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Abstract
Ultrafast Terahertz (THz) Magneto-Spectroscopy (UTMS) measurements were performed on p-type CVD
graphene sample to investigate the intrinsic carrier dynamics of the material. We investigated static and time-
resolved THz transmission measurements, in which the sample was photo-excited by a near infrared (NIR)
pump pulse, in order to study its behavior in a magnetic field. In these measurements the free carriers were
probed to independently measure the carrier density and scattering rate in this film. We observed, in our
graphene sample, an increase in transmission related to a negative photoconductivity (decrease in
conductivity after photoexcitation) consistent with previous research. This decrease is predicted by our model
and relate to the energy dependence of the scattering process considered in this paper.
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Abstract 

Ultrafast Terahertz (THz) Magneto-Spectroscopy (UTMS) measurements were performed on p-type CVD 

graphene sample to investigate the intrinsic carrier dynamics of the material. We investigated static and 

time-resolved THz transmission measurements, in which the sample was photo-excited by a near infrared 

(NIR) pump pulse, in order to study its behavior in a magnetic field. In these measurements the free carriers 

were probed to independently measure the carrier density and scattering rate in this film. We observed, in 

our graphene sample, an increase in transmission related to a negative photoconductivity (decrease in 

conductivity after photoexcitation) consistent with previous research. This decrease is predicted by our 

model and relate to the energy dependence of the scattering process considered in this paper. 
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I. Introduction 

Graphene is a single-atom thick layer of carbon arranged in a honeycomb lattice (Figure 1) with a gapless 

band structure. Graphene has linear energy dispersion describing “Dirac cones” around the Brillouin zone. 

At this point the valence and conduction band crosses (Figure 2). This allows carrier to move easily 

between the two bands, making it a great conductor of heat and electricity. Furthermore, this stable 2D 

material has carriers with zero effective mass and exhibits high mechanical strength and flexibility. All 

those properties displayed by graphene make it a promising candidate for future electronic devices. Andre 

Geim and Konstantin Novoselov were awarded the 2010 Nobel Prize in Physics for the groundbreaking 

discovery of this material. Understanding the dynamics of carriers within this material and their response to 

optical excitation is fundamental to determine the viability for large-scale manufacturing purposes and 

other feasible applications. 

Ultrafast THz spectroscopy measurements have been extensively used to probe the intrinsic 

properties of graphene [1] [2] [3]. This technique, explained in more detailed in the latter section of this 

paper, serves as a contactless electrical probe to observe phenomenon happening on a sub-picosecond time 

scale.  Previous transient studies of hot carrier dynamics in graphene reveal that the THz spectrum, before 

and after photoexcitation, exhibits a simple Drude response [4] [5] [6]. Two distinct behaviors have been 

observed for the transient conductivity in graphene. Some studies show an increase of THz transmission in 

single-layer CVD graphene leading to a decrease in conductivity due to photoexcitation. Other report a 

decrease in THz transmission in epitaxial multilayer graphene on SiC. Shi et. al. [5] argue that these 

seemingly contradictory results are linked to the doping of the samples. Charge neutral point graphene 

exhibits positive photoconductivity, whereas highly doped graphene samples show a decrease in 

conductivity [5]. 

In this study, an optical pump-terahertz probe measurement was used to report the transmission of 

p-type CVD graphene in a magnetic field to terahertz radiation. Complex conductivity in CVD graphene 
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and its response to photo-excitation was deduced from the THz transparency of the material. These set of 

measurements allows us to independently extrapolate the carrier concentration and carrier mobility of our 

samples. In such a material a, the conductivity tensor, resulting from an applied magnetic field, is given by  

    (
𝜎𝑥𝑥 𝜎𝑥𝑦

𝜎𝑦𝑥 𝜎𝑦𝑦
) =

𝜎0

1 + 𝜔𝑐
2𝜏2

(
1 𝜔𝑐𝜏

−𝜔𝑐𝜏 1
)     [7] 

where 𝜎0 is the zero-field conductivity, 𝜔𝑐 is the cyclotron frequency and 𝜏 the scattering rate. The 

subscripts 𝑥𝑥, 𝑥𝑦, 𝑦𝑥 and 𝑦𝑦 relates to the different component of the conductivity related to the motion of 

free carriers in a magnetic field. We observe that that the ratio of  𝜎𝑥𝑥 over 𝜎𝑥𝑦 is proportional to the 

magnetic field and determines the carrier mobility. 

