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SUMMARY

Using our earlier work on the lubrication problem which arises in the impulse drying of
paper employing a crown-compensated roll [4] (and, in particular, the analytical and numer-
ical results for the pressure fields, mass flow rates, etc., contained in [4]), we derive in this
report analytical expressions and numerical results related to the velocity and temperature
profiles in each of the five distinct subregions of the lubrication channel, as well as results
for the associated values of the corresponding heat fluxes across the bottom surface of the
rotating CC roll.

Our main goals in this first analysis of the heat transfer problem for the CC roll/internal
shoe configuration were as follows: (i) to produce analytical and numerical results for the
variation in the heat flux along the inner surface of the roll which could, in turn, be used
as one of the boundary conditions in a finite element code geared towards determining the
distribution of thermal stresses in the CC roll, (ii) to determine the relative influence of
the contribution of viscous dissipation of heat onto the lubricant on those heat transfer
characteristics related to the operation of the roll/shoe configuration, and (iii) to determine
the relative influence of the operating parameters, i.e., the speed of the roll and the load
on the internal shoe, as well as the influence of the prescribed temperatures on the bottom
surface of the shoe and inner surface of the roll on the thermal performance of the system
consisting of the shoe, roll, and lubricant.

For this report, calculations were performed for various values of the shoe temperature in
the range 100-160°C and an inner roll surface temperature in the range 100-300°C. In general,
for the conditions analyzed in this study, the computed net heat flux from the roll to thepY ~ oil was negative thus indicating that because of the viscous nature of the lubricant, and the
large tangential speed of the roll, under steady state conditions, in general the temperature
of the lubricant at the regions near the roll is greater than that of the inner surface of the
roll so that the direction of heat transfer is actually from the oil to the roll. In the left-hand
subchannel, because the lubricant is flowing in a direction opposite to the motion of the
roll, viscous heat dissipation was found to be larger than that in the right-hand subchannel;
this, in turn, produced a greater temperature increase in the oil flowing in the left-hand
subchannel as compared with the oil in the right-hand subchannel. Also, it was noted that
the maximum oil temperature at the end of the right-hand subchannel occurs in a region
near the bottom surface of the shoe while for the oil in the left-hand subchannel it occurs
in a region close to the inner surface of the roll. Throughout this first study it was assumed
that, in each district subregion of the channel, the variation of the temperature along the
machine direction is much smaller than that along the thickness direction (i.e., the direction
normal to the inner surface of the roll). Because of the significant roll played by viscous heat
dissipation, significant changes in the temperature profiles in the channel occur as the speed
of the roll increases. It was also noted that the net heat flux was inversely proportional to
the inner roll surface temperature and directly proportional to the shoe surface temperature,
a larger heat transfer from oil to roll occurring for a smaller roll temperature and a larger
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shoe temperature. Finally, the analysis shows that those regions under the solid parts of the
shoe on either side of the two sets of recesses play the major role in the transfer of heat from
the oil to the roll.

Among the problem areas to be addressed in future work we note the following: (i)

an effort will be directed at carrying out a finite difference analysis of the heat transfer
equation, in each subregion of the channel, retaining in each case the convective term in

the equation which was not employed in the first approximation which is reported here, (ii)
an iterative procedure, using the initial results generated in this report, will be employed
in order to compute higher order approximations which involve the convective term in the

heat transfer equation and an averaging technique will be applied in order to compare the
magnitude of the convective term, relative to the initial results generated in this report, with
the corresponding conductive term in the heat transfer equation, (iii) the influence on the
prediction of the thermal characteristics of the system, which results from using different

types of boundary conditions along the bottom surface of the shoe and the inner surface of

the roll, will be explored, and (iv) the analysis and numerical analysis carried out in [4], and
in this initial investigation of the heat transfer problem for the roll/shoe configuration, will

be extended so as to incorporate what is expected to be the very realistic and important
influence of a temperature dependent viscosity for the lubricating oil.

1
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OVERVIEW AND OBJECTIVES

Ongoing research at the Institute of Paper Science and Technology (IPST) has demon-
strated the feasibility of using impulse drying to increase productivity, quality and energy
efficiency of Linerboard and other heavy weight grades of paper. Plans are in progress for
commercializing the impulse drying technology through a joint venture between the Institute
and the Beloit Corporation; that commercialization would be supported in part by the U.S.
Department of Energy's Office of Industrial Programs.

Much of the Institute's previous research in impulse drying has focused on understanding
the details of the process and in demonstrating the benefits of the process to paper machine
productivity, physical property improvement and energy savings [1-3]. With the start of
the commercialization phase of the effort, the Institute has additionally focused on mechan-
ical design and materials issues that would increase the likelihood of successful technology
transfer.

In 1995 that effort will include the operation of a high speed test stand for the evaluation of
the long term durability of various impulse drying press roll coatings. The test stand will be
operated at commercial paper machine speeds of 2500 ft/min. It will consist of a roll shell
coated with three or more test materials, an induction heating system, and a continuous wet
felt that can be loaded against the roll surface to simulate impulse drying. The roll shell
will be monitored to detect the onset of roll coating failure. The test stand will be used
to evaluate the long term durability of these roll coatings under commercial impulse drying
conditions.

In future work, the Institute plans to develop a finite-element model of a crown-compensated
impulse drying press roll. The model will be capable of predicting the temperature and state
of stress at any location within the roll as a function of impulse drying operating conditions
and roll composition. The results of the model may be compared to the experimental results
from the high speed test stand and used to optimize roll design for maximum energy efficiency
and component durability.

As a first step in the development of the finite element model, work was carried out in 1994
to determine the stress and heat transfer boundary conditions that would be imposed on
a crown-controlled impulse drying press roll. In particular, the present research effort was
directed to determining the heat flux at the interface between the inside surface of the press
roll and the internal hydrostatic shoe. This report is a continuation of our previous report
concerning the lubrication part of the problem [4].
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1 Introduction

In [4] we analyzed the lubrication problem which arises in modeling impulse drying em-
ploying a crown compensated roll; the geometry for the associated steady flow problem was
constructed and expressions were derived for the relevant velocity fields, mass flow rates, and
normal and tangential forces acting on both the bottom surface of an internal hydrostatic
shoe and the inside surface of the CC roll.

The bottom surface of the shoe and the inside surface of the roll form a curvilinear channel
and are assumed to lie on circles of either equal or different radii; the coordinates of the center
of the circle on which the arc describing the bottom surface of the shoe lies, were used, in
[4], in conjunction with the angular deflection 4b of the shoe, to define a base lubrication
thickness do for an approximate planar-walled channel (in which the lubrication problem is
posed) whose angular deviation from a parallel wall channel is denoted as /.

The parameters do and 4' were then determined by the solution of a set of coupled,
nonlinear, transcendental algebraic equilibrium equations. Parameters entering into the
equilibrium equations included geometrical design parameters such as the radii of both the
shoe and the roll, and the angular opening of the shoe, as well as physical parameters such
as the load per unit width on the shoe, exerted along the top surface of the shoe, and the
tangential speed of the CC roll (which rotates counterclockwise).

The equilibrium equations in [4] were obtained by balancing horizontal and vertical compo-
nents of all forces acting on the shoe (including the tangential and normal forces, exerted
by the lubricating oil, on the planar-walled surface of the convergent wedge-shaped channel
which approximates the actual curvilinear channel in a precise geometric manner) and by
imposing, as well, balance of moments for all forces. The lubrication channel in [4] is fed by
two sets of capillaries which traverse the shoe and enter the channel through recesses cut out
of the bottom of the shoe; lubricating oil is injected through the capillaries on each side of
the shoe, to the inside surface of the roll, and the shoe subsequently turns in the clockwise
direction as a consequence of the viscosity of the oil, the motion of the roll, and the balance
of forces and their moments.

The base thickness do of the approximate channel, and the angular deflection 4' of the shoe,
not only serve, in [4], to completely determine the equilibrium position of the shoe, once the
load on the shoe and the speed of the CC roll are given, but also determine all pressure and
velocity fields in the channel and, therefore, all normal and tangential forces which act on
the bottom surface of the shoe.

Numerical solutions of the algebraic equilibrium equations were carried out in [4] both for
a "small" shoe/roll configuration in which the shoe radius is smaller than the roll radius,
and for a "large" shoe/roll configuration in which the two radii are machined so as to be
approximately equal; these numerical studies indicate that the model can be used effectively
to study the variation in channel thickness, deflection of the shoe, net mass flow rate, pressure
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distributions, and the power required to operate the roll, either in terms of the load F (on
the shoe) for a fixed tangential speed s (of the roll) or in terms of s for fixed F.

We now describe, briefly, the construction of the model employed in [4]. In figures 1 and 2
we show a crown-compensated (CC) extended-nip press which is configured with a ceramic
coated press roll. The roll revolves at high speed, counterclockwise, and is loaded, in the
impulse drying mode, by the internal hydrostatic support element. Oil is injected through
the hydrostatic support element, i.e., the shoe, so as to produce an oil film between the
bottom of the shoe and the inside surface of the roll which provides lubrication and, also,
acts as a heat sink for heat lost to the interior of the roll. In the overall process, wet paper
sheets transported on felt enter an extended nip at point A, in figure 1, and leave the nip at
point C, while the roll itself is heated in a zone from point D to point E so as to achieve a
prescribed roll surface temperature at the entrance to the nip at point A.

Key variables which enter into the analytical model constructed in [4] are the radii R and
Rs, of the CC roll and shoe, respectively, Psh (the pressure at the top of the shaft of the
shoe), Pexit (the pressure at which the lubricating oil exits each of the two subchannels-
for our purposes in this report, as well as in [4], Pexit = Patm, i.e., atmospheric pressure),
Reff and .eff (respectively, the effective radius and length of each of the capillaries through
which the lubrication oil enters the channel formed by the bottom of the shoe and the inside
surface of the roll, i.e., see figure 3), < (the angular opening of the shoe), s (the linear speed
of the roll), and p. and p (respectively, the viscosity and density of the lubricating oil). In
the model [4] it was assumed that the viscosity p/ is constant, but, in future work we will
take into account the fact that A varies with temperature, albeit linearly over the range of
temperatures in which it is anticipated that the roll will be operated.

As a consequence of the loading of the internal shoe, the pressure difference Psh-Patm and the
counterclockwise motion of the roll, the shoe is forced downward and will deflect clockwise
once the shaft of the shoe has been displaced sufficiently far to the right so that the middle
rib (figure 4) at the top of this shaft comes into contact with the wall of the confinement
shaft. Turning to figure 5, point (0, R) is the location of the center of the circle describing
the inside surface of the roll so that (0, 0) is the point of contact (tangency) between the roll
and the paper. At a given tangential speed s and load F, on the shoe, the center of the circle
describing the bottom of the shoe is located at the point (a, R+b) where a, b are determined
by the set of coupled, nonlinear equilibrium equations. The points E and B lie, respectively,
at the centers of the top of the shaft of the shoe and the arc describing the bottom surface
of the shoe. The line segments from (a, R + b) to A, B and C are radii of the shoe of length
Rs < R, while 0 is always the angle between the center line of the shoe (through E, B)
and the radius of the circle describing the roll through (0, R) and (0, 0). The lubrication

channel is formed by the arcs ABC and A'B'C' and a base lubrication thickness may be
measured along the segment BB'. The approximating planar-walled channel (or wedge) is
constructed by using the secant lines through the points A, C and A', C'. There is a slight
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tapering of the shoe near the endpoints located at A and C which was not taken into account
in the model formulated in [4].

When the upper right hand corner of the shaft of the shoe makes contact with the confinement
wall (by virtue of the 2nd or middle rib at the top of the shaft of the shoe coming into contact
with that wall) the shoe will turn slightly in the clockwise direction (see figure 6) and the
point of contact between the rib on the shaft of the shoe and the confinement wall (labeled
as point PV in figure 6) will slide up and down that wall without friction. As shown in
figure 6, the rib in questions protrudes a distance 3r, from the shaft of the shoe and is
located a distance ar down from the top of the shaft. In [4] we located the position of the
pivot point PV and indicated that the parameter cr is determined entirely in terms of the
angle 0p and geometrical quantities associated with the design of the shoe; the two primary
independent variables used, in the model constructed in [4], are the angle b and either the
base lubrication thickness do (essentially the length of the line segment BB in figure 7) or
the parameter b (in the y coordinate R + b of the point which locates the center of the circle
on which the arc that describes the bottom surface of the shoe lies).

