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Abstract

Over the last several decades, two important shifts have taken place in the computing world: first,
the speed of processors has vastly outstripped the speed of memory, making memory accesses by
far the most expensive operations that a typical symbolic program performs. Second, dynamically
compiled languages such as Java and C# have become popular, placing new pressures on compiler
writers to create effective systems for run-time code generation.

This paper addresses the need created by the lagging speeds of memory accesses in the context
of dynamically compiled systems. In such systems memory access optimization is important for
resultant program performance, but the compilation time required by most traditional memory
access optimizations is prohibitively high for use in such contexts. In this paper, we present a
new analysis, memory dependence analysis, which amortizes the cost of performing memory access
analysis to a level that is acceptable for dynamic compilation. In addition, we present two memory
access optimizations based on this new analysis, and present empirical evidence that using this
approach results in significantly improved compilation times without significant loss in resultant
code quality.
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Chapter 1

Introduction

As modern software engineering practices introduce more layers of abstraction into the com-
mon programming model, optimizations performed at compile-time are increasingly important
to achieving acceptable performance in statically compiled programs. Because the programmer is
becoming further and further removed from the machine, he or she relies on the compiler to man-
age the machine’s resources efficiently and to eliminate inefficiencies introduced by the nature of
the high-level language used. Each additional layer of abstraction requires additional analysis and
optimization to reduce or remove the performance impact, leading to a trend of sharply increasing
compilation times.

In contrast to the world of statically compiled programs, Just-in-Time (JIT) or dynamic compi-
lation is all about compilation speed: the program is compiled function-by-function as needed,
directly into an executable buffer. Because the compilation delay is visible to the client, an ef-
fective JIT system must weigh the benefits of decreased execution time of a function against the
costs of optimizing. Most production systems (such as the Java Virtual Machine and the Com-
mon Language Runtime) employ a ”hot spot” method, which initially compiles functions without
optimization, and then recompiles and optimizes them if it detects that they are being executed
frequently.

The goal of this paper is to take optimizations designed for the static case and recast them for
the dynamic, by choosing only to optimize the cases that occur most frequently in real-world pro-
grams, rather than waste time catching the less common ones that will not have a sufficient payoff
in decreased execution time. We have chosen to focus our efforts on one analysis, alias analysis,
and two optimizations that depend on it, dead store elimination and redundant load elimination.

These choices are based on the observation that, in most symbolic programs, the single most
expensive operation is memory access. Alias analysis is a fundamental (and typically quite ex-
pensive to compute) analysis for most optimizations related to reducing memory accesses, while
dead store elimination and redundant load elimination are the two most elementary applications
of this information to the removal on unnecessary memory accesses. By making these available
in a JIT environment, we hope to optimize away the largest time sinks in the compiled programs
without wasting too much additional compilation time.
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1.1 Modern Static Optimization

Before proceeding much further in the discussion of these novel techniques, it is necessary first to
review the basics of modern compiler optimizations, so that these new algorithms can be under-
stood in contrast to what has come before them.

In compiler optimizations, a unit of code executed in a straight line without control flow is
known as a basic block. A function, then, is a directed, rooted graph of basic blocks, called the
control-flow graph or CFG, where the directed edges represent the flow of control between basic
blocks created by branches. Because of this, many optimizations have the form of graph algo-
rithms. An example of visualizing a function as a CFG appears in Figure 1.1.

CFG for 'main' function

entry:

 br label %loopheader

 

loopheader: 

 %i.0 = phi i32 [ 0, %entry ], [ %j.1, %loopbody ] 

 %j.0 = phi i32 [ 0, %entry ], [ %i.1, %loopbody ] 

 %comparison = icmp slt i32 %i.0, %argc 

 br i1 %comparison, label %loopbody, label %return

T F

loopbody: 

 %j.1 = add i32 %j.0, %i.0 

 %i.1 = add i32 %i.0, 1 

 br label %loopheader

 

return: 

 ret i32 %j.0

Figure 1.1: An example control-flow graph

The single greatest development in the last few decades of compiler research, and a prereq-
uisite for the optimizations presented in this paper, is Static Single Assignment form, originally
described in [11]. Fundamentally, SSA form is a semantics-preserving code transformation that
facilitates a number of analyses and optimizations. The underlying concept is that, in SSA form,
every register appears on the left-hand side of an assignment only once in the entire function.

A special operation, the φ instruction, is introduced in SSA form to merge registers coming in
from multiple predecessor blocks, such as after an if -statement or a loop header. Two φ instruc-
tions appear in Figure 1.1, representing two variables whose values are initially zero, and then
inherit their value from calculations in the loop body after each iteration. This example also il-
lustrates that it is Static Single Assignment form: several of the registers will be assigned to more
than once in the actual execution of the program (dynamic behavior), but they are on the left-hand
side of only a single assignment statement in the written form of the program (static behavior).

The key benefit of representing a program in SSA form is that optimizations do not need to
contain logic to guarantee that the value in a register is constant within their range of optimization;
in SSA form, a value and the register it is stored in are equivalent. This greatly simplifies the work
of writing an optimization, as well as making various analyses (particularly liveness analysis)
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much simpler. Of course, programs are not typically written in SSA form by the programmer, so a
great deal of research exists into both creating [4] and destroying [6] SSA form efficiently and with
optimal results.

1.2 Evolution of Just-in-Time Compilation

Just-in-Time compilation is hardly a novel idea, with the earliest recognizable proposal for it dat-
ing back to a 1960 paper [18] on the compilation of LISP. While it is beyond the scope of this
paper to give a full account of the history of dynamic compilation (for that, see [3]), it is important
to understand the origins of the idea and its practical applications. This will allow us to better
understand why cheap optimizations are important for the development of effective JIT systems.

The earliest JIT systems were created as a memory-saving optimization for early computers
that had very little storage, either primary or secondary. In general, high-level source code is
more dense than binary executables because a significant amount of the program semantics is im-
plicitly defined by the language in a high-level program, while these semantics must be explicitly
represented in the executable binary. The natural solution to this problem was interpretation, di-
rect execution of the high-level source code by an interpreter, but this has serious performance
consequences. The very first JIT systems were created to solve this problem. Implementations of
early languages like LC2 [19] and APL [1] were created in this manner.

The next major advancement in the creation of JIT systems was the idea of a “mixed mode”
system, wherein frequently executed parts of a program are dynamically compiled while less
frequently executed parts are simply interpreted. This concept was independently proposed in
[12] and [13]. This approach was first used for implementing BASIC, but was adapted to Fortran,
with added infrastructure for heuristically choosing which function to compile, in [14]. This “hot
spot” approach remains popular to this day.

Dynamic compilation approaches were later used for optimizing dynamically typed languages,
like Self. In such languages, the types of variables are often undecidable at compile time; at run-
time, however, a great deal more typing information is known, allowing the JIT compiler to apply
optimizations that would not have been possible earlier. The Self compiler was developed in three
generations of increasingly sophisticated run-time optimizations based on increased run-time type
information. A description of its implementation is found in [22].

The most recent research in JIT compilation has largely been driven by two forces: optimizing
the Java Virtual Machine, and binary translation. The former was spurred largely by the success
of Java as a teaching and research platform, and the realization that its initial interpreted imple-
mentation was unacceptably slow. The list of papers on this topic is too long to reproduce without
subdivision by category. [3] offers a survey of the relevant works.

Binary translation is an active area of research in the use of JIT compilation techniques for
the evaluation of binary executables for one architecture on a different architecture. Rather than
merely simulate the source architecture, binary translation systems treat the input executable as
source code and dynamically compile and executed semantically equivalent code for the target
architecture. Dynamic instrumentation systems, such as valgrind [20], are a subset of binary
translators in which the source and target architectures are the same. Again, the papers on this
topic are numerous; see [3] for a more thorough treatment and citations.
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1.3 Previous Work

In [14], Hansen laid much of the foundational work for just-in-time optimization. He focused
on a dynamic compiler for FORTRAN, and was able to produce significantly higher quality code
through progressive optimization of frequently executed pieces of code. Notably, the machine-
independent optimizations that he found worthwhile were constant folding, common subexpres-
sion elimination, and loop-invariant code motion. Of these, common subexpression elimination is
similar to the global value numbering process present in Section 4.2.

Cierniak and and Li [7] studied time efficient optimizations for Java, with an emphasis on high-
performance programs. They formulated loop transformations in terms of loop-defined variables
rather than loop induction variables, which can be computed more efficiently with similar qual-
ity of optimization. These loop-based optimizations are largely orthogonal to the optimizations
presented in this paper.

Finally, Suganuma, et al., in [21], also explored optimizations for the just-in-time compilation
of high-performance Java programs. Their work is more similar to Hansen’s in that they focus
on exploiting knowledge only available at run-time, such as method execution counts. They pro-
pose efficient inlining and code specialization optimizations that use such run-time information
to produce efficient code.

1.4 Implementation: LLVM

Our implementation of these algorithms was done in the Low Level Virtual Machine (LLVM),
available from www.llvm.org under the University of Illinois Open Source License. It was orig-
inally developed as a research compiler at the University of Illinois at Urbana-Champagne [17],
but has since gained acceptance as a production grade compiler in industry. NASA uses it for
code-analysis projects while Apple uses it as a JIT compiler for OpenGL shaders. It is, by design,
a modular and flexible set of components rather than a monolithic compiler.

LLVM presents a pluggable infrastructure for applying analyses and optimizations to pro-
grams in an SSA-based target-independent intermediate representation, which is then handed off
to the backend for machine code generation, either statically or in a JIT engine. This intermediate
representation exists in three forms: as in-memory data structures, as an on-disk bitcode format,
and as a human-readable textual format. Examples in this paper will be presented in the human-
readable textual form, an example of which appears in Figure 1.2.

The LLVM intermediate representation is best described as an abstract machine language. It in-
cludes instructions familiar to anyone who knows a RISC-like load-store assembly language, with
the addition of the φ instruction necessary for SSA form. These instructions operate on an infi-
nite number of fixed-but-arbitrary width virtual registers in SSA form; the language also includes
loads, stores, and a special instruction called getelementptr for performing pointer arithmetic in
a target-independent manner.

Analyses and optimizations in LLVM are represented as “passes” (in the cases presented here,
“function passes,” because they act on the program one function at a time), and are capable of
expressing dependency information to the infrastructure. For instance, our dead store elimination
optimization announces to the infrastructure that it depends on alias analysis, so the infrastructure
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int main(int argc, char **argv) {
int i = 0;
int j = 0;
for (i = 0; i < argc; ++i) {
j += i;

}

return j;
}

define i32 @main(i32 %argc, i8** %argv) {
entry:
br label %loopheader

loopheader:
%i.0 = phi i32 [ 0, %entry ], [ %j.1, %loopbody ]
%j.0 = phi i32 [ 0, %entry ], [ %i.1, %loopbody ]
%comparison = icmp slt i32 %i.0, %argc
br i1 %comparison, label %loopbody, label %return

loopbody:
%j.1 = add i32 %j.0, %i.0
%i.1 = add i32 %i.0, 1
br label %loopheader

return:
ret i32 %j.0

}

Figure 1.2: A simple example in C and LLVM IR
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ensures that alias analysis has been computed and made available at the time that dead store
elimination is run.

The LLVM mid-level pass infrastructure includes many classical optimizations, including (but
not limited to) stack to register lowering, scalar replacement of aggregates, dead argument elim-
ination, and various loop optimizations, as well as the appropriate supporting analyses. Prior to
the work implemented as part of this research, it included classical dead store elimination and
global common subexpression passes. These have since been dropped in favor of the solutions
developed in this paper.

1.4.1 Data Collection

All data collected for this paper was gather on an Apple Mac Pro with two dual-core 2.66Ghz
Xeon processors and 4GB of RAM, running Mac OS X 10.5.1. The LLVM source was taken from
the version 2.2 release branch. Optimizations that are no longer present in the LLVM source were
run using the last extant version before their removal, updated only for API changes since their
removal.

Tests were executed using the LLVM nightly testing framework, including the SPEC2000 and
SPEC2006 tests of both integer and floating point performance as well as other test programs
judged useful indicators of compiler performance by the LLVM community. All non-critical and
periodic processes were shutdown before running these tests.
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Alias Analysis

Alias analysis, sometimes subdivided into more specific analyses like points-to analysis and mod-
ref analysis, is the process of reasoning, at compile time, about which pointers in a program may
or may not take on the same (or overlapping) values dynamically. The canonical question to be
answered is “Can pointers a and b point to the same or overlapping memory locations?”, though
related questions like “Does this function read from/write to a given memory location?” are also
within its scope.

In most high level languages, alias analysis is the key enabling ingredient for memory access
optimization. Without it, it is essentially impossible to make memory access transformations that
are guaranteed to preserve the behavior of the program. Unfortunately, powerful alias analy-
ses are computationally expensive, and there exists a point of diminishing returns after which
increased precision of the analysis yields little benefit for optimization [15].

2.1 Classical Alias Analysis

The range of alias analyses developed in the literature is very broad. Rather than try to present
any particular algorithms, it is perhaps best to convey a sense of the algorithms developed by de-
scribing the four primary axes that form a basis for the space of alias analyses: context-sensitivity,
flow-sensitivity, field-sensitivity, and on-demand nature [15]. Most alias analysis algorithms can
be expressed simply as a combination of these attributes. [16] provides a nice overview of the
major algorithms in use today, as well as some empirical data on the benefits and costs of each.

A context-sensitive analysis is one that considers the context in which a function is called
when computing aliasing information for that function. As such, each different context in which
it is called effectively creates a new “copy” of the function with different aliasing characteristics
due to information inherited from the caller. While this results in a more accurate analysis, it is
easy to see how this can result in a combinatorial explosion in the number of computations to be
performed.

Flow-sensitivity is the concept of taking into account intraprocedural control flow. Analyses
that are flow-sensitive may reason about the order of definitions within a function, for instance,
or may use the predicates of if-statements to improve the analysis within the conditional blocks.
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Obviously these analyses tend to be more accurate than those without flow-sensitivity, and the
cost of computing this additional information is generally not as high as it is for context-sensitivity.

The last form of sensitivity, field-sensitivity, is the need to model memory structures in detail.
A field-sensitive analysis keeps track of every field of an object or an array as an independent
memory location, while a field-insensitive analysis considers each array or object to be a single
memory location (and thus pointers to any fields of the structure alias each other). A field-sensitive
analysis is generally very important for object-oriented languages, as well as for enabling loop-
oriented optimizations where iteration over the fields of an array is common.

The last major axis of an alias analysis is whether it does its computation up-front or on-
demand. Most precise analyses perform their analysis up-front: they make a single pass over the
program computing alias information, which they then store until asked for them. On-demand
algorithms, in contrast, only perform analysis as needed. If no queries are ever made about a
given function, aliasing information is never calculated for it. While on-demand algorithms are
very nice for just-in-time systems, most precise analyses require elaborate “solver” mechanisms
that are not feasible to adapt to this method of operation.

2.2 Basic Alias Analysis

LLVM includes two alias analyses: Andersen’s analysis, a flow- and context-insensitive up-front
analysis based on a constraint solver described in [2], and basic alias analysis, a minimal on-demand
analysis that makes use of trivially computed local information to answer the most important alias
queries quickly.

Basic alias analysis achieves this end by being aware of a few rudimentary facts. For example,
it knows that pointers to locally allocated structures cannot alias pointers passed in as parameters,
and that separate stack allocations cannot alias each other. Similarly, it is also able to prove that
derived pointers from the same base pointer cannot alias if the field indices are provably different.

While basic alias analysis is not the focus of this paper, it is worth noting that it brings one im-
portant benefit for just-in-time compilation: its on-demand design makes it scale with the number
of aliasing queries issued, rather than with the size of the program analyzed. We will exploit this
fact throughout this paper to reduce compilation time by issuing fewer alias queries.