𝜎𝑥𝑦

𝜎𝑥𝑥

= 𝜔𝑐𝜏 =  𝜇𝐵 

Assuming a Drude like model, we can determined the carrier density from the mobility as 

𝜎𝐷𝑟𝑢𝑑𝑒 = 𝑛𝑒𝜇 

where 𝜎𝐷𝑟𝑢𝑑𝑒 reflects the conductivity, 𝑒 is the electron charge and 𝑛 the carrier density. The same Drude-

like behavior was assumed by Hwang et. al [4]. 

A model was further developed to characterize the behavior observed. The model to our 

experimental data was derived from proposed theories on carrier-phonon dynamics and recombination rates 

in graphene. 

 

 

II. Theory 

In order to characterize our terahertz magneto spectroscopy measurements, we adapted a model of 

transient photoconductivity in graphene proposed by Rana, et. al [8] [9]. This model assumes that the 

photoexited electrons thermalize on a time scale of ~ 10fs which is below the resolution of our experiment. 

This allows us to define a single electron temperature [6]. The hot carriers cool as a result of phonon-
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scattering and the model determines the carrier temperature (Te), electrons and holes densities, and 

scattering rates, as well as the conductivity as a function of time. 

In order to define those parameters, the following procedure was utilized. The background doping 

and the photoexcitation of carriers by the laser pump pulse gives an initial thermal energy (𝑄0) to the 

system which starts with an initial hole density (𝑁0). We assume that hot carriers, resulting from the 

transient pump pulse, thermalize on a shorter time scale than our experimental resolution. This allows us to 

translate the thermal energy into a single carrier temperature (Te). Assuming a distribution function 

dependent on a single carrier temperature and chemical potential, we define the population of electrons 

(𝑛𝑒(𝐸)) and holes (𝑛ℎ(𝐸)) as a function of energy. A similar thermal distribution assumption was made by 

Hwang et. al [4]. The Fermi-Dirac distribution function is given by 

𝑓(𝜖) =  
1

𝑒(𝜖−𝜇) 𝑘𝑇⁄ + 1
 

where 𝜖 is the energy, 𝜇 the chemical potential, 𝑘 boltzman’s constant and 𝑇 the carrier temperature. The 

appropriate distribution function was found by modulating the chemical potential to fit our data and 

knowing the initial carrier density. 

Previous studies report a two-step cooling process in graphene [1]. A fast relaxation due to carrier-

carrier scattering followed by a slow relaxation rate due to carrier-phonon scattering. The fast cooling 

process cannot, however, be observed in our measurements due to the resolution of measurement, as stated 

above. Therefore, we assumed that the main factor in our scattering process was due to the interaction with 

phonons. We assume that only two types of phonon dominate the scattering process. K-phonons describe 

the intervalley scattering, while Γ-phonons relate to intravalley scattering. 

For an electron at a given thermal energy (E), the scattering rate for optical phonon emission (G) 

and absorption (R) are given by [8] [9]  

𝑅(𝐸) = 2𝑂𝐴 [
𝐸 − 𝐸𝑝

𝐸𝑝
] (1 − 𝑓(𝐸 − 𝐸𝑝))(1 + 𝑁) 
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𝐺(𝐸) = 2𝐴 [
𝐸 + 𝐸𝑝

𝐸𝑝
] (1 − 𝑓2(𝐸 + 𝐸𝑝))𝑁 

Here, Ep is the phonon energy, f and f2 are distribution functions for the initial and final energy states, N is 

the phonon density and 𝐴 =
9

4
(

𝜕𝑡

𝜕𝑏
)

2 ℏ𝜔

𝜋𝜌𝜔ℏ4𝜈4
 . O is a parameter that controls the sign of the expression, 

ensuring that the energy difference remains positive for both interband (𝐸 < 𝐸𝑝) and intraband (𝐸 > 𝐸𝑝) 

transitions. 