The variables ~p and b (or do) are determined by the physics of the problem, i.e., by enforcing
equilibria of forces in both the vertical and horizontal directions as well as balance of moments
of forces acting on the internal hydrostatic shoe; the resulting equilibrium equations in [4]
are a system of coupled, nonlinear, transcendental algebraic equations which can be solved,
numerically, by an iterative procedure. Once 4p and do are determined in [4], for given F, s
it is then possible to compute all the geometrical quantities which are needed in order to fix
the size of the approximate wedge-shaped channel (figure 8) as well as the pressures PR and
Pc in each of the two sets of recesses, the mass flow rates mhR and rhm in each subchannel,
and the explicit forms of all velocity fields in each of the two subchannels (figures 9, 10).
The velocity fields are two-dimensional and are obtained, in [4], by imposing the standard
lubrication theory assumption of pseudo-plane Couette flow [5], [6]. The expressions for the
tangential and normal forces exerted by the lubricating oil, both on the bottom surface of
the shoe, as well as on the inside surface of the roll, were used in [4] to compute the net drag
force acting on the roll and, thus, the mechanical horsepower which must be expended to
operate the CC roll.

Inasmuch as the equilibrium equations in [4] yield implicit relations for X and b of the form

- - (1.1){ b = b(F, Psh -Patm,S, R,p,Rs,Reff eff, , P)

one can, in principle, study the effect of holding all variables in the parameter space P,

P = {F. psh - Patm, , R, ,Rs Reff, ff, , p} (1.2)

fixed except for one, say, s in order to study how 4 and b (or do) vary with the tangential
speed of the CC roll; the same procedure then yields valuable information on howv e.g., the
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drag on the roll varies with s if all other elements in the parameter space P are frozen. In this

companion report to [4] we will show that having determined IP and b (or do) for a fixed set of
values in the parameter space P, so that all velocity fields may be explicitly computed, we are
led to well-posed boundary value problems for the steady-state temperature distributions in
each distinct part of the channel; the solution of these boundary-value problems then enables
us to determine the net heat flow from the CC roll to the lubricating oil, the net heat flow
from the oil to the shoe, and the net heat convected away by the fluid, in terms of the
variables in the parameter space.
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2 The Heat Transfer Boundary Value Problem

Heat transfer in the lubricant is governed by the following partial differential equation for
the temperature field 0 = 0(x, y, t):

a9 1 2
8+ 9 u. V = [- 2 + ](2.1)

with

if,2 a E xui +axji (2.2)
where u = (ul, u2) is the velocity field, p, /A, , and c are, respectively, the lubricant density,
viscosity, thermal conductivity, and heat capacitance, V 2 is the Laplacian operator, v 2 =
a2 82

2 + 2, X = x, x 2 = y, and T is the viscous dissipation function. For steady state heat
x-2 oy-2

transfer - = 0 so that 0 = O(x, y). With u(x, y) denoting any of the five velocity fields inat
the channel,

UR(X, y), UR(X, y), Uc(x, y), ii(X, y), Uc(x, y),

as given by (V1)-(V5) in Appendix II, and O(x, y) denoting any one of the corresponding
temperature fields

OR(X, y), OR(X, y), 0c(x, y), cx(2, y), OL(X, y),

the domains of definition of all velocity and temperature fields being given in Appendix I,
we have

u *V7 =u(x, y)-

2V = 2 2
9x 2 9y 2

_ 9U , 2 + (Qu\2
T=2~ - +-2-

I \= ±(ax9) + May2

Thus, each of the five temperature fields in the lubrication channel, and their corresponding
velocity fields, will satisfy the equation

806 K F96 8201 1 8a2j2 fau\2' u--- rC 0 + - 2 + I2 t (-) + 2 (a) (2.3)
9x pc 9x2 9y2 pc yQxj

However, it is known from the work in [4] that the angle /3 0 (see Appendix I for the
definition of /) and that V u _ 0 on D = {(x,y)10 < y < dR(x),-Lp < x < Lp}; this

implies that - 0 for each of the five respective velocity fields in the channel, so that (2.3)
ax

-



Project 3470

reduces to

n V 2 (x , y) + b(x, y)- = f(x, y; ) (2.4)

with
b(x,y) = -pcu(x,y)

J, f(xuy;) _ (u)2 (2.5)

We also have boundary data of the form:

f0(x,0)= Tr -TLp < x < L 
0(x,d(x)) = To, -L: < x < Lp 

and in the general case would also have to prescribe

f (L, y) = OR(L,, y) = a(y), 0 < y < d(L) (27)
0(-Lp, y) - Or(-Lp,y) = 7(y), 0 < y < d(-Lp)

e.g., if we were to impose at x = Lg a linear interpolation of To and T1 then

aY) = (To d() + T, 0 < y d(Lp) (2.8)
d(L^) /

Some remarks regarding the nature of the boundary data (2.6), (2.7) are no order at
this point. First of all, because of the discontinuous nature of the temperature field, as one
transitions from one subregion in the channel to a different subregion, the boundary value
problem (2-4)-(2.7) must actually be posed in each separate subregion, i.e., for lp < x <
Lp, 0 = OR, and OR(x, y) must satisfy (2.4), (2.5) and boundary data of the form

R(X, 0) = T1, R(x, d(x)) = To, l3 < x < Lp

OR(0i, Y) = YR(), 0 < y < d(l1)

OR(Lp,y) = aR(Y), 0 < y < d(L^)

Next, it is important to note that in the idealized problem being considered here, it is
assumed that the constant temperatures To and T1 on the boundaries are maintained by
ambient conditions and thus imply a result in which heat conduction from the lubricating oil
to the domain walls significantly dominates heat convection in the oil. For a better treatment
one should consider both for the boundary at y = 0, as well as for the boundary at y = d(x),
a modified boundary condition of the form

- = oa0, a = const.
ay

where ac is to be determined experimentally and a = 0 corresponds to perfect insulation at
these walls while a -+ oo corresponds to perfect conduction.
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We begin with a description of the temperature field OR(X, y), 0 < y • d(x), 1(3 < x < L(.

&UR (89uR) 2

Employing (V1) to compute -and, then, -h)and substituting the result in (2.4),

(2.5), with 9 = OR and U = 'fR, we find as the governing equation

'~ V2 R9(X, Y) + bR(X, Y)- - p.AA x, y) (2.9)

for 0•< y • d(x), 1, < x < L,6, where bR = -pcfUR and

AR(X' Y) = 36rhx2 ) _ 2 4 rnRSRXR, Y+ 4S2AR(X Y)(.0
p2 R.4P ~ ~ 2k,) ±S 3k,(.0

with rnR the mass-flow rate in the channel for x > 0 and{ R = 4(yd 6'(x) - yd-5 (x)) + d()
2R = 6y d-5 (x) - 7yd ()+ 2d() (2.11)
AR= 9y2 d-4 (X) - 12yd 3 (X) + 4d 2 (X)

For Oc (x,y),O 0 y • d (x), - L3 < x < - 1(, we use (V2) and (2.4), (2.5), with 9 = ,
and u = 5,C, and compute that

where bc = -pc'fic and

A' (x, y) = 36 Al~x y)+24( CsAc(X y) + 4sAc(x, y) (2.13)

with 7hc the mass-flow rate in the channel for x < o and

A' A(x, y) = 4 (y 2d-(x) - yd-5 (X)) + d 4 (X)
A' A(x, y) = 6 y 2d-(x) - 7yd 4 (X) + 2d-3 (x) (2.14)
A' A(x, y) = 9y 2d-(x) - 12yd-3 (x) + 4d- 2 (X)

From (V3) and (V4) we have, in conjunction with both (2.4) and (2.5)

K 72 OR(X-, Y) + 6R(-c, Y)aOR = _tgAR(X, Y) (2.15)

where bR =-PCfLR, 1, < X < 1p,3

AR (X. y) 2 sd-2 (X), I1, < X < 10 (2.16)

and

=)a~ tp,AC(X, y) (2.17)
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where bC = -pcUL, -lI < x < -Ic,

AL(x, y) = s2d-2(x), -1, < x < -Ic. (2.18)

Finally, by virtue of (V5), (2.4), and (2.5)

a0c
/ V2 oc(x, y ) + bAc(x, y) (2.19)

where bc = -pcu, -lc < x < Ic, and

A(x, y) = 4rFy 2 - 4ccyd(x) + 4rcsyd-l(x)+ r d 2(x) + 2 d-2 (x) - 2rs (2.20)

for -lc < x < lc, where Fc = (Pc -PR)/41IC. In summary, the equations for the temperature
fields OR, R, 0c, , and Or are, respectively, (2.9), (2.15), (2.19), (2.17), and (2.12), which
must be integrated, subject to the boundary data (2.6), on the five respective subintervals
of (-L/, LO).

We begin the analysis with equation (2.9) for OR(x, y) and make the simplifying assump-
tion that for 0 < y < d(x), l/ < x < Lp

a2O 9R R a2OR
-R |0R < a 2R (2.21)
ax2 '9x y2

in which case, if we set C = -p/c, (2.9) reduces to

a2 = CAR(X, ): (2.22)
ay 2

for 0 < y < d(x), 1 < x < Lp.

It is important to understand that in using the assumption (2.21) to reduce (2.9) to (2.22)
aORwe have not, e.g., set - = 0 in (2.22). What we are saying here is that in many cases,

because of the small deviation of the channel from a parallel-walled channel, a good first
approximation to the temperature field 6R(x, y), in the region 0 < y < d(x), 1p < x < La,

is expected to be obtained by ignoring the contribution of the convective term pCpUR-aR in

a 2fR
(2.9) in comparison with the contribution of the conductive term K- . In particular, as our

ay2
results will show, this assumption still allows for a significant variation in 0 R in the machine
direction and a similar assumption with respect to Oc allows for an even more pronounced
variation in 6O in the machine direction. Because the hypothesis (2.21) only produces what
is considered to be a first approximation the validity of that approximation must be checked;
several different methods for doing that, and for determining those situations in which the
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mass flow rate in the channel may be so large that the convective term is significant (even
for small temperature variations in the machine direction), are discussed in §7 along with
techniques for computing higher order and more accurate approximations that involve the
convective term.

The general solution of (2.22) has the form

&R(X, ) = C / f AR(X, 7)d'yd7 + FR(x)y + GR(x) (2.23)

for 0 < y < d(x), Ip < x < Lp, with FR and GR arbitrary functions of x. Carrying out the
integrations in (2.23) we find that

4

f A R(X, )dydF = d 2 (x) E p (y)d-(x) (2.24)
k=O

for 0 < y < d(x), lp < x < Lp, where the pR, k = 0,1,...4, are given by (S2) of Appendix
III. Thus

4

OR(, y) = (d-2(x) * p(y)dk(x) + FR(x)y + GR(x) (2.25)
k=O

for 0 < y < d(x), Ip < x < Lp, and OR must satisfy the boundary conditions

O0R(x, 0) = Ti1 l < x < L2{ 6R(x,d(X))=To I-<<- (2.26)

Applying (2.26) to (2.25) we determine that

4 3

R(X, y) = d- 2(x) pk(y )d- k(x) + E ckd-k(x)y + T, (2.27)
k=O k=l

for 0 < y < d(x), 13 < x < L,, with the coefficients ck, k = 1, 2, 3, given by (S3) of Appendix
III.

Remarks: It is a straightforward calculation to check that OR(X, y) as given by (2.27),
(S2), and (S3) satisfies

max - (x, y)- 0, .as 3- 0 (2.28)
o<y<d(x) 9X
l<xz_<LB

and

maxd) (.IY) O0, as* 0 (2.29)

92 ~max

while OR (x, y) is bounded away from zero, as f - 0, for 0 < y < d(x); I6 < x < L:.
dy2 (

I

12 Report 12



Project 3470

Under the auspices of the same reasoning as described in the argument following (2.22),
we now assume, as a first approximation, that, for 0 < y < d(x), -Lp < x < -,

Ox' ax202L a S 82SL | 1 V(2.30)~'z ' ~ << ' lW

so that we have, in lieu of (2.12)

a2° =j
a 2= (A4C(X, ) (2.31)ay2

for 0 < y < d(x), -Lp < x < -p; thus,

6C(x, y) = C f AX, 7x)dcd + F(x)yY + Gc(x) (2.32)

with FP(x), Gc(x) determined by the boundary conditions

O{ (x,0)=T L I -x (2.33){ r(x, d (x)) = TO

Using (2.13), (2.14) in (2.32), and then applying the boundary conditions (2.33), we find
that the temperature distribution OL is given by

4 3

Or(x, y) = Cd- 2(x) E pk(y)d-k(x) + : cLd-k(x)y + T1 (2.34)
k=O k=l

for 0 < y < d(x), -L < <x < -l, where the coefficients pf, k = 0,..., 4 and ck, k = 1,2,3,
are given, respectively by (S5) and (S6) of Appendix III. We note that 0c(x, y), as given
by (2.34), (S5), and (S6), also satisfies the criteria in the previous set of remarks, above, as
/3 - 0, on the domain: 0 < y < d(x), -Lo <x < -Ix .