2.3 Memory Dependence Analysis

Perhaps the most significant novel contribution of the paper, and certainly the one that underlies
the performance gains in the other optimizations, is memory dependence analysis. Simply put,
memory dependence analysis is an aggressive caching layer on top of alias analysis that answers
the question: “Given a load or a store, what preceding load or store does the state of the referenced
memory location depend on?” This significantly amortizes the cost of optimizations that are typi-
cally intensive in alias queries, including dead store elimination and redundant load elimination.
As an example, consider Figure 2.1. In this example, the second store depends on the load, which
itself depends on the first store.



2.3. Memory Dependence Analysis 9

Of course, the idea of a caching layer is not novel in and of itself. What is distinctive about
memory dependence analysis and what makes it more aggressive than a trivial caching layer, is
its intelligent cache invalidation policy. In the context of optimizations like dead store elimination
and redundant load elimination, the cache is invalidated by the removal of instructions. In a
trivial caching scheme, any computational effort expended on an instruction becomes wasted if
its dependee is removed. The key insight behind memory dependence analysis is that this is not
necessarily the case.

Imagine a situation as shown in Figure 2.2(a). The filled-in arrowheads represent confirmed
dependencies between instructions. To determine the dependency for an instruction for which
no information is known, the analysis walks backwards from that instruction, inspecting each
preceding instruction to see if it has the appropriate opcode and if its operand could alias the
operand of the instruction in question. Once it has found the earliest dependency, it inserts the
appropriate edge (or a sentinel if the beginning of the basic block was reached) in the memory
dependence graph.

Now, consider what happens when an instruction is deleted, perhaps because it was a dead
store or a redundant load. Such a case is illustrated in Figure 2.2(b). When instruction B is re-
moved from the memory dependence graph, a trivial caching system would discard all edges that
previous pointed to instruction B, losing a significant amount of information. Note that this is
information that was computed for queries on instruction other than B, so it is possible (perhaps
likely, depending on the client) that this information will be required again in the future.

Rather than discard these edges and lose information, memory dependence analysis moves
the target of these edges to the predecessor of B, and marks them as unconfirmed edges (denoted
by a white arrowhead). In this way, the analysis preserves the information that instructions that
previously depended on instruction B still do not depend on any instruction later than B’s prede-
cessor. The next time that a query is made for instruction D, for instance, the analysis will scan up
the basic block looking for dependencies, starting with the unconfirmed dependency. This behavior
allows for radically fewer queries to be forwarded to the underlying alias analysis by avoiding
recomputing information.

define i32 @main(i32 %argc, i8** %argv) {
%a = alloca i32
store i32 0, i32* %a
...

%b = load i32* %a
...

store i32 1, i32* %a
ret i32 %b

}

Figure 2.1: An example of memory dependence analysis
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A

B

C

D

E

(a) A memory dependence graph

A

C

D

E

(b) The same graph after removing instruc-
tion B

Figure 2.2: A diagramatic example of the internals of memory dependence analysis

2.4 Results

It is challenging to measure the effects of memory dependence analysis on compilation time be-
cause the algorithms designed to make use of it are inherently different than those that work
directly with alias queries. The limited range of questions that MDA can answer forces this di-
chotomy. In addition, the algorithms developed to work with it were themselves designed to
reduce the number of alias queries performed. As such, numerical differences between operation
with and without memory dependence analysis must be looked at from a high level, rather than
as precise measures.

Table 2.1 presents the number of alias queries that were evaluated during the process of ex-
ecuting dead store elimination on the C-based tests in the SPEC suite, a popular set of bench-
marks produced by the Standard Performance Evaluation Corporation. While in some data points
(401.bzip2 and 473.astar) the difference is most likely due to more intelligent choices made by
the new dead store elimination algorithm, in most cases the superior scalability of memory de-
pendence analysis is evident.

Measurements of compilation time for this and the other algorithms in this paper are presented
together in Section 5.1.
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SPEC2006 Old DSE New DSE
400.perlbench 27514 260

401.bzip2 3584 0
403.gcc 53009 81
429.mcf 699 0
433.milc 4068 75
444.namd 13545 10

445.gobmk 21747 59
447.dealII 1296659 99

456.hmmr 11574 12
458.sjeng 11941 118

462.libquantum 9474 212
464.h264ref 21140 150

470.lbm 815 3
471.omnetpp 13379 4
473.astar 2342 0

SPEC2000 Old DSE New DSE
164.gzip 1335 35
175.vpr 5868 7
176.gcc 26443 66
177.mesa 116920 1
179.art 449 0
181.mcf 701 0

183.equake 1289 3
186.crafty 11229 12

188.ammp 4713 9
197.parser 3085 6

252.eon 463745 43
253.perlbmk 17070 188

254.gap 36503 21
255.vortex 62684 819
256.bzip2 467 7
300.twolf 10540 16

Table 2.1: The number of alias queries evaluated on the SPEC benchmarks
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Dead Store Elimination

Dead store elimination is, on the surface, a simple optimization: if a memory address is stored to
twice without an intervening load, the earlier store is dead and can be eliminated. Complications
arise, however, when one must take into account the possibility of stores of different sizes, over-
lapping but not containing stores, and, of course, the possibility of imprecise alias analysis: it is
not always possible to tell if an intervening load accesses the memory address in question, or even
if the second store entirely overwrites the first one.

For example, in Figure 3.1, we cannot remove the first store because the function @foo might
read the memory location pointed to by %ptr. If additional analysis were to discover that @foo
does not read from the memory location at %ptr, then the store may indeed be safe to remove, as
in Figure 3.2.

This optimization is a subset of the broad class of optimizations called “dead code elimina-
tion.” More general algorithms exist which try to eliminate all forms of dead code using unreach-
ability information, alias analysis, etc. Such techniques are described in many papers, such as [11],
which is also a fundamental paper on Static Single Assignment form. Dead store elimination is
distinguished from these by virtue of being focused solely on the removal of stores through the
use of alias analysis information. This makes it more efficient to compute than a more inclusive
dead code elimination pass.

define i32 @main(i32 %argc, i8** %argv) {
entry:
%ptr = alloca i32
store i32 3, i32* %ptr
call @foo(%ptr)
store i32 4, i32* %ptr
%value = load i32* %ptr
ret i32 %value

}

Figure 3.1: An example where the first store is potentially necessary
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define i32 @main(i32 %argc, i8** %argv) {
entry:
%ptr = alloca i32
store i32 3, i32* %ptr
store i32 4, i32* %ptr
%value = load i32* %ptr
ret i32 %value

}

Figure 3.2: An example in which the first store is dead

It is worth noting that, in most systems, the performance of stores is not critical to the overall
performance of a program, due largely to now-common write-back cache policies. The elimina-
tion of stores remains a critical performance optimization, however, because it exposes further
opportunities to eliminate loads, as will be discussed in Section 4.

While the removal of unnecessary stores is only an indirect performance win for traditional
computers, it is a very direct win for mobile and embedded devices where power consumption
and heat are key metrics. The registers in which the value is already stored are already consuming
power, so there is no cost to keeping the value there. Storing to memory, however, requires, at
the very least, supplying power to the cache and possibly to primary memory as well. In such
devices, any optimization that reduces the need for power to be supplied to other components is
a definite win.

3.1 Classical Dead Store Elimination

The classical form of dead store elimination was implemented in LLVM using a unification-based
set data structure, called an AliasSet. When a pointer value is inserted into this set, it is only
stored if it is not must-alias with a value already in the set. However, when a pointer is erased
from the set, any pointers in the set that may-alias it are also removed.

The general operation of the dead store elimination optimization was very simple: While per-
forming a reverse walk of each basic block of the function, whenever a store is encountered, its
target is added to the AliasSet. When a load is encountered, its source is erased from the set. If
a store is encountered whose target was already in the set, then that store can be safely removed.
Algorithm 1 presents pseudocode for this operation.

While conceptually simple, this implementation hid significant implementation details as well
as poor average time complexity in the AliasSet. Every time a pointer is inserted or removed
from the set, the unification operations impose a complexity that proved, empirically, quadratic
for common cases, as well as issuing potentially huge numbers of alias queries. Because of this,
several cases were found in the SPEC benchmarks where functions with a particularly large num-
ber of loads and stores took minutes to optimize, even on fast machines.
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Algorithm 1 Classical Dead Store Elimination
Require: a function F

for each basic block B in F do
AS← empty AliasSet
for each instruction I in B in reverse order do

if I is a store then
P← target(I)
if P in AS then

erase I
end if

else if I is a load then
remove(AS, source(I))

end if
end for

end for

3.2 Fast Dead Store Elimination

Fast dead store elimination, as our new algorithm is called, does away completely with the uni-
fication mechanism around which the old algorithm was based. Instead, memory dependence
analysis, with its aggressive caching mechanism, is used to provide similar information with much
improved average complexity.

The new algorithm (shown in Algorithm 2) begins by walking each block forwards, rather
than backwards as in the classical implementation. As it performs this walk, it records a mapping
between pointers and the last-seen stores to those pointers. If a store to a pointer is found to which
there is already a store in the last-seen mapping, then the store in the mapping is a candidate for
deletion.

Algorithm 2 Fast Dead Store Elimination
Require: a function F

for each basic block B in F do
lastStore← empty map
for each instruction I in B in forward order do

if I is a store then
P← target(I)
if P in lastStore and lastStore [P] = getDependency(I) then

erase lastStore [P]
end if
lastStore [P]← I

end if
end for

end for
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SPEC2006 Old DSE New DSE
400.perlbench 109 531

401.bzip2 3 6
403.gcc 173 184
429.mcf 0 0
433.milc 3 3
444.namd 31 31

445.gobmk 9 9
447.dealII 2770 3048

456.hmmr 5 5
458.sjeng 34 34

462.libquantum 3 5
464.h264ref 64 66

470.lbm 6 6
471.omnetpp 98 98
473.astar 30 30

SPEC2000 Old DSE New DSE
164.gzip 6 6
175.vpr 2 2
176.gcc 141 147
177.mesa 0 0
179.art 0 0
181.mcf 0 0

183.equake 4 4
186.crafty 22 22

188.ammp 7 7
197.parser 1 1

252.eon 2549 2846
253.perlbmk 10 288

254.gap 13 13
255.vortex 174 174
256.bzip2 2 2
300.twolf 20 20

Table 3.1: The number of stores removed on the SPEC benchmarks

It is at this point that memory dependence analysis enters the picture: in order to ensure the
safety of a deletion, fast dead store elimination simply asks MDA if the current store’s immedi-
ate dependency is the instruction in the last-seen map. If it is, then there cannot have been any
intervening loads, and the deletion is safe to perform. It is worth noting that this process will
miss dead stores in the face of must-aliased pointers. However, because of the imprecision of alias
analyses that are practical for just-in-time compilation, this does not make a difference in practice,
as we will see in Section 3.3.

Note that this query to memory dependence analysis is of linear complexity, possibly lower
due to caching. This is far better for compile time than the complex unification operations that an
AliasSet would have to perform for every load. Additionally, the number of queries issued by
fast dead store elimination is proportional to the number of potential deletions present, whereas
classical dead store elimination had to perform the unification step for every load encountered,
regardless of whether or not it was useful.

3.3 Results

The old and new implementations of dead store elimination must be compared on two criteria:
effectiveness in eliminating stores, and speed of optimization. For a just-in-time compiler, speed
of compilation is the first priority, but we also do not want to sacrifice generated code quality if
we can help it. Fortunately, the new dead store elimination algorithm performs exceptionally well
in practice!

As can be seen in Table 3.1, new DSE eliminated as many or more stores as the classical version
on every testcase. In fact, on some tests, such as 400.perlbench, it eliminated drastically more.
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This is largely due to two factors: first, the AliasSet structure in the classical version forced
conservative assumptions that caused it to miss some dead stores. Secondly, the weakness of new
DSE, must-aliased pointers, are rare without precise (and therefore costly) alias analysis. Because
this experiment is within the context of a just-in-time compilation system, a costly alias analysis is
infeasible.

Measurements of compilation time for this and the other algorithms in this paper are presented
together in Section 5.1.





Chapter 4

Redundant Load Elimination

The complementary optimization to dead store elimination, redundant load elimination is the
process of eliminating the later of two loads if there are no intervening stores. This process is
itself muddled by most of the same issues that afflict dead store elimination, in that, in the face
of imprecise alias analysis, it is not always possible to tell if two loads access the same memory
location, or whether an intervening store might touch that location.

Because of the possibility for intervening stores complicates the process of redundant load
elimination, it is usually desirable to have run dead store elimination immediately beforehand, in
the hopes of exposing more opportunities for redundant load elimination. A more aggressive ap-
proach would be to repeatedly execute both optimizations until the program converged to a fixed
point: redundant load elimination could expose more opportunities for dead store elimination
which could expose more redundant loads, etc.

Figures 4.1 and 4.2 illustrate examples of non-redundant and redundant loads respectively.
In the former, the block containing the load has two predecessors: %entry and %true branch.
The load has a dependency with the correct pointer value in %true branch, but no dependency
at all in %entry. Thus the load is not redundant. In Figure 4.2, on the other hand, the load in
%return has dependencies in both of its predecessors: the store in %true branch and the load in
%false branch. Figure 4.3 shows the result after eliminating the redundant load.

4.1 Global Common Subexpression Elimination

The existing form of redundant load elimination in LLVM was, incorrectly, called Global Com-
mon Subexpression Elimination. GCSE correctly refers to the work of Cocke in [9], which is a
form of redundant instruction removal based on using Gaussian elimination to solve dependency
constraints. This older form of redundant instruction removal is no longer commonly used in
practice. Instead, the optimization known as “GCSE” in LLVM is in fact a form of global value
numbering.

Global value numbering, possibly best described in [5] and [8], is a newer technique that takes
advantage of static single assignment form. It is conceptually quite simple: in SSA form, ev-
ery variable is defined only once. Thus, for each instruction, we can compute a unique “expres-
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define i32 @nonredundant(i32* %ptr, i1 %cond) {
entry:
br i1 %cond, label %true_branch, label %return

true_branch:
store i32 0, i32* %ptr
br label %return

return:
%a = load i32* %ptr
ret i32 %a
}

Figure 4.1: An example where the load is not redundant

define i32 @redundant(i32* %ptr, i1 %cond) {
entry:
br i1 %cond, label %true_branch, label %false_branch

true_branch:
store i32 0, i32* %ptr
br label %return

false_branch:
%b = load i32* %ptr
br label %return

return:
%a = load i32* %ptr
ret i32 %a
}

Figure 4.2: An example where the load is redundant
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define i32 @redundant(i32* %ptr, i1 %cond) {
entry:
br i1 %cond, label %true_branch, label %false_branch

true_branch:
store i32 0, i32* %ptr
br label %return

false_branch:
%b = load i32* %ptr
br label %return

return:
%a.rle = phi i32 [ %b, %false_branch ], [ 0, %true_branch ]
ret i32 %a
}

Figure 4.3: The result of eliminating a redundant load

sion” for its value. These expressions contain the opcode of the defining instruction as well as
the value numbers of the instruction’s operands. These expressions are then used as indexes into
a hashtable, mapping to value numbers. Instructions with no operands (such as function argu-
ments, or function calls) are each given a unique value number, as is each expression the first time
it is encounter. Subsequent expressions with the same opcode and operand value numbers receive
the same value number.

The process of removing redundant instructions is then quite simple: an instruction is redun-
dant if another instruction with the same value number is already available at that program point.
The simplest way to compute availability is for each basic block to inherit the set of available
values from its immediate dominator, and add its own additions before passing them on to the
blocks that it dominates. More aggressive means of propagating availability information have
been explored, for example in [10].

Applying this technique to memory operations, however, is difficult. Because loads and stores
affect program state beyond what is represented by the virtual registers of SSA form, the single-
definition assumption does not hold for them. Because optimizing these instructions is critical
for program performance, most global value numbering techniques integrate some method of
handling them.

