

Fullit a.

3

ł

RELATIONSHIP BETWEEN SACK DROP AND SACK PAPER PROPERTIES

PART III. MULTIPLE LINEAR CORRELATIONS BETWEEN FACE DROP PERFORMANCE AND COMBINATIONS OF SACK PAPER PROPERTIES

> Project 2033 Report Thirty-Four

> A Progress Report

to

MULTIWALL SHIPPING SACK PAPER MANUFACTURERS

January 17, 1966

THE INSTITUTE OF PAPER CHEMISTRY

.

Appleton, Wisconsin

RELATIONSHIP BETWEEN SACK DROP AND SACK PAPER PROPERTIES PART III. MULTIPLE LINEAR CORRELATIONS BETWEEN FACE DROP PERFORMANCE AND COMBINATIONS OF SACK PAPER PROPERTIES

Project 2033

Report Thirty-Four

A Progress Report

to

MULTIWALL SHIPPING SACK PAPER MANUFACTURERS

January 17, 1966

TABLE OF CONTENTS

	1 0.80
SUMMARY OF RESULTS	l
Flat Kraft Papers (50% R.H.)	4
Extensible Kraft Papers (50% R.H.)	7
Combined 50% R.H. Data for Flat and Extensible Kraft Papers	7
Combined 10, 25, and 50% R.H. Data for Flat and Extensible Kraft Papers	11
Conclusions	12
LITERATURE CITED	14
APPENDIX I. PROCEDURES	15
APPENDIX II. DISCUSSION OF RESULTS	19
Flat Kraft Papers - Studies I and II (50% R.H.)	19
Extensible Kraft Papers - Study II (50% R.H.)	24
Combined Data (50% R.H.)	27
Combined Data (10, 25, and 50% R.H.)	33

Page

THE INSTITUTE OF PAPER CHEMISTRY

Appleton, Wisconsin

RELATIONSHIP BETWEEN SACK DROP AND SACK PAPER PROPERTIES PART III. MULTIPLE LINEAR CORRELATIONS BETWEEN FACE DROP PERFORMANCE AND COMBINATIONS OF SACK PAPER PROPERTIES

SUMMARY OF RESULTS

During this contractual period, the policy committee requested that past data be reanalyzed so that the information may be utilized in practical applications directed toward improvements in sack paper manufacture and sack performance. Pursuant to this request, Reports Twenty-Nine and Thirty-One discussed the relationship between <u>individual</u> sack paper properties and face and butt drop performance, respectively.

In Report Twenty-Nine the best predictions of face drop performance for the 50-lb. flat and extensible papers used in past studies were obtained with the following properties:

Property	Corr. Coeff.	AV. Prediction Diff., % ^C
T.E.A., combined Stretch, combined Impulse, combined Frag, combined T.A. Impact fatig	Flat Kraft, Study $I - \underline{N} = 20$ 0.53^{b} 0.59^{b} 0.49^{b} 0.48^{b} 0.72^{a}	18.7 19.0 18.7 18.9 16.7
T.E.A., combined Stretch, combined Impulse, combined Frag, combined T.A. Impact fatig	Flat Kraft, Study II - $\underline{N} = 12$ 0.83 ^a 0.85 ^a 0.79 ^a 0.76 ^a 0.69 ^b	12.3 12.5 13.0 12.6 15.2

Significant at the 1% level.

Significant at the 5% level.

Average difference in percent between observed and computed face drop based on the observed value as reference.

Tensile energy absorption (T.E.A.).

 Λv

Property	Corr. Coeff.	Prediction Diff., %
Extensible	Kraft, Study II	<u> </u>
Scattering coeff. Frag, in T.A. Impact fatigue Frag, combined T.E.A., cross	-0.91 ^a 0.83 ^a 0.82 ^a 0.74 ^a 0.66 ^b	9.7 13.5 15.1 17.6 20.0
Com	pined Data — <u>N</u> =	= 46
T.A. Impact fatigue T.E.A., combined Impulse, combined Stretch, combined Frag, in	0.93 ^a 0.89 ^a 0.87 ^a 0,88 ^a 0.87 ^a	16.7 18.4 20.2 20.3 22.8

^aSignificant at the 1% level. ^bSignificant at the 5% level. ^cAverage difference in percent between observed and computed face drop based on the observed value as reference. ^dTensile energy absorption (T.E.A.).

Based on these results and on the difficulties in using fatigue-type tests in mill evaluation and control, the results indicated that combined T.E.A. is the best test for evaluating 50-lb. sack paper in terms of face drop. It was pointed out, however, that none of the properties mentioned will accurately predict the relative performance of <u>all</u> papers. The use of these tests, therefore, should be tempered by judgment and experience.

The present report focuses attention on the linear relationship between face drop performance and <u>combinations</u> of sack paper properties. To study this relationship, multiple linear regression equations were calculated for various combinations of sack paper properties. As in Report Twenty-Nine, the analysis was carried out separately for the flat kraft combinations of Studies I and II, for the extensible kraft combinations of Study II, and for the combined data. All data were obtained at 50% R.H. except as specifically noted. The merits of the multiple linear regressions were judged in terms of the following:

1. The regression coefficients for the individual properties should be statistically significant at the 0.05 level.

2. The coefficient of multiple correlation (\underline{R}) should be as high as possible in keeping with (1) above. Also, it should exhibit improvement over the simple correlation coefficients for the individual properties as reported in Report Twenty-Nine.

3. The properties involved in the correlation should bear some logical relationship to face drop performance and the sign (positive or negative) should be consistent with general experience.

For this summary, a number of the multiple factor relationships which were investigated in the study are shown for each data subdivision. The remainder of the relationships investigated are discussed in the main body of the text. In general, the relationships discussed in the summary exhibited some promise in one or more phases of this study or in the literature. Also, a few relationships were included to illustrate results obtained with properties included in current sack paper specifications. In addition, the multiple factor relationships are compared with the five properties exhibiting the greatest promise as single factors in Report Twenty-Nine.

The results for the flat kraft papers, extensible kraft papers, and combined data for flat and extensible kraft papers are summarized in the following sections. FLAT KRAFT PAPERS (50% R.H.)

Single and multiple relationships selected as noted on the previous page are shown in Table I. The results indicate the following:

1. Excluding fatigue properties, no relationships were found which meet the criteria listed above for the data of both studies. Combinations meeting the criteria in one or the other study are listed below.

Regression No.	Study	Sack Paper Property l	Sack Paper Property 2
35	I	Combined T.E.A.	Porosity
4	II	Combined tensile times stretch	Combined tear
5	II	Combined T.E.A.	Combined tear
27	II	T.E.A., M.D.	T.E.A., C.D.
32	II	Stretch, M.D.	Stretch, C.D.

Note: T.E.A. = Tensile energy absorption.

2. For these 50-lb. flat kraft papers, the multiple relationships resulted in relatively small improvements in correlation for either study over the single factor relationships based on combined T.E.A. Thus, the tensile energy absorption characteristics of the sack paper appear to be best related to face drop performance.

3. Carlson (<u>1</u>) has suggested that a two-factor relationship using combined T.E.A. (or the tensile-strength product) and combined tearing strength should be used to predict face drop performance. This combination (Regressions 4 and 5) gave good results in Study II but failed to give much improvement in Study I. In both studies T.E.A. appeared to be the more important sack paper property. On the basis of these data, tearing strength does not seem to be of

Page 5 Report Thirty-Four

		I KUDI							XIDIS	п					
Ro.	Regression Equation	Significant Properties, 5% level	Mult. Corr. Coeff.	Correlat Indiv Prop. 1	ion Coeff. f Idual Tests Prop. 2 Pro	ب ب ا	Av. Prediction Diff., \$	Ro.	, Regression Equețion	Significent Properties, 5% level	Mult. Corr. Coeff.	Correlatio Individ Prop. 1 P	m Coeff. for Mai Tests op. 2 Prop.	Predicti 5 Diff., \$	8.
							Simple Correlat	tions ^b	μ ,						
8	E = http://wr + 22.7	ţ	0.53				18.7	10	<u>r</u> = 629.0 wr - 175.0	EA.	0.83			12.3	
ნ	E = 67.45 ST + 49.1	23	0.59				19.0	101	F = 119.2 ST - 251.6	5	0.85			12.5	
8	Е = 25.19 ш - 22.1	Ħ	0, 149				18.7	102	F = 51.08 IT - 147.0	Ē	Ŗ				
103	E = 0.2642 FT + 149.5	ET.	0, 148				18.9	103	F = 0.3742 FT + 1.9	1 6	14			9 61	
10	E = 10.90 TA + 166.3	AT	0.72				16.7	101	<u>7</u> = 7.781 TA + 201.5	់ គ្	0.69			15.2	
					Multiple	Linear	Correlations Excl	uding Fati	gue Properties						
٠	8 B C mm 1 12 mm 1 12 h		90	8	+		i t	I							
· ·	$\frac{1}{2}$ = -0.5 II = -1.5 II = -1.	anon	02.0	-0.22	-0.14		24.9	•	<u>F</u> = 14.82 TT + 2.98 ET - 1205.7	None	0.48	0.25 (88.	18.9	
4	<u> 2</u> = 3.91 AT + 0.98 ET - 328.1	AT.	0.55	0.53	-0.14		18.5	-7	E = 5.83 AT + 2.54 ET - 979.2	AT, ET	0.95	1	1 80.	5.7	
ŝ	E = 511.0 WT + 1.03 ET - 301.6	Ş	0.55	0.53	-0.14		18.3	ŝ	<u>F</u> = 7448 WT + 2.15 ET - 807.4	WT, ET	0.93	0.83	- 08	8.7	
#	<u> -</u> = 461.1 wr - 8.81 mr + 471.2	ΤW	0,60	0.53	-0.22		1	A	E = 724.1 WT - 5.08 TT + 15.2	5	0.86	0.83		' 1	
2	E = 140.2 WT + 52.4 ST + 6.6	None	0.60	0.53	0.59 -		1	द्रा	P. = 519 WT + 72.2 ST - 278.2	ST	0.89	0.83	85	;	
\$	<u>r</u> = 668.6 wr - 5.69 Ps - 102.6	HT, PS	o. 74	0.53	-0.21		;	35	<u>F</u> = 756 WT - 5.37 PS - 228.4	5	0.86	0.83		;	
r 4	또 = 512.6 wr + 0.79 mr - 8.3 mr + 198.7	T.M	0.61	0.53	-0.14 -0	55	!	Ţ	E = 709 WT + 2.71 ET + 3.85 TT - 1124.	t 11, 22	0.93	0.83	0.08	1	
27	E = 394 WI + 459 WC + 30.9	MC	0.53	0.22	0.47 -		18.9	21	<u>F</u> = 781 WI + 555 WC - 190.8	NT, WC	0.84	0.65	- 1 01-1	12.1	
ß	<u></u> <u></u> <u></u> = 158.0 sI + 63.3 sc - 81.6	S	0.62	0.30	0.53 -		;	35	$\underline{\mathbf{F}}$ = 286 SI + 95.8 SC - 425.1	sı, sc	0.90	0.68		;	
					<u>Multiple</u>	Linear	Correlations Incl.	uding Fati	gue Properties						
61	E = 10.0 TA + 343.0 WC + 15.3	TA, WC	0.80	0.72	0.48 -		:	19	F = 5.8 TA + 529 WC - 14.6	TA . VC	0.86	0.60		;	
80	E = 9.7 TA + 46.7 SC + 17.5	TA, SC	0.82	0.72	0.53		:	S S	E = 6.3 TA + 97.7 SC + 28.2	TA. SC	6.93	60.0	1	: :	
ę	E = 7.3 TA + 427 WT - 4.4 PS - 70.4	TR, WT, PS	0.8L	0.72	0-53 -0	12.	:	łł	E = 2.21 TA + 618 WT - 3.46 PS - 170	-3 WT	0.87	3	.8.	;	
F1	E = 9.8 TA + ¹¹ 71 WC - 3.78 PS - 8.3	TLA, WC, PS	o.88	0.72	0.47 -0	ដ	1		1						
تە ا									•						
້ດ້	Average uniterence between computed and observe Paken from Report 29. Feb. 7. 1064.	ed face drop base	d on the	observed vi	due as refer	ence.									
ž	ote: Test Properties Coded as Follows;														