For -Ilj < x < In, the temperature distribution 0c(x,y), is governed by (2.19), (2.20).
Under the simplifying assumptions:

00c 020c I2oc
ax 'ax 2 9y 2

For 0 < y < d(x), -lc < x < Ic, (2.19) reduces to

020c
ay-C= (A(x,y) (2.35)

with Ac(x, y) given by (2.20), for 0 < y < d(x), -l < x < lc. Two consecutive integrations
of (2.35) yield

(x, y) = f AC(x, 7)dyd + F(c(x)y + G,(x) .(2.36)
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Using (2.20) in (2.36) and applying the boundary conditions

f 0, x, d(x)) = TO{ (x, 0) =T1 -T1 (2.37)

we find that

2

Oc(ZX,) = E p (y)dk(x) + (To - T)d-l(x)y - (c(x)y + T1 (2.38)
k=-2

for 0 < y < d(x), -Il < x < lI, where the pj(y), k = -2,..., 2, are given by (S9) of Appendix
III, while 0c(x),-lc < x < Ic, is given by (S8). We note that by virtue of (S2), (S5), and
(S9),

fpk(0) = 0, k = 0,...,4
I pf(0)=0, k = 0,...,4 (2.39)

kpi(0)=0, k=-2,...,2

Next, by imposing the assumption that

a~R 02 0R 02 0R

X 6 ' aX2 ay2

for 0 < y < d(x), 1, < x < 1p, we find that (2.15) reduces to

a2 Ra2 =a R~y) (2.40),y 2 = (C.R(x, y)

with AR(x,y),0 < y < d(x),lI < x < lo, given by (2.16). Substituting for AR(x,y) in
(2.40) from (2.16), integrating the resulting equation twice in succession, and applying the
boundary conditions

9R(x, 0)= Tr < x < l241

{ R(x, d(x)) = T(2.41)

we find that for 0 < y < d(x), lc < x < 1p,

0R(x, y) = 1(cs2y2d-2(x) + [(To - T1) - C2s2]yd-1(x) + T1 (2.42)

Finally, if we impose the assumptions

xl ' l x 2 y2< 

on Oc(x, y), 0 < y < d(x), -1 < x < -Ic, we see that (2.17) reduces to

O =2 = C (X, y) (2.43)(9y2
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where A.4' (x, y),O • y • d(x), -l# < x < -la, is given by (2.16). Proceeding as in the
computation Of OR(X, y), and imposing the boundary conditions

{C Q(XO) = T
9ch(x, d(x)) = To

- lf3 < x < -l,

we find that
9~(x~y) ! 2 2 d-2 (X) + [(T 0 1 !~2y-1 (x) + T 1~,c(X Y =2Cs d0_T)_2CS]

for0 <y <d~x), -1 0 < x< -Ia.

(2.44)

(2.45) 
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3 Heat Transfer from the Roll to the Lubricant

In this section we compute the net heat transferred from the CC roll to the lubricant, i.e.

Qr+o, as
Qro = qrRo = qo 0 + q o + q_ + o + ro + rL (3.1)

where qRo, q-Ro, qr-O, q-ro, and qr-o are the quantities of heat transferred from the roll to

the lubricant in those regions of the bearing where the corresponding temperature distribu-

tions are given by OR, OR, 0c, 9L, and &L.

We begin by noting that the heat transfer per unit cross-directional width under the solid

part of the shoe in the right-hand subchannel is given by

qrto = | (-K I =o)d(

ie t iieI=o)z 3(3.2)(2.27), (S2), and (S3), and making note of the fact that pt'(O) = 0,k = 0,... ,4, we findthat y=O = d-ko (x), _ <<x < L, (3.3)
k=1

If we substitute d(x) = do - x tan / in (3.3), and then the resulting expression in (3.2), the

integration indicated in (3.2) leads to

Ro = i[(To - T) - 3CS2] n [d(L) ] RS [1 1 
tan/3 [d() ptan/o d(Lo) d(l~)

3n(C [1 134

Next, we have that

= j o "- |,o) dx (3.5)

From (2.42) we compute that

90 y=o = [(o - Ti) -l ]d- (x), (3.6)

for lc < x < lI, and using this result in (3.5) yields

-o- [(To - T) - Cs2] [d/] (3.7)
4qr ^ = I--- ^ --- ln 37nd(l)tan/3

Remarks: Assume T1 > To. As d(lc) > d(l), we infer from (3.7), and the fact that C < 0,
that for ITo-TlI sufficiently large and/or s sufficiently small, qo > 0. However, for ITo-TlI
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fixed, say, we may also infer that, because ( < 0, we will have qR0o < 0 for s sufficiently
large, a phenomena that may be attributed directly to the dumping of heat into the lubricant
at high speeds as a consequence of the mechanism of viscous dissipation.

For the center subchannel, i.e., -lc < x < lc, we have

qc= k- ( 0c 1= dx (3.8)

By virtue of (2.38), (S8), and (S9) we have

c Y=O = [(To - T)- s2 ]d-l(x)- (d3x) + Crsd() (3.9)

where Fc = (Pc - 3R)/4/c1 and we have used the fact that the coefficients pk(y) in (2.38)
satisfy pc'(0) = 0, k = -2,..., 2. From (3.8), (3.9) we compute that

hi(To- T 1) - cs2] d(l) [4(c ) d4(_lc)] 
= c[(To a T) ]in [ d(-c)] 24 tan) (3.10)

+ (Kr's [d2 (lc) -d2(-lc)]
6 tan/3

Next, in the region of the channel under the recesses in the left-hand subchannel

1O = Ic (-'- Y=)dx o(3.11)

However, by (2.45)

l=o = [(To- -T1)- C(2]d-1(x), (3.12)
Oy 2

for -1l3 < x < -lc, in which case, by (3.11)

[(To - TO) - (s 2] '[d(-/1 ].
q-r-o = ( tIn 1cd(- ) (3.13)

0 = n----tan) 

Finally,

qo = J| k- a Y=O) dx (3.14)

From (2.34), (S5), (S6) and the fact that pf'(0)= 0, k = 0,..., 4 we have

=E d(,.3

y ,o=-ckdk(x), (3.15)
°y= O ck=1
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for -Lf6 < x < -1la, where the 'cf, k = 1, 2,3 are given by (S6). Using (3.15) in (3.14), and
carrying out the indicated integrations, we find that

-I1 = 4(TO -TO)- 3CS2] In d-3 ]+ 8incyncs 1 1

+ tan r' ( ) 2 I- &(L)] (3.16)

To compute the net heat transferred from the roll to the lubricant, i.e. QrT+O, as given by
(3.1), we sum the expressions in (3.4), (3.7), (3.10), (3.13), and (3.16); after some lengthy
algebraic manipulations we find the following result:

Qr-+u t4K(To - T1) - 3~s2] In d(Li) 1+~ 5 ICIs2 In[d( p)1
tan 13 [d(-L,9) 2 tan13 I d(1,3)J

+ ticjs( d(' d(li)] ~ [ _4' - d(-L,6)l)

+ ptani (id2(3)~ - d2(l0)] +72C [d2(_J1j) - -d2(-LO)]

24tn d 46tandfl [d 2(l~) - d2(_1l~)] (3.17)
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4 Heat Transfer from the Lubricant to the Shoe

In this section we compute the net heat which is transferred from the channel to the internal
shoe, i.e., QO-+sh, where

-R R -r -c

Qo-sh = q+sh + qO-+sh + h + qsh + Q0sh (4.1)

and qO-sh, qOsh, qO-sh, qO-+sh, and qo.-sh are the quantities of heat which are transferred
from the oil (lubricant) to the shoe in those regions of the channel where the corresponding
temperature distributions are given by Rn, 0 R, 6c, Or, L9c

We begin by noting that

sh= ( Kay Iy=d(x)) d (4.2)

Using (2.27), (S2), and (S3) we compute that

OR y=d) R= d-3(x) - d-2() + (Cs 2 + (To - T 1))d-(x) (4.3)

y p2 p

for 1j < x < Lp, where d(x) = do - x tan /. A straightforward computation based on (4.2)
and (4.3) now yields

-R 3Cnrk2 [ 1 1 4C S 1 1
qO-sh p2 tanP [d2(l) d21(L)2 + ptan/f d(Lp) d(l,)

(C(s2 + (To - TO)) n [d(L)l 
tan p d(lp) 

Next, we have

0sh = I ' ( y y=d(x)) dx (4.5)

But, by (2.42)

09R y=d(z) = [(To - TO) + Cs2]d-1(x), (4.6)

for Ic < x < ln. Therefore, as a direct consequence of (4.5) and (4.6) we find that

qO*h = [(To - T) + 2Cs] ln [d(l) (47qo-,h = 2 In (4.7)
tan [ d(l,)

In the center subchannel, i.e. -lI < x < lc,

qO- = l - Ky . = d(x)) dx (4.8)
0 "* \ ay /
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From (2.38), (S8), and (S9) it is easily computed that

-o Iy=d(.) =[(TO - TO) + - CS2]d1 '(x) +1-crTsd(x) + -CrF2d 3 (X),
19Y 2 3 6 c (4.9)

for -l,_ < x < 1,, where rc, = (fiC - z3R)/4I.lc. Substituting (4.9) in (4.8), and performing the
indicated integrations, we have

qoc-~~sh = 2 In dl)1+ ~s[d'(l ) - d(l)
qo-Sh -T 1 )+ ~2]tan# dgI) 6 tan/8

+ 24 an [d 4 (1) - d(l) (4.10)

Moving into the region of the channel under the recesses in the left-hand sub channel, we
next have that

qo-*sh = J-~ ('O - rla'cIY dx) dx

However, by virtue of (2.45)

aocy=d(x) = [(To - TO) + I (s2 ]d-1(x)

for -1ip < x < -la. Combining (4.11) with (4.12) we now compute that

qO- 'h i(To - TO) + I (2] d-~

Finally,

=o- ""o 1,=d~x)) dx

so using (2.34), (S5), and (S6) we have, for -Lo < x <-l~

(4.11)

(4.12)

(4.13)

(4.14)

(4.15)ao'c [CS2 + (T0 - 1 ]'(x) + 4(s (7iŽ•'c) d 2 (X)
- Iy=d(x) = K-TS] 

and, then,.

qO- s h -: r,( + (To - T 1)]J In d (-la)1
tan 0 Ld&(-Lg)]

tan,3 p )
1

I d2(_. 13) (4.16)
d2(- L,3)
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By summing up (4.4), (4.7), (4.10), (4.13), and (4.16), and carrying out some elementary
algebraic manipulations, we find that

Q [(T0 - Ti) + (S2] In d(L) 1 + s2 n 'd(-1 3)
tanB [ d(-Lp)l 2tan/3 d(l) 

4Cs 1 1 1 . 1 1 
+ ptan/ ) d(l) d(-1]) d(-LB)J)

p2 tan2 3r d2(LB) d ,)-,,+P2 tanp ( [d2 (L) - d2) ( d+72 [(-) d2(- LB)])

+ t [d2(1c) - d2(-lc)] + 2 [d4( - d4 (-)] (4.17)
6tan3 C 24 tan 3

Remarks: One may take, as a measure of the "'viscous heating" of the lubricant in the
channel, the quantity

Q} Qo-sh - Qr-o (4.18)

From (3.17) and (4.17) we have, therefore, the Qf the expression:

- 3c|1s2 id(-n l) l 4lr
Qv -- tan/3 2In [d ) + 1 [d4(c ) - d4(- )]f tan) I d(10)-] 12 tan d

+12KIC|5 ( I 1 ThL 1 I
p+ 12t mR [d1 (-l-d(^)] d1) d(-L ))

6|C|( 1 _1 _2 1 1 (4.19)
p2 tani d2(Lo) d2(1) +mC d2(-l,) d2 -L)) (49)

Because C = 0 if t = 0, we note that (4.19) implies that Q,=0o = 0; also, because rhR = ma
when s = 0, in which case PR = Pc, it follows that Fr = 0 when s = 0 and, therefore,

Qvf s= = 0. Thus, as would be expected, the 'viscous heating' of the lubricant vanishes both
for the limiting case of zero viscosity as well as for the case of zero tangential speed of the
roll. A detailed examination of Qf for the degenerate case of a parallel-walled channel with
fixed (stationary) walls is presented at the end of §5.
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5 The Limiting Case as 3 -> 0.

