]/sin(radians(frontTh[0])) \
for x in frontDist]

#increase the percieved distance by the distance
#from the vertex of the triangle to the
#center of the robot
dist = (cos(radians(frontTh[0]))*((frontDist[0]+frontDist[1])/2))+\

(frontPos[0][’ox’]-(frontPos[0][’oy’]/tan(radians(frontTh[0]))))
blobTh = self.getBlobTh()
if(not blobTh):
#Scan the viewable area if the blob is not visible for some reason

print "Blob not found..."
self.camera.pan(-95)
sleep(2) #wait for camera to pan
blobTh = self.getBlobTh()
while(not blobTh):

self.camera.panRel(5)
sleep(.4) #wait for camera to pan
blobTh = self.getBlobTh()
if(self.camera.getPan() > 90):

blobTh = 1

59

blobTh = -1*(self.camera.getPan()+blobTh)
if(blobTh <= -90 or blobTh >= 90):

print "Blob angle " + str(blobTh) + " out of bounds."
return -1

#find the distance from the camera
#(located dist-.11 away from the wall) to the blob
markerDist = fabs((dist-.11)/cos(radians(blobTh)))
#find the real x and y of the robot (camera location, adjusted)
x = (markerLoc[0]-(cos(radians(th+blobTh))*markerDist))\
-(cos(radians(th))*.11)

y = (markerLoc[1]-(sin(radians(th+blobTh))*markerDist))\
-(sin(radians(th))*.11)

self.robot.localize(x,y,th)
print "Dist = ", dist
print "markerDist = ", markerDist
#print "blobTh = ", blobTh
print "Localized at " + str(x) + ’ ’ + str(y) + ’ ’ + str(th)

#------------------------------
#General Utility Functions

#deactivates all states
def deactivateAll(self):

for s in self.states.keys():
self.deactivate(self.states[s].name)

#Finds the direction corresponding with a particular angle
def direction(self, angle):

if(angle > 0):
return 1

if(angle < 0):
return -1

return 0

#Prints the current sonar information
def printSonar(self):

print self.getLastSonar()
print "\n"
print self.getAvgSonar()
print "\n"

#------------------------------
#Accessors

#accessor for marker location
def getMarkerLoc(self):

60

return self.markerLoc

#accessor for goal location
def getGoalLoc(self):

return self.goal

#accessors for translational velocity
def getTransVel(self):

return self.transVel

def setTransVel(self,val):
self.transVel = val

#find how far it is to the immediate goal
def goalDist(self):

return hypot(self.get(’/robot/x’)-self.goal[0],\
self.get(’/robot/y’)-self.goal[1])

#accessors for rotational velocity
def getRotVel(self):

return self.rotVel

def setRotVel(self,val):
self.rotVel = val

def setPos(self,x,y,th):
self.states[’Track’].behaviors[’MCLocalization’].setPos(x,y,th)
self.robot.localize(x,y,th)

def setRandPos(self):
self.states[’Track’].behaviors[’MCLocalization’].setRandPos(0,0,40,50)
#we run in OLRI for now

#accessor for latest sonar reading
def getLastSonar(self):

return self.sonar_history[-1]

#get the average sonar value for each of the 16 sensors
def getAvgSonar(self):

a = len(self.sonar_history[0])*[0]
for l in self.sonar_history:

for i in range(len(self.sonar_history[0])):
a[i] += l[i]

return map(lambda x: x/self.history_size,a)

def printSamples(self):
for i in range(20):

61

p = self.states[’Track’].behaviors[’MCLocalization’].\
MCL.getSamples()[i]
print p.x, ", ", p.y, ", ", p.th

def logSamples(self,filename):
self.states[’Track’].behaviors[’MCLocalization’].\

MCL.startLogging(filename)

#-------------------------------
#init
def INIT(engine): # passes in robot, if you need it

s = filter(lambda x: find(x,’ptz’) >= 0, engine.robot.get(’/devices’))
if(s == []):

ptzID = engine.robot.startDevice("ptz-sony")
else:

ptzID = s[0][:-1]
ptz = engine.robot.get("devices/%s/object" % ptzID)
#22,4,90
startpos = [22,4,90]
#startpos = [20,13,270]
destination = ’222 room’
#destination = ’Study door’
brain = CBRBrain({’translate’ : engine.robot.translate, \

’rotate’ : engine.robot.rotate, \
’update’ : engine.robot.update, \
’pan’ : ptz.panRel }, engine, startpos, destination)

add the state
#print "Attempting pan..."
#engine.robot.set(’/devices/ptz0/pan’, 90)

brain.add(Wander(1))
brain.add(Track(1))
brain.add(Wait())
brain.add(Halt())
brain.add(Stall())
brain.add(FaceGoal())
#brain.add(ReLocalize())
#brain.add(ReLocalize2())
#sleep(10)
#brain.states[’Wander’].goto(’Wander’,\
{’Avoid’: {’translate’: .15,’rotate’: .2}, ’Escape’: {’rotate’: .6}})

return brain

62

behaviors.py
A collection of behavior classes for a
a Behavior-based robot control system
Several experimental but unused behaviors can be found in backup/behaviors.py

from pyro.brain.fuzzy import *
from pyro.brain.behaviors import *
from pyro.brain import select
from math import *
import AriaPy
import random
from CBRBrain import *
import time
from localization import *

