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Abstract

We introduce an associative algebra RBk(x) that has a basis of
rook-Brauer diagrams. These diagrams correspond to partial
matchings on 2k vertices. The dimension of RBk(x) is∑k

`=0

(
2k
2`

)
(2` − 1)!!. The algebra RBk(x) contains the group al-

gebra of the symmetric group, the Brauer algebra, and the rook
monoid algebra as subalgebras. We show that RBk(x) is gener-
ated by special diagrams si, ti (1 ≤ i < k) and pj (1 ≤ j ≤ k),
where the si are the simple transpositions that generated the
symmetric group Sk, the ti are the “contraction maps” which
generate the Brauer algebra Bk(x), the pi are the “projection
maps” that generate the rook monoid Rk. We prove that for
a positive integer n, the algebra RBk(n + 1) is the centralizer
algebra of the orthogonal group O(n) acting on the k-fold ten-
sor power of the sum of its 1-dimensional trivial module and
n-dimensional defining module.

5



6 CONTENTS



Introduction

This paper finds the centralizer algebra of the orthogonal group over C, O(n),
acting on the k-fold tensor space V⊗k where V is the (n + 1)-dimensional
module Cn ⊕ C. The introduction describes the motivation for finding this
centralizer and the work that has already been done in this area to support
that motivation.

We begin with the general linear group of invertible matrices over C,
GL(n), and the GL(n)-module V = Cn with standard basis {v1, v2, . . . , vn}.
This module is the irreducible GL(n)-module labeled by the partition (1),
so V = V(1). We are concerned with the tensor product GL(n)-module V⊗k

whose basis is the set of simple tensors

{ vi1 ⊗ · · · ⊗ vik | ij ∈ {1, . . . , n} } .

The general linear group acts diagonally on elements of V⊗k, and the cen-
tralizer algebra of the action of GL(n) on this tensor space is the set of
all GL(n)-module homomorphisms from V⊗k to itself. We refer to this as
EndGL(n)(V⊗k). It is known that this centralizer algebra is isomorphic to
the group algebra of the symmetric group CSk.

The next part of the story is to look at the subgroup of orthogonal ma-
trices O(n) ⊆ GL(n) acting on this same module V⊗k. The natural question
to ask is, what is the centralizer algebra for O(n) acting on V⊗k? Since
O(n) is contained in GL(n), its centralizer could possibly be much larger
than CSk. In 1937, Richard Brauer succeeded in describing the centralizer
with an algebra called the Brauer algebra, Bk(n). This algebra over C has
a basis of Brauer diagrams on 2k vertices, which is equivalent to the set of
all possible partitions of a set of 2k elements into blocks of 2.

7
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V⊗k

−→
GL(n)

⊆

O(n)

−→
CSk⊆

Bk(n)

Since the centralizer has been described for the actions of both GL(n)
and O(n) on the module V⊗k, we now wish to explore the centralizer of
GL(n) and O(n) acting on a slightly different module. Now let V = V(1)⊕V∅

where V∅ is the trivial 1-dimensional submodule of GL(n). GL(n) acts on the
(n+ 1)k-dimensional module V⊗k diagonally. The centralizer for this action
has been described by the rook monoid algebra CRk. In this paper we take
the next natural step and describe the centralizer of O(n) ⊆ GL(n) acting
on the (n+1)k-dimensional tensor space V⊗k, which we call the rook-Brauer
algebra RBk(n+ 1).

V⊗k

−→
GL(n)

⊆

O(n)

−→
CRk⊆

RBk(n+ 1)

This thesis is organized as follows.

• Chapter 1 refreshes some important background information on rep-
resentations of groups and algebras, though some prior knowledge is
assumed.

• In Chapter 2, we discuss the three important subalgebras of RBk(x),
and we define the rook-Brauer algebra with a basis of rook-Brauer
diagrams on 2k vertices. The set of these diagrams on 2k vertices is
equivalent to the number of partitions of a set of 2k elements into parts
of size 1 or 2.

• Chapter 3 discusses double centralizer theory and the motivations be-
hind studying the rook-Brauer algebra.

• In Chapter 4 we define an action of RBk(n+1) on the tensor space V⊗k

and prove that this action creates a representation of RBk(n+ 1) and
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that this representation is faithful for n ≥ k. This shows that there is
an injective linear transformation between RBk(n+ 1) and End(V⊗k),
the set of all endomorphisms of V⊗k.

• Chapter 5 presents the proof that the action of RBk(n+ 1) commutes
with the action of O(n) on V⊗k, which shows that in fact when n ≥ k,
RBk(n+ 1) ⊆ EndO(n)(V⊗k) as a subalgebra.

• Finally in Chapter 6 we use combinatorics on the Bratteli diagram of
V⊗k to show that the dimension of RBk(n+1) is equal to the dimension
of EndO(n)(V⊗k).

• Chapter 7 discusses future work on this project, which includes con-
structing the irreducible representations of RBk(n+ 1).

Acknowledgements

Thank you to my readers Dan Flath and Kristina Garrett, and to my advisor
Tom Halverson. This research was partially supported by National Science
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Chapter 1

Preliminaries

1.1 Algebraic Structures

1.1.1 Groups and Monoids

A group is a set G together with a binary operation ∗ that satisfies the
following properties [JL].

i. For all g, h ∈ G, g ∗ h ∈ G.

ii. For all g, h, k ∈ G, (g ∗ h) ∗ k = g ∗ (h ∗ k).

iii. There exists an element e ∈ G such that for all g ∈ G, e∗g = g ∗e = g.

iv. For each g ∈ G, there exists an element g−1 such that g ∗ g−1 =
g−1 ∗ g = e.

Examples of groups are the set of integers Z under the operation of addition,
and the set of nonzero real numbers R∗ under multiplication. In this paper
we deal closely with the general linear group GL(n). This is the group of
invertible n × n matrices with entries in C. The most important group in
this paper is a subgroup of GL(n). A subgroup of a group G is a subset
of G that is also a group under the operation of G. The subgroup we are
interested in is the group of matrices O(n) inside of GL(n) such that for
g ∈ O(n) the transpose of g is the inverse of g, i.e. ggT = In where In is the
n× n identity matrix. This group is called the orthogonal group.

A monoid is a set M together with a binary operation ∗ that satisfies
properties i. − iii. of the definition of a group. The rook monoid is an
important algebraic structure in this paper and is defined in a later section.

11
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1.1.2 Associative Algebras

In this paper we explore an associative algebra, which we define generally in
this section. An associative algebra A with unity 1 and additive identity ~0
over a field F, or an F-algebra, is an F-vector space under addition with an
additional operation of multiplication. This multiplication must satisfy the
following properties:

i. ab ∈ A for all a, b ∈ A
ii. 1a = a1 = a for all a ∈ A
iii. (λa)b = λ(ab) = a(λb) for all a, b ∈ A and λ ∈ F.

iv. (a+ b)c = ac+ bc for all a, b, c ∈ A
v. a(b+ c) = ab+ ac for all a, b, c ∈ A
vi. a~0 = ~0a = ~0

See [Pi] for further explorations of associative algebras. In this paper all
algebras discussed are C-algebras.

1.1.3 Group Algebras

The group algebra of a finite group G over a field F [JL], denoted by FG, is
the set of all formal linear combinations of elements of G,




∑

g∈G
λgg | λg ∈ F



 ,

together with a multiplication defined by

∑

g∈G
λgg



(∑

h∈G
µhh

)
=
∑

g,h∈G
λgµh(gh).

1.2 Representations and Modules

In this section we present important definitions and theorems of representa-
tion theory that factor into this paper. Some prior knowledge is assumed.
All material referring to group representations and modules is taken from
[JL], which contains more detailed explanations and examples as well as
proofs.
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1.2.1 Representations

A representation of a group G is a homomorphism ρ from G to GL(n) for
some n. This means that ρ is a representation if and only if ρ(gh) = ρ(g)ρ(h)
for all g, h ∈ G. In order to prove that a function ρ is a representation of
a group, it is sufficient to check that ρ satisfies ρ(gigj) = ρ(gi)ρ(gj) for the
set of generators {gi} of G. If we let In be the identity matrix of GL(n) and
1 be the identity of G, the fact that a representation ρ is a homomorphism
gives that

ρ(1) = In

and
ρ(g−1) = (ρ(g))−1.

The kernel of a representation ρ is the set Ker(ρ) = {g ∈ G | ρ(g) = In},
and we say a representation is faithful of Ker(ρ) = {1}.

1.2.2 Modules

Let V be a vector space over a field F and let G be a group. We say V is an
FG−module if there exists a multiplication, denoted by gv for g ∈ G, v ∈ V,
that for all g, h ∈ G and u, v ∈ V satisfies the rules

i. gv ∈ V

ii. (gh)v = g(hv)

iii. 1v = v

iv. λ(gv) = g(λv) for all λ ∈ F

v. g(u+ v) = gu+ gv

If B is a basis of an FG-module V, then we let [g]B denote the matrix of the
endomorphism v 7→ gv relative to the basis B.