In this section we will extract the limits

lim Qr-o

lim Qo- sh (5.1)fi-+o

lim Qf

of the respective expressions (3.17), (4.17), and (4.18), for the heat transferred from the roll
to the oil (lubricant) the heat transferred from the oil to the shoe, and the 'viscous heating'
of the lubricant; going to the limit in these expressions as i3 - 0 corresponds to passing to
the (physical) limiting case of a parallel wall channel.

In order to extract the limit: limQr,-o we must extract the limit as i -+ 0 in each

component term in (3.17). We now display the calculations for just one of these terms (i.e.,
the first one in (3.17)) and, thereafter, will only record the results. The P dependent part of
the first term in (3.17) is, clearly,

1 d(LO)
tan- I[d(-LLp)

Using L'Hospital's rule we compute that

limo n1 In (L) \)
tan ,n 1 d(-L)J

lim1 1 do-LT sin'

tan p do +- LT sin 

1 do + LTsin si d (do-LTsin 3
= lm/3 Osec2. kdo - LTsin J dp T do +LTsin)

___1 _(do + LT sin \ -doLT cos
= limpo sec2 [ tdo - LT sin ] [do + LT sin 0]2

= lim -doLT cos ( 1n
-- hme-~o , sec2 . d _ -L sin2 f

or

lim ( 1 In d(LO) LT
/3-io -tan/ 3 [d (-L ) j -do

so that
lim [i(To - T1) - 3C2] . In d(LO) 1= [(T - To) + 32] L T (5.2)
,3-+o tan: [d(-LO)] do

Moving on to the other terms in (3.17) we have the following:

lim 1 d(-ln -)] Lrec
/-o0 tan /3 [ d(l) J do
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so that

13-40 2 tan 3

Next,

Ed(-113) 1 _ SKKILrec -s 2

Id (11 ) I 2 d

1li i _LT -Lrec
urn ta I-(16)d- ta1 3 Ld( L10 ) - d( I )J

1 [ 1 1~1 LT- Lrec
lirn t~a -n/ [d-1 d(-L 3)J = d

lim 8ilKls
13-40 p tan l (& d(LO) - -)] mcdL 10 - ( -01

S KJ(S (LT - L,,) (ThR -7C ,=

Moving on to the next expression in (3.17) we have

lirn I 2(#13-0Otanl \d(L 1 )

f3-+o tan /3 ~ 2(- 13O)

2 (LT - Lre~c)
- d2 (113))

2 (LT - Lrec)

d2 (- L 3))

which imply that

ir n (
P6-+ p2 tan 03 ( ?i~ ~ (L1 ) - d2(J 13)] 7I2 [ 2 11~) - d2 ( -L 13) )

-6KJ( (LT -Lrec) (7i2 _-h
2 3 mR f

For the next expression we need

lrn [d 2(1~) - d2(_lc) = -4doL,
13-*O tan/

so that

urnim CP [d d(l) -d 2 l)l2,l~do Lr . srF,(O)
3-0C6 tan1 3

where r,(O) A C - PR loo-As l, L, Lcos 13,l L,, for 13 0, and

lrnm [d2( ) _ 2(1 , 1 ] (PC(0) - pR(0)) do s
13-o 6 tan3 C 6 y

and, also,

(5.3)

so that

and, also,

(5.4)

(5.5)

(5.6)
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with Pc(O) = Pc I #=o and PR (O) = PR 1,6=0.

Finally,
lrn [d 4 (1,) - =4_l) -8d 3 L
3-*o tan/3 0

so
lim ~ (d4(l) 4 d(_l,)) 3 -2K(d)

f3-+o 24 tan 13d3 lld Lr

from which it follows that

lim (d4(~ d =c) ( 0- PR(O)) 713-+o 24 tan 48 

Employing the limiting expressions in (5.2)-(5.7) we now compute that

(5.7)

t= ,(T 1 -To) LT rvj(js 2 6T-5,)
do ~~2do 6T-5rc

6xisl (LT - Lre) (7il?(O) + 7h2 :()) +
p02 3R 

+ 8'K 1Cls(LT - Lrc) (T2R (O) - rihi (0))
pdo2

6 g

1 'M(C 0 -P ()I2d
-48112TC

(5.8)

with rnR(O) = rnRl/j=o and rhc(0) = hCI1,3=. Because the various terms in (4.17) exhibit the
same dependence on 0 as did the corresponding terms in (3.17), we may compute, based on
our results, above, that

lim QO. 4 sh =
t( - To)LT +

do
Kf~lS 2 (2LT -

2do
Lrec) -

4 nIIS(LT - Lrec)(Th7R(0) - h()
pdo0

+ 6rC I(LT -Lrec) (ri:2 (O) + 7i,2,%(0)) + 1 -z(ic0 P()

+ 1 K'zM __C() R(0) 
+ 48 112L

and, in view of (4.18)., (5.8), and (5.9)

limQ,= " 1S2(4LT - 3Lrec) - 2 p 2 ( T - L c) (7 2R (0) - i (0))

12icI~4 L 7-42 '0 + 7h2 (O)) + ) ~+ p~~(LT - Lrec) mr 42(CO (.0

lrn Qr-o

(5.9)

I

24

(5-10)
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Remarks: If we both extract the limit as / -+ 0 in the expression for Qf and, also, set
s = 0, then pc(0) = PR(0) when s = 0, 7nR(0) = mr(0) _ mr > 0, and (5.10) reduces to

lim Q Is=o = 24-Cd ( L T - Lec)f 2 (5.11),6-40 p2d3

While it is difficult, even in this limiting case of a parallel wall channel, to make definitive
statements about the behavior of Qr-to, Qo-+sh, and Qf, (because, in general, the channel
thickness do will be a function of the roll speed s, given that all other physical parameters,
such as the load exerted on the shoe, are fixed) it appears that the following will be valid:
(i) For s sufficiently small, Qro > 0, but for s sufficiently large Qr-~o < 0
(ii) If Tx - To is sufficiently large, then for all s, Qo-sh > 0, with Qo-sh growing as the roll

speed s increases.
(iii) For all s, Qf > 0, with Qf growing as the roll speed s increases.

In fact, for a parallel wall domain, both the temperature and velocity fields are indepen-
dent of x, i.e., 0 = 0(y), u = u(y), and 0 satisfies

"(y) = - () u'2(y) < 0 (5.12)

so that the graph of 0 = 0(y) is concave (down) and satisfies 8(0) = T1 > To = 9(do). The
two possible scenarios which apply here are indicated in figure 11.

For s < sc (s, a critical speed) the oil temperature near the wall representing the roll is
less than T1 so heat flow goes from the roll to the lubricant; but for s > sc oil temperature
near this wall is greater than T1 and heat flows from the lubricant to the roll.

On the other hand, for all s, it would appear that the oil temperature near the wall
representing the shoe is always greater than To so that heat flows from the lubricant to
the bottom surface of the shoe; in order for this result to, indeed, hold for all s it may be
necessary that the difference T1 - To be sufficiently large.

Some further analytical insight into this problem can be achieved by looking at an even
simpler problem in which oil flows in a parallel wall channel whose depth is held constant,
say, at one unit; the channel has length L, the pressure difference Co = po - Patm > 0 is
constant, the upper wall is held fixed, the bottom wall moves to the right with speed s, and
the constant temperatures at the bottom and top wall are, respectively T1 and To(To < T1 ).
This situation is depicted in figure 12.

It is easily shown that the velocity distribution is given by

U() = 2 _( + y +s (5.13)
2M. \2ijL
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and

OM c= 4 Y,-C 2cos
o~) 12/.2Y 6- IL2)Y

where

K = (To - To) - 12/22

+ (C02
2 4M22

( ~2cos

+CS+S Y2+ K~y T1
A2 

c0Cs 2"S2

+7 6+2)

and ~ = -
I';

From (5.14) we easily find the two relations

Q = d9LK

(5.16)

and

-rL d- y=1 = -rKLK., + (it) 12p 2L]L c2 L 2
= ~~~~L+ SL

Qr-+O (tL)1 2g 2 LI (5.17)

The viscous heating of the oil is then given by

[cL + 2 Q
QO-*sh -Qr-+o = () 1M (5.18)

so that Qv>0 with Qv= 0iff both co =O0and s=O0. Also, Qvas afunction of s
increases like s2 as s -+ oo. From (5.15) and (5.16) we see that the term quadratic in s in
the expression for Q,, is just

(5.19)C 2= L 2 _ __ 2

2 2 2

so for $ sufficiently large it is clear that Qr-*o < 0. By (5.18), then,
in the expression for QO,,h is

the term quadratic in s

q* =-AL2 + L 8 = L 2

S 2 2-~ i s 2 - s >
(5.20)

so. for all s, Qo-*sh > 0.

(5.14)

(5.15)

Q O-+sh =
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6 Some Numerical Results for CC Rolls
A. Computational Methods

Mathematical expressions for the velocity profiles (V1-V5), the temperature profiles (S1-
S11), heat flow rate from the roll to the oil (S12-S17), and heat flow rate from the oil to
the shoe (S18-S23), for each of the five regions between the bottom surface of the shoe and
the inner surface of the roll were coded in a Fortran computer program using the Microsoft
Fortran (version 5.1) on a 486 IBM-PC compatible microcomputer. The numerical results
obtained from our previous study [4] for the lubricant mass flow rates, lubricant pressures,
and geometric dimensions for the left and right sub-channels (e.g., thickness and length)
associated with each operating condition were entered into the program. In the computer
model a lubricant viscosity, density, and thermal conductivity of 56 centipoise, 873 Kg/m3;
and 0.147 W/m°C were assumed, respectively. Calculations were performed for selected
values of the shoe temperature (To) in the range of 100-160°C, and an inner roll surface
temperature (Ti) in the range of 100-300°C.

B. Results and Discussion for a CC roll with R = Rs

In this section the results for a shoe/roll configuration in which the roll and the shoe are
machined to the same radius of 508.13 mm (Rs = R = 20.005 in) are presented. Velocity
and thermal characteristics were obtained for those operating conditions in which the shoe
was subjected to an applied load of 350-1051 KN/m (2000-6000 PLI), and a roll speed of
305-1067 m/min (2000-3500 ft/min). In general, for the conditions analyzed in this study,
the calculated net heat flow rate from the roll to the oil was negative which indicates that
because of the viscous nature of the lubricant, and the large tangential speed of the roll,
under steady state conditions, the temperature of the lubricant at the regions near the roll
surface was greater than that of the inner surface of the roll, thus, under these conditions,
the direction of heat transfer was actually from the oil to the roll. Energy absorbed by the
lubricant because of viscous drag and inertial effects are expected to be very important in
determination of thermal performance of the press roll. Therefore, in this section we will
characterize this viscous heat dissipation as a function of various boundary and operating
contortions.

Shown in figures 13a and 13b are the velocity and temperature profiles at the entrance
to each channel (x = 0), at the end of the left-hand channel (x = -L:), and at the end
of the right-hand channel (x = L:) for the roll speed of 610 m/min (2000 ft/min), and an
applied load of 350 KN/m (2000 PLI). Note that in all figures referred in this section the
subscript (3 has been suppressed, e.g., the points at the end of the left-hand and right- hand
subchannels are identified by -L and L, respectively. The velocity profiles are plotted as
seen by an observer who considers as positive the direction from left to right; thus, except
for the regions closer to the moving boundary (roll), in other locations the velocity profile in
the left-hand channel is negative, and in general the profile at the beginning of the channels
(z = 0) lies between those of the left-hand and right-hand channels. As was shown in the
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previous study [4], because of the clockwise rotation of the shoe, the thickness of the channel
at x = -Lp becomes greater than that at z = Lp. For the operating conditions shown
in figure 13a, the maximum lubricant velocity occurs in the right-hand channel slightly
below the mid-point of the channel. We show in figure 13b the corresponding lubricant
temperature profiles when the top and bottom boundaries are maintained at 100°C. In the
left-hand channel, because the lubricant is flowing in the opposite direction to motion of the
roll, viscous heat dissipation is greater than that in the right-hand channel. This results in a
greater temperature increase for the lubricant flowing in the left-hand channel as compared
with the corresponding points in the right-hand channel. Under these operating conditions,
the lubricant temperature increases up to 30°C above the wall temperatures at the end of
the left-hand (i.e., as much as 30% above the wall temperature), and up to 8°C at the end
of the right-hand channel.

