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The Immune Microenvironment of Microsatellite Instable Endometrial 

Cancer 

 

Janelle Beth Pakish, M.D., M.S. 

Advisory Professor:  Karen Lu, M.D. 

 

Limited treatment options are available for patients with advanced and recurrent 

endometrial cancer (EC) should standard chemotherapy fail. Recent studies in other 

tumor types have shown that tumors with high microsatellite instability (MSI-H) have 

increased immunogenicity and response to immunotherapy treatments compared to 

microsatellite stable (MSS) tumors.  Patients with MSI-H EC may also benefit from these 

therapies; however, the tumor immune microenvironment in MSI-H EC has not yet been 

well described. 

In order to evaluate the immune microenvironment of MSI-H EC, multiple 

approaches were used, including analysis of large publically available datasets and 

detailed characterization of patient tumor samples.  Uterine cancer data from The Cancer 

Genome Atlas (TCGA) was used to study immune-related gene expression in MSI-H EC 

compared to MSS EC at both the individual gene and pathway level.   Fluorescent 

multiplexing immunohistochemistry (IHC) was used to evaluate differences in immune 

cell populations using tumor specimens from these two groups followed by automated 

multispectral imaging and analysis to visualize and quantify staining in the tumor 

epithelial and stromal compartments.  Nonparametric Mann-Whitney test was used to 

determine statistical significance (p value <0.05) of positive cell counts for CD3, CD4, 

CD8, CD103, CD68, CD11c, granzyme B, and PD-L1 between the groups. 
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Overall, MSI-H EC demonstrated increased immune activation compared to MSS 

EC.  Using TCGA data, MSI-H (n=118) EC showed overall activation of the granzyme B 

signaling pathway compared to MSS (n=160) EC (p <0.01).  IHC analysis demonstrated 

increased granzyme B+ cells (114.9 cells/mm2 vs 75.8 cells/mm2; p<0.01), activated 

cytotoxic T cells (CTLs) (45.6 cells/mm2 vs 28.0 cells/mm2; p<0.01), and PD-L1+ cells 

(291.6 cells/mm2 vs 240.5 cells/mm2; p<0.01) in the stroma of MSI-H versus MSS ECs.  

The number of granzyme B+ and activated cytotoxic T cells was also increased in the 

tumor epithelial compartment of MSI-H compared to MSS ECs.  There was no difference 

in the other markers evaluated.  

In conclusion, the immune microenvironment differs in MSI-H ECs with 

increased tumor immunogenicity compared to MSS tumors.  Elevated PD-L1 expression 

also suggests immune response inhibition in these tumors, and patients with this subset of 

tumors are likely candidates for immune checkpoint blocking agents.   
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Chapter 1: Introduction  

OVERVIEW 

As the most frequent gynecologic malignancy in the Unites States, endometrial 

cancer (EC) is predicted to affect approximately 60,000 women in 2016 with a subsequent 

10,500 EC related deaths (1).  Due to the presence of early warning symptoms, such as 

postmenopausal bleeding, the majority of women with EC are diagnosed at an early stage 

(70%).  Disease is typically localized to the uterus and has an associated 5-year overall 

survival (OS) of nearly 95% (2).  In fact, most women with early stage disease are cured 

with hysterectomy alone (2). While the initial prognosis is positive, a subset of these 

patients will recur. Additionally, those women who have recurrent disease, or who are 

found to have advanced stage, have a worse prognosis with 5-year OS ranging from only 

20-66% (3).  Given the poor outcomes for recurrent and advanced disease, it is critical to 

identify key molecular subtypes amenable to targeted therapeutic strategies and to identify 

sub-groups that are more likely to recur.   

Many factors are known to increase the risk of EC.  Primarily, these risk factors 

include those that increase estrogen exposure like estrogen only hormone replacement 

therapy, obesity, early menarche, and late menopause.  Inherited genetic syndromes, such 

as Lynch syndrome (LS), can also lead to increased risk of endometrial cancer.  LS is an 

autosomal dominantly inherited disorder of a germline mutation in a DNA mismatch repair 

(MMR) gene that cause DNA MMR deficiency.  These DNA MMR deficiency genes 

include: MLH1 (human mutL homolog 1), MSH2 (human mutS homolog 2), MSH6 (human 

mutS homolog 6), PMS2 (human postmeitotic segregation 2), and EPCAM (epithelial cell 
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adhesion molecule).   Secondary to MMR deficiency, LS is associated with an elevated 

risk of developing EC, as well as, colorectal, ovarian, stomach, renal, ureteral, biliary tract, 

and central nervous system cancers (4). The lifetime risk of EC in women with LS is 60%, 

and about half will present with EC or ovarian cancer as their initial cancer diagnosis (4, 

5). The specific risk of EC with MSH6 mutations is 73%, 31% with MLH1, and 29% with 

MSH2 (6), and more than 80% of LS-related ECs demonstrate endometrioid histology (4).   

