

RESEARCH ON THE MECHANISMS FOR REMOVAL OF SOLUBLE BOD5 IN CLARIFIER SYSTEMS

FIRST PILOT SCALE TRIAL

Project 3216 EPA Ref. No. R 803-119-01

Report Three

A Progress Report

ło

MEMBERS OF THE INSTITUTE OF PAPER CHEMISTRY August 18, 1975

THE INSTITUTE OF PAPER CHEMISTRY

Appleton, Wisconsin

RESEARCH ON THE MECHANISMS FOR REMOVAL OF SOLUBLE BOD₅ IN CLARIFIER SYSTEMS

FIRST PILOT SCALE TRIAL

Project 3216

EPA Ref. No. R 803-119-01

Report Three

A Progress Report

to

MEMBERS OF THE INSTITUTE OF PAPER CHEMISTRY

August 18, 1975

TABLE OF CONTENTS

I

.

.

SUMMARY AND CONCLUSIONS	1
OBJECTIVES	3
INTRODUCTION	4
LABORATORY WORK	6
Sampling and Analytical Procedures	6
Jar Tests	7
Concentration of the Waste Stream	1 ⁴
Evaluation of Separate Mill Sewers	16
Trial of Pilot Clarifier Under Laboratory Conditions	18
PILOT SCALE CLARIFIER STUDIES AT MOSINEE	24
Equipment and Basic Operation	24
Sampling	25
Testing Schedule	30
Results and Discussion	31
PRELIMINARY EVALUATION OF COMPARATIVE ECONOMICS	36
LITERATURE CITED	41
APPENDIX I. DATA FROM PILOT SCALE FIELD TRIALS	42
APPENDIX II. SUPPORTING MILLS OF GROUP PROJECT 3216	57

THE INSTITUTE OF PAPER CHEMISTRY

Appleton, Wisconsin

RESEARCH ON THE MECHANISMS FOR REMOVAL OF SOLUBLE BOD₅ IN CLARIFIER SYSTEMS

FIRST PILOT SCALE TRIAL

SUMMARY AND CONCLUSIONS

Laboratory Jar tests were used to evaluate various flocculating agents and primary/polymer flocculating agent combinations for the optimum removal of the 5-day biochemical oxygen demand (BOD_5) constituents from the total mill effluent of the Mosinee Paper Corporation of Mosinee, Wisconsin.

The best procedures developed during these tests were then used in a two months, on-site trial of a small (114-gallon) clarifier operating in parallel with the two commercial clarifiers at the mill. These included clarification with a polymer (Hercofloc 812.3 at 0.75 mg/liter) alone, as practiced by the mill, and the use of alum, ferric chloride and ferric sulfate in conjunction with the polymer, as well as short trials with ferrous sulfate and sulfuric acid with the polymer.

The field tests substantiated the laboratory findings, that:

1. When the clarifiers were all operated with the polymer alone, the two systems were equivalent in the removal of suspended solids and BOD_5 .

2. Additional suspended solids and BOD_5 removal, as well as marked reduction in effluent color, could be achieved with the addition of the ferric ion, in the form of either the chloride or sulfate salt, along with the Hercofloc 812.3 to promote flocculation and clarification.

3. Alum (aluminum sulfate) and polymer did not increase the removal of BOD_5 , but did enhance the removal of suspended solids and color over that for the polymer alone.

Members of The Institute of Paper Chemistry Project 3216

Page 2 Report Three

4. The presence of black liquor in the effluent stream, either from spills or the mill washing procedures, markedly reduced the efficiency of both clarifier systems. This would greatly increase the chemicals required and the cost of clarification for adequate effluent quality. Additional work is being done to determine more completely the effects of these components upon the overall clarifier system. Members of The Institute of Paper Chemistry Project 3216

OBJECTIVES

Laboratory trials under the Phase I studies of pulp and paper process water clarification systems served to confirm evidence that small but significant quantities of soluble components, responsible for a portion of the total biochemical oxygen demand, could be removed under favorable conditions of physicoschemical treatment. Those results justified Phase II extension of the project to employ small-scale, pilot plant equipment operating parallel to representative commercial-scale mill clarifiers with the following objectives:

1. To develop an improved technology for increasing the capabilities for removal of BOD₅ components during primary clarification, over and above that achieved in standard mill practices.

2. To develop a better understanding of the physicochemical mechanisms \therefore involved in achieving increased BOD₅ removal in the clarifier.

3. To explore physicochemidal systems of in-plant treatment of manufacturing process water flows, and particularly of those flows being recycled within the process, in such manner as to achieve substantial reduction in the BOD_5 loading of out-plant treatment systems.

4. To collate available data which could develop the base for preliminary evaluation of the comparative economics of achieving improved levels of BOD₅ removal by physicochemical. clarification systems as compared to BOD removal in solution secondary biological treatment systems.

Objectives 1 and 4 are discussed in this report. The second and third objectives are subjects for continuing studies to be described in a later report.

INTRODUCTION

Phase I of this research evaluated the significance and extent to which the constituents responsible for biochemical oxygen demand (BOD) in pulp and paper mill effluents may be removed in a first step of primary clarification. Surveys of mill waste flows and of clarifier effluents were conducted at mills of eleven companies. Data summarizing the prevailing levels of both total and soluble BOD₅ components are given in Progress Report One dated July 25, 1974. Means for removal of these components under laboratory conditions are detailed in Progress Report Two dated October 18, 1974. Those Phase I studies were undertaken as a jointly financed research effort of some pulp and paper mills (see list in Appendix II), of the U.S. Environmental Protection Agency (Grant No. R803 119 01) and of the Wisconsin Department of Natural Resources (Ref. No. 8100).

A secondary program (Phase II) of study using small-scale automated pilot equipment in on-site comparative studies, paralleling commercial clarifiers operating at two mill sites representing broad segments of the industry, were undertaken with funds supplied jointly by the U.S. Environmental Protection Agency and The Institute of Paper Chemistry (under Funded Formal Plan). This report summarizes data obtained in a 2-month field trial at the unbleached kraft pulp and paper mill of the Mosinee Paper Corporation in Mosinee, Wisconsin during the early months of 1975.

This mill, situated on the Wisconsin River, produces 230 tons per day in six batch-type digesters using the kraft pulping process. The unbleached pulp is washed on five countercurrent washers, with part of the fifth stage wash water being sewered. The water from the paper machines, the fifth stage washer, and the high density sewer are combined with discharges from the <u>pulp</u> mill and evaporator condensates to produce a 16-18 million gallon daily waste discharge to the treatment plant. Members of The Institute of Paper Chemistry Project 3216

The Phase II field studies were directed to development of means for reduction of BOD₅ in the primary clarifier. Improved primary treatment might serve to relieve the BOD₅ loading and increase color removal efficiency of secondary treatment systems now being designed. Elucidation of the physical or chemical mechanisms involved is an important second objective to be developed in these studies. It is also desired to achieve a preliminary evaluation of the economics for the reduction of BOD₅ by these means.

A following report covers the second field demonstration at a relatively new chemimechanical pulp mill producing bleached pulp and paper.

LABORATORY WORK

In the first two reports for Project 3216, "soluble" was defined as that portion of the solids passing with the liquid through a 0.45 µm Gelman filter (Gelman Industries of Ann Arbor, Michigan) under 100 psig nitrogen pressure. This concept has been continued throughout this report.

SAMPLING AND ANALYTICAL PROCEDURES

Samples of mill effluent were taken under both "grab" and 24-hour composite conditions and transported to our Appleton laboratories with as little delay as possible. These were used to determine the ranges which could be expected in suspended solids, chemical oxygen demand (COD), total and soluble biochemical oxygen demand (BOD_5), pH, total organic carbon (TOC), and color. These effluents were also used for the jar tests described later in this report.

The analytical procedures were basically those of the 13th Edition of the Standard Methods of the American Public Health Association $(\underline{1})$ and the color method of the National Council for Air and Stream Improvement $(\underline{2})$. In determining the dissolved oxygen in the BOD test, a Weston & Stack Model 350 DO Analyzer was used. The chemical oxygen demand was determined by the **dichromate-sulfuric** acid oxidation procedure, color was read with either a Beckman DU or DK-2A spectrophotometer against the No. 500 APHA Platinum-cobalt color standard. A Beckman pH meter was used for both the determination of sample pH and for pH adjustment during the color development prior to filtration. Total organic carbon was done with a Beckman Process Carbonaceous Analyzer. JAR TESTS

In order to establish the correct parameters for the operation of the pilot-scale clarifier on the waste from Mosinee Paper, samples were taken of the total mill waste going to the treatment plant and treated in the laboratory using standard jar tests.

These were done with a six-position Phipps & Bird flocculator, with the various flocculating agents, or combinations, added under carefully standardized conditions of chemical addition, rapid mixing, flocculation mixing, settling and sampling. Briefly these can be described as:

1. The treatment of 1.0 or 1.5 liters of waste in 3-liter jars;

2. The addition of the primary flocculant, followed by one minute of mixing at 100 rpm;

3. If the second agent (polymer, etc.) was added, the addition was followed by a second rapid mix of one-half minute at 100 rpm; otherwise

4. The paddle speed was reduced to 20 rpm for 20 minutes to provide time for flocculation. The flocculation step was used after the final addition of chemical agents, no matter how many additives were involved.

5. At the end of the flocculation period, the jars were removed from the unit and the floc allowed to settle for one hour without disturbance.

6. At the end of the settling period, samples were withdrawn into 250-ml bottles under slight vacuum, with the tip of the sample tube onehalf inch under the surface of the liquid in the jar.

An untreated jar of the waste was carried through the entire test from rapid mix to sampling and all "removal" data are based on the comparison of the treated samples with the analyses of this (control) sample. Page 8 Report Three

If sludge volumes were to be determined, separate jars containing 1 liter of the waste were treated and carried through the test up to the beginning of the "settling" period. The contents of the jar were carefully transferred to Imhoff settling cones and the volume of the settled material was noted at the end of 30 minutes and finally at 60 minutes.

A number of tests were made with samples of the mill waste prior to the transfer of the pilot unit to Mosinee, while others were taken periodically throughout the on-site study at the mill.

Samples from these jar tests were, in some cases, subjected to complete analyses (Tables I and II) for suspended solids, total and soluble BOD_5 , TOC, COD and color in order to establish an estimate of the removals that might be attained under different conditions of treatment. Others (Table III) were merely used to establish flocculating characteristics and/or sludge volumes that would develop with the addition of the chemical combinations.