Shown in figures 14a and 14b are the lubricant velocity and temperature profiles for the
same conditions as those described in the previous figures except that the applied load in
these cases was increased from 350 KN/m to 700 KN/m. As shown in figure 14a, because of
the influence of the external pressure and roll speed, in some regions the lubricant velocity
becomes greater than the roll speed of 610 m/min (10.2 m/sec). The lubricant tempera-
ture increase for this case was approximately 70% above the wall temperature (figure 14b).
Figures 15a-15c correspond to those profiles for an applied load of 1051 KN/m. As the mag-
nitude of applied load increases, the shoe moves downwards and will also exhibit a smaller
clockwise deflection. This will result in a smaller difference between the lubricant thicknesses
at the end of the two sub-channels. As shown in these figures, an increase in applied load
results in more symmetrical velocity distributions for the left-hand and right-hand channels
with respect to the distribution at x = 0. As the applied load increases, the influence of the
pressure terms in the calculated velocity for the profile at x = 0, becomes less significant (see
equation V5), and this profile will approach a straight line (figure 15a). This same behavior
is observed in the temperature profile (figure 15b). An increase in applied load from 350
KN/m to 1051 KN/m results in a significant increase in the mass flow rates, and a significant
reduction in the lubricant thickness along the left hand channel [4]. Thus, the fluid velocity
in this channel increases significantly with applied load.

For instance, the absolute value of the maximum lubricant velocity for an applied load of
1051 KN/m is 26 m/sec (figure 15a) which is approximately 2.5 times greater than the roll
velocity. Figures 14b and 15b indicate that the maximum oil temperature at the end of the
right-hand channel occurs in the region closer to the shoe, while for the left-hand channel
it occurs in regions closer to the roll. Note that the two boundaries are maintained at the
same temperature of 100°C, however, the lubricant temperature differential in the thickness
direction is as high as 125°C (figure 15b). This has occurred because of heat dissipation
within the fluid which is strongly influenced by the oil viscosity and relative motions of the
lubricant and the moving boundary. Such a temperature variation along the film thickness
is expected to have a major effect in the oil viscosity.

It should be emphasized that in the analytical solution performed in this study it was
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assumed that in each region of the channel (i.e., under the solid part of the shoe in the right-
hand channel) the variation of the temperature along the machine direction is much smaller
than that along the thickness direction (see equation (2.21)). Plots of the temperature
profiles at the entrance to this region of the channel (x = 1p = 116.3 mm), and at the end of
the channel (x = Lp = 187.4 mm) are shown in figure 16c. Considering the fact that under
the solid part of the shoe, the thickness of the channel (0.42 mm or less) is much smaller than
the machine direction width of the channel (71.1 mm), the approximation used in equation
(2.21) appears to be supported by this figure. However, justification for simplifying equation
(2.9) to equation (2.22) in which the convective term was assumed to be negligible, depends
on lubricant velocity, and the thermal and physical properties of the oil, and should be
further investigated by a numerical approach.

Analysis of thermal behavior of hydrostatic and hydrodynamic bearing with conventional
recess and pad design and subjected to adiabatic or isothermal boundary conditions has been
studied extensively [10,11]. A classical solution for a flow of an incompressible Newtonian
fluid between two coaxial cylinders in which the outer cylinder rotates and results in viscous
heat generation within the fluid is given in [9]. Some studies have analyzed the effect of a
more complex bearing geometry and variable rheological behavior of the lubricant [10,11].
However, the thermal solution for a crown compensated roll design such as the one described
in this study, in which the lubricant is subjected to an external pressure, and flows through
a series of capillary tubes located in the central region of the shoe as it enters into the
channel formed by the bottom surface of the shoe and inner surface of the roll, and then
flows through the left-hand and right-hand sides of the channel, is not available. For the sake
of simplification, in this initial study, the influence of the variation of lubricant viscosity with
temperature was not considered. This viscosity variation not only occurs along the machine
direction width of the channel, but also across the film thickness, and should be considered
in future studies. The purpose of this initial investigation was to develop a closed-form
analytical solution to gain more insight into the fluid and thermal characteristics of the press
roll. Using numerical techniques such as finite difference or finite element analysis, future
studies should consider all terms in the energy equation, and take viscosity to be a function of
temperature. In this regard we refer the reader to the discussion in section 7. One advantage
of numerical techniques over analytical methods is that, in general, they are more flexible
with regard to handling complex geometric and boundary conditions. However, to assure
validity, accuracy, and convergence, such results should be compared with experimental data,
or analytical solutions.

Lubricant temperature profiles for a shoe temperature of 100°C and roll temperatures
of 200°C and 300°C are shown in figures 16a and 16b, respectively. Again, because in the
left-hand channel the lubricant flows against the direction of rotation of the roll, the oil
temperature increase in this sub-channel is greater than that in the right-hand channel. An
equivalent interpretation is that the square of the gradient of the velocity profile at each
point along the thickness of the left-hand channel is greater than that at the corresponding
point in the right-hand channel (see equation 2.4). As expected, under these conditions,
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the maximum lubricant temperature occurs near the roll which is maintained at a higher
temperature than the shoe. Temperature profiles at three locations along the channel for a
roll inner surface temperature of 100°C and a shoe temperature of 160°C are shown in figure
17. Note that the temperature profile at x = 0, which is approximately linear, indicates
that for this operating condition, in this region, the influence of viscous dissipation on the
temperature gradient is negligible, and the dominant mode of heat transfer within the fluid
is by conduction. In other words, under these conditions, the heat transfer through .the
lubricant at x = 0 is similar to that of heat transfer through a solid body. Shown in figure
18 are the temperature profiles at the end of the left-hand channel (x = -Lp) for an inner
roll temperature of 200°C and various shoe temperatures between 100-160°C. Under these
conditions, the location of the maximum lubricant temperature is independent of the shoe
temperature and occurs approximately 0.13 mm above the inner surface of the roll.

The influence of the roll speed on the lubricant velocity and temperature profiles at the
end of the left-hand channel are shown in figures 19a and 19b, respectively.

Figure 19b indicates that with both boundaries at 100°C, the maximum oil temperature
occurs closer to the moving boundary (roll). A comparison of these figures indicates that
an increase in roll speed has a more pronounced effect on the temperature profiles than on
the velocity profiles. Temperature profiles for an inner roll temperature of 300°C are shown
in figure 19c. Figures 20a and 20b depict the oil velocity and temperature profiles at the
entrance of the channels (x = 0) when the shoe and roll temperatures are maintained at 100°C
for various roll speeds. As the speed of the roll increases from 305 m/min to 1067 m/min, the
viscous heat dissipation within the lubricant increases which results in a significant change
in the temperature profile. Temperature profiles for an inner roll temperature of 300°C are
shown in figure 20c. The corresponding plots for the end of the right-hand channel are shown
in figures 21a-21c. For the right-hand channel when the temperature of both boundaries are
at 100°C (figure 21b), the maximum oil temperature occurs in those regions closer to the
fixed boundary (shoe). Comparison of figures 20b and 21b indicates that at the entrance to
the channel (x = 0), a roll speed of 305 m/min results in the smallest lubricant temperature
differential along the thickness direction, while at the end of the right-hand channel (x = L:),
this roll speed results in the greatest temperature differential.

We show in figures 22a and 22b the oil temperature profiles at the end of each channel
for the shoe temperature of 100°C and various inner roll temperatures. Note that when the
inner surface of the roll is maintained at a higher temperature, the slope of the tempera-
ture profile near this surface is increased. Thus, gives a smaller heat flow from oil to the
roll. It is anticipated that if one were to hold the shoe temperature fixed, under a fixed
operating conditions with respect to roll speed and applied load continue to increase the roll
temperature, eventually the slope of the temperature profile near the wall would become
negative thus indicating that the heat transfer goes from roll to oil. For the condition where
Ti = To, the lower limit for the slope of the temperature profile corresponds to that of a
straight line in which the transfer of heat from the roll to the shoe is controlled by the mode
of conduction, independent of any viscous dissipation (e.g., see figures 20b and 20c). To
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investigate the influence of applied load on the velocity and temperature profiles at various
locations along the channel, these profiles are plotted for two loading conditions in figures
23a and 23b, respectively. An increase of the applied load from 350 to 700 KN/m will result
in a smaller counterclockwise deflection for the shoe; this will result in a reduction of the
lubricant thickness at x = -Lp and an increase in the channel thickness at x = LB. The
temperature and velocity profiles at the entrance to the channels were not affected by the
change in applied load. However, an increase in applied load from 350 to 700 KN/m, which
results in a greater lubricant flow rate, and thus a greater flow velocity at the end of each
channel, has caused a significant increase in the temperature profiles at these regions (figure
23b).

With both boundaries maintained at 100°C, the maximum oil temperature at x = -Lp
occurs in those regions. closer to the roll while at x = Lp it occurs in regions closer to the
shoe.

Shown in figure 24a is a plot of the absolute value of the net heat flow rates per unit cross
machine direction width of the channel (obtained from equation S17 as a function of roll inner
surface temperature TI, for each shoe temperature To, for the operating condition of 1051
KN/min (6000 PLI) load, and 610 m/min (2000 ft/min) roll speed. These results are plotted
in figure 24b as a function of shoe temperature (To) for each roll inner surface temperature.
The heat flow rate is inversely proportional to T1 (figure 24a), and directly proportional to
T o (figure 24b). A greater heat transfer from oil to roll occurs for a smaller roll temperature
(e.g., T = 100°C), and a larger shoe temperature (e.g., To = 160°C). As indicated, for a
constant shoe temperature, if we continue to increase the roll inner surface temperature, the
heat transfer from oil to roll will drop in magnitude (figure 24a) and eventually becomes
negative indicating that the direction of heat transfer in this case will be from roll to oil.
The heat flux for each region of the channel can be obtained by dividing the heat transfer
in each region by the corresponding machine direction width of that region. Shown in figure
24c is the total net heat flux (which is equivalent to the total heat flow rate divided by the
roll inner surface area along the cross machine direction). For a fixed shoe temperature of
160°C, the contributions of each region to the net thermal energy and heat flux transferred
from the oil to the shoe are plotted as a function of the roll inner surface temperature in
figures 25a and 25b, respectively. These figures indicate that the regions under the solid
part of the shoe, which are associated with a greater fluid velocity, play a major roll in the
transfer of heat from the oil to the roll.

The net heat transfer under the solid part of the shoe for the left-hand channel is much
greater than that of the right-hand channel because of the greater lubricant thickness in this
region, as well as the larger dissipated heat in the lubricant occupying the left-hand channel,
(e.g., see temperature profile shown in figure 15b).

Shown in figures 26a and 26b are the net heat flow rate from oil to the shoe (see equation
S-23) as a function of T1 and To, respectively. A greater heat transfer from oil to shoe
occurs for a greater roll inner surface temperature (e.g., Ti = 300°C), and a smaller shoe
temperature (e.g., To = 100°C). The corresponding heat flux as a function of roll inner
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surface temperature is plotted in figure 26c. For a constant shoe temperature of 160°C, the
contributions of each region to the net heat transfer per unit of cross machine direction width
of the roll, and to the net heat flux are plotted in figures 27a and 27b, respectively. Under
these conditions, the calculated thermal energy and heat flux for the left-hand and right-
hand recesses are identical. Shown in figures 28- 31c are the plots of the heat flow rate and
heat flux for an operating condition of 1051 KN/m (6000 PLI) load, and 914 m/min (3500
ft/min) roll speed. Comparison of figures 24a and 28, and also figures 25a and 29a, indicates
that an increase of the roll speed from 610 m/min to 914 m/min results in a greater heat
transfer from the oil to the roll. However, the heat transfer under the recess was independent
of the roll speed. Shown in figures 29b and 29c are the heat flux from the oil to the roll
as a function of distance from the beginning of each sub-channel. The discontinuity in the
profiles at the interface between two adjacent regions corresponds to the discontinuity in the
velocity profile at that interface. For a fixed shoe temperature (To) of 100°C, and a roll inner
surface temperature of 200°C, or higher, the viscous heat dissipation under the left-hand and
right-hand recesses was negligible. For these conditions, the direction of heat transfer was
from the roll to the oil (figure 29b). Similarly, for a fixed roll temperature of 100°C, and a
shoe temperature of 160°C, in this region, the direction of heat transfer was from the shoe
to the roll (figure 31c). The variation in heat flux under the solid part of the shoe is due to
the variations in the dimension of the channels as well as the variation in the temperature
profile along the cross machine direction (e.g., see figure 16c).