We can easily move between modules and representations by using the
following helpful theorem.

Theorem 1. 1) If ρ : G→ GL(n) is a representation of G and V = Cn,
then V becomes a CG-module of we define the multiplication gv as

gv = ρ(g)v

for all g ∈ G, v ∈ V.
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2) Assume V is a CG-module and let B be a basis of V. Then if g ∈ G,
the function defined by

g 7→ [g]B

is a representation of G.

This theorem shows a representation of a group G defines a CG-module
and a CG-module defines a representation. Due to this correspondence, we
use the terms module and representation interchangeably in this paper.

Notice that the group algebra CG is a CG-module with a basis labeled
by the elements of G and dimension |G|. This module is also referred to as
the regular representation of G and features heavily in this paper.

An FG-module homomorphism is a linear transformation φ between two
FG-modules V and W such that

φ(g · v) = g · φ(v)

for all v ∈ V, g ∈ G.
The set of all linear transformations from an FG-module to itself is

called the set of endomorphisms of V and is denoted by End(V). Contained
within this set is the set of all FG-module homomorphisms from V to itself,
HomG(V,V). We denote this set as EndG(V).

1.2.3 Irreducible Submodules and Decomposition

A CG-submodule of a CG-module V is a subspace W of V that is also a
CG-module under the action of G on V. A CG-module is irreducible if it
has no CG-submodules other {0} and itself, where 0 is the additive identity
of the module.

Maschke’s Theorem gives an important result about the relationship of
modules and irreducible submodules.

Theorem 2. Maschke’s Theorem. Let G be a finite group and let V
be a CG-module. If U ⊆ V is a CG-submodule of V, then there exists a
CG-submodule W such that

V = U⊕W.
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where U⊕W is the direct sum of the subspaces U and W.

A CG-module V is completely reducible if

V =
⊕

1≤i≤r
Ui

where each Ui is an irreducible CG-module of V. From Maschke’s Theorem
and using induction we get the following useful result.

Theorem 3. If G is a finite group, then every non-zero CG-module is com-
pletely reducible.

This theorem allows us to focus on the irreducible submodules of a group.
Representing a CG-module as the direct sum of irreducible submodules is
called decomposing the module. The next theorem shows that we can get a
list of every irreducible submodule by decomposing the group algebra CG.

Theorem 4. Let CG be the group algebra of G with

CG =
⊕

i∈I
Ui

where I is some (possibly infinite) index. Then every irreducible CG-module
is isomorphic to one of the CG-modules Ui.

Some irreducible submodules may appear more than once in this decom-
position, so we say that an irreducible submodule Ui has multiplicity mi if it
appears mi times in a decomposition. We usually write the decomposition
of a CG-module as

V =
⊕

i∈I
miUi.

1.2.4 Algebra Representations and Modules

And algebra representation of a C-algebra A is an algebra homomorphism
φ of A to the C-algebra of all n×n matrices with entries in C. That is, φ is
a function of A to the C-algebra of all n×n matrices with entries in C that
preserves the operations of A.

A CG-module V is simple if V is non-trivial and the only submodules of
V are V and the trivial module. A module V is semisimple if V is a direct
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sum of simple modules, and an algebra A is semisimple if A is semisim-
ple as a CG-module. For semisimple algebras, algebra representations and
modules decompose analogously to group representations and modules. See
[Pi] chapters 2, 3, and 5 for further definitions and examples. The main
structure that this paper investigates is a semisimple associative C-algebra.

1.2.5 Tensor Product Spaces and Modules

Let V and W be vector spaces over C with bases {v1, . . . , vn} and {w1, . . . , wm},
respectively. The tensor product space V⊗W is the m∗n-dimensional vector
space over C with the basis

{vi ⊗ wj | 1 ≤ i ≤ n, 1 ≤ j ≤ m}.

Elements of V ⊗W look like v =
∑

i,j λij(vi ⊗ wj), λij ∈ C. For v ∈ V,
w ∈W, with v =

∑n
i=1 λivi and w =

∑m
i=1 µiwi, define

v ⊗ w =
∑

i,j

λiµj(vi ⊗ wj).

If V and W are CG-modules, then we define the tensor product module
V ⊗W by the action

g(vi ⊗ wj) = gvi ⊗ gwj

for basis elements vi ∈ V, wj ∈ W. This can easily be extended so that
for any v ∈ V and w ∈ W, g(v ⊗ w) = gv ⊗ gw. Modules can be tensored
multiple times, and if a module V is tensored with itself k times we denote
it by V⊗k.



Chapter 2

The Rook Brauer Algebra
RBk(x)

2.1 The Symmetric Group, the Rook Monoid, and
the Brauer Algebra

In this section we present three algebras that can be represented with dia-
grams on 2k vertices and show how their operations work. These examples
build a foundation for the definition of a new structure, the rook-Brauer
algebra, which contains each of the following structures as subalgebras.

2.1.1 The Symmetric Group

The symmetric group Sk is the group of permutations of the set {1, . . . , k}.
The dimension formula of Sk is

|Sk| = k!.

The operation in this group is permutation multiplication, which can be
shown in two-line notation or cyclic form. In S6, we can represent the same
permutation by

σ =
(

4 1 5 2 3 6
1 2 3 4 5 6

)

and σ = (142)(35). This form of two-line notation represents the permuta-
tion as a function where the bottom line is the set before the permutation is
applied and the top line is the image of the set. We can multiply (142)(35) by

17
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another permutation (13)(2465) by composing the two permutations. The
result is (142)(35)(13)(2465) = (15)(3463). These permutations can also be
represented on diagrams of k pairs of vertices. For example,

(13)(2465) =
(

3 4 1 6 2 5
1 2 3 4 5 6

)
=

Multiplication of permutations in this form is done by placing one diagram
over another and tracing the path of the edges from the bottom diagram
through the top diagram. Using the previous example,

=
(142)(35)
×

(13)(2465)
(15)(3463)

The diagrams multiply in the same manner as the cyclic notation of the
permutations. The group algebra of Sk is the algebra over C whose basis
consists of these k! diagrams.

2.1.2 The Rook Monoid

The rook monoid Rk is the monoid consisting of all diagrams on 2k vertices
that can have any combination of vertical edges and isolated vertices. The
degree of each vertex is at most 1. An example of a rook monoid diagram is

The dimension formula for Rk is

|Rk| =
k∑

`=0

(
k

`

)
`!.
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These diagrams multiply in the same way as symmetric group diagrams,
except there are special rules for when an isolated vertex meets an edge or
when two isolated vertices meet. When a diagram has been placed on top
of another diagram in order to multiply them, we call the top row of the
bottom diagram and the bottom row of the top diagram the middle rows.
If an edge meets an isolated vertex in the middle rows, then in the resulting
diagram an isolated vertex appears in the position of the other vertex of that
edge. If two isolated vertices meet in the middle rows, then the resulting
diagram is not affected. To illustrate,

=

The rook monoid algebra, CRk, is the algebra over C whose basis consists
of all Rk diagrams.

2.1.3 The Brauer Algebra

For k ∈ Z>0 and x ∈ C, the Brauer algebra Bk(x) is the algebra over C whose
basis consists of all diagrams on 2k vertices that have any combination of
horizontal and vertical edges. An example of a Brauer diagram is

The dimension formula for Bk(x) is

dim(Bk(x)) = (2k − 1)!!.

where (2k−1)!! = (2k−1)∗ (2k−3) · · · ∗3∗1. Multiplying Brauer diagrams
introduces a parameter, x, which comes into play when a loop forms in the
middle rows of two diagrams being multiplied. A loop can be formed by
two or more horizontal edges in the middle rows. When this occurs, the
loops disappear and we multiply the resulting diagram by x` where ` is the
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number of loops in the middle rows. For example,

= x

Note that horizontal and vertical edges can appear in the product of two
diagrams via a sequences of edges that starts and ends with a vertical edge
and which may have horizontal edges in the middle.

2.2 The Rook-Brauer Algebra

We now introduce the rook-Brauer algebra and build an understanding of
its structure. As with the rook monoid algebra, the rook-Brauer algebra is
an algebra over C with a basis of diagrams. We discuss how these diagrams
multiply, show how to find the dimension of the algebra, define its generators
and give a presentation.

The rook-Brauer algebra RBk(x) is an associative algebra with a basis
of rook-Brauer diagrams, which are Brauer diagrams that allow for isolated
vertices. A rook-Brauer diagram in RBk(x) has 2k vertices and can have
anywhere from 0 to k edges, including both horizontal and vertical edges.
An example of a diagram in the basis of RB7(x) is

Let RBk be the set of all basis diagrams of RBk(x). The dimension of
RBk(x) is

|RBk(x)| =
k∑

`=1

(
2k
2`

)
(2`− 1)!!.