The phonon emission and absorption rates were evaluated for a range of electron and hole energy 

states for phonon scattering. We then integrated over the considered energy states to find the total phonon 

emission and absorption rates, which specify the average carrier scattering rate (τ) due to phonon 

interaction. In addition to phonon scattering, an adjustable background scattering rate was included to 

account for scattering due to impurity and defects in the sample. This background scattering is assumed to 

be temperature independent. The scattering rates in graphene define the cooling rate for the hot carriers at a 

particular carrier temperature. The change in temperature dTe correlates with the decrease in energy in the 

electron gas and can be expressed in terms of electron-hole recombination and generation rates. [8] [9]  

𝑑𝑇𝑒

𝑑𝑡
=

(𝑛〈𝑅Γ𝑒〉 + 𝑝〈𝑅Γℎ〉)ℏ𝜔Γ + (𝑛〈𝑅K𝑒〉 + 𝑝〈𝑅Kℎ〉)ℏ𝜔K 

𝐶𝑒 + 𝐶ℎ

 

The rate of change in the optical phonon populations is given by the absorption and emission rates 

𝑑𝑛Γ

𝑑𝑡
= (

𝑛𝑅Γ𝑒 + 𝑝𝑅Γℎ

𝑀Γ
) −

𝑛Γ − 𝑛Γ
0

𝑇𝑝ℎ

 

𝑑𝑛K

𝑑𝑡
= (

𝑛𝑅K𝑒 + 𝑝𝑅Kℎ

𝑀K
) −

𝑛K − 𝑛K
0

𝑇𝑝ℎ

 

𝑛Γ and 𝑛K are the phonon population, 𝑛Γ
0 and 𝑛K

0  are the phonon densities at equilibrium (300 K), 𝑛 is the 

electron density and 𝑝 the density of holes. Ce and Ch are the electron and hole heat capacities. MΓ and MK 

are defined as the number of phonon modes around the Γ-point and K-point. 

Starting with the initial carrier temperature and phonon density, these equations are stepped forward 

in time to calculate the change in carrier temperature, carrier density and phonon density. The procedure is 
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then repeated for the next time increment using the new carrier temperature and phonon densities. The time 

dependent conductivity was computed from those parameters. Figure 3 provides a schema of the model 

described above. 

 

 

III. Experiment 

The synthesis of our graphene on sapphire samples was done through chemical vapor deposition 

(CVD) following Li et. al. .[10] In this process, a copper substrate is heated in a low vacuum furnace and a 

mixture of hydrogen and methane gas is injected into the chamber. Hydrogen causes the methane and metal 

to react, depositing a carbon atom onto the Cu substrate. The metal is removed using an etchant solution 

and the graphene obtained is then transferred onto a sapphire substrate and the polymer is dissolved. Our 

CVD graphene samples were produced and distributed by Dr. Jeremy Robinson from the Naval Research 

Laboratory in Washington DC. Figure 4 illustrates the procedure used to produce our chemical vapor 

deposition (CVD) graphene samples. 

A THz frequency light pulse interacts mostly with free electrons as it passes through a material. 

Looking at the percent of terahertz transmission through a sample allows us to determine the carrier 

dynamics in graphene. Specifically probing the change in orientation of transmitted THz radiation after 

going through a sample, we can also determine the motion of the free electron in the system. The elements 

of the conductivity tensor can be determined from the polarized transmission using standard thin film 

approximation. For 𝛼 =
𝜇0𝑐

𝑛+1
  where 𝜇0 is the vacuum permeability constant, c the speed of light and 𝑛 the 

index of refraction of the reference: 

𝜎𝑥𝑥 = [1
𝑡𝑥𝑥

⁄ − 1] ∗ (1
𝛼⁄ )  

𝜎𝑥𝑦 = [
𝑡𝑥𝑦

(𝑡𝑥𝑥)2
] ∗ (1

𝛼⁄ ) 
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The two component of the conductivity tensor needed to define the carrier mobility and carrier density can 

therefore be recorded through THz transmission measurements. 