#CBRBehavior supplies a few basic behaviors that all behaviors will want to have
class CBRBehavior (Behavior):

"""A base class for behaviors using the CBR system"""

#initialize 4/5 the maximum range of a sonar sensor
def setup(self):

self.max_sensitive = self.get(’/robot/range/maxvalue’)*.8

#clean way of activating the behavior
def activate(self):

self.status = 1

#clean way of deactivating the behavior
def deactivate(self):

self.status = 0

#Basic behavior, usually active, moves forward when
#there are no obstacles in the way
#and turns to avoid the closest obstacle
class Avoid (CBRBehavior):

"""A simple avoid behavior"""

def update(self):
if(self.get(’/robot/stall’) > -258):

self.state.goto(’Stall’,self.state.name)
close = select(min, "value",\
self.get(’/robot/range/front-all/value,thr’))

close_all, angle = close["value"], close["thr"]
#require half the distance to slow
#down because of the front-side sensors

close_front = min(self.get(’/robot/range/3,4/value’)\

63

+ map(lambda x: x*2,self.get(’/robot/range/2,5/value’)))
self.IF(Fuzzy(0.2, self.max_sensitive/2) >> \

close_front, ’translate’,self.brain.transVel, "Ok")
self.IF(Fuzzy(0.2, self.max_sensitive/2) << \

close_front, ’translate’,0, "TooClose")
#self.IF(Fuzzy(0.1, self.max_sensitive/2) << close_all,\

’translate’, 0.0,"TooCloseOther")
self.IF(Fuzzy(0.1, self.max_sensitive) << close_all, ’rotate’,\
-1*self.brain.direction(angle)*self.brain.rotVel, "TooClose")

self.IF(Fuzzy(0.1, self.max_sensitive) >> close_all,\
’rotate’, 0.0, "Ok")

#The reverse of avoid, moves in reverse and is only called when
#the robot detects a stall
class Backup (CBRBehavior):

"""Back up, avoiding obstacles if possible"""

def update(self):
close = select(min, "value",\

self.get(’/robot/range/back-all/value,thr’))
close_all, angle = close["value"], close["thr"]
#require half the distance to slow
#down because of the front-side sensors
close_back = min(self.get(’/robot/range/11,12/value’) + \
map(lambda x: x*2,self.get(’/robot/range/10,13/value’)))

self.IF(Fuzzy(0.1, self.max_sensitive/2) >> close_back, \
’translate’, -1*self.brain.transVel, "Ok")

self.IF(Fuzzy(0.1, self.max_sensitive/2) << close_back, ’translate’, \
.05, "TooClose")

self.IF(Fuzzy(0.1, self.max_sensitive) << close_all, ’rotate’,\
-1*self.brain.direction(angle)*self.brain.rotVel, "TooClose")

self.IF(Fuzzy(0.1, self.max_sensitive) >> close_all,\
’rotate’, 0.0, "Ok")

#Behavior used to go through doorways and other passages
#that the robot would ordinarily avoid
#Goes towards the most prominent 1-2 sensor wide "gap"
#(1 or 2 long readings surrounded by short readings)
#Use with caution, because sonar reflection errors on the walls can
#easily cause fake gaps to appear and
#result in the robot being driven into the wall
class Escape (CBRBehavior):

"""A behavior to escape close, trapped situations"""
def update(self):

sonar = self.get(’/robot/range/left,front-all,right/value’)
maxDiff = [0,-1]
for i in range(1,8):

64

#see what sensor has the most pronounced
#length compared to those around

j = min(sonar[i]-sonar[i-1],sonar[i]-sonar[i+1])
if(j > maxDiff[0]):

maxDiff = [j,i]
for i in range(1,7): #check for 2sensor-wide gaps

k = min(sonar[i]-sonar[i-1],sonar[i+1]-sonar[i+2])
if(k > maxDiff[0]):

maxDiff = [k,i+.5]
self.IF(Fuzzy(0, self.max_sensitive*.75) >> maxDiff[0], ’rotate’,\
self.brain.direction(4.5-maxDiff[1])*self.brain.rotVel, "IsExit")

#Behavior to follow the right wall
#Not necessary in the current CBR
#implementation because path planning is point-based
class FollowRight (CBRBehavior):

"""A right-hand wall following behavior"""
def update(self):

close = select(min, "value", self.get(’/robot/range/6,7/value,thr’))
close_right, angle = close["value"], close["thr"]
self.IF(Fuzzy(0.5, self.max_sensitive) >> close_right, ’rotate’,\
-1*self.brain.rotVel,"TooFar")