I TABLE I

COMPARISON OF SELECTED SINGLE AND MULTIPLE LINEAR RECRESSIONS FOR FLAT KRAFT

Directional P In Cross C TT TC ST TC ST TC ST TC TT TC TT TC TT TC TT TC

Tensile Stretch T.E.A. Impulse Frag Elmendorf tear

5 8

Nondirectional Properties T.A. impact fatigue Porosity

Properties Combined

major importance to the face drop performance of flat kraft although it may be important in other aspects of sack performance - e.g., snagging, nail tears, etc.

4. Because these studies were restricted to one grade weight, the importance of stretch is probably overemphasized. This conclusion is based on the observation that stretch is independent of basis weight and hence will not predict changes in sack performance associated with changes in basis weight. Except in special cases, such as within a given grade weight level, T.E.A. should be the better property.

5. Treating machine- and cross-machine T.E.A. as separate sack paper properties gives no marked advantage over combined T.E.A. - in which the two di-rections are given equal weight.

6. While it can be argued that face drop performance should be related to porosity, the porosity differences encountered in the papers used in these studies apparently are not sufficient to establish its importance.

7. The dominant paper property in Regressions 4 and 5 appears to be T.E.A. or its analog, the product of tensile x stretch.

8. Considering fatigue properties, the T.A. impact fatigue test in combination with either (1) C. D. stretch or (2) cross-machine T.E.A. exhibits relatively good correlations using the data of either study.

9. Combined tensile and combined tear do not give a favorable relationship for either study. In the main body of this report, the same conclusion was obtained using either the M.D. or C.D. orientations. It is concluded, therefore, that tensile and tear taken separately or together are not well related to the face drop performance of pasted sacks made from 50-1b. flat kraft.

EXTENSIBLE KRAFT PAPERS (50% R.H.)

Simple and multiple relationships selected as mentioned previously are shown in Table II. The results indicate the following:

1. Excluding fatigue properties, the only multiple relationships which were superior to scattering coefficient alone, utilized combined T.E.A. or impulse with the scattering coefficient. Both factors were significant in each regression equation.

2. If scattering coefficient is also excluded as being unsuitable for control or specification, none of the remaining relationships exhibit much improvement over single factor relationships. For these data, however, the combination of machine- and cross-machine T.E.A. exhibits a modest improvement in correlation coefficient over combined T.E.A. alone.

3. As in the case of the flat kraft, combined tensile and tear exhibit no significant relationship to the face drop performance of the 50-lb. extensible kraft samples of this study.

4. In the regressions involving combined tear with combined T.E.A. or the tensile-stretch product, tear is not a significant property. Also, the multiple correlation coefficient is little better than the simple correlation coefficient for combined T.E.A. alone.

COMBINED 50% R.H. DATA FOR FLAT AND EXTENSIBLE KRAFT PAPERS

A comparison of relationships selected as described previously is shown in Table III. The following results were obtained:

TABLE II

COMPARISON OF	SELECTED	SINGLE A	ND	MULTIPLE	LINEAR	REGRESSIONS	FOR	EXTENSIBLE KR	AFT
									_

		$(\underline{N} = 14)$						1
No.	Regression Equation	Significant Properties, 5% level	Mult. Corr. Coeff.	Correlat Indiv Prcp. 1	ion Coef idual Te Prop. 2	f. for sts Prop. 3	Av. Prediction Diff., %	F
	<u>s</u>	imple Correlations	b -				· ·	
105	F = -12.73 BA + 3956.7	BA	-0.91				9.7	
106	F = 1.77 FI - 388.5	FI	0.83				13.5	
107	_ F = 14.60 TA + 50.7	TA	0.82				15.1	
108	_ F = 1.08 FT - 394.6	FT	0.74				17.6	
109	$\overline{F} = 1893 \text{ wc} - 244.6$	WC	0.66				20.0	
110	$\frac{-}{F} = 656 \text{ wr} = 348.8$	WT	0.63				21.6	
	Multiple Linear Corr	relations Excluding	Fatigue 1	Properties				
3	<u>F</u> = 11.0 TT + 1.29 ET + 75.6	None	0.14	0.11	0.07		26.4	
4	$\underline{F} = 4.17 \text{ AT} - 3.61 \text{ ET} + 718.8$	AT	0.60		0.07		21.3	
5	\underline{F} = 740 WT - 2.79 ET + 265.1	WT	0.66	0.63	0.07		19.4	
34	<u>F</u> = 653 WT + 7.28 TT - 616.6	WT	0.63	0.63	0.11	`		
12	$\underline{F} = 814$ WT - 19.0 ST - 374.0	None	0.63	0.63	0.55		·	
35	F = 703 WT - 3.06 PS - 396.0	WT	0.63	0.63	0.33			
41	\underline{F} = 735 WT - 2.64 ET + 3.13 TT + 117.9	WT	0.66	0.63	0.07	0.11	· ·	
27	\underline{F} = 385 WI + 1676 WC - 599.4	WC	0.73	0.46	0.66		17.9	
32	F = 51.8 SI + 186.4 SC - 495.8	None	0.60	0.48	0.43			
9	\underline{F} = 262 WT - 11.1 BA + 3073.4	WT, BA	0.94	0.63	-0.91			
15	<u>F</u> = 11.1 IT - 11.6 BA + 3315.6	WT, BA	0.94	0.52	-0.91		·	
	Multiple Linear Corr	relations Including	Fatigue	Properties				
46	<u>F</u> = 11.9 TA + 669.1 WC - 188.1	ТА	0.84	0.82	0.66			
21	$\underline{F} = -10.6 \text{ BA} + 0.34 \text{ FT} + 3031.5$	BA	0.93	-0.91	0.74			
22A	<u>F</u> = -9.1 BA + 0.76 FI + 45	BA, FI	0.94	-0.91	0.89		·	
19A	F = -8.0 BA + 0.69 FI + 25.8 NT + 40.8	NT, BA, FI	0.96	-0.91	0.83	0.62		

TA BA PS

^BAverage difference between computed and observed face drop based on observed values as reference. ^bTaken from Report 29, Feb. 7, 1964.

Note: Test Properties Coded as Follows:

	Diı	rections	l Tests	
	In	Cross	Combined	Nondirectional Tests
Tensile	TI	TC	TT	T.A. impact fatigue
Stretch	SI	SC	ST	Scattering coeff.
T.E.A.	WI	WC	WT	Porosity
Impulse	· II	IC	IT	
Frag	FI.	FC	FT	
Elmendorf tear	EI	EC	ET	
Instron strain fatigue	NI	NC	NT	

TABLE III

COMPARISON OF SELECTED SINGLE AND MULTIPLE LINEAR REGRESSIONS FOR THE COMBINED DATA

(N = 46)

No.	Regression Equation	Significant Properties, 5% level	Mult. Corr. Coeff.	Corre In Prop. 1	lation Coe: dividual To Prop. 2	ff. for ests Prop. 3	Av. Prediction Diff., %
	· .	Simple Corre	Lations ^b				
111	F = 13.31 TA + 115.2	TA	0.93				16.7
112	– F = 495.3 WT - 45.6	WT	0.89				18.4
113	- F = 27.5 IT - 70.4	IT	0.87				20.2
114	F = 55.4 ST + 88.6	ST	0.88				20.3
115	$\frac{1}{F} = 1.344$ FI - 131.9	FI	0.87				22.8
_	Multiple Lines	ar Regressions Exc	luding Fatig	gue Propert	les		
, 3	F = -25.20 TT - 0.26 ET + 1800.3	TT	0.72	-0.72	0.41		33.0
4	- F = 3.24 AT - 0.20 ET + 35.6	AT	0.88	0,88	0.41		19.6
5	– F = 493 WT + 0.13 ET - 76.2	WT	0.89	0.89	0.41		18.4
34	F = 509 WT + 1.05 TT - 112.4	WT	0.89	0.89	-0.72	`	·
12	= F = 454 WT + 4.70 ST - 35.6	WT	0.89	0.89	o. 88		
35	- F = 506 WT - 3.08 PS - 22.0	WT	0.89	0.89	0.09		
41	- F = 510 WT + 0.29 ET + 1.53 TT - 211.0	WT	0.89	0.89	0.41	-0.72	
27	- F = 460 WI + 771 WC - 169.1	WI, WC	0.89	0.85	0.55	'	19.0
32	- F = 50.1 SI + 88.1 SC - 19.1	SI, SC	o.88	0.85	0.66		
28	- F = 26.2 II + 38.5 IC - 169.1	II, IC	0.87	0.85	0.54		
9	\overline{F} = 472 WT - 2.68 BA + 642.1	WT, BA	0.90	0.89	-0.37		
	Multiple Lines	r Regressions Inc	luding Fatig	que Propert	ies		
46	F = 12.3 TA + 395 WC - 61.8	TA, WC	0.94	0.93	0.55		
23B	$\overline{F} = 10.4$ TA + 14.2 ST + 152.4	TA, ST	0.94	0.93	0.88		
10	\underline{F} = 311 WT + 0.58 FI - 115.8	WT, FI	0.90	0.89	0.87		

^aAverage difference between computed and observed face drop based on observed values as reference. ^bTaken from Report 29, Feb. 7, 1964.