Overall, EC includes a wide spectrum of clinical, pathological, and molecular 

features that have been used to classify EC into different subtypes.  Traditionally this 

included subdivision of EC into two categories (7).  Type 1 tumors are the most common 

and consist mostly of the early stage and good prognosis cases described earlier.   These 

tumors are also typically estrogen-dependent, of endometrioid histology, and low grade. 

Type 2 tumors, on the other hand, tend to be more aggressive, are of non-endometrioid 

histology, and have an overall worse prognosis.  The Cancer Genome Atlas (TCGA) for 

uterine cancer created an integrated genomic characterization to provide a more 

sophisticated view of EC subtypes.  The initial analysis of uterine cancer TCGA data 

included all tumors (multiple histologic subtypes together) and identified four unique 

groups characterized by somatic nucleotide substitutions (8).  These groups included an 

ultramutated group of polymerase ε (POLE) mutations, a hypermutated group containing 

tumors with microsatellite instability (MSI), a low mutational rate group (copy-number 

low), and a copy-number high group comprising mostly non-endometrioid histology 

tumors. Later studies were conducted to characterize the molecular mechanisms underlying 

the observed clinical heterogeneity and identify subtypes at higher risk of recurrence.  Liu 

et al. utilized the TCGA uterine data along with a separate validation tumor sample set to 
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perform molecular subtyping of endometrioid EC (9).  In this analysis, they found four 

discreet subtypes of endometrioid EC that were defined by clinical, pathological, and 

mutational patterns.  Cluster I consisted of tumors with low grade and stage along with 

increased expression of estrogen and progesterone receptors.  Cluster II also contained low 

grade and stage tumors, but demonstrated worse survival and significantly more beta-

catenin (CTNNB1) mutations.  Cluster III and IV on the other hand, contained more 

advanced stage and advanced grade tumors, as well as, more P53 mutations.  Myosin 1 

(MYH1) and Kirsten rat sarcoma viral oncogene homolog (KRAS) mutations were also 

more frequently seen in Cluster III, and cytokine IK (IK) mutations were limited to Cluster 

IV.  MSI was seen in all clusters, but represented half of cases in both Cluster III and IV 

and Lynch-related cases were not specifically examined. The different mutational profiles 

of these four clusters are demonstrated in Figure 1.  Although our understanding of EC 

biology has advanced with these molecular classifications, these molecular fingerprints 

have not yet been translated to success using current targeted agents.   
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Figure 1. TCGA uterine cancer clusters by gene expression.   

Distinct gene expression profiles are seen among the four endometrioid endometrial 

cancer subtypes. Red signifies normalized mRNA expression levels greater than the mean 

and green indicates those below the mean.  Reproduced with permission from Oxford 

University Press: Liu Y, Patel L, Mills GB, Lu KH, Sood AK, Ding L, Kucherlapati r, 

Mardis ER, Levine DA, Shmulevich I, Broaddus RR, Zhang W, Clinical Significance of 

CTNNB1 Mutation and WnT Pathway Activation in Endometrioid Endometrial 

Carcinoma. J Natl Cancer Inst, 2014;106 (9).   

 

LYNCH SYNDROME AND MICROSATELLITE INSTABILITY 

One molecular subset of EC that has recently gained attention as a potential target 

for specific therapeutics is defined by microsatellite instability.  This group includes both 

inherited LS-related and sporadic MSI EC, which both result from defects in DNA MMR. 