In the early trials, it was established that alum at 200-300 mg/liter and ferric chloride at 100 mg Fe⁺³/liter could be used to remove quantities of BOD on the order of 37-56% total and 12-25% soluble from the wastes in the jar tests. The addition of 0.75 mg/liter Hercofloc 812.3 appeared to provide additional removal of the soluble BOD₅ constituents, as indicated by an increase from 13% removal to 35% removal when added with 100 mg/liter alum and from 12% to 28% with 200 mg/liter alum (Table I). The use of the Hercofloc 812.3 polymer at 0.75-1.5 mg/liter levels, in the jar tests, appeared to markedly increase the removal of soluble BOD₅; i.e., 14 and 21% removal, respectively, compared with the BOD₅ of the untreated (settled) control sample.

i terri

TABLE I

					educti		
Floc Type	culant mg/liter	Final pH	<u> </u>	COD	<u>Solu</u> TOC	ble ^a BOD5	Total color ^b
FeCl ₃	50 ^C 100 150	6.4 6.0 5.0	51 37 58	71 70 76	31 44 47	13 25 24	52 43 89
Alum	100 200 300	7.2 7.0 6.8	49 56 56	60 68 73	14 24 31	13 12 12	24 43 47
Lime	200 300 500	11.1 11.6 12.0	22 39 41	52 68 71	-13 -1 1	-16 -14 -9	15 58 11
Hercofl 812.3	oc 0.75 1.5	8.4 8.2	18 19	8 11	3 6	14 21	0 15
Added O indicat	.75 mg/l Here ed:	cofloc 81	2.3 aft	er 1 min 1	nixing	with pr	imary
FeCl ₃	10 25 50	7.0 6.8 6.4		ndication ndication 72			
Alum	50 100 200	7.4 7.2 7.0	No i 54 52	ndication 76 71	of fl 14 21	oc forma 35 28	tion 18 32
^a Passin ^b Co-Pt ^c As Fe ⁺	g through a 0 units at 465 ³ .	0.45 µm M nm (NCAS	etricel I Method	filter. 1)			
Initial (Contro	1)		215 mg 109 un	/l its			

MOSINEE - JAR TESTS (CLARIFIER INFLUENT 11/21/74) STUDY OF REMOVAL OF VARIOUS COMPONENTS

FeCl ₃	10	7.0	No indication of floc formation
	25	6.8	No indication of floc formation

Alum	50	7.4	No i	Indication	of floc	formation
	100	7.2	54	76	14	35
	200	7.0	52	71	21	28

```
BOD = 122 \text{ mg/l}
```

TABLE II

			AS FLOCO	CULATING	AGENTS	}			
	Floce	culant			% Reduction in				
Prim	ary	Polyr	ner	Final	the second s	Total Soluble			
Туре	mg/l	Туре	mg/l	рH	BOD ₅	COD	TOC	BOD5	Color
Analyt	ical Gra	ade Prima	ry Chemi	cals:					
FeCl ₃	50 ^a	 Herc. ^b	0.75 1.5	5.8 5.8 5.8	38 37 38	56 57 58	49 51 51	29 27 27	88 89 90
Alum	50	 Herc. ^b Act.Si	0.75 1.5 10	7.4 7.5 7.7 7.7	11 10 6 5	-0.7 -0.7 0.7 4	20 21 14 24	9 15 10 4	39 47 45 40
	100	Herc. ^b	 0.75 1.5	7.1 6.8 7.1	13 15 10	3 16 3	34 33 34	5 8 16	69 69 72
	200	Act.Si Herc. ^b	10 0.75 1.5	7.4 7.4 7.2 7.0	11 23 23 21	ц 54 54 47	29 42 40 39	12 8 4 4	53 86 88 87
		Act.Si	10	6.9	23	57	39	4	84
Commer	cial Gra	ade Prima	ry Chemi	cals:					
FeCl₃	50 ^a	Herc. ^b	0.75	5.5	32	50		28	
Alum	100	Herc. ^b	0.75	6.5	20	9		13	
a In te ^b Herco	rms of floc 81	Fe ⁺³ . 2.3.			<u></u>		<u> </u>		
Tota	l COD = BOD = Color able TOC	s (for un 711 mg/1 215 mg/1 = 109 Pt = 87 mg/ = 122 mg	-Co unit l		contro	1):		·	

JAR TESTS - MOSINEE (CLARIFIER INFLUENT 12/12/74) STUDY OF PRIMARY AND VARIOUS ADDITIVES

TABLE III

		ulant		From	1/16/75	Fro	m 3/5/75	From	3/11/75
Prim	nary	Poly	mer						
Туре	mg/l	Туре	mg/l	рН	$Clarity^a$	рН	Clarity	pН	Clarity
Fe t 3	25							6.8	0
	50			6.6	0	6.9	0	5.9	5
		Herc.	0.75	6.8	0	6.6	0		
	100			5.0	0	5.7	4	4.2	4
		Herc.	0.75	5.6	3	5.6	4	4.3	
	150					4.5	1	3.4	3 3
		Herc.	0.75			4.3	1	3.4	3
Ъ									
Alum ^b	100					9.0	0	~	
		Herc.	0.75			8.6	0	~-	
	200					8.4	1		
	300					7.2	4		
C									
Alum ^C	200			7.4	1				
	300			7.1	5 4				
	400			6.5	4				
. d				_	_				
Alum ^d	200		****	7.0	1				
	300			6.9	5				
	400			6.5	4			~	

JAR TESTS - MOSINEE (CLARIFIER INFLUENTS AT VARIOUS TIMES) STUDY OF FLOCCULATING CHARACTERISTICS

^aClarity rated as 0 = untreated <u>control</u>, 1-5 = partial to complete clearing of the supernatant after settling one hour. ^bAlum is analytical grade. ^cAlum is commercial grade with precipitate in suspension. ^dAlum is the commercial grade decanted to remove the precipitate.

Lime as a primary flocculating agent and activated silica as an additive appeared to be relatively ineffective in the removal of soluble BOD₅ from the waste from the Mosinee mill (Table II).

Of great interest in these studies was the high removal of COD, color and BOD₅ that could be achieved with ferric ion and alum from the Mosinee clarifier effluent (Table IV). Twenty-five to forty percent removal of soluble BOD₅ components was obtained with these primary flocculants added to either the north or south clarifier effluents. Lime and "additional" Hercofloc 812.3 did not produce

Page 12 Report Three Members of The Institute of Paper Chemistry Project 3216

enhancement of the "solubles" removal, but did provide added reductions in total BOD5, COD and color.

TABLE IV

JAR TESTS - MOSINEE (EFFLUENT FROM 11/21/74) STUDY OF THE REDUCTION OF CONTAMINANTS IN CLARIFIER EFFLUENTS

Floce	ulant			<u>%</u> Re 70ta]	eduction in	n Soluble
Туре Туре	mg/l	pH	BOD ₅		Color	BOILDIE BOD ₅
From No:	rth Clarif:	ier:				
FeCl ₃	50 ^a 100 150	5.1 3.4 3.0	61 63 64	72 72 68	65 79 85	39 40 38
Alum	100 200 300	6.0 6.2 6.2	43 61 61	56 70 70	42 65 68	26 25 26
Lime	200 300 500	9.9 11.1 11.6	25 33 41	32 48 55	28 42 42	-14 -19 0.8
Hercofl 812.3	oc 0.75 1.5	8.8 8.6	12 15	4 11	7 14	-6 3
From So	uth Clarif	ier:				
FeCl ₃	50 ^a 100 150	5.7 3.8 3.1	63 65 59	68 70 64	46 70 75	38 39 38
Alum	100 200 300	6.9 6.5 5.6	No 60 62	apparent 64 66	floc form 27 46	ation 31 26
Lime	200 300 500	11.3 11.6 12.0	No 43 43	apparent կկ 50	floc form 2 11	ation -13 · 3
Hercofl 812.3		& 1.5 No	o appar	ent floc	formation	
^a In ter	ms of Fe ⁺³	•				
Initia (Contr	l Values: •ol)) Tota	al BOD COD	(mg/l) No (mg/l) No		

Periodic checks of the formation of flocs and the chemical analyses of the supernatant fluid from the jar tests led to the following interesting observations.

The presence of black liquor, in relatively low concentrations, in the waste stream resulted in almost complete failure of both floc formation and the reduction of any of the parameters under study, except for the suspended solids. Since good floc characteristics could be restored by removal of the liquor contamination from the waste stream, careful control of spills, leaks and other sources of liquor discharge into the sewers (now under study by the engineering firm doing work at the mill) should greatly reduce this problem area.

Adjustment of the pH from the initial 11 or higher, to 8 with sulfuric acid prior to the addition of the chemical flocculating agents, markedly increased the amount of suspended solids removed, but had only slight effect on the amount of remaining BOD₅ in solution (Table V).

Incomplete flocculation, as evidenced by the presence of colloidal material and the Tyndall effect, in the jar tests almost invariably resulted in low removal of soluble BOD₅. This may account for the increased removal of the soluble BOD₅ when polymer was used in conjunction with the primary, since the addition of the polymer in many cases did result in increased "removal" and also less turbid supernatant fluid in the jars.

The ferric ion was equally effective as the sulfate or chloride salt, as long as the concentration of the Fe^{+3} ion was maintained and the pH of the influent was not too high. The chloride form appeared to have a wider pH range for adequate floc formation. Members of The Institute of Paper Chemistry. Project 3216

TABLE V

JAR TESTS - MOSINEE EFFECT OF BLACK LIQUOR CONTENT ON FLOCCULATION

<u>Floccul</u>	.ant	Final	<u>% BOD5</u>	<u>reduction</u>	% Reduction in
Primary	mg/l	pH	Total	Soluble	suspended solids
Influent	(2/11/75)	: pH = 1	1.2		
Fe ⁺³	50 100 150 200	10.7 10.3 9.9 9.4	-3 -5 1	-5 -3 6 8	22 55 72 50
Alum	200	10.8	-0.2	1	35
	300	10.6	-7	4	18
	400	10.4	4	12	2
	500	10.2	2	7	15
	600	10.1	2	5	30
Influent jar test:		adjusted	to pH 8	with sulfur	ic acid prior to
Fe ⁺³	50	7.2	6	11	75
	100	6.8	6	4	72
Alum	200	7.5	-9	5	76
	300	7.3	-5	-7	84
	400	7.1	-8	20	80

Sludge volumes were also markedly reduced by the addition of the polymer in the jar tests (Table VI) and for this reason alone, it was incorporated in <u>all</u> but one of the pilot studies.

CONCENTRATION OF THE WASTE STREAM

In order to study the flocculation and BOD_5 removal characteristics of a more concentrated waste, that might become available for treatment if the total water use in the mill was reduced through recycling, we concentrated a sample of the total mill effluent (clarifier influent) by reverse osmosis. .

.

.

0

.

.