Note: Test Properties Coded as Follows:

	Di	rections	1 Tests		
	In	Cross	Combined	Nondirectional Tests	
Tensile	TI	TC	TT	T.A. impact fatigue TA	L
Stretch	SI	SC	ST	· Porosity PS	3
T.E.A.	WI	WC	WT	Scattering coeff. BA	1
Impulse	II	IC	IT		
Frag	FI	FC	FT		
Elmendorf tear	EI	EC	ET		

Page 10 Report Thirty-Four

Multiwall Shipping Sack Paper Manufacturers Project 2033

1. Excluding the relationships involving fatigue properties, none of the multiple regressions involving conventional properties exhibit any marked improvement over the single-factor relationships with regard to correlation coefficient.

2. In the regressions involving combined T.E.A. and a second property, the multiple correlation coefficients exhibit little or no improvement over the simple correlation coefficient for combined T.E.A. alone (0.89). In most cases, combined T.E.A. is the only factor which exhibits significance at the 5% level.

3. Combined T.E.A. and combined tear exhibit a multiple correlation coefficient of 0.89 which is equal to that exhibited by combined T.E.A. alone. Also, combined tear was not a significant statistical factor in the relationship while combined T.E.A. was highly significant. It appears, therefore, that combined tear is not an important factor in the face drop performance at 50% R.H. of pasted sacks made from 50-lb. flat or extensible kraft.

4. The relationships involving combined tensile and tear are considerably inferior to relationships based on combined T.E.A.

5. While the multiple correlation coefficient for the combination of machine- and cross-machine T.E.A. is higher than the simple correlation coefficient for either direction separately, it is nevertheless only equal to the simple correlation coefficient for combined T.E.A. Thus, giving the two directions equal weight in the combined value used in obtaining the simple correlation coefficient seems about as efficient as using the two directions in the two-factor relationship. It has been felt that this conclusion would not hold for all sack designs and shapes. For this reason, the two-factor type of equation has been favored in past work.

6. As mentioned previously, the favorable results obtained with stretch are probably due, in part, to the fact that these data were obtained on sacks made from one grade weight.

Page 11 Report Thirty-Four

7. It is a curious feature of the results that combined T.E.A. and the combined tensile-stretch product appear to be about equally well related to face drop performance. Since T.E.A. is dependent on the shape of the load-elongation curve, it can be argued that it should be a better predictor of face drop performance than the tensile-stretch product which is solely dependent on maximum stretch and tensile. This is not the case for these data, however. Perhaps curve shape differences for papers within a given grade weight level are not large enough to seriously affect the relationships.

COMBINED 10, 25, AND 50% R.H. DATA FOR FLAT AND EXTENSIBLE KRAFT PAPERS

A limited number of relationships were investigated for the combined data - i.e., the 50% R.H. data from Studies I and II and the 10 and 25% R.H. data from Study II. A disadvantage of using the combined data for three relative humidity levels is that the effects of relative humidity on both commodity and paper are intertwined and consequently changes in paper properties may be called upon to explain changes in sack performance which are partly attributable to changes in the flow characteristics of the commodity. With this reservation, the following results were obtained:

1. An improvement in correlation coefficient and prediction accuracy can be achieved using combined tear with either combined T.E.A. or the combined tensile-stretch product. The improvement in prediction accuracy is especially noticeable for the 10 and 25% R.H. data.

2. For the regressions studied, the highest correlations were obtained using either C.D. T.E.A. or combined tear with T.A. impact fatigue test.

CONCLUSIONS

Considering the results as a whole, one general conclusion is that linear multiple property relationships using conventional sack paper properties offer no real advantage over linear single-factor regressions based on combined T.E.A. or some of the other paper properties. Both the single and multiple property relationships fail to accurately predict the relative performance of <u>all</u> papers. There is little indication that curvilinear regressions would materially improve predictions.

In Report Twenty-Nine, for the combined data the five best tests in order of decreasing predictive ability were:

- 1. T.A. impact fatigue
- 2. T.E.A., combined
- 3. Impulse, combined
- 4. Stretch, combined
- 5. Frag, combined

Taking test cost, calibration, etc., into account, it was concluded in Report Twenty-Nine that at the present time combined T.E.A. is the best test for evaluating sack paper in terms of face drop performance for flat and extensible papers. Despite the limitations of T.E.A., the present analysis indicates there is no simple combination of conventional sack paper properties which will yield excitingly better results.

There are at least two probable reasons for the occasional large discrepancies between predicted and observed face drop performance. First, it appears that none of the conventional properties accurately measure those characteristics of the sack paper which actually determine face drop sack performance. Second, in some instances fabrication quality in the form of crease quality, nesting, etc. may cause reductions in face drop performance which cannot be predicted by any paper test.

For the first problem it appears desirable to investigate new ways of evaluating sack paper. Various avenues of approach were suggested at the last Technical Committee meeting. These included the following:

- (a) High rate tensile tests
- (b) Examination of load-deformation curve parameter such as elastic and plastic moduli
- (c) Biaxial tension effects
- (d) Shear

Work is in progress in these areas.

The second problem requires a better understanding of those fabrication factors which may be responsible for premature failures in the face sack drop test. This would permit the proper weighting or rejection of such results in studies where the primary aim is to relate paper quality to sack drop performance.

In Appendix I a description is given of the procedure followed in carrying out this study. In Appendix II the results are presented and described in detail. Page 14 Report Thirty-Four

Multiwall Shipping Sack Paper Manufacturers Project 2033

LITERATURE CITED

 Carlson, W. E. Measurement of the strain properties of shipping sack kraft. Tappi 47, no. 5:310-12(May, 1964).

2. Report Twelve, Project 2033, Feb. 8, 1960.

3. Report Twenty-One, Project 2033, Oct. 1, 1962.

THE INSTITUTE OF PAPER CHEMISTRY

William J. Whitsitt Research Associate

R. C. McKee, Chairman Container Section

¢

for the Van der Korput or high-speed tests. The remaining tests - namely, zerospan tensile, M.I.T. fold, Instron strain fatigue, and Instron energy fatigue are considered to be research tools and undesirable for control or specification purposes. Therefore, they are not considered further in the discussion.

The analysis was restricted to the data obtained at 50% R.H. because the sack drop test results at other humidities included both commodity and paper effects. It appeared desirable as a matter of thoroughness, however, to include data obtained at 10, 25, and 50% R.H. when examining multiple relationships involving T.E.A. and Elmendorf tearing strength.

As in the previous analysis, normally satisfactory conversion is assumed. High failure frequencies in creased areas, adhesive joints, etc., are not considered in the analysis.

For this report linear multiple factor relationships between progressive height face drop and various combinations of sack paper properties were obtained. In evaluating the utility of the various relationships the following criteria were employed:

1. The regression coefficients for the properties used in a given relationship should be statistically significant at the 5% level.

2. The coefficient of multiple correlation (\underline{R}) should be as high as reasonably possible and should exhibit some improvement over the simple correlation coefficients for the individual properties being considered.

3. The paper properties involved should bear some logical relationship to face drop performance. Page 18 Report Thirty-Four

4. The sign (positive or negative) of the regression coefficients for the properties used in a given relationship should be consistent with general experience.

APPENDIX II

DISCUSSION OF RESULTS

FLAT KRAFT PAPERS - STUDIES I AND II (50% R.H.)

The multiple linear regressions obtained for this report with the flat kraft sack data are tabulated in Tables V and VI and indicate the following:

1. Two factor combinations involving tensile and tear (see Regressions 1 through 3) were not effective as the " \underline{F} " ratio was not significant at the 5% level and neither factor achieved significance in any of the three regressions. Thus, these results indicate that tensile and tear are not useful as predictors of the face drop performance of sacks fabricated from 50-lb. flat kraft paper.

2. Combined T.E.A. or the combined tensile-stretch product in combination with combined tear (see Regressions 4 and 5) gave good multiple regressions in Study II and both the work and tear properties entered significantly into the regressions. In Study I, however, the multiple correlation coefficients were not markedly higher than the simple correlation coefficient for combined T.E.A. and only the work properties exhibited significance. Thus, contradictory results were obtained from the two studies even though tearing strength varied over about the same range in the two studies (see Table IV). It may be recalled that Carlson (1) reported a high correlation for a relationship of this type using the combined tensile-stretch product with combined tear. He also noted that combined T.E.A. could probably be substituted for the tensile-stretch product. The data of these studies confirm that the two quantities (T.E.A. and tensile-stretch product) give about equal efficiencies in these regression equations for flat kraft. Since T.E.A. is dependent on the shape of the load-deformation curve as well as on the magnitudes of tensile and stretch, this result suggests that differences in curve

