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Abstract: We use numerical modeling in Fortran to investigate the claims of Wollenhaupt et al.
(2006) and Hommelhoff et al. (2002) regarding ultra-short electron pulses ionized via laser
excitation of a tungsten nanotip. We assume that the nanotip acts as a finite one-dimensional
potential well with the depth equal to the work function of tungsten and the width of the order
of the radius of curvature of the nanotip. The interactions of propagating Gaussian wave
packets are modeled in order to give insight into the temporal and spatial evolution of the
generated electron wave packets. Furthermore we hope to demonstrate the transference of
the temporal coherence of the light pulse to the free electron wave packets generated.

Published by Digital Commons@M acalester College, 2013 1



Macalester Journal of Physics and Astronomy, Vol. 1, Iss. 1 [2013], Art. 9

1. Introduction

Ultra-short laser pulses have been developed to provide insight into the quantum world of
nanostructures and electrons. These pulses are capable of providing time-resolved imaging of
matter by observing the interference pattern of the waves with the matter itself. By studying
the interference patterns, an ultrahigh sensitivity can be obtained when compared to previous
methods. According to Wollenhaupt et al. [1] “a pair of ultra-short laser pulses can be used to
generate wave packet interferences in bound states of an atomic or molecular system.”
However, they extend the technique to the theoretical generation of free electron wave
packets. In order to provide accurate experimental values, we follow the conventions of
Hommelhoff et al. [2] which use an 8 fs laser pulse to emit electrons from a sharp field emission
tip. Electron emission is assumed to be set by the laser period and is therefore much shorter
than the laser pulse itself. The electron wave packets can then be used as a source of optical
accelerators, new interferometers, ultrafast electron microscopy or even to probe the exciting
laser electric field [2]. Upon generation of the wave packets, the interference pattern of the
waves can be observed to test whether or not the wave packets are coherent. If the two wave
packets are coherent their probability amplitudes rather than probabilities add together. In
order to numerically model this phenomenon, we created the program Laserfield in Fortran
which uses the Numerov algorithm in order to solve the boundary value conditions of the

Schrédinger equation.
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2. Methods

2.1 General Approach

We begin by first considering the tungsten nanotip to act as a finite well with the depth
determined by the work function of tungsten or 0.1587570143 Hartree (Atmoic units were used
in order to decrease rounding errors in Fortran, note one Hartree=27.211 eV). The width of the
well was set equal to the average radius of curvature of a tungsten nanotip or 1511.780791
Bohr radii (160 nm) [3]. The numerical model should hopefully mimic the conditions required

for the excitation of an electron from a nanotip in the real world.
2.2 Analytical Solution

The accepted eigenvalues for a given well of width 2a and depth Vo (Figure 1) can be calculated by a
combination of analytical and numerical or graphical methods. W(x) is considered to be composed of
three different regions; exponential growth to the left of the well, cosines and sines inside the well, and
exponential decay to the right of the well. Eigenvalues of energy are obtained when these three
equations and their derivatives are matched at the boundaries of the well. With some substitution and
manipulation a transcendental equation in E can be solved to find the eigenvalue. This approach was

undertaken in Maple 15 to generate the accepted eigenvalues.

Cssin/2(E + Vo)x 4 C,cos+/2(E + Vo)x

Clex\i —2E Cze—xv—ZE

-Vo

Figure 1: Schematic of the finite well with width 2a and depth Vo. Each regions equation is also shown

above or below the given region with C corresponding to a given constant and E the energy.
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The transcendental equations to be solved are:

\/Z(E + Vo) tan \/Z(E + Vo)a =V2E Even Solutions (D

J2(E + Vo) coty/2(E + Vo)a = —/—2E 0dd Solutions  (2)

2.3 Numerov Method

The program Laserfield is the Fortran program created in order to calculate the time-independent
starting point for the Schrodinger equation. The Numerov method is well suited for solving boundary
value problems of second-order, linear differential equations lacking a first derivative. The algorithm can
be used to numerically solve for the energy and wave function of the one dimensional Schrodinger

equation, where V(x) is the potential at X and ¢ is the energy.