THz transmission measurements were performed on samples in a magnetic field. Our samples were 

photoexcited by a femtosecond pump pulse and probed using THz signal. Our THz system includes a 

Ti:Sapphire chirped pulse oscillator emitting 0.5µJ, 50 fs laser pulses at wavelength 800 nm and a 

repetition rate of 5 MHz. A photoconductive switch served to generate horizontally polarized pulses of THz 

radiation. The sample was mounted in a Magneto-Optical Cryostat and was surrounded by a helium gas 

ambient at 240K. This superconductive magnet allows us to maintain the sample in at a constant magnetic 

field. The THz field was probed using a 1mm-thick ZnTe crystal as an electro-optic detector. The detector 

allows us to record the propagating electro-magnetic pulses through the Pockels effect as the refractive 

index of the ZnTe detector changes with the intensity of the THz field [11]. The path of the THz pulses was 

purged with dry air to prevent THz absorption by water vapor. Wire-grid polarizers were placed before and 

after the sample. The first polarizer was set to pass horizontally polarized radiation, and the second 

polarizer as well as the electro-optic detector could be rotated to detect either the horizontally or vertically 

polarized components of the transmitted radiation. These set of polarizers allows us to define precisely the 

orientation of the THz light before and after interacting with our sample. The experimental setup is 

described in Figure 5. Figure 6 illustrate the expected behavior of the THz signal for our pump-induced 

photoexcitation THz measurement. 

For linear transmission measurements, we probed the time dependent-electric field of THz pulses 

transmitted through the samples and through a reference sample. We recorded the horizontally polarized 

component transmitted through the sample and through the reference (Sxx(t) and RXX(t)  respectively) as 

well as the vertical component transmitted through the sample (Sxy(t)). The Fourier Transform of each 

waveform yields the corresponding single beam spectrum (amplitude and phase). The complex 

transmission is the ratio of sample and reference spectra.  We define 𝑡𝑥𝑥 = 𝑆𝑥𝑥(𝑓) 𝑅𝑥𝑥(𝑓)⁄  and 𝑡𝑥𝑦 =

𝑆𝑥𝑦(𝑓) 𝑅𝑥𝑥(𝑓)⁄ . The THz conductivity of the sample at equilibrium was monitored continuously over a 
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range of magnetic fields. During those magnetic sweeps, multiple THz conductivity measurements were 

recorded repeatedly while ramping up the magnet system to higher fields. For each of those measurements, 

the signal was probed at the same point on the waveform which we chose as the peak value of the 

transmission recorded without the presence of a magnetic field. 

This novel experimental procedure was applied to a well-characterized test sample consisting of an 

n-type GaAs epitaxial layer grown on a silicon substrate. GaAs sample shows complex behavior of 

conductivity with magnetic field. 𝜎𝑥𝑥 describes a parabola while 𝜎𝑥𝑦 describes a curved line with negative 

rate of change. As expected, we see a linear relation with magnetic field for the ratio 𝜎𝑥𝑦 𝜎𝑥𝑥⁄ . The slope of 

the line gives the mobility of free carriers in the sample. Reported experimental results for carrier mobility 

and density, derived from the Drude model, gave reasonable agreement with the predicted values (Figure 

7).  

Time-Resolved THz Magneto-Spectroscopy measurements were carried on the sample. In these 

measurements the sample is photoexcited with a femtosecond pump pulse and the change in THz 

transmission is measured as a function of delay time between the pump pulse and the THz probe pulse. A 

chopper was used to modulate the pump beam, and the change in signal was monitored with a lock-in 

amplifier. As reported in several studies, the transmission of CVD graphene is not strongly frequency 

dependent over the THz spectral range [6]. The weak dependency of our sample to frequency allows us to 

monitor changes in transmission by tracking the change in amplitude of a single point in the THz waveform 

which we chose to be the peak of the amplitude. 

The change in the THz electric field, due to the pulse traversing the sample, was recorded in both 

the horizontal and vertical polarization (δxx(t) and δxy(t) respectively). We define dtxx = δxx(f) / Rxx(f) and dtxy 

= δxy(f) / Rxx(f). The change in conductivity was derived from the expressions for σxx and σxy defined above 

𝑑𝜎𝑥𝑥 = −
1

𝛼𝑡𝑥𝑥
2 𝑑𝑡𝑥𝑥 

𝑑𝜎𝑥𝑦 =
1

𝛼𝑡𝑥𝑥
2 𝑑𝑡𝑥𝑦 
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Time-Resolved sweep measurements were performed by monitoring the change in the signal throughout a 

range of magnetic fields. 