Damage to this pathway results in deficient repair of base pair mismatches that occur 

 



 

5 

 

during DNA replication (4).  This deficiency then leads to multiple errors in areas of 

repetitive DNA sequences, known as microsatellites, resulting in microsatellite instability 

in these tumors (4). In sporadic MSI tumors, sporadic hypermethylation of the MLH1 

promoter results in MMR deficiency and high microsatellite instability (MSI-H), and these 

are sometimes referred to as Lynch-like tumors.  This hypermethylation specifically 

inactivates the MLH1 gene through epigenetic silencing.  Overall, MSI-H tumors account 

for 23-30% of ECs (both sporadic and Lynch-related) (10-13).   LS accounts for 2-6% of 

ECs overall and 30% of MSI-H ECs are secondary to LS (4, 13, 14) 

The clinical relevance of MSI status has recently been recognized, as MSI-H colon 

and gastric tumors have shown an overall survival advantage over microsatellite stable 

(MSS) tumors (15, 16). In colon cancer, this survival benefit is limited to those patients not 

receiving adjuvant chemotherapy (17).  Several studies have shown that adjuvant 5-

fluorouracil is associated with improvement in overall survival in only MSS tumors and 

not MSI-H, and demonstrates the use of MSI as a marker of non-response to therapy (17, 

18). However, it is not clear whether MSI-H ECs, including Lynch-related ECs, 

demonstrate this same survival benefit or whether it may be used as biomarker for therapy 

(19-21).  Identifying a treatment targeting this molecular subgroup of EC could help to 

improve responses in some recurrent and advanced cases.    

TREATMENT OF ADVANCED ENDOMETRIAL CANCER 

For those patients with advanced and recurrent EC that fail treatment with standard 

chemotherapy, response to subsequent chemotherapy is poor, and attempts to identify 

promising targeted agents have been limited. Combination chemotherapy in advanced 

cases has response rates (RR) of 40-60%, and decreases further to 9-30% if initial therapy 
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is unsuccessful (22-24).  Those with recurrent EC that are not candidates for radiation 

therapy also have similar responses to combination chemotherapy. In order to improve RR, 

attempts to identify drugs that target specific molecular alterations have been made, but 

with very limited success.  As previously shown and then confirmed in the TCGA, EC has 

frequent phosphatase and tensin homolog (PTEN) mutations and aberrant regulation of the 

phosphatidylinositol 3-kinase (PI3K)/Akt/mammalian target of rapamycin (mTOR) 

signaling pathway.  This pathway has been targeted with mTOR inhibitors in those with 

recurrent and metastatic EC and shown partial responses of 9-14% and stable disease 

ranging from 40-70% (25-27). However, no complete responses have been demonstrated.  

Additionally, limited success of less than 15% RR has been seen with other targeted agents, 

thus far (28, 29). As of now, no recommended targeted therapies exist for EC despite 

attempts to identify subgroups that would benefit from such therapy. 

CANCER IMMUNOTHERAPY  

Immunotherapy has recently emerged as a promising treatment strategy in multiple 

tumor subtypes and could improve treatment outcomes in advanced and recurrent EC.  

Tumors demonstrating increased tumor immunogenicity are particularly good candidates 

for this type of treatment.  The tumor specific somatic mutational rate is thought to correlate 

with the number of tumor specific neoantigens produced, based on prediction models (30). 

These neoantigens are then recognized by the immune system as non-self and can trigger 

an anti-tumoral immune response with immune cell infiltration into these tumors and 

cytotoxic T lymphocyte (CTL) activation (30).  The ability to then harness and amplify this 

anti-tumor immune response is the basis of cancer immunotherapy.   

Mounting an Anti-Tumor Immune Response 
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Tumor infiltrating lymphocytes (TILs), including CTLs, have been recognized as a 

key indicator of anti-tumor immune response.  In fact, CTLs are the major effectors of the 

adaptive anti-tumor immune response.  Naïve CD8+ T cells are transformed into CTLs 

through T cell receptor (TCR) recognition of antigen presentation by major 

histocompatibility (MHC) class I molecules.  This activation also requires co-stimulation 

by the T cell associated receptor CD28 binding to either the CD80 or CD86 ligand on the 

antigen presenting cell (31).  CTLs then direct specific anti-tumor activity through the 

release of cytoloytic granules, such as granzyme B and perforin.  This was initially 

supported in part by the association of TILs and CTLs with improved survival in multiple 

tumor types (32-34).  While the field of cancer immunotherapy has grown exponentially 

in recent years, few studies have focused specifically on endometrial cancer. As a result, 

our understanding of mechanisms of immunotherapy must borrow heavily from other 

tumor types.    

However, CTLs are not the only cells that participate in anti-tumor immune 

response.  Many different immune cell populations are involved in both the anti-tumor and 

immune evasion responses. Natural killer (NK) cells are a component of the innate immune 

response and, like CTLs, also have directed cytolytic activity against tumor cells (35).  

