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'THE INSTITUTE OF PAPER CHEMISTRY

Appleton, Wisconsin

MOLECULAR STRUCTURE AND ORGANIZATION IN WOOD PULP FIBERS

ABSTRACT

The new model of cellulose structure which we have developed.has enabled us

to formulate a procedure for quantitative analysis of the structure of cellulosic

fibers.. This report presents the key observations on which the model.is based,

together with an overview of the model. .. . . :

The central features of the model are two distinct linearly ordered confor-

mations of cellulosic chain molecules corresponding to the two most common crystal-

line forms, I and II; this represents a departure from most prior work. Nonequiva-

lence of adjacent glucose. units in the cellulose chains is also a departure from

prior models of cellulose structure;.it requires that cellobiose be. the basic con-

formational repeat unit along the chains rather than glucose. The differences be-

tween' the two conformations, which parallel the differences between celluloses I and

II, involve occurrence of the nonequivalence at different sites in the. two different

conformations. In cellulose I it is centered at C-6; in cellulose II it is centered

at the glycosidic linkages.

The key steps in the transformation from I to II include disruption of an

intramolecular hydrogen bond involving alternate C-6's, and consequent relaxation of

the chain into a similar but distinctly different conformation. The similarity of.

the two conformations leads to their coexistence in most cellulosic materials, with:

the relative proportions varying with isolation and/or preparation procedures.

Our model of the structures of celluloses I and II is in sharp contrast to

those proposed elsewhere which require that conversion from one form to the other

involve the rather unlikely transition from a parallel arrangement of adjacent

chains in cellulose I to an antiparallel arrangement in cellulose II.
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INTRODUCTION

Our major concern since our last report has been development and refinement

of a new model of cellulose structure. An integral part of this process has been

the emergence of a new view of the differences between the two common crystalline

forms, I and II, as well as of the mechanism of transformation between these two

polymorphs. The importance of the model derives from new evidence indicating that

most wood pulps contain substantial amounts of cellulose II and amorphous cellulose

in addition to cellulose I. We have also observed that polymorphic changes occur

during processes involved in pulping and papermaking.

As it has long been established in cellulose technology that the chemical

and physical properties of the two crystalline forms are quite different, we expect

changes in polymorphic content to influence pulp and papermaking characteristics of

wood. fibers. Measurement of changes in polymorphic distribution, through Raman

spectroscopy, provides, for the first time, the possibility of correlating these

changes with variations in process variables.

Our new model of cellulose structure is the foundation upon which we have

established our new methods for quantitative analysis of polymorphic distribution.

We, therefore, devote this report to discussion of the development of the structural

model and some preliminary accounts of its application to problems of pulp charac-

terization. More detailed accounts of such application will be presented in sub-

sequent reports.
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. BACKGROUND, 

A question of long standing with respect to the structures of cellulose,

has been the nature of the polymorphic variability which has been observed in many

investigations, both basic and applied, over the years (1,2). The two polymorphs

most commonly encountered are cellulose I, usually thought of as the native form,

and cellulose II, which is manufactured from the native form by treatment in

strongly swelling caustic solutions or by regeneration from the dissolved state.

For many'years the most common interpretation of this polymorphy has been

in terms of differences in lattice packing of chains of relatively simple structure

possessing twofold screw axes of symmetry coincident with the chain axes (3). This

is an approximation which was introduced in analyses of x-ray diffraction data, and

has been justified as a reasonable simplification in light of the complexity of the

structural problem and the limited amount of data available (4,5). Many different

structures have been reported on the basis of the assumption concerning symmetry

(1). The problem of determining polymer structures and the necessity of assump-

tions concerning monomer structure and unit cell symmetry have been discussed exten-

sively (6-10).