The combinatorics behind this formula are very intuitive. For 2k vertices,
choose 2` of them to be in pairs. This task gives

(
2k
2`

)
for a fixed `. Then we

place these edges in the diagram, which amounts to picking two of the 2`
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vertices for each edge. There are 2`−1 choices for the first edge, 2`−3 choices
for the second edge, and so on, so it follows that we multiply by (2`−1)!!. So
given a fixed number of edges 2`, there are

(
2k
2`

)
(2`−1)!! diagrams. Therefore,

if we sum
∑k

`=1

(
2k
2`

)
(2` − 1)!! we get all possible diagrams in the basis of

RBk(x). The dimension grows very quickly as k increases.

k 1 2 3 4 5 6 7 8

|RBk(x)| 2 10 76 764 9496 140152 2390480 46206736

S2

B2

R2

Figure 2.1: The ten diagrams of RB2, organized by the subalgebras con-
tained in RBk(x).

2.2.1 Multiplication

Multiplication of rook-Brauer diagrams combines the methods of multiplica-
tion in Sk,Rk, and Bk. To multiply diagrams d1 and d2 and get the diagram
d2d1 ∈ RBk(x), place d2 above d1. We again call set of vertices formed by
the top row of d1 and the bottom row of d2 the middle rows of d2d1.

• In the middle rows, connect two vertices if they share the same index
and are incident with an edge. This creates new vertical and horizontal
edges in d2d1.

• If an isolated vertex in the middle rows meets a vertex incident with
an edge, then in d2d1 an isolated vertex appears in the position of the
edge’s second vertex, as with rook monoid diagrams.

• If two isolated vertices meet in the middle rows, they disappear.
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• If horizontal edges form loops in the middle rows, then the loops dis-
appear in d2d1 and d2d1 is multiplied by x` where ` is the number of
loops in the middle rows of d2d1, as with Brauer diagrams.

The following figure illustrates the process of diagram multiplication in
RBk(x).

= x

2.2.2 Presentation on generators and relations

The multiplicative identity of RBk(x) is the diagram

1 =
· · ·
· · ·

1 2 k

All basis diagrams of RBk(x) can be generated by the elements si, ti,
and pi where for 1 ≤ i ≤ k − 1,

si =
· · ·
· · ·

· · ·
· · ·

1 2 i−1 i i+1 i+2 k

and ti =
· · ·
· · ·

· · ·
· · ·

1 2 i−1 i i+1 i+2 k

and for 1 ≤ i ≤ k,

pi =
· · ·
· · ·

· · ·
· · ·

1 2 i−1 i i+1 i+2 k
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For example, the generators of RB3(x) are

pi

si

ti

A presentation is proven in [KM] which we give here. It is a straightfor-
ward process to check that the following relations hold for the generators
of RBk(x). However the proof that these relations are sufficient to generate
RBk(x) is much harder, so we refer to [KM]. The basis of the group algebra
of the symmetric group CSk ⊂ RBk(x) is generated by si for 1 ≤ i ≤ k − 1
subject to the following relations:

s2
i = 1; (2.1)

sisj = sjsi for |i− j| > 1; (2.2)
sisi+1si = si+1sisi+1. (2.3)

The basis of the Brauer algebra Bk(x) ⊂ RBk(x) contains CSk and is
generated by si and ti subject to relations (2.1)-(2.3) and the following
relations:

t2i = xti; (2.4)
titj = tjti for |i− j| > 1; (2.5)

titi+1ti = ti; (2.6)
tisi = siti = ti; (2.7)

tisj = sjti for |i− j| > 1; (2.8)
siti+1ti = si+1ti (2.9)
titi+1si = tisi+1. (2.10)

The basis of the rook monoid algebra CRk ⊂ RBk(x) is generated by si
and pi subject to relations (2.1)-(2.3) and the following relations:
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p2
i = pi; (2.11)

pipj = pjpi for i 6= j; (2.12)
sipi = pi+1si; (2.13)
sipj = pjsi for |i− j| > 1; (2.14)

pisipi = pipi+1. (2.15)

Finally, RBk(x) is generated by si, ti, and pi subject to relations (2.1)−
(2.15) along with the following relations:

tipj = pjti for |i− j| > 1; (2.16)
tipi = tipi+1 = tipipi+1; (2.17)
piti = pi+1ti = pipi+1ti; (2.18)

tipiti = pi+1; (2.19)
pitipi = pipi+1. (2.20)



Chapter 3

Double Centralizer Theory

3.1 General Theory

Let G be a group and let V be a CG-module. Consider the set of right-
actions of G on V, that is the actions g · v for g ∈ G, v ∈ V. The centralizer
C of G acting on V from the right is the set of elements

{g ∈ G | g · (h · v) = h · (g · v), for all h ∈ G, v ∈ V}.

This centralizer is the ring of endomorphisms of V, which we denote as
HomG(V,V) = EndG(V), which are all G-module homomorphisms from V
to itself. This can also be denoted as

C = {φ ∈ End(V) | φ(g · v) = g · φ(v), v ∈ V}.

Let V be an n-dimensional CG-module with basis {v1, . . . , vn}. We now
present the double centralizer theorem for the nk-dimensional tensor space

V⊗k = C− span{vi1 ⊗ vi2 ⊗ . . .⊗ vik | ij ∈ {1, . . . , n}}.

This theorem is classical and can be seen in [CR] section 3B.

Theorem 5. Double Centralizer Theorem Let G be a group and V be a
CG-module such that

V⊗k ∼=
⊕

λ∈Λk

mλ,kV
λ

is a decomposition of V⊗k into irreducible G-submodules and let Ck = EndG(V⊗k).
Then

25
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i. Ck is a semisimple algebra over C.

ii. The irreducible representations of Ck are labeled by λ ∈ Λk. We denote
these irreducible representations as Mλ

k .

iii. dim(Mλ
k ) = mλ,k

iv. As a Ck-module,
V⊗k ∼=

⊕

λ∈Λk

dλ,kM
λ
k

with dλ,k = dim(Vλ) on level k.

By classical Artin-Wedderburn theory as seen in [GW] Section 3.2 and [Pi]
Section 3.5, the dimension of a semisimple algebra is the sum of the squares
of the dimensions of its irreducible representations. Thus,

Theorem 6. dim(Ck) =
∑

λ∈Λk
m2
λ,k

The key to inductively computing the mλ,k is the tensor product rule

V ⊗ Vλ =
⊕

µ∈Λk

Vµ.

The tensor product rule can be derived from the Clebsch-Gordan formulas,
which come from Pieri’s Rule and can be found in [GW] Corollary 9.2.4.
This rule is unique to each Ck-module V and can be used inductively to
construct a graph called the Bratteli diagram of V. The Bratteli diagram
of V is the infinite rooted graph with vertices on level k labeled by the
irreducible submodules Vλ of G that appear in the decomposition of V⊗k,
for k ≥ 0, and an edge between Vλ on level k and Vµ on level k + 1 if Vµ is
in the decomposition of Vλ ⊗ V.

If we choose a particular Vλk on level k of the Bratteli diagram, we can
use the tensor product rule to inductively find that the dimension mλ,k of Vλ

on level k is given by the number of paths on the Bratteli diagram from the
the root to Vλk . A path on a Bratteli diagram to Vλk is given by a sequence
(λ0, λ1, λ3, . . . , λk−1, λ) where λ0 is the root of the graph and λi labels some
irreducible module on level i that appears in the decomposition of Vλi−1⊗V.
The Bratteli diagram is a way to encode the tensor product rule of a module.
Examples of Bratteli diagrams are given in the next section.

Now that we know mλ,k is the number of paths to Vλ on level k, we
conclude m2

λ,k is the number of paths from the root of the Bratteli diagram
to Vλ on level k and back to the root. This gives a more concrete way to
calculate dim(Ck), which we take advantage of later.
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3.2 Examples and Applications

We now present examples of centralizer algebras and applications of the
double centralizer theorem. Each of the examples is one of the subalgebras
of RBk(x) discussed in the introduction of this paper and builds the reason
we are interested in the rook-Brauer algebra.

3.2.1 Sk

Let G = GL(n), the general linear group of n × n matrices with complex
entries. The irreducible representations of G are labeled by the partitions
λ ` r for all r ∈ N. Let V be the irreducible module labeled by the partition
(1), which is known to be Cn. The action of g ∈ GL(n) on v ∈ Cn is matrix
multiplication g · v where v acts as an n × 1 column vector. Explicitly, if
g = [aij ] then

g · vj =
n∑

i=1

aijvi.

For any partition µ the tensor product rule of V is

V ⊗ Vµ =
⊕

λ=µ+�

Vλ

This formula comes from the Clebsch-Gordam formulas and gives that the
tensor space V⊗k decomposes into irreducible submodules as

V⊗k ∼=
⊕

λ∈Λk

mk,λV
λ

where Λk = {λ | λ ` k}. The centralizer EndG(V⊗k) is isomorphic to
the group algebra of the symmetric group CSk. This is classic Schur-Weyl
duality as found in [GW] Section 9.1.