LLVM’s existing redundant load elimination functionality was achieved in a way that was
transparent to the redundant instruction removal system. It implements an additional analysis
called load value numbering, which assigned value numbers from the same value numbering
pool as global value numbering. The analysis’ key task was to assign, in the face of arbitrary
control flow, value numbers to load instructions such that two loads that were separated by a
store never receive the same number. With that guarantee, the instruction removal process was
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able to operate on loads just as it does on register-register arithmetic.
The problem with this approach is that it scales very poorly. The analysis is forced to consider

essentially every path between every pair of loads to determine if they should receive the same
value number. This quite obviously leads to a very high order of growth. Relatively small testcases
could produce unacceptably long analysis times.

4.2 Global Value Numbering

Our new implementation, in addition to correcting the aforementioned nomenclature issue by
being named “GVN,” is intended to correct this issue of scalability. The redundant instruction
removal functionality is based on the description of GVN given in [23], though other versions
such as [10] could be used instead. The key difference is in how we handle load instructions.

Rather than trying to retrofit the analysis of loads into the value numbering paradigm, we
instead use the facilities provided by memory dependence analysis to simplify the problem while
simultaneously providing aggressive caching. The reasoning is simple: we perform a query for the
dependencies (including non-local ones) of each load that we consider. If all of these dependencies
are loads or stores to the same pointer as the original load, then that load is redundant. We then
perform normal φ construction to make the results of the preceding loads and the store value of
the preceding stores available at the current instruction. Finally, we replace all uses of the current
load with the result of φ construction and delete the original load.

Note that this approach contains an inherent inaccuracy: it does not attempt to handle cases
in which the dependee load is from a must-aliased pointer. As we shall see in Section 4.3, this
does not occur often enough in practice to have a significant impact of the effectiveness of the
optimization.

The key advantage of this approach over the classical method is that the amount of work
performed to eliminate redundant loads scales, on average, with the number of loads that we
consider to be candidates for removal. This is in contrast to the classical approach in which the
entire set of loads in a function must be partitioned into equivalence classes, leading to a scaling
factor of O

(
n2).

4.3 Results

In Table 4.1 we present the number of redundant loads removed by both GVN and GCSE when
run on the SPEC 2000 and 2006 testsuites. The most immediate observation is that GCSE outper-
forms GVN in only a single case (176.gcc), while on all the others GVN was at least as, if not
more effective than GCSE. This is in spite of the inherent inaccuracy with respect to must-aliased
pointers GVN suffers, clearly illustrating that they are not a common enough occurrence given
the reality of imprecise alias analysis to be of significance for optimization.

It is also worth noting that while GCSE outperforms GVN on 176.gcc, the updated version
of the same testcase, 403.gcc, is better optimized by GVN. On manual inspection, it appears that
most of the redundant stores that are missed on 176.gcc are in error handling routines where
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SPEC2006 GCSE GVN
400.perlbench 15137 15408

401.bzip2 641 964
403.gcc 33948 34045
429.mcf 85 86
433.milc 783 832
444.namd 735 773

445.gobmk 4057 4311
447.dealII 0 16828

456.hmmr 2950 2988
458.sjeng 1285 1322

462.libquantum 175 177
464.h264ref 8633 8836

470.lbm 257 260
471.omnetpp 1856 2024
473.astar 462 482

SPEC2000 GCSE GVN
164.gzip 293 339
175.vpr 958 1019
176.gcc 17479 17015
177.mesa 3668 3720
179.art 199 210
181.mcf 81 82

183.equake 541 557
186.crafty 1751 2016

188.ammp 1068 1078
197.parser 439 472

252.eon 4841 4925
253.perlbmk 7519 7529

254.gap 6948 6968
255.vortex 2999 3477
256.bzip2 174 193
300.twolf 4224 4559

Table 4.1: The number of loads removed on the SPEC benchmarks

pointers to global error strings are manipulated. Because GVN does not comprehend must-alias
relationships, it fails to realize that these loads are redundant.

Measurements of compilation time for this and the other algorithms presented in this paper
are presented together in Section 5.1.
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Conclusions

While we have presented numbers of loads and stores removed, as well as numbers of alias queries
issued, we have not yet addressed how these numbers translate into real world performance, both
in code quality and compile time. In this final section, we will present empirical evidence that the
algorithms presented in the earlier sections result in measurable improvements in compile time
without significant changes in code quality.

In addition, we present results for all four possible combinations of old and new optimizations.
Because of the nature of loads and stores, the interactions between a given pair of optimizations
may be significant: removing more loads may expose more dead stores, and vice versa. Indeed,
possible interactions are not limited to just between these two optimizations; a change in the
output of redundant load elimination could potentially cause changes in the performance of other
optimizations, or in the effectiveness of code generation. For example, a strong value numbering
implementation tends to keep values in registers longer, which, while better in theory, puts more
pressure on the register allocator to produce performant object code. In the end, the only way to
obtain a representative picture of optimizations in practice is to measure their effectiveness as part
of a realistic compilation process, rather than measuring each in isolation.

5.1 Results

Figure 5.1 shows the total optimization time of the four largest testcases from SPEC2000 and
SPEC2006 with the four possible combinations of GVN, GCSE, new DSE, and old DSE. This mea-
surement represents the time to execute all optimizations, not just ours. We present these four
in part because, for the smaller testcases, the optimization time was too small to be accurately
measured with the available instrumentation.

In all four cases, the total optimization time decreased, particularly drastically in 447.dealII
and 403.gcc. In 447.dealII in particular, the total optimization time decreased by almost half.
We have observed that, in general, the decrease in optimization time is greater for larger testcases,
suggesting an improvement in the order of growth of the algorithms as opposed to a decrease by
a constant factor.

In Figure 5.2, we present the normalized execution time of those four testcases when optimized
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445.gobmk 9.8107 10.1829 9.0922 9.4817

400.perlbench 10.4011 10.6369 13.1186 13.3733

176.gcc 12.8195 13.1077 15.4172 15.6723

447.dealII 25.153 25.9813 47.8583 48.733

403.gcc 33.7528 34.5418 44.3185 45.2458

400.perlbench

176.gcc

447.dealII

403.gcc

0 12.5 25.0 37.5 50.0

GVN + New DSE GVN + Old DSE
GCSE + New DSE GCSE + Old DSE

Figure 5.1: Total time to execute the optimizations in seconds of the four largest testcases from
SPEC

400.perlbench

176.gcc

447.dealII

403.gcc

0 0.375 0.750 1.125 1.500

GVN + New DSE GVN + Old DSE
GCSE + New DSE GCSE + Old DSE

Figure 5.2: Normalized execution time of the four largest testcases from SPEC
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with each of the four combinations. In this situation, the normalized execution time is the ratio of
the execution time of the testcase when compiled with the system compiler (gcc) to the execution
time when compiled with LLVM (with our optimizations). Because of this, longer bars are better.
This normalization allows us to present the bars for all for testcases, which have significantly
different absolute execution times, on the same scale.

The normalized results indicate that the four possible combinations are of approximately equal
effectiveness. On three of the testcases (176.gcc, 447.dealII, and 403.gcc) all four results differ
only within the range of noise. On 400.perlbench, old DSE appears to have outperformed new
DSE slightly in the effectiveness of its optimization.

These results are repeated throughout the entirety of the SPEC testsuites. On most testcases,
the differences between all four techniques fall within the range of noise. One other notable case in
which the older approaches perform better than the new ones is 179.art, in which the normalized
execution time went from 1.82 with GCSE and old DSE to 1.78 with GVN and new DSE. After
investigation, it was discovered that this was not due to loads or stores that were not removed, but
rather because of GVN’s increased aggression: its more aggressive elimination of loads introduced
φ functions that were not present in the output form GCSE. The scalarrepl pass, which breaks
up aggregates into scalars when profitable, was confused by these φ functions, causing it to miss
several opportunities for optimization.

5.2 Future Work

This work has presented one new analysis and two optimizations based on it that are designed
with dynamic compilation in mind. While memory access optimization is one of the most prof-
itable forms of optimization, there are many other classical optimizations that could possibly be
adapted to a just-in-time context, including code placement, constant propagation, and loop trans-
formations.
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//===- llvm/Analysis/MemoryDependenceAnalysis.h - Memory Deps –*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===———————————————————————-===//
//
// This file defines an analysis that determines, for a given memory operation, 10
// what preceding memory operations it depends on. It builds on alias analysis
// information, and tries to provide a lazy, caching interface to a common kind
// of alias information query.
//
//===———————————————————————-===//

#ifndef LLVM ANALYSIS MEMORY DEPENDENCE H
#define LLVM ANALYSIS MEMORY DEPENDENCE H

#include "llvm/Pass.h" 20
#include "llvm/Support/CallSite.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/Support/Compiler.h"

namespace llvm {

class Function;
class FunctionPass;
class Instruction; 30

class MemoryDependenceAnalysis : public FunctionPass {
private:

// A map from instructions to their dependency, with a boolean
// flags for whether this mapping is confirmed or not
typedef DenseMap<Instruction*, std::pair<Instruction*, bool> >

depMapType;
depMapType depGraphLocal;

// A map from instructions to their non-local dependencies. 40
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typedef DenseMap<Instruction*, DenseMap<BasicBlock*, Value*> >
nonLocalDepMapType;

nonLocalDepMapType depGraphNonLocal;

// A reverse mapping form dependencies to the dependees. This is
// used when removing instructions to keep the cache coherent.
typedef DenseMap<Value*, SmallPtrSet<Instruction*, 4> >

reverseDepMapType;
reverseDepMapType reverseDep;

50
// A reverse mapping form dependencies to the non-local dependees.
reverseDepMapType reverseDepNonLocal;

public:
void ping(Instruction* D);

// Special marker indicating that the query has no dependency
// in the specified block.
static Instruction* const NonLocal;

60
// Special marker indicating that the query has no dependency at all
static Instruction* const None;

// Special marker indicating a dirty cache entry
static Instruction* const Dirty;

static char ID; // Class identification, replacement for typeinfo
MemoryDependenceAnalysis() : FunctionPass((intptr t)&ID) {}

70
/// Pass Implementation stuff. This doesn’t do any analysis.
///
bool runOnFunction(Function &) {return false; }

/// Clean up memory in between runs
void releaseMemory() {

depGraphLocal.clear();
depGraphNonLocal.clear();
reverseDep.clear();
reverseDepNonLocal.clear(); 80

}

/// getAnalysisUsage - Does not modify anything. It uses Value Numbering
/// and Alias Analysis.
///
virtual void getAnalysisUsage(AnalysisUsage &AU) const;

/// getDependency - Return the instruction on which a memory operation
/// depends, starting with start.
Instruction* getDependency(Instruction* query, Instruction* start = 0, 90

BasicBlock* block = 0);

/// getNonLocalDependency - Fills the passed-in map with the non-local
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/// dependencies of the queries. The map will contain NonLocal for
/// blocks between the query and its dependencies.
void getNonLocalDependency(Instruction* query,

DenseMap<BasicBlock*, Value*>& resp);

/// removeInstruction - Remove an instruction from the dependence analysis,
/// updating the dependence of instructions that previously depended on it. 100
void removeInstruction(Instruction* rem);

/// dropInstruction - Remove an instruction from the analysis, making
/// absolutely conservative assumptions when updating the cache. This is
/// useful, for example when an instruction is changed rather than removed.
void dropInstruction(Instruction* drop);

private:
Instruction* getCallSiteDependency(CallSite C, Instruction* start,

BasicBlock* block); 110
void nonLocalHelper(Instruction* query, BasicBlock* block,

DenseMap<BasicBlock*, Value*>& resp);
};

} // End llvm namespace

#endif
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//===- MemoryDependenceAnalysis.cpp - Mem Deps Implementation –*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===———————————————————————-===//
//
// This file implements an analysis that determines, for a given memory 10
// operation, what preceding memory operations it depends on. It builds on
// alias analysis information, and tries to provide a lazy, caching interface to
// a common kind of alias information query.
//
//===———————————————————————-===//

#include "llvm/Analysis/MemoryDependenceAnalysis.h"
#include "llvm/Constants.h"
#include "llvm/Instructions.h"
#include "llvm/Function.h" 20
#include "llvm/Analysis/AliasAnalysis.h"
#include "llvm/Support/CFG.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Target/TargetData.h"
#include "llvm/ADT/Statistic.h"

#define DEBUG TYPE "memdep"

using namespace llvm;
30

namespace {
// Control the calculation of non-local dependencies by only examining the
// predecessors if the basic block has less than X amount (50 by default).
cl::opt<int>
PredLimit("nonlocaldep-threshold", cl::Hidden, cl::init(50),

cl::desc("Control the calculation of non-local"
"dependencies (default = 50)"));

}

STATISTIC(NumCacheNonlocal, "Number of cached non-local responses"); 40
STATISTIC(NumUncacheNonlocal, "Number of uncached non-local responses");

char MemoryDependenceAnalysis::ID = 0;

Instruction* const MemoryDependenceAnalysis::NonLocal = (Instruction*)−3;
Instruction* const MemoryDependenceAnalysis::None = (Instruction*)−4;
Instruction* const MemoryDependenceAnalysis::Dirty = (Instruction*)−5;

// Register this pass. . .
static RegisterPass<MemoryDependenceAnalysis> X("memdep", 50

"Memory Dependence Analysis");
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void MemoryDependenceAnalysis::ping(Instruction *D) {
for (depMapType::iterator I = depGraphLocal.begin(), E = depGraphLocal.end();

I != E; ++I) {
assert(I−>first != D);
assert(I−>second.first != D);

}

for (nonLocalDepMapType::iterator I = depGraphNonLocal.begin(), E = depGraphNonLocal.end(); 60
I != E; ++I) {

assert(I−>first != D);
}

for (reverseDepMapType::iterator I = reverseDep.begin(), E = reverseDep.end();
I != E; ++I)

for (SmallPtrSet<Instruction*, 4>::iterator II = I−>second.begin(), EE = I−>second.end();
II != EE; ++II)

assert(*II != D);
70

for (reverseDepMapType::iterator I = reverseDepNonLocal.begin(), E = reverseDepNonLocal.end();
I != E; ++I)

for (SmallPtrSet<Instruction*, 4>::iterator II = I−>second.begin(), EE = I−>second.end();
II != EE; ++II)

assert(*II != D);
}

/// getAnalysisUsage - Does not modify anything. It uses Alias Analysis.
///
void MemoryDependenceAnalysis::getAnalysisUsage(AnalysisUsage &AU) const { 80

AU.setPreservesAll();
AU.addRequiredTransitive<AliasAnalysis>();
AU.addRequiredTransitive<TargetData>();

}

/// getCallSiteDependency - Private helper for finding the local dependencies
/// of a call site.
Instruction* MemoryDependenceAnalysis::getCallSiteDependency(CallSite C,

Instruction* start,
BasicBlock* block) { 90

std::pair<Instruction*, bool>& cachedResult =
depGraphLocal[C.getInstruction()];

AliasAnalysis& AA = getAnalysis<AliasAnalysis>();
TargetData& TD = getAnalysis<TargetData>();
BasicBlock::iterator blockBegin = C.getInstruction()−>getParent()−>begin();
BasicBlock::iterator QI = C.getInstruction();

// If the starting point was specifiy, use it
if (start) { 100

QI = start;
blockBegin = start−>getParent()−>end();

// If the starting point wasn’t specified, but the block was, use it
} else if (!start && block) {

QI = block−>end();
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blockBegin = block−>end();
}

// Walk backwards through the block, looking for dependencies
while (QI != blockBegin) { 110
−−QI;

// If this inst is a memory op, get the pointer it accessed
Value* pointer = 0;
uint64 t pointerSize = 0;
if (StoreInst* S = dyn cast<StoreInst>(QI)) {

pointer = S−>getPointerOperand();
pointerSize = TD.getTypeStoreSize(S−>getOperand(0)−>getType());

} else if (AllocationInst* AI = dyn cast<AllocationInst>(QI)) {
pointer = AI; 120
if (ConstantInt* C = dyn cast<ConstantInt>(AI−>getArraySize()))

pointerSize = C−>getZExtValue() * \
TD.getABITypeSize(AI−>getAllocatedType());

else
pointerSize = ˜0UL;