The results of a number of recent spectroscopic studies of cellulose, uti-

lizing both Raman (11) and solid-state 13C NMR methods (12), could not be reconciled

with a model of polymorphy based on the simplifying assumption concerning symmetry

noted above. This has led us to reexamine the structural problem for cellulose and

to search for models of structure and polymorphy that could reconcile both diffrac-

tometric and spectroscopic information. In this report we propose such a model. We

believe that, together with the new instrumental methods, the model will facilitate

development of quantitative measures of molecular organization and of polymorphic
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variations in some of the more complex celluloses occurring in nature or arising in

technological processes.
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STRUCTURAL VARIABILITY IN CELLULOSE .. ,

The pattern of covalent bonding in cellulose is shown in Fig. 1. It was

established after many decades of debate and has not been in question since the early

1930's. The outstanding questions, which have been the subject of our research, are

concerned withthe conformations adopted by molecular chains of cellulose. Examina-

tion of the pattern of, bonding in Fig. 1 suggests a number of possibilities for con-

formational variation. Among these, two: are of sufficiently low energy to receive

serious consideration in our analysis. These are the variability of the dihedral

angles at the glycosidic linkage, which define the relative positions of adjacent..

anhydroglucose rings, and the degree of freedom associated with rotation of the

hydroxyl group at C-6 about the C-5, C-6 bond. Variation in the dihedral angles at

the glycosidic linkage is severely restricted by hard sphere overlaps among the

atoms on adjacent anhydroglucose units. The hydroxyl on C-6, in contrast, can adopt

a wide range of orientations. In the crystalline forms, both types of conformational

variation are constrained by the requirements of molecular packing in a crystalline

lattice.

IO2 1 I

\ l · \-o

F I~c OH s. ~o 'CH2. H

Figure 1. Structure of cellulose.

The primary questions confronting us relate to the subsets of possible

linkage and C-6 conformations which occur in the crystalline polymorphs, and the
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mechanisms of interconversions between these conformations which can occur during

isolation and manufacturing. Later we will also need to consider the degree to

which these different conformations can coexist in a particular specimen of cellu-

lose.

In most of the structural analyses based exclusively on x-ray and electron

diffractometric studies, the data reduction has rested on assumptions concerning the

symmetry of the unit cell. The key assumptions are that the unit cell possesses a

twofold screw axis of symmetry, and that this twofold screw axis coincides with

the cellulose chain axis (1,3). It is the second of these two assumptions which has

implicit in it a number of constraints on the possible structures which can be

derived from the data. Since it requires that adjacent anhydroglucose units are

related to each other by a rotation of 180 ° about the axis, accompanied by a

translation equivalent to half the length of the unit cell in that direction, it

requires that adjacent anhydroglucose units are symmetrically equivalent, and

correspondingly that the alternating glycosidic linkages along the chain are sym-

metrically equivalent. Polymorphic variability has been explained as the result of

differences in molecular packing as well as minor variations in the position of the

hydroxyl at C-6.

Another option in the analysis of molecular symmetry is to place the two-

fold screw axis between the molecular chains. This second option, which is equally

consistent with the diffractometric data, admits nonequivalence of alternate glyco-

sidic linkages along the molecular chain as well as the nonequivalence of adjacent

anhydroglucose units. It has generally been ignored, however, in large part because

it requires the introduction of additional degrees of freedom in the refinement of

the diffractometric data. Furthermore, it excludes the possibility of the anti-

parallel alignment of chains in the unit cell.
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Our development of a new model for the structure of.cellulose was motivated

by our conclusion that the spectroscopic evidence, as well as a number of confor-

mational considerations, is not consistent with the degree of regularity implicit

in a twofold helix chain structure but requires, rather, that alternate glycosidic

linkages be nonequivalent.
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DEVELOPMENT OF THE NEW MODEL OF CELLULOSE STRUCTURE

The new model of the structure of cellulose was developed as a result of

our effort to reconcile our spectroscopic observations with the prior diffrac-

tometric results. In the first detailed assessment of the differences between the

Raman spectra of celluloses I and II (Fig. 2) it was concluded that the major dif-

ferences in the spectra, particularly those in the region below 700 cm-1 , could not

be accounted for in terms of identical chain conformations packed differently in

different crystalline lattices (13). A theoretical analysis also demonstrated that

rotation of the C-6 hydroxyl, though it could account for the differences in the

spectra below 700 cm-1 , would require more significant changes in the region between

700 and 1000 cm- 1, which are not in evidence in Fig. 2 (14,15). It was proposed,

therefore, that two different stable conformations of the cellulosic chains occur in

the different polymorphs. This proposal was also supported by an examination of the

spectra of cellulose IV, which appeared to have the same molecular conformations as

celluloses I and II, but packed in a mixed lattice.