Page 20 Report Thirty-Four

Multiwall Shipping Sack Paper Manufacturers Project 2033

	Av. Prediction Diff., \$	24.1 24.1 23.1 24.9	18.5 18.3	18.2 13.5	15.1	16.9				18.9					•		
	Prop.]		11			:::	:	 	:::			;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;		:::			
	L Coeff. Bl Test Prop.	::::	::			:::	ſ	0.47 0.22	0.34 0.48 0.47		: : : ;8	000000 4188888	-0.59 -0.14	र्थ हो हो २ २ २			
	relation Individu Prop. 2		41.0-	00000000 98652472	0.00 0.32 47 47 25 25 25 25 25 25 25 25 25 25 25 25 25	0.48 0.47 0.53	-0.33	0.48 0.48	0.53 8.59 8.59	0.0000 747 747 80 74 80 80	0.0.0.0 8.814	0,0,0,0,0,0 44,44,44	-0.14 0.47 0.47	0.53 0.47 0.47			5 5 6 6
	for Prop.	०००० १७२४		00000000 KKKKKKK	64.0 64.0 64.0 64.0	0.72 0.72 0.72	0.48	0.72 0.72	0.72 0.72 0.72	0000000 877775 87775 87775 87775 87775 8775 8	0.053		00 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	0.72 0.72 0.22		este	ម្ពុ ស្តែរជ
	Multiple Correlation Coeff. (<u>R</u>)	0.72 0.17 0.28	0.55 0.55	0000000 000000000000000000000000000000	0.000 252 252 252 252 252 252 252 252 252	0.72 0.80 0.82	0.48	0.87 0.88	0.88 0.80 0.75	0.017 0.153 0.134 0.134 0.00000000000000000000000000000000000	0.53 0.60 0.74	250000 19000 19000 19000	0.74 0.55 0.61	0.84 0.88 0.74		directional T	 Impact fatility Impact fatility Impact fatility Impact fatility
	Fraction Variance Removed (R ²)	0,03 0,15 0,03	0,30	000000000 8888888	0.27 0.27 0.23 0.23 0.23	000 000 000	0.23	0.76 d.78	9.0 8.9 8.9 7	9.99.92 9.99.92 9.99.92	0.28 0.35 0.35	0000 222 222 222 222 222 222 222 222 22	0.35 0.35 0.38	0.78 0.55 0.55		Лог	Pol Pol
	. Properties 16 Level	None None None	None None	Rone Rone Rone Rone Rone Rone	None TA None None	TA, WC TA, WC	None .	TA, FT, WC TA, WI, FC	TA, FT, WT TA TA	Испе Испе Испе Испе SC	None None Mr, PS None	None MT, PS None None None	None None None	TA TA, WC, PS WT, WC, PS	lows:	tional Tests tross Combined	855888855 86688855 86688855
(N = 20)	Significant 5% Level	None None None	AT	None None TA None None None	None TA None None	TA, WC TA, WC TA, SC	Копе	TA,FT,WC TA,FT,WI,FC	TA,FI,WT WT,TA TA	WC None None None SC SC	SZ (S	Mone WT, FS WT WT WT, FS.	PS V/C None	TA, WT, PS TA, WC, PS WT, WC, PS	perties Coded as Fc	<u>Direc</u>	x stretch AI if tear EI SI MI
	Regression Significance (<u>F</u> -Test)	0.10 252 75	3.6 5.75	४४.०१ <i>५.५५</i> ४३,७४४२७ १	रूर्ट्स् इंह्रनस्टर्	9.07 ^c	2.51		18.42° 9.35° 6.80°	୪୯୯୮୦୯ ୪498%	5.34 4.65 10.23 2.31	9.0.0.0.0.4 4.5.4 4.6.6 4.6.6.6	4.54 2.32 3.23	13.07° 18.42° 6.43°	Test Pro		Tensile Tensile Elmendor Stretch T.E.A Impulse Frag
	Constant	fatigue 716.0 1035.5 1134.9	-328.1 -301.6	2.588.99 2.588.9 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5	-3.0 67.6 244.2 -17.6 -3.1	174.3 15.3 17.5	234.6	16.8 13.0	61.5 4.3 26.9	30.9 151.1 1	18.5 471.2 -102.6 -314.5	-536.7 -59.2 -176.3 -178.8 198.7 -121.5	-68.1 -291.4 616.9	-70.4 -8.5 -108.7			
	Property .	- T.A. 1mpact	11			111	1	 0.95 FC	 			83 9 9	-6.1 PS		.ជុ ភូមិ: :		
	efficients ^a Property 3	correlation -				: : : :	ł	16.1 WC 392 WI	-0.95 FT -0.32 FT -0.02 FC		0.31 BC	8.45 8.47 8.47 8.47 8.4 8.4 8.4 8.5 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	-8.99 ST 1.02 ET 12.5 TT	-4.45 PS -3.78 PS -5.72 PS	+ <u>1</u> , + <u>1</u> ,		7, 1964.
	Regression Co Property 2	ingle factor -2.08 편 -2.04 편 -1.13 편	0.98 ET 1.03 ET	9.05 IT 0.070 FT 9.13 TA -0.25 FT 0.051 FT 0.107 FC 52.4 ST	0.14 FT 9.17 TA 9.08 BA 0.087 FT 0.224 FC	-0.014 FT 343.0 WC 146.7 SC	-0.27 BA	見まっ	395 WT 509 WT 214 WT	459 WC 23.9 IC 0.34 PC -15.0 TC 0.18 EC 0.18 EC 65.3 SC	0.115 BC -8.81 TT -5.69 PS 1.04 ET		-0.13 ET 522 WC 382 WC	427 WE 471 WC 659 WC	uation <u>1</u> = <u>a</u>	t 5% level. t 1% level.	port 29, Feb.
	Froperty 1	Highest si -1.4 TI -18.4 TC -8.2 TT	3.91 AT 51.0 WT	321.4 m 336.3 m 200.5 m 200.5 m 200.5 m 200.5 m 200.2	16.0 日 22.0 日 22.9 日 16.3 日 16.3 日	11.2 TA 10.0 TA 9.7 TA	0.25 FT	15.6 TA 16.9 TA	16.9 TA 12.4 TA 9.2 TA	22,00 H 27,00 H 27,00 H 20,00 H 12,00 H 158,00 H 159,00 H 150,00 H 150,000 H 150	141.6 WT 161.1 WT 668.6 WT 510.0 WT	396.2 WT 660.8 WT 168.7 WT 1199.7 WT 512.6 WT 512.6 WT	727.5 WP 474.5 WI 719.4 WI	7.28 TA 9.79 TA 701.5 WI	gression Eq.	gnificant ai gnificant at	ken from Rej
	ġ.	AHQN	<i>a</i> 10	6200040	54565	ဆိုတို့ပို	ត	សក	ዳ	7 8888238	5456	5888444	ひもむ	<u> ሳ</u> ር- ፅ	E.	ន្លីនី	.е Г

FLAT KRAFT MULTIFIE LINEAR CORRELATIONS FOR STUDY I AT 505 R.H. TABLE V

FLAT KRAFT MULTIPLE LINEAR CORRELATIONS FOR STUDY II AT 50% R.H.

TABLE VI

Page 21 Report Thirty-Four

Av. Frediction Diff., \$ 22.5 21.3 18.9 12.1 10.1 с. 5.7 10.8 Prop. Correlation Coeff. for Individual Tests op. Prop. Prop. 1 2 5 0.0.55 86.05 87.56 0.35 0.85 0.85 0.25 0.35 0.50 111111 :::: 0.33 0.000 88888 88888 0000888 888888 0.16 0.16 0.16 0.16 0.16 0.16 000 8888 0.70 0.05 0.05 0.05 0.05 0.05 0.76 0.75 0.35 0.85 188 188 0.08 0.08 ;; A & & & & 0.000.000 81138 81138 81138 81138 81138 00000 888888 0.66 62.00 67.00 67.00 67.00 88885 88885 8.88 .83 0000000 888888888 11 T.A. impact fatigue Scattering coeff. Burating strength Porosity Wondirectional Tests Multiple Correlation Coeff. (<u>R</u>) - <u>9 9 9 9</u> - 884 8 9000 84 23 0.79 0.88 0.82 0.82 0.82 0.82 60000 788299 11 8888 0.95 0.000 88.000 88.800 88.800 Praction ariance Removed (H⁻) 000 000000 F&4 600848 -448.00 86.89 99999999 999999 9644686 222228 0.75 0.88 0.89 0.70 67 50 50 50 50 50 °.8 88 :: ដដ ម៉ូម៉ូ Significant Properties Directional Tests In Cross Combine None None None est Properties Coded as Follows: 255885558 None NT None NT None NT None None None None NT NT NO (टा = म्र) WI, WC, WI, WC WI WC ងដ ម៉ូម៉ AER22EE None None None Tensile x stretch Tensile x stretch Elmendorf tear Stretch T.E.A. Impulse Frag Regression Mgnificano (<u>F</u>-Test) 155.55 16.85 16.85 16.95 18.0° 10.3% 10.3% 10.5% 11.0% 1. 8.83 0.11 20.11 20.11 20.11 20.11 20.21 28.50 7.0 2,84 -823.6 97.4 -170.3 -0.1 -858.9 -496.8 -811.5 -811.5 -1124.4 23.5 -14.6 28.2 36.5 -953.6 -266.7 -1160.7 -501.1 -501.1 -501.1 -508.9 -508.9 -508.9 -519.6 -510.0 -510.0 Constant combined 716.0 -118.5 -1205.7 - - 56. - 56. 979-5 801.1 Property ai ai stretch, --11 : ^aRegression Equation: $\underline{Y} = \underline{a} + \underline{b} \underline{x}_1 + \underline{c} \underline{x}_2$ ^bSignificant at 5% level. 요티 Regression Coefficients^a Property Property 2 675 WC 587 WC 617.5 WT 0.61 PS 662 WC single factor o 1.03 ET 3.03 ET 2.14 EC 2.14 EC 2.98 ET 4.90 II 9.028 II 9.11 EX 9.11 EX 1.11 EX 1.11 EX 0.082 EX 7.22 ST 7.22 ST 2.57 EX 2.57 EX 2.57 EX 2.57 EX 2.57 EX 2.57 EX 2.68 EX 0.081 FY 2.55 EX 0.081 FY 0.081 FY 0.081 FY 0.081 FY 0.082 FX 0 0.33 FT 529 WC 97.7 SC 96.5 ST 3.40 BA 555 WC 56.8 IC 0.66 FC -3.83 EC 95.8 SC 95.8 SC 2.54 ET 2.13 ET 텋텋텋 csignificant at 15 level. 11 ۵<u>5</u> 874.0 MT 7251.2 WT 769.6 MT 769.9 MT 708.9 MT 708.9 MT 992.0 MT 1220 MT 1220 MT 2221 TTR 685.3 UTR 685.3 UTR 724.1 WT 756.0 WT 673.8 WT 647.1 WT 7.10 명 7.46 명 781 년 781 년 781 년 781 년 2.91 11 2.63 11 2.85 11 286 11 286 11 5.83 AT 748.0 WT Elghest s 13.4 TT 8.67 TC 14.82 TT Property 11 < このう すう のてののひはむ おれなおけ おひのぬみ おお みなみ かみみかれた ガネジング あかみれる みなみみる ġ.

shape among flat kraft samples are not great enough to affect correlations with face drop. Also, the results for both studies indicate that T.E.A. is more important than tearing strength to flat kraft face drop performance. In general, it appears that tearing strength is not a strong factor in face drop performance though it may be of importance in other aspects of sack performance - e.g., snagging, nail tears, etc.