} else if (VAArgInst* V = dyn cast<VAArgInst>(QI)) {
pointer = V−>getOperand(0);
pointerSize = TD.getTypeStoreSize(V−>getType());

} else if (FreeInst* F = dyn cast<FreeInst>(QI)) {
pointer = F−>getPointerOperand(); 130

// FreeInsts erase the entire structure
pointerSize = ˜0UL;

} else if (isa<CallInst>(QI)) {
AliasAnalysis::ModRefBehavior result =

AA.getModRefBehavior(CallSite::get(QI));
if (result != AliasAnalysis::DoesNotAccessMemory &&

result != AliasAnalysis::OnlyReadsMemory) {
if (!start && !block) {

cachedResult.first = QI; 140
cachedResult.second = true;
reverseDep[QI].insert(C.getInstruction());

}
return QI;

} else {
continue;

}
} else

continue;
150

if (AA.getModRefInfo(C, pointer, pointerSize) != AliasAnalysis::NoModRef) {
if (!start && !block) {

cachedResult.first = QI;
cachedResult.second = true;
reverseDep[QI].insert(C.getInstruction());

}
return QI;

}
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}
160

// No dependence found
cachedResult.first = NonLocal;
cachedResult.second = true;
reverseDep[NonLocal].insert(C.getInstruction());
return NonLocal;

}

/// nonLocalHelper - Private helper used to calculate non-local dependencies
/// by doing DFS on the predecessors of a block to find its dependencies
void MemoryDependenceAnalysis::nonLocalHelper(Instruction* query, 170

BasicBlock* block,
DenseMap<BasicBlock*, Value*>& resp) {

// Set of blocks that we’ve already visited in our DFS
SmallPtrSet<BasicBlock*, 4> visited;
// If we’re updating a dirtied cache entry, we don’t need to reprocess
// already computed entries.
for (DenseMap<BasicBlock*, Value*>::iterator I = resp.begin(),

E = resp.end(); I != E; ++I)
if (I−>second != Dirty)

visited.insert(I−>first); 180

// Current stack of the DFS
SmallVector<BasicBlock*, 4> stack;
stack.push back(block);

// Do a basic DFS
while (!stack.empty()) {

BasicBlock* BB = stack.back();

// If we’ve already visited this block, no need to revist 190
if (visited.count(BB)) {

stack.pop back();
continue;

}

// If we find a new block with a local dependency for query,
// then we insert the new dependency and backtrack.
if (BB != block) {

visited.insert(BB);
200

Instruction* localDep = getDependency(query, 0, BB);
if (localDep != NonLocal) {

resp.insert(std::make pair(BB, localDep));
stack.pop back();

continue;
}

// If we re-encounter the starting block, we still need to search it
// because there might be a dependency in the starting block AFTER
// the position of the query. This is necessary to get loops right. 210
} else if (BB == block && stack.size() > 1) {



38 Code Listing

visited.insert(BB);

Instruction* localDep = getDependency(query, 0, BB);
if (localDep != query)

resp.insert(std::make pair(BB, localDep));

stack.pop back();

continue; 220
}

// If we didn’t find anything, recurse on the precessors of this block
// Only do this for blocks with a small number of predecessors.
bool predOnStack = false;
bool inserted = false;
if (std::distance(pred begin(BB), pred end(BB)) <= PredLimit) {

for (pred iterator PI = pred begin(BB), PE = pred end(BB);
PI != PE; ++PI)

if (!visited.count(*PI)) { 230
stack.push back(*PI);
inserted = true;

} else
predOnStack = true;

}

// If we inserted a new predecessor, then we’ll come back to this block
if (inserted)

continue;
// If we didn’t insert because we have no predecessors, then this 240
// query has no dependency at all.
else if (!inserted && !predOnStack) {

resp.insert(std::make pair(BB, None));
// If we didn’t insert because our predecessors are already on the stack,
// then we might still have a dependency, but it will be discovered during
// backtracking.
} else if (!inserted && predOnStack){

resp.insert(std::make pair(BB, NonLocal));
}

250
stack.pop back();

}
}

/// getNonLocalDependency - Fills the passed-in map with the non-local
/// dependencies of the queries. The map will contain NonLocal for
/// blocks between the query and its dependencies.
void MemoryDependenceAnalysis::getNonLocalDependency(Instruction* query,

DenseMap<BasicBlock*, Value*>& resp) {
if (depGraphNonLocal.count(query)) { 260

DenseMap<BasicBlock*, Value*>& cached = depGraphNonLocal[query];
NumCacheNonlocal++;

SmallVector<BasicBlock*, 4> dirtied;
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for (DenseMap<BasicBlock*, Value*>::iterator I = cached.begin(),
E = cached.end(); I != E; ++I)

if (I−>second == Dirty)
dirtied.push back(I−>first);

for (SmallVector<BasicBlock*, 4>::iterator I = dirtied.begin(), 270
E = dirtied.end(); I != E; ++I) {

Instruction* localDep = getDependency(query, 0, *I);
if (localDep != NonLocal)

cached[*I] = localDep;
else {

cached.erase(*I);
nonLocalHelper(query, *I, cached);

}
}

280
resp = cached;

return;
} else

NumUncacheNonlocal++;

// If not, go ahead and search for non-local deps.
nonLocalHelper(query, query−>getParent(), resp);

// Update the non-local dependency cache 290
for (DenseMap<BasicBlock*, Value*>::iterator I = resp.begin(), E = resp.end();

I != E; ++I) {
depGraphNonLocal[query].insert(*I);
reverseDepNonLocal[I−>second].insert(query);

}
}

/// getDependency - Return the instruction on which a memory operation
/// depends. The local paramter indicates if the query should only
/// evaluate dependencies within the same basic block. 300
Instruction* MemoryDependenceAnalysis::getDependency(Instruction* query,

Instruction* start,
BasicBlock* block) {

// Start looking for dependencies with the queried inst
BasicBlock::iterator QI = query;

// Check for a cached result
std::pair<Instruction*, bool>& cachedResult = depGraphLocal[query];
// If we have a confirmed cached entry, return it
if (!block && !start) { 310

if (cachedResult.second)
return cachedResult.first;

else if (cachedResult.first && cachedResult.first != NonLocal)
// If we have an unconfirmed cached entry, we can start our search from there
QI = cachedResult.first;

}
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if (start)
QI = start;

else if (!start && block) 320
QI = block−>end();

AliasAnalysis& AA = getAnalysis<AliasAnalysis>();
TargetData& TD = getAnalysis<TargetData>();

// Get the pointer value for which dependence will be determined
Value* dependee = 0;
uint64 t dependeeSize = 0;
bool queryIsVolatile = false;
if (StoreInst* S = dyn cast<StoreInst>(query)) { 330

dependee = S−>getPointerOperand();
dependeeSize = TD.getTypeStoreSize(S−>getOperand(0)−>getType());
queryIsVolatile = S−>isVolatile();

} else if (LoadInst* L = dyn cast<LoadInst>(query)) {
dependee = L−>getPointerOperand();
dependeeSize = TD.getTypeStoreSize(L−>getType());
queryIsVolatile = L−>isVolatile();

} else if (VAArgInst* V = dyn cast<VAArgInst>(query)) {
dependee = V−>getOperand(0);
dependeeSize = TD.getTypeStoreSize(V−>getType()); 340

} else if (FreeInst* F = dyn cast<FreeInst>(query)) {
dependee = F−>getPointerOperand();

// FreeInsts erase the entire structure, not just a field
dependeeSize = ˜0UL;

} else if (CallSite::get(query).getInstruction() != 0)
return getCallSiteDependency(CallSite::get(query), start, block);

else if (isa<AllocationInst>(query))
return None;

else 350
return None;

BasicBlock::iterator blockBegin = block ? block−>begin()
: query−>getParent()−>begin();

// Walk backwards through the basic block, looking for dependencies
while (QI != blockBegin) {
−−QI;

// If this inst is a memory op, get the pointer it accessed 360
Value* pointer = 0;
uint64 t pointerSize = 0;
if (StoreInst* S = dyn cast<StoreInst>(QI)) {

// All volatile loads/stores depend on each other
if (queryIsVolatile && S−>isVolatile()) {

if (!start && !block) {
cachedResult.first = S;
cachedResult.second = true;
reverseDep[S].insert(query);

} 370
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return S;
}

pointer = S−>getPointerOperand();
pointerSize = TD.getTypeStoreSize(S−>getOperand(0)−>getType());

} else if (LoadInst* L = dyn cast<LoadInst>(QI)) {
// All volatile loads/stores depend on each other
if (queryIsVolatile && L−>isVolatile()) {

if (!start && !block) { 380
cachedResult.first = L;
cachedResult.second = true;
reverseDep[L].insert(query);

}

return L;
}

pointer = L−>getPointerOperand();
pointerSize = TD.getTypeStoreSize(L−>getType()); 390

} else if (AllocationInst* AI = dyn cast<AllocationInst>(QI)) {
pointer = AI;
if (ConstantInt* C = dyn cast<ConstantInt>(AI−>getArraySize()))

pointerSize = C−>getZExtValue() * \
TD.getABITypeSize(AI−>getAllocatedType());

else
pointerSize = ˜0UL;

} else if (VAArgInst* V = dyn cast<VAArgInst>(QI)) {
pointer = V−>getOperand(0);
pointerSize = TD.getTypeStoreSize(V−>getType()); 400

} else if (FreeInst* F = dyn cast<FreeInst>(QI)) {
pointer = F−>getPointerOperand();

// FreeInsts erase the entire structure
pointerSize = ˜0UL;

} else if (CallSite::get(QI).getInstruction() != 0) {
// Call insts need special handling. Check if they can modify our pointer
AliasAnalysis::ModRefResult MR = AA.getModRefInfo(CallSite::get(QI),

dependee, dependeeSize);
410

if (MR != AliasAnalysis::NoModRef) {
// Loads don’t depend on read-only calls
if (isa<LoadInst>(query) && MR == AliasAnalysis::Ref)

continue;

if (!start && !block) {
cachedResult.first = QI;
cachedResult.second = true;
reverseDep[QI].insert(query);

} 420

return QI;
} else {



42 Code Listing

continue;
}

}

// If we found a pointer, check if it could be the same as our pointer
if (pointer) {

AliasAnalysis::AliasResult R = AA.alias(pointer, pointerSize, 430
dependee, dependeeSize);

if (R != AliasAnalysis::NoAlias) {
// May-alias loads don’t depend on each other
if (isa<LoadInst>(query) && isa<LoadInst>(QI) &&

R == AliasAnalysis::MayAlias)
continue;

if (!start && !block) {
cachedResult.first = QI; 440
cachedResult.second = true;
reverseDep[QI].insert(query);

}

return QI;
}

}
}

// If we found nothing, return the non-local flag 450
if (!start && !block) {

cachedResult.first = NonLocal;
cachedResult.second = true;
reverseDep[NonLocal].insert(query);

}

return NonLocal;
}

/// dropInstruction - Remove an instruction from the analysis, making 460
/// absolutely conservative assumptions when updating the cache. This is
/// useful, for example when an instruction is changed rather than removed.
void MemoryDependenceAnalysis::dropInstruction(Instruction* drop) {

depMapType::iterator depGraphEntry = depGraphLocal.find(drop);
if (depGraphEntry != depGraphLocal.end())

reverseDep[depGraphEntry−>second.first].erase(drop);

// Drop dependency information for things that depended on this instr
SmallPtrSet<Instruction*, 4>& set = reverseDep[drop];
for (SmallPtrSet<Instruction*, 4>::iterator I = set.begin(), E = set.end(); 470

I != E; ++I)
depGraphLocal.erase(*I);

depGraphLocal.erase(drop);
reverseDep.erase(drop);
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for (DenseMap<BasicBlock*, Value*>::iterator DI =
depGraphNonLocal[drop].begin(), DE = depGraphNonLocal[drop].end();
DI != DE; ++DI)

if (DI−>second != None) 480
reverseDepNonLocal[DI−>second].erase(drop);

if (reverseDepNonLocal.count(drop)) {
SmallPtrSet<Instruction*, 4>& set = reverseDepNonLocal[drop];
for (SmallPtrSet<Instruction*, 4>::iterator I = set.begin(), E = set.end();

I != E; ++I)
for (DenseMap<BasicBlock*, Value*>::iterator DI =

depGraphNonLocal[*I].begin(), DE = depGraphNonLocal[*I].end();
DI != DE; ++DI)

if (DI−>second == drop) 490
DI−>second = Dirty;

}

reverseDepNonLocal.erase(drop);
nonLocalDepMapType::iterator I = depGraphNonLocal.find(drop);
if (I != depGraphNonLocal.end())

depGraphNonLocal.erase(I);
}

/// removeInstruction - Remove an instruction from the dependence analysis, 500
/// updating the dependence of instructions that previously depended on it.
/// This method attempts to keep the cache coherent using the reverse map.
void MemoryDependenceAnalysis::removeInstruction(Instruction* rem) {

// Figure out the new dep for things that currently depend on rem
Instruction* newDep = NonLocal;

for (DenseMap<BasicBlock*, Value*>::iterator DI =
depGraphNonLocal[rem].begin(), DE = depGraphNonLocal[rem].end();
DI != DE; ++DI)

if (DI−>second != None) 510
reverseDepNonLocal[DI−>second].erase(rem);

depMapType::iterator depGraphEntry = depGraphLocal.find(rem);

if (depGraphEntry != depGraphLocal.end()) {
reverseDep[depGraphEntry−>second.first].erase(rem);

if (depGraphEntry−>second.first != NonLocal &&
depGraphEntry−>second.first != None &&
depGraphEntry−>second.second) { 520

// If we have dep info for rem, set them to it
BasicBlock::iterator RI = depGraphEntry−>second.first;
RI++;
newDep = RI;

} else if ( (depGraphEntry−>second.first == NonLocal | |
depGraphEntry−>second.first == None ) &&

depGraphEntry−>second.second ) {
// If we have a confirmed non-local flag, use it
newDep = depGraphEntry−>second.first;
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} else { 530
// Otherwise, use the immediate successor of rem
// NOTE: This is because, when getDependence is called, it will first
// check the immediate predecessor of what is in the cache.
BasicBlock::iterator RI = rem;
RI++;
newDep = RI;

}
} else {

// Otherwise, use the immediate successor of rem
// NOTE: This is because, when getDependence is called, it will first 540
// check the immediate predecessor of what is in the cache.
BasicBlock::iterator RI = rem;
RI++;
newDep = RI;

}

SmallPtrSet<Instruction*, 4>& set = reverseDep[rem];
for (SmallPtrSet<Instruction*, 4>::iterator I = set.begin(), E = set.end();

I != E; ++I) {
// Insert the new dependencies 550
// Mark it as unconfirmed as long as it is not the non-local flag
depGraphLocal[*I] = std::make pair(newDep, (newDep == NonLocal | |

newDep == None));
}

depGraphLocal.erase(rem);
reverseDep.erase(rem);

if (reverseDepNonLocal.count(rem)) {
SmallPtrSet<Instruction*, 4>& set = reverseDepNonLocal[rem]; 560
for (SmallPtrSet<Instruction*, 4>::iterator I = set.begin(), E = set.end();

I != E; ++I)
for (DenseMap<BasicBlock*, Value*>::iterator DI =

depGraphNonLocal[*I].begin(), DE = depGraphNonLocal[*I].end();
DI != DE; ++DI)

if (DI−>second == rem)
DI−>second = Dirty;

}
570

reverseDepNonLocal.erase(rem);
nonLocalDepMapType::iterator I = depGraphNonLocal.find(rem);
if (I != depGraphNonLocal.end())

depGraphNonLocal.erase(I);

getAnalysis<AliasAnalysis>().deleteValue(rem);
}



45

//===- DeadStoreElimination.cpp - Fast Dead Store Elimination ————-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===———————————————————————-===//
//
// This file implements a trivial dead store elimination that only considers 10
// basic-block local redundant stores.
//
// FIXME: This should eventually be extended to be a post-dominator tree
// traversal. Doing so would be pretty trivial.
//
//===———————————————————————-===//

