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Macalester Review in Biogeography Issue 1 – Fall 2008 

 
The Biogeography of Plant Domestication 
Alese M. Colehour 

 

ABSTRACT 
Ranging between 11,000 and 4,000 years ago, several independent origins of 

agriculture appeared, though scholars disagree on exactly how many.  This period, known as 

the “Neolithic Revolution” or the “Origins of Agriculture,” marks the initial emergence of food 

production economies.  Archaeologists and biologists have worked alongside one another, often 

using a biogeographical approach, to investigate the origins of useful species, their range 

expansion, and genetic evolution through analyzing remains found at excavation sites around 

the world.  Plant communities influence patterns in human behaviors and by understanding 

trends in biogeography we can begin to answer questions such as: Why did plant domestication 

occur where and when it did? Or, what sorts of evolution and dispersal of domesticates 

occurred?   

Understanding patterns of plant domestication is important in understanding distribution 

patterns in today’s society because it marks the beginning of the most significant developments 

in human history.  Factors such as warmer climates, emergence of seasonality, and physical 

geography shaped the differences in threatened food security at the turn of the Pleistocene-

Holocene.  Hunter-gatherer societies turned to crop domestication in order to control their food 

supplies in a variety of ways. Regional differences in physical geography, soil fertility and local 

climate variations explain the emergence of different origins around the globe.   

This paper is a broad review of current and past literature that has shaped our 

understanding of plant domestication.  The research I focus on attempts to answer the question 

of why agriculture emerged where and when it did, and how plant domesticates subsequently 

evolved and dispersed.  I will discuss the significance of this type of research, review some 

methodologies, explore incongruities in the field with regard to conceptualizations, outline the 

biogeography of the independent origins of agriculture, and finally the discuss the human 

ecology of agricultural societies. 
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INTRODUCTION 
Archaeologists and biologists have worked alongside one another, often using a 

biogeographical approach, to investigate the origins of useful species, their range expansion, 

and genetic shifts through analyzing remains found at excavation sites around the world.  

Understanding the natural history of plants as they relate to hominid species is important in 

understanding biocultural patterns in today’s society.  For example, analyzing historical changes 

in plants correlated to climactic shifts can predict how our relations with plants might be altered 

over the course of current climate changes.   

Plant communities influence patterns in human behaviors and by understanding trends 

in plant domestication we can begin to explain some of these trends (Gremillion 1997).  Price 

(2000) insists that “the transition from hunting-and-gathering to agriculture is…the most 

important event in human prehistory, representing a shift from foraging to farming, from food 

collection to food production, from wild to domestic, that sets the stage for most of the significant 

subsequent developments in human society.”   

One of the major transition periods in human history began between 11,000 and 9,000 years 

ago.  This period, known as the “Neolithic Revolution” or the “Origins of Agriculture,” marks the 

initial emergence of food production economies.  Agriculture-based societies pressured 

populations to limit mobility, which previously characterized the hunter-gatherer lifestyle.  The 

cooperation required and food security provided with this lifestyle shift stimulated a significant 

population boom and extensive landscape alterations.  The emergence of permanent 

settlements allowed for the construction of building to inhabit, house domesticated animals, and 

protect agricultural crops.  The tower of Jericho, in the Jordan Valley, being one of the more 

famous examples, was likely built to protect agricultural fields from floodwaters (Smith 1995).  In 

many ways, these foundational changes directed the course of human societies; our current 

economies are still centered on agriculture as our primary subsistence.   

Western institutions, touting specific technologies and methodologies, have conducted the 

vast amount of research in plant domestication.  Is it because we are fascinated by the intimate 

relationship with nature that once existed in our evolutionary and societal past?  Something 

draws us to “primitive” societies in which dynamic plant-people interactions dictated the lives of 

our ancestors in very complex ways.  Now, a new discipline of human ecology is emerging in 

search of “rediscovering” a mutualistic relationship with our surrounding.  In part, this is arising 

out of necessity and insuring survival of our species in the face of an unknown future.  Global 

changes in weather patterns, plant dispersal, and human health threaten the lives of millions of 

humans.  Perhaps we have reached the dusk of the Holocene period and not unlike our 
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ancestors, we will be forced to dramatically alter our lifestyles to accommodate for these rapid 

changes.  Biogeographic knowledge of plant domestication can help direct the ways we may 

adapt our lifestyles to accommodate for these imminent changes.   

 

METHODOLOGIES 
In this section, I will outline a variety of archaeological methods of studying plant 

domestication such as molecular analysis, fossil remain interpretation, and artifact examination.  

Evidence arising from this type of data extraction can be pieced together using biogeography to 

interpret the significance of local findings.  In this manner, we can start to concretely answer 

biogeographical questions such as where did domesticates originate, why, and how did they 

spread or evolve? 

Until recently, there was no universally accepted methodology of paleoethnobotanical 

research—the study of historic human use of plants—causing some researchers to call for a 

more cohesion across the discipline in order to unify the field.  Lennstrom (1995) encourages 

developing a “systematic recovery and analysis” of plant material remains to unify 

methodologies across the discipline in an economically feasible manner.  Cross-disciplinary 

methods can help eliminate interpretation and sampling biases.   
Research progresses from field collection, species descriptions, remain collection 

management and describing patterns yielding clues about the origin of human-plant interaction.  

In biogeography, it is always a challenge designing an international strategy so that data coming 

from all parts of the world would be compatible and accepted by colleagues.  Some problems 

that have arisen in the past are inconsistencies in excavation and collection from archaeological 

sites biasing distribution results.  Furthermore, classification and quantification are associated 

with many challenges including fragility and variable specificity of identifying remains (Hastorf 

1988).  Research can be categorized into categories of genetics, fossil remains, and secondary 

evidence from artifacts. 

 

 

Genetic Analysis 

Some scholars assert that domesticated plants cannot survive in the wild without human 

intervention and therefore domesticated traits in wild populations are likely to be transient.  