3. Of the two factor combinations involving combined T.E.A. and a second factor (see Regressions 6-12, 33-35), the multiple correlation coefficients were in most cases only a little better than the highest simple correlation coefficients exhibited by the properties in question. A relationship of possible interest in terms of relevance to theory was exhibited by the combination of combined T.E.A. and porosity in Study I. Both factors were significant at the 1% level and the signs of their coefficients were in the proper sense. However, in Study II porosity was not a significant factor. The difference in results between the two studies apparently arises from the fact that the porosity of the sheets in the second study did not vary over as wide a range as in the first study (see Table IV) - thus masking its possible importance in the second study. It can be argued that porosity should be a significant factor since a very low permeability could lead to higher pressures on the sack walls. The results of this analysis are not sufficient, however, to establish its degree of importance.

4. For the series of two factor regressions involving combined impulse and a second factor (see Numbers 13-17), no favorable relationships were found in which both factors were significant and/or the multiple correlation coefficients exhibited any great improvement over the related simple correlation coefficients. 5. For two factor regressions involving the in and cross-machine directions of various properties (see Numbers 27-32) no great improvements in correlation over the individual directional correlations were obtained for Study I. For Study II, Regressions 27 and 32 involving T.E.A. and stretch, respectively, exhibited improved relationships with both directions entering significantly at the 5% level. While it seems reasonable to expect that both machine and cross-machine T.E.A. would be involved in face drop performance, the failure of machine direction T.E.A. to show significance in both studies is disappointing.

6. In a series of three and four factor equations involving combined T.E.A., combined tear, and a third factor (see Regressions 36-42), no relationships were obtained for either study in which all three or four factors were significant. For Study I the best multiple correlation coefficients for Regressions 36-42 were obtained in Regressions 38 and 42; however, combined tear was not a significant factor and its coefficient exhibited a negative sign. For these equations it is evident that the improvement in correlation is due to combined T.E.A. and porosity. For Study II, the highest multiple correlations in Regressions 36-42 were obtained with porosity or scattering coefficient or combined tensile and porosity as the third and fourth factors. However, the additional factors were not significant.

7. A number of improved correlations were obtained in equations involving the T.A. impact fatigue test and other factors. In Regressions 19 and 20, C.D. stretch, combined stretch, or C.D. work were significant factors for both studies along with T.A. impact fatigue. Regression 24 involving the T.A. impact fatigue test, combined work and M.D. frag exhibited a high correlation for Study I; however, the coefficient for M.D. frag was negative.

Page 24 Report Thirty-Four

8. For both studies, the 50-lb. flat kraft results may be summarized as follows:

(a) Excluding fatigue properties, regression equations were obtained in which the following properties were significant either for Study I or Study II:

	Paper Property 1	Paper Property 2	Study
1.	Combined tensile x stretch	Combined tear	II
2.	Combined T.E.A.	Combined tear	II
3.	M.D. T.E.A.	C.D. T.E.A.	II
4.	M.D. Stretch	C.D. Stretch	II
5.	Combined T.E.A.	Porosity	I

(b) The failure of any of the above equations to be equally effective for both studies casts doubt on their general applicability. Because of this fact, predictions based on any of the relationships may not be superior to predictions based on combined T.E.A. alone. This suggests that additional ways of evaluating sack paper are needed.

EXTENSIBLE KRAFT PAPERS - STUDY II (50% R.H.)

The multiple linear regressions studied are summarized in Table VII. The highest multiple correlation coefficients were obtained using the scattering coefficient (simple correlation coefficient = 0.91) in combination with other properties as follows:

	Av. Prediction Diff., \$	9.7 23.7 26.1	21.3 4.61	15.3 15.1	14.6			1.21	17.0	<u>л</u> .					
	Prop.	:::	::			:::	;	:::				:::::			
	n Coeff lual Tes Prop. 3	:::	Ļł			: 89: :	;	-0.47 0.83	9				0.55 0.07 0.11 0.33		
•	Frelatio Individ Prop. 2	9.13 0.01 0.07	70.0 70.0	0.52 0.38 0.38 0.33 0.36 0.33 0.35	0.74 0.82 0.83 0.83 0.36	0.74 0.83 0.62	-0.91	0.0 0.0 0.0 0.0 0.0	0.00 0.00 0.00 0.00 0.00	86.0000 86.68 87.0000 86.68 87.0000 86.69 86.60000 86.60000 86.60000 86.60000000000	0.17 0.33 0.33 0.07 0.07	0.07 0.0 70.0 70.0 70.0	0.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0	_	2 2 2 2 2
	Prop.	92.0- 84.0 11.0	0.63	୦୦୦୦୦୦୦ ଉଉତ୍ତର୍ଜ୍ଜ୍	8.00 8.00 8.00 8.00 8.00 8.00 8.00 8.00	0.82 0.91 0.83	1-L-0	0.83 0.74 0.82	8.0 8.8 7	94.00 94.000	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.00 0.69 0.69 0.69 0.69 0.69 0.69 0.69	0.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0	al Teats	tigue Fr. Fr.
	Multiple Correlation Coeff. (\underline{R})	-0-0-0 0-0-0-0 0-1-0	0.60 0.66	888999000 888999000 8999999999999999999	૦૦૦૦૦ જેલ <u>વ</u> ે છુ છુ	8.0 96.0 88.0	0.93	0.93 0.93 0.86	0.03	589 898 589 888	୦୦୦୦୦ ୫୯୯୫୫୫	00000 840000 84000000000000000000000000		Nond1rect1on.	.A. impact fai cattering coe: ursting streng orosity orosity
	Fraction Variance Removed (<u>R²</u>)	0.22 0.024 0.02	0.36 0.43	99999999 492858533	0.09 0.67 0.09 0.09 0.09 0.09 0.09	0.68 0.92 87.0	0.86	0.89 0.87 0.75	999 F	5.00 84.00 84.00	90000 43334	0.43 0.88 0.43 0.43 0.43	0.43 0.70 0.70		Ει Ο Φ. Φ.
	roperty 15 Level	None None None	None None	N ODE FT FT KT WODE	FT FA FT Kone	None 3A, FI FI	BA	EA TA, ZI Nome	NC TA	None FI EI None None	None None None None	None BA None None None	None None TA TA	wa: onal Tests oss Combined	AC AC AC AC AC AC AC AC AC AC AC AC AC A
$(\eta T = \overline{N})$	Significant P 5% Level	None None None	AT	WT FT TA WT WT None	FT TX FT FT TT	та, ва, гт ит, ва, гт ит, гт	Na -	BA, FI TA, XC, ZI None	TA TA WC	None FI None EI, BC None	wr wr Wr Kone	WT BA None None Yone	None NG DA AG	rties Coded as Folic <u>Directi</u> <u>In C</u> r	atretch AI tear 21 81 81 81 11 11 11 11 11 11 11 11 11 11
	Regression Significance (F-Test)	1.55 1.77 0.12	4.54 4.54	4 0 1 1 9 1 2 8 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	7.96° 11.16° 12.31° 3.49	1.76° 	µ.28°	: ۱ ، «	6.4 ⁶ m ⁶ r		م	υ	ອດຄວາມ	est Prope	Tensile x Tensile x Zimendorf Stretch T.E.A. T.E.A. Truguise Frag Zeró-span " M.I.T. fol
	stant	1000				-	(°)	9	2.5	, , , , , , , , , , , , , , , , , , ,	4.2 2.69 2.69 2.69 2.69 2.69 2.69 2.69 2.	2.54 2.53 2.53 2.53 1.73		E1	
	Con	oefricte -450. 708. 75.	718.8 265.1	-541.8 -769.9 -11.2 -559.1 -770.3 -374.0	-578.3 127.1 3315.6 -409.1	1 4.711- 8.04 194.1	3031.5 3		-599.4 6.2		-913.1 4.27 -616.6 3.69 - 396.0 3.63 - 339.0 2.79 -224.5 2.60	322.8 2.54 3040.7 24.35 266.1 2.53 117.9 2.54 229.0 1.77	381.2 1.7 -1276.8 4.00 42.8 4.36 -188.1 12.96 -216.3 7.96	е	
	Property 4 Con	cattering coefficie 450. 708. 753.	718.8 265.1	8.142		1 4.711 4.04 1.94.1	3031.5 3	#5.5 23.3 317.9 9					2.50 PS 30.2 1.77 1276.8 4.30 142.8 4.30 180.1 12.99 1180.1 12.99	сп, 201	
	Coefficients ^a Property Property 3 t	orrelation - scattering coefficie 708. 708.	718.8 265.1		-578.3 1.271.1		3031.5 3	-18.9 ZI 23.3 -18.9 ZI 23.3 1.03 FI317.9 9	0.36 PT			2.50 F8 322.8 2.54 -11.2 BM 320.0.7 24.35 0.13 FT 206.1 2.53 3.13 TT 117.9 2.54 3.46 TT 2.69 F8 229.0 1.73	-0.22 ST 2.50 FS 381.2 1.7. 2.66 ST 1276.8 4.30 12.81.1 12.99 	μ. 	
	Regression Coefficients ^a Property Property Property Com	Sle factor correlation - scattering coefficie 14.0 EI	-3.61 हार 718.8 -2.79 हार 265.1	-25.7 IT	0.92 FT	0.28 FT117.4 1 0.59 FT 25.8 NT 40.8 41.1 NT 1.94	-10.6 BA 3031.5 3	-y.i. BA +>.: 7.63 TM18.9 ZI 23.3 7.1 WT 1.03 FI317.9 9	128 MT 0.36 MT	96.6.10	12.0 ж	-3.15 ET 2.50 FS 302.8 2.54 0.28 ET -11.2 BA 3040.7 24.35 0.28 ET -11.2 BA 3040.7 24.35 2.64 ET 3.13 TT 117.9 2.54 2.64 ET 3.14 TT 2.69 FS 229.0 1.73	-3.14 ET -0.22 ET 2.50 FS 351.2 1.77 1970 wc 2.66 ET 1276.3 4.30 2039 wc -20.2 TT 42.8 4.3 11.9 EX1281.1 12.39 11.2 TA 2.46 FS216.3 7.39	tion: $\underline{Y} = a + \underline{h}_{x_{1}} + \underline{c}_{x_{2}} \cdots \underline{d}_{x_{n}}$. \overline{Y} level. Is level.	
	Regression Coefficients ^a Property Property Property Oom 1	Highest single factor correlation - scattering coefficie -1.1 Tr 14.0 ET	4.17 AT -3.61 ET 718.8 740 MT -2.79 ET 265.1	1230 WT -25.7 IT541.8 376.8 WT 0.83 PT769.9 4.6 WT 13.9 CM	ID.9 IT 0.92 FT -578.3 -4.3 IT 15.8 EM -578.3 -1.3 IT IT 15.8 EM -578.3 1.11 IT IT 1.15 EM 3315.6 1.12 IT 1.76 IT 930.1 22.2 IT 1.16 FT -000.1	11.8 TA 0.28 FT117.4 1 -8.0 BA 0.69 FT 25.8 NT 40.8 1.47 FT 41.1 NT 1.94	0.34 PT -10.6 BA 3031.5 3	0.10 Fr9.1.BM	9.36 TA 135 WT 0.36 PT	8.50 III 96.6 III	669.2 WT 12.0 BG -913.1 4.27 669.2 WT 7.28 -916.6 3.69 702.3 WT -3.06 ST -916.6 3.69 702.5 WT -2.08 ST 9.52 BG -379.0 2.79 729.5 WT -2.08 ST 9.52 BG -339.0 2.79 12086 WT -1.1.6 ST -17.7 TT -2.06 2.60	TJ3.1 Wr -3.15 km 2.50 ks 32.8 2.54 789.0 Wr 0.28 km -11.2 ks 360.7 s ¹¹ .3 34.55 789.0 Wr 2.79 km -11.2 ks 366.1 s ¹¹ .3 24.55 789.0 Wr 2.79 km -11.8 ks 366.1 s ¹¹ .3 24.55 789.6 Wr 2.79 km -11.8 ks 366.1 s ¹¹ .3 27.3 739.6 Wr -2.64 km 3.13 km 117.9 s ¹² 2.94 704.6 Wr -3.01 km 3.46 km 2.69 Fs 229.0 1.77 27.47	715.5 WT -3.14 BT -0.28 ST 2.50 BS 1.71 286.0 WT 1507 WT 2.66 -1276.83 4.03 284.17 WT 2098 WC 42.4 4.33 669.11 WC 11.9 PA 128.1 12.39 739.6 WC 11.2 PA 128.1 12.39 738.1 WC 11.2 2.46 FS -128.1 12.39 739.6 WC 11.2 2.46 FS 216.3 7.99	ression Equation: $\underline{Y} = a + \underline{b} \mathbf{x}_1 + \underline{c} \mathbf{x}_2 \cdots \underline{d} \mathbf{x}_n$. Ifficant at 5β level. Ifficant at 1β level.	