TABLE VI

JAR TESTS - MOSINEE SLUDGE VOLUME MEASUREMENTS

	Floce	ılant		Sludge volume,	Final	Clarity ^a
Primary	mg/l	Polymer	mg/l	ml/l	рH	0-5
Influent 12/	21/74:					
Fe ⁺³	50 50	None Hercofloc		122	5.4	4
)0	812.3	0.75	115	5.5	5
Alum	100 100	None Herc.	0.75	64 54	6.2 6.5	2 2
Influent 12/	31/74:					
Fe ⁺³ A.R. FeCl ₃ b	50 50	None Herc.	 0.75	92 80	6.3 6.2	4 5
Fe ⁺³ commer- cial FeCl ₃	50 50	None Herc.	 0.75	96 85	6.3 6.3	5 5
Influent 1/1	6/75:					
Fe ⁺³	50 50 100 100	None Herc. None Herc.	0.75	36 30 48 60	6.6 6.8 5.0 5.6	0 0 0 3
Alum	300 300	None Herc.	0.75	96 80	6.3 6.3	14 5

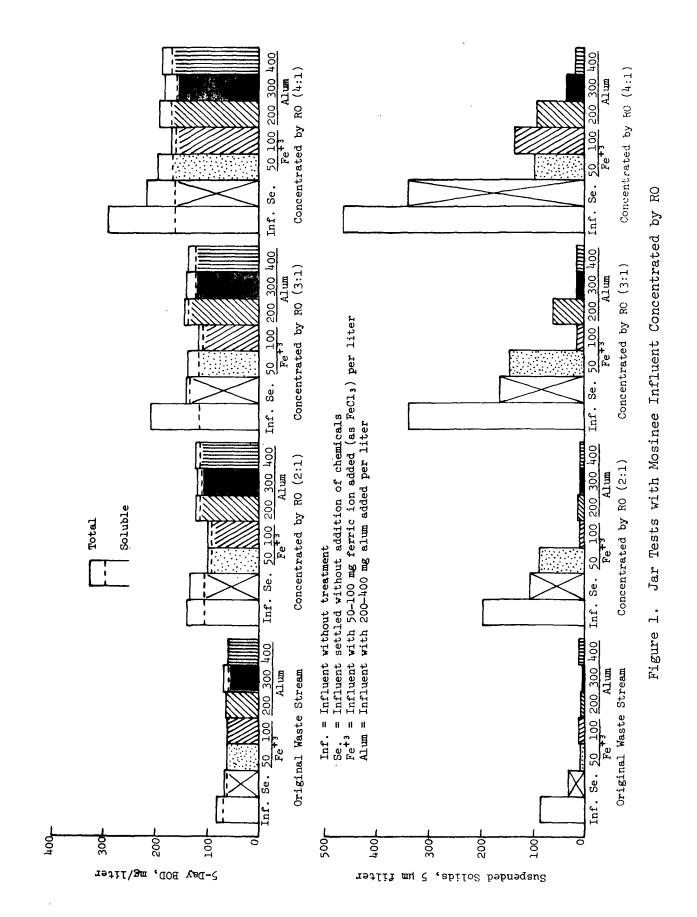
^aClarity:

^bAnalytical Reagent Grade.

^cCommerical Grade 42°Be.

Page 16 Report Three

The concentrated material from the RO process, representing a 4:1 v/v concentration, was used to prepare samples equivalent to 1:1, 2:1 and 3:1 concentrations by diluting with the permeate from the RO process. In this way a better sample could be attained, than would have been the case if tap or distilled water were used for dilution.


Jar tests were made with all concentrations and the samples were analyzed, before and after treatment with ferric chloride:polymer and alum:polymer combinations, for suspended solids, total and soluble BOD_5 and color (Figure 1).

Treatment with ferric ion at 100 mg/liter with 0.75 mg/liter Hercofloc 812.3 could produce an acceptable effluent for discharge, in terms of suspended solids and BOD₅, up to a concentration of approximately 3:1 and still gain on both hydraulic and gravimetric loading. However, over this range of concentration, the flocculating agents did not prove effective in producing an adequate effluent.

While this was a rough study and could be subject to several objections in terms of improved processing techniques such as spill control and their relationship to concentration by water reuse within the mill, as well as economics, it certainly indicates that wastes could be successfully treated at higher concentrations.

EVALUATION OF SEPARATE MILL SEWERS

One of the basic problems encountered at the Mosinee mill, and probably a problem in many treatment plants, was the high variability of the waste stream, in terms of hydraulic flows and in content of solids and BOD_5 loading. If some of the streams entering the waste treatment line could be segregated before they were diluted (or contaminated), they might individually prove more ammenable to

Members of The Institute of Paper Chemistry Project 3216

Page 17 Report Three

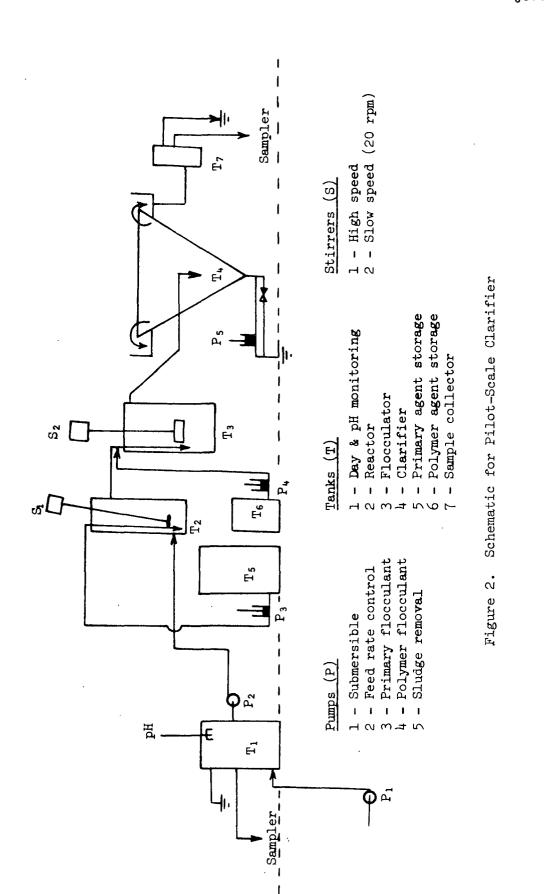
simpler processes of treatment and also improved clarifier performance, the heavy slugs and spills of lignin-containing pulp liquors are of particular concern in reducing clarifier performance.

Samples of seven sewers were obtained, along with a sample of clarifier influent, and analyzed for BOD_5 , COD, TOC, color and suspended solids (Table VII). Three had high biochemical oxygen demands, the pulp mill sewer, the soda recovery sewer and the fifth stage of the brownstock washer. These comprised only 600,000, 280,000 and 35,000 gallons/day, respectively, of the total mill discharge of 16-18 million gallons/day.

If one or more of these relatively low volume, high BOD5 streams could be treated separately by flocculation, reverse osmosis, ultrafiltration or some other process, so as to remove this load from the treatment plant, a marked improvement should be noted in the overall efficiency of the treatment plant, as well as delivering a reduced load to the secondary treatment facility and a greater potential for water reuse.

This phase of the laboratory work promised a potentially valuable approach to the treatment of the wastes discharged by the unbleached kraft pulping industry as well as specifically to the conditions prevailing at the Mosinee mill.

TRIAL OF PILOT CLARIFIER UNDER LABORATORY CONDITIONS


Three thousand gallons of Mosinee clarifier influent were delivered by truck to the Institute early in January 1975 and used to check the operation of the pilot-scale clarifier (Figure 2), without the samplers or the submersible pump (P-1), prior to the transfer of the complete test unit to the mill at Mosinee, Wisconsin.

ΙIΛ	
TABLE	

ANALYSIS OF MOSINEE PAPER COMPANY SAMPLES

						2		
Source	Hq	Total, mg/l COD BOI	<u>mg/1</u> BOD ₅	Soluble TOC	Soluble, mg/1 ⁸ TOC BOD ₅	Color ^b	Suspended solids 0.45 µm 5 µm	solids 5 µm
A. Digester sewer	11.8	2971	635	T47	775	4000	239	98.5
B. Pulp mill sewer	11.2	1460	1624	1099	1074	4880	260	11
C. 5th Stage Brownstock washer	10.7	4865	1349	1402	1156	4150	130	дţ
D. High density sewer	9.7	553	158	138	7 <i>4</i> 4	920	120	26
E. Foul evaporator condensate	8.5	871	762	197	624	100	55	34
F. Digester blowdown foul condensate	8.2	1485	964	389	953	562	୯୪	15
G. Soda recovery sewer	10.1	8328	791th	2077	3705	4200	636	184
H. Clarifier influent	8.0	920	181	74	106	92	1004	686
^a Passing through a 0.45 µm Metricel fi b ^{Co-Pt} units at 465 nm (NCASI Method).	m Metric∈ ICASI Meth	Metricel filter. SI Method).						

Members of The Institute of Paper Chemistry Project 3216

Page 20 Report Three

i

Members of The Institute of Paper Chemistry Project 3216

The system consisted of the following items and arrangement:

1. A tank (T-1) provided a constant supply of the waste to be treated.

2. The Feed Control pump (P-2) maintained a constant feed rate.

3. A 3-gallon Reactor tank (T-2) with a high-speed mixer provided rapid mixing of the waste with the primary flocculating agent and gravity flow to the balance of the system.

4. The flow from the Reactor tank was into an open pipe extending to the bottom of the Flocculator tank (T-3). If polymer were to be added, it was introduced at the top of this open pipe, into a quiescent zone approximately onequarter of the distance down the pipe in order to provide adequate mixing without excessive turbulence or floc dispersion. A slow speed (20 rpm = 1.6 fps peripheral velocity) paddle was mounted in the center of this tank to provide mixing without excessive shear.

5. The overflow from the reactor tank passed downflow into the clarifier (T-4). This clarifier had been developed at The Institute of Paper Chemistry under Project 3029, jointly sponsored by the pulp and paper industry, the Environmental Control Technology Corporation (ENCOTEC) and the Upper Great Lakes Regional Commission and was constructed of stainless steel. The inlet was downflow through a 2-inch stainless steel pipe with an opening 1.25 feet from the bottom of the cone-shaped tank. The center height was 4.25 feet and the diameter was 3.5 feet. It was equipped with flow-over weirs which discharged into a 2-inch trough around the entire circumference of the top. The flow from this trough was from one side into a small sampling pot (T-7) and then to the sever.

6. In the laboratory studies the sludge was removed from the bottom of the clarifier by gravity flow through a vented overflow pipe (not shown) that could be raised and lowered to control the rate. Both gravity flow and a pumping system were used in the field trials and are discussed later. Page 22 Report Three

7. The flocculating agents were stored in small tanks (T-5, T-6) and were metered into the system with tubing pumps (P-3, P-4).

Using this system, a brief study was made of the effects of waste flow and sludge removal rates, at a constant level of flocculating agent(s), on the quality of discharge produced.

An excellent quality discharge (Table VIII) appeared to be produced if the waste feed and sludge discharge rates resulted in an overflow rate of 400-425 gallons/sq ft/day (gsfd). The removal also appeared to be dependent upon the type of sludge blanket developed in the clarifier. Best results were obtained with the level at least two inches from the top to prevent floc carry-over, but not less than three feet from the bottom (two feet above the waste inlet). The latter was assumed to promote the development of larger floc particles and a particle entrapment effect to markedly enhance the quality of the discharge.

These parameters of flow rate and sludge level were, therefore, selected for the operation of the unit during the field trials.

TABLE VIII

Over-	Sludge	Floccula	nt, mg/1		% Removal of				
flowa	removal,	Primary	Polymer	Suspended			DD ₅		
rate ^a	%	Fe ⁺³	н 812.3	solids	Color	Total	Soluble		
369	20	87	1.3	99	55	24	8		
395	13	64	0.78	99	79	34	17		
406	10	61	0.77	99		29	9		
425	10	⁻ 52	0.77	97	46	36	10		
526	15	51	0.77	19	49	19	13		
579	12	51	0.77	- 52	49	5	16		
587	10	50	0.77	- 29	48	0	0		
632	14	50	0.75	-35	49	9	9		

LABORATORY EVALUATION OF PILOT SCALE CLARIFIER

 $^{\mathbf{a}}$ Overflow in gallons/square foot/day based on surface area of clarifier.