In search of insight into the nature of the conformational differences

suggested by the Raman spectra, the results of conformational energy calculations

were examined (16). Two different stable conformations of the glycosidic linkage

can be expected; these represent relatively small left-handed and right-handed

departures from a twofold helix which are well approximated, respectively, by the

experimentally observed conformations in the model disaccharides, cellobiose (17)

and methyl-f-cellobiosides (18). It was, therefore, proposed that the chains in

celluloses I and II represented sequences of glycosidic linkages in conformations

similar to those of methyl-8-cellobioside and cellobiose, respectively. Questions

remained, however, about the degree to which molecules with such conformations could
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be packed into crystalline lattices consistent with the diffraction patterns

observed.

To resolve the questions the comparison with the disaccharides was devel-

oped further, with particular emphasis on factors which determine the conformations

of glycosidic linkages. Careful examination of the structures of cellobiose and

methyl-B-cellobioside (Fig. 3) revealed an interesting difference in the nature of

the intramolecular hydrogen bonds between the C-3 hydroxyls on the reducing rings

and the ring oxygen of the adjacent rings. These intramolecular hydrogen bonds are

important, because they are among the constraints on the freedom of rotation of the

anhydroglucose rings about the bonds making up the glycosidic linkage.

In the cellobiose structure the intramolecular hydrogen bond is isolated,

whereas in methyl-B-cellobioside it is part of a bifurcated hydrogen bond system

also involving the hydroxyl on C-6. It was anticipated therefore that, in the OH

region of the vibrational spectra, cellobiose would show a sharp band superimposed

on the broader composite band associated with intermolecularly bonded hydroxyl

groups. Methyl-B-cellobioside would not have such a band because the bifurcation

in the intramolecular hydrogen bond is such that coupling with the lattice modes can

occur via C-6. Furthermore, bifurcation in a hydrogen bond results in substantial

distortion of the potential surface, compounding the nonlinearities which usually

result in broadening of the vibrational bands. The observed spectra were found to

be as anticipated (Fig. 4).

Raman spectra of highly crystalline celluloses I and II were recorded in

the OH region for comparison purposes. They were consistent with the parallels we

have developed between methyl-6-cellobioside and cellulose I on the one hand, and

I
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cellobiose and cellulose II on the other (Fig. 5). One surprising feature, however,

was that cellulose II possesses two relatively sharp bands in the OH stretching

region. This feature is also observed in the spectra of the cellodextrins beginning

at cellotetraose. After careful reassessment of all available data, these bands

were seen as pointing to the possibility of nonequivalent glycosidic linkages, with

corresponding differences in the parameters of the associated intramolecular hydro-

gen bonds (11).

CELLULOSE I

CELLULOSE 11

27100 2800 2900 3000 31T00 320 0 3500 3600 3700
WRVENUMBER(CM-1)

Figure 5. Raman spectra of celluloses I and II in
the CH and OH stretching regions.

The possibility of nonequivalent glycosidic linkages was pursued by examin-

ation of the solid-state 13C NMR spectra (12). These provided direct evidence of

the presence of nonequivalent sets of C-l resonances and similarly for the C-4

resonances (Fig. 6). These observations leave little question that two types of
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The solid state 13C NMR spectra of celluloses I and II.Figure 6.
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glycosidic linkages occur in the cellulosic chains.: .Furthermore, the differences

between 13C NMR spectra of celluloses I and II support the view that two distinct

molecular conformations occur in the two polymorphs. The possibility that the NMR

spectra are the result of nonequivalent chains in the same unit cell was ruled out

on the basis of the x-ray data. Finally the 13C NMR spectra raised the possibility

that nonequivalences also occur at C-6, particularly in cellulose I.