#define DEBUG TYPE "dse"
#include "llvm/Transforms/Scalar.h"
#include "llvm/Constants.h" 20
#include "llvm/Function.h"
#include "llvm/Instructions.h"
#include "llvm/IntrinsicInst.h"
#include "llvm/Pass.h"
#include "llvm/ADT/SetVector.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/Analysis/AliasAnalysis.h"
#include "llvm/Analysis/MemoryDependenceAnalysis.h"
#include "llvm/Target/TargetData.h" 30
#include "llvm/Transforms/Utils/Local.h"
#include "llvm/Support/Compiler.h"
using namespace llvm;

STATISTIC(NumFastStores, "Number of stores deleted");
STATISTIC(NumFastOther , "Number of other instrs removed");

namespace {
struct VISIBILITY HIDDEN DSE : public FunctionPass {

static char ID; // Pass identification, replacement for typeid 40
DSE() : FunctionPass((intptr t)&ID) {}

virtual bool runOnFunction(Function &F) {
bool Changed = false;
for (Function::iterator I = F.begin(), E = F.end(); I != E; ++I)

Changed |= runOnBasicBlock(*I);
return Changed;

}

bool runOnBasicBlock(BasicBlock &BB); 50
bool handleFreeWithNonTrivialDependency(FreeInst* F,

Instruction* dependency,



46 Code Listing

SetVector<Instruction*>& possiblyDead);
bool handleEndBlock(BasicBlock& BB, SetVector<Instruction*>& possiblyDead);
bool RemoveUndeadPointers(Value* pointer, uint64 t killPointerSize,

BasicBlock::iterator& BBI,
SmallPtrSet<Value*, 64>& deadPointers,
SetVector<Instruction*>& possiblyDead);

void DeleteDeadInstructionChains(Instruction *I,
SetVector<Instruction*> &DeadInsts); 60

/// Find the base pointer that a pointer came from
/// Because this is used to find pointers that originate
/// from allocas, it is safe to ignore GEP indices, since
/// either the store will be in the alloca, and thus dead,
/// or beyond the end of the alloca, and thus undefined.
void TranslatePointerBitCasts(Value*& v, bool zeroGepsOnly = false) {

assert(isa<PointerType>(v−>getType()) &&
"Translating a non-pointer type?");

while (true) { 70
if (BitCastInst* C = dyn cast<BitCastInst>(v))

v = C−>getOperand(0);
else if (GetElementPtrInst* G = dyn cast<GetElementPtrInst>(v))

if (!zeroGepsOnly | | G−>hasAllZeroIndices()) {
v = G−>getOperand(0);

} else {
break;

}
else

break; 80
}

}

// getAnalysisUsage - We require post dominance frontiers (aka Control
// Dependence Graph)
virtual void getAnalysisUsage(AnalysisUsage &AU) const {

AU.setPreservesCFG();
AU.addRequired<TargetData>();
AU.addRequired<AliasAnalysis>();
AU.addRequired<MemoryDependenceAnalysis>(); 90
AU.addPreserved<AliasAnalysis>();
AU.addPreserved<MemoryDependenceAnalysis>();

}
};
char DSE::ID = 0;
RegisterPass<DSE> X("dse", "Dead Store Elimination");

}

FunctionPass *llvm::createDeadStoreEliminationPass() { return new DSE(); }
100

bool DSE::runOnBasicBlock(BasicBlock &BB) {
MemoryDependenceAnalysis& MD = getAnalysis<MemoryDependenceAnalysis>();
TargetData &TD = getAnalysis<TargetData>();

// Record the last-seen store to this pointer
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DenseMap<Value*, StoreInst*> lastStore;
// Record instructions possibly made dead by deleting a store
SetVector<Instruction*> possiblyDead;

bool MadeChange = false; 110

// Do a top-down walk on the BB
for (BasicBlock::iterator BBI = BB.begin(), BBE = BB.end();

BBI != BBE; ++BBI) {
// If we find a store or a free. . .
if (!isa<StoreInst>(BBI) && !isa<FreeInst>(BBI))

continue;

Value* pointer = 0;
if (StoreInst* S = dyn cast<StoreInst>(BBI)) { 120

if (!S−>isVolatile())
pointer = S−>getPointerOperand();

else
continue;

} else
pointer = cast<FreeInst>(BBI)−>getPointerOperand();

TranslatePointerBitCasts(pointer, true);
StoreInst*& last = lastStore[pointer];
bool deletedStore = false; 130

// . . . to a pointer that has been stored to before. . .
if (last) {

Instruction* dep = MD.getDependency(BBI);

// . . . and no other memory dependencies are between them. . . .
while (dep != MemoryDependenceAnalysis::None &&

dep != MemoryDependenceAnalysis::NonLocal &&
isa<StoreInst>(dep)) {

if (dep != last | | 140
TD.getTypeStoreSize(last−>getOperand(0)−>getType()) >
TD.getTypeStoreSize(BBI−>getOperand(0)−>getType())) {

dep = MD.getDependency(BBI, dep);
continue;

}

// Remove it!
MD.removeInstruction(last);

// DCE instructions only used to calculate that store 150
if (Instruction* D = dyn cast<Instruction>(last−>getOperand(0)))

possiblyDead.insert(D);
if (Instruction* D = dyn cast<Instruction>(last−>getOperand(1)))

possiblyDead.insert(D);

last−>eraseFromParent();
NumFastStores++;
deletedStore = true;
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MadeChange = true;
160

break;
}

}

// Handle frees whose dependencies are non-trivial.
if (FreeInst* F = dyn cast<FreeInst>(BBI)) {

if (!deletedStore)
MadeChange |= handleFreeWithNonTrivialDependency(F,

MD.getDependency(F),
possiblyDead); 170

// No known stores after the free
last = 0;

} else {
// Update our most-recent-store map.
last = cast<StoreInst>(BBI);

}
}

// If this block ends in a return, unwind, unreachable, and eventually
// tailcall, then all allocas are dead at its end. 180
if (BB.getTerminator()−>getNumSuccessors() == 0)

MadeChange |= handleEndBlock(BB, possiblyDead);

// Do a trivial DCE
while (!possiblyDead.empty()) {

Instruction *I = possiblyDead.back();
possiblyDead.pop back();
DeleteDeadInstructionChains(I, possiblyDead);

}
190

return MadeChange;
}

/// handleFreeWithNonTrivialDependency - Handle frees of entire structures whose
/// dependency is a store to a field of that structure
bool DSE::handleFreeWithNonTrivialDependency(FreeInst* F, Instruction* dep,

SetVector<Instruction*>& possiblyDead) {
TargetData &TD = getAnalysis<TargetData>();
AliasAnalysis &AA = getAnalysis<AliasAnalysis>();
MemoryDependenceAnalysis& MD = getAnalysis<MemoryDependenceAnalysis>(); 200

if (dep == MemoryDependenceAnalysis::None | |
dep == MemoryDependenceAnalysis::NonLocal)

return false;

StoreInst* dependency = dyn cast<StoreInst>(dep);
if (!dependency)

return false;
else if (dependency−>isVolatile())

return false; 210
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Value* depPointer = dependency−>getPointerOperand();
const Type* depType = dependency−>getOperand(0)−>getType();
unsigned depPointerSize = TD.getTypeStoreSize(depType);

// Check for aliasing
AliasAnalysis::AliasResult A = AA.alias(F−>getPointerOperand(), ˜0U,

depPointer, depPointerSize);

if (A == AliasAnalysis::MustAlias) { 220
// Remove it!
MD.removeInstruction(dependency);

// DCE instructions only used to calculate that store
if (Instruction* D = dyn cast<Instruction>(dependency−>getOperand(0)))

possiblyDead.insert(D);
if (Instruction* D = dyn cast<Instruction>(dependency−>getOperand(1)))

possiblyDead.insert(D);

dependency−>eraseFromParent(); 230
NumFastStores++;
return true;

}

return false;
}

/// handleEndBlock - Remove dead stores to stack-allocated locations in the
/// function end block. Ex:
/// %A = alloca i32 240
/// . . .
/// store i32 1, i32* %A
/// ret void
bool DSE::handleEndBlock(BasicBlock& BB,

SetVector<Instruction*>& possiblyDead) {
TargetData &TD = getAnalysis<TargetData>();
AliasAnalysis &AA = getAnalysis<AliasAnalysis>();
MemoryDependenceAnalysis& MD = getAnalysis<MemoryDependenceAnalysis>();

bool MadeChange = false; 250

// Pointers alloca’d in this function are dead in the end block
SmallPtrSet<Value*, 64> deadPointers;

// Find all of the alloca’d pointers in the entry block
BasicBlock *Entry = BB.getParent()−>begin();
for (BasicBlock::iterator I = Entry−>begin(), E = Entry−>end(); I != E; ++I)

if (AllocaInst *AI = dyn cast<AllocaInst>(I))
deadPointers.insert(AI);

for (Function::arg iterator AI = BB.getParent()−>arg begin(), 260
AE = BB.getParent()−>arg end(); AI != AE; ++AI)

if (AI−>hasByValAttr())
deadPointers.insert(AI);
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// Scan the basic block backwards
for (BasicBlock::iterator BBI = BB.end(); BBI != BB.begin(); ){
−−BBI;

// If we find a store whose pointer is dead. . .
if (StoreInst* S = dyn cast<StoreInst>(BBI)) { 270

if (!S−>isVolatile()) {
Value* pointerOperand = S−>getPointerOperand();
// See through pointer-to-pointer bitcasts
TranslatePointerBitCasts(pointerOperand);

// Alloca’d pointers or byval arguments (which are functionally like
// alloca’s) are valid candidates for removal.
if (deadPointers.count(pointerOperand)) {

// Remove it!
MD.removeInstruction(S); 280

// DCE instructions only used to calculate that store
if (Instruction* D = dyn cast<Instruction>(S−>getOperand(0)))

possiblyDead.insert(D);
if (Instruction* D = dyn cast<Instruction>(S−>getOperand(1)))

possiblyDead.insert(D);

BBI++;
S−>eraseFromParent();
NumFastStores++; 290
MadeChange = true;

}
}

continue;

// We can also remove memcpy’s to local variables at the end of a function
} else if (MemCpyInst* M = dyn cast<MemCpyInst>(BBI)) {

Value* dest = M−>getDest();
TranslatePointerBitCasts(dest); 300

if (deadPointers.count(dest)) {
MD.removeInstruction(M);

// DCE instructions only used to calculate that memcpy
if (Instruction* D = dyn cast<Instruction>(M−>getRawSource()))

possiblyDead.insert(D);
if (Instruction* D = dyn cast<Instruction>(M−>getLength()))

possiblyDead.insert(D);
if (Instruction* D = dyn cast<Instruction>(M−>getRawDest())) 310

possiblyDead.insert(D);

BBI++;
M−>eraseFromParent();
NumFastOther++;
MadeChange = true;
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continue;
}

320
// Because a memcpy is also a load, we can’t skip it if we didn’t remove it

}

Value* killPointer = 0;
uint64 t killPointerSize = ˜0UL;

// If we encounter a use of the pointer, it is no longer considered dead
if (LoadInst* L = dyn cast<LoadInst>(BBI)) {

// However, if this load is unused, we can go ahead and remove it, and
// not have to worry about it making our pointer undead! 330
if (L−>use empty()) {

MD.removeInstruction(L);

// DCE instructions only used to calculate that load
if (Instruction* D = dyn cast<Instruction>(L−>getPointerOperand()))

possiblyDead.insert(D);

BBI++;
L−>eraseFromParent();
NumFastOther++; 340
MadeChange = true;
possiblyDead.remove(L);

continue;
}

killPointer = L−>getPointerOperand();
} else if (VAArgInst* V = dyn cast<VAArgInst>(BBI)) {

killPointer = V−>getOperand(0);
} else if (isa<MemCpyInst>(BBI) && 350

isa<ConstantInt>(cast<MemCpyInst>(BBI)−>getLength())) {
killPointer = cast<MemCpyInst>(BBI)−>getSource();
killPointerSize = cast<ConstantInt>(

cast<MemCpyInst>(BBI)−>getLength())−>getZExtValue();
} else if (AllocaInst* A = dyn cast<AllocaInst>(BBI)) {

deadPointers.erase(A);

// Dead alloca’s can be DCE’d when we reach them
if (A−>use empty()) {

MD.removeInstruction(A); 360

// DCE instructions only used to calculate that load
if (Instruction* D = dyn cast<Instruction>(A−>getArraySize()))

possiblyDead.insert(D);

BBI++;
A−>eraseFromParent();
NumFastOther++;
MadeChange = true;
possiblyDead.remove(A); 370
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}

continue;
} else if (CallSite::get(BBI).getInstruction() != 0) {

// If this call does not access memory, it can’t
// be undeadifying any of our pointers.
CallSite CS = CallSite::get(BBI);
if (AA.doesNotAccessMemory(CS))

continue;
380

unsigned modRef = 0;
unsigned other = 0;

// Remove any pointers made undead by the call from the dead set
std::vector<Value*> dead;
for (SmallPtrSet<Value*, 64>::iterator I = deadPointers.begin(),

E = deadPointers.end(); I != E; ++I) {
// HACK: if we detect that our AA is imprecise, it’s not
// worth it to scan the rest of the deadPointers set. Just
// assume that the AA will return ModRef for everything, and 390
// go ahead and bail.
if (modRef >= 16 && other == 0) {

deadPointers.clear();
return MadeChange;

}

// Get size information for the alloca
unsigned pointerSize = ˜0U;
if (AllocaInst* A = dyn cast<AllocaInst>(*I)) {

if (ConstantInt* C = dyn cast<ConstantInt>(A−>getArraySize())) 400
pointerSize = C−>getZExtValue() * \

TD.getABITypeSize(A−>getAllocatedType());
} else {

const PointerType* PT = cast<PointerType>(
cast<Argument>(*I)−>getType());

pointerSize = TD.getABITypeSize(PT−>getElementType());
}

// See if the call site touches it
AliasAnalysis::ModRefResult A = AA.getModRefInfo(CS, *I, pointerSize); 410

if (A == AliasAnalysis::ModRef)
modRef++;

else
other++;

if (A == AliasAnalysis::ModRef | | A == AliasAnalysis::Ref)
dead.push back(*I);

}
420

for (std::vector<Value*>::iterator I = dead.begin(), E = dead.end();
I != E; ++I)

deadPointers.erase(*I);
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continue;
} else {

// For any non-memory-affecting non-terminators, DCE them as we reach them
Instruction *CI = BBI;
if (!CI−>isTerminator() && CI−>use empty() && !isa<FreeInst>(CI)) {

430
// DCE instructions only used to calculate that load
for (Instruction::op iterator OI = CI−>op begin(), OE = CI−>op end();

OI != OE; ++OI)
if (Instruction* D = dyn cast<Instruction>(OI))

possiblyDead.insert(D);

BBI++;
CI−>eraseFromParent();
NumFastOther++;
MadeChange = true; 440
possiblyDead.remove(CI);

continue;
}

}

if (!killPointer)
continue;

TranslatePointerBitCasts(killPointer); 450

// Deal with undead pointers
MadeChange |= RemoveUndeadPointers(killPointer, killPointerSize, BBI,

deadPointers, possiblyDead);
}

return MadeChange;
}

/// RemoveUndeadPointers - check for uses of a pointer that make it 460
/// undead when scanning for dead stores to alloca’s.
bool DSE::RemoveUndeadPointers(Value* killPointer, uint64 t killPointerSize,

BasicBlock::iterator& BBI,
SmallPtrSet<Value*, 64>& deadPointers,
SetVector<Instruction*>& possiblyDead) {

TargetData &TD = getAnalysis<TargetData>();
AliasAnalysis &AA = getAnalysis<AliasAnalysis>();
MemoryDependenceAnalysis& MD = getAnalysis<MemoryDependenceAnalysis>();