Initial Values: Suspended solids = 234 mg/l (Control) BOD₅, total = 134 mg/l BOD₅, soluble = 114 mg/l Color = 130 units.

PILOT SCALE CLARIFIER STUDIES AT MOSINEE

The information gained during the early part of the laboratory studies with jar tests of the Mosinee mill effluent was used to prepare a scheme for the treatment of this mill effluent with the pilot scale clarifier described in the previous section.

This part of the report will cover the work done on-site at the mill in Mosinee, Wisconsin from January 15 to April 4, 1975 and will deal with the problems encountered and with some of the solutions developed for these problems, the removal rates for suspended solids, color and total/soluble biochemical oxygen demand as well as a rough estimate of the chemical costs involved in the various treatment schemes.

EQUIPMENT AND BASIC OPERATION

The IPC system was to be operated in parallel with the two mill clarifiers and was, therefore, installed in the waste treatment plant. This concrete building was immediately adjacent to the two clarifiers and was unheated, except for the heat from the incoming waste stream.

Due to the arrangement of the waste treatment flow system, it was necessary to use a submersible pump (P-1 in Figure 2), mounted in the waste trench immediately downstream from the bar and travelling screens, to lift the waste to floor level (6-8 feet) at a rate of 5 to 8 gallons per minute.

The flow from the submersible pump was directed into the bottom of a 50-gallon tank (T-1) for supplying a centrifugal Feed Control pump (P-2) with the excess overflowing to the sewer near the influent sampler. This tank also contained pH recording equipment.

Members of The Institute of Paper Chemistry Project 3216

The Feed pump (P-2), fitted with an orifice, maintained a waste flow of 3 gpm into the Reactor tank (T-2) and the only other modification of the system, over that described under Laboratory Evaluation in the preceding section, was the installation of a pump in the sludge removal line during some of the trials.

SAMPLING

During the early part of the mill study, influent and effluent samples were taken with two refrigerated Sigmamotor samplers, set to take individual samples hourly around the clock. In order to reduce the analytical load, these were composited into twelve-hour samples daily.

It soon became apparent that the rapid changes in the mill discharge (Table 9 and Figure 3) would not permit such an infrequent sampling scheme. A third sampler, a CVE refrigerated unit capable of taking small samples at short intervals (1-60 minutes) for compositing in a 1-gallon jug, was placed in the influent stream. This unit was set to take 40-ml samples at 15-minute intervals and the twelve-hour composites obtained were compared with those from the Sigmamotor unit taking hourly 400-ml aliquots from the same influent source.

Poor correlation was noted (Table 10) and a second trial was made. This was with four samplers in the following arrangement:

a. The two Sigmamotor samplers on the influent and effluent streams set at 30-minute intervals to take twenty-four samples in twelve hours,

b. The CVE sampler on the influent taking 40-ml samples every ten minutes,

c. A Polystaltic tubing pump, set to take 9 ml/min continuously, was used on the effluent line.

TABLE IX

ANALYSIS	OF INDIVIDUAL SAMPLES	
TO	ESTABLISH RANGE	

		Mill:	igrams/lite	•
No.	pH	Suspended solids	Total BOD ₅	Soluble BOD₅
Sampl 1/16/		t hourly inter	vals (start	10 a.m.
l	10.12	210	241	203
2	10.07	628	206	178
3	- 9.57	494	166	138
4	9.63	145	155	138
5	9.11	85	129	116
6	9.48	144	135)	114
7	8.86	265	143	140
8	9.40	152	163	140
9	9.19	97	148	140
10	9.30	76	127	117
11 ·	9.78	94	138	135
12	9.60	115	132	124
13	9.59	267	148	118

Analytical comparisons (Table 11) were excellent and indicated that the Sigmamotor samplers could be used to take representative samples, if the 30-minute cycle was used.

In order to compensate for the "system holding time" of 90 minutes, the compositing of the individual influent and effluent samples from the Sigmamotor samplers were adjusted to obtain representative samples from the same twelve-hour test period. This was easily accomplished by compositing the numbered bottles in groups so that those for the effluent were three bottles "back" of those for the influent.

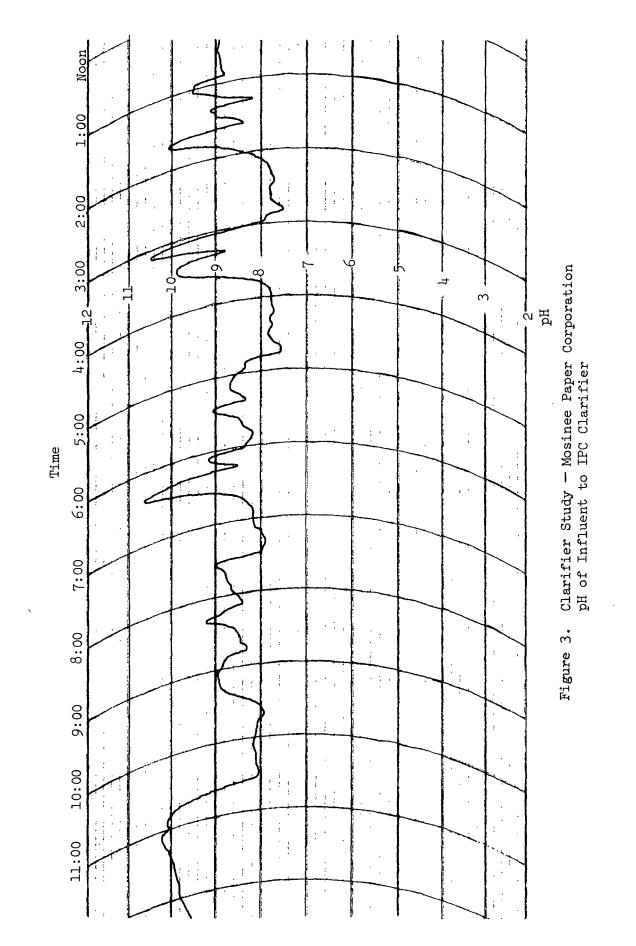


TABLE X

CLARIFIER STUDY - MOSINEE PAPER CORPORATION

COMPARISON OF SAMPLERS AND TIMING - TRIAL NO. 1

					Mg/1	1			Ρt	Pt-Co	
		pH	Suspende	Suspended Solids	Total	BOD5	Solubl	Soluble BOD5	Co	Color	
No.	Specia.	Special Regular	Special	Regular	Special	Regular	Special	Regular	Special	Regular	
Ļ.	7.22	7.85	219	189	162	190	88	93	38	78	
° 0 !	7.82	8.75	182	136	177	244	109	138	115	130	
ς, Γ	8.05	7.73	221	126	130	128	102	88	119	133	
	8.40	8.51	210	199	124	158	108	117	170	204	
م	7.48	8.40	257	240	104	140	84	95	67	168	
9	7.35	7.61	213	169	98	142	76	88	45	74	
2	7.35	7.11	213	198	120	88	94	86	60	82	
:	,	Special samples tak	en	with CVE Sampler at 15-minute intervals.	ampler at 1	5-minute ir	tervals.		· .		
		Regular samples taken with	vles taken	with Sigman	notor Sampl	Sigmamotor Sampler (24/24 hours - Composited in sets of 12).	tours - Com 12).	posited in			

Page 28 Report Three TABLE XI

CLARIFIER STUDY - MOSINEE PAPER CORPORATION

COMPARISON OF SAMPLERS AND TIMING - TRIAL NO. 2

its) Mill	C	143		ı	Ċ	20		ı	
Color (Pt-Co Units) pecial Regular Mill	273	145	45	52	122	68	55	70	
<u>Color (</u> Special	268	95	42	65	120	50	22	50	
<u>16/1</u> Mi 11		147		ı	361	011			
Soluble BOD5, mg/l Special Regular Mill	148	124	107	83	135	104	98	86	
Solub1 Special	162	120	116	06	142	110	101	06	
/1 Mill	201	001		ı	05 5	710		•	
Total BOD5, mg/l scial Regular Mi	180	173	122	. 98	165	139	106	89	
Total Special	197	174	128	94	183	140	111	95	
<u>111M</u>	0 F			ı	CC F	۲۲·۱		ı	
PH Regular	8.09	7.22	4.67	3.61	7.40	7.20	3.96	3.32	
pH Special Regular	8.08 8.09	7.41	4.41	3.69	7.61		3.99	3.30	
No. Regular	A-1	A-2	B-l	B-2	A-3	A-4	B-3	B-4	
Sample No. Special Regular	AA-1 A-1	AA-2	BB-1	BB-2	AA-3	AA-4	BB-3	BB⊢4	

Samples: (All Composited on 12-hour Basis)

B - With Sigmamotor Samplers at 30-minute intervals on Influent and Effluent A and

AA - With CVE Sampler at 10-minute intervals on Influent

BB - With Polystatic Pump at 9 Ml/minute continuously on Effluent

No. 1 & 3 - 7:00 AM to 7:00 PM

No. 2 & 4 - 7:00 PM to 7:00 AM

Mill - 7:30 AM Composite

Members of The Institute of Paper Chemistry Project 3216 Samples of the mill clarifier influent and effluent were taken at 7:30 a.m. daily by the mill staff and analyzed by both mill and IPC personnel.

Prior to analysis, all samples for BOD_5 were stored at $4^{\circ}C$, others were maintained at room temperature, but not allowed to freeze.

TESTING SCHEDULE

In order to establish a comparison between the mill and IPC clarifiers, the first trial was the operation of the pilot unit under conditions as near those of mill as practical. This "base line" was developed by operating the small unit with Hercofloc 812.3 at 0.75 mg/liter and with a waste flow of 3 gpm. If a 10% sludge withdraw could be maintained, the clarifier overflow would be 400 gsfd, approximately one-half of that of the larger unit.

Since we were not attempting to develop optimum clarification at high hydraulic loadings, but merely to study the increased removal of BOD_5 components from the waste stream while operating under different chemical treatment conditions, it was not necessary to show that we could duplicate mill operation. Rather, it was more important to show that, while operating under our planned trial conditions, we did not achieve the increased removal merely through the <u>design</u> of the system. Then, if later trials with the <u>additional</u> chemical treatment resulted in increased BOD₅ removal, over that realized in the mill clarifier during the same test period, this increase should be attributable to the chemical treatment.

Following the development of this base line, other chemical treatment schemes based on the laboratory studies were also tested:

A. Base line using 0.75 mg/liter Hercofloc 812.3B. Alum at 200 mg/liter plus 0.75 mg/liter Hercofloc 812.3

Members of The Institute of Paper Chemistry Project 3216

C. Ferric chloride (100 mg $\text{Fe}^{+3}/1$) plus Hercofloc at 0.75 mg/liter

D. Ferric sulfate (50-100 mg/l Fe⁺³) without polymer

E. A second base-line study with 0.75 mg/liter Hercofloc 812.3

F. Sulfuric acid for pH adjustment alone

G. Sulfuric acid for pH adjustment plus 0.75 mg/liter Hercofloc 812.3

H. Ferrous sulfate (100 mg $\text{Fe}^{+2}/1$) plus 0.75 mg/liter Hercofloc 812.3.

Original planning was to have tests of two weeks duration. Unfortunately, we encountered several periods of problem/solution development early in the trial period, which delayed the program and resulted in shortened test periods (F, G, H) near the end of the study. Also, throughout almost the entire trial period, the mill was on a reduced work week (4 days) which limited the number of samples per week.