#Behavior to follow the left wall
#Not necessary in the current CBR implementation
#because path planning is point-based
class FollowLeft (CBRBehavior):

"""A left-hand wall following behavior"""
def update(self):

close = select(min, "value", self.get(’/robot/range/0,1,2/value,thr’))
close_left, angle = close["value"], close["thr"]
self.IF(Fuzzy(0.5, self.max_sensitive) >> close_left, ’rotate’,\
self.brain.rotVel, "TooFar")

#Have the robot face the goal, and slow down when very close
#Effect of the behavior is inversely proportional
#to the current distance
#This is slightly undesirable, as points in large,
#open areas can easily be missed
#Further work should allow the sphere of
#influence for a point to be defined
#individually for each point
#(Currently, the behavior is at base strength at a number of
#meters equal to self.baseMeters, hard-coded)
class ToGoal (CBRBehavior):

"""A behavior that orients the robot towards the goal"""
def setup(self):

65

CBRBehavior.setup(self)
self.baseMeters = 1.5

def update(self):
if(self.brain.goal == []):
#shouldn’t happen much, but don’t want a crash when goal is killed

return -1
xdif = self.brain.goal[0] - self.get(’/robot/x’)
ydif = self.brain.goal[1] - self.get(’/robot/y’)
#don’t want the weighting to more than
#quadruple; want to avoid /0 errors
dist = max(hypot(xdif,ydif),self.baseMeters*.25)
th = degrees(atan2(ydif,xdif))
th_dif = th-self.get(’robot/th’)
if(th_dif <= -180):

th_dif += 360 #make sure that -180 < th_dif <= 180
th_abs = fabs(th_dif)
self.IF(Fuzzy(.25,2) << dist, ’translate’, 0, "Nearby")
self.IF(Fuzzy(0, 180) >> (self.baseMeters*th_abs)/(dist), ’rotate’,\

self.brain.direction(th_dif)*self.brain.rotVel, "WrongDir")
self.IF(Fuzzy(0, 180) >> (self.baseMeters*(90-th_abs))/(dist), \
’rotate’, 0, "OnTrack")

#When a blob is visible, tracks it with the camera
#If no blob is present, behaves in a fashion determined
#by the search variable in Track, its state
#When searching, the camera moves more or
#less at random to find a blob
#When not searching, the camera faces
#directly ahead and assumes it will find a blob
class TrackBlob (Behavior):

"""A behavior to have the camera point towards the nearest blob"""
def onActivate(self):

self.nextMove = 0

def update(self):
#print "Getting BlobTh..."
th = self.brain.getBlobTh()
#print "BlobTh =", th
if(th != 0):

self.nextMove = time.time()+1.5
elif(time.time() > self.nextMove):

#when searching, the camera alternates
#between a random point on the left,
#and a random point on the right
pan = self.brain.camera.getPan()
if(self.state.search):

66

panTo = int(pow(random.random(),2)*90) #randint(0,90)
if(pan > 0):

panTo *= -1
else:

panTo = 0
self.brain.camera.pan(panTo)
self.nextMove = time.time()+1.7
#.7+((1/80)*fabs(pan-panTo))+time.time()

self.IF(Fuzzy(5,25) >> fabs(th), ’pan’, \
int(self.brain.direction(th)*2), "TooFar")

class MCLocalization (Behavior):
"""A behavior to run the Monte-carlo localization scheme"""
def setup(self):

self.p = Pos()
self.markerPos = Pos()
self.p.x = self.brain.startLoc[0]
self.p.y = self.brain.startLoc[1]
self.p.th = (self.brain.startLoc[2])*(pi/180)
print "Initializing MCL to ", self.p.x,\

", ", self.p.y, ", ", self.p.th
self.MCL = MonteCarlo(self.p,50)
self.MCL.setToPos(self.p)
#This will hold the last time the robot’s hardware pos was updated
self.lastPosUpdate = time.time()
self.minDelay = 5 #This starts the cycle of updating the hw pos

def onActivate(self):
self.tick = 0

def update(self):
self.tick += 1
#let’s not update every tick, that’d be a bit of a waste--
#try every third for now
if (self.tick > 3):

self.tick = 0
self.p.x = self.get(’/robot/x’)
self.p.y = self.get(’/robot/y’)
self.p.th = self.get(’/robot/thr’)
th, color = self.brain.getBlobInfo()
if (th == 0):

self.MCL.update(self.p)
else:

print "Marker observed, resampling.."
m = self.brain.findNearestMarker(color)[0]

67

self.markerPos.x = m[0]
self.markerPos.y = m[1]
self.markerPos.th = m[2]*(pi/180)
markerTh = (-1*(self.brain.camera.getPan()+th))*(pi/180)
self.MCL.update(self.p,markerTh,self.markerPos)