CD4+ T helper cells, in contrast, contribute to the anti-tumor response by enhancing 

activation of CTLs, as well as, NK cells and macrophages (36). Successful cancer 

immunotherapy requires tipping the balance to favor anti-tumor response while blocking 

mechanisms of tumor evasion.  A summary of the immune cells and corresponding 

receptors evaluated in this thesis is depicted in table 1.  
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Table 1. Common immune cells and immune cell markers seen in the tumor 

immune microenvironment. 

 

Immune Cell Function Markers 

T cell Lymphocyte that participates 

in cell mediated immunity and 

adaptive immune response 

General: CD3 

CD8+  T cell T lymphocyte that participates 

in the adaptive immune 

response with tumor directed 

killing after transformation to 

CTL 

General: CD3, CD8 

Activated: Granzyme B 

Intraepithelial: CD103 

Helper T cell Specific T cell that participates 

in the adaptive immune 

response through cytokine 

release which activates B cells, 

T cells, macrophages, and NK 

cells 

General: CD3, CD4 

Natural Killer Cell Cytotoxic lymphocyte that 

participates in the innate 

immune response  

General: NKp46 

Activated: Granzyme B 

Macrophage Antigen presenting cell and 

phagocyte 

General: CD68 

Dendritic Cell Antigen presenting cell General: CD11c 

 

Mechanisms of Tumor Evasion 

Despite the presence of CTLs in tumors with increased immunogenicity and tumor 

directed immune activation, these tumors are still capable of evading the immune response.  

Tumor associated macrophages (TAMs) are thought to play a critical role in the 

development of immune evasion.  These macrophages are induced by cytokines in the 

tumor microenvironment (IL-10 and IL-4) to undergo transformation into type II 

macrophages (37).  This specific macrophage subset has limited antigen presenting 

capacity and instead suppresses T cell function, thus creating a pro-tumorigenic 

environment (37).   CD4+ T cells can also be transformed into T regulatory cells which 



 

9 

 

have immunosuppressive activity, that is in contrast to the T helper cell function mentioned 

previously (38).   

 Immune evasion is also attributed to upregulation of immune checkpoints on 

immune cells that work to dampen the immune response.  Normally this pathway helps to 

prevent autoimmune tissue destruction; however, the tumor microenvironment hijacks this 

immune regulation to prevent ongoing tumor directed immune attack. The most common 

immune checkpoints expressed are CTLA-4 (cytotoxic T lymphocyte associated protein 4) 

and PD-1 (programmed death 1).  Both CTLA-4 and PD-1 function in distinct biological 

pathways and demonstrate different patterns of expression (39).  Figure 3 summarizes the 

CTLA-4 and PD-1 immune cell inhibitor action.   The CTLA-4 receptor is expressed 

immediately upon T cell activation, and then competitively binds the T-cell co-stimulatory 

signal (CD80 and CD86), to reduce the magnitude of the immune response.  PD-1 receptor 

expression, in contrast, is delayed as it requires gene transcription.  The PD-1 inhibitor 

pathway also acts more locally within the tumor microenvironment as the ligand for PD-1 

(PD-L1) can be expressed by both tumor and infiltrating immune cells (39).  Upregulation 

of PD-L1 expression by both the tumor and infiltrating immune cells is another adaptation 

for immune evasion (40).  In fact, PD-L1 expression has been shown to be upregulated in 

tumor cells that are immediately adjacent to TILs and it has been suggested that TILs 

induce their own inhibition through cytokine release that result in upregulation of PD-L1 

(40).  
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Figure 2. Immune checkpoints help to regulate immune responses and can be 

utilized by the tumor microenvironment to dampen and inhibit tumor directed 

immune responses.   

CTLA-4 and PD-1 are commonly expressed immune checkpoints.  B27 is expressed by T 

cells and binds CD80 and CD86 as a co-stimulatory signal to T cell antigen recognition. 

CTLA-4 is also expressed by activated T cells and competitively binds the T cell co-

stimulatory ligands CD80 and CD86 leading to deamplification of the immune response. 

Additionally, the PD-1 receptor expression by T cells acts within the tumor 

microenvironment to inhibit the immune response.  It binds PD-L1 and PD-L2 expressed 

by both the tumor and other immune cells.  

 

Expression of Immunotherapy Targets 

Expression of PD-L1 differs among tumor types, and remains an area of continued 

investigation. A summary of the PD-L1 expression studies discussed below can be found 

in Table 2.  In a study by Taube et al, PD-L1+ tumors were defined as those with at least 

5% tumoral expression and expression was characterized across tumor types.  This study 
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showed a wide range of expression, with castration-resistant prostate cancers (CRPC) 

having no PD-L1+ cases compared to 90% positivity of kidney cancers (41).  Additionally, 

about 50% of melanoma and non-small cell lung cancer (NSCLC) cases were PD-L1+.  