RESULTS AND DISCUSSION

In our first attempt to establish the base line, we immediately encountered three problems. The submersible, centrifugal sump pump installed in the waste trench had a small (l inch) inlet hole in the baseplate and due to the high fluid velocity in the waste trench, an "aspirator" effect developed across the inlet when the pump was vertically mounted and we were unable to pump sufficient waste. Mounting the pump at a 90° angle pointed downstream increased the aspiration effect, while mounting it pointed upstream resulted in rapid plugging of the inlet hole with pitch and debris not removed by the bar or travelling screens. This problem also extended to the centrifugal pump used for feed control.

Due to the high solids content of the Mosinee waste, a centrifugal pump was the only available pump that was considered suitable for control of the flow at the 3 gpm rate. A one-half-inch Eastern centrifugal pump was, therefore, used to control the rate of waste fed to the clarifier unit and at first the rate was controlled with a 1/2-inch valve on the pressure side of the pump. This rapidly plugged with pitch and fibers and resulted in erratic flow patterns.

The third problem developed in the gravity sludge removal system. Settling of the high solids content of the Mosinee waste rapidly overwhelmed the available space in the clarifier and resulted in solids carryover, even in the absence of chemical agents other than the Hercofloc 812.3.

In order to reduce these problems:

1) A conical screen (20 mesh), 18 inches long by 7 inches in diameter, was installed on the submersible pump. When installed with the apex of the cone mounted upstream, the pumping action was excellent and the cone was somewhat selfcleaning. When mounted with downstream orientation, which should increase the self-cleaning aspect of the cone shape, the flow was reduced below acceptable levels. Periodic cleaning, with high pressure water, was required to maintain an adequate supply to the system.

2) The centrifugal feed pump was fitted with a smooth-bore orifice plate for flow control and with periodic cleaning this provided better flow control.

3) A multihead tubing pump (Brosites) was installed in place of the gravity system for sludge removal.

Although none of these worked perfectly and problems were encountered from time to time, failure of the system could be minimized by careful cleaning and operation procedures.

Data for the trials with the various flocculating agents and for the base lines are summarized in Table 12, the more detailed analysis of the individual samples are in the Appendix (Figures 4-13, Tables 14-18).

Page 32 Report Three TABLE XII

.

.

CLARIFIER STUDY - MOSINEE PAPER CORPORATION AVERAGE EFFLUENT QUALITY AND REMOVAL VALUES FOR IPC AND MILL UNITS

		Effluent 6	Quality) F	,	
Clarifier Unit	Suspended solids, mg/l	Total, mg/l	BOD5 Soluble, mg/l	Color units	Suspended solids	% Kemova. BOD ₅ Total S	mova.1 BOD ₅ Soluble	Color
A. Both	Both units with Hercofloc		812.3 at 0.75 mg/l	mg/1:				
IPC Mill	86 58	146 137	129 129	76 74	70 80	14 14	14 13	28 28
B. IPC u mg/l:	IPC unit with 200 mg/l alum mg/l:	0 mg/l alum	+ Hercofloc	812.3 at 0.7	0.75 mg/l - mill us	using Hercofloc	floc 812.3 at	¢ 0.75
IPC Mill	59	96 98	92 85	21 89	88 72	19 18	18 17	81 166
C. IPC	IPC unit with ferric chloride	rric chlorid	(100 mg/l	Fe ⁺³) and He	Hercofloc - mill v	with Hercofloc	floc only:	
IPC Mill	16 62	89 111	80 91	80 102	90 72	34 22	5 8 9	71 30
D. IPC	IPC unit with ferric sulfate	rric sulfat:	e (50-100 mg/1	Fe ⁺³) and	Hercofloc — mill		with Hercofloc only:	
IPC Mill	44 66	105 133	94 116	48 156	78 66	34 26	24 10	68 2
E. Seco	Second base line with both units using	with both 1		Hercofloc 812.3	.3 at 0.75 mg/l			
IPC Mill	40 56	137 116	118 103	157 118	80 78	13 29	8 10	7 13
Е, G, &	H. Insuffic	Insufficient data to	to provide good	od comparisons	х.			

Members of The Institute of Paper Chemistry Project 3216

Page 34 Report Three

The base-line operations, both the initial and final trials (A & E), with 0.75 mg/liter Hercofloc 812.3 indicated that the IPC unit was equal to or slightly less efficient than the mill clarifiers in removing suspended solids, soluble BOD₅ and color. The reason for the marked difference noted in the <u>total</u> BOD₅ reductions for the mill clarifier during the second base-line trial are unknown, but there had been a slow, progressive increase in the mill clarifier efficiency for BOD₅ removal throughout the study period, i.e., from 14 to 35% between Trials A and H. This was not readily traceable to changes in the concentration of BOD₅ going to the clarifiers during this period, since these were on the average 161, 120, 138, 181, 161, 211, 114, and 178 mg/liter for Trials A to H, respectively.

Alum with polymer and without pH adjustment, as predicted by the laboratory trials, did not increase the removal of the BOD₅ components, but did markedly increase the efficiency for suspended solids and color removals.

The ferric ion, both as chloride and sulfate salts, was an excellent flocculating agent for removing BOD_5 , the ferric chloride being more effective for suspended solids. The latter could have been due to the development of final pH levels, with the three chloride ions, nearer to the optimum for the Fe⁺³ produced flocs (pH 4-5).

Ferrous ions, at the level of 100 mg soluble Fe^{+2}/l , appeared to reduce the efficiency of the system, even with the addition of polymer during the short trial made on the Mosinee waste. While this level of ion was below that which would be theoretically required by the Schulze-Hardy rule, which states that the concentration of the counterion required to collapse the double layer and produce rapid flocculation is inversely proportional to the 6th power of the valence, it was the highest level practical during our trials due to the low solubility of the <u>commercial</u> grade ferrous sulfate. Based on the effectiveness of the ferric ion at 100 mg/liter, the level of ferrous ion theoretically required would have been on the order of approximately 1200 mg/liter.

The use of sulfuric acid to decrease the pH level and to remove some of the components from the waste stream was one process under consideration by the mill for use in the large clarifiers. A trial was, therefore, designed to test this procedure in the small system, but due to the mechanical difficulties we had encountered earlier in the trial period, only a short period was available near the end of the study. The data were insufficient to provide reliable comparison with mill operation, but laboratory studies have shown that pH reduction to below 4.5 resulted in marked reduction in suspended solids and total BOD₅, with little effect on the soluble BOD₅ level in the effluent.

These trials, with ferric, ferrous and aluminum ions, and especially with the iron salts, have shown that a 25-30% increase in clarifier efficiency could be attained with the Mosinee waste. The sulfate form might be preferable to the chloride, from the standpoint of corrosion, particularly if the sludge were ultimately to be burned. Page 36 Report Three

PRELIMINARY EVALUATION OF COMPARATIVE ECONOMICS

The field studies at the Mosinee mill as described in this report confirm the capability of clarifiers operating at pulp and paper mills to accomplish appreciable and possibly important reductions in the BOD₅ of the dilute spent liquors and wash waters being processed. The practical significance of these findings will be largely dependent upon development of an adequate understanding of the mechanisms involved in removing BOD₅ in the clarifier, such that the reactions can be advanced and controlled reliably at reasonable cost, and preferably at cost levels improving upon BOD reduction by other methods. These continuing studies of the mechanisms of soluble BOD₅ removal are advancing in studies to be reviewed in following reports. However, it becomes increasingly necessary to determine the economic significance of the work so far completed in terms of whether further studies can be economically advantageous, such as to justify further expenditures of research man power and funding toward development of practical design and operating parameters.

The studies reviewed in this report were not originally designed to develop economic criteria. Practical observations and indicators arising from actual field experience do point to probable areas for improving the degree of BOD removal.

One of the principal, practical observations in the field study at this mill related to visual as well as analytical and other evidence that heavy slugs and spills of strong, digester room spent liquors and washes, some of which were of several hours duration, adversely affected clarifier performance. A single program of grab sample collection was undertaken to help indicate the sources of strong process waters. The analytical data from study of that one set of grab samples are summarized in Table VII, previously described, and showed the relative strength of the various soluble materials contained in these samples. The significance of that data was further developed by developing the estimate of daily loadings which might be expected to prevail from each individual process flow. The mill staff provided estimates of the probable daily flows from each source.

These estimated levels of loading are shown in Table XIII, with the obvious qualifications to be expected in use of data from single grab samples and estimated rather than carefully metered flows. Some degree of reliability (or of unreliability of the estimations in each category) for the grab sample of the clarifier influent loading can be determined from comparison with the averages for 28 to 29 samples carefully collected in 24-hour composites of the clarifier influents over the period of the entire field study program at this mill.

The data in Table XIII indicate that a large proportion of the suspended solids going to the clarifier derive from the paper machine sewer and, although the data are less conclusive for the COD components, we would expect that the fiber and fines losses in the paper machine white water probably also are the source of much of the COD.

Total BOD₅, soluble BOD₅, total organic carbon and color apparently come chiefly from the pulp mill sewer, soda recovery sewer and the high density sewer. These data would seem to indicate that at least 50% and as much as 90% or more of the BOD₅ loading to the clarifier at this mill derives from just two of the several sewers. The pulp mill sewer and the soda recovery sewer together account for less than 1/10 of the total flow, and the obvious prevalence of heavy slugs and spills at times could indicate that even smaller volumes may be carrying a very large proportion of the total load.

XIII	
TABLE	

PRELIMINARY ESTIMATION OF SEWER LOADINGS BY VARIOUS MOSINEE PROCESS WATERS

١

(Grab Samples from First Trial - Data from Table VII)

	Gal/Day Volume Estimates by Mosinee	Total (Lbs/Day) COD BOD ₅	bs/Day)	Soluble TOC	<u>Soluble (Lbs/Day)</u> TOC BOD ₅	(Unit Lb/Day) Color	Suspended Solids 0.45 um um 5	l Solids um 5	
High Density Sewer	1,500,000	6,922	1,978	1,724	1,803	11,516	1,503	326	
Pulp Mill Sewer	600,000	22,331	8,131	5,502	5,378	24,431	5,011	356	
Foul Evap. Cond.	300,000	2,181	1,908	493	1,562	250	55	85	
Soda Recovery Sewer	280,000	19,459	9,725	4,853	8,657	9,814	1,487	430	
Digester Blow Down Cond.	70,000	868	. 563	227	568	328	1	6	
Digester Room Sewer	50,000	1,240	265	309	323	1,169	86	41	
5th Stage Brown Stock Washer	35,000	1,421	394	410	338	1,212	38	28	
Sub Total	2,835,000	54,422	22,964	13,518	18,629	48,723	8,193	1,275	
Paper Machine Sewer	Est. (IPC) 10,000,000	r	1	1	T	I	13,529	10,857	
Sub Total	12,835,000	ı	ı	ı	ı	ı	21,722	12,132	
Clarifier Influent 14,500,000 " Single Grab " 24 hr composites Average*	14,500,000 Single Grab \$Average*	111,322 -	21,901 17,787	8,954 -	12,826 13,784	11,132 23,354	121,580 -	83,072 29,767	

Page 38 Report Three

*Average of 28 to 29 samples

Members of The Institute of Paper Chemistry Project 3216 Constitution and Chemistry

Internal measures for environmental quality control at many mills are showing obvious advantage from development of comprehensive programs for reducing the flow of the stronger wash waters, and particularly of spills through installation of spill collection systems to return the stronger flows to the pulp mill recovery system. It is understood that a comprehensive program of internal quality control is under way at Mosinee and presumably much improvement is in prospect.