However, cultivated species may or may not become dependent on humans for reproduction 

and may or may not be viable in a given environment without human interaction (this will be 

addressed in depth in the next section).  It is possible for a species in a given geographical 
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extent to become completely dependent on human intervention for reproductive success while 

remaining “wild” in other parts of its range.  Plants that have been domesticated can 

occasionally “escape” and hybridize with naturally selected plants and perhaps be 

redomesticated from this new gene pool.  This process can occur any number of times adding 

to the plant variety, genetic drift, and spatial heterogeneity.  The chromosome count in a given 

species can predict the hybridization history.  For example, it is likely Triticum monococcum 

(einkorn), the first wild wheat to be extensively cultivated, likely hybridized with wild species 

multiple times, undergoing polyploid chromosome pairing, until T. aestivum (modern bread 

wheat), with 48 chromosomes, came about (Cox and Moore 2005). 

There is a lot of information available through genomic analysis that is not apparent by 

physical examination of remains.  Genomics has greatly enhanced our understanding of the 

causes and consequences of the Neolithic Revolution not only by providing clues about the 

patterns of plant domestication, but also revealing information about the emergence of 

pathogens and parasites around this time.  Furthermore, we can begin to measure shifts in the 

human genome coming out of agricultural lifestyles.  The spread of plants and the locations of 

these processes can be better understood through this approach.  Armelagos (2005) found that 

pathogens thought to have emerged during the foundations of farming were actually present in 

foraging societies as well.  There is evidence that humans were a source of transmission of 

some parasites to domesticated animals rather than vice-versa as previous models predicted.   

This type of molecular analysis assists biogeographers in developing theories of the origin 

and consequences of agriculture practice.  We see specific physiological traits that correspond 

to plant domestication.  Furthermore we have learned about mechanisms for dispersal and the 

impacts on human populations.  Now we turn to macroscopic evidence to further clues that aid 

in assessing the biogeography of plant domestication. 

 

Archaeological Plant Evidence 

One commonly utilized technique is analysis of microfossils such as phytoliths, pollen, and 

starch grain remains.  Microfossils can yield important clues as to agricultural origins, 

Pleistocene/Holocene environmental changes, and the evolution of slash-and-burn agriculture 

(Piperno 1998).  Phytoliths are rigid, microscopic plant parts usually made of silica or calcium 

oxalate and therefore do not decay.  Strengths of a given type of plant microfossil analyses can 

supplement weaknesses in other methodologies, contributing diverse clues to the larger picture.  

Phytoliths can be extracted from dental remains or food processing tools and reconstructed to 

identify a floral species when the rest of the plant has been burned or rotted away.  Pollen 
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palynology involves chemically extracting pollen (and other microscopic organic material) out of 

sediment core or rocks.  Other microfossils, such as starch grain fragments, can be recovered 

from fire remains or fossilized human feces.  

Another method is to analyze macro remains through flotation, among other techniques.  

Flotation is a technique used to extract tiny artifacts from soil from archaeological sites.  Water 

is bubbled through dried soil and seeds allowing charcoal and other light materials to float off 

and be collected separately from heavier materials such as microliths and bone fragments 

(French 1971 and Struever 1968).  The flotation method of extracting plant remains not only 

helps to understand domestication and subsistence, but to study the spatial variability of plant 

remains allowing for the development of cultural context (Lennstrom 1995). 
Radiocarbon dating is a common way to analyze macro or micro plant remains.  It is 

important to note one problem with this method is the variant levels of atmospheric carbon in the 

atmosphere can skew the results of the carbon-14 determined age.  Thus carbon dates should 

be (but are not always in literature) corrected based on the known levels of atmospheric carbon 

in a given era so dates are not divergent from real-time (Smith 1995).  In recent years, 

estimates have been adjusted to accommodate for the greater accuracy provided by new 

technologies, frequently challenging previously held notions regarding the origins of agriculture.  

Just as taxonomic inflation and other systematic disputes affect research today, we should 

also keep in mind that plant fossil remains can also be interpreted differently.  Percentage 

distributions are useful to compare the relative abundance of different taxa at a given location.  

Density values are useful in comparing the relative abundance of a single taxon at multiple 

locations (Lennstrom 1995).   

In combination with molecular techniques, macroscopic evidence further helps us piece 

together the biogeography of plant domestication, as proceeding sections of this paper will 

attempt to synthesize.  At an even larger scale, we now look at the value of artifacts in telling the 

story of plant domestication. 

 

Archaeological Non-plant Evidence 

Information can also be derived through interpretations of secondary resources.  Another 

method, which highlights the creativity of some archeologists, involves examining cornhusk and 

seed impressions in ceramic remains.  In one specific example, Eubanks (2001) used this 

method to identify the variety of species of maize used by ancient cultures in Mesoamerica.  In 

addition to clues about plant domestication, these relics point to cross-cultural exchange of 

maize species and even depict ceremonial dress involving the multipurpose crop.  In all, 
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Eubanks identified 16 distinct maize races on 129 ceramic remains from Peru and Mexico.  

Eight of the same races appear in both places.   

Seeds remaining in baskets or other containers are sometimes in well-preserved 

conditions and provide evidence of collection and storage of certain species.  The structure and 

composition of tool remains can also indicate something about how agriculture was first 

practiced and where and how its knowledge was spread.  

Finally, analysis of remains found in fossilized human feces is a way to prove without a 

doubt what plants were consumed by humans, in what proportions, and whether the given 

species shows traits of domestication (discussed in previous section) or whether it was a wild-

type that was gathered.   

 

 The extent each of these methodologies should be used is determined on a case-by-

case basis.  It is impossible to say one methodology is better than another, because, as you will 

see evident later, no method is superior across every situation.  Furthermore, due to differences 

in preservation quality across sites, options of which techniques to use can be highly variable.  

Used in combination as quantitative evidence can help support macro-theories of biogeography 

in the patterns of plant domestication.   

Biogeography plays an important role in piecing together concrete evidence from around 

the world, from different time-periods and geographic locations, to answer questions regarding 

the origin of agriculture.  The methods outlined above must be integrated with broader 

perspectives, and theories, discussed below, in order to understand when, where and why plant 

domestication emerged where it did and its subsequent evolution and dispersal. 