#And now, update the hardware position
#if the samples are fairly clear
recency = time.time()-self.lastPosUpdate
if(recency>self.minDelay):

threshold = .15 #try this for now
expectedPos = Pos()
expectedPos = self.MCL.getExpectedPos(3,\

self.markerPos,markerTh)
#we want at least 90% of samples to be within the threshold
#and we want the current
#marker reading to be within .1 radians
accuracy = \
self.MCL.getAccuracy(expectedPos,self.markerPos,markerTh)

precision = self.MCL.getPrecision(expectedPos,threshold)
print "Precision = ", precision, ", Accuracy = ", accuracy
if(precision>=.6 and accuracy >= 6):

degth = expectedPos.th*(180/pi)
print "Localized robot to ", expectedPos.x, ", ",
\expectedPos.y, ", ", degth, "\n"

#self.brain.printSamples()
self.robot.localize(expectedPos.x,expectedPos.y,degth)
self.lastPosUpdate = time.time()

def setPos(self,x,y,th):
self.MCL.setToPos(Pos(x,y,th))

def setRandPos(self,x1,y1,x2,y2):
self.MCL.setRandPos(x1,y1,x2,y2)

#Moves toward the current marker
#Transfers to faceWall when it is close to the wall and facing the blob
class ToBlob (CBRBehavior):

"""Behavior to go toward marker \
(Followed by faceWall, then localization)"""

def update(self):
blobTh = self.brain.getBlobTh()
blobExists = (blobTh != 0)
if(blobExists):

#print "Blob exists!"
th_dif = -1*(blobTh+self.brain.camera.getPan())
rotVel = self.brain.getRotVel()

68

self.state.lastBlob = time.time()
elif(self.state.locKnown):

markerLoc = self.brain.getMarkerLoc()
if(not markerLoc):

raise ValueError, "No marker for current location"
xdif = markerLoc[0] - self.get(’/robot/x’)
ydif = markerLoc[1] - self.get(’/robot/y’)
th = degrees(atan2(ydif,xdif))
th_dif = th-self.get(’robot/th’)
if(th_dif <= -180):

th_dif += 360 #make sure that -180 < th_dif <= 180
rotVel = 1

else:
th_dif = 50
rotVel = .3

th_abs = fabs(th_dif)
close = min(self.get(’/robot/range/front-all/value’))
goForward = blobExists and (close > .75) and (th_abs < 30)
self.state.done = blobExists and (close < .75) and (th_abs < 30)
self.IF(Fuzzy(0, 180) >> th_abs, ’rotate’, \
self.brain.direction(th_dif)*rotVel, "WrongDir")

self.IF(Fuzzy(0, 180) << th_abs, ’rotate’, 0, "OnTrack")
self.IF(Fuzzy(0,1) >> goForward,’translate’,.1,"Go towards blob")
self.IF(Fuzzy(0,1) << goForward,’translate’,0,"Stop to find blob")

#Localization routine part 2
#Lines up with the wall, in preparation for localization
class FaceWall (CBRBehavior):

"""Behavior to face the wall, so localization can commence"""
def update(self):

close = select(min, "value",\
self.get(’/robot/range/front-all/value,thr’))

closeVal, angle = close["value"], close["thr"]
front2 = self.get(’/robot/range/3,4/value’)
diff = fabs(front2[0]-front2[1])
self.IF(Fuzzy(0.1, 1) >> closeVal, ’rotate’, \
self.brain.direction(angle)*.2, "Closer")

self.IF(1,’translate’,0,"No movement in this state")
self.IF(Fuzzy(0, .5) << diff, ’rotate’, 0, "Lined up")

#-------------------------------------
#States

#All cases controlled by the CBR system should call
#needUpdate to determine whether a CBR call is needed
class CBRState (State):

""" Basic syntax for all states """

69

def update(self):
self.brain.needUpdate(self)

#not part of CBR, always active
#Runs TrackBlob
class Track (State):

""" Keeps the camera pointing at the closest blob """
def setup(self):

self.add(TrackBlob(1, {’pan’: .3}))
self.add(MCLocalization(1))
self.search = True
print "initialized state", self.name

def doSearch(self):
self.search = True

def noSearch(self):
self.search = False

#Right wall-following behavior; currently unused
class RightWall (CBRState):

""" Right-hand wall-following state """
def setup(self):

self.add(Avoid(1, {’translate’: .3, ’rotate’: .3}))
self.add(FollowRight(1, {’rotate’: .3}))
print "initialized state", self.name

#Left wall-following behavior; currently unused
class LeftWall (CBRState):

""" Left-hand wall-following state """
def setup(self):

self.add(Avoid(1, {’translate’: .3, ’rotate’: .05}))
self.add(FollowLeft(1, {’rotate’: .3}))
print "initialized state", self.name

#Primary state, allows parameters to be passed in specifying the weights of
#Avoid, Escape, and ToGoal as well as the robot’s base velocity
class Wander (CBRState):