Although evidence of a principal area of improvement in internal environmental quality control is an obvious result from study of Table XIII, the attainment of objectives for this project in terms of improving BOD removal in the clarifier may also be anticipated. Heavy discharges and spills of lignin organics from the pulping operations are well recognized as disruptive to performance of clarifiers. These materials act as dispersants and inhibitors to effective flocculation and sedimentation in clarifiers. Effective reductions of spills and wastage of these strong lignin flows should greatly enhance the capability of the clarifier and greatly reduce the costs of effective clarification in categories other than BOD a metal.

It is, therefore, logical to expect that reagent costs to promote the BOD removal and clarification reactions developed in this study would be substantially less with better internal practices of effluent quality control than were prevailing during the course of this study. It is also likely that the quantities of BOD remaining in a well controlled system would be more effectively absorbed and removed with the flocs developed under conditions better adapted to effective clarification (i.e., with lowered levels of dispersant activity). Page 40 Report Three

A study to better assess these capabilities for improving the performance and the economics of BOD removal is under way as a result of studying the data available in Tables VII and XI. This study will utilize the jar test procedure to determine the clarification characteristics of the individual sewer streams going it to the Mosinee clarifier, as well as mixtures of these streams to measure the effect of each on the efficiency of clarification.

It may then be possible to develop cost data evaluations on a more exact and better controlled data base than are available from the data developed in this first field study. Members of The Institute of Paper Chemistry Project 3216:00 (1997)

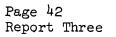
Page 41 Report Three

LITERATURE CITED

- 1. Standard Methods for the Examination of Water and Wastewater. 13th Edition, A.P.H.A., 1971.
- 2. NCASI Technical Bulletin 253, December, 1971.

THE INSTITUTE OF PAPER CHEMISTRY

George A. Dubey

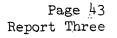

Research Associate Effluent Processes Group Division of Industrial & Environmental Systems

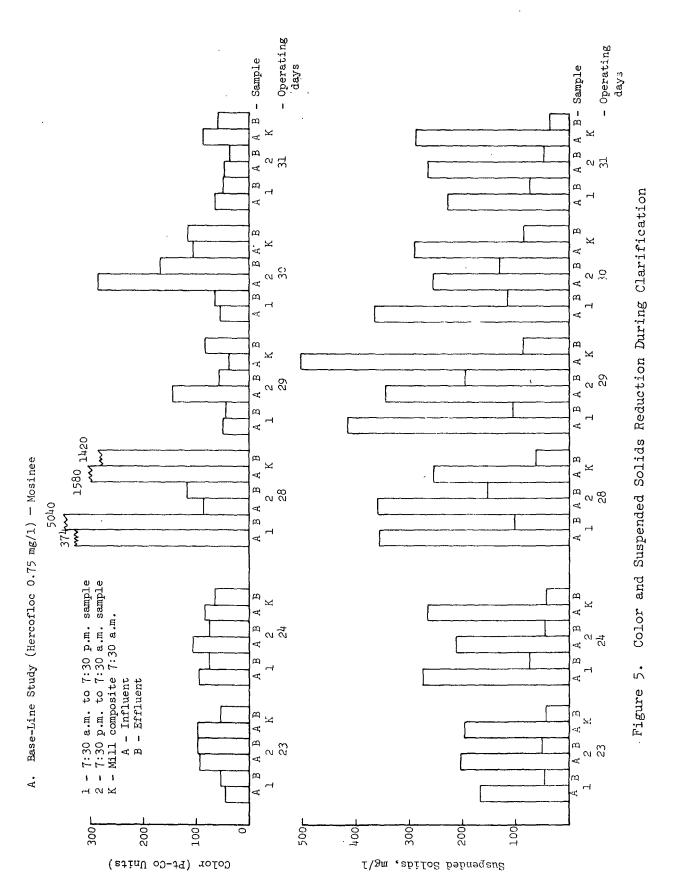
Averill J. Willey

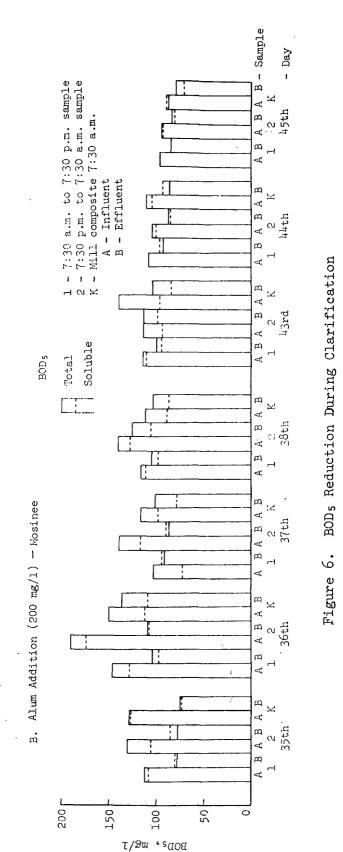
Assistant to the Director Division of Industrial & Environmental Systems

Approved by:

Hardev S. Dugal Director Division of Industrial & Environmental Systems

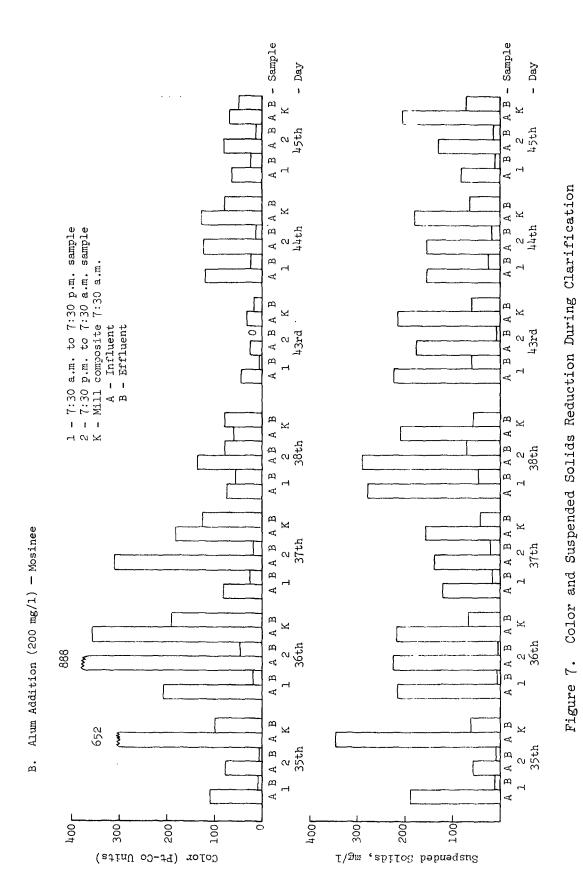

Base Line (0.75 mg/l Hercofloc 812.3) - Mosinee

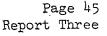

Α.


Members of The Institute of Paper Chemistry Project 3216

APPENDIX I - Sample Day Ŧ A B ы щ 2 31st A B A -1 A B 1 - 7:30 a.m. to 7:30 p.m. sample
2 - 7:30 p.m. to 7:30 a.m. sample
K - Mill composite (7:30 a.m.)
A - Influent
B - Effluent М B A B 2 30th BOD5 Reduction During Clarification Ч 4 щ ы BABA 2 29th L L A ጣ М đ A B 2 28th щ Ч Т Figure 4. щ ы BABA 24th 24th ч Soluble 4 BOD₅ Total ABAB ы 2 23rd A J B 350 250 300 200 150 100 50 0