This same study also found positive expression of PD-L1 on infiltrating immune cells in 

half of melanomas, NSCLCs, and colorectal cancers (CRC).  Another study evaluating 

pretreatment PD-L1 expression found PD-L1 expression in several tumor types to be more 

common on infiltrating immune cells than on the tumor cells themselves (42).  The 

percentage of PD-L1+ tumor cells ranged from 1% (CRC) to 24% (NSCLC).  In contrast, 

the percentage of PD-L1+ immune cells ranged from 12% (pancreatic cancer) to 36% 

(melanoma).  

Monoclonal antibodies against both CTLA-4 and PD-1, as well as against PD-L1, 

have shown efficacy in multiple cancer types, however, the potential value of PD-L1 

expression as biomarker for response is still uncertain (43-45).  In a study of nivolumab 

(anti-PD-1 antibody) across tumor types, objective response was correlated with tumoral 

PD-L1 expression but not PD-L1 expression by infiltrating immune cells (41).  Treatment 

with MPDL3280A (anti-PD-L1 antibody) has also demonstrated objective responses of 13-

26% among a variety of different malignancies (42).  Although the RR alone was not overly 

impressive in this study, the majority of responders had durable responses lasting at least 

one year.  In contrast to nivolumab treatment, response to MPDL3280A was significantly 

correlated with PD-L1 expression on immune cells rather than tumoral PD-L1 expression.  

Given this early conflicting data that may reflect the differences in the immune 

microenvironment among tumor types, the use of PD-L1 expression as a biomarker for 

response to immune checkpoint inhibiting agents requires additional investigation.  
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Table 2. Immunotherapy literature summary 

Abbreviations: NSCLC, non-small cell lung cancer; CRPC, castration-resistant prostate 

cancer; overall response rate, ORR 

 

CD8+ T Cell Subpopulations 

In addition to the presence of TILs, CTLs, and immune checkpoint expression, 

other CD8+ T cell subpopulations have been investigated and associated with improved 

survival and tumor immunogenicity.  In high grade serous ovarian cancer (HGSOC), the 

presence of CD8+ T cells within the tumor epithelium has been associated with improved 

prognosis (46).  Retention of these CD8+ T cells to the tumor epithelium is thought to be 

mediated by expression of CD103 (αE/β7 integrin) on the T cell which binds to E-cadherin 

in the tumor epithelium (47).  Furthermore, high prevalence of CD8+CD103+ T cells in 

HGSOC correlates with enhanced survival (48).  This interaction of CD103 with the E-

PD-L1 Studies 

 

Author(y) 

Cancer Type Marker  

PD-L1 Expression 

 

Findings 

Ref 

Taube 

(2014) 

Melanoma 

NSCLC 

Colorectal 

CRPC 

PD-L1+ tumor 

or immune 

cells (≥5% of 

cells) 

Tumor Cells  

Melanoma (47%) 

NSCLC (53%) 

Colorectal (13%) 

CRPC (0%) 

 

Immune Cells  

Melanoma (50%) 

NSCLC (53%) 

Colorectal (50%) 

CRPC (0%) 

Treatment with 

nivolumab 

(anti-PD1) 

-PD-L1+ tumor cells 

associated with ORR 

(p=0.03) and clinical 

benefit (p=0.01).  

-PD-L1+ immune cells 

associated only with 

clinical benefit (p=0.04) 

41 

Herbst 

(2014) 

Melanoma 

NSCLC 

Colorectal 

Renal Cell 

Head and Neck 

PD-L1+ tumor 

or immune 

cells (≥5% of 

cells) 

Tumor Cells  

Melanoma (5%) 

NSCLC (24%) 

Colorectal (1%) 

Renal Cell (10%) 

Head and Neck (19%) 

 

Immune Cells  

Melanoma (36%) 

NSCLC (26%) 

Colorectal (35%) 

Renal Cell (25%) 

Head and Neck (28%) 

Treatment with 

MPDL3280A 

(anti-PD-L1) 

-PD-L1+ immune cells 

associated with response 

to treatment (p=0.01) 

-PD-L1+ tumor cells not 

associated with response 

(p=0.08) 

42 
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cadherin ligand has also been proposed as a mechanism for tumor specific recognition by 

CTLs (49).   