 

PLANT DOMESTICATION 
“Domestic races of animals and cultivated races of plants often exhibit an abnormal character 

as compared with natural species; for they have been modified not for their own benefit, but for 

that of man.”  —Darwin (1868) The Variation of Plants and Animals under Domestication 

 

Throughout this section of this review paper I will highlight prominent literature debates, 

ongoing discussions, and interdisciplinary perspectives.  Three problems dominate the 

discourse I found in my research: 1) which came first, domestication or cultivation, 2) what is the 

difference between foraging and farming, or can such a distinction even be made, and 3) why 

did agriculture arise where and when it did?  Exploring these questions is important in shaping 
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the biogeographic story of plant domestication because they consider the mechanisms of the 

societal transition that took place during the Neolithic Revolution.  

 

Which came first, domestication or cultivation? 

First, it is important to define the terminology used throughout this paper because 

concepts are still loosely defined, sometimes highly debated and can be rather ambiguous with 

multiple definitions.  According to Blumer (1991), “‘Domestication’ is the evolutionary process 

whereby humans modify, either intentionally or unintentionally, the genetic makeup of a 

population of plants or animals to the extent that individuals within that population lose their 

ability to survive and produce offspring in the wild.”  Domesticated plants tend to lose certain 

traits maintained in wild progenitors such as dispersal mechanisms, chemical and physical 

defenses against herbivory, and dormancy (the vast majority of economic plants today are 

annuals).  ‘Cultivation’ refers to the unintentional evolution of plants for the benefit of humans 

and the subsequent harvest.  Throughout this paper, “domesticates” will refer to plants whose 

origin or selection is primarily due to intentional human activity, and which cannot survive and/or 

reproduce on its own (Spencer 2007). 

The question remains, which came first, cultivation or domestication?  Ladinsky (1987) 

asserts that domesticated traits arose due to hunting-gathering pressures.  He used 

mathematical models to show high-pressure demand on the seeds of lentil (Lens culinaris) led 

to dormancy-free species.  This calculation however is highly criticized and not widely accepted 

(Zohary1989).  Blumler et al. (1991) refutes this argument, declaring instead that “cultivation 

sets up selection pressures that favor the evolution of domestication even if humans do not 

consciously choose to plant individuals with the domesticated phenotype.”  In this mechanism, 

wild progenitors were gathered, stored, and processed resulting in subsequent domestication. 

This offers one possible origin of domesticated crops, though the possibility that people 

accelerated evolutionary change through intentional selection should not be ruled out since it is 

likely domestication occurred faster than “natural selection” which can be weak and 

unpredictable.  For example, Blumer (1991) outlines the possibility that harvesting wild cereal 

plants can lead to an increased frequency in which grain spikelets remain on the rachis as 

opposed to wild-type spikelets that fall off when ripe.  In legumes seed pods remain closed 

rather that dehiscing to disperse seeds.  These are human favored phenotypes and 

characterize many domesticated crops today.  Sometimes these traits can be discerned based 

on fragmentary remains from archeology sites, yielding clues about which plants were 

domesticated when.  
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Before plants were intentionally planted, it is likely some of their wild-type predecessors 

were gathered, stored and processed due to similar climactic instability.  For example, wild 

grains, grinding equipment, and a stone oven were excavated in 2004 from Israel’s Sea of 

Galilee.  Archaeologists found 143 varieties of seeds, including wheat and barley, dating back 

over 23,000 years.  Researchers suggest they did not actually plant crops but rather a cooling 

period and disappearance of wild game forced these Ohalo people to gather seeds in the fall, 

grind them into flour and bake the food source to survive winter months (Zorich 2005). 

As we saw in this section, the mechanism of the emergence of agricultural crops was likely 

a combination of both intentional and unintentional cultivation and domestication, though 

intentional selection by humans seems more plausible as the primary driving force behind the 

evolution of plant domesticates.  As we will learn in the following section, human behavior 

changes are complex as well, and not at yet fully understood.  However, this type of research is 

important in understanding the biogeography of plant domestication and subsequent influence 

on human societies. 

The transition from foraging to farming 

It is impossible to point to an exact moment when plant domestication occurred because it 

was more than likely a gradual shift with combination societies in between transition periods 

who both foraged and farmed.  Perhaps farming and foraging were not so dichotomous but 

rather located on a spectrum depending on “the intensity, intentionally, species focus, and total 

range” of a societies interventions with plant species’ life cycles (Smith 2001).  In fact, Terrell 

(2003) argues the search for the “origin of agriculture” is outdated terminology and actually 

inhibits objective reasoning about the history of plant domestication.  Instead, he argues 1) 

domestication should be measured by its conduct rather that its consequences, 2) a plant could 

be considered domesticated where and when and species knows how to harvest it, and 3) 

human domestication of a species varies depending on how much is wanted in a given season.  

Conventionally, domestication is used to refer to intentional or unintentional permanent genetic 

or morphological modification of a species by human selection and harvesting.  Terrell suggests 

we should qualify domestication as a species that could be repeatedly exploited by people in 

one or more places.   

We cannot think of plant domestication in isolation; we must also consider landscape 

domestication.  The concept of species adaptation is somewhat of a misnomer because 

“organisms not only adapt to environments, but in part also construct them” (Odling-Smee et al., 

1996).  Since humans significantly alter the geology, flora, and fauna in combination with one 

another, domestication is more complex than at the species level.  Ingold (1996) observes that 
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humans do not actually create a domesticated species, but rather “[establish] the environmental 

conditions for their growth and development.”  Thus, the differences between foraging and 

farming are based on the extent to which humans are involved in establishing the conditions for 

growth and reproduction.   