TABLE VII

.

.

•

EXTENSIBLE KPAFT MULTIPLE LINEAR CORRELATIONS FOR STUDY II AT 505 R.H.

Page 26Multiwall Shipping Sack Paper ManufacturersReport Thirty-FourProject 2033

	No.	Regression Equation	Multiple	Corr.	Coeff.
	9	F = 261.5 WT - 11.1 BA + 3073.4		0.94	
	15	F = 11.1 IT - 11.6 BA + 3315.6		0.94	
	22A	F = 0.76 FI - 9.1 BA + 45.5		0.94	
	19A	F = -8.0 BA + 0.69 FI + 25.8 NT + 1	+0.8	0.96	
	39	F = -11.2 BA + 250 WT + 0.28 ET + 3	3040.7	0.94	
where	F	= face drop, safe inch			
	BA	= scattering coeff., mµ			
	WT	= combined T.E.A., in. lb./in. ²			
	IT	= combined impulse, mNs			
	FI	= M.D. frag, kg. m. $\times 10^{-4}$			
	NT	= combined Instron strain fatigue,	cycles		
	ΕT	= combined Elmendorf tear, g./sheet	t		

In the relationships above, each property was significant at the 5% level and, in some cases, at the 1% level. Equations 19A and 22A utilized fatigue properties and would not be considered suitable for control purposes. If scattering coefficient - a measure of the unbonded area - is considered unsuitable for specification purposes, then the remaining equations would also not be useful.

Excluding the regressions involving the scattering coefficient or fatigue properties, none of the relationships involving combinations of conventional properties appeared promising. In general, one or more of the properties in each equation failed to exhibit significance at even the 5% level. Also, where high multiple correlation coefficients were obtained, inspection indicated very little improvement over the highest simple correlation coefficient for the particular properties. For the regressions studied, this indicates there is little to be gained from the use of conventional properties in multiple regressions for these data.

In regressions involving tensile and tear (see Regression Equations 1-3) low multiple correlation coefficients were obtained and neither factor was statistically significant. In regressions involving combined T.E.A. and combined tear, the multiple correlation coefficient was only slightly higher than that obtained for T.E.A. alone and tear was not a significant factor. Therefore, these data do not indicate that combinations of tensile and tear or T.E.A. and tear are particularly useful for predictions of the face drop performance of 50-lb. extensible kraft sack paper.

COMBINED DATA (50% R.H.)

The multiple regressions obtained using the combined data for both flat and extensible kraft are shown in Table VIII. As in the case of the flat and extensible kraft data, tensile and tear did not give useful regressions (see Regression Equations 1-3). Their multiple correlation coefficients were lower than many of the more favorable simple correlation coefficients. The tensile regression coefficients were negative in all three Equations because of the generally lower tensile strengths exhibited by the extensible kraft samples. Negative regression coefficients were also associated with M.D. and combined tear in Regression Equations 1 and 3. Therefore, the two-factor multiple linear regressions indicate that tensile and tear taken together fail to be well related to face drop performance of the 50-lb. regular and extensible kraft sacks of this study. Page 28

Report Thirty-Four

Av. Prediction Diff., \$

111 Correlation Coeff. for Individual Test 00000000 6000000 800000 Prop. ₽ 0.41 0.41 000000000 88888888888888 :-0 Multiple Correlation Coeff. (<u>R</u>) 86.00 87.05 87.25 999998888 888888888 Fraction Variance Removed (<u>R</u>²) 9,92 9,92 9,92 50° (9† = īi)