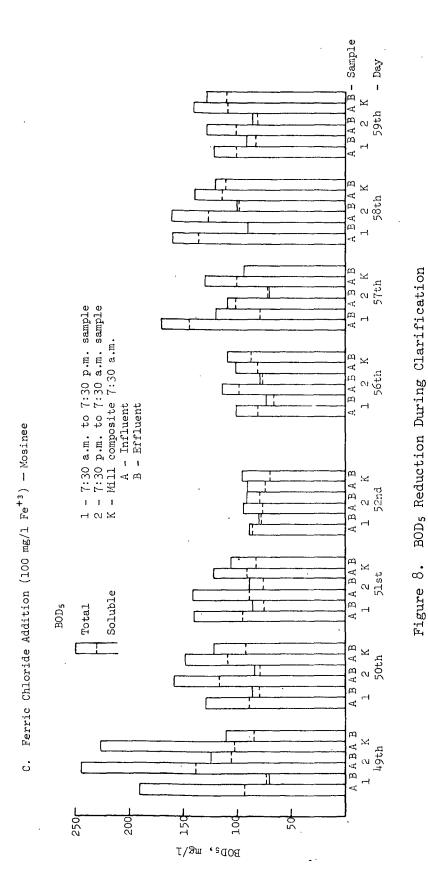
BODs, mg/l

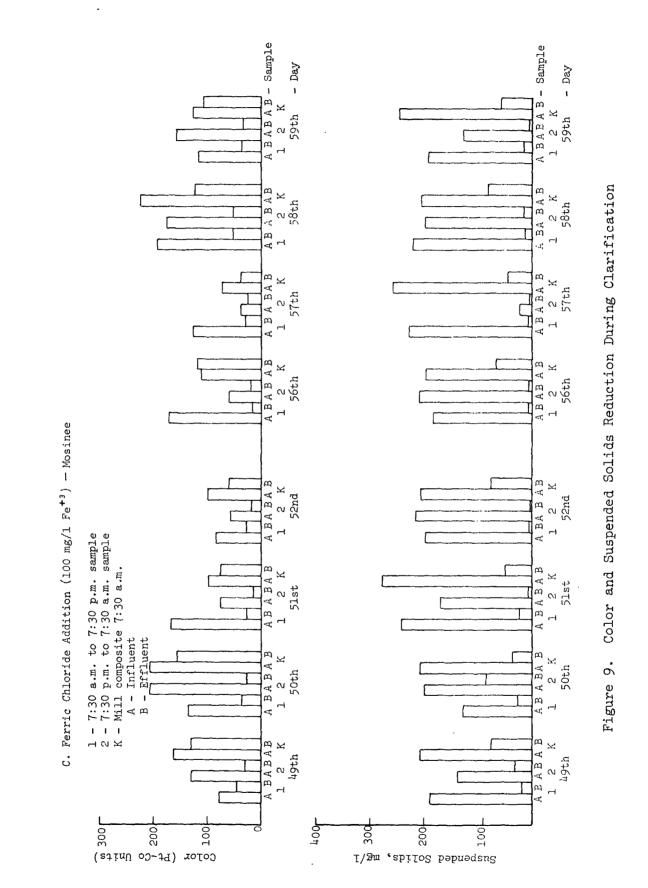




J

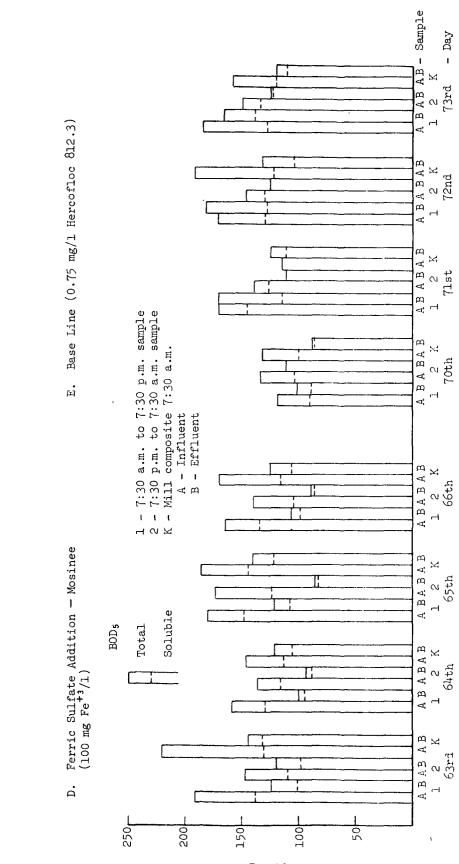
Page 44 Report Three

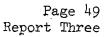


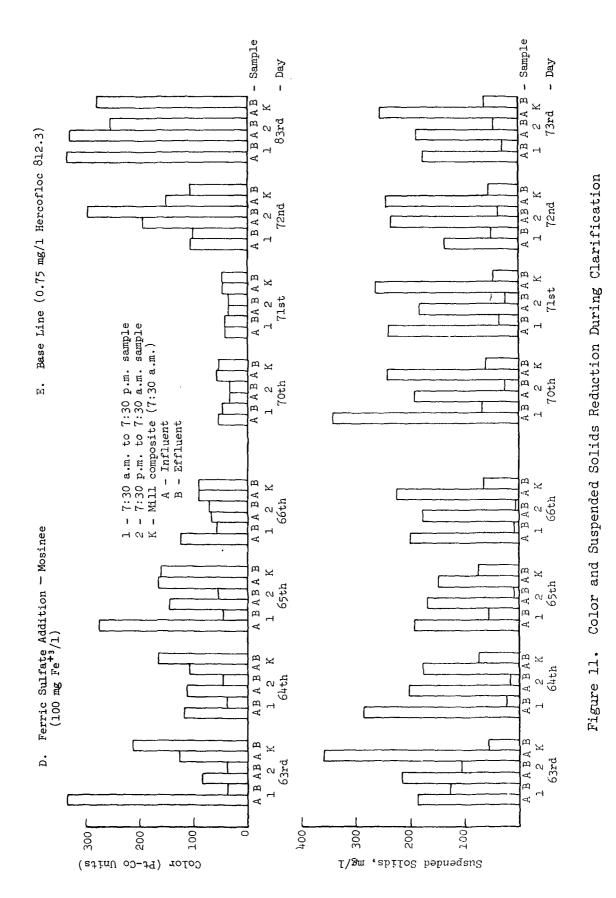

.

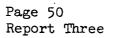
Page 46 Report Three

ł

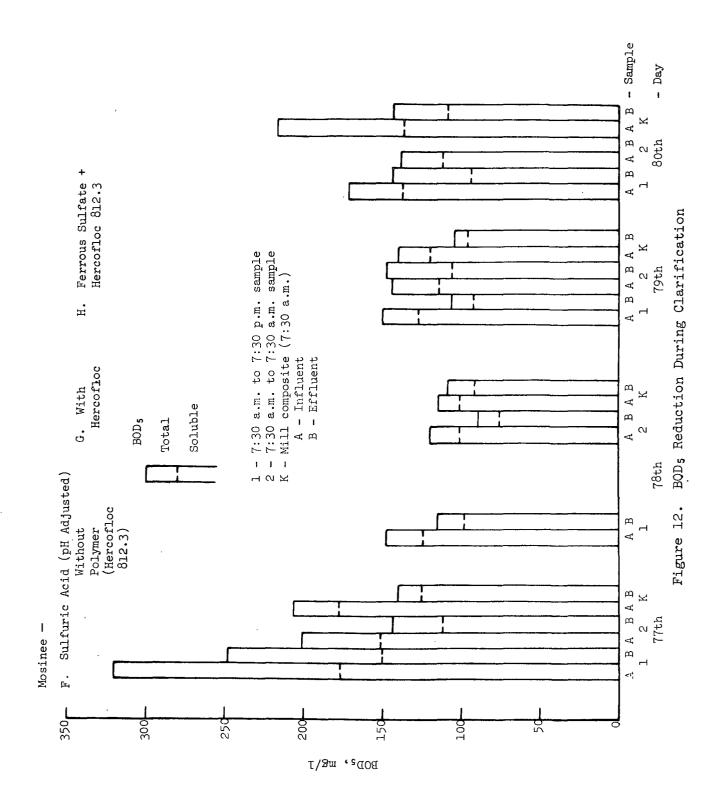



Page 48 Report Three


BOD5 Reduction During Clarification


Figure 10.

BODs, mg/l



•

÷

.

٠

.

.

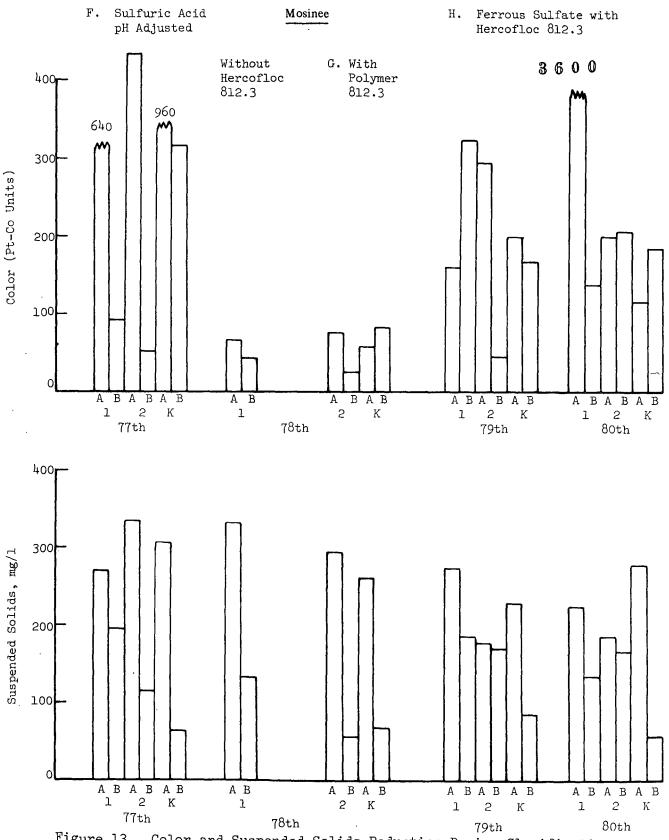


Figure 13. Color and Suspended Solids Reduction During Clarification

Ņ	
TABLE	

CLARIFIER STUDY - MOSINEE PAPER CORPORATION

-124.7 -37.2 10.1 .13.5 -4.1 46.4 20.4 28.2 23.2 -10.0 61.1 -53.1 -12.5 40.8 10.6 -22.2 15.6 31.4 -Color , Soluble 3.6 29.8 19.5 -22.2 10.0 -37.4 -5.6 14.6 -4.1 12.7 13.2 -5.0 12.3 7.0 9.4 0 0 -13.4 ī ī % Reduction Total 11.4 5.5 19.0. 43.3 -9.0 17.5 14.4 25.0 -1.9 15.8 15.3 21.7 11.8 23.9 19.0 19.1 10.1 20.6 14.5 2.7 34.7 20.0 2.9 24.2 Sus. Sol. 73.0 75.2 79.1 74.3 74.5 71.8 82.5 80.5 68.7 48.8 70.5 54.4 72.9 78.7 83.4 78.5 71.8 57.4 79.4 71.5 68.0 81.6 87.2 72.8 Color Units 5040 118 1420 -63 168 115 -52 97 -74 74 -45 56 81 -49 238 49 BOD5, mg/l Total Soluble (1st to 22nd day 246 150 217 -80.08 - 92 93 -127 124 144 -126 142 120 -114 125 110 e Effluent 121 113 113 63 365 149 222 195 85 94 51 134 143 141 124 162 130 108 111 120 75 Sus. Sol., mg/l were taken from 1/15 - 2/5/75 101 53 71 45 50 56 56 74 45 46 56 106 97 88 66 114 131 85 73 73 49 57 7.59 7.90 7.61 7.91 7.82 7.61 9.73 8.40 9.09 7.40 6.88 7.59 8.12 8.19 7.70 -8.29 8.38 7.89 μd . Color Units 374 86 1580 -45 93 • 7 93 82 -- 38 ¹55 - 104:28 63 48 86 BOD5, mg/1 Total Soluble Difficulties - No "Sets of Samples" 179 142 254 -72 96 -122 142 166 -120 162 129 -110 114 127 97 24-hour mill composite (7:30 AM) Ø Influent 96 127 116 90 111 137 132 84 372 177 262 249 152 188 174 141 138 204 152 111 170 150 128 99 analyzed in Appleton labs AM - From 7:30 AM to 7:30 PM allow for holding time Sus. Sol., mg/l - From 7:30 PM to 7:30 - 2 hours after A's to 167 202 196 218 358 359 249 416 344 502 338 228 266 289 289 210 211 211 266 260 364 256 290 160 7.60 7.50 9.20 7.70 7.62 7.82 7.90 7.81 7.52 7.39 7.70 8.40 8.53 8.69 8.21 8.40 8.21 8.12 Ηď . . Due to Mechanical Composite ı. 1 2 M M111* 1 2 Mi 11* 1 2 M Mill* 1 2 M Mill* 1 2 M Mill* 1 Mill# Composites B1) A1 B2) Α2 Σ Day 23 24 28 29 30 31 Date 2/11 2/12 2/13 2/14 2/7 2/6

Page 52 Report Three

Same sample (M) analyzed by mill

.