Human alteration of landscapes for plant domestication is thus varied and an exact point 

of “domestication” cannot be clearly defined.  However, as discussed in the methods section, 

there is obviously conclusive evidence indicating plant domestication.  In the following sections 

of this paper, I will review literature that attempts to explain why these transitions occurred 

where and when they did, and the emergence of a different kind of economy.  As discussed in 

other biogeographic topics, similar abiotic (i.e. climate, soil fertility, and physical geography) and 

biotic (i.e. overkill, ecosystem shifting, and competition) also influence spatial and temporal 

patterns of plant domestication.   

Origins of agriculture 

There are many benefits to developing plant domesticates including predictable and reliable 

germination rates, reproducibility of plant species, higher caloric content in edible parts, and 

reduction of toxic allelochemicals, to name a few.  But the questions that continue to perplex 

paleoethnobotanists, archeologists, and biogeographers are why did plant domestication occur 

where it did and when it did?  Why did agriculture emerge independently in some regions of the 

world and not in others?  What led hunter-gatherer societies to make the transition to an 

agricultural way of life?  These questions must be addressed through multiple disciplines, 

integrating discoveries of biologists, archaeologists, and historical anthropologists to piece 

together the origin of agriculture (Smith 1995). 

First, it is important to note that humans in foraging societies should not be viewed as 

passive participants in the ecosystem.  Hunter-gatherers took many actions to secure their food 

source and increase their chances of survival.  In fact, some scholars insist the origin of 

agriculture should not be viewed as an act requiring any new facts of knowledge due to the 

assumption that people of even strictly hunter-gatherer societies still posed ecological 

knowledge regarding patterns of germination, seasonality, soil and precipitation conditions 

required for certain plants (White 1959).  Hence the term agriculture refers to the rise of a “new 

kind of relationship” that came about when the hunting-and-gathering no longer provided 

sufficient resources for a population.  Studies have shown that gathering can actually be more 

energy efficient than cultivation under the right conditions (Harlan 1975).  Our human ancestors 

had been hunter-gatherer societies for millions of years before, which leaves us to assume 

agriculture emerged out of some kind of new necessity that emerged during this period when 
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only gathering food was no longer a reliable source.  This change could have occurred due to 

either population growth or shortages of food for one reason or another.  Thus, humans instated 

measures to control food sources through domestication. 

 There is evidence of plant domestication occurring independently in several places 

around the world during the end of the Pleistocene.  By the 1940s, Nikolai Vavilov had identified 

seven distinct regions based on genetic evidence of existing plants.  These regions, described 

in greater depth in proceeding sections of this paper, include the Fertile Crescent, north-central 

Africa, two regions in Asia, Andean regions in South America, Central America, and northeast 

North America.  He reasoned that the higher the phenotypical diversity of an agriculturally 

significant plant species, the longer it has been optimized by humans, and thus, the more likely 

it indicates a distinct region of domestication.  In the 1950s, Braidwood used an archeological 

approach by investigating remains at various excavation sites around the world and found much 

overlap with the biological evidence uncovered by Vavilov.  For the most part, scholars today 

still recognize these regions as Origins of Agriculture. 

In foraging societies, small, familial groups were maintained to maximize efficiency and 

since there is no evidence that space was limited, it is unlikely plant domestication arose due to 

population pressures.  As evidence, we know settlement in the Americas was relatively recent 

occurrence compared to the Old World, and therefore does not provide a good argument for 

plant domestication coming about due to population or space pressures.  Furthermore, due to 

limited mobility of primitive cultures, it is unlikely ideas were spread via intercultural 

communication but rather came about because of changes in the environment.   

Domestication of plants occurred at the end of the Pleistocene due to changes in plant 

communities and changes in human behavior, perhaps a result of unpredictable climactic shifts.  

Seasonality, rainfall, mean annual temperature, and atmospheric CO2  began to change during 

this period.  Byrne (1987) suggests a distinct pattern of seasonal rainfall arose during this 

period, which encouraged the growth of annuals and geophytes (energy storage organs in 

plants offering nutrient rich food sources for animals, including humans).  Other climactic 

changes threatened food security of hunter-gatherer societies inciting cultivation of plants in an 

attempt to control a source of reliable subsistence.  Farmers had a competitive advantage and 

thus societies quickly transitioned from hunter-gatherer lifestyles (Diamond 2002).  Other 

theories predict grasses, such as wheat and barley, may have moved north during the warming 

climate, taking advantage of settlement disturbances and clearings.  Inhabitants then would 

have realized the nutritional value of these species and began cultivating them.  Finally, the 

overkill hypothesis could be interpreted, as a factor that caused hunter-gatherer societies to turn 
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to domesticates as their primary food source, though there is surprisingly sparse literature 

addressing this possibility. 

Plants were never developed for harvesting in other geographic regions such as 

Southern Africa, Australia, California and southern South America.  What hypotheses exist that 

could explain these patterns?  Climactic factors also limited the extent to which certain early 

cultivars could be used as crops predicting why cultivation occurred in some regions and not 

others (Cox and Moore 2005).  Other factors such as physical geography can influence patterns 

of rainfall, water availability, drought, and flooding that would influence which crops were 

developed where.  Soil fertility based on previous climactic and tectonic activities also 

determined where agriculture was viable.  Additionally, there are factors influencing availability 

of information and research trajectories that likely alter the outcome of conclusions regarding 

the biogeography of plant domestication.   

 

The following section will flush out the seven regions around the world currently 

recognized as independent agricultural origins.  Articles under review will discuss which crops 

were among the first domesticates of each region, explore what factors influenced the shift from 

foraging to farming, and describe subsequent changes in human societies inhabiting these 

regions at the time.  Plant domestication is different from region to region but certain 

biogeographic theories emerge to explain the Origin of Agriculture.   