16.7 32.6 33.0 33.0 19.6 118.4

14.9

16.3

8.9.9.9.9 8.9.9.88

0.67 0.85 0.85 -0.37 0.0 888 888

0.93 93

0.99 9,99 0.67 0.95 949

0.67

0.93 0.93

0.45 0.91 0.88

14.9 19.0

0.87 0.87 0.87

000 00000 00000 8888 848888 866944

000 000000 00000 888 8886588 888888

00000 8888888

4 8 A					ыĘ		L	•					
Properties 15 Level	E Sa E	AT WT	17 17 17 17 17 17 17 17 17 17 17 17 17 1	н та та та та та та та	TA, WI, S TA, WI, SI	Ŀ	TA, ST, W TA	ឌ ឝឝ	н, « 11, » 1, « 11, « 11, « 11, » 1, « 11, « 11, » 1, » 1, « 11, » 1, » 1, « 1, » 1, » 1, » 1, « 1, » 1, » 1, « 1, » 1, » 1, » 1, « 1, » 1, » 1, » 1	MT MT WI Wone	MT MT MT MT	WT, WC WT, WC PA, WC TA, WC TA, WC WT, WC	
Significant 56 Level	H SS H	AT WT	KT KT, FT TA KT, BK KT, FT KT	н, г. См. П. в. П., в. П. г.	TA, WI, SI TA, WI, SI TA,WI,SI,WT	μ	TA, ST, WI TA, ST	AT TA	HI, KC FI FI SC SC SC		TA Na Na Na Na	WI WI, WC WI, WC TA, WC TA, WC WI, WC	les Coded as Follow
Regression Significence (F-Test) ^b	27.1 7.49 23.3	72.2 79.9	929 927 96.0 96.6 96.6 96.6 96.6 96.6 96.6 96.6	82.5 140.5 87.2 88.0	139.4 	17.88	::	%. 7.% 8.0	8888 74-86-89 2-96-8-4-0-0	81.0 80.0 84.4 52.9 52.1	55.0 88.4 52.1 41.7	40.4 57.8 55.9 116.1 61.9	Test Propert
Constant	1670.1 161.9 1800.3	35.6 -76.2	-12,4 -25,5 67,5 67,5 67,5 -115,8 -15,8 -15,6 -35,6	-281.5 91.5 755.9 -141.0 -218.1	133.9 140.5 123.8	421.2	135.5 152.4	91.6 62.2 41.8	-169.1 -150.7 -86.5 -86.5 -19.6 -19.1	-157.8 -112.4 -22.0 -232.2	34.1 437.0 -85.5 -85.5	4.554 2.54 2.54 2.54 2.54 2.54 2.54 2.54	
					5				· • .		8	<u>ደ</u>	•.
Property 4	fatigue	::	1111111	11111	350	i	::	111		•	7 . 1	ሚ () ጥ	រង្ រ ី :
efficients ^e Property Property 5	- T.A. impact fatigue	::				:	IN 662-	-0.12 FT 0.0053 FT 0.041 FC		· · · · · · · · · · · · · · · · · · ·		-0.15 昭 -3.8 1.10 昭 -3.8 -1.55 昭 -1. -2.8 -2.8 -2.8 -1.30 昭 -1.	· <u>b</u> x ₁ + <u>cx</u> ₂ ··· <u>dx</u> _n
egression Coefficients ^E Property Property Property 4	ngle-factor - T.A. impact fatigue -1.52 EI 8.46 EC -0.26 ET	-0.20 50	나 00 00 00 00 00 00 00 00 00 00 00 00 00	0.30 FT 12.2 FT -1.24 FK -7.24 FK -0.70 FT -0.55 FC	-0.024 FT	0.23 BA	60,4 ST	71 100 00 0000 100 0000 100 0000 100 00000 100 000000	771 WG 38.5 IC -0.053 FC -2.5 TC -2.5 TC -2.5 TC -1.7 EC -1.7			0.16 ET -0.15 ET -5.5 800 KT -1.10 ET - 776 KT -1.10 ET - 776 KT -1.57 ET - 776 KT -1.57 ET - 776 KT -1.0 ET - 860 KT -4.70 FS -	on: <u>I</u> = <u>a</u> + <u>bi</u> ₁ + <u>cit</u> 2 ··· <u>dt</u> a
Regression Coefficients ^R Froperty Property Property 4 4	Highest single-factor - T.A. impact fatigue -32.2 TT -1.52 ET -9.60 TC 8.46 EC -25.20 TT -0.26 ET	3.24 AT -0.20 ET	53 WT -1-53 HT 1486 WT -0.68 HT 112 WT -0.68 HT 112 WT -0.68 HL 112 WT -0.58 HL 113 WT -0.58 HL 114 WT -0.58 HL 114 WT -170 HT 114 WT -170 HT	3.0 田 0.30 昭 2.72 田 12.2 昭 5.21 12.2 昭 15.1 町 -174 昭 5.51 回 -176 1 26.3 田 0.35 昭	13.5 ft -0.02 ^h FT 12.5 ft 12.7 ft 12.5 ft 13.6 ft 1.25 ft 13.6 ft 1.15 ft 350	0.88 FT 0.23 BA	12.4 TA 60.4 ST -539 WT 10.4 TA 14.2 ST	11.5 FX 120 WT -0.12 FT 10.6 FX 11Å WT 0.0053 FT 10.5 TX 121 MT 0.014	460 47 771 46 2.2 21 31.5 15 1.34 27 -0.035 75 -31.3 27 -0.035 75 -31.1 27 0.037 75 -31.1 27 10.7 75 90.1 37 98.1 28	176 kr. 3.28 kr. 569 kr. 1.68 kr. 568 kr. 3.68 kr. 469 kr. 0.28 kr. 541 kr. 0.28 kr. 541 kr. 0.28 kr. 541 kr.	211 WF -0.25 町 -5.26 WF 4.29 WF 1.88 ビー-5.64 WF 4.91 WF 0.21 町 -5.65 WF 510 WF 0.27 町505 MF 510 WF 0.28 町 1.57 冊 -4.44	509 WT -0.15 ET -0.15 ET -5.15 HZ7 WT 84.0 WT 1.10 ET -1. HZ7 WT 776 WT -1.10 ET -1. 12.5 WT 2776 WT -1.25 FT -1. 12.5 WT 2771 WT -2.80 FS -1. 12.5 WT 2771 WT -2.80 FS -1. 12.5 WT 2771 WT -2.80 FS -1. 16.6 WT 2771 WT -1.50 FS -1. 17.6 WT 2771 WT -1.50 FS -1. 17.6 WT 2771 WT -1.50 FS -1.50 FS -1. 17.6 WT 2771 WT -1.50 FS -1.50 FS -1. 17.6 WT 2771 WT -1.50 FS -1.5	sion Equation: $\underline{Y} = \underline{a} + \underline{b}\underline{x}_1 + \underline{c}\underline{x}_2 \cdots \underline{d}\underline{x}_n$
Regression Coefficients ^a Property Property Property No. 1 ^b ⁴	A Highest single-factor - T.A. impact fatigue 1 -32.2 ET -1.52 ET 2 -9.60 TC 8.46 ET 5 -25.20 ET -0.26 ET	4 3.24 AT -0.20 ET	6 533 WT -1-35 IT 426 WT -0.56 FT 9 472 WT -0.66 FT 10 311 WT -0.26 FT 11 554 MT -1.56 FT 12 506 FT 12 506 FT 13 47 47 75 14 47 75 15 47 47 15 47	13 23.0 Ⅲ 0.30 Ⅲ 14 2.72 Ⅲ 12.2 Ⅳ 15 25.1 Ⅲ 2.2.2 Ⅳ 15 25.1 Ⅲ 3.24 № 11 15 15.1 Ⅲ 0.70 № 11 28.3 Ⅲ 0.25 № 11 28.3 Ⅲ 0.25 № 11	18 13.5 FM -0.02 ^h FT	21 0.88 FT 0.23 BA	223B 12.4 TA 60.4 ST -539 WT 233B 10.4 TA 14.2 ST	24 11.5 TX 120 WT -0.12 FT 25 10.6 TA 114 WT 0.0063 FT 26 10.5 TA 121 WT 0.001 FC	27 460 41 771 40	33 476 km 3.28 km - 34 508 km 1.05 km - 35 506 km 3.08 km - 35 450 km 0.08 km - 36 459 km 0.08 km - 37 347 km 0.02 km 3.28 km	38 511 WT -0.23 ET -5.28 FS 59 社会 WT 1.88 ET -5.64 HM 10 均の YT 0.17日 -0.05 ET 11 510 WT 0.23 ET 1.55 ET 12 551 WT 0.28 ET 5.51 TT -4.44	13 509 WT 0.16 ET 0.15 ET -5.15 14 145 WT 140 WC 1.10 ET - 15 156 WT 776 WC 1.10 ET - 16 12.5 TX 776 WC - - - 17 12.5 TX 776 WC - - - - 17 12.5 TX 177 WC -	^a Regression Equation: $\underline{X} = \underline{a} + \underline{b}\underline{x}_1 + \underline{c}\underline{x}_2 \cdots \underline{d}_n$

4444

00000 888888

00000 898888

88886688

8888448 888848

2282 Nondirectional Tests T.A. impact fatigue Scattering coeff. Bursting strength Porosity

Directional Tests In Cross Combine VEESSEE 222222222 AE 8 8 2 1 5 Tensile x stretch Tensile x stretch Elmendorf tear Stretch T.E.A. Tmulse Frag

t;

Significant at 15 level.

TILV AIRAT

MULTIPLE LIREAR CORRELATIONS FOR FLAT AND EXTENSIBLE KRAFT AT 50% R.H.

When combined T.E.A. or the combined tensile-stretch product was used with combined tear (see Regression Equations 4 and 5) the multiple correlation coefficient of 0.89 was equal to the simple correlation coefficient obtained with combined T.E.A. alone. Combined tear was not a significant factor in either regression. Thus, these data indicate that two-factor multiple regressions based on combined T.E.A. and combined tear offer no advantage over a simple regression based on combined T.E.A. alone.

Excluding fatigue properties, small improvements in correlation coefficients with all factors significant were obtained in the following cases:

Regression No.	Properties	Mult. Corr. Coeff.
9	Combined T.E.A. (0.89) and scatt. coeff. (-0.37)	0.90
27	M.D. T.E.A. (0.85) and C.D. T.E.A. (0.55)	0.89
28	M.D. impulse (0.85) and C.D. impulse (0.54)	0.87
32	M.D. stretch (0.85) and C.D. stretch (0.66)	0.88

Note: Figures in parentheses are simple correlation coefficients from Report Twenty-Nine.

None of the multiple regressions noted above appear to offer any major improvement over the best simple regressions obtained for individual properties such as combined T.E.A.

It may be remarked that properties such as tensile, tear, stretch, T.E.A., and impulse fail to predict the relatively poor performance of a number of flat and extensible paper combinations. To illustrate this, Regression Equation 5 was used to estimate the 50% R.H. face drop performance of all runs. The results are shown in Table IX. Differences greater than 25% were recorded for flat kraft runs C, G, N, P, T, EE, KK, and LL. For the extensible kraft

Page 30 Report Thirty-Four

Multiwall Shipping Sack Paper Manufacturers Project 2033

TABLE IX

COMPARISON OF OBSERVED AND PREDICTED VALUES OF 50% R.H. FACE DROP SACK PERFORMANCE

(N = 46)

-	Face D	rop, safe inch	
Run	Observed	Predicted	Difference, %
	Fla	at Kraft - Study I	
А	411	397	-3.5
в	295	294	-0.3
C	608	. 431	-29.1
D	494	454	-8.1
Е	465	451	-2.9
F	476	391	-17.8
G	326	495	52.0
H	374	421	12.7
Ι.	258	304	17.8
J	330	375	13.8
K	489	423	-13.5
L	358	376	5-1
M	434	404	-7.0
N	192	335	74.7
0	303	315	3.9
Р	536	390	-27.1
Q.	481	498	3.5
R	417	358	-14.3
S	425	359	-15 7
T	600	389	-35-2
-			
	<u>F1</u>	at Kraft - Study II	
AA	401	408	1.8
BB	370	356	-3.8
CC	435	360	-17.3
DD	288	335	16.3
EE :	201	297	47.9
FF	222	256	15.5
GG	316	369	16.9
HH	296	303	2.6
II	338	370	9 . 5
JJ	487	445	-8.7
KK	262	345	31.8
LL	281	390	38.7
	Exten	sible Kraft - Study II	
MM	855	760	-11.1
NN	987	849	-14.0
00	1144	1003	-12.3
PP	781	698	-10.6
ରୁର	1023	871	-15.0
RR	1288	1055	-18.1
SS	438	657	50.0
TT	565	856	51.6
UU	585	994	70.0
vv	1038	986	-5.0
WW	807	673	-16.7
XX	650	865	33.1
YY	727	819	12.6
ZZ	951	829	-12.8
		329	پ د عليد ب
Grand	average		19.6

Note: Predicted values calculated from the following equation:

F = 493 WT + 0.13 ET - 76.2

where F = face drop, safe inch $W\overline{T} = \text{combined T.E.A.}$, in lb./in.² $\overline{ET} = \text{combined Elmendorf tear}$, g./sheet

runs, differences greater than 25% were obtained for Runs SS, TT, UU, and XX. Certain of these differences may be explainable in terms of crease strength - e.g., Run N exhibited the largest loss in cross-machine T.E.A. in the side crease in Study I (2). In most cases, however, the reasons for the discrepancies are unknown. While T.E.A. explains the face drop performance of many sack papers, the foregoing observations suggest that additional methods of measurement are required. For this reason, work is going forward in this area.

The multiple correlation coefficient of 0.89 for the two-factor regression involving in and cross-machine T.E.A. was slightly better than the simple correlation for machine-direction T.E.A. and much better than that for cross-direction T.E.A. It was, however, no more than equal to that exhibited by the simple correlation for combined T.E.A. alone. Thus, for these data, giving equal weight to the T.E.A. in the two directions in the combined value was just as efficient as the separate weighting involved in the two-factor multiple regressions.