""" Wander aimlessly """
#Weights passed in as {bName: {eName: wt, ...}, ...}
def onGoto(self,weights = ()):

if ’Track’ in self.brain.states.keys():
self.brain.states[’Track’].doSearch()

if(not(weights == ())):
wts = weights[0]
#onGoto is passed params as a tuple, so must extract arg
for bName in wts.keys():

70

b = self.behaviors[bName]
if(wts[bName] == 0):

b.deactivate()
else:

b.activate()
for eName in wts[bName].keys():

b.Effects(eName,wts[bName][eName])
#set the effect of eName to the provided value

def setup(self):
self.add(Avoid(1, {’translate’: .3, ’rotate’: .3}))
self.add(Escape(1, {’rotate’: .1}))
self.add(ToGoal(1, {’rotate’: .05, ’translate’: .05}))
print "Initialized state", self.name

#Unused for the most part, called when the robot needs to stop
class Halt(State):

"""Stop the robot entirely and halt pyro execution"""
def onGoto(self,args):

self.robot.move(0,0) #halt the robot
self.brain.needToStop = True #signal pyro to stop

def setup(self):
print "Initialized state", self.name

#Does nothing, but will continue to
#call needUpdate so that the robot can resume
class Wait(CBRState):

"""Stop the robot and wait for CBR to change state"""
def onActivate(self):

self.robot.move(0,0)
#stop moving, wait for needUpdate to change state

def setup(self):
print "Initialized state", self.name

#Paired with ReLocalize2, gets near the
#wall with the marker and rotates so that
#the robot is perpendicular to the wall
class ReLocalize (State):

"""Rotate to find the closest match"""
def setup(self):

self.add(ToBlob(1, {’translate’: .2, ’rotate’: .2}))
self.calling_state = "Halt"
print "Initialized state", self.name

def onGoto(self,calling_state):

71

self.calling_state = calling_state[0]

def onActivate(self):
if ’Track’ in self.brain.states.keys():

self.brain.states[’Track’].noSearch()
self.timeout = 7
self.lastBlob = time.time()
self.done = False
self.locKnown = True

def update(self):
if(self.done):

print "On Phase 2!"
self.goto(’ReLocalize2’,self.calling_state)

elif(time.time()-self.lastBlob > self.timeout*3):
print "No blob found, resuming..."
self.goto(self.calling_state)

elif(time.time()-self.lastBlob > self.timeout and \
self.locKnown == True):
print "No blob found, trying full circle..."
self.locKnown = False

#Second phase of localization,
#orients the robot perpendicular to the wall
class ReLocalize2 (State):

def setup(self):
self.add(FaceWall(1, {’rotate’: .2, ’translate’: .2}))
print "Initialized state", self.name

def onGoto(self,calling_state):
print "In phase 2..."
self.calling_state = calling_state[0]

def update(self):
front2 = self.get(’/robot/range/3,4/value’)
diff = fabs(front2[0]-front2[1])
if(diff < .005 and diff != 0):
#exact match means neither sonar is responding
#(and so we obviously aren’t there yet:D)

self.robot.rotate(0)
time.sleep(.5)
#wait and double check to eliminate errors found due to rotation
front2 = self.get(’/robot/range/3,4/value’)
diff = fabs(front2[0]-front2[1])
if(diff < .005):

self.brain.robot.disableMotors()
time.sleep(1) #wait for any motion to settle

72

self.brain.doLocalization()
self.brain.robot.enableMotors()
self.goto(self.calling_state)

#Turns the robot toward the goal
#Does not have an associated behavior,
#as it merely turns the robot toward the
#goal and returns to the calling state
class FaceGoal (State):

""" Turn toward the goal; get within 10 degrees """
def onActivate(self):

print "Trying to face goal..."
if(not self.brain.goal):

print "No goal, resuming..."
self.goto(self.calling_state)

xdif = self.brain.goal[0] - self.get(’/robot/x’)
ydif = self.brain.goal[1] - self.get(’/robot/y’)
self.thGoal = degrees(atan2(ydif,xdif))
if(self.thGoal < 0):

self.thGoal += 360
self.robot.translate(0)
#Stop any previous motion, as ToGoal does not specify trans vals
th_dif = self.thGoal-self.get(’robot/th’)
if(th_dif > 180):

th_dif -= 360
if(th_dif <= -180):

th_dif += 360 #make sure that -180 < th_dif <= 180
self.robot.rotate(.3*self.brain.direction(th_dif))

def onGoto(self,calling_state):
self.calling_state = calling_state[0]

def update(self):
diff = fabs(self.get(’/robot/th’)-self.thGoal)
#print "diff: ", diff, "\n"
if(diff < 5 or diff > 355):

print "Resuming..."
self.robot.rotate(0)
self.goto(self.calling_state)

def setup(self):
print "Initialized state", self.name

#Activated whenever a stall is detected
#Returns to the calling state after 2 seconds, or after a stall in reverse
class Stall (CBRState):