 

INDEPENDENT AGRICULTURAL ORIGINS 
Independent centers of domestication are identified through both spatial and temporal 

contexts.  These centers are characterized by maximum of genetic diversity for crop plants 

(Smith 2006). The following sections will outline plant domestication from several accepted 

independent agricultural origins: the Fertile Crescent, Europe and Africa, East Asia, Middle and 

South America, Eastern North America and the Southwest (listed in chronological order based 

on dating of fossil records.)  Methodologies outlined above and the theories discussed in 

previous sections are applied to the following investigation of independent origins of agriculture, 

demonstrating how concrete evidence and biogeographic theory can be built upon one another 

to tell the story of plant domestication.  Examples from excavations, genetic analysis and carbon 

dating are provided and though these reviews are not comprehensive, each section is intended 

to demonstrate how complex research can be pieced together using biogeography to predict 

patterns of the origins of agriculture.   
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The Fertile Crescent  (10,000 ybp) 

Domestication of cereal crops such as barley, emmer, and eikhorn wheat likely began in 

the Fertile Crescent circa 9000BCE.  This part of the Middle East, curving from the 

Mediterranean coast in the west to the Zagros Mountains in the east, has a climate that favors 

the evolution of certain types of nutrient bearing plants.  Large-seeded annual plants, such as 

peas and wheat, readily evolved in warmer wetter climate characterizing the end of the 

Pleistocene ice age.  The expansion of grasslands invited wild game to proliferate providing 

abundant food for hunter-gatherer in addition to the wide variety of wild grains.   

These societies likely practiced vertical transhumance in which they moved to higher 

elevations during the summer to harvest wild grains while they stayed in lowland areas to hunt 

game in the winter months.  The elevation difference in the region also aided the development 

of a variety of potential grains to harvest.  Overtime, the next 2000 years, these societies settled 

into permanent villages, depending on domesticated plants and animals for subsistence.  Utility 

of some of the methodologies discussed earlier in this paper, help piece together the story of 

emmer wheat, einkorn wheat and barley and further contribute to the biogeographic questions 

of plant domestication in this region. 

• Emmer Wheat (Triticum araraticum) 

This domesticate is an example of a species that is morphologically 

indistinguishable from Timopheev’s wheat (Triticum araraticum) which was originally 

thought to be the wild progenitor of emmer wheat.  In this case, we see the importance 

of genetic analysis in order to distinguish these species (which cannot hybridize, as 

previously discussed, but do occur in the same geographic region).   

Physiological changes in the wheat are good indications of when the grass was 

domesticated.  When emmer was domesticated, the grain became larger and the rachis 

less brittle (so seeds were not easily lost before the harvest).  These changes are good 

indicators of increased human selection of this species, driving evolution so the wheat 

was increasingly beneficial to societies in the Fertile Crescent. 

• Einkorn Wheat 

Drawing on the cultivation vs. domestication argument presented earlier in this 

paper, there is evidence that einkorn wheat was harvested by hunter-gatherer societies 

before it was domesticated.  Through fossilized fecal analysis, einkorn wheat appeared 

in known hunter-gatherer societies, among one of the earliest known grain consumed by 

these cultures (Hillman 1990).  Recent research on this grain in particular indicates it has 

very high yields in a relatively short period.  Harlan (1972) estimates after three weeks of 
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harvest of the wild einkorn wheat, a family of four would have enough grain to sustain 

them for a year. 

• Barley 

Unlike the two wheats discussed above, wild progenitors of barley are found 

through the full extent of the Fertile Crescent.  Two morphologies are found in 

combination together and with emmer and einkorn wheat at various locations across the 

Fertile Crescent.  Like its wild progenitor, there is a two-rowed variety with two vertical 

rows of grains while a second variety contains six, presumably an adaptation to increase 

the chances of being selected for planting by humans.  This type of adaptation is a 

common trait of domesticated crops. 

 

The Fertile Crescent is one of the more famous regions of plant domestication due greatly to the 

vast extent of the resources directed at excavation and research.  Skeptics point out the fact 

that the majority of long standing grants and researchers are located in Europe, and the natural 

history of one’s particular agricultural patterns is of particular interest which may lead to a 

somewhat skewed emphasis on the importance of the Fertile Crescent, possibly overlooking the 

full significance of other agricultural origins. 

 As discussed earlier, research in the Fertile Crescent utilizes genetic and morphological 

research extracted from fossil and fecal remains to contribute quantitative information about 

plants used by cultures in the Fertile Crescent 11,000 years ago.  Patterns of human behavior 

(i.e. cultivation vs. cultivation, foraging vs. farming) build upon this evidence and the story of 

plant domestication in the Fertile Crescent emerges, providing a model for comparison against 

other independent origins. 

 

Europe and Africa (4000 ybp) 

The spread of agriculture out of the Fertile Crescent was limited by the Sahara and by 

cool climates in Europe.  Genetic analysis can definitively assert multiple centers of 

domestication.  These types of results are particularly powerful when they indicate paralleled 

domestication of both animal and plant species.  This type of research is limited in that wild 

progenitors may not exist in former ranges.  But establishing the relative timing of domesticates 

from different regions can hint to possible origins or expansions.  Though they may have 

emerged independently, this type of evidence is important to consider.   

 Societies in southern Europe may have learned of agriculture in the Fertile Crescent via 

extensive trade routes rather than western migration.  Excavations of the Franchthi Cave in 
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southern Greece launched by T.W. Jacobsen provide evidence of both wild and domesticate 

plants appearing simultaneously; indicating the origin of agriculture was a slow transition rather 

than something abrupt (Muller and Chapman 1990).  The 7000-year-old Passo di Corvo 

settlement of southern Italy consists of a series of ditches and walls containing evidence of both 

housing for people and herds (Geddes 1985).   

 Poor preservation, difficulty in material recovery, and very little research commitment in 

sub-Saharan Africa have contributed to the limited information we have regarding early origins 

of agriculture in the region.  It is suggested that seed crops (wheat and barley in Europe and 

rice, millet and sorghum in Africa) were domesticated sometime after inhabitants started herding 

animals.  A model of mixed forage/farm economies was likely.  The key to agricultural success 

in part of this region (sometimes with a relatively less favorable climate) was farm placement.  