Since stretch is not influenced by basis weight to any great extent, its importance is probably overemphasized in these data since they are restricted to one grade weight.

When fatigue properties are considered, it may be concluded that the combination of T.A. impact fatigue strength and cross-machine work was slightly better than T.A. impact fatigue alone. This same combination of properties gave generally favorable results with both flat and extensible papers.

The single and two-factor regression equations involving tensile and tear are summarized in Table X. For the 50% R.H. data it may be concluded that tensile and tear taken together or separately do not correlate well with the face drop performance of sacks made from 50-lb. sack kraft papers. ,

TABLE X

CORRELATION OF TENSILE AND TEARING STRENGTH WITH PROGRESSIVE HEIGHT FACE DROP IN SAFE INCHES

No.	Regression Equation ⁶	Significant Variables (5% Level)	Correlation Coefficient	Av. Predicted Diff., f
	Flat Kraft - Stud	y I (<u>N</u> = 20) - 50	0% R.H.	
ı	PD = 350.8 + 1.9 TI	None	0.04	24.5
2	PD = 652.6 - 1.94 EI	None	-0.17	24.0
3	PD = 716.0 - 1.4 TI - 2.08 H	I None	0.17	24.1
4	PD == 703.2 - 15.10 TC	None	-0.34	22.6
5	PD = 489.0 - 0.57 EC $PD = 1035 5 - 18 hh TC = 2.04 F$	None None	-0.06	25.0
_		News	0.20	25.0
7	PD = 797.5 - 7.265 [T]	None	-0.14	24.7
9	PD = 0.99.7 - 0.00 ET PD = 1134.9 - 8.19 TT - 1.13 E	T None	0.28	24.9
	Flat Kraft - Stud	ty II (<u>N</u> = 12) -	50% R.H.	
10	PD = 71.0 + 7.6 TT	None	0.29	20.9
n	PD = 217.7 + 0.87 EI	None	0.11	21.7
12	PD = -494.1 + 13.4 TI + 3.03 I	SI None	0.44	20.0
13	PD ≈ 281.3 + 2.29 TC	None	0.05	22.2
14	PD = 288.7 + 0.28 EC	None	0.02	22.1
15	PD = -118.5 + 8.67 TC + 2.14 T	SC None	0.12	21.3
16	PD = 50.4 + 5.24 TT	None	0.25	21.3
17	PD = 225.0 + 0.39 ET	None	0.08	21.8
18	PD = -1205.7 + 14.82 TT + 2.98 I	ET None	0.40	10.9
	Extensible Kraft - S	tudy II ($\underline{N} = 14$)	— 50% к.н.	
19	PD = 1407.6 - 26.5 TI	None	-0.26	25.6
20	PD = -1017.1 + 15.0 EI	None FT None	0.42	23.7
51	PD = -400.9 - 21.1 11 + 14.0	at none		-211
22	PD = -141.6 + 60.38 TC	None	0.48	20.9
23	PD = 1220.7 - 2.48 EC	None FC None	-0.12	25.5
24	$PD = \{00, 9 + 69, [0, 10 + 2, 15]\}$	ec none	0.49	
25	PD = 502.8 + 9.126 TT	None	0.11	26.1
26 27	PD = 603.9 + 0.878 ET $PD = 75.6 + 11.03 TT + 1.29.1$	ET None	0.14	26.4
<u> </u>	Combined Date	(N = 46) - 50% F	а. н. ¹	•
				77 \
28	PD = 1467.5 - 31.7 TI	TI	-0.74	22.1 h6.5
29 30	PD = 1670.1 - 32.2 TI - 1.52	EI TI	0.75	32.6
			0.37	10 7
31	PD = 1262.4 - 40.53 TC	TC	-0.57	29•1 10.9
52 33	PD = -461.9 - 9.60 TC + 8.46	EC EC	0.51	40.1
		m m	. 0 . 20	22 1
34	PD = 1715.4 - 24.62 TT	тт. ТТ.	-0. j2 0. L1	55.1 43.1
25 36	PD = 1800.3 - 25.20 TT - 0.26	et T	0.72	33.0
	Combined Data (N =	76) - 10, 25, and	1 50% R.H.	
			0.56	
37	PD = 1241.4 - 17.5 TT $PD = -500 h + h 31 FT$	тт FT	0.66	
39	PD = 203.9 - 13.7 TT + 3.70	et TT,et	0.79	·

^aTest Code: PD = Progressive height face drop. TI, TC, TT = Tensile, in, cross, combined. EI, EC, ET = Elmendorf Tear, in, cross, combined.

^bAverage percentage difference between computed and observed drop test values.

When the data obtained at 10, 25, and 50% R.H. are combined, a statistically significant regression equation is obtained. However, the negative sign obtained for combined tensile implies that the lower the tensile the better the sack performance - not a very reasonable conclusion.

COMBINED DATA (10, 25, AND 50% R.H.)

Carlson $(\underline{1})$ has noted that success was achieved in screening new materials for multiwall sack applications using the instantaneous reversible elongation (I.R.E.) in combination with machine-direction tear. Tear was included in the regression equation because I.R.E. did not properly account for humidity effects. He also found that the tensile-stretch product (M.D. and C.D.) could be substituted for I.R.E. His work was based on 4-ply sewn cement sacks made from natural kraft (two weight constructions), four creped samples (four weight constructions), and a microcreped sack paper in two weight constructions.

The preceding analyses of the 50% R.H. data of these studies have suggested that only minor improvements in correlation are obtained by utilizing tear and T.E.A. (or tensile and stretch) in two-factor linear regressions. However, to test the idea further, the analysis was extended to include the 10 and 25% R.H. data from Study II. A limited number of relationships were investigated for the combined data ($\underline{N} = 76$). A disadvantage of using the combined data is that the effects of R.H. on both commodity and paper are intertwined. Therefore, changes in paper properties may be called upon to explain changes in sack performance which are partly attributable to changes in the flow characteristics of the commodity.

With this reservation, the results shown in Tables XI and XII indicate the following:

TABLE XI

jio.	Property 1	<u>ision Coeffici</u> <u>Property</u> 2	ents Property 3	Constant	Regression Significance (<u>r</u> -Test) ^a	Signifi Propert 5% Level	(<u>N</u> = 76) tcant <u>ites</u> <u>16 Level</u>	Fraction Variance Remgyed (<u>R</u> ²)	Multiple Correlation Coff. (R)	Correla <u>for Indiv</u> Prop. 1	tion Coe Idual Va Prop. 2	ff. Frop. 3	Av. Pr Dif 506 R.H.	ediction <u>10, 25 R.H.</u> 10-258 R.H.
- 2 m-#	496 WT 3.48 AT 13.7 TA 0.92 FT		::::	-135.5 -139.5 43.4 -166.5	150.1 172.0 307.9 89.6	Single-Fact WT AT TA FT	<u>cor Relationshi</u> WT AT TA FT	28 0.670 0.699 0.806 0.548		0. 80 0. 84 0. 74 0. 74			24.7 25.2 18.7 24.5	105.0 112.6 70.8 83.9
						Multiple Lin	lear Relationsh	st						
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	404 WT 2.844 AT 13.7 TT 4.92 TT 365 WT 751 WC 771 WC 771 WC 738 T ST 1.20 FT 1.94 ET 1.94 ET 1.94 ET	2.77 路 2.57 路 2.57 路 2.69 路 1293 昭 1293 昭 14.0 昭 158 2 14.0 昭 158 2 0.38 昭 11.5 国 11.5 国 11.5 国 11.5 国 11.5 国 11.5 国 11.5 国		-677.6 -630.4 -630.4 -180.7 -118.1 -211.5 -211.5 -216.1 -216.1 -216.8 -346.8 -3	175.6 176.9 60.3 60.3 151.6 151.6 151.6 152.0 152.0 152.0 152.0 152.0 254.0 254.0	WT, ET MT, ET TT, ET, WT WT, ET, WT WC, TA WC, TA WC, TA TA ST, FC ET, FC ET, TA ST, FC ET, TA ST, FC ET, TA ST, FC	WT, FT AT, FT TT, FT TT, FT WT, FT WT, FT WC WC, TA WC, TA WC, TA WC, TA WC, TA WC, TA WC, TA WC TA FT, FC FT, FC	0.828 0.828 0.828 0.837 0.837 0.835 0.828 0.828 0.828 0.828 0.828 0.828 0.828 0.828 0.828 0.828 0.828 0.855 0.855 0.9550 0.9550 0.9550 0.9550 0.9550 0.9550 0.9550 0.9550 0.9550 0.9	0.910 0.910 0.789 0.915 0.941 0.941 0.941 0.941 0.941 0.941 0.941 0.943 0.941 0.943 0.941 0.943 0.941 0.935 0.935	88.000 88.000 88.000 1118 1100 1100 1100		1 1 1 8 0 0 0 0 1 1 1 1	20.5 20.4 19.3 19.3 19.7 17.5	8.1. 2 3.1. 2 4. 9 7. 1 7

ł

SIM	PLE CORRELA	TION COEFFICIENTS KRAFT DATA AT 10,	FOR COMBIN 25, AND 50	ED FLAT ANI 0% R.H.	D EXTENSIB	E		
	Combined T.E.A.	Combined Tensile x Stretch	Combined Impulse	Combined Stretch	Combined Frag	Combined Tensile	Combined T.A. Fatigue	Face Drop
Combined tear	0.35	0.40	14.0	0.39	0.39	-0.21	0.48	0.66
Combined T.E.A.		66.0	0.98	0.98	0.68	-0.79	0.92	0.82
Combined tensile x stretch			66.0	0.98	0.67	-0.74	0.92	0.84
Combined impulse				76.0	0.68	-0.74	0.92	0.83
Combined stretch					0.59	-0.84	0.89	0.83
Combined frag						-0.28	0.79	0.74
Combined tensile							-0.65	-0.56
T.A. fatigue								0.90

TABLE XII

,

ç,

Page 36 Report Thirty-Four

1. An improvement in correlation coefficient and prediction accuracy can be achieved using combined tear with either combined T.E.A. or the combined tensilestretch product. The improvement in prediction accuracy is especially noticeable for the 10 and 25% R.H. data.

2. For the regressions studied, the highest correlations were obtained using either C.D. T.E.A. or combined tear with the T.A. impact fatigue test.

.