 

 

IV. Results 

Linear Time-Domain THz magneto-spectroscopy measurements of graphene on a sapphire 

substrate are shown in Figure 8 a) (σxx vs. B and σxy vs. B). The σxx signal decreases as we move away from 

zero magnetic field, describing a nearly symmetric figure. A σxy component to the net conductivity also 

appears with an antisymmetric behavior observed around the origin with a positive rate of change at every 

point. σxy becomes tangential at high magnetic field. The changes in σxx and σxy away from the origin are 

small. 

Those behaviors are similar to those seen in our GaAs sample. However, the tangential slope of σxy 

at every point changes in sign. We observe an increase in σxy for our graphene sample whereas our GaAs 

samples exhibit a decrease in σxy. The discrepancy can be explained through the doping level of each 

sample. While our CVD graphene sample is p-type (excess of holes), our GaAs sample is n-type (excess of 

electron). 

Figure 8 b) shows the ratio σxy/σxx versus magnetic field. As expected, while the behavior of each 

component is complex with magnetic field, their ratio is approximately linear with magnetic field. The 

slope of the graph gives the mobility of carriers in the sample. 

The model developed in the section above gives a fit describing a mobility of 𝜇 = 0.18 𝑚2 𝑉. 𝑠⁄ . 

We obtain a carrier concentration p = 2.0·1012cm-2 and average scattering time τ = 37fs. We observe a 

significant discrepancy (~50%) between these values recorded in a helium gas at 240K and those obtained 

from FTIR measurements taken at room temperature in air. FTIR is a reliable technique extensively used in 

solid state physics. This approach has already been used to study the exotic properties of graphene. The 

reported discrepancy may reflect the strong environmental sensitivity observed in graphene [12]. 
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A time-resolved version of the same measurements is shown in Figure 9 a). This figure records the 

peak conductivity change due to photoexcitation versus magnetic field. We observe a change in 

conductivity of the order of 5% in our graphene films after photoexcitation (φ = 3.17*10-8 W/cm). We see a 

negative photoconductivity of σxx. Δσxx is nearly symmetric with magnetic field while Δσxy, on the other 

hand, is antisymmetric with magnetic field. 

Figure 9 b) shows the fit to the time-resolved measurements using the model developed above. 

Using three adjustable parameters, the initial input thermal energy from photoexcitation, the single 

chemical potential and the background scattering rate due to impurity, we observed a good correlation 

between the model and the data set. 

 

 

V. Discussion 

The Time-Domain magneto-spectroscopy data (without photoexcitation) gave values for both 

carrier density (n=2.7*1012 cm-2) and mobility (μ=0.18 cm2/(V.s)). Although the overall behavior of the 

conductivity seems to be consistent with our expectation, we observed a high discrepancy with the values 

predicted by FTIR measurements. This discrepancy can be explained through the high sensitivity of 

graphene to the environment. While FTIR measurements were carried in an air atmosphere at 300K, our 

measurements were done in a helium gas at 240K due to the restriction imposed by conducting our 

experiment with a superconductive magnet. 

The model, derived from Rana, et al. [8] [9], as described previously offers an approximation to our 

Time Resolved experimental measurements. Negative photoconductivity was observed in our graphene 

samples. Assuming a Drude-like response, our result confirms previous measurements done on single layer 

CVD graphene. This behavior has been observed in highly doped CVD graphene samples where higher 

temperature leads merely to a “redistribution of charge carriers within the valence or conduction band” [5] 

[4] [13]. Therefore, the carrier concentration does not increase significantly while the scattering rate is 
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enhanced by the increase in temperature. “As the lattice temperature increases, the phonon population 

increases resulting in a higher electron-phonon scattering rate” [5]. This is reflected through the adopted 

Drude model where the decrease in carrier mobility is the dominant term in the expression and leads to the 

observed decrease in conductivity after photo excitation. 