The suggestion of nonequivalences at C-6 led us to reexamine the Raman

spectra in the region of the methylene vibration wherein some features had remained

unexplained for some time. The features were the presence of two overlapping bands,

which, however, possess clearly defined heads in the region between 1450 and 1480

cm-1 in the spectrum of cellulose I, and.their collapse into a single band' in the

spectrum of cellulose II. These features point to the presence of two nonequivalent

sets of C-6's in cellulose. Iand their merger into a single set in cellulose II.

The model of cellulose structure which emerges from reconciling the dif-

ferent components of spectral and diffractometric data is one which requires a

greater degree of conformational variation than is allowed by the assumption,

discussed above, that a twofold screw axis of symmetry is coincident with the

cellulosic chains, and that the anhydroglucose unit is the basic repeat unit.
- , -, . :~~~
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THE MODEL IN SUMMARY

In summary the new model of cellulose structure must meet three key

requirements not met by previously accepted models. The primary requirement is that

celluloses I and II represent different conformations of the chain molecules.

Different crystalline lattices are a consequence of the primary differences in con-

formation.

The second key requirement is that adjacent anhydroglucose units in any

cellulose chain are nonequivalent. Hence the basic repeat unit in crystalline

celluloses must be taken to be the dimeric anhydrocellobiose unit.

The third requirement is that the differences between the structures of

celluloses I and II arise from the character of the nonequivalences between adjacent

anhydroglucose units; the conformational differences responsible for the nonequiva-

lences are centered at different locations. In cellulose I the C-6 hydroxyl groups

on adjacent anhydroglucose units are the centers of nonequivalence. The glycosidic

linkages between successive anhydroglucose rings are also nonequivalent in cellulose

I, although they are not as distinct as in cellulose II. In cellulose II, on the

other hand, the nonequivalence is centered at the glycosidic linkages, while the

C-6's appear to be essentially equivalent for adjacent anhydroglucose rings.

The requirements set forth above can be met only by selecting the alternate

option for the symmetry of the unit cell, that is, the option placing the twofold

screw axis between the cellulosic chains. As suggested earlier, a corollary of

this placement of the twofold screw axis is that the molecular chains are parallel

in both celluloses I and II.

When, in addition to the requirements set forth above, considerations of

chain packing in the lattice are accounted for, a picture which suggests itself is



Members of The Institute of Paper Chemistry Page 17

Project 3288 Report Three

one' based on incorporation of characteristics of.both experimental disaccharide

structures. The model that we propose is one, of :a cellulose chain with alternate

glycosidic linkages approximately'similar to those in cellobiose and methyl-B-

cellobioside. That is, they are alternate left-handed and right-handed departures

from the twofold helix structure. This feature is taken as common to both poly-

morphic forms.

The basic difference between the two polymorphs appears related to the non-

equivalence of the C-6's in cellulose I. On the basis of the vibrational spectra in

the OH stretching region, we believe that alternate C-6's in cellulose I have their

primary hydroxyl group participating in a bifurcated intramolecular hydrogen bond

similar to the pattern observed in methyl-B-cellobioside. Participation of the

alternate primary hydroxyls in this bifurcated intramolecular hydrogen bond is con-

sidered to be the primary factor stabilizing glycosidic linkages in cellulose I in

positions where their nonequivalence is less distinct than in cellulose II.

In the context of our model the mechanism of conversion of cellulose from

polymorph I to polymorph II appears relatively simple. It corresponds to disruption

of participation of the primary hydroxyl group on every other C-6 in the bifurcated

intramolecular hydrogen bonds. This would then allow the glycosidic linkages to

relax into the more distinct positions characteristic of cellulose II, and permit

the C-6's to move into approximately equivalent positions. The contraction of the

unit cell in the chain direction upon conversion of cellulose I to cellulose II

appears to be one consequence of relaxation of the glycosidic linkages.