Scattered, wind-deposited soils that were fertile, well drained and easily tilled were essential to 

farming success in temperate areas in Europe.  Similarly in Africa, fertile grasslands were 

previously present in what is now the Sahara (7,000-4,000 yrs ago) where evidence of many 

settlements can be found (Clark and Brandt 1984).  Finally, an interesting difference to not in 

this region is the evidence that early African agriculture technologies utilized iron as opposed to 

lithic tools found in many other centers of origin (Bower 1995). 

As we have seen in this section, though preservation and knowledge is poor, 

archaeologists and biologist combined molecular and fossil evidence in addition to landscape 

alterations to build upon theories behind plant domestication in this region.  Similar to the Fertile 

Crescent mechanisms such as climate change altered the seasonal behavior of these 

populations but agricultural behavior was limited in this case by relatively cooler and physical 

barriers such as the Sahara desert and poor soils.   

 
East Asia (8,000 ybp) 

Eastward from the Tibetan Plateau, forest gradually gave way to agriculture around 7000 

years ago.  Archaeologists have identified two distinct regions of domestication based on 

different east-flowing river systems in present day China: the Yellow River of the north and the 

Yangtze to the south.  Differences in climate due to weather patterns and physical geography 

such as the Ch’in Ling mountain range influenced the plant domestication in geographically 

distinct ways.  Thus, two importance crops, millet and rice, were domesticated in two distinct 

regions due to their different climactic requirements.   

• Rice (Oryza sativa)  
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Rice crops require landscape alteration in the form of dikes in order to form 

paddies.  Hunter-gatherer societies likely had to establish permanent settlements to tend 

such transformations.  Converting dry land into seasonally flooded areas would have 

allowed increased yield and heightened control over rice varieties.  In the Yangtze River 

valley during the Late Pleistocene, the climate was cooler and drier than today’s climate 

and Oryza sativa may have been natural component of the vegetation but was probably 

not well adapted to the glacial climates.  In contrast, in the early Holocene, the climate 

was likely wetter and more seasonal that at present, and rice may have been distributed 

further north.  Other factors such as atmospheric CO2 levels may have influenced the 

extent to which human’s were able to exploit wild Oryza (Zhao 2000).  Further carbon 

dating of a significant volume of stalks, leaves, and husks of domesticates establishes 

the earliest known rice cultivation occurred in the region dating 6500-6000 years ago 

(Smith 1995). 

• Millet (Panicum miliaceum and Setaria italica) 

Further north, along the Yellow River where millet crops dominate, the climate is 

characterized with seasonal flooding and drought.  Millet as a drought-resistant crop 

thrived here where rainfall was marginal whereas rice dominated the Yangtze River 

valley, which is subject to fewer droughts and floods and has a humid, precipitous 

climate.  Early settlements are found between the semi-arid highland foothills of the Tai-

hang Mountains to the west and the deciduous forest of the plains to the east.  

Excavations of these settlements reveal storage pits containing grain remains as well as 

tools such as stone axes (for forest clearing), stone hoes (for tilling oils) and stone 

mortar and pestles (for grinding grain).   

 

Unique aspects of the settlements in this region allow archaeologists access to a lot of well-

preserved information.  Many tools among other clues in this region were extracted from burial 

mounds.  Peat bogs, present in this area, are infamous for slow decomposition rates and as a 

result provide great opportunities to excavate well-preserved remains from ancient civilizations 

utilizing methods of study with which we are already familiar.  For example, remains of digging 

implements were recovered from the Ho-mu-tu peat deposits near Hang-chou Bay, likely used 

for preparing rice paddies (Wenning 1991).   

Asia provides a good example of human behavior-change shaped by plants’ needs, as 

discussed earlier in the paper.  Extensive landscape alteration (tool artifacts and evidence of 

paddies) was directed by the type of crop most viable for the given region.  In this manner we 
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see how biogeographic processes drove developmental differences between these different 

regions of agricultural lifestyles.  Simultaneously we see similarities to the other regions 

discussed in that warming and seasonality arose, demanding hunter-gatherer societies shift 

toward sedentary economies. 

 

Middle and South America (4,500 ybp) 

 Utilizing the ice cap covering the Bering Strait, humans moved from Siberia to Alaska 

around 20,000-15,000 years ago.  As the Pleistocene ended, bringing warmer, seasonal 

patterns of climate characteristic of the Holocene, hunter-gather societies began to adjust to the 

changing plant and animal communities.  The Incan, Mayan and Aztec states flourished in the 

Americas as well-established, productive agricultural economies with extensive technologies 

and infrastructures.  Crops were focused on squash, maize and beans.  In tropical lowlands of 

South America manioc (Manihot esulenta) and sweet potato (Ipomeoea batatas) were the 

principle domesticates.  Case studies of maize, bean and squash domestication in South and 

Central America follow: 

• Maize (Zea mays) 

Modern ears of corn are morphologically highly variable due to thousands of 

years of human selection in different geographic regions.  Based on radiocarbon dating 

and fossil remains, archaeologists have concluded domesticated corn spread from 

Mexico southward into Central and South America.  Its ancestor, Teosinte, had 

numerous, smaller stalks each having several small grain spikes which evolved into a 

single stalk with a few easily harvested cobs containing seeds which could not be 

dispersed independently (Doebley 1990).   

• Beans (Phaseolus vulgaris) 

Today, the wild ancestor of beans grows in a broad range and thus it is hard to 

locate where the cultivar originated.  However, wild cultivars and crops today have 

distinct varieties of the protein, phaseolin, present in the seeds and based on this 

information it is possible to identify two different origins (Gepts 1990).  It is thought that 

this species was independently domesticated in both Mexico and in the southern Andes.  

Due to a 2400-year gap in the evidence of maize and bean domestication, it is not likely 

in early history that the two crops were domesticated together.   

• Squash (Cucurbita pepo) 

Squash is much less extensively studied; limited research is available regarding 

the distribution, dispersal and origin of squash varieties.  Part of the complication is the 
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rich variety of the species ranging from pumpkin, acorn, zucchini, marrow, spaghetti, and 

patty pan. Because of the diversity of wild progenitors that grow today of at least three of 

these varieties, it is thought to have originated in South America.  Three types of squash 

seed recovered from Ocampo caves in Mexico were deemed large enough to be from 

domesticated varieties dating back 9000-7000 years ago (MacNeish 1958). 