𝜎𝐷𝑟𝑢𝑑𝑒 = 𝑛𝑒𝜇 

 

 

VI. Conclusion 

In our study, we introduce a novel technique to study the intrinsic dynamics of conducting films. 

Transient THz conductivity measurements and time-resolved measurements in the presence of a magnetic 

field allows us to independently determine the carrier density and effective scattering rate in thin 

conducting films, as well as the change of each quantity in photoconductive materials. 

The experimental technique was applied to a p-type CVD graphene. The recorded complex 

conductivity agrees qualitatively with the established Drude response exhibiting a negative 

photoconductivity. Time-Resolved measurements indicate a transient induced THz transparency (decrease 

in conductivity) linked to an increase in the scattering rate (decrease in carrier mobility), consistent with 

previous studies. A model has been developed to fit our data using energy dependent electron-phonon 

scattering as described by Rana et. al. Using a Drude Model, which assumes a single effective scattering 

rate, to interpret our data, the results show that after photoexcitation, the effective scattering rate decreases 

by 7%, while the carrier population increases by only 2%, therefore leading to a net decrease in 

conductivity. Although consistent with some proposed models, our results do not correlate quantitatively 

with the predicted values. This is thought to be due to the strong dependence of graphene to the 

surrounding environment. [12] 
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Figures 

 

 

 

Figure 1: Molecular representation of graphene, a single-atom thick layer of carbon arranged in a 

honeycomb lattice. (http://en.wikipedia.org/wiki/Graphene) 
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Figure 2: Graphene has a gapless band structure with linear energy dispersion describing “Dirac cones” 

around the Brillouin zone. At this point the valence and conduction band crosses. 
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Figure 3: Model adapted from Rana et al. assuming a domination of carrier-phonon interaction in the 

scattering process. Photoexcitation gives an initial thermal energy Q0 to the system which starts with an 

initial hole density N0. The thermal energy is translated into a carrier temperature (Te). The populations of 

electrons (ne(E)) and holes (nh(E)) are calculated assuming a single carrier temperature. The phonon 

emission and absorption rates were computed. We define the change in thermal energy, carrier distributions 

and phonon density from the phonon interactions. The previous steps are repeated to obtain T, ne(t), G and 

R as a function of time. The conductivity was obtained from the previous time evolution data to get σ(t). 
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Figure 4: Chemical Vapor Deposition of graphene. In this process, a copper substrate is heated in a low 

vacuum furnace and a mixture of hydrogen and methane gas is injected into the chamber. Hydrogen causes 

the methane and copper to react, depositing a carbon atom onto the metal substrate. The metal is removed 

using an etchant solution and the graphene obtained is then transferred onto a sapphire substrate. [13] 
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Figure 5: Geometry of the THz Faraday Rotation measurements. Linearly polarized THz pulses are incident 

to the sample. A magnetic field is applied and a second polarizer is used to analyze longitudinal or 

transverse signals. The sample is photo excited by a NIR pump pulse for time-resolved measurements. [14] 
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Figure 6: Experimental setup schema of a transient terahertz spectroscopy system. The laser beam is split 

into two beams. The first one is use as a pump beam to photoexcite the sample. The second beam is further 

split into one used to generate the THz pulse and the probe beam. The probe beam triggers the electro-optic 

detector. 
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Figure 7: a) Longitudinal (σxx) and transverse (σxy) conductivity of an n-GaAs epitaxial layer versus 

magnetic field recorded through transient spectroscopy measurements. b) The ratio σxx/σxy=ωcτ=µB 

yielding the carrier mobility. [14] 
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Figure 8: a) Longitudinal (σxx) and transverse (σxy) conductivity of a p-type CVD graphene sample versus 

magnetic field recorded through transient spectroscopy measurements. b) The ratio σxx/σxy=ωcτ=µB 

yielding the carrier mobility. [14] 
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Figure 9: a) Longitudinal (dσxx) and transverse (dσxy) pump-induced change in conductivity of a p-type 

CVD graphene sample divided by the equilibrium longitudinal conductivity (σxx) versus magnetic field 

recorded through transient spectroscopy measurements. b) Fit to the time resolved measurements for a 

magnetic field of -2T and +2T. The model developed was adapted from Rana et. al.[8] [9]. [14] 
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