""" Back up and try again on collisions """

73

def onActivate(self):
self.start_time = time.time()
time.sleep(1)
print "In state Stall"

def onGoto(self,calling_state):
self.calling_state = calling_state[0]

def update(self):
CBRState.update(self)
if(time.time()-self.start_time > 2.0 or \

self.get(’/robot/stall’) > -258):
print "Trying again..."
self.goto(self.calling_state)

def setup(self):
self.add(Backup(1, {’translate’: .2, ’rotate’: .05}))
print "Initialized state", self.name

74

C Source code for test run display window

/* Display.h
* creates a DisplayWindow and a kit to open it */

#ifndef DISPLAY_H
#define DISPLAY_H

#include "DisplayWindow.h"
#include <gtkmm/main.h>

class Display
{
public:

Display(int argc, char **argv);

void show();

private:
Gtk::Main kit;
DisplayWindow window;

};

#endif

75

/* Display.cpp
* creates a kit for showing a displayWindow */

#include "Display.h"

Display::Display(int argc = 0, char **argv = NULL): kit(argc,argv), window()
{}

void Display::show()
{

Gtk::Main::run(window);
}

int main(int argc, char **argv)
{

Display d(argc,argv);
d.show();
return 0;

}

76

/* Displaywindow.h
Class definition for base window of sample displayer/

#ifndef DISPLAYWINDOW_H
#define DISPLAYWINDOW_H

#include <gtkmm/button.h>
#include <gtkmm/window.h>
#include <gtkmm/box.h>
#include <gtkmm/entry.h>
#include "MapArea.h"
#include <vector>

class DisplayWindow: public Gtk::Window
{
public:

DisplayWindow();
virtual ~DisplayWindow() {}

protected:
virtual void onLoadMapClicked();
virtual void onPrevSampleClicked();
virtual void onNextSampleClicked();
virtual void onLoadSamplesClicked();

Gtk::HBox hBox;
Gtk::VBox vBox;

MapArea map;
Gtk::Entry dataFile;
Gtk::Button loadMap;
Gtk::Button prevSample;
Gtk::Button nextSample;
Gtk::Button loadSamples;

std::vector<std::vector<std::vector<double> > > samples;
std::vector<std::vector<double> > markers;
std::vector<std::vector<double> > poses;
std::vector<double> times;
int currentSample;

};

#endif

77

/* DisplayWindow.cpp
* For window class of displayer for MonteCarlo samples */

#include "DisplayWindow.h"
#include <fstream>
#include <iostream>
#include <string>

DisplayWindow::DisplayWindow()
: loadMap("Load Map"),

loadSamples("Load Samples"),
prevSample(" << "),
nextSample(" >> "),
currentSample(0)

{
set_border_width(10);

loadMap.signal_clicked().connect
(sigc::mem_fun(*this, &DisplayWindow::onLoadMapClicked));

loadSamples.signal_clicked().connect
(sigc::mem_fun(*this, &DisplayWindow::onLoadSamplesClicked));

nextSample.signal_clicked().connect
(sigc::mem_fun(*this, &DisplayWindow::onNextSampleClicked));

prevSample.signal_clicked().connect
(sigc::mem_fun(*this, &DisplayWindow::onPrevSampleClicked));

add(vBox);

dataFile.set_max_length(50);

hBox.pack_start(prevSample,Gtk::PACK_SHRINK);
hBox.pack_start(nextSample,Gtk::PACK_SHRINK);
hBox.pack_start(loadMap,Gtk::PACK_SHRINK);
hBox.pack_start(loadSamples,Gtk::PACK_SHRINK);
hBox.pack_start(dataFile,Gtk::PACK_SHRINK);
vBox.pack_start(hBox,Gtk::PACK_SHRINK);
vBox.pack_start(map);

prevSample.show();
nextSample.show();
loadMap.show();
loadSamples.show();
dataFile.show();
map.show();
hBox.show();
vBox.show();

78

}

//See the previous sample
void DisplayWindow::onPrevSampleClicked()
{

if(currentSample > 0) {
currentSample--;
map.setSamples(samples.at(currentSample));
map.setPos(poses.at(currentSample));
map.setMarker(markers.at(currentSample));

}
}

//See the next sample
void DisplayWindow::onNextSampleClicked()
{

if(currentSample < samples.size()-1) {
currentSample++;
map.setSamples(samples.at(currentSample));
map.setPos(poses.at(currentSample));
map.setMarker(markers.at(currentSample));

}
}

//Load a map from a file
void DisplayWindow::onLoadMapClicked()
{

std::ifstream in;
in.open(dataFile.get_text().c_str());
if(!in) {

std::cerr << "Error reading map file\n";
return;