From the tensor product rule we can recursively create the Bratteli dia-
gram B of G acting on V⊗k. The irreducible submodules of G that appear
on level k of B are labeled by the partitions λ ` k, and the tensor product
rule of V gives that edges appear between Vλ on level k and Vµ on level k+1
if µ = λ+ �. This particular Bratteli diagram is quite famous and is called
Young’s Lattice after the British mathematician Alfred Young.
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∅V⊗0

V⊗1

V⊗2

V⊗3

V⊗4

V⊗5

dim(EndGL(n)(V⊗k))

1

1

1 1

1 2 1

1 3 2 3 1

...
1 4 5 6 5 4 1

1

1

2

6

24

120

1Figure 3.1: Young’s Lattice for 0 ≤ k ≤ 5.

3.2.2 Rk

Let G = GL(n) and let V = V(1) ⊕ V∅ where V(1) is Cn again and V∅ is the
trivial module. Now V is (n+1)-dimensional and has a basis {v0, v1, . . . , vn}.
A matrix g ∈ G acts on a vector v ∈ V(1) by matrix multiplication and
g · v0 = v0. With this module of G, for any partition µ,

V ⊗ Vµ =
(
V(1) ⊕ V∅

)
=
(
V(1) ⊗ Vµ

)
⊕
(
V ∅ ⊗ Vµ

)
. (3.1)

Tensoring a module with the trivial module does nothing to the original
module, so 3.1 is equivalent to V(1) ⊗ Vµ ⊕ Vµ. We can now use the tensor
product rule for V(1) in the previous section to derive the tensor product
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rule for V = V(1) ⊕ V∅:

V ⊗ Vµ =
⊕

λ=µ+�
λ=µ

Vλ

This gives that the tensor space V⊗k also decomposes into irreducible sub-
modules as

V⊗k ∼=
⊕

λ∈Λk

mk,λV
λ

however now Λk = {λ | λ ` r for 0 ≤ r ≤ k}. The centralizer EndG(V⊗k) is
isomorphic to the rook monoid algebra CRk, as shown in [So].

3.2.3 Bk(n)

Now let G = O(n), the infinite group of n × n orthogonal matrices with
complex entries. This group is a subring of GL(n) and its irreducible rep-
resentations are also labeled by the partitions λ ` r for r = 0, 1, 2, . . . . Let
V = V(1), now as an O(n)-module. For any partition µ,

V ⊗ Vµ =
⊕

λ=µ+�
λ=µ−�

Vλ

This formula is derived from the Clebsch-Gordan formulas and recursively
gives that a decomposition of V⊗k into irreducible representations is

V⊗k ∼=
⊕

λ∈Λk

mk,λV
λ

where Λk = {λ | λ ` r for 0 ≤ r ≤ k} as in the previous example. The
centralizer EndG(V⊗k) is isomorphic to the Brauer algebra Bk(n) [Br].

3.2.4 RBk(n+ 1)

We now explore the centralizer EndO(n)(V⊗k) where V = V(1)⊕V∅. For any
µ, the tensor product rule for V is

V ⊗ Vµ =
⊕

λ=µ
λ=µ+�
λ=µ−�

Vλ.
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∅∅∅∅∅

V
⊗

0

V
⊗

1

V
⊗

2

V
⊗

3

V
⊗

4

dim
(E

nd
G

L
(n

) (V
⊗

k))

11
1

1
2

1
1

1
3

3
3

2
1

1

...
1

4
6

6
5

4
4

3
3

1
2

1

12734

170

1

Figure 3.2: The Bratteli diagram for the CGL(n)-module V = V(1) ⊕ V∅ for
0 ≤ k ≤ 4.

As in deriving the tensor product rule of GL(n) acting on
(
V(1) ⊕ V∅

)⊗k
, this

rule can be derived from the tensor product rule of O(n) acting
(
V(1)

)⊗k
.
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The rule allows us to recursively define the Bratteli diagram of O(n) acting
on V⊗k and conclude

V⊗k ∼=
⊕

λ∈Λk

mk,λV
λ

where Λk = {λ | λ ` r for 1 ≤ r ≤ k}. In the coming sections we prove the
following theorem.

Theorem 7. For n ≥ k, RBk(n+ 1) ∼= EndO(n)

(
V⊗k

)

We first define an action of RBk(x) on the tensor space V⊗k and prove that
this creates an RBk(x)-module. Then we show that the action of RBk(n+1)
commutes with the action of O(n) on the tensor space. This shows that
RBk(n+1) is a subset of EndO(n)(V⊗k). Finally, we use paths on the Bratteli
diagram to give a combinatorial proof that the dimension of EndO(n)(V⊗k)
is equal to the dimension of RBk(n + 1), which completes the proof that
EndO(n)(V⊗k) ∼= RBk(n+ 1).
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∅∅∅

V
⊗

0

V
⊗

1

V
⊗

2

V
⊗

3

V
⊗

4

dim
(E

nd
O

(n
) (V

⊗
k))

1

1

1
1

1

3
2

1
1

...
3

3
3

3
3

1
2

1

121076

764

1

Figure 3.3: The Bratteli diagram for the CO(n)-module V = V(1) for 0 ≤
k ≤ 4.
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∅∅∅∅∅

V
⊗

0

V
⊗

1

V
⊗

2

V
⊗

3

V
⊗

4

dim
(E

nd
O

(n
) (V

⊗
k))

11
1

2
2

1
1

4
6

3
3

2
1

1

...
10

16
12

12
8

4
4

3
3

1
2

1

121076

764

1

Figure 3.4: The Bratteli diagram for the CO(n)-module V = V(1) ⊕ V∅ for
0 ≤ k ≤ 4.
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Chapter 4

Action of RBk(n + 1) on
Tensor Space

4.1 How RBk(n+ 1) Acts on V⊗k

In this chapter, we define an action of RBk(n + 1) on a specific (n + 1)k-
dimensional tensor product module V⊗k of the general linear group GLn(C).
We prove that this action creates a faithful representation of RBk(n + 1)
on V⊗k, which aids in proving that RBk(n+ 1) is the centralizer algebra of
O(n) acting on V. The definition of the action was influenced by the work
on Motzkin algebras in [BH].

Let V(1) be the n-dimensional GLn(C) module with basis {v1, v2, . . . , vn}
and let V∅ be the trivial GLn(C) module with basis v0. That is, if g ∈ GL(n)
and the ij entry of g is gij , then

g · vj =
n∑

i=1

gijvi

for 1 ≤ j ≤ n and g · v0 = v0. We define V = V(1) ⊕ V∅. This new module
is (n + 1)-dimensional with basis {v0, v1, v2, . . . , vn}. Consider the k-fold
tensor product module

V⊗k = C-span { vi1 ⊗ · · · ⊗ vik | ij ∈ {0, . . . , n} } , (4.1)

which has dimension (n+ 1)k and a basis consisting of simple tensors of the
form vi1 ⊗ · · · ⊗ vik . An element g ∈ GLn(C) acts on a simple tensor by the

35
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diagonal action

g(vi1 ⊗ · · · ⊗ vik) = (gvi1)⊗ · · · ⊗ (gvik), (4.2)

which extends linearly to make V⊗k a GLn(C) module.
We define an action on of a diagram d ∈ RBk(n) on the basis of simple

tensors in V ⊗k by

d(vi1 ⊗ · · · ⊗ vik) =
∑

j1,...,jk

(d)j1,...,jki1,...,ik
vj1 ⊗ · · · ⊗ vjk , (4.3)

where (d)j1,...,jki1,...,ik
is computed by labeling the vertices in the bottom row of d

with i1, . . . , ik and the vertices in the top row of d with j1, . . . , jk. Then

(d)j1,...,jki1,...,ik
=
∏

ε∈d
(ε)j1,...,jki1,...,ik

,

where the product is over the weights of all connected components ε (edges
and isolated vertices) in the diagram d, where by the weight of ε we mean

(ε)j1,...,jki1,...,ik
=

{
δa,0, if ε is an isolated vertex labeled by a,
δa,b, if ε is an edge in d connecting a and b,

where δa,b is the Kronecker delta. For example, for this labeled diagram in
RB10(n+ 1)

j1

i1

j2

i2

j3

i3

j4

i4

j5

i5

j6

i6

j7

i7

j8

i8

j9

i9

j10

i10

we have

dj1,...,jki1,...,ik
= δj1,j3δj2,i4δj4,j8δj5,j6δj7,i9δj9,0δj10,i8δi1,i3δi2,i6δi5,0δi7,i10 .

On a smaller scale, for this labeled diagram d in RB2(n+ 1)

j1

i1

j2

i2
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we have dj1,j2i1,i2
= δi1,i2δj1,j2 . If d acts on the basis element v0 ⊗ v0, then

d(v0 ⊗ v0) =
∑

j1,j2

dj1,j20,0 (vj1 ⊗ vj2)

which gives d(v0 ⊗ v0) = v0 ⊗ v0 + v1 ⊗ v1 + v2 ⊗ v2.