2

d
TSP~ 20V — P X) = 0 (3

In order to apply a numerical approach to the Schrédinger equation the interval over which the
equation is to be solved is divided into equally spaced steps of length H. It can be shown through
discretization, Taylor expansion and difference formulas that Equation 3 can be equated to a 3-point

recursive form (where Q =V(x)+E and n is a given step) [4]:

2 (1 — 51—%2071) Yn — (1 + I]-_I_ZZQn—l) ¥n-1

Yns1 = (1 N IiI_ZZQnH) (4)

2 (1 — 51—1an) Y, — (1 + IiI—ZZQnﬂ) Y1

Yn1 = (1 N If—;an) ()
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This is the effective Numerov algorithm which can be used to generate a wave function by finding the
value of subsequent steps by using two previous steps. The Equation 4 is used to step toward x=0 from
x=-o0 and the Equation 5 steps from x=co to x=0. Two values that are close to zero are required at each
end to give initial values of the first two steps, which should correspond to the exponential decay to
zero, without causing rounding errors in Fortran. The parity of the state must also be supplied in order
to account for one starting negative. The wave function is accurate when the two equations and their
derivatives are continuous and equal at x=0. An intial guess for the energy is applied that is only slightly
greater then the bottom of the well. The algorithm is then run to produce the wavefuntion with the
derivative being numerically calculated by a 3-point difference formula. If the two derivatives are equal
at X=0 for the given energy, the wavefunction W(x) is recorded. If not the energy is then varied until the
two equations have the same value and derivative at x=0. This is accomplished by the Bisection method.
The energy value which correspond to a match between the derivative Equation 4 and Equation 5
should correspond to d(Eq4)-D(Eg5) and would be zero when they are equal. If there is a low value for
the energy (Eyin) and a high value (Eyax) such that there exist one root between the two, one will return
a positive value and the other a negative. Therefore, an energy half-way between the two values (Esrep)
can also be evaluated. If the value Esrp will then replace the energy with the same sign and the bisection
will repeat until it returns a value satisfactoryly close to 0. Esrep can then be recorded as the Eigenvalue

of Energy and the wave function will be numerically normalized and recorded as W(x).

2.4 Wave Packet Interference

In order to get a better understanding of interference pattern to expect from the completed
program, preliminary work was done in Maple to determine the characteristic time period and
length over which the electron wave packets will interfere. The two electron wave packets are

assumed to be similar Gaussians, as defined by Equation 6.
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p (x—Vg(t—r))2
pl(Kox—wo(t-1)) e Am+4ip(t-7) (6)
n+if(t—1)

Where Ko=the energy (3.68Hartree), T is the pulse time, wo is the frequency, nis a measure of the

2
peakedness given by % (Half Width at Half Maximum),B= %:1/2, and Vg is the group velocity. As

each Gaussian propagates its peak height decreases and its width increases. As the wave packets spread
the two begin to interfere causing an interference pattern that occurs both spatially and temporally.
The presence of such interference indicates the coherence of the electrons. The graphs produced in
Figure 7 are the ultimate goal of the Laserfield program which will show the entire evolution from the

bound state to the free state.

3. Results

The eigenvalues found using the analytical method in Maple 15 are compared to the
experimental value determined by the program Laserfield for the first four states in Tablel. As
evidenced by the table, the two values are in close agreement in each state with only a slight
discrepancy, which corresponds to a percent error of less than one hundredth of a percent. The
wave function W(X) of each state is presented in Figures 2-5 and show the oscillatory and
exponential behavior as would be expected from analytical approaches. Additionally, an image
of the exponential tail of the wave function is shown to indicate the behavior of the wave

function outside the well which was not clear in the full scale images.

http://digital commons.macal ester.edu/mjpa/vol 1/iss1/9
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State Numerical Analytical Difference
Ground State -0.1587505902 -0.1587564758 5.8856E-6
First Excited -0.1587313120 -0.1587376271 6.3151E-6
Second Excited -0.1586991806 -0.1586918517 7.3289E-6
Third Excited -0.1586541940 -0.1586514617 2.7323E-6
Table 1-Comparisons of the Numerical result found using Laserfield and the analytical solutions found
using Maple. Also included is the difference between the two. The percent error was less than one
hundredth of a percent for all states showing the values are in close agreement.
Ground State
0.03 T T T T T T T
'C:\MSDEV\Projects\Laserfield\Groundstate.dat’ +
0.025 - .
g 0o2p .
=
[y
£
z 0015 .
E
3
2
o 0.0l .
0.005 .
D | | | | |
-2000 -1500 -1000 -500 0 500 1000 1500 2000

Distance (Bohr Radii)

Figure 2-Normalized Ground state of W(x), with X measured in Bohr Radii. The half
width of the well is given to be 1511.780791 Bohr radii
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First Excited State
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more readily visualized as tunneling through the well barrier.