}

std::string str("");
int maxx,maxy,minx,miny,numLines;

while(str != "LineMinPos:") {
in >> str;
if(in.eof()) {

std::cerr << "Formatting error in file..\n";
return;

}
}

in >> minx;
in >> miny;

79

while(str != "LineMaxPos:") {
in >> str;
if(in.eof()) {

std::cerr << "Formatting error in file..\n";
return;

}
}

in >> maxx;
in >> maxy;

while(str != "NumLines:") {
in >> str;
if(in.eof()) {

std::cerr << "Formatting error in file..\n";
return;

}
}

in >> numLines;

while(str != "LINES") {
in >> str;
if(in.eof()) {

std::cerr << "Formatting error in file..\n";
return;

}
}

std::vector<std::vector<int> > lines(numLines);
for(int i = 0; i < numLines; i++) {

lines[i].resize(4);
in >> lines[i][0] >> lines[i][1] >> lines[i][2] >> lines[i][3];

}

map.setMapLines(lines,maxx,maxy,minx,miny);
}

//Load sample logfile
void DisplayWindow::onLoadSamplesClicked()
{

std::ifstream in;
in.open(dataFile.get_text().c_str());

samples.resize(0);
markers.resize(0);

80

times.resize(0);
poses.resize(0);

if(!in) {
std::cerr << "Error reading map file\n";
return;

}

std::string str("");
int i,nSamples;
double time;

while(str != "Time:") {
in >> str;
if(in.eof()) {

std::cerr << "Formatting error in file..\n";
return;

}
}

in >> time;
times.push_back(time);

while(!in.eof()) {
std::vector<std::vector<double> > v;
std::vector<double> pos(3);
std::vector<double> mpos(3);
bool m = 0;

while(str != "Pos:") {
in >> str;
if(in.eof()) {

std::cerr << "Formatting error in file..\n";
return;

}
}

in >> pos[0] >> pos[1] >> pos[2];

while(str != "Samples:") {
in >> str;
if(in.eof()) {

std::cerr << "Formatting error in file..\n";
return;

}

81

if(str == "Marker") {
std::cerr << "Marker entry found..\n";
in >> mpos[0] >> mpos[1] >> mpos[2];
m = 1;

}
}

if(!m) {
mpos.resize(0);

}

in >> nSamples;

v.resize(nSamples);
for (i = 0; i < nSamples; i++) {

v[i].resize(3);
}

for (i = 0; i < nSamples; i++) {
in >> v[i][0] >> v[i][1] >> v[i][2];

}

while(str != "Time:" && !in.eof()) {
in >> str;

}
if(!in.eof()) {

in >> time;
times.push_back(time);

}

poses.push_back(pos);
samples.push_back(v);
markers.push_back(mpos);

}

map.setSamples(samples.at(0)); //start with the first set of samples
map.setPos(poses.at(0));
map.setMarker(markers.at(0));
currentSample = 0;

}

82

/* MapArea.h
* Class for the drawing area where the map and samples are drawn */

#ifndef MAP_AREA_H
#define MAP_AREA_H

#include "gtkmm/drawingarea.h"
#include <vector>

class MapArea: public Gtk::DrawingArea
{

public:
MapArea();
virtual ~MapArea();

void setMapLines(std::vector<std::vector<int> >
&lines, int xmax, int ymax, int xmin, int ymin);

void setSamples(std::vector<std::vector<double> > &samples);
void setPos(std::vector<double> &p);
void setMarker(std::vector<double> &m);

protected:
virtual bool on_expose_event(GdkEventExpose* event);
double lineWidth;

void forceRedraw();

int maxX,maxY,minX,minY,zoom;
std::vector<std::vector<int> > mapLines;
std::vector<std::vector<double> > samples;
std::vector<double> pos;
std::vector<double> marker;

};

#endif

83

/*MapArea.cpp
* Definitions for drawing the map for displaying samples */

#include "MapArea.h"

#include "cairomm/context.h"
#include "stdio.h"

MapArea::MapArea():
minX(0),
minY(0),
maxX(0),
maxY(0),
lineWidth(1),
zoom(25)

{}

MapArea::~MapArea() {}

bool MapArea::on_expose_event(GdkEventExpose* event)
{

// This is where we draw on the window
Glib::RefPtr<Gdk::Window> window = get_window();
if(window)
{

Gtk::Allocation allocation = get_allocation();
const int width = allocation.get_width();
const int height = allocation.get_height();

Cairo::RefPtr<Cairo::Context> cr(new
Cairo::Context(gdk_cairo_create(window->gobj()), true));

if (event)
{

// clip to the area indicated by the expose event so that we only redraw
// the portion of the window that needs to be redrawn
cr->rectangle(event->area.x, event->area.y,

event->area.width, event->area.height);
cr->clip();

}

// scale to unit square and translate (0, 0) to be (0,0)
// cr->scale(width, height);
cr->scale(1,1);
cr->translate(0, 0);

84

cr->set_line_width(lineWidth);