IMMUNOTHERAPY IN MSI-H TUMORS 

Some MSI-H tumor types, have been reported to be more immunogenic and also 

demonstrated increased expression of immune checkpoints.  MSI-H CRCs have a higher 

density of TILs and CTLs and increased immune checkpoint expression compared to MSS 

colorectal cancers (50, 51).  Specifically, Llosa et al. showed MSI-H CRCs have increased 

CTL infiltration and activation within the epithelial component of the tumor, the tumor-

associated stroma, and at the invasive front (50).  Along with this pro-inflammatory 

environment, expression of multiple immune checkpoint markers were also increased in 

MSI-H colorectal cancers, including PD-1, PD-L1 , CTLA-4 , LAG-3 (lymphocyte-

activation gene 3), and IDO (Indoleamine 2,3-dioxygenase).   It is suggested that the 

presence of CTLs and increased immune checkpoint expression in tumors are key 

indicators that immunotherapy may have increased efficacy in MSI-H tumors.  

Due to these reports of enhanced immunogenicity, the efficacy of immunotherapy 

in MSI-H tumors is now being evaluated in clinical studies. Specifically, the observation 

of increased immune checkpoint expression in colorectal MSI-H tumors has led to trials of 

immune checkpoint blockade. Pembrolizumab, a monoclonal antibody targeting PD-1, was 

recently studied in a phase 2 trial of progressive and metastatic MSI-H CRC. This trial 

showed improved immune-related objective response rates (encompasses patterns of 

response specific to immunotherapy) in MSI-H CRC compared to MSS CRC (52).  Of 

interest, a third arm of the study included patients with MSI-H non-CRC tumors, including 

two women with EC, and also demonstrated improved response to anti-PD-1 therapy. Of 
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the two EC patients, one had a complete response and the other a partial response to anti-

PD-1 therapy.  Updates to this study, with the inclusion of additional MSI-H EC patients, 

were recently presented at the 2016 Society of Gynecologic Oncology Annual Meeting 

(53).  Response rates of 56% were seen in the MSI-H EC population (n=9), including one 

complete response and four partial responses, and additional studies in MSI-H and MSS 

ECs are currently being planned.     

IMMUNE MICROENVIRONMENT OF MSI-H ENDOMETRIAL CANCER 

While our knowledge of the immune microenvironment in cancer has grown 

overall, our understanding in EC has lagged behind. A few studies have evaluated the 

relationship of the immune microenvironment and survival in EC.  Kondratiev et al, 

demonstrated an association with improved overall survival for patients with tumors 

containing at least 10 CD8+ T cells at the invasive front (54).  Higher numbers of TAMs 

are also found in the stroma compared to the tumor epithelium in EC overall, but has not 

been associated with tumor stage or disease status (55). 

A small number of limited studies have shown conflicting data regarding the 

immune microenvironment and immunogenicity of MSI-H EC and these studies have not 

addressed Lynch-related cases specifically (56-58).  One recent study by Howitt et al 

predicted the neoantigen load of MSI-H EC to be 7-fold higher compared MSS EC using 

TCGA data (56).   Additionally, this study used immunohistochemistry to characterize 

further parameters of the immune microenvironment.  However, it is important to note that 

the number of cases used in this study was small and immunohistochemistry evaluation 

was limited to one high powered field per case.  Yet, this limited study found a significantly 

higher number of CD3+ and CD8+ TILs in MSI-H and POLE compared to MSS ECs.  
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Lastly, PD-L1 expression on immune cells of the MSI-H/POLE tumors was higher than in 

MSS, but there was no difference in tumoral PD-L1 expression.  Another study by van 

Gool et al, also showed higher CD8+ T cell infiltration in both the intraepithelial and 

intrastromal regions of MSI-H compared to MSS tumors (59).  This same study also 

evaluated immune gene expression using TCGA and found increased CD8A and IFNγ 

expression in MSI-H tumors, but no significant difference in perforin or granzyme B 

expression.   