Our model for conversion from cellulose I to cellulose II is in sharp

contrast to those proposed elsewhere, which require that the change represents a
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transition from a parallel arrangement of adjacent chains in cellulose I to an anti-

parallel arrangement in cellulose II; this requirement of some previous models has

resulted in much skepticism concerning structures derived from.diffractometry alone.
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WOOD.: PULP. FIBERS

For some time now we have confronted the observation that Raman spectra of

fibers from woody tissue contain a number of:features characteristic of cellulose

II. This, of course, is in contradiction to the rather general belief that native

celluloses are of the (I) form and that variations in the resolution of their x-ray

diffractograms represent different degrees of crystallinity.

The Raman spectra led us to reassess interpretation of the x-ray diffrac-

tograms. On the basis of a more critical analysis, it is now clear that the x-ray

data can equally well be interpreted as reflecting a structure in which the (I) form

is dominant, although a substantial minor component of the (II) forms is present.

We have also established that the distribution of the cellulosic components

of wood pulp fibers between the (I) and (II) forms is quite sensitive to isolation

procedures. Thus, fibers derived by pulping at low temperatures possess higher

amounts of the cellulose II component. Kraft pulps from the same wood source have

the (II) fraction substantially reduced. We believe that such variations provide a

basis for understanding some of the differences between pulps isolated under dif-

ferent conditions.

In our continuing studies we have developed methods for quantitative

characterization of the polymorphic composition of wood pulp fibers. These have

been applied to characterizing differences between kraft and sulfite pulps, and

their response to different treatment conditions. The results, which were part of

the Master's research program of J. Ranua (19), suggest that a primary difference

between kraft and sulfite pulps is the presence of a limited amount of cross-linking

in the kraft pulps.
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REFINING EXPERIMENTS

In our preliminary studies on refining, Raman spectra were used to assess

the degree to which molecular level dispersion occurs during the refining process.

A southern pine bleached kraft pulp was refined in a PFI mill to approximately 300

CSF. A portion was then freeze-dried and pressed into a pellet for spectroscopic

studies. An unrefined control sample was prepared in the same manner. The spectra

are shown in Fig. 7. The small increase in the intensity of the band at 355 cm- 1 in

the spectrum of the refined sample suggests an increase in the cellulose II fraction

in the refined pulp. It is clear that the fraction of cellulosic substance which

underwent conversion from the (I) form to the (II) form must have been solvated or

swollen at a molecular level for the transformation to have taken place. A limited

amount of dispersion at the molecular level appears inevitable in refining.

Our preliminary studies of refining have recently been extended to include

quantitative characterization of the degree of polymorphic conversion upon refining.

Experiments have been carried out with wood pulp fibers as well as with highly

crystalline cotton-derived celluloses. In all cases they clearly demonstrate the

conversion of cellulose I to cellulose II or the amorphous form, and are consistent

with dispersion at the molecular level during refining. These studies are to be

completed in the near future and will be the subject of a separate report.
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Raman spectra of refined and unrefined kraft

pulp in the skeletal bending region.
Figure 7.
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CONCLUSIONS

We have proposed a new model of cellulose structure based on a repeat unit

of anhydrocellobiose in which the adjacent anhydroglucose units are not equivalent.

The twofold screw axis believed to be an element of the symmetry of the unit cell

must, therefore, lie between molecular chains rather than coincident with them.

Such a model allows an internal degree of freedom to the conformation of the cellu-

lose chain, associated with variation in the sets of dihedral angles defining the

glycosidic linkages. Intimately coupled with this internal variability is the

capacity of the hydroxyl group on C-6 to participate in a bifurcated intramolecular

hydrogen bond similar to that in methyl-B-cellobioside. These internal degrees of

freedom taken together are shown to be centrally involved in polymorphic variations

in cellulose.

The model provides a rationale for observation of spectral features asso-

ciated with both polymorphic forms in native fibers. It also provides a basis

for understanding the redistribution between these forms as a result of isolation

procedures as well as refining.
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