Figure 3-Normalized First Excited state of W(x). The wave function was chosen to be
negative as it approached x=0 from - by convention since the positive values are
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Figure 4-Normalized Second Excited state of W(x).
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Third Excited State
0.03 T T T

T T T T
'C:\MSDEV\Projects\Laserfield\Excited3.dat’ +
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Figure 5-Normalized Third Excited state of W(x).

Exponential Tail

T T T
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Figure 6-Zoomed in view of the exponentially decaying tail of the ground state
showing that there is a smooth transition from inside the well to outside the well.
Black line demarcating the boundary of the well
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The results from the Gaussian wave packets are shown in compilation Figure 7. The time in

atomic units is also displayed next to each plot of the interference figure in order to

demonstrate the time evolution of the interference pattern. Any successful application to the

Fortran code, must have a time scale equivalent to the time of propagation found from Maple.

T=100TA T=200TA‘

U

: i, T=750%
U 1 AU

T=2501 _

Figure 7-Interference figures generated from Maple showing the time evolution of the interference
patterns of two Gaussian waves generated using the parameters given in Section 2.4. The amplitude
is given on the Y-axis, with the position on the X-axis.

4. Discussion

As can be seen from the table, the values are in close agreement, but are not the same. This can

be described from a number of perspectives. First, because Fortran has a greater limitation on

the amount of data stored in a variable the Laserfield has obvious pitfalls in terms of rounding

error. The discrepancy is also manifested due to the limitations of the initial assumptions.

Because the Numerov equation is an approximation, the equations are not infinitely away from

http://digital commons.macal ester.edu/mjpa/vol 1/iss1/9
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the well with infinitesimally small values, but rather close to the well with two assumed values.

Therefore the Numerov method will always be slightly off.

The generation of the interference patterns fits with the expectations of Wollenhaupt et al.
Where the temporal evolution of the Gaussian wave packets leads to the tails of the packets
first beginning to interact and then after enough time has passed generate an interference
pattern that begins to move with a single velocity. The model provides the correct time scale
and distance over which the wave packets will interact. This evolution must be incorporated
into Laserfield to show that the Gaussians are both generated from same initial probability
amplitude. By combining Laserfield with the observed behavior of the Gaussian wave packet
interference a single coherent model can be created to accurately model the wave functions

evolution.

5. Future Work

Laserfield has not yet reached the science goals desired and requires future additions to the
code to accurately model the desired behavior. The next steps are currently being
implemented, although the code has not yet produced the desired results. The first upgrade
merely involved expanding the wave function out further in space. Due to rounding errors, the
more extreme values were given a constant value one order of magnitude less than the initial
starting points. The next upgrades include developing the proper skills to determine the time-
dependent solution under the influence of an electric field. This will be accomplished using the

same code used to generate the initial states of the finite well with the exception that the

Published by Digital Commons@M acalester College, 2013
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electric field potential of Equation 6 with Eo equal to the strength of the field, w the frequency

and t the delay included:

t

V(x,t)g = eEo cos(wt) e_(?)2 (6)

The same 3-point derivative will again be used to find the derivative of the function and then
applied a second time to get the second derivative. The influence of the electrical field could be
thought of as lowering one wall of the potential well and allowing the electron to tunnel
through it and emerge as a free particle electron wave, mirroring the results found in the wave
packet interference section. The time derivative will be constructed in a similar fashion with the
initial value being the ground state and the next step in time being a slight increase in the

absolute value of the ground state. The final solution for W(x,t) would then satisfy the equation:

—dt F V(DY = Y 7
dx? LUE =0 (7)

The interference pattern should then fall from the Equation 7 with the wave packets probability

amplitude adding, not the probability.

6. Conclusion

Laserfield is still currently under construction, but initial results have shown its ability to
produce an accurate ground state wave function as well as higher excited states. These can
then be used for application to the time-dependent electric field and the solution to the time-
dependent Schrédinger equation. Although the numerical method does have shortcomings

related to the limitations of the variables and size constraints it can nonetheless serve as a close

http://digital commons.macal ester.edu/mjpa/vol 1/iss1/9
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approximation to the assumed real world experiment. Preliminary testing on the coherence of
electron wave packets also showed good results. The modeled electron wave packets clearly show the
dispersion and overlap that eventually leads to the interference pattern seen in the graphs. With
enough time they combine to form one interference pattern propagating and moving as one. This
demonstrates the coherence using the assumed values of the parameters. If the probability

amplitudes of the numerical solution once complete do indeed show the coherent nature of the

electron packets we can show that we are indeed seeing one electron interacting with itself.

*Laserfield Code available on Request
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