These early studies offer hints that the immune microenvironment of MSI-H ECs 

may be similar to that seen in MSI-H CRC with increased immunogenicity and immune 

cell infiltration.   However, the specifics of the immune environment of MSI-H EC and 

how this may differ from MSS EC still remain largely unknown. Therefore, there is a 

critical need to understand the immune microenvironment of MSI-H EC to determine if 

this subtype is amenable to treatment with immunotherapy.  It is also unknown if Lynch 

syndrome-related MSI-H (LS MSI-H) ECs have a comparable immune microenvironment 

to sporadic MSI-H EC.  Our central hypothesis is that MSI-H ECs will have an altered 

immune microenvironment compared to MSS ECs, and demonstrate increased immune 

checkpoint expression.  To address this question we first used TCGA uterine data to 

evaluate differences in gene expression and global pathway alterations between MSI-H and 

MSS ECs.  We then performed immunohistochemistry (IHC) multiplexing with advanced 

quantitation methods to further characterize the differences in immunologic markers 

between these tumor types.  
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Chapter 2: Methods 

TCGA ANALYSIS 

 In collaboration with the Bioinformatics Resource Group at The University of 

Texas MD Anderson Cancer Center, TCGA uterine cancer RNA sequencing (RNAseq) 

version 2 dataset was used to evaluate gene expression differences between MSI-H and 

MSS EC.  From this data, 118 MSI-H cases and 160 MSS cases were identified and used 

for the analysis.  RNAseq read counts were converted into integer values via rounding in 

Excel.  Genes with a median read count of less than 10 for both groups were filtered out.  

This left 15393 genes out of an initial 20531 genes for evaluation.  Next, significance 

analysis of microarrays (SAM) (Stanford University, CA) was used to detect statistically 

significant differences in gene expression between the two groups as two class, unpaired 

samples.  Only genes with a q value < 0.05 were extracted for further pathway evaluation.   

The false discovery rate was accounted for by using the q value that signifies that 5% of 

significant results will result in false positives.  

 Ingenuity Pathway Analysis (IPA) (Qiagen, CA) was then used to investigate 

pathway alterations between MSI-H and MSS EC.  The differentially expressed genes 

obtained from SAM analysis, as described above, were uploaded to IPA to create a Core 

Analysis, which was used to investigate differences in canonical pathways in MSI-H versus 

MSS tumors.   

 A more specific TCGA analysis focused on immune-related and inflammatory 

genes was later conducted with recently released updated Level 3 uterine cancer data.  In 

Level 3 expression data, gene and mRNA levels RNAseq data is post  normalization and 

processed to allow for interpretive analysis (60).  This particular analysis evaluated mRNA 
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level  differences in a more specific immune and inflammatory gene panel as described by 

Lal et al (61).  The list of queried genes can be seen in Table 3.   
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Table 3. Immune related genes investigated with TCGA uterine data 

 

Gene ID Gene Name 

ACTB Beta actin 

CCL11 Chemokine ligand 11 

CCL2 Chemokine ligand 2 

CCL5 Chemokine ligand 5 

CD247 CD247 molecule 
CD274 CD274 molecule 

CD276 CD276 molecule 

CD3D CD3d molecule, delta 

CD3E CD3e molecule, epsilon 

CD3G CD3g molecule, gamma 
CD4 CD4 molecule 

CD80 CD80 molecule 

CD86 CD86 molecule 

CD8A CD8a molecule 

CD8B CD8b molecule 

CTLA4 Cytotoxic T-lymphocyte associated protein 4 

CX3CL Chemokine ligand 1 

CXCL10 Chemokine ligand 10 

CXCL9 Chemokine ligand 9 

FOXP3 Forkhead box P3 

GNLY Granulysin 

GZMB Granyzme B 

HLA-A Major histocompatibility complex, class I, A 

HLA-B Major histocompatibility complex, class I, B 

HLA-C Major histocompatibility complex, class I, C 

HLA-DMA Major histocompatibility complex, class II, DM alpha 

HLA-DMB Major histocompatibility complex, class II, DM beta 

HLA-DOA Major histocompatibility complex, class II, DO alpha 

HLA-DOB Major histocompatibility complex, class II, DO beta 

HLA-DPA1 Major histocompatibility complex, class II, DP alpha 1 

HLA-DPB1 Major histocompatibility complex, class II, DP beta 1 

HLA-DQA1 Major histocompatibility complex, class II, DQ alpha 1 

HLA-DQA2 Major histocompatibility complex, class II, DQ beta1 

HLA-DRA Major histocompatibility complex, class II, DR alpha  

HLA-DRB5 Major histocompatibility complex, class II, DR beta 5 

ICAM1 Intercellular adhesion molecule 1 

ICOS Inducible T cell co-stimulator 

IFNG Interferon gamma 

IL10 Interleukin 10 

IL12RB2 Interleukin 12 receptor, beta 2 

IL17A Interleukin 17A 
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Gene ID Gene Name 