//draw the map lines
for(int i = 0; i < mapLines.size(); i++) {

cr->move_to((mapLines[i][0]-minX)/zoom,
height-(mapLines[i][1]-minY)/zoom);

cr->line_to((mapLines[i][2]-minX)/zoom,
height-(mapLines[i][3]-minY)/zoom);

cr->save();
cr->set_source_rgb(0,0,0);
cr->stroke();
cr->restore();

}

//draw the samples
for(int i = 0; i < samples.size(); i++) {

int x = (int(samples[i][0]*1000)-minX)/zoom;
int y = (int(samples[i][1]*1000)-minY)/zoom;

cr->move_to(x-1,height-(y-1));
cr->line_to(x+1,height-(y+1));
cr->move_to(x-1,height-(y+1));
cr->line_to(x+1,height-(y-1));
cr->save();
cr->set_source_rgb(.5,0,0);
cr->stroke();
cr->restore();

}

//draw the robot pos
if(!pos.empty()) {

int x = (int(pos[0]*1000)-minX)/zoom;
int y = (int(pos[1]*1000)-minY)/zoom;

cr->move_to(x-3,height-(y-3));
cr->line_to(x+3,height-(y+3));
cr->move_to(x-3,height-(y+3));
cr->line_to(x+3,height-(y-3));
cr->save();
cr->set_source_rgb(0,0,.5);
cr->stroke();
cr->restore();

}

//draw the marker
if(!marker.empty()) {

int x = (int(marker[0]*1000)-minX)/zoom;

85

int y = (int(marker[1]*1000)-minY)/zoom;

cr->move_to(x-3,height-(y-3));
cr->line_to(x+3,height-(y+3));
cr->move_to(x-3,height-(y+3));
cr->line_to(x+3,height-(y-3));
cr->save();
cr->set_source_rgb(0,.4,0);
cr->stroke();
cr->restore();

}

return 1;
}

}

void MapArea::setMapLines(std::vector<std::vector<int> >
&map, int xMax, int yMax, int xMin = 0, int yMin = 0)

{
mapLines = map;
maxX = xMax;
maxY = yMax;
minX = xMin;
minY = yMin;
forceRedraw();

}

void MapArea::setSamples(std::vector<std::vector<double> > &v)
{

samples = v;
forceRedraw();

}

void MapArea::setPos(std::vector<double> &p)
{

pos = p;
forceRedraw();

}

void MapArea::setMarker(std::vector<double> &m)
{

marker = m;
forceRedraw();

}

void MapArea::forceRedraw()
{

86

Glib::RefPtr<Gdk::Window> win = get_window();
if (win)
{

Gdk::Rectangle r(0, 0, get_allocation().get_width(),
get_allocation().get_height());

win->invalidate_rect(r, false);
}

}

87

References

[1] Arkin, Ronald. ”Behavior-based Robotics” The MIT Press. Cambridge, MA:
1998.

[2] Beetz, Michael et al. ”‘The AGILO autonomous robot soccer team: com-
putational principles, experiences, and perspectives.” In Proceedings of the
First International Joint Conference on Autonomous Agents and Multiagent
Systems, 2002.

[3] Fox, S. and Anderson-Sprecher, P., ”Robot Navigation Using Integrated Re-
trieval of Behaviors and Routes,” to appear in Proceedings of the 19th Inter-
national Florida Artificial Intelligence Research Society Conference, 2006.

[4] Isard, Michael and Blake, Andrew. ”Contour tracking by stochastic propa-
gation of conditional density,” Proceedings of the European Conference on
Computer Vision, vol 1, pp. 343-356, Cambridge UK, 1996

[5] Krose, B.J.A, Vlassis, N., Bunschoten, R., Motomura, Y. ”A probabilistic
model for appearance-based robot localization,” Image and Vision Comput-
ing, 19, 2001, 381-391.

[6] Marques, C.F. and Lima, P.U. ”Vision-based self-localization for soccer
robots,” Proceedings of the 2002 International Conference on Intelligent
Robots and Systems, vol 2, pp. 1193-1198, Takamatsu, Japan, 2002.

[7] Murphy, Robin R. ”Introduction to AI Robotics” Cambridge, MA: MIT Press,
2000.

[8] ”Pryo: Python Robotics” http://www.pyrorobotics.org.

[9] Russel, Stuart, and Norvig, Peter. ”Artificial Intelligence: A Modern Ap-
proach, Second Edition” New Jersy: Prentice Hall, 2002.

[10] Smith, Lindsay I. ”A tutorial on Principal Components Analysis,”
http://csnet.otago.ac.nz/cosc453, 2002.

88

	Macalester College
	DigitalCommons@Macalester College
	May 2006

	Probabilistic Robot Localization using Visual Landmarks
	Peter E. Anderson-Sprecher
	Recommended Citation

	C:/Documents and Settings/peter2/My Documents/capstone/final.dvi