Mi 11*

TABLE XV

CLARIFIER TRIALS - MOSINEE PAPER CORPORATION

96.3 100.0 85.1 90.6 95.5 47.2 72.5 95.2 26.5 -26.8 44.4 -32.1 90.2 100.0 51.6 -81.7 90.2 37.8 64.5 85.0 27.9 Color ٢ Soluble 28.8 24.8 21.2 11.6 16.5 -1.1 16.1 4.2 8.3 14.8 18.3 10.6 12.6 13.0 20.2 25.9 19.8 40.2 23.4 38.5 3.6 % Reduction Total 10.3 10.0 7.1 16.3 11.1 13.0 21.8 21.9 30.4 40.8 42.2 18.5 28.8 43.2 9.3 30.3 10.7 35.2 12.1 15.1 12.3 0 7.9 12.5 11.7 9.3 66.7 Sus. Sol. 87.4 86.8 73.8 71.3 84.2 75.8 73.3 71.6 84.5 88.2 65.6 77.0 94.7 85.2 82.2 86.2 72.8 96.0 72.1 82.2 89.0 88.5 64.7 75.2 98.1 99.9 71.1 68.4 Color Units - 4 97 19 41 88 -22 15 . 25 52 74 74 4021 22 12 78 22 12 49 BOD5, mg/l Total Soluble 80 85 76 -999 999 999 94 98 84 92 85 93 83 80 - 71 - 71 9 Effluent 92 90 102 96 87 86 75 78 74 74 66 104 108 136 69 104 126 104 100 84 83 36 36 Sus. 5 mg/1 So] 0.5 63 74 30 30 10 8 61 64 52 28 60 79 79 24 18 57 57 8.01 5.80 8.58 8.55 6.80 7.78 8.19 7.62 7.39 8.84 8.71 7.40 -6.90 6.68 7.25 6.55 6.20 7.25 7.32 8.65 7.72 Ηđ Color Units 108 74 552 -203 388 356 356 -80 80 310 170 71 133 56 -120 122 124 -41 23 31 62 80 68 BOD5, mg/l Total Soluble L28 L74 L12 -73 117 99 112 127 88 • 94 96 • - 104 95 92 89 108 106 127 Influent (A) (0.75 mg/1) 146 190 150 99 103 1139 1116 1116 116 140 112 129 114 1140 1140 112 130 128 81 108 100 110 96 94 08 Sus. Sol., B. Alum (200 mg/1) plus Hercofloc 812.3 $m_g/1$ 188 54 342 464 213 222 218 218 234 119 136 153 216 278 289 206 204 221 176 215 283 155 153 180 248 82 130 201 [21 9.40 8.78 9.29 8.51 9.11 8.80 7.30 8.11 8.41 7.83 8.08 7.59 -7.41 7.58 7.54 7.55 7.78 7.65 -7.53 7.70 7.32 Ηď . . , Composite 1 2 M M11* 1 2 M Mi 11* 1 2 M Mi 11* 1 2 M Mill* 1 2 M Mi11* 1 2 M Mill* 1 2 M M111* Day 35 37 36 38 43 45 44 Date 2/18 2/19 2/20 2/21 2/26 2/27 2/28

Composites

Al - From 7:30 AM to 7:30

ΡM

A2 - From 7:30 PM to 7:30 AM

B1) - Two hours after A's to

) B2) allow for system holding time

- 24-hour mill composite analyzed at Appleton labs

Σ

The Dame and AU and trand of mil

Mill* - Same as (M) analyzed at mill

Page 54 Report Three Members of The Institute of Paper Chemistry Project 3216

٠

		Color		42.3 76.9 13.6 -	74.4 86.8 23.5 -	83.9 83.8 24.5 -	67.1 66.1 40.0	91.2 68.3 -6.0	76.2 28.9 46.5	72.9 70.1 45.0	67.0 78.6 14.3							
	ction	ble		22.5 23.2 17.6 -	11.4 33.3 14.8 -	21.0 13.6 9.9 -	9.3 -3.9 	19.5 21.4 -7.4 -	45.1 30.4 6.0 -	33.8 22.0 1.8	17.8 20.6 0							
	% Reduction	BO Total		63.2 49.2 51.3 46.7	32.8 47.5 17.6 22.2	38.6 38.0 13.1 28.0	9.1 2.1 -7.0 22.8	28.4 31.6 -6.8 16.2	29.4 35.8 27.7 38.6	43.8 37.9 13.6 10.6	24.6 32.8 9.2 25.0							
		Sus. Sol.		90.5 77.9 63.7 71.3	77.8 58.3 82.1 77.9	90.8 96.4 76.9 81.4	98.0 99.1 63.2 71.0	95.6 97.6 67.0 80.7	96.0 81.8 82.6 83.5	94.5 94.0 60.7 80.1	92.2 96.9 75.9 66.5							
		Color Units		45 30 140 -	34 27 156 -	27 12 74	27 19 60 -	15 119 -	30 27 -	52 52 122	38 34 108							
		mg/1 Soluble		72 106 84 -	78 78 92 -	75 76 82 -	78 79 -	66 77 87 -	79 71 94	90 99 112 -	83 81 110 -							
DRATION	ffluent (1	, BOD5, mg/1 Total Soluble		70 124 110 72	86 83 122 105	86 88 106 77	80 92 81	73 78 109 93	120 70 94 81	90 100 121 126	92 86 129 108							
- MOSINEE PAPER CORPORATION	E	Sus. Sol., mg/l		18 30 74	28 83 42	22 63 49	4 75 65	55 5 8 51 55 5	86 4 8 9 7	12 13 81 57	15 4 . 59 .							
- MOSINEE		Hd		4.10 3.93 7.95 -	3.74 2.69 7.71	3.47 3.18 7.28 -	3.89 3.89 7.18 -	3.89 4.18 7.41 -	3.50 4.39 7.31	4.71 4.11 7.51	4.18 3.51 7.19 -							
CLARIFIER STUDY		Color Units	5 mg/1)	78 130 162 -	133 204 -	168 74 98 -	82 56 100	170 60 111 -	126 38 71 -	192 174 222 -	115 159 126 -				te			
CLARIFI	(A	mg/l Soluble	312.3 (0.7)	93 138 102 -	88 117 108 -	95 88 91	86 74 -	82 81 -	144 102 100	136 127 114	101 102 110				on 60-minute	cycle		
	nfluent (, <u>BOD5, mg/1</u> Total Soluble	ercofloc 8	190 244 226 135	128 158 148 135	140 142 122 107	88 94 91	102 114 102 111	170 109 130 132	160 161 141	122 128 142 144		\sim	~~~	5	~~~	~~~	(1)
	Ι	Sus. Sol., mg/l	mg/1 Fe ⁺³) plus Hercofloc 812.3 (0.75	189 136 204 230	126 199 207 190	240 169 276 264	198 213 204 224	182 209 197 264	228 22 258 236	220 199 206 294	192 128 245 176		o 7:30 PM	o 7:30 AM	r A's to	allow for system holding time	24-hour mill composite analyzed at Appleton labs	- Same as (M) analyzed by mill
		Hd	0 mg/l Fo	7.85 8.75 8.00 -	7.73 8.51 7.62	8.40 7.61 7.80 -	7.11 7.31 7.22	8.89 7.81 7.70 -	7.69 7.19 7.70	8.26 7.99 7.82	7.10 7.29 7.41		- From 7:30 AM to	From 7:30 PM to	Two hours after	for syste	r mill co ed at App	s (M) and
		Composite	Ferric Chloride (100	1 2 M Mill*	1 2 M Mi11*	1 2 M Mi11*	1 2 M Mill*	1 2 M Mill*	1 2 M M11*	1 2 M Mill*	1 2 M Mill*	ites	- From 7	- From 7	'		- 24-hou analyz	
		Day	erric Ct	49	50	51	52	56	57	58	59	Composites	Al	A2	B1)	82)	Ψ	Mí 11*
		Date	с. Т	3/4	3/5	3/6	3/7	3/11	3/12	3/13	3/14							

TABLE XVI

MPOBLE MAN MAN MAN MAN MAN MAN MAN MAN
Pay Composite PH Ferric Sulfate (50-100 mg/l 1 8 63 1 9 64 1 7.28 Mill * 7.40 7.40 Mill * 7.70 7.140 Mill * 7.70 7.140 Mill * 7.70 7.140 Mill * 7.33 9.5 Mill * 7.31 9.5 Mill *

.

٠

.

.

•

•

.

Mill* - Same as (M) analyzed by mill 24-hour mill composite analyzed at Appleton labs

x

IIIVX	
TABLE	

RIFIER STUDY - MOSINEE PAPER CORPORATI

						CI	ARIFIER 5	M - YOUTS	CLARIFIER STUDY - MOSINEE PAPER CORPORATION	R CORPORA	TION					
				Π	Influent (A)	(A)			E1	Effluent (B)	8)			% Reduction	tion	
Date	e Day	Composite	Hd	Sus. Sol., mg/l	BOD5, Total	BOD5, mg/1 tal Soluble	Color Units	Нq	Sus. Sol mg/l	BOD5, Total	<u>mg/1</u> Soluble	Color Units	Sus. Sol.	B0 Total	BOD5 Soluble	Color
ч. Ч	Sulfuri	Sulfuric Acid (pH adjustment only)	id justmer	it only)												
4/1	77	1 2 M Mi11*	8.61 8.53 9.72	270 332 307 302	320 201 211	176 151 177 -	640 432 960 -	6.51 6.19 9.51 -	193 113 62	248 143 140 -	150 112 125 -	92 52 318 -	28.5 66.0 83.7 79.5	22.5 28.8 33.6 -	14.8 25.8 29.4 -	85.6 88.0 .66.9
4/2	78	1	7.61	331	148	124	. 67	6.18	131	114	86	41	60.4	23.0	21.0	38.8
.5	Sulfuric	Sulfuric Acid + Polymer	ymer													
	78	2 Mi Mi 11*	7.91 7.79 -	294 260 266	120 114 -	102 102 -	74 59 -	5.65 7.40 -	57 68 36	88 109 -	76 92 -	23 81 -	80.6 73.8 86.5	26.7 4.4 -	25.5 9.8 -	68.9 -37.3 -
н.	Ferrous	Sulfate (10	0 mg Fe ⁺	Ferrous Sulfate (100 mg Fe ⁺² /1) + Polymer	er											
4/3	61	1 2 M Mi11*	7.70 8.72 8.19 -	271 177 227 224	150 144 140 -	126 114 120 -	160 296 200	5.19 7.61 7.30 -	183 169 83 52	106 148 104 -	92 106 96 -	322 45 168 -	32.5 4.5 63.4 76.8	29.3 -2.8 25.7	27.0 7.0 20.0	-101.2 84.8 16.0 -
4/4	80	1 2 M Mill*	8.61 7.62 7.40	222 184 275 356	172 138 216 -	137 112 136 -	3600 200 118 -	5.34 5.59 7.19 -	117 164 57 45	144 90 143 -	94 78 108 -	136 207 185 -	47.3 10.9 79.3 87.4	16.3 34.8 33.8 -	31.4 30.4 19.1	96.2 -3.5 -56.8
	Co	Composites														
		Al - Fro	m 7:30 ∌	From 7:30 AM to 7:30 PM	Ŷ				- W	24-hour	24-hour mill composite	osite				
		A2 - Fro	m 7:30 I	From 7:30 PM to 7:30 AM	, ,	on 30-minute	nute			anaiyzeo	analyzeo at Appleton laos	con lads				
		B1) - 90	90 minutes allowed	allowed	~~~	cycle			Mill* -		Same as (M) analyzed by mill	zed by mi	11			
		B2) - for	system	 for system holding time 	~~											

Page 56 Report Three

.

Page 57 Report Three

APPENDIX II

SUPPORTING MILLS OF GROUP PROJECT 3216

Appleton Papers Division of NCR

Bergstrom Paper Company

Hammermill Paper Company ·

Hoerner Waldorf Corporation

Kimberly-Clark Corporation

The Mead Corporation

Nekoosa Edwards Paper Company, Inc.

Potlatch Corporation

The Proctor & Gamble Company

Scott Paper Company

Wausau Paper Mills Company

U.S. Environmental Protection Agency

3

•

,

3

.