At the present time no experimental data for velocity or temperature across the film
thickness or along the machine direction width of the channel is available to compare with
the values predicted by the analytical model. Since the lubrication thickness is very small,
and the variation of temperature along the thickness is relatively large, specific experimental
methods should be developed to measure the velocity and temperature along this direction.
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7 Some Directions for Future Research

In this section we will present some ideas that are directly related to carrying the initial
effort presented in §1-6 forward; these include a finite-difference scheme for solving (2.9) with
only the highest order derivatives in the machine direction deleted, a discussion of iterative
and averaging schemes to gauge, more accurately, the relative importance of the convective

term pcpu- in the heat transfer analysis, the inclusion of a temperature dependent viscosity

, = /(0), and a modification of the prescribed boundary conditions on the bottom surface of
the shoe and the inside surface of the roll so as to cover a broader and more physically realistic
set of possibilities on these boundaries. We begin by focusing on the subdomain in the
channel under the solid part of the shoe, in the right-hand subchannel, and on recasting the
original boundary-value problem there in a form more amenable to.numerical computation
of the temperature field.

In the subdomain of the lubrication channel in our model defined by 0 < y < d(x), 1 < x <
Lp, the equation for the temperature distribution has the form

9O0R
/2 OR(X, y) + bR(x, y) = fR(2 Y,) (7.1)

with

bR(x,y) = -pCUR(, y); f(x, y; ) = -R -aY (7.2)

In addition, the full set of boundary conditions has the form

0(x,0) = T1 , O(x,d(x)) = To,l 3 < x < Lp (7.3a)

and { 0(L,y) = a(y), 0 < y < d(L^)
O(1l3,y) = :(y), 0 < y < d(le) (7.3b)

Let
0=- )(To-T)+ri (7.4)O* = d(x) (To - Tr) + 7

then

O*(x, 0) = T, 0*(x,d(x)) = To, 3< x < L (7.5a)

and

O**(L,y)= () (To - T) + T < y < d(L)

0*(l, y) = d() (To - Ti) + T1, 0 < y < d(l13) (7.5b)
I (1, 6' Y) d-i7)

33 Report 12



1

Project 3470 34 Report 12

so if we set
(x, y) = 0(x, y) - *(x, ) (7.6)

then

Qe(x, ) = e(ax, d(x)) = 0, 1 < x < Lp (7.7a)

and

e((Lp, y) = a(y) - [ ) (- ) + T, O y < d(L)

(3, y) = (y) - (To - T1) + T] 0 < y < d(l) (7.7b)

In particular, if a(y), ?(y) are chosen, respectively, to be linear interpolations of the tem-
peratures To,T, at x = Li and x = lp, then O(L, y) = 0,0 < y < d(Lp), and E(p, y) =
0,0 < y < d(lp). Using (7.6) in (7.1) we may compute, directly, that O(x, y) satisfies

/ V2 OR + bR(x, y) -O = gR(X, y; t) (7.8)

with

gR(x, y; fI) = fR(x, y; p) - n(To - T 1)y (d-'(x))" - (To - Tl)bR(x, y) y . (d-(x))'

But, as d(x) = do - xtan , (d-l(x))' = tan l/d2 (x), while (d-'(x))" = 2tan2 //d 3 (x), and,
therefore,

9R(X ; ) = fx Y; ) + 2(T1l - To) tant y bR(x, y) (7 9)gR(x, y; [) = fR(x, y; )+ d3(x) + d2 (x)
d3 X) d2(X)

We now transform the domain D = {(x,y)10 < y < d(x), Ip < x < Lp} which approxi-
mates that part of the subchannel formed by the bottom surface of the shoe and the inside
surface of the roll between 1p and Lo. Consider the change of independent variables given
by { ^=fi(x,y) = x (7.10)

{ f2(x,y) = y/d(x) (7.10)
Under the mapping (x,y) -- (x,y),D is mapped onto the domain D = {(x,y)la < x <

L6, 0 < y < 1} (figure 32a). The Jacobian of this mapping is

194I 0 1
xJ O(xy) -yd'(x) 1 = > (7.11)
9{ ,y) d2() d(x) d (x)

-________ I
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so the mapping (x, y) -* (~t, 1) is non-singular and, thus, invertible. The inverse mapping is,
in fact, given by { = x (;,9 ;

y =f12 9,1)= d (t) 

We now define 03, , and b by

eR(X, Y) e R(f1(xt,P), 2 (t,P)) = ER(7X, d (T)q)

= R(Xt, )

gR(X,Y; ti) =g R(t, d(xt)y;/L) =g9R(t,9;I A)

so that 19R,g9R, and bR are defined for 1p • t < Lo,5 0 <7 • 1.
straightforward calculations yieldI O8R

ax
89eR

89y

Q92 OR

,9X2
0 2G,
,9.2

From (7.13), tedious but

= aE)R 17a 0 aGR

OeaR 1-
817 d(.t)

+ 2tanO3( 9 ) Oa817

+2 tan 2 3 (d2 (~)

a 2eR
19y 2

1 92 OR

d2 (5) 9172

From (7.15) we then have, for 1,3 • t < L~,O •17 1 <I:

V7 eR = at2e

As both tan /3 ;z 0 and
tan 3

+ 2tan 3 \D(J 92 OR + 2 tan2 i3 d( 9) a17

+ I2~ (I + tan 2 /312) 92 OR

« 1 (i.e., [4]), if the derivatives

092 eR

aO~&17'
9OGR

' and
02 OR

0172

(7.12)

(7.13)

and

(7.14)

(7.15)
aq \d(~)} 0172

(7.16)
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are bounded on the rectangle D, then by (7.14), (7.16)

a eQR e90R

VIR IaR 1o ayR2 (7.17)
2 7; OR W --- -

V 2R ~ +

and (7.8) assumes the following form on D:

(<a2OR + do0 ) (z; AxeR g(C ; '(7.18)

for 1 < x < Lp, 0 < y < 1, where bR(., y) and gR(X, Y; Pt) are given by (7.13). Associated
with (7.18) is the boundary data

eR(, 10)= OR(X, 0) = 0 1' < (7.19){_R(X,01) = ER(x, d(x) = 0

and
QR(LP, L ) = ER(L, d(L3)y)

= a(d(Lp)y) - [(To-T1) + T1], 0 < < 1
(7.20)

OR(lp, ) = eR(A, d(l) )y)
= 0(d(lp)y)-[y(To-T 1) + T1], 0 < y < 1

If a(y), 3(y) have been chosen, respectively, as linear interpolations of To and T1, at x =
L3,x = 1p, then

eR(L3, Y) = 0, R(p, y) = 0; 0 < y < 1 (7.21)

Once enR(, y) has been computed on D we may recover OR(z, y) on D as

eR(X, Y) = OR(X, y/d(x)), 0 < y < d(x),/ < x < L (7.22)

and then, by (7.6),

OR(, y) = OR(X, Y) + -x) (To - T) + T (7.23)

for 0 < y < d(x), 1 < x < L: 

Because we have, in (7.18), »>> 1, a good approximation to the solution of the

boundary-value problem (7.18)-(7.20) can be obtained by deleting the highest order spatial

derivative in (7.18), in the machine direction, i.e., 2; in this case the first boundary

condition in (7.20) is not needed and a finite-difference scheme may be applied to the resulting
problem, i.e. to
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O2 R 8, , eR
CX + bR(,y) R (7.24)

8R(', 0) = R(i, 1) = 0, /l < x < L (7.25)

eR(e(,Y) = P(d(lo)) - [y(To - T) +T],0 < < 1 (7.26)

as follows:
First a domain such as the one shown in figure 32b will be generated in which the top, the

bottom, and the left boundaries are assumed to have known values of nodal temperature.
The objective is to determine the nodal temperatures for e8,j where I = 2,3,...m and
J = 2,3,...,j +1.

Using a central difference approximation, for all the derivatives involving y, and a back-
ward difference approximation for all derivatives involving x, a system of linear equations
for all nodal points in a specific column (e.g. I = 2) will be generated. For instance in the
system of equation for the nodes located at the second column (I = 2), nodal temperatures
of 6 2,J (J = 2, 3, ... , j + 1) are unknown, and are expressed in terms of some known quanti-
ties such as the nodal velocities, the boundary temperatures, and the thermal and geometric
properties. The nodal velocities are obtained from the mathematical expressions for the
velocity fields (e.g., equations V1 and V2). This system of equations for I = 2 will be solved
numerically and the nodal temperatures for 62 ,J, J = 2, 3, ... , j + will be determined. Then
using a similar approach, another system of equations for the nodal temperatures at I = 3
will be generated which are now in terms of known quantities such as the nodal tempera-
tures at I = 2. Again the system of equations will be solved numerically and this process
of marching down the channel will be continued until the temperatures at the channel exit
(e.g., e 1,j for I = m, J = 2, 3,..., j + 1) are determined. As examples for development of
this scheme we note the following finite difference expressions for the nodes located at I = 2:

For I = 2, J = 2, the finite difference approximation of the governing equation (where
we suppress the R subscript) (7.24) is:

k 62,3 - 262,2 + Q2,1 2,2 - 1,2,2
d (A2 -+ b2,2 2,2-

For I = 2, J = 3:

k E2 ,4 - 262,3 + 82,2 + 2,3 - ©1,3 -
d2 (A2 2+ b2,3 (A ,) 92,3

For I= 2,j:

k 0 2,j+1 - 6 2,j + 6 2,j-1 8 
6 2,j - E1,j -

do --- (A -)2 + b2,j = 92j
do(n~) (Ant)

and for I = 2,j + 1
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k ( 2 ,n - 02,+ 1 + 0 2,j e 2 J+ - (1J +1
d (A)2 + b2 ,j+l1 = 92J+1

where in the above equations, ( 2,1 = 62,n =0,
and ( 1,2 = 1,3 = *.. = 1,j = il,j+l = 1 I and b1,J and 9,J are know quantities that are
given in terms of the nodal velocities and other parameters.

The scheme described above serves to determine (by (7.22) and (7.23)) 6R(x, y) for.0-.<
y < d(x), 1, < x < Lp.

an
To evaluate the importance of the convective term pcpua-, which has been passed over

in generating the results presented in §1-6, we may proceed in one of several other ways:

(i) Consider the subdomain in the right-hand channel defined by 0 < y < d(x), lp < x <
Lo, and the "zeroth-order" iterative given by (2.27), i.e.,

4

) (x ,y) = d-2(x) E (y)d-(x) (7.27)
R=O

3

+ E cfd-d(x) + T
R=1

where C = -g/n and the pR, c are given by (S5) and (S6), respectively, of Appendix III.
Ignoring, once again, the highest order derivative in the machine direction, but employing
(7.27) in the convective term, we may define a first-order iterative (l) (x, y) as the solution
of the boundary-value problem (compare with (2.22) for 0()(x, y)):

a2j(1) a ___

aR20 = (A (x, y) + p--iR(x, y) (7.28a)

()(x, 0) = T1, 6(\)(x, d(x)) = To, l0 < x < L: (7.28b)

It may be shown that the general solution of (7.28a) is

4

9() (x,) = (d -(x) E (y)d-k(x) + m(x)y + n(x)
0
(1 ' \ 5 12E~z~y4+

+ /ptan{ 2D(x)y5+ E + iF(x)y3

+ -ls2y6Ao(x) - _r Y6 + 2 7] Al(x)

[3mkY 6 2 nRS 7 3 + 2 8 X
+ (p2 3p y + 16s y A l (x)
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E 4rnR 7 +3fnRSY 8
[7P2 + 4p I
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A3(X) + 3 rn2RyA(X)14p2

+ s2 SYsBo(x) - 6 r-RSY~ 5+ 4 S2Y6] Bi (x)

+ R __

I'k47R Y6

+ + -Y ] B,(x)

+ 7fR y 7I B 3 (x)±-2~1Ry7B4 (X)
Jp 7p2

-s2Sy 4CO(X) _ 2rSy4 + -s 2y5 Cl (X)+3 5 ]

[6 R '5

+ 7 hRSY ~5 + 1 s2y61 C2(X)

+27hRS 6] C.3(X) + 2 R y6C4(X) }
where m(x), n(x) are arbitrary functions of x, l,0 < x < L,3, are to be determined by the
boundary conditions (7.28b) and the coefficients D (x), E (x), F(x), Ak (x), Bk (x), and Ck (x)
are given by

= (k±+2)d k(X) 6c .hR -6 X +3sd (x

~-p

= (k±+2) d-k (X){6~hRd-5(x) - 4(sd -4(X)}

3

= >1 kCkRd -k(X)
1

- 6rRd-(x) + 3sd-(X)~
p '

E(x) = >IkC, d ') mRd 3(X _ 4sd-2 (x)}

Ck (X) = (d 3 (X)(k±+2)d k(X)

F(x) = d-'(x) ZkCk~d k(X)

Once m(x) and n(x) are determined by the imposition of (7.28a), and the coefficients
Ak, Bk, Ck, D, El and F are substituted into the resulting expression, one may compute
an upper bound for

(7.29)
1Iq<x<L~o

and use it to gauge the error involved in not using the convective term in the computation
Of 60 (X, Y).
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(ii) If we let DR = {(x, y) I < y < d(x), lp < x < Lp}, and for a function f(x, y) defined
on D use the average given by

1 rL~ rd(x)
=- /jL (z) f(x, y)dxdy, (7.30)

where A-D is the area of ZDR, then we may compare directly the 'averaged' values

926(0)~_ QQW'
K-y2 (x, y) vs. PCpUR(X, Y) R (7.31)

so as to gauge the relative importance of the conductive term which was retained in the
computation of to) as compared with the convective term which was deleted.