// If the kill pointer can be easily reduced to an alloca, 470
// don’t bother doing extraneous AA queries
if (deadPointers.count(killPointer)) {

deadPointers.erase(killPointer);
return false;

} else if (isa<GlobalValue>(killPointer)) {
// A global can’t be in the dead pointer set
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return false;
}

bool MadeChange = false; 480

std::vector<Value*> undead;

for (SmallPtrSet<Value*, 64>::iterator I = deadPointers.begin(),
E = deadPointers.end(); I != E; ++I) {

// Get size information for the alloca
unsigned pointerSize = ˜0U;
if (AllocaInst* A = dyn cast<AllocaInst>(*I)) {

if (ConstantInt* C = dyn cast<ConstantInt>(A−>getArraySize()))
pointerSize = C−>getZExtValue() * \ 490

TD.getABITypeSize(A−>getAllocatedType());
} else {

const PointerType* PT = cast<PointerType>(
cast<Argument>(*I)−>getType());

pointerSize = TD.getABITypeSize(PT−>getElementType());
}

// See if this pointer could alias it
AliasAnalysis::AliasResult A = AA.alias(*I, pointerSize,

killPointer, killPointerSize); 500

// If it must-alias and a store, we can delete it
if (isa<StoreInst>(BBI) && A == AliasAnalysis::MustAlias) {

StoreInst* S = cast<StoreInst>(BBI);

// Remove it!
MD.removeInstruction(S);

// DCE instructions only used to calculate that store
if (Instruction* D = dyn cast<Instruction>(S−>getOperand(0))) 510

possiblyDead.insert(D);
if (Instruction* D = dyn cast<Instruction>(S−>getOperand(1)))

possiblyDead.insert(D);

BBI++;
S−>eraseFromParent();
NumFastStores++;
MadeChange = true;

continue; 520

// Otherwise, it is undead
} else if (A != AliasAnalysis::NoAlias)

undead.push back(*I);
}

for (std::vector<Value*>::iterator I = undead.begin(), E = undead.end();
I != E; ++I)

deadPointers.erase(*I);
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530
return MadeChange;

}

/// DeleteDeadInstructionChains - takes an instruction and a setvector of
/// dead instructions. If I is dead, it is erased, and its operands are
/// checked for deadness. If they are dead, they are added to the dead
/// setvector.
void DSE::DeleteDeadInstructionChains(Instruction *I,

SetVector<Instruction*> &DeadInsts) {
// Instruction must be dead. 540
if (!I−>use empty() | | !isInstructionTriviallyDead(I)) return;

// Let the memory dependence know
getAnalysis<MemoryDependenceAnalysis>().removeInstruction(I);

// See if this made any operands dead. We do it this way in case the
// instruction uses the same operand twice. We don’t want to delete a
// value then reference it.
for (unsigned i = 0, e = I−>getNumOperands(); i != e; ++i) {

if (I−>getOperand(i)−>hasOneUse()) 550
if (Instruction* Op = dyn cast<Instruction>(I−>getOperand(i)))

DeadInsts.insert(Op); // Attempt to nuke it later.

I−>setOperand(i, 0); // Drop from the operand list.
}

I−>eraseFromParent();
++NumFastOther;

}
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//===- GVN.cpp - Eliminate redundant values and loads ————===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===———————————————————————-===//
//
// This pass performs global value numbering to eliminate fully redundant 10
// instructions. It also performs simple dead load elimination.
//
//===———————————————————————-===//

#define DEBUG TYPE "gvn"

#include "llvm/Transforms/Scalar.h"
#include "llvm/BasicBlock.h"
#include "llvm/Constants.h"
#include "llvm/DerivedTypes.h" 20
#include "llvm/Function.h"
#include "llvm/IntrinsicInst.h"
#include "llvm/Instructions.h"
#include "llvm/ParameterAttributes.h"
#include "llvm/Value.h"
#include "llvm/ADT/BitVector.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/DepthFirstIterator.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/SmallVector.h" 30
#include "llvm/ADT/Statistic.h"
#include "llvm/Analysis/Dominators.h"
#include "llvm/Analysis/AliasAnalysis.h"
#include "llvm/Analysis/MemoryDependenceAnalysis.h"
#include "llvm/Support/CFG.h"
#include "llvm/Support/Compiler.h"
#include "llvm/Target/TargetData.h"
using namespace llvm;

//===———————————————————————-===// 40
// ValueTable Class
//===———————————————————————-===//

/// This class holds the mapping between values and value numbers. It is used
/// as an efficient mechanism to determine the expression-wise equivalence of
/// two values.
namespace {

struct VISIBILITY HIDDEN Expression {
enum ExpressionOpcode { ADD, SUB, MUL, UDIV, SDIV, FDIV, UREM, SREM,

FREM, SHL, LSHR, ASHR, AND, OR, XOR, ICMPEQ, 50
ICMPNE, ICMPUGT, ICMPUGE, ICMPULT, ICMPULE,
ICMPSGT, ICMPSGE, ICMPSLT, ICMPSLE, FCMPOEQ,
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FCMPOGT, FCMPOGE, FCMPOLT, FCMPOLE, FCMPONE,
FCMPORD, FCMPUNO, FCMPUEQ, FCMPUGT, FCMPUGE,
FCMPULT, FCMPULE, FCMPUNE, EXTRACT, INSERT,
SHUFFLE, SELECT, TRUNC, ZEXT, SEXT, FPTOUI,
FPTOSI, UITOFP, SITOFP, FPTRUNC, FPEXT,
PTRTOINT, INTTOPTR, BITCAST, GEP, CALL, EMPTY,
TOMBSTONE };

60
ExpressionOpcode opcode;
const Type* type;
uint32 t firstVN;
uint32 t secondVN;
uint32 t thirdVN;
SmallVector<uint32 t, 4> varargs;
Value* function;

Expression() { }
Expression(ExpressionOpcode o) : opcode(o) { } 70

bool operator==(const Expression &other) const {
if (opcode != other.opcode)

return false;
else if (opcode == EMPTY | | opcode == TOMBSTONE)

return true;
else if (type != other.type)

return false;
else if (function != other.function)

return false; 80
else if (firstVN != other.firstVN)

return false;
else if (secondVN != other.secondVN)

return false;
else if (thirdVN != other.thirdVN)

return false;
else {

if (varargs.size() != other.varargs.size())
return false;

90
for (size t i = 0; i < varargs.size(); ++i)

if (varargs[i] != other.varargs[i])
return false;

return true;
}

}

bool operator!=(const Expression &other) const {
if (opcode != other.opcode) 100

return true;
else if (opcode == EMPTY | | opcode == TOMBSTONE)

return false;
else if (type != other.type)

return true;
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else if (function != other.function)
return true;

else if (firstVN != other.firstVN)
return true;

else if (secondVN != other.secondVN) 110
return true;

else if (thirdVN != other.thirdVN)
return true;

else {
if (varargs.size() != other.varargs.size())

return true;

for (size t i = 0; i < varargs.size(); ++i)
if (varargs[i] != other.varargs[i])

return true; 120

return false;
}

}
};

class VISIBILITY HIDDEN ValueTable {
private:

DenseMap<Value*, uint32 t> valueNumbering;
DenseMap<Expression, uint32 t> expressionNumbering; 130
AliasAnalysis* AA;

uint32 t nextValueNumber;

Expression::ExpressionOpcode getOpcode(BinaryOperator* BO);
Expression::ExpressionOpcode getOpcode(CmpInst* C);
Expression::ExpressionOpcode getOpcode(CastInst* C);
Expression create expression(BinaryOperator* BO);
Expression create expression(CmpInst* C);
Expression create expression(ShuffleVectorInst* V); 140
Expression create expression(ExtractElementInst* C);
Expression create expression(InsertElementInst* V);
Expression create expression(SelectInst* V);
Expression create expression(CastInst* C);
Expression create expression(GetElementPtrInst* G);
Expression create expression(CallInst* C);

public:
ValueTable() : nextValueNumber(1) { }
uint32 t lookup or add(Value* V);
uint32 t lookup(Value* V) const; 150
void add(Value* V, uint32 t num);
void clear();
void erase(Value* v);
unsigned size();
void setAliasAnalysis(AliasAnalysis* A) { AA = A; }
uint32 t hash operand(Value* v);

};
}
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namespace llvm { 160
template <> struct DenseMapInfo<Expression> {

static inline Expression getEmptyKey() {
return Expression(Expression::EMPTY);

}

static inline Expression getTombstoneKey() {
return Expression(Expression::TOMBSTONE);

}

static unsigned getHashValue(const Expression e) { 170
unsigned hash = e.opcode;

hash = e.firstVN + hash * 37;
hash = e.secondVN + hash * 37;
hash = e.thirdVN + hash * 37;

hash = ((unsigned)((uintptr t)e.type >> 4) ^
(unsigned)((uintptr t)e.type >> 9)) +

hash * 37;
180

for (SmallVector<uint32 t, 4>::const iterator I = e.varargs.begin(),
E = e.varargs.end(); I != E; ++I)

hash = *I + hash * 37;

hash = ((unsigned)((uintptr t)e.function >> 4) ^
(unsigned)((uintptr t)e.function >> 9)) +

hash * 37;

return hash;
} 190
static bool isEqual(const Expression &LHS, const Expression &RHS) {

return LHS == RHS;
}
static bool isPod() { return true; }

};
}

//===———————————————————————-===//
// ValueTable Internal Functions
//===———————————————————————-===// 200
Expression::ExpressionOpcode

ValueTable::getOpcode(BinaryOperator* BO) {
switch(BO−>getOpcode()) {

case Instruction::Add:
return Expression::ADD;

case Instruction::Sub:
return Expression::SUB;

case Instruction::Mul:
return Expression::MUL;

case Instruction::UDiv: 210
return Expression::UDIV;
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case Instruction::SDiv:
return Expression::SDIV;

case Instruction::FDiv:
return Expression::FDIV;

case Instruction::URem:
return Expression::UREM;

case Instruction::SRem:
return Expression::SREM;

case Instruction::FRem: 220
return Expression::FREM;

case Instruction::Shl:
return Expression::SHL;

case Instruction::LShr:
return Expression::LSHR;

case Instruction::AShr:
return Expression::ASHR;

case Instruction::And:
return Expression::AND;

case Instruction::Or: 230
return Expression::OR;

case Instruction::Xor:
return Expression::XOR;

// THIS SHOULD NEVER HAPPEN
default:

assert(0 && "Binary operator with unknown opcode?");
return Expression::ADD;

}
} 240

Expression::ExpressionOpcode ValueTable::getOpcode(CmpInst* C) {
if (C−>getOpcode() == Instruction::ICmp) {

switch (C−>getPredicate()) {
case ICmpInst::ICMP EQ:

return Expression::ICMPEQ;
case ICmpInst::ICMP NE:

return Expression::ICMPNE;
case ICmpInst::ICMP UGT:

return Expression::ICMPUGT; 250
case ICmpInst::ICMP UGE:

return Expression::ICMPUGE;
case ICmpInst::ICMP ULT:

return Expression::ICMPULT;
case ICmpInst::ICMP ULE:

return Expression::ICMPULE;
case ICmpInst::ICMP SGT:

return Expression::ICMPSGT;
case ICmpInst::ICMP SGE:

return Expression::ICMPSGE; 260
case ICmpInst::ICMP SLT:

return Expression::ICMPSLT;
case ICmpInst::ICMP SLE:

return Expression::ICMPSLE;
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// THIS SHOULD NEVER HAPPEN
default:

assert(0 && "Comparison with unknown predicate?");
return Expression::ICMPEQ;

} 270
} else {

switch (C−>getPredicate()) {
case FCmpInst::FCMP OEQ:

return Expression::FCMPOEQ;
case FCmpInst::FCMP OGT:

return Expression::FCMPOGT;
case FCmpInst::FCMP OGE:

return Expression::FCMPOGE;
case FCmpInst::FCMP OLT:

return Expression::FCMPOLT; 280
case FCmpInst::FCMP OLE:

return Expression::FCMPOLE;
case FCmpInst::FCMP ONE:

return Expression::FCMPONE;
case FCmpInst::FCMP ORD:

return Expression::FCMPORD;
case FCmpInst::FCMP UNO:

return Expression::FCMPUNO;
case FCmpInst::FCMP UEQ:

return Expression::FCMPUEQ; 290
case FCmpInst::FCMP UGT:

return Expression::FCMPUGT;
case FCmpInst::FCMP UGE:

return Expression::FCMPUGE;
case FCmpInst::FCMP ULT:

return Expression::FCMPULT;
case FCmpInst::FCMP ULE:

return Expression::FCMPULE;
case FCmpInst::FCMP UNE:

return Expression::FCMPUNE; 300

// THIS SHOULD NEVER HAPPEN
default:

assert(0 && "Comparison with unknown predicate?");
return Expression::FCMPOEQ;

}
}

}

Expression::ExpressionOpcode 310
ValueTable::getOpcode(CastInst* C) {

switch(C−>getOpcode()) {
case Instruction::Trunc:

return Expression::TRUNC;
case Instruction::ZExt:

return Expression::ZEXT;
case Instruction::SExt:
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return Expression::SEXT;
case Instruction::FPToUI:

return Expression::FPTOUI; 320
case Instruction::FPToSI:

return Expression::FPTOSI;
case Instruction::UIToFP:

return Expression::UITOFP;
case Instruction::SIToFP:

return Expression::SITOFP;
case Instruction::FPTrunc:

return Expression::FPTRUNC;
case Instruction::FPExt:

return Expression::FPEXT; 330
case Instruction::PtrToInt:

return Expression::PTRTOINT;
case Instruction::IntToPtr:

return Expression::INTTOPTR;
case Instruction::BitCast:

return Expression::BITCAST;

// THIS SHOULD NEVER HAPPEN
default:

assert(0 && "Cast operator with unknown opcode?"); 340
return Expression::BITCAST;

}
}

uint32 t ValueTable::hash operand(Value* v) {
if (CallInst* CI = dyn cast<CallInst>(v))

if (!AA−>doesNotAccessMemory(CI))
return nextValueNumber++;

return lookup or add(v); 350
}

Expression ValueTable::create expression(CallInst* C) {
Expression e;

e.type = C−>getType();
e.firstVN = 0;
e.secondVN = 0;
e.thirdVN = 0;
e.function = C−>getCalledFunction(); 360
e.opcode = Expression::CALL;

for (CallInst::op iterator I = C−>op begin()+1, E = C−>op end();
I != E; ++I)

e.varargs.push back(hash operand(*I));

return e;
}

Expression ValueTable::create expression(BinaryOperator* BO) { 370



63

Expression e;

e.firstVN = hash operand(BO−>getOperand(0));
e.secondVN = hash operand(BO−>getOperand(1));
e.thirdVN = 0;
e.function = 0;
e.type = BO−>getType();
e.opcode = getOpcode(BO);

return e; 380
}

Expression ValueTable::create expression(CmpInst* C) {
Expression e;

e.firstVN = hash operand(C−>getOperand(0));
e.secondVN = hash operand(C−>getOperand(1));
e.thirdVN = 0;
e.function = 0;
e.type = C−>getType(); 390
e.opcode = getOpcode(C);

return e;
}

Expression ValueTable::create expression(CastInst* C) {
Expression e;

e.firstVN = hash operand(C−>getOperand(0));
e.secondVN = 0; 400
e.thirdVN = 0;
e.function = 0;
e.type = C−>getType();
e.opcode = getOpcode(C);

return e;
}

Expression ValueTable::create expression(ShuffleVectorInst* S) {
Expression e; 410

e.firstVN = hash operand(S−>getOperand(0));
e.secondVN = hash operand(S−>getOperand(1));
e.thirdVN = hash operand(S−>getOperand(2));
e.function = 0;
e.type = S−>getType();
e.opcode = Expression::SHUFFLE;

return e;
} 420

Expression ValueTable::create expression(ExtractElementInst* E) {
Expression e;
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e.firstVN = hash operand(E−>getOperand(0));
e.secondVN = hash operand(E−>getOperand(1));
e.thirdVN = 0;
e.function = 0;
e.type = E−>getType();
e.opcode = Expression::EXTRACT; 430

return e;
}

Expression ValueTable::create expression(InsertElementInst* I) {
Expression e;

e.firstVN = hash operand(I−>getOperand(0));
e.secondVN = hash operand(I−>getOperand(1));
e.thirdVN = hash operand(I−>getOperand(2)); 440
e.function = 0;
e.type = I−>getType();
e.opcode = Expression::INSERT;

return e;
}

Expression ValueTable::create expression(SelectInst* I) {
Expression e;