4.2 Actions of Generators

Recall that the basis of the rook Brauer algebra RBk is generated by the
diagrams sm, tm, and pm where for 1 ≤ m ≤ k − 1,

sm =
· · ·
· · ·

· · ·
· · ·

1 2 m−1 m m+1m+2 k

and tm =
· · ·
· · ·

· · ·
· · ·

1 2 m−1 m m+1m+2 k

and for 1 ≤ m ≤ k,

pm =
· · ·
· · ·

· · ·
· · ·

1 2 m−1 m m+1m+2 k

In order to illustrate the action on tensor space, we present how each
generating element acts on a simple tensor vi1⊗vi2⊗ . . .⊗vik . The generator
sm permutes the mth and m+ 1st vectors of the simple tensor. This can be
easily calculated from the general definition of the action on tensor space
and is a natural action as sm corresponds to the mth transposition of Sk.
Therefore, sm acts as

sm(vi1 ⊗ . . .⊗ vim ⊗ vim+1 ⊗ . . .⊗ vik) = vi1 ⊗ . . .⊗ vim+1 ⊗ vim ⊗ . . .⊗ vik .

The action of the generator tm is slightly more complicated. The bottom
row of tm requires that the simple tensor on which tm is acting must be of
the form vi1 ⊗ vi2 ⊗ . . . ⊗ vim ⊗ vim ⊗ . . . vik . For any such simple tensor,
(tm)j1,...,jki1,...,ik

6= 0 if and only if j1 = i1, j2 = i2, . . . , jm = jm+1, . . . , jk = ik.
Therefore,
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tm(vi1⊗vi2⊗ . . .⊗vim⊗vim⊗ . . . vik) =
n∑

`=0

vi1⊗vi2⊗ . . .⊗v`⊗v`⊗ . . .⊗vik

where v` is in the mth and m+ 1st positions.
The bottom row of the generator pm requires that the simple tensor on

which it acts be of the form vi1⊗vi2⊗ . . .⊗vim⊗ . . .⊗vik where im = 0. The
only simple tensor that satisfies (pm)j1,...,jki1,...,ik

6= 0 is vi1⊗vi2⊗. . .⊗vim⊗. . .⊗vik
itself. Therefore,

pm(vi1 ⊗ vi2 ⊗ . . .⊗ vim ⊗ . . .⊗ vik) = δim,0(vi1 ⊗ vi2 ⊗ . . .⊗ vim ⊗ . . .⊗ vik).

4.3 πk is a Representation

Let πk : RBk(n + 1) → End(V⊗k) be the representations afforded by the
action of RBk(n + 1) on V⊗k. We have defined this function on the set of
basis diagrams RBk, and it extends linearly to all of RBk(n+1). Recall from
Section 1.2 that in order to prove that πk is in fact an algebra representation,
we must show that for diagrams d1, d2 ∈ RBk, πk(d2d1) = πk(d2)πk(d1).

Theorem 8. Then πk : RBk(n + 1) → End(V⊗k) is an algebra representa-
tion.

Proof. It suffices to show that

(d2d1)j1,...,jki1,...,ik
=

∑

`1,...,`k

(d2)j1,...,jk`1,...,`k
(d1)`1,...,`ki1,...,ik

.

For a basis diagram d ∈ RBk, let [d] denote the matrix of d with respect
to the basis elements vm1 ⊗ vm2 ⊗ . . . ⊗ vmk . The entry cij of [d] is the
coefficient of the jth basis element vj1⊗vj2⊗ . . .⊗vjn in the result of d acting
on the ith basis element vi1 ⊗ vi2 ⊗ . . . vin . In other words, cij = dj1,...,jki1,...,ik

.
Given d1, d2 ∈ RBk, we show that [d2][d1] = [d2d1] by considering the edges
of d2d1 case by case and analyzing cij in [d2][d1] and [d2d1].

Case 1: Isolated vertex in the top row of d2d1.
There are two cases that result in an isolated vertex in the top row of

d2d1.
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(i.) An isolated vertex was inherited from the top row of d2. We label this
vertex va. In [d2d1], cij is nonzero if and only if a = 0. The same
is true of [d2][d1]. This shows that cij is either 0 in both [d2d1] and
[d2][d1] or nonzero in both [d2d1] and [d2][d1].

(ii.) The isolated vertex is the result of a vertical edge in d2 connected to
a series of t horizontal edges (t ≥ 0) in the middle rows of d2d1 which
end at an isolated vertex in the middle row of d2d1. For example,

va

va1va2 va3vb

d2

d1

Sequentially label these vertices va, va1 , va3 , . . . , vat , vb as shown in the
diagram above. In [d2d1], cij is nonzero if and only if a = 0 in the ith

basis element. In [d2][d1], cij is nonzero if and only if a = a1 = a2 =
· · · = at = b = 0. Furthermore, the weight of this series of edges is δa,0
and so it acts as an isolated vertex.

The proof for when the isolated edge is in the bottom row of d2d1 is
analogous.

Case 2: A vertical edge in d2d1.
A vertical edge in d2d1 occurs when a vertical edge in d2 is connected

to a vertical edge in d1 by an even number of horizontal edges t ≥ 0 in the
middle rows of d2d1. For example,
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vb

va5va4 va3va2 va1

va

d2

d1

Label the bottom vertex in d1 with va and sequentially label the con-
nected vertices with va1 , va2 , . . . , vat as shown in the above diagram. Label
the vertex in the top row vb. In [d2d1], cij is nonzero if and only if a = b
and in [d2][d1], cij is nonzero if only if a = a1 = a2 = · · · = at = b. Note
that the weight of this series of edges is δa,b, so it acts like a vertical edge
from the position of va to the position of vb.

Case 3: A horizontal edge in the top row of d2d1.
A horizontal edge in top row of d2d1 results from two vertical edges in

d1 connected by a series of horizontal edges in the middle rows of d2d1. For
example,

va

va1 va2va3 va4 va5 va6

vb

d2

d1

Starting with the left most top vertex in d2, sequentially label the vertices
va, va1 , va2 , . . . , vat , vb where vb is the right most top vertex in d2 as shown
in the diagram above. In [d2d1], cij is nonzero if and only if a = b, and in
the matrix [d2][d1], cij is nonzero if and only if a = a1 = a2 = · · · = at = b.
Notice that the edge weight for this series of edges is δa,b, as it would be with
a horizontal edge from the position of va to the position of vb. The case for
when a horizontal edge occurs in the bottom row of d2d1 has an analogous
proof.
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Case 4: One or more loops in the middle of d2d1.
A loop in the middle row of d2d1 results from a series of connected

horizontal edges in the middle rows of d2d1. For example,

va1 va2 va3 va4

d2

d1

Starting with the left most middle vertex, label the vertices va1 , va2 , . . . , vat .
From the definition of the multiplication of diagrams in RBk, the diagram
d2d1 is the diagram created by composing d2 with d1 multiplied by (n+ 1)`

where ` is the number of loops in the middle row of d2d1. The middle row
does not contribute to the matrix of the resulting diagram d2d1 so we have
that [(n+ 1)`d2d1] = (n+ 1)`[d2d1]. The matrix [d2][d1] has a nonzero entry
if and only if a1 = a2 = · · · = at. We sum over all cases where this is true,
which gives the matrix of the basis diagram d2d1 multiplied by n + 1. If
d2d1 has ` loops in the middle row, the matrix is multiplied by (n+ 1)`. So
we have [d2][d1] = (n+ 1)`[d2d1].

4.4 πk is Faithful

We now show that for n ≥ k, πk is a faithful representation, which means
that it is one-to-one. To prove that πk is faithful it is sufficient to show
that Ker(πk) is trivial. We do this by showing that for any nonzero element
y ∈ RBk(n + 1), there is at least one simple tensor u ∈ V⊗k for which the
action of y on u produces a nonzero sum of simple tensors. In other words,
the only element x ∈ RBk(n + 1) for which πk(x) is the zero matrix is the
additive identity 0.

Theorem 9. πk : RBk(n)→ End(V⊗k) is faithful for n ≥ k.

Proof. Let y =
∑

d∈RBk add, ad ∈ C, be some nonzero element of RBk(n+1).
Choose a diagram d′ in the linear combination y such that

(i.) ad′ 6= 0,
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(ii.) among the diagrams satisfying (i.), d′ has a maximum number of ver-
tical edges m and

(iii.) among the diagrams satisfying (i.) and (ii.), d′ has a maximum number
of horizontal edges `.

Choose a simple tensor u = vi1 ⊗ vi2 ⊗ · · · ⊗ vik such that

(i.) v0 is in the positions of the isolated vertices in the bottom row of d′,

(ii.) v1, v2, . . . , vm are in the positions of the bottom vertices of the vertical
edges in d′, and

(iii.) vm+1, vm+2, . . . , vm+` are in the positions of the vertices of the hori-
zontal edges in the bottom row of d′ such that the subscripts of the
vectors in the positions of either end of a horizontal edge are the same.

The hypothesis n ≥ k guarantees that such a simple tensor u exists.
Finally, consider a simple tensor u′ such that

(i.) v0 is in the positions of the isolated vertices of the top row of d′,

(ii.) v1, v2, . . . , vm are in the positions of the top vertices of the vertical
edges in d′, and

(iii.) in the positions of the vertices of the t horizontal edges in the top row
of d′ place vm+1, vm+2, . . . , vm+t such that the subscripts of the vectors
at either end of a horizontal edge are the same.