 

Similar to peat bogs in Asia, caves in this region are promising locations to continue looking for 

evidence of crop domestication due to the sheltered environment which both preserves remains 

and were highly utilized by societies as shelter and food storage.  Seasonal occupation is 

evident in the La Perra Romero caves in Mexico reflecting the climate at the time and providing 

an interesting case study of the initial transitional period between hunter-gatherer lifestyles and 

the first cultivations (MacNeish 1958).  It would be expected that domestication patterns 

between species is often parallel, reflecting shifts in societal patterns in accommodating for 

holistic nutritional needs.   

 Though patterns of human settlement (mostly in caves) are different than other regions 

discussed, similar biogeographic theories and methodological techniques support a unique but 

parallel story of plant domestication.  Quantitative data derived from morphological evidence of 

domestication and molecular analysis from artifact remains, lead researchers are to conclude 

similar mechanisms of seasonality and warming vastly drove domestication even though this 

region doesn’t show evidence until a few thousands years after the turn of the Pleistocene.   

 

North America (4,500 ybp) 

 Maize spread northward as well into what is now the heartland and eastern deciduous 

forest of the United States where cultivation began around 1-200 AD.  Maize does not tell the 

story however of an independent center of domestication, where agricultural societies flourished 

2000 years before maize arrived.  Both cave and river valley settlements have provided 

evidence in the form of seeds preserved in caves, carbonized by fires, or recovered from a 

woven basket that indicate to archaeologists an independent origin of goosefoot (Chenopodium 

sp.), a variation of modern quinoa.  Researchers believe Cucurbita pepo was also 

independently domesticated in North America (Smith 1994).   

The status of eastern North America as an independent center of plant domestication 

has recently been called into question, based on genetic evidence that species may have 

originated in Mexico.  In addition to dating archeological finds, genetic analysis of fossils 

remains an important way to determine if and where domestication occurred in independent 
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regions around the world.  Smith (2006) defends the northeast’s standing based on extensive 

genetic evidence from four different species: marshelder (Iva annua), chenopod (Chenopodium 

berlandieri), squash (Cucurbita pepo), and sunflower (Helianthus annuus). 

• Marshelder (Iva annua) 

Though it is no longer cultivated today, this plant plays an important role in 

establishing eastern North America as an independent center of domestication.  Though 

its wild progenitor exists in Mexico and North America today, there is no evidence of 

domesticated use of marshelder in archaeological sites in Mexico, whereas there are 

remains found in settlements in North America (Smith 2006).  No one disputes that this 

region had early agriculture but some scholars have challenged its status as an 

independent region, saying that domesticates were transported northward (Wilson 

1990). 

• Chenopod (Chenopodium berlandieri) 

Still cultivated in Mexico, wild progenitors exist in both Mexico and North America 

today.  The supporting evidence this plant, commonly known as goosefoot, provides is 

through the morphology of its seeds.  A thickened testa or seed coat, for better storage 

capabilities, allows it to be distinguished from its wild ancestors (Smith 2006).  Again 

archaeological evidence for domesticates is lacking at any sited in Mexico until the 16th 

century.  Furthermore, genetic analysis found significant differences between wild 

progenitors in North America and the line cultivated today in Mexico (Ruas et al. 1999).  

Further tests between wild progenitors and domesticates in both regions should be 

compared. 

• Squash (Cucurbita pepo) 

Two distinct lines of domesticates arise from this species—pumpkin and 

squashes in the subspecies of acorn, crooked necks, and scallop.  The second is 

thought to be an independent domesticate of eastern North America due to molecular 

evidence indicating the wild progenitor is most likely native to eastern North America and 

is not found in Mexico (Emschwiller 2006).  Morphological evidence (larger seeds, fruits 

and peduncles) is found in both regions under question (Mexico and eastern North 

America), which closely overlap the range of distinct wild progenitors.  Thus it would 

make rational sense that each line of C. pepo was domesticated from the geographically 

correlated progenitor. 

• Sunflower (Heliathus annuus) 
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In 1951, Heiser was the first to propose the sunflower was an independently 

domesticated crop in eastern North America and subsequent archaeological and 

genomic evidence emerged out of proceeding research to support this hypothesis. One 

such study studied an extensive number of alleles of samples across the continent from 

both wild progenitors and current domesticates, concluding domesticates today have 

significantly lower diversity than wild progenitors (Harter et al. 2004).  Furthermore, 

domesticates show greater similarity to North American wild species, thus if seeds from 

the sunflower are found at sites in Mexico, this would imply either a southward migration 

or independent domestication depending on the genetic composition. 

 

Evidence in the Southwest is severely lacking in many respects and it is even more likely 

that remains from settlements were carried by humans there.  Particularly, there has been no 

evidence of non-brittle rachises, increase in grain, or loss of glumes, which can be found in 

other independent centers such as the Fertile Crescent (Wills 1993).  The wide variety of 

landscapes and ecosystems in a relatively small area provides an interesting area to study the 

adoption of agriculture and the addition of domesticates to foraging economies.  In this region, 

water was a limiting factor in the production of cultivars, though there is evidence of use of 

arroyos to direct groundwater for maize cultivation.   

 

In order to piece together history based on evidence from both the past and present 

(historical biogeography) we must understand ways plant ecology and evolution can change 

over time.  As discussed throughout this section, plant domesticates can disperse via a variety 

of mechanisms.  We see human-initiated dispersal as a primary method through trade (Europe) 

or migration (Mexico to eastern North America).  Plants can also disperse through traditional 

ecological methods like wind or animal.  We saw in previous sections how genetics can change 

as well through hybridization with wild varieties.  Furthermore, genetic drift or other evolutionary 

mechanisms can drive changes in plant range and genetics.   