450
e.firstVN = hash operand(I−>getCondition());
e.secondVN = hash operand(I−>getTrueValue());
e.thirdVN = hash operand(I−>getFalseValue());
e.function = 0;
e.type = I−>getType();
e.opcode = Expression::SELECT;

return e;
}

460
Expression ValueTable::create expression(GetElementPtrInst* G) {

Expression e;

e.firstVN = hash operand(G−>getPointerOperand());
e.secondVN = 0;
e.thirdVN = 0;
e.function = 0;
e.type = G−>getType();
e.opcode = Expression::GEP;

470
for (GetElementPtrInst::op iterator I = G−>idx begin(), E = G−>idx end();

I != E; ++I)
e.varargs.push back(hash operand(*I));

return e;
}
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//===———————————————————————-===//
// ValueTable External Functions
//===———————————————————————-===// 480

/// lookup or add - Returns the value number for the specified value, assigning
/// it a new number if it did not have one before.
uint32 t ValueTable::lookup or add(Value* V) {

DenseMap<Value*, uint32 t>::iterator VI = valueNumbering.find(V);
if (VI != valueNumbering.end())

return VI−>second;

if (CallInst* C = dyn cast<CallInst>(V)) {
if (AA−>onlyReadsMemory(C)) { // includes doesNotAccessMemory 490

Expression e = create expression(C);

DenseMap<Expression, uint32 t>::iterator EI = expressionNumbering.find(e);
if (EI != expressionNumbering.end()) {

valueNumbering.insert(std::make pair(V, EI−>second));
return EI−>second;

} else {
expressionNumbering.insert(std::make pair(e, nextValueNumber));
valueNumbering.insert(std::make pair(V, nextValueNumber));

500
return nextValueNumber++;

}
} else {

valueNumbering.insert(std::make pair(V, nextValueNumber));
return nextValueNumber++;

}
} else if (BinaryOperator* BO = dyn cast<BinaryOperator>(V)) {

Expression e = create expression(BO);

DenseMap<Expression, uint32 t>::iterator EI = expressionNumbering.find(e); 510
if (EI != expressionNumbering.end()) {

valueNumbering.insert(std::make pair(V, EI−>second));
return EI−>second;

} else {
expressionNumbering.insert(std::make pair(e, nextValueNumber));
valueNumbering.insert(std::make pair(V, nextValueNumber));

return nextValueNumber++;
}

} else if (CmpInst* C = dyn cast<CmpInst>(V)) { 520
Expression e = create expression(C);

DenseMap<Expression, uint32 t>::iterator EI = expressionNumbering.find(e);
if (EI != expressionNumbering.end()) {

valueNumbering.insert(std::make pair(V, EI−>second));
return EI−>second;

} else {
expressionNumbering.insert(std::make pair(e, nextValueNumber));
valueNumbering.insert(std::make pair(V, nextValueNumber));
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530
return nextValueNumber++;

}
} else if (ShuffleVectorInst* U = dyn cast<ShuffleVectorInst>(V)) {

Expression e = create expression(U);

DenseMap<Expression, uint32 t>::iterator EI = expressionNumbering.find(e);
if (EI != expressionNumbering.end()) {

valueNumbering.insert(std::make pair(V, EI−>second));
return EI−>second;

} else { 540
expressionNumbering.insert(std::make pair(e, nextValueNumber));
valueNumbering.insert(std::make pair(V, nextValueNumber));

return nextValueNumber++;
}

} else if (ExtractElementInst* U = dyn cast<ExtractElementInst>(V)) {
Expression e = create expression(U);

DenseMap<Expression, uint32 t>::iterator EI = expressionNumbering.find(e);
if (EI != expressionNumbering.end()) { 550

valueNumbering.insert(std::make pair(V, EI−>second));
return EI−>second;

} else {
expressionNumbering.insert(std::make pair(e, nextValueNumber));
valueNumbering.insert(std::make pair(V, nextValueNumber));

return nextValueNumber++;
}

} else if (InsertElementInst* U = dyn cast<InsertElementInst>(V)) {
Expression e = create expression(U); 560

DenseMap<Expression, uint32 t>::iterator EI = expressionNumbering.find(e);
if (EI != expressionNumbering.end()) {

valueNumbering.insert(std::make pair(V, EI−>second));
return EI−>second;

} else {
expressionNumbering.insert(std::make pair(e, nextValueNumber));
valueNumbering.insert(std::make pair(V, nextValueNumber));

return nextValueNumber++; 570
}

} else if (SelectInst* U = dyn cast<SelectInst>(V)) {
Expression e = create expression(U);

DenseMap<Expression, uint32 t>::iterator EI = expressionNumbering.find(e);
if (EI != expressionNumbering.end()) {

valueNumbering.insert(std::make pair(V, EI−>second));
return EI−>second;

} else {
expressionNumbering.insert(std::make pair(e, nextValueNumber)); 580
valueNumbering.insert(std::make pair(V, nextValueNumber));
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return nextValueNumber++;
}

} else if (CastInst* U = dyn cast<CastInst>(V)) {
Expression e = create expression(U);

DenseMap<Expression, uint32 t>::iterator EI = expressionNumbering.find(e);
if (EI != expressionNumbering.end()) {

valueNumbering.insert(std::make pair(V, EI−>second)); 590
return EI−>second;

} else {
expressionNumbering.insert(std::make pair(e, nextValueNumber));
valueNumbering.insert(std::make pair(V, nextValueNumber));

return nextValueNumber++;
}

} else if (GetElementPtrInst* U = dyn cast<GetElementPtrInst>(V)) {
Expression e = create expression(U);

600
DenseMap<Expression, uint32 t>::iterator EI = expressionNumbering.find(e);
if (EI != expressionNumbering.end()) {

valueNumbering.insert(std::make pair(V, EI−>second));
return EI−>second;

} else {
expressionNumbering.insert(std::make pair(e, nextValueNumber));
valueNumbering.insert(std::make pair(V, nextValueNumber));

return nextValueNumber++;
} 610

} else {
valueNumbering.insert(std::make pair(V, nextValueNumber));
return nextValueNumber++;

}
}

/// lookup - Returns the value number of the specified value. Fails if
/// the value has not yet been numbered.
uint32 t ValueTable::lookup(Value* V) const {

DenseMap<Value*, uint32 t>::iterator VI = valueNumbering.find(V); 620
if (VI != valueNumbering.end())

return VI−>second;
else

assert(0 && "Value not numbered?");

return 0;
}

/// clear - Remove all entries from the ValueTable
void ValueTable::clear() { 630

valueNumbering.clear();
expressionNumbering.clear();
nextValueNumber = 1;

}
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/// erase - Remove a value from the value numbering
void ValueTable::erase(Value* V) {

valueNumbering.erase(V);
}

640
//===———————————————————————-===//
// ValueNumberedSet Class
//===———————————————————————-===//
namespace {
class ValueNumberedSet {

private:
SmallPtrSet<Value*, 8> contents;
BitVector numbers;

public:
ValueNumberedSet() { numbers.resize(1); } 650
ValueNumberedSet(const ValueNumberedSet& other) {

numbers = other.numbers;
contents = other.contents;

}

typedef SmallPtrSet<Value*, 8>::iterator iterator;

iterator begin() { return contents.begin(); }
iterator end() { return contents.end(); }

660
bool insert(Value* v) { return contents.insert(v); }
void insert(iterator I, iterator E) { contents.insert(I, E); }
void erase(Value* v) { contents.erase(v); }
unsigned count(Value* v) { return contents.count(v); }
size t size() { return contents.size(); }

void set(unsigned i) {
if (i >= numbers.size())

numbers.resize(i+1);
670

numbers.set(i);
}

void operator=(const ValueNumberedSet& other) {
contents = other.contents;
numbers = other.numbers;

}

void reset(unsigned i) {
if (i < numbers.size()) 680

numbers.reset(i);
}

bool test(unsigned i) {
if (i >= numbers.size())

return false;

return numbers.test(i);
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}
690

void clear() {
contents.clear();
numbers.clear();

}
};
}

//===———————————————————————-===//
// GVN Pass
//===———————————————————————-===// 700

namespace {

class VISIBILITY HIDDEN GVN : public FunctionPass {
bool runOnFunction(Function &F);

public:
static char ID; // Pass identification, replacement for typeid
GVN() : FunctionPass((intptr t)&ID) { }

private: 710
ValueTable VN;

DenseMap<BasicBlock*, ValueNumberedSet> availableOut;

typedef DenseMap<Value*, SmallPtrSet<Instruction*, 4> > PhiMapType;
PhiMapType phiMap;

// This transformation requires dominator postdominator info
virtual void getAnalysisUsage(AnalysisUsage &AU) const { 720

AU.setPreservesCFG();
AU.addRequired<DominatorTree>();
AU.addRequired<MemoryDependenceAnalysis>();
AU.addRequired<AliasAnalysis>();
AU.addRequired<TargetData>();
AU.addPreserved<AliasAnalysis>();
AU.addPreserved<MemoryDependenceAnalysis>();
AU.addPreserved<TargetData>();

}
730

// Helper fuctions
// FIXME: eliminate or document these better
Value* find leader(ValueNumberedSet& vals, uint32 t v) ;
void val insert(ValueNumberedSet& s, Value* v);
bool processLoad(LoadInst* L,

DenseMap<Value*, LoadInst*>& lastLoad,
SmallVector<Instruction*, 4>& toErase);

bool processInstruction(Instruction* I,
ValueNumberedSet& currAvail,
DenseMap<Value*, LoadInst*>& lastSeenLoad, 740
SmallVector<Instruction*, 4>& toErase);
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bool processNonLocalLoad(LoadInst* L,
SmallVector<Instruction*, 4>& toErase);

bool processMemCpy(MemCpyInst* M, MemCpyInst* MDep,
SmallVector<Instruction*, 4>& toErase);

bool performReturnSlotOptzn(MemCpyInst* cpy, CallInst* C,
SmallVector<Instruction*, 4>& toErase);

Value *GetValueForBlock(BasicBlock *BB, LoadInst* orig,
DenseMap<BasicBlock*, Value*> &Phis,
bool top level = false); 750

void dump(DenseMap<BasicBlock*, Value*>& d);
bool iterateOnFunction(Function &F);
Value* CollapsePhi(PHINode* p);
bool isSafeReplacement(PHINode* p, Instruction* inst);
bool valueHasOnlyOneUseAfter(Value* val, MemCpyInst* use,

Instruction* cutoff);
};

char GVN::ID = 0;
760

}

// createGVNPass - The public interface to this file. . .
FunctionPass *llvm::createGVNPass() { return new GVN(); }

static RegisterPass<GVN> X("gvn",
"Global Value Numbering");

STATISTIC(NumGVNInstr, "Number of instructions deleted");
STATISTIC(NumGVNLoad, "Number of loads deleted"); 770

/// find leader - Given a set and a value number, return the first
/// element of the set with that value number, or 0 if no such element
/// is present
Value* GVN::find leader(ValueNumberedSet& vals, uint32 t v) {

if (!vals.test(v))
return 0;

for (ValueNumberedSet::iterator I = vals.begin(), E = vals.end();
I != E; ++I) 780

if (v == VN.lookup(*I))
return *I;

assert(0 && "No leader found, but present bit is set?");
return 0;

}

/// val insert - Insert a value into a set only if there is not a value
/// with the same value number already in the set
void GVN::val insert(ValueNumberedSet& s, Value* v) { 790

uint32 t num = VN.lookup(v);
if (!s.test(num))

s.insert(v);
}
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void GVN::dump(DenseMap<BasicBlock*, Value*>& d) {
printf("{\n");
for (DenseMap<BasicBlock*, Value*>::iterator I = d.begin(),

E = d.end(); I != E; ++I) {
if (I−>second == MemoryDependenceAnalysis::None) 800

printf("None\n");
else

I−>second−>dump();
}
printf("}\n");

}

Value* GVN::CollapsePhi(PHINode* p) {
DominatorTree &DT = getAnalysis<DominatorTree>();
Value* constVal = p−>hasConstantValue(); 810

if (constVal) {
if (Instruction* inst = dyn cast<Instruction>(constVal)) {

if (DT.dominates(inst, p))
if (isSafeReplacement(p, inst))

return inst;
} else {

return constVal;
}

} 820

return 0;
}

bool GVN::isSafeReplacement(PHINode* p, Instruction* inst) {
if (!isa<PHINode>(inst))

return true;

for (Instruction::use iterator UI = p−>use begin(), E = p−>use end();
UI != E; ++UI) 830

if (PHINode* use phi = dyn cast<PHINode>(UI))
if (use phi−>getParent() == inst−>getParent())

return false;

return true;
}

/// GetValueForBlock - Get the value to use within the specified basic block.
/// available values are in Phis.
Value *GVN::GetValueForBlock(BasicBlock *BB, LoadInst* orig, 840

DenseMap<BasicBlock*, Value*> &Phis,
bool top level) {

// If we have already computed this value, return the previously computed val.
DenseMap<BasicBlock*, Value*>::iterator V = Phis.find(BB);
if (V != Phis.end() && !top level) return V−>second;
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BasicBlock* singlePred = BB−>getSinglePredecessor();
if (singlePred) {

Value *ret = GetValueForBlock(singlePred, orig, Phis); 850
Phis[BB] = ret;
return ret;

}
// Otherwise, the idom is the loop, so we need to insert a PHI node. Do so
// now, then get values to fill in the incoming values for the PHI.
PHINode *PN = new PHINode(orig−>getType(), orig−>getName()+".rle",

BB−>begin());
PN−>reserveOperandSpace(std::distance(pred begin(BB), pred end(BB)));

if (Phis.count(BB) == 0) 860
Phis.insert(std::make pair(BB, PN));

// Fill in the incoming values for the block.
for (pred iterator PI = pred begin(BB), E = pred end(BB); PI != E; ++PI) {

Value* val = GetValueForBlock(*PI, orig, Phis);

PN−>addIncoming(val, *PI);
}
AliasAnalysis& AA = getAnalysis<AliasAnalysis>();
AA.copyValue(orig, PN); 870

// Attempt to collapse PHI nodes that are trivially redundant
Value* v = CollapsePhi(PN);
if (v) {

MemoryDependenceAnalysis& MD = getAnalysis<MemoryDependenceAnalysis>();

MD.removeInstruction(PN);
PN−>replaceAllUsesWith(v);

for (DenseMap<BasicBlock*, Value*>::iterator I = Phis.begin(), 880
E = Phis.end(); I != E; ++I)

if (I−>second == PN)
I−>second = v;

PN−>eraseFromParent();

Phis[BB] = v;

return v;
} 890

// Cache our phi construction results
phiMap[orig−>getPointerOperand()].insert(PN);
return PN;

}

/// processNonLocalLoad - Attempt to eliminate a load whose dependencies are
/// non-local by performing PHI construction.
bool GVN::processNonLocalLoad(LoadInst* L,

SmallVector<Instruction*, 4>& toErase) { 900
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MemoryDependenceAnalysis& MD = getAnalysis<MemoryDependenceAnalysis>();

// Find the non-local dependencies of the load
DenseMap<BasicBlock*, Value*> deps;
MD.getNonLocalDependency(L, deps);

DenseMap<BasicBlock*, Value*> repl;

// Filter out useless results (non-locals, etc)
for (DenseMap<BasicBlock*, Value*>::iterator I = deps.begin(), E = deps.end(); 910