Example 4.4.1. If d′ is the following diagram

we choose

u = v5 ⊗ v5 ⊗ v1 ⊗ v6 ⊗ v7 ⊗ v7 ⊗ v6 ⊗ v2 ⊗ v3 ⊗ v4 ⊗ v8 ⊗ v8 ⊗ v0

and

u′ = v5 ⊗ v5 ⊗ v2 ⊗ v0 ⊗ v1 ⊗ v6 ⊗ v7 ⊗ v7 ⊗ v6 ⊗ v3 ⊗ v0 ⊗ v0 ⊗ v4.
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To illustrate:

v5 v5 v2 v0 v1 v6 v7 v7 v6 v3 v0 v0 v4

v5 v5 v1 v6 v7 v7 v6 v2 v3 v4 v8 v8 v0

u′ :

u :

When d′ acts on u, u′ has a nonzero coefficient in the result. We claim
that no other diagram in y acting on u produces a nonzero coefficient of
u′ and therefore there is no other diagram whose action can cancel out the
nonzero coefficient of u′ created by d′ acting on u.

In order for another diagram d′′ in y to produce a nonzero coefficient
of u′ when acting on u, d′′ must have the same bottom row as d′. This
follows from the choice of d′ having the maximum number of vertical edges
and horizontal edges and choosing distinct vi to put in each position of the
edges of d′. The same conditions force the top row of d′ and d′′ to be the
same. Therefore, d′′ = d′ and only d′ produces a nonzero coefficient of u′

when acting on u. This implies that y(u) is in fact nonzero, which contradicts
the assumption that y ∈ Ker(πk). Therefore, only the empty diagram is in
the kernel of the representation and πk is faithful for all n ≥ k.

With this proof we have now shown that assuming n ≥ k, not only is
there a representation that sends RBk(n+ 1) to a subalgebra of End(V⊗k),
but that representation creates a one-to-one correspondence between RBk(n+
1) and that subalgebra. This proves that RBk(n+1) must be isomorphic to a
subalgebra of End(V⊗k). In the next section we show that this subalgebra is
specifically a subalgebra of EndO(n)(V⊗k), which is contained in End(V⊗k).
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Chapter 5

The Orthogonal Group O(n)

5.1 Definition and Action on Tensor Space

The orthogonal group O(n) is the group of orthogonal n× n matrices with
entries in C. A matrix is orthogonal if its transpose is also its inverse. We
denote this by gT g = ggT = In for any g ∈ O(n). We can also define a
matrix by its entries, so we let g = [aij ] and gT = [aji]. When we multiply
g by gT , we know that the entry bij in ggT is 1 if i = j and 0 otherwise. We
state this as

n∑

`=1

ai`aj` = δij .

The elements of O(n) have a natural action on the elements of V⊗k. First
we define the action of g = [aij ] on the basis element v0 of V as g · v0 = v0

and on any other basis element vi of V, g acts by

g · vi =
n∑

`=1

a`iv`.

This action extends diagonally to any basis element of V⊗k by

g · (vi1 ⊗ vi2 ⊗ · · · ⊗ vik) = (g · vi1)⊗ (g · vi2)⊗ · · · ⊗ (g · vik).

5.2 Commuting with RBk(n+ 1)

Recall that

45
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EndO(n)

(
V⊗k

)
=
{
φ ∈ End

(
V⊗k

)
| φ(g · v) = g · φ(v), v ∈ V⊗k, g ∈ O(n)

}
.

We show that for any element g ∈ O(n), the action of g on the tensor space
V⊗k commutes with the action of RBk(n + 1) on V⊗k. This shows that
for n ≥ k, RBk(n + 1) is a subalgebra of EndO(n)

(
V⊗k

)
, the centralizer

algebra of O(n) acting on V⊗k. We show this by considering the actions of
the generators of RBk(n + 1). It suffices to consider only the generators of
RB2(n+1) acting on V⊗2 because the actions of the generators of RBk(n+1)
for any k act on a single tensor position or a pair of adjacent tensor positions
and act as the identity on all other tensor positions.

Theorem 10. As operators on the tensor space V⊗k, the of the elements of
RBk(n+ 1) commute with the elements of O(n).

Proof. First consider the generator s of RB2(n+ 1). Let g ∈ O(n). For any
simple tensor vi ⊗ vj of V ⊗2 with i, j 6= 0, we have s(vi ⊗ vj) = vj ⊗ vi.

Now,

g · s(vi ⊗ vj) = g(vj ⊗ vi)
= (g · vj)⊗ (g · vi)

=
n∑

`=1

n∑

m=1

a`jami(v` ⊗ vm)

=
n∑

`=1

n∑

m=1

a`jamis(vm ⊗ v`)

= s

(
n∑

`=1

n∑

m=1

a`jami(vm ⊗ v`)
)

= s · g(vi ⊗ vj).

Since g acts differently on the basis vector v0, when checking that the actions
of s and t commute with the action of g we must consider separately the
cases of the generators and g acting on v0 ⊗ v0 and v0 ⊗ vi where i 6= 0.

Both s and g fix the simple tensor v0 ⊗ v0, so clearly

g · s(v0 ⊗ v0) = s · g(v0 ⊗ v0).

Now consider the simple tensor v0 ⊗ vi where i 6= 0. The actions give that
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g · s(v0 ⊗ vi) = g · (vi ⊗ v0)

=

(
n∑

`=1

a`iv`

)
⊗ v0

=
n∑

`=1

a`i(v` ⊗ v0)

=
n∑

`=1

a`i(s(v0 ⊗ v`))

= s

(
n∑

`=1

a`i(v0 ⊗ v`)
)

= s

(
v0 ⊗

(
n∑

`=1

a`iv`

))

= s · g(v0 ⊗ vi).

This shows that the action of s commutes with the action of g on V⊗k.
Given a simple tensor vi⊗ vj in V ⊗2, the generator t acts on this simple

tensor by t(vi ⊗ vj) = δij
∑n

`=0 v` ⊗ v`.

g · t(vi ⊗ vj) = g

(
δij

n∑

`=0

v` ⊗ v`
)

= δij

(
n∑

`=0

g(v`)⊗ g(v`)

)

= δij

(
n∑

`=1

(
n∑

m=1

am`vm

)
⊗
(

n∑

m=1

am`vm

)
+ δij(v0 ⊗ v0)

)

= δij

(
n∑

`=1

n∑

m=1

n∑

k=1

am`ak`(vm ⊗ vk)
)

+ δij(v0 ⊗ v0)

= δij

(
n∑

m=1

n∑

k=1

(vm ⊗ vk)
(

n∑

`=1

am`ak`

))
+ δij(v0 ⊗ v0)
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However,
∑n

`=1 am`ak` = δmk due to the orthogonality of g. Therefore, the
sum reduces to all instances where m = k which leaves the sum

δij

n∑

`=1

v` ⊗ v` + δij(v0 ⊗ v0) = δij

n∑

`=0

v` ⊗ v`

= t(vi ⊗ vj)

It remains to show that t · g(vi ⊗ vj) = t(vi ⊗ vj).

t · g(vi ⊗ vj) = t

(
n∑

m=1

amivm ⊗
n∑

m=1

amjvm

)

= t

(
n∑

m=1

n∑

k=1

amiakj(vm ⊗ vk)
)

=
n∑

m=1

n∑

k=1

amiakj(t(vm ⊗ vk))

=
n∑

m=1

n∑

k=1

amiakj

(
δm,k

n∑

`=0

v` ⊗ v`
)

As before, this sum reduces to all cases where m = k, which means it can
be rewritten as

n∑

m=1

amiamj

(
n∑

`=0

v` ⊗ v`
)

= δi,j

n∑

`=0

v` ⊗ v`

= t(vi ⊗ vj)

The special cases of g and t acting on the simple tensors v0⊗ v0 and v0⊗ vi,
i 6= 0, are quite simple to prove. First, consider

g · t(v0 ⊗ v0) = g

(
n∑

`=1

v` ⊗ v`
)
.

Since δ0,0 = 1, we can simply refer to the general case and conclude that
g·t(v0⊗v0) = t(v0⊗v0). The action of g fixes v0⊗v0, so we have t·g(v0⊗v0) =
t(v0 ⊗ v0) as well.
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Now we need to deal with g and t acting on v0 ⊗ vi where i 6= 0. Since
i 6= 0, g · t(v0 ⊗ vi) = g · 0 = 0. Reversing the order of the actions we get,

t · g(v0 ⊗ vi) = t ·
(
v0 ⊗

(
n∑

`=1

a`iv`

))

= t

(
n∑

`=1

a`i(v0 ⊗ v`)
)

=
n∑

`=1

a`i(t(v0 ⊗ v`))

However, 1 ≤ ` ≤ n so when t acts on v0 ⊗ v`, δ0,` = 0 for all `. Therefore,
t · g(v0 ⊗ vi) = 0 as well.