As the lubricating oil employed in shoe/roll configuration in the impulse drying process
has a viscosity which is strongly temperature dependent, an important area for future re-
search involves redoing the work in [4], and this current report, to allow for a dependence of
the form p = p/(0). Although, in this case, the lubrication and heat transfer aspects of the
problem are coupled together, it is possible to solve the problem in a parallel-walled channel,
analytically, map the result back onto the convergent walled channel generated in [4] and
then set up and solve, numerically, the equilibrium equations which determine 0 and b (see,
e.g., (1.1)); the analog of (1.1) in this case would involve, with respect to the parameter
space P (see, (1.2)) the thermal boundary conditions on the walls of the channel, n, cp, and
the functional form of the viscosity I.

Finally, in any future work it will be important to modify the boundary conditions (2.6) so
as to allow heat conduction at the walls bounding the channel to depend on the temperature
along these walls; in the simplest scenario these conditions would assume the form

fo (X, ) = ko(x, o0), -L3 < x < L,3
'9.Y~~~~~~~~~~~~ ^(7.32)

a (x, d(x)) = k0O(x,d(x)),-L3 < x < Lp

with ko, k1, constant, in reality, the boundary conditions (2.6) can only be maintained by
imposing restrictions on the ambient environment external to the lubrication channel which
have not been specified in this initial work on the heat transfer problem.
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8 CONCLUSIONS

1. The results of this study indicate that under the conditions where the two boundaries
are maintained at the same temperature, the viscous heat dissipation within the lubri-
cant, due to viscous drag and inertial effects, plays a major roll in the net heat transfer.
However, when the inner surface temperature is much greater than that of the shoe,
the effect of viscous heat dissipation is reduced significantly.

2. For the conditions analyzed in this study, the regions under the solid part of the shoe,
which are associated with a greater lubricant velocity, had a significant influence on the
magnitude of the heat transfer from the oil to the roll; because of a greater lubricant
thickness for the left-hand sub-channel, the dissipated heat, and net heat transfer under
the solid part in the left-hand sub-channel was greater than that for the corresponding
region in the right-hand sub-channel.

3. Numerical techniques such as finite difference or finite element analysis should be uti-
lized to determine the thermal performance of the press roll subjected to a temperature
dependent viscosity, and other types of boundary conditions. The temperature distri-
butions predicted from such a model should be incorporated in a finite element model
to determine the stress distribution within the roll coating for various design and op-
erating conditions.
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Appendix I: Nomenclature

Design Parameters

) - angular opening of the shoe

0- j$

Wsh - width of the shoe

nc - number of capillaries on each side of the shoe

Ish - length of the shaft of the shoe

I = 1sh

I* - half-width of the confinement shaft

leff - effective length of a capillary

Reff - effective radius of a capillary

Wrec - width of the inside of a recess

acr - distance of the middle rib on the shaft of the shoe from the top of the shaft (measured
to the middle of that rib)

/fr - distance that the middle rib protrudes beyond the neighboring ribs

Rs - radius of the shoe

R - radius of the roll

H, - height of the shoe

6 = tan- (R - Hs)

Lc - distance (measured along the bottom surface of the shoe) from the midpoint on the
bottom surface to the beginning of the recess

Lrec - distance (measured along the bottom surface of the shoe) from the midpoint on the
bottom surface to the end of the recess

LT = Rs ' p
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Geometrical Parameters

t - angle between the center line through the shoe and the vertical direction

(a, R + b) - location of the center of the circle that the arc forming the bottom surface of the
shoe lies on

do - depth of the lubrication channel along the line through (a, R + b) and the point at the
middle of the arc forming the bottom surface of the shoe

PV - location of the pivot point for the shoe along the wall of the confinement shaft

mr = cot( o + lb)

m = cot lb

mR = cot(V - )

81 - angle between the positive x-axis and the secant line (segment) joining the endpoints of
the lubrication channel along its bottom wall (arc)

02 - angle between the positive x-axis and the secant line (segment) joining the endpoints of
the lubrication channel along its upper wall (arc)

p = 81 - 82 - angular deviation between the (secant) line segments forming the upper and
lower walls of the approximating lubrication channel (wedge)

(dR(x) = do - x tan `) - thickness of the approximating lubrication channel (wedge) x units
to the right of the middle of that channel

(dr(x) = do + x tan 3) - thickness of the approximating lubrication channel (wedge) x units
to the left of the middle of that channel

d(x) = do - x tan 3, -L, < x < Lp, - thickness of the approximating lubrication channel
(wedge) at any x in the interval [-Lp, L,]

Ic = Lc cos ,6

1l = Lrec cos `

Lp = LT cos S
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dR(l1) - trailing edge thickness in the approximating lubrication channel (wedge)

dL(lp) - leading edge thickness in the approximating lubrication channel (wedge)

AR - dnR(il)dR(Lo)

dR((p) + dR(Lp)

R = d2R(lp)d2R(Lp)

d2R(1p) - d2R(L6)

dc(lp)dc (LO)
d(l1) + dL(Lp)

a ,d2c(l)d2c(Lg)

dL (Ip) - dL(LO)

Physical Parameters

Az - viscosity of the lubricant (at a given temperature)

p - density of the lubricant (at a given temperature)

c - thermal conductivity of the lubricating oil (at a given temperature)

c - heat capacitance of the lubricating oil (at a given temperature)

- - viscous energy dissipation

TI - constant temperature along the lower wall of the lubrication channel (inside surface of
the roll)

To - constant temperature along the upper wall of the lubrication channel (bottom surface
of the shoe)

b(xy) = -pcu(x,y) 
(Qu) 2 \ with

f (x Y; ) = -a J

u = u(x, y) - velocity field at any point (x, y) in the channel

A.(X(, y)) = Y
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C = -1-1/K

s - (tangential) roll speed

F - load applied to the top of the shaft of the shoe

PR - pressure in the right-hand recesses

Pc - pressure in the left-hand recesses

psh - pressure exerted at the top of the shaft of the shoe

Pexit(= Patm) - exit pressure of the lubricant at the left and right-hand ends of the lubrication
channel

Velocity and Temperature Fields (from the point of view of a single observer who looks
at the lubrication channel from left to right):

UR(x, y) - velocity field in the (approximate) right-hand sub-channel, 1p < x < Lp

uLc(x, y) - velocity field in the (approximate) left-hand sub-channel, -Lp < x < -I

iR(x, y) - velocity field in the right-hand sub-channel beneath the recesses (lc < x < lp)

uc(x, y) - velocity field in the left-hand sub-channel beneath the recesses (-lp < x < -1c)

uC(x, y) - velocity field in the center channel, -Ic < x < lc

OR(x, y) - temperature field in the (approximate) right-hand sub-channel, 1 <• x < L:

Oc(x, y) - temperature field in the (approximate) left-hand sub-channel, -Lp < x < -Ip

OR(x, y) - temperature field in the right-hand sub-channel beneath the recesses (Ic < x < Ip)

0c(x, y) - temperature field in the left-hand sub-channel beneath the recesses (-1p < x < -lc)

Oc(x, y) - temperature field in the center channel, -lc < x < c

rhR- mass flow rate/unit depth in the right-hand channel

mc - mass flow rate/unit depth in the left-hand channel
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q- 4 0 - heat flow per unit width (in the cross-direction) per unit time
oil) in the right-hand subchannel, Ip < x < Lp

qr-o - heat flow per unit width (in the cross-direction) per unit time
oil) in the left-hand subchannel, -Lp < x < -Ip

qrR0 - heat flow per unit width (in the cross-direction) per unit time
oil) in the right-hand subchannel beneath the recesses (c < x <_ lp)

qr-o - heat flow per unit width (in the cross-direction) per unit time
oil) in the left-hand subchannel beneath the recesses (-lI, < x < -1c)

qro - heat flow per unit width (in the cross-direction) per unit time
oil) in the center channel, -lc< x < Il

Report 12

(from the roll to the

(from the roll to the

(from the roll to the

(from the roll to the

(from the roll to the

Qr-o - net heat flow per unit width (in the cross-direction) per unit time from
the oil in the lubrication channel

the roll to

qoRsh - heat flow per unit width (in the cross-direction) per unit time (from the oil to the
shoe) in the right-hand subchannel, 1, < x < Lp

q0O-sh - heat flow per unit width (in the cross-direction) per unit time (from the oil to the
shoe) in the left-hand subchannel, -Lp < x < -1

q0Rh - heat flow per unit width (in the cross-direction) per unit time (from the oil to the
shoe) in the right-hand subchannel beneath the recesses (lc < x < lp)

q0-sh - heat flow per unit width (in the cross-direction) per unit time (from the oil to the
shoe) in the left-hand subchannel beneath the recesses (-lp < x < -1c)

qc-sh - heat flow per unit width (in the cross-direction) per unit time (from the oil to the
shoe) in the center channel, -lc < x < l

Qo-sh - net heat flow per unit width (in the cross-direction) per unit time from the oil to
the shoe in the lubrication channel

Qf = (Qo-sh - Qr-O) - viscous heating of the lubricating oil per unit width (in the cross-
direction) per unit time

1
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Appendix II: Velocity Fields and Mass Flow Rates

(Vl) 'flR(X, Y = 6 iR y 2 d-3 (x) + [6ri2R + 3SY 2]d 2 (X) - 4syd-1 (x) + s,

0•< y • d(x),l1, < x < L

(V2) izc(x y,) =6 rhFYd3x 6h 3SYj d 2 (X) - 4syd-'(x) + s,
pI PJ

o < y • d(x), -Lip < x < -ip

(V3) i!R(x, y) = s(l - yd-1 (x)), 0 < y • d(x), I1, < x < ipg
(V4) iic(x, y) = s(l - yd1 '(x)), 0 < y • d(x), -1ip < x < l

(V5) uc(x, y) =

(Ml) IRn _

(m2) 7hz -
p+ I

sh- Patm) + 61.s
tan i3

(AR"

(TRJ)

6p +(WY-h 8/~lff

3,n I - R lc 7 rR~ 4
eff

'sh -Patrn) +6Ais (AL
tan03 J '3)_

_(Wsh)
311

8p.leff

ir4
relf f 
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Appendix III: Technical Summary

In this technical summary we will write d(x) =-dR(X) = do - x tan/3, -L,3 • x L.