Biogeography is vital to in order to develop widely applicable theories that emerge 

through assessing the similarities and differences between these independent origins of 

agriculture.  Biogeography aids in answering the questions of why did agricultural patterns of 

human behavior emerge when and where they did.  Additionally, we see disparity in plant 

domesticate distribution and expansion based on regional differences in climate and physical 

geography.   
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Understanding the biogeography of plant domestication is important to understanding 

human relations to ecology, that is to say, human ecology.  Changes in human behavior during 

the Neolithic Revolution are still evident today in our current economy.  In the face of growing 

population pressure, climate changes, and environmental degradation, biogeographic 

knowledge of plant domestication has important application in today’s world. 

 
HUMAN ECOLOGY: PLANTS AND PEOPLE TODAY 

Not only did the Neolithic Revolution bring profound changes in economic innovation, but 

also increased population, caused social reorganization, and added new types of technology.  

Changes in human demography, health, and diversity in turn shaped the relative dominance of 

certain cultures, genes, and languages, forever changing how humans relate to the natural 

world.  It was this era from whence intensive commodification of the environment began (Twiss 

2007). 

People adjust their behaviors and actions to fit the ecology of plants under 

domestication.  For some species of plants, human’s adaptive skills and tactics may require 

greater environmental manipulation and alteration.  Thus, human subsistence behavior should 

be described in terms complex interaction between harvesting tactics and the species under 

consideration (Terrell 2006). 

Niche construction is a term applied to efforts of environmental modification that, in 

theory, enhance the world for ourselves, improving our quality of living and chance of survival 

(Smith 2007).  We have used our impressive engineering skills to alter our environment to an 

extent that, as we now know, may actually threaten our survival.  The niche construction 

behavior associated with the beginnings of domestication has been greatly magnified over the 

past 10,000 years and is reflected in today’s societal organization.  

Today, our agriculturally adapted lifestyles and food security are threatened by climate 

change, increasing population pressure, and widespread environmental alterations.  Human 

behavior is subsequently adapting to address these pressures.  Genetically modifying crops, 

developing methods of biocultural conservation and integrating the value of ecosystem services 

are three examples of approaches that have been explored as a way to adapt our current 

system. 

A new phenomenon of plant domestication now dominates human-plant interactions: 

genetically modified (GM) cultivars.  Though GM crops can potentially increase yield, resist 

herbivory, and provide higher nutrient contents among other benefits, there are significant 

consequences that must be considered.  GM crops can be found throughout the world and as 
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the trade of monocultures swells, we may be threatening the genetic resources required to 

develop these transgenic crops in the first place (Daily 1998).  Wild genetic resources are 

important to collect and preserve to ensure genetic security of domesticated plants (Ladizinsky 

1998).   

Cultures are shaped by the interactions with our surroundings, including use of plants.  

Ethnobotanical studies, such as some of those discussed in this paper, have greatly contributed 

to the conservation of biocultural diversity, which is important because we depend on plant 

communities not only for food but also for construction materials, fuel, medicines, and trade 

commodities as well as cultural preservation.  Zent and Zent (2004) use case studies from 

tropical environments to showcase the contribution of traditional ecological knowledge (TEK) to 

the creation and conservation of biodiversity.  Human manipulations of their environment can 

actually increase local biodiversity, acting as “agents of creative disturbance” (Zent & Zent 

2004).  Furthermore, cultural homogenization is occurring due to the degradation of many 

ecosystems, threatening the traditional knowledge of many cultures and forcing communities to 

adopt outside (usually Westernized) medicines, foods, and occupations. 
Humanity’s success in feeding itself can be assessed based on the proportion of people 

who have secure access to basic nutritional requirements and the extent to which food 

production is sustainable.  These issues must be treated as localized case-by-case basis, yet 

globalization encourages standardization of agricultural techniques and leaves limited room for 

locally appropriate adaptations (Daily et al. 1998).  Daily (2001) assesses the “motivation and 

science behind efforts to characterize and manage ecosystems as capital assets.”  She has 

developed an Ecosystem Services Framework as a tool for placing a value on the production of 

goods, regeneration processes, and stabilization that healthy environments provide for humans.  

Escalating depletion of our environments threaten the services ecosystems can provide, 

including endangerment of plant-based products such as food, medicinal plants, and other 

products.  

 

CONCLUSION 
Biogeographic approach to questions of plant domestication helps us identify when and 

where agricultural first emerged and patterns of domestic evolution and dispersal.  Both 

archaeological and genetic methods contribute to building knowledge of plant domestication.  

We have seen that scholars still dispute some themes related to the Origin of Agriculture but 

that overall, plant domestication is a combination of both unintentional and intentional selection 

by humans, the transition from foraging to farming was gradual with intermediary lifestyles, and 
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that agriculture emerged primarily as a result of changing climate (i.e. seasonality, warming, 

precipitation change) at the end of the Pleistocene when domestication became an optimal 

option of subsistence. 

 Independent origins of agriculture emerged between 11,000 and 4,000 years ago in the 

Fertile Crescent, north central Africa, two regions in current day China, Andean South America, 

Central America and northeast North America.  Biogeographical factors explain when and why 

agriculture emerged in these regions and not others: climate change, seasonality, precipitation 

changes, physical geography and soil fertility were some of the factors explored in depth in this 

paper.  In addition, we see specific kinds of domesticated species emerge based on the 

physiological characteristics and requirements of the plants.   

 Finally, we see the importance of the biogeography of plant domestication in 

understanding the history and development of agriculture-based societies.  Our current 

economy is primarily based on the production of food through farming but increased 

consumption pressure and dramatic landscape alterations on top of climate change are 

beginning to threaten our current lifestyle.  Practices such as GMO development, recognizing 

the importance of biocultural diversity, and integrating ecosystem services are three methods of 

facing current, problematic trends.   

Environmental issues today must be understood in the context of social, political, cultural 

and economic knowledge.  Plant domestication and management in particular must be 

considered in both ecological and cultural contexts.  The study of historical plant evolution under 

domestication has modern application as we begin an era of significant climactic shifts.  

Understanding the biogeography of human response to climactic and other environmental 

changes can better inform political and social decisions today. 
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