When considering the action of the generator pi, we can restrict the scope
even further to looking at its interaction with g and V. This is because pi
only depends on the single vector vji and acts as the identity in all other
tensor positions. For a basis vector vi of V, p(vi) = δi,0(vi). If i 6= 0,

p · g(vi) = p

(
n∑

`=1

a`iv`

)

= 0

This follows from the fact that ` ranges 1 to n. If the generator p acts first,

g · p(vi) = g(0) = 0

If i = 0 then

p · g(v0) = p(v0)
= v0

= g · p(v0)

This shows that in either case, the actions of p and g commute.
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Chapter 6

Combinatorics and the
Bratteli Diagram

In this chapter we complete the proof that RBk(n+1) is the centralizer alge-
bra of the orthogonal group O(n) acting on V⊗k by presenting an algorithm
which creates a one-to-one correspondence between the basis diagrams of
RBk(n+ 1) and paths on the Brattelli diagram B of O(n) acting on V⊗k.

In Sections 4.3 and 4.4 we showed that the action of RBk(n+ 1) on V⊗k

results in a representation that is faithful for n ≥ k. Assuming n ≥ k, this
proves that RBk(n+ 1) is in one-to-one correspondence with a subalgebra of
End(V⊗k). In Section 5.2 we showed that the action of RBk(n+ 1) on V⊗k

commutes with the action O(n) on V⊗k, which proves that RBk(n + 1) is
specifically in one-to-one correspondence with a subalgebra of EndO(n)(V⊗k).
From Theorem 6 in Section 3 we know that,

dim
(

EndO(n)

(
V⊗k

))
=
∑

λ∈Λk

m2
λ,k

where mk,λ is the number of paths on B to the irreducible module labeled
by λ on level k, and Λk = {λ | λ ` r for 0 ≤ r ≤ k}. Therefore, if we prove
that

dim(RBk(n+ 1)) =
∑

λ∈Λk

m2
λ,k,

we complete the proof that for n ≥ k,

RBk(n+ 1) ∼= EndO(n)(V
⊗k).

Our approach is to create a bijection between the basis diagrams of RBk(n+
1) and pairs of paths to λ on level k of B.
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6.1 A Bijection Between RBk(n+ 1) Diagrams and
Paths on B

For λ ∈ Λk = {λ | λ ` r, 0 ≤ r ≤ k}, a path on B of length k to λ is given
by a sequence of integer partitions

Pλ = (∅, µ1, µ2, . . . , µk−1, λ),

where for i = 1, 2, . . . , k,

µi+1 =





µi

µi + �

µi −�

.

For example, a path on B of length 10 to λ = (1, 1) is

P(1,1) =
(
∅, , , , , , , , , ,

)
.

We call a path of length k to λ in B a vacillating standard tableaux of length
k. We denote the set of all paths on B to λ on level k as T λk and let RBk
be the set of basis diagrams of RBk(n+ 1). We wish to define a bijection

RBk ←→
k⊔

r=0

⊔

λ`k
(T λk × T λk )

That is, a bijection that takes a diagram d ∈ RBk and produce a pair of
paths (Pλ, Qλ) to λ ∈ Λk on B. The algorithm we use to produce this
bijection is based on the work in [HL].

We begin by assigning a unique sequence of numbers to a diagram. Given
a diagram d ∈ RBk, we label the top vertices with 1, ..., k in order starting
at the left-most vertex, and we label the bottom vertices with k + 1, ..., 2k
starting at the right most vertex. We can now draw the diagram on a single
row of vertices labeled 1, ..., 2k. We label each edge in the diagram with
2k+1−` where ` is the label of the right vertex of the edge. For 1 ≤ i ≤ 2k,
the insertion sequence of d is defined as

Ei =





aL if vertex i is a left endpoint of edge a
aR if vertex i is a right endpoint of edge a
∅ if i is an isolated edge
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Example 6.1.1. The diagram

d =

1 2 3 4 5 6

12 11 10 9 8 7

is redrawn as

d′ =

1 2 3 4 5 6 7 8 9 10 11 12

1
3459

with edges labeled right to left. From these labels we get the insertion
sequence

(Ei) = (3L, 9L, 1L, 9R, 4L, ∅, 5R, 4R, 3R, ∅, 1R)

It is clear from the definition of the insertion sequence that a distinct di-
agram corresponds to a unique insertion sequence, and given that particular
insertion sequence we can derive the original diagram. It follows that,

Proposition 6.1. A diagram d ∈ RBk is uniquely determined by its inser-
tion sequence.

We now use this property to define an algorithm which takes an insertion
sequence of length k and produces a pair of vacillating standard tableaux,
each of length k.

6.1.1 Insertion Sequences Become Tableaux

Given an insertion sequence (Ei), we create standard tableaux by sequen-
tially inserting and deleting boxes according to (Ei). Insertion of boxes is
done via Robinson-Schensted-Knuth (RSK) insertion, and deletion is done
via jeu de taquin. Both of these processes are detailed in [HL]. First we
construct a sequence of standard tableaux

T = (T (0), T (1), . . . , T (2k)).

Let T (0) = ∅ be the starting point of this sequence. Then recursively define



54 CHAPTER 6. COMBINATORICS AND THE BRATTELI DIAGRAM

T (i) =




Ei

RSK−−−→ T (i−1) if Ei = aL

Ei
jdt←−− T (i−1) if Ei = aR

In other words, if vertex i is a left vertex of an edge we insert Ei into
T (i−1) via RSK insertion and if i is a right vertex of an edge we remove the
box containing Ei from T (i−1) via jeu de taquin removal. Note that if Ei = ∅
then T (i) = T (i−1). This sequence of inserting and deleting boxes creates a
unique sequence T of length 2k. Now let λ(i) be the shape of T (i) and define

Pλ(k) =
(
λ(0), λ(1), . . . , λ(k−1), λ(k)

)

Qλ(k)
=
(
λ(2k), λ(2k−1), . . . , λ(k+1), λ(k)

)
.

By the end of the sequence T , we have removed and deleted a box for
every edge in the diagram corresponding to (Ei), so the final shape λ(2k) is ∅.
Therefore, (Pλ(k) , Qλ(k)) is a pair of vacillating standard tableaux of length
k that are both paths to λ(k). Let φk be this function that takes diagrams
in RBk to pairs of paths on B.

Theorem 11. For d ∈ RBk, the function φk(d) = (Pλ, Qλ) is a bijection
between the elements of RBk and pairs of vacillating standard tableaux in⊔k
r=0

⊔
λ`k(T λk × T λk ).

Proof. We have shown that an insertion sequence corresponds to a unique
pair of vacillating standard tableaux and completely defines a diagram in
RBk. In order to show that this function is in fact a bijection, we now
construct its inverse. Given a pair of vacillating tableaux (Pλ, Qλ), we first
create a sequence of partitions Λ =

(
λ(0), λ(1), . . . , λ(2k)

)
by listing the par-

titions of Qλ and then listing Pλ after it in reverse order, without repeating
λ. We now simultaneously create the sequence of standard tableaux T and
the insertion sequence (Ei) which shows that the function is invertible.

Initialize T (2k) = ∅. If λ(i−1)/λ(i) is a box b, then let T (i−1) be the tableau of
shape λ(i−1) with 2k− i in the box b and the entries of T (i) in the remaining
boxes, and let Ei = (2k − i)R. Since T (2k) = ∅, this step is always the first
that occurs. Each time this step occurs, 2k − i is the largest value being
added to the tableau T (i), so T (i−1) is standard.

If λ(i)/λ(i−1) is a box b, then let T (i−1) be the tableau acquired by removing
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i 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Ei 10L 2L ∅ 10R 4L 1L ∅ 3L ∅ 4R 3R 2R 1R ∅

i Ei T (i) i Ei T (i)

0 ∅ 8 3L
RSK−−−→

1 3
2
4

1 10L
RSK−−−→ 10 9 ∅

1 3
2
4

2 2L
RSK−−−→ 2

10
10 4R

jdt←− 1 3
2

3 ∅ 2
10

11 3R
jdt←− 1

2

4 10R
jdt←− 2 12 2R

jdt←− 1

5 4L
RSK−−−→ 2

4
13 1R

jdt←− ∅

6 1L
RSK−−−→

1
2
4

14 ∅ ∅

7 ∅
1
2
4

P(1,1,1) =

(
∅, , , , , , ,

)

Q(1,1,1) =

(
∅, ∅, , , , , ,

)

Figure 6.1: An insertion sequence becomes a sequence of tableaux.
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the entry of b from T (i) through the inverse process of RSK-insertion, which
guarantees that T (i−1) is standard. Let Ei = bL. Continue in this manner
working down from i = 2k to i = 1. Clearly the sequence (Ei) created is
unique, and we have shown that an insertion sequence completely defines a
diagram in RBk. Therefore, the function is invertible and bijective.