I != E; ++I)
if (I−>second == MemoryDependenceAnalysis::None) {

return false;
} else if (I−>second == MemoryDependenceAnalysis::NonLocal) {

continue;
} else if (StoreInst* S = dyn cast<StoreInst>(I−>second)) {

if (S−>getPointerOperand() == L−>getPointerOperand())
repl[I−>first] = S−>getOperand(0);

else
return false; 920

} else if (LoadInst* LD = dyn cast<LoadInst>(I−>second)) {
if (LD−>getPointerOperand() == L−>getPointerOperand())

repl[I−>first] = LD;
else

return false;
} else {

return false;
}

// Use cached PHI construction information from previous runs 930
SmallPtrSet<Instruction*, 4>& p = phiMap[L−>getPointerOperand()];
for (SmallPtrSet<Instruction*, 4>::iterator I = p.begin(), E = p.end();

I != E; ++I) {
if ((*I)−>getParent() == L−>getParent()) {

MD.removeInstruction(L);
L−>replaceAllUsesWith(*I);
toErase.push back(L);
NumGVNLoad++;

return true; 940
} else {

repl.insert(std::make pair((*I)−>getParent(), *I));
}

}

// Perform PHI construction
SmallPtrSet<BasicBlock*, 4> visited;
Value* v = GetValueForBlock(L−>getParent(), L, repl, true);

MD.removeInstruction(L); 950
L−>replaceAllUsesWith(v);
toErase.push back(L);
NumGVNLoad++;
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return true;
}

/// processLoad - Attempt to eliminate a load, first by eliminating it
/// locally, and then attempting non-local elimination if that fails.
bool GVN::processLoad(LoadInst* L, 960

DenseMap<Value*, LoadInst*>& lastLoad,
SmallVector<Instruction*, 4>& toErase) {

if (L−>isVolatile()) {
lastLoad[L−>getPointerOperand()] = L;
return false;

}

Value* pointer = L−>getPointerOperand();
LoadInst*& last = lastLoad[pointer];

970
// . . . to a pointer that has been loaded from before. . .
MemoryDependenceAnalysis& MD = getAnalysis<MemoryDependenceAnalysis>();
bool removedNonLocal = false;
Instruction* dep = MD.getDependency(L);
if (dep == MemoryDependenceAnalysis::NonLocal &&

L−>getParent() != &L−>getParent()−>getParent()−>getEntryBlock()) {
removedNonLocal = processNonLocalLoad(L, toErase);

if (!removedNonLocal)
last = L; 980

return removedNonLocal;
}

bool deletedLoad = false;

// Walk up the dependency chain until we either find
// a dependency we can use, or we can’t walk any further
while (dep != MemoryDependenceAnalysis::None && 990

dep != MemoryDependenceAnalysis::NonLocal &&
(isa<LoadInst>(dep) | | isa<StoreInst>(dep))) {

// . . . that depends on a store . . .
if (StoreInst* S = dyn cast<StoreInst>(dep)) {

if (S−>getPointerOperand() == pointer) {
// Remove it!
MD.removeInstruction(L);

L−>replaceAllUsesWith(S−>getOperand(0));
toErase.push back(L); 1000
deletedLoad = true;
NumGVNLoad++;

}

// Whether we removed it or not, we can’t
// go any further



75

break;
} else if (!last) {

// If we don’t depend on a store, and we haven’t
// been loaded before, bail. 1010
break;

} else if (dep == last) {
// Remove it!
MD.removeInstruction(L);

L−>replaceAllUsesWith(last);
toErase.push back(L);
deletedLoad = true;
NumGVNLoad++;

1020
break;

} else {
dep = MD.getDependency(L, dep);

}
}

if (dep != MemoryDependenceAnalysis::None &&
dep != MemoryDependenceAnalysis::NonLocal &&
isa<AllocationInst>(dep)) {

// Check that this load is actually from the 1030
// allocation we found
Value* v = L−>getOperand(0);
while (true) {

if (BitCastInst *BC = dyn cast<BitCastInst>(v))
v = BC−>getOperand(0);

else if (GetElementPtrInst *GEP = dyn cast<GetElementPtrInst>(v))
v = GEP−>getOperand(0);

else
break;

} 1040
if (v == dep) {

// If this load depends directly on an allocation, there isn’t
// anything stored there; therefore, we can optimize this load
// to undef.
MD.removeInstruction(L);

L−>replaceAllUsesWith(UndefValue::get(L−>getType()));
toErase.push back(L);
deletedLoad = true;
NumGVNLoad++; 1050

}
}

if (!deletedLoad)
last = L;

return deletedLoad;
}
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/// valueHasOnlyOneUse - Returns true if a value has only one use after the 1060
/// cutoff that is in the current same block and is the same as the use
/// parameter.
bool GVN::valueHasOnlyOneUseAfter(Value* val, MemCpyInst* use,

Instruction* cutoff) {
DominatorTree& DT = getAnalysis<DominatorTree>();

SmallVector<User*, 8> useList(val−>use begin(), val−>use end());
while (!useList.empty()) {

User* UI = useList.back();
1070

if (isa<GetElementPtrInst>(UI) | | isa<BitCastInst>(UI)) {
useList.pop back();
for (User::use iterator I = UI−>use begin(), E = UI−>use end();

I != E; ++I)
useList.push back(*I);

} else if (UI == use) {
useList.pop back();

} else if (Instruction* inst = dyn cast<Instruction>(UI)) {
if (inst−>getParent() == use−>getParent() && 1080

(inst == cutoff | | !DT.dominates(cutoff, inst))) {
useList.pop back();

} else
return false;

} else
return false;

}

return true;
} 1090

/// performReturnSlotOptzn - takes a memcpy and a call that it depends on,
/// and checks for the possibility of a return slot optimization by having
/// the call write its result directly into the callees return parameter
/// rather than using memcpy
bool GVN::performReturnSlotOptzn(MemCpyInst* cpy, CallInst* C,

SmallVector<Instruction*, 4>& toErase) {
// Deliberately get the source and destination with bitcasts stripped away,
// because we’ll need to do type comparisons based on the underlying type.
Value* cpyDest = cpy−>getDest(); 1100
Value* cpySrc = cpy−>getSource();
CallSite CS = CallSite::get(C);

// Since this is a return slot optimization, we need to make sure that
// the value being copied is, in fact, in a return slot. We also need to
// check that the return slot parameter is marked noalias, so that we can
// be sure that changing it will not cause unexpected behavior changes due
// to it being accessed through a global or another parameter.
if (CS.arg size() == 0 | |

cpySrc != CS.getArgument(0) | | 1110
!CS.paramHasAttr(1, ParamAttr::NoAlias | ParamAttr::StructRet))

return false;
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// Since we’re changing the parameter to the callsite, we need to make sure
// that what would be the new parameter dominates the callsite.
DominatorTree& DT = getAnalysis<DominatorTree>();
if (Instruction* cpyDestInst = dyn cast<Instruction>(cpyDest))

if (!DT.dominates(cpyDestInst, C))
return false;

1120
// Check that something sneaky is not happening involving casting
// return slot types around.
if (CS.getArgument(0)−>getType() != cpyDest−>getType())

return false;
// sret –> pointer
const PointerType* PT = cast<PointerType>(cpyDest−>getType());

// We can only perform the transformation if the size of the memcpy
// is constant and equal to the size of the structure.
ConstantInt* cpyLength = dyn cast<ConstantInt>(cpy−>getLength()); 1130
if (!cpyLength)

return false;

TargetData& TD = getAnalysis<TargetData>();
if (TD.getTypeStoreSize(PT−>getElementType()) != cpyLength−>getZExtValue())

return false;

// For safety, we must ensure that the output parameter of the call only has
// a single use, the memcpy. Otherwise this can introduce an invalid
// transformation. 1140
if (!valueHasOnlyOneUseAfter(CS.getArgument(0), cpy, C))

return false;

// We only perform the transformation if it will be profitable.
if (!valueHasOnlyOneUseAfter(cpyDest, cpy, C))

return false;

// In addition to knowing that the call does not access the return slot
// in some unexpected manner, which we derive from the noalias attribute,
// we also need to know that it does not sneakily modify the destination 1150
// slot in the caller. We don’t have parameter attributes to go by
// for this one, so we just rely on AA to figure it out for us.
AliasAnalysis& AA = getAnalysis<AliasAnalysis>();
if (AA.getModRefInfo(C, cpy−>getRawDest(), cpyLength−>getZExtValue()) !=

AliasAnalysis::NoModRef)
return false;

// If all the checks have passed, then we’re alright to do the transformation.
CS.setArgument(0, cpyDest);

1160
// Drop any cached information about the call, because we may have changed
// its dependence information by changing its parameter.
MemoryDependenceAnalysis& MD = getAnalysis<MemoryDependenceAnalysis>();
MD.dropInstruction(C);
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// Remove the memcpy
MD.removeInstruction(cpy);
toErase.push back(cpy);

return true; 1170
}

/// processMemCpy - perform simplication of memcpy’s. If we have memcpy A which
/// copies X to Y, and memcpy B which copies Y to Z, then we can rewrite B to be
/// a memcpy from X to Z (or potentially a memmove, depending on circumstances).
/// This allows later passes to remove the first memcpy altogether.
bool GVN::processMemCpy(MemCpyInst* M, MemCpyInst* MDep,

SmallVector<Instruction*, 4>& toErase) {
// We can only transforms memcpy’s where the dest of one is the source of the
// other 1180
if (M−>getSource() != MDep−>getDest())

return false;

// Second, the length of the memcpy’s must be the same, or the preceeding one
// must be larger than the following one.
ConstantInt* C1 = dyn cast<ConstantInt>(MDep−>getLength());
ConstantInt* C2 = dyn cast<ConstantInt>(M−>getLength());
if (!C1 | | !C2)

return false;
1190

uint64 t DepSize = C1−>getValue().getZExtValue();
uint64 t CpySize = C2−>getValue().getZExtValue();

if (DepSize < CpySize)
return false;

// Finally, we have to make sure that the dest of the second does not
// alias the source of the first
AliasAnalysis& AA = getAnalysis<AliasAnalysis>();
if (AA.alias(M−>getRawDest(), CpySize, MDep−>getRawSource(), DepSize) != 1200

AliasAnalysis::NoAlias)
return false;

else if (AA.alias(M−>getRawDest(), CpySize, M−>getRawSource(), CpySize) !=
AliasAnalysis::NoAlias)

return false;
else if (AA.alias(MDep−>getRawDest(), DepSize, MDep−>getRawSource(), DepSize)

!= AliasAnalysis::NoAlias)
return false;

// If all checks passed, then we can transform these memcpy’s 1210
Function* MemCpyFun = Intrinsic::getDeclaration(

M−>getParent()−>getParent()−>getParent(),
M−>getIntrinsicID());

std::vector<Value*> args;
args.push back(M−>getRawDest());
args.push back(MDep−>getRawSource());
args.push back(M−>getLength());
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args.push back(M−>getAlignment());
1220

CallInst* C = new CallInst(MemCpyFun, args.begin(), args.end(), "", M);

MemoryDependenceAnalysis& MD = getAnalysis<MemoryDependenceAnalysis>();
if (MD.getDependency(C) == MDep) {

MD.dropInstruction(M);
toErase.push back(M);
return true;

} else {
MD.removeInstruction(C);
toErase.push back(C); 1230
return false;

}
}

/// processInstruction - When calculating availability, handle an instruction
/// by inserting it into the appropriate sets
bool GVN::processInstruction(Instruction* I,

ValueNumberedSet& currAvail,
DenseMap<Value*, LoadInst*>& lastSeenLoad,
SmallVector<Instruction*, 4>& toErase) { 1240

if (LoadInst* L = dyn cast<LoadInst>(I)) {
return processLoad(L, lastSeenLoad, toErase);

} else if (MemCpyInst* M = dyn cast<MemCpyInst>(I)) {
MemoryDependenceAnalysis& MD = getAnalysis<MemoryDependenceAnalysis>();

// The are two possible optimizations we can do for memcpy:
// a) memcpy-memcpy xform which exposes redundance for DSE
// b) call-memcpy xform for sret return slot optimization
Instruction* dep = MD.getDependency(M);
if (dep == MemoryDependenceAnalysis::None | | 1250

dep == MemoryDependenceAnalysis::NonLocal)
return false;

if (MemCpyInst *MemCpy = dyn cast<MemCpyInst>(dep))
return processMemCpy(M, MemCpy, toErase);

if (CallInst* C = dyn cast<CallInst>(dep))
return performReturnSlotOptzn(M, C, toErase);

return false;
}

unsigned num = VN.lookup or add(I); 1260

// Collapse PHI nodes
if (PHINode* p = dyn cast<PHINode>(I)) {

Value* constVal = CollapsePhi(p);

if (constVal) {
for (PhiMapType::iterator PI = phiMap.begin(), PE = phiMap.end();

PI != PE; ++PI)
if (PI−>second.count(p))

PI−>second.erase(p); 1270



80 Code Listing

p−>replaceAllUsesWith(constVal);
toErase.push back(p);

}
// Perform value-number based elimination
} else if (currAvail.test(num)) {

Value* repl = find leader(currAvail, num);

if (CallInst* CI = dyn cast<CallInst>(I)) {
AliasAnalysis& AA = getAnalysis<AliasAnalysis>(); 1280
if (!AA.doesNotAccessMemory(CI)) {

MemoryDependenceAnalysis& MD = getAnalysis<MemoryDependenceAnalysis>();
if (cast<Instruction>(repl)−>getParent() != CI−>getParent() | |

MD.getDependency(CI) != MD.getDependency(cast<CallInst>(repl))) {
// There must be an intervening may-alias store, so nothing from
// this point on will be able to be replaced with the preceding call
currAvail.erase(repl);
currAvail.insert(I);

return false; 1290
}

}
}

// Remove it!
MemoryDependenceAnalysis& MD = getAnalysis<MemoryDependenceAnalysis>();
MD.removeInstruction(I);

VN.erase(I);
I−>replaceAllUsesWith(repl); 1300
toErase.push back(I);
return true;

} else if (!I−>isTerminator()) {
currAvail.set(num);
currAvail.insert(I);

}

return false;
}

1310
// GVN::runOnFunction - This is the main transformation entry point for a
// function.
//
bool GVN::runOnFunction(Function& F) {

VN.setAliasAnalysis(&getAnalysis<AliasAnalysis>());

bool changed = false;
bool shouldContinue = true;

while (shouldContinue) { 1320
shouldContinue = iterateOnFunction(F);
changed |= shouldContinue;

}
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return changed;
}

// GVN::iterateOnFunction - Executes one iteration of GVN
bool GVN::iterateOnFunction(Function &F) { 1330

// Clean out global sets from any previous functions
VN.clear();
availableOut.clear();
phiMap.clear();

bool changed function = false;

DominatorTree &DT = getAnalysis<DominatorTree>();

SmallVector<Instruction*, 4> toErase; 1340

// Top-down walk of the dominator tree
for (df iterator<DomTreeNode*> DI = df begin(DT.getRootNode()),

E = df end(DT.getRootNode()); DI != E; ++DI) {

// Get the set to update for this block
ValueNumberedSet& currAvail = availableOut[DI−>getBlock()];
DenseMap<Value*, LoadInst*> lastSeenLoad;

BasicBlock* BB = DI−>getBlock(); 1350

// A block inherits AVAIL OUT from its dominator
if (DI−>getIDom() != 0)

currAvail = availableOut[DI−>getIDom()−>getBlock()];

for (BasicBlock::iterator BI = BB−>begin(), BE = BB−>end();
BI != BE; ) {

changed function |= processInstruction(BI, currAvail,
lastSeenLoad, toErase);

1360
NumGVNInstr += toErase.size();

// Avoid iterator invalidation
++BI;

for (SmallVector<Instruction*, 4>::iterator I = toErase.begin(),
E = toErase.end(); I != E; ++I) {

(*I)−>eraseFromParent();
}

1370
toErase.clear();

}
}

return changed function;
}