4 3

(Si1) OR (X,y) - d-2 (X) Z pR(y) dk(x) + Z C~d-k(x) y ± T 1 ,l10 < x < Lo
k=O k=1

12r

R~~y[4i= 3 l 2rnRS 41
= 2 I 

p2 ~~p j

=R - [24riiRS 2 + 8S2y31

pR(y) = S2y 2

c1R (To- T 1 )- 3CS2

R_ 8 (ThRS
(S3) C2

R R __

C3 - 2

4 3

(S4) 6L(x, y) = Cd 2 (X) E pL (y) dk(X) + Z c~d k(X)y + T1, -L,3 < x <-l
k=O k=1
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3- 12 ( JOC) Sy4]

- 28 (h) sy3+ 3S2y4

Piz (Y) = 2 (Z s 2- 8s y 3

, p(y) = 8S2y2

* CC = (To - T 1) - 3CS2

72 

(S7) O.,(x, y) = C E p'(y)d'~(x) + (To - Ti)d- (x)y + T1 - ~9(xO ,-I x 
k=-2

(S8){

(S9)

0,(X) = 1 72d3(x) - 'r~sd(x) + S2d-'(x)

r,=Pc- - PR
=4 1uLlc

pC2(y) - ',C

c (Y) = -2 23

p()= 1 I72y 4 - rcsy2

P 1 (,y) = ~I cSy 3

I'P~-2(Y) =2

(S5)

(S6)
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C 2 2 2X +[T1 S2](SlO) OR(X, Y) = ~S Y d() + ( 0 _ T1) _- ~s]yd-1 (x) + T2'1, <~ x < lp

2

= .(o- T1 ) - 3CS2 ]

tan /3
in _ _(O)

8K(7h'RS
p tano/

[ 1 I1 I
d~(Lp)- d(li)J

+ [i - d2 p)

n[1(To - TO)- I S21i [d~I3)]

(S14) qrc. 40 - 1 C2 ] In
tan /3

[d(lc)1
Id(-1c) J

+ (n- c [d 2 (l) - d(l)
6tan 3

_ 'i4(To ) -_f
2 [d(-l

tan /3
C Ii

- (rr~c [d 4(1c) - d( l)
24 tan/3

'- [d(-lp)j

(S16) q,-, =
~rTo - T1) -3S2

tani3
in d_ _ _ _

+8rv(rhcs
+ptan/3

E l 1 1 

(. )2 1

[ P d2(-l0

(S12) 0+0

(S 13) q;?, =

tan /3
d2 -L13)]
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[Tan/l -3 S2 d(-Lo) 2 tan/32 ird(-li)i

(S17) Q-o= -T)- In [dL)]+ 5 In2 Ld1)
+ t(n,3 [d )-d(-L)] 2 [tan - dl_

ta 0 [d(LOi (li)1 d~[(-1) -d2(L,)]

24 tan Id (1) 6ta /3[ (ta)

(518. q0 4 ~~=p 2 tan/3
I __ __ I[ d2(la) d2L6

+4 C(rn7RS [_
+ ptan/ [d1(Lfi6) 

,.((s2 + (To - TO))i
+ tan/3 ~~ I

(S 19) q0-_ 8h - 2R InTl)±~ S 2 ] i

(S20) qO-C - [To-T 2 __n

0-+sh -tan/3 nd(lJ,

+ (r c [ 1)- d(l
24 tan 3d0 c

+ ~r~ [d 2() - d(l
6tan/3

(S21) . 4&-+sh
-[T T 1) + l(S 2]

tan 3
In [d( -lc)

(S22) qO-+sh ==
4,[s2 + (To - TO)]

tan /3
In d______

tan S
- 3r, ThC) [ 1 1 1 

tan/3 k pJ d2 (-I) d2( LO) I

mh,. [ 1 -

p [d(T-lO) d( ol

(S23) Qo,.s - KKTO -,
ta

ptano 3

+ 31KBr

T1,) + CS2 1

,n/3
In ______

F i 1 L1 _ _

1 K<s 2

+--~In
2 tan 3

d(-10)1
d (la) .

rn d(Lo) - (l1 j-0 o(~) d(-L1)j)

( I2~ [d2 ) d2 (1g)] +71 d2 1( -' d2(-Lo)]
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+ 6tan ~

(S24) QV = 3, IIsin
t -an /

po2 tan

24 tan ,3 d(0 

d(-b3o) 12tlKis 1 dil]-___

L J ptan/d2(1[dL) -__-7Ldl,)[2'1 )- fR[2 g~) -d2(L))

+12 tan /3[ (a 

(S25) limQ,-+o = 4.T1 -TO] LT rK1s 2 (6 Lt - UrL) + 8I,,KIs (LT - Lrec,) (TilR - rhC)
'3-+0 do ~2do pdo'

- 6niI I(LT - L rec) (ffl2 + 7h2 )_ I(I(L - PR)2 _1d
p2do'R I 48[L2( - PR

' rKI(I(R-P)-d 
6p~~d*

Remarks In all the expressions in (S25), above, mhR, riic, Pc and PR are to be evaluated in
the limit as /3 -*~ 0.

(S26) limQO-+sh = r[ -_To LT +
'e-+o ~do

ICKIS( 2 LT - LC) -
4nll (LT - Lrec) (TflR - riihL)

± 61dK (LT' - Lrec) (rK 2 + rh,~ 2 ___S(P - iPc) do + 1 1-(in -P PR) 2d

In (S26) PR, rnR, Pf, and rhc are taken in the limit as /3-0.

(S27) iimQV-- o[4LT - 3Lre]-1 2 s( - Lrec) (frR - rhC)

± 12 nKIl(LT - L,,c) (7h2 + 7h) + r-K (P - PR )2d
p0d 48p91

In (S27), PR, rnR, Pr and rhr are to be evaluated in the limit as /3-0.

(S28) lim Q111o = p24d'1(74 (LT - Lrec)

where PR = C for s = 0 and TnR = TC = 72.

{ R (-, ~)= eR(.t, d(.t)g); t =: x, 9 = y/d(x)

(S29) ®9R (, Y) =OR (X, Y - [d (To - T1 ) + T1]
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(S30) n (02G OR 1 GR aGR-

on D= f(t 1,6<. •t <Lg; 0• < • 1}

{ gR (x;, 9; AL ) = gR (x, d(-t ; jt)
IbR (x, 9) = bR (2, d(±t) )

(S32) gR(X, Y;,I) =fR(X,y g) 2K(T1- o) -tan2 .13 *Y (T1- To)tan,3.ybR(XY)

d 3(x)+

(S33) GR(;,o0) =0, GR(I~,) =O, 1, •x <

(S34) ce(d(LO4q) = (LO, d(LO)g)

{S35) ' l0 , ) = i3(d(13)9j) -'jj(Ta - T 1) - T 1(S35) 3(d(13)gj) = 9R(1,3, d(-Lo)g)

(S31)

with
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Appendix IV: Figures
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Figure 2. Cross sectional view of the shoe and the rotating shell.
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Figure 5. Motion of the hydrostatic shoe.
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A'
B'

Figure 7. Approximate geometry of the lubrication channel.
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Figure 11. Expected dependence of the temperature profile on
the speed of the roll.
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Figure 12. Temperature boundary conditions in a parallel wall channel.
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Lubricant velocity profile at three locations along the
left-hand and right-hand sub-channels for the roll
speed of 610 m/min and applied load of 350 KN/m.
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Figure 13b. Lubricant temperature profile at three locations along the
left-hand and right-hand sub-channels for the roll speed of
610 m/min and applied load of 350 KN/m (To = T, = 100°C).
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Figure 14a. Lubricant velocity profile at three locations along the
left-hand and right-hand sub-channels for the roll speed
of 610 m/min and applied load of 700 KN/m.
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Figure 14b. Lubricant temperature profile at three locations along the
left-hand and right-hand sub-channels for the roll speed of
610 m/min and applied load of 700 KN/m (To = T, = 100°C).
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Figure 15a. Lubricant velocity profile at three locations along the
left-hand and right-hand sub-channels for the roll speed
of 610 m/min and applied load of 1051 KN/m.
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Figure 15b. Lubricant temperature profile at three locations along
left-hand and the right-hand sub-channels for the roll
speed of 610 m/min and applied load of 1051 KN/m
(T o = T, = 100°C).

Report 12

200 250



Project 3470

I

X=lc,

X=l oI
X=L '- -

i

.
_i

i

I

TO=100 C

T1=100 C

100

SPEED
LOAD

I I I

120 140

1
A

I
4 .

= 610 m/min
= 1051 KN/m

I I

160 180

OIL TEMPERATURE (C)

Figure 15c. Lubricant temperature profile at three locations along the
right-hand sub-channel for the roll speed of 610 m/min
and applied load of 1051 KN/m (To = T, = 100°C).
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Figure 16b. Lubricant temperature profile at three locations along the
left-hand and right-hand sub-channels for the roll speed
of 610 m/min and applied load of 1051 KN/m

(To = 100°C, T, = 300°C).
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Figure 17. Lubricant temperature profile at three locations along left-hand
and the right-hand sub-channels for the roll speed of 610 m/min
and applied load of 1051 KN/m (T o = 160°C, T, = 100°C).
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OIL TEMPERATURE (C)

Lubricant temperature profile at the end of the left-hand sub-channels
for the roll speed of 610 m/min and applied load of 1051 KN/m and
for various shoe temperatures (T, = 200°C).
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Figure 19a. Lubricant velocity profile at the end of the left-hand sub-channel for
the an applied load of 1051 KN/m and various roll speeds.
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Figure 19b. Lubricant temperature profile at the end of the left-hand
sub-channel for the an applied load of 1051 KN/m, and
various roll speeds (To = T, = 100°C).
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Figure 19c. Lubricant temperature profile at the end of the left-hand
sub-channel for the an applied load of 1051 KN/m and
various roll speeds (T o = 100°C, T, = 300°C).
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Figure 20a. Lubricant velocity profile at the entrance of each sub-channel
for the an applied load of 1051 KN/m and various roll speeds.
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Figure 20b. Lubricant temperature profile at the entrance of each sub-channel
for the an applied load of 1051 KN/m and various roll speeds
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Figure 20c. Lubricant temperature profile at the entrance of each sub-channel
for the an applied load of 1051 KN/m and various roll speeds
(To = 100 °C, T, = 3000C).
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Figure 21a. Lubricant velocity profile at the end of the right-hand sub-channel
for the an applied load of 1051 KN/m and various roll speeds.
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Figure 21b. Lubricant temperature profile at the end of the right-hand sub-channel
for the an applied load of 1051 KN/m and various roll speeds
(T o = T, = 100°C).
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Figure 22a. Lubricant temperature profile at the end of the left-hand sub-channel
for the an applied load of 1051 KN/m, and roll speed of 610 m/min
and various inner roll surface temperatures (T o = 100°C).
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Figure 22b. Lubricant temperature profile at the end of the right-hand sub-channel
for the an applied load of 1051 KN/m, and roll speed of 610 m/min
and various inner roll surface temperatures (To = 100°C).
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Figure 2 3a. Lubricant velocity profile at three locations along the left-hand and
right-hand sub-channels for the roll speed of 610 m/min, and applied
loads of 350 KN/m and 700 KN/m (T o = T, = 100°C).

LOAD (KN/m)
* 350
v 700

SPEED = 610 m/min
TO = 100 C
T1 = 100 C

I i 

Report 1290



Project 3470

0.7

E
E

_-
_i_J
0
or

Ldi0

CnL_

0
Z
Q

U'

0.6

0.5

0.4

0.3

0.2

0.1

0.0

-U.1 

80 100 1 20 140 1 60 180

OIL TEMPERATURE (C)

Figure 23b. Lubricant temperature profile at three locations along the right-hand
and left-hand sub-channels for the roll speed of 610 m/min and
applied loads of 350 KN/m and 700 KN/m (T o = T, = 100°C).
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Figure 24b. Heat transfer from oil to roll as a function of shoe temperature
(load =1051 KN/m, roll speed = 610 m/min).
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Figure 24c. Heat flux from oil to roll as a function of roll inner surface
temperature (load =1051 KN/m, roll speed = 610 m/min).
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Figure 25a. Contribution of each region of the channel to the net heat transfer
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Figure 25b. Contribution of each region of the channel to the net heat flux
from oil to roll (load =1051 KN/m, roll speed = 610 m/min).
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Figure 26a. Heat transfer from oil to shoe as a function of roll inner surface
temperature (load =1051 KN/m, roll speed = 610 m/min).
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Figure 26b. Heat transfer from oil to shoe as a function of shoe temperature
(load =1051 KN/m, roll speed = 610 m/min).
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Figure 26c. Heat flux from oil to shoe as a function of roll inner surface

temperature (load =1051 KN/m, roll speed = 610 m/min).
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Figure 27a. Contribution of each region of the channel to the net heat transfer
from oil to shoe (load =1051 KN/m, roll speed = 610 m/min).
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Contribution of each region of the channel to the net heat flux
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Heat transfer from oil to roll as a function of roll inner surface
temperature (load =1051 KN/m, roll speed = 914 m/min).
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Figure 29a. Contribution of each region of the channel to the net heat transfer
from oil to roll (load =1051 KN/m, roll speed = 914 m/min).
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Figure 29b. Heat flux from oil to roll as a function distance from the entrance
to each channel for three roll inner surface temperatures
(T o = 100°C, load =1051 KN/m, roll speed = 914 m/min).
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Figure 29c. Heat flux from oil to roll as a function distance from the
entrance to each channel for three shoe temperatures
(T, = 100°C, load =1051 KN/m, roll speed = 914 m/min).
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Figure 30. Heat transfer from oil to shoe as a function of roll inner surface
temperature (load =1051 KN/m, roll speed = 914 m/min).
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Figure 31 a. Contribution of each region of the channel to the net heat transfer from
oil to shoe (T o = 160°C, load =1051 KN/m, roll speed = 914 m/min).
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Figure 31b. Heat flux from oil to shoe as a function distance from the entrance
to each channel for three roll inner surface temperatures
(T o = 100°C, load =1051 KN/m, roll speed = 914 m/min).
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Heat flux from oil to shoe as a function distance from the
entrance to each channel for three shoe surface temperatures
(T, = 100°C, load =1051 KN/m, roll speed = 914 m/min).
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Figure 32a. Mapping of the domain for the heat transfer boundary

value problem.
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