Example 6.1.2. From the pair of paths

P =
(
∅, , , , , , ,

)
, Q =

(
∅, , , , , , ,

)

we get the sequence of partitions

i 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

λ(i) ∅ ∅

Using the reverse algorithm we construct T and (Ej).
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i λ(i) T (i) E2k−i i λ(i) T (i) E2k−i

0 ∅ ∅ 1R 7 →
1 5
4
7

∅

1 → 1 ∅ 8
1 5
4
7

1L

2 1 3R 9 ← 4 5
7

10R

3 → 1 3 4R 10 → 4 5
7 10

5L

4 → 1 3
4

5R 11 ← 4 10
7

4L

5 ← 1 3
4 5

3L 12 ← 7 10 10L

6 ← 1 5
4

7R 13 ← 7 7L

14 ∅ ← ∅

Finally, we have the insertion sequence (Ej).

j 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Ej 7L 10L 4L 5L 10R 1L ∅ 7R 3L 5R 4R 3R ∅ 1R

6.2 Conclusions

As a direct consequence of 11 we get the following corollary.

Corollary 1. |RBk| =
∑

λ∈Λk
m2
k,λ.

With Corollary 1, we have finally completed the proof of Theorem 7:

RBk(n+ 1) ∼= EndO(n)

(
V⊗k

)
.
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Now from the Double Centralizer Theorem we know that given the de-
composition

V⊗k ∼=
⊕

λ∈Λk

mλ,kV
λ

where Λk = {λ | λ ` r, 0 ≤ r ≤ k}, then

i. RBk(n+ 1) is semisimple for n ≥ k.

ii. The irreducible representations of RBk(n + 1) are labeled by λ ∈ Λk,
and we denote these irreducible representations as Mλ

k .

iii. dim(Mλ
k ) = mλ,k

iv. As an RBk-module,
V⊗k ∼=

⊕

λ∈Λk

dλ,kMλ,k

with dλ,k = dim(Vλ) on level k of the Bratteli diagram.
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Future Work

7.1 Seminormal Representations

The next step in this work is to construct the irreducible representations of
RBk(n+ 1). Our approach is to create an analogue to Young’s seminormal
representations of the symmetric group CSk.

Young’s seminormal representations are constructed by using paths on
Young’s lattice as basis elements and defining an action of the generators of
Sk on those paths, as shown in [Yo]. Recall Young’s lattice in section 3.2.1.
From Theorem 5 we know that on level k each vertex labeled by a partition
λ represents an irreducible representation of GL(n) which appears in the
decomposition of CSk, and the dimension of that irreducible representation
is the number of paths from the root of Young’s lattice to λ on level k. It
is natural then to construct the irreducible representation Vλk by choosing a
basis where each path to λ on level k is a basis vector. Young then defined
an action of the generators si, 1 ≤ i ≤ k − 1 of Sk on this basis.

The approach to constructing the irreducible representations of RBk(n+
1) is generally the same: we use the paths to λ on level k on the Bratteli
diagram B as a basis and define actions of the generators of RBk(n + 1)
on these paths. The actions we define draw from work previously done on
constructing the irreducible representations of the rook monoid in [Ha] and
the Brauer algebra in [LR] and are supported by direct calculations of the
irreducible representations of RBk(x) for 0 ≤ k ≤ 3.
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7.2 Conjectures

We construct the irreducible representations of RBk(x) with an arbitrary
parameter x. Let Mλ

k be the irreducible representation of RBk(x) labeled
by λ on level k of B, with dim(Mλ

k ) = mk,λ. As a basis for Mλ
k , we use the

mk,λ paths on B to λ on level k. Denote a path ρ as

ρ =
(
∅, λ(1), λ(2), . . . , λ(k) = λ

)

where

• λ(i) ∈ Λi = {µ | µ ` r, 0 ≤ r ≤ i} and

• λ(i) = λ(i−1) ±� or λ(i) = λ(i−1).

For a path ρ, let ρi denote the ith partition λ(i). Let vρ denote the basis
vector labeled by the path ρ to λ on level k and let Pλk denote the set of
these basis vectors. We now state our conjectures for the actions of the
generators si, ti, and pi that construct the irreducible representation Mλ

k .
First, a useful definition:

Definition 7.2.1. We say that two paths ρ1 = (λ(i)) and ρ2 = (µ(i)) are
i-compatible if

ρ1 = (∅, λ(1), . . . , λ(i−1), λ(i), λ(i+1), . . . , λ(k))

ρ2 = (∅, λ(1), . . . , λ(i−1), µ(i), λ(i+1), . . . , λ(k))

In other words, µ(j) = λ(j) for all j except possibly at j = i.

An example of a pair of 4-compatible paths is

ρ1 =
(
∅, , , , , ,

)

ρ2 =
(
∅, , , , , ,

)

In general, for a generator gi ∈ {si, ti, pi} we define

gi · vρ =
∑

γ∈Qρ
(gi)γρvγ

where Qγ is the set of all paths that are i-compatible with ρ and (gi)γρ is a
coefficient in C.
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7.2.1 Action of pi

Our conjecture is that the generator pi acts on a basis vector vρ by

pi · vρ =

{
vρ if ρi = ρi−1

0 if ρi 6= ρi−1

This formula comes from the construction of the irreducible representations
of the rook monoid algebra in [Ha].

7.2.2 Action of ti

Our conjecture is that the generator ti acts on a basis vector vρ by

ti · vρ =
∑

γ∈Qρ
(ti)γρvγ

where Qρ is the set of all paths that are i-compatible with ρ and

(ti)γρ =





√
Pρi (x)Pγi (x)

Pρi−1 (x) if ρi−1 = ρi+1

0 otherwise.

where Pλ(x) is the El-Samra-King polynomials found in [El-K]. El-Samra
and King defined these polynomials and proved that Pλ(n) = dim

(
Vλ
)

where Vλ is the irreducible representation of O(n) labeled by λ. This action
follows from the work done on constructing the irreducible representations
of the Brauer algebra in [LR].

7.2.3 Action of si

The action of si on a basis vector vρ has proven to be the trickiest action to
pin down. We generally define the action as

si · vρ =
∑

γ∈Qρ
(si)γρvγ

where Qρ is the set of all paths that are i-compatible with ρ.
Recall that for consecutive partitions ρj−1 and ρj in the path ρ we can

move from ρj−1 to ρj by either adding a box to ρj−1, subtracting a box
from ρj−1, or doing nothing to ρj−1. The coefficient (si)γρ depends on the
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movement from ρi−1 to ρi to ρi+1. There are 3 choices for each movement
and 2 movements, so in all we have had to consider at least 9 cases. Luckily,
some of the cases seem to act in the same way. Our conjectures are as
follows.

Case 1(+�,+� or −�,−�): The first case we consider is where ρi = ρi−1±
� and ρi+1 = ρi ±�. In this case, si acts on vρ as it does in Young’s
construction of the irreducible representations of the symmetric group
Sk since this movement on the Bratteli diagram is locally the same as
a movement on Young’s lattice. The only paths that are i-compatible
with ρ in this case are paths γ with γi = γi−1 ± � = ρi−1 ± � and
γi+1 = ρi+1 = γi ±�. Now,

si · vρ =
1
δ
vρ +

√
(δ − 1)(δ + 1)

δ
vγ

where δ is the axial distance between the boxes that were added or
removed. That is if at step i we add or remove box a and at step i+ 1
we add or remove box b, let (ra, ca) be the row and column position
and (rb, cb) be the row and column position of box b,

δ = (cb − rb)− (ca − ra).

Note that if a and b are in the same row or column,

si · vρ =
1
δ
vρ.

Case 2 (±�, ∅ or ∅,±�): The next case is where ρi = ρi−1 + � and ρi+1 =
ρi. This is locally like a movement on the Bratteli diagram of the rook
monoid algebra and so we take the action of si defined in [Ha]. The
only other path γ that is i-compatible with ρ is where γi = γi−1 = ρi−1

and γi+1 = ρi+1 = γi + �. Then,

si · vρ = vγ .

In the case where ρi = ρi−1−� and ρi+1 = ρi, the only path γ that is i-
compatible with ρ is where γi = γi−1 = ρi−1 and γi+1 = ρi+1 = γi−�.
We believe this case acts in the same way with

si · vρ = vγ .
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Case 3 (∅, ∅): The case where ρi−1 = ρi = ρi+1 is also locally like a move-
ment on the Bratteli diagram of the rook monoid algebra, and we again
use the action defined in [Ha]. In this case

si · vρ = vρ.

Case 4 (+�,−� or −�,+�): The final case we considered is the trickiest.
This is the case where ρi = ρi−1 ± � and ρi+1 = ρi ∓ �. This move-
ment is locally like a movement on the Bratteli diagram of the Brauer
algebra, and we conjecture that in this case si acts as defined in [LR]
Theorem 6.22. However, we have had less success in constructing irre-
ducible representations with basis elements that contain a movement
such as this.

The next step in this project is to more fully form the conjectures for the
various cases of the generator si acting on basis vectors and then to check
that these actions preserve all of the relations described in Section 2.2.2.
While there are many relations to check, we hope that some will come for
free from the fact that in some cases the actions specialize to to the actions
of elements in CSk, CRk, and Bk(x), and it has already been proven that
the actions of these algebras preserve the generating relations.
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