IL18RAP Interleukin 18 receptor accessory protein 

IL7R Interleukin 7 receptor 

IRF1 Interferon regulatory factor 1 

KLRK1 Killer cell lectin-line receptor subfamily K, member 1 

LAG3 Lymphocyte-activation gene 3 

MADCAM1 Mucosal vascular addressin cell adhesion molecule 1 

MICB MHC class I polypeptide-related sequence B 

PDCD1 Programmed cell death 1 

PDCD1LG2 Programmed cell death 1 ligand 2 

PROCR Protein C receptor, endothelial 

RAET1E Retinoic acid early transcript 1E 

RAET1G Retinoic acid early transcript 1G 

STAT1 Signal transducer and activator of transcription 1 

STAT3 Signal transducer and activator of transcription 2 

TBX21 T-box 21 

TNFRSF14 Tumor necrosis factor receptor superfamily, member 14 

TNFSF4 Tumor necrosis factor superfamily, member 4 

ULBP1 UL16 binding protein 1 

ULPB2 UL16 binding protein 2 

ULPB3 UL16 binding protein 3 

VCAM1 Vascular cell adhesion molecule 1 

VTCN1 V-set domain containing T cell activation inhibitor 1 

 

REAGENTS AND ANTIBODIES 

The OpalTM IHC kit (PerkinElmer, MA) was used for fluorescent IHC multiplexing.  

The kit included fluorescent tyramide signal amplification (TSA) reagents, amplification 

diluent, and DAPI (4',6-diamidino-2-phenylindole).   

 The following antibodies were used for fluorescent IHC  multiplexing:  CD3 

(1:900, clone SP7, Thermo Scientific, MA), CD4 (1:450, clone 4B12, Thermo Scientific, 

MA), CD8 (1:400, clone 4B11, Leica, UK), CD11c (1:1000, clone 5D11, Leica, UK), 

Granzyme B (1:300, clone 11F1, Leica, UK), CD103 (1:5000, clone EPR4166, Abcam, 

MA), CD68 (1:500, clone KP1, Biogenex, CA), PD-L1 (1:1600, clone E1L3N, Cell 

Signaling, MA), and NKp46 (1:4000, clone aa55-104, Lifespan Biosciences, WA). 
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Antibody diluent was used for antibody dilution (Invitrogen, CA).  10% normal goat serum 

blocking solution was used for background slide blocking (Life Technologies, CA).  Citrate 

buffer of pH 6.0 was used for antigen retrieval (Poly Scientific, NY).  Secondary anti-

mouse or anti-rabbit antibody horseradish peroxidase (HRP) polymer conjugate was used 

prior to fluorophore application (Invitrogen, CA).  Coverslips were mounted to slides with 

aqueous mounting solution (Thermo Scientific, MA) 

TUMOR SPECIMENS AND CLINICAL DATA 

Endometrial cancer specimens were identified from the gynecologic oncology 

archived tumor bank and Lynch syndrome patient registry in accordance with Institutional 

Review Board (IRB) protocols.  In total, 59 MSI-H EC specimens were identified from 

2000-2015.  The majority of cases were from 2012-2015, but this time frame was 

expanding to include additional cases from the Lynch syndrome patient registry given the 

rarity of these tumors and the need for available primary tumor specimens. These cases 

were then matched approximately 1:2 to MSS cases; resulting in identification of 108 MSS 

cases.  Matching was done according to histology, tumor grade, tumor stage, age at 

diagnosis, and body mass index (BMI) at time of diagnosis, as available.   Clinical data for 

the cohort was abstracted from the medical record. Of the cases identified, nine specimens 

were unable to be located.  When the missing specimen was an MSI-H case, its 

corresponding matched MSS cases were also filtered out from the dataset.  If no MSS cases 

were found for any one MSI-H case, the MSI-H case was also removed from the dataset.  

Archived formalin-fixed paraffin embedded (FFPE) tumors were cut into 4 micron sections 

by the research histology core.    
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DETERMINATION OF MSI STATUS AND MMR DEFECT 

MSI Testing 

 MSI status was determined clinically by a method developed by the Molecular 

Diagnostic Laboratory at MD Anderson Cancer Center (MDACC) that has been previously 

described (62). This data was reported in the medical record and collected retrospectively. 

Briefly, MSI testing was performed following extraction of DNA from FFPE tumor and 

normal tissue.  A polymerase chain reaction (PCR) based method was used for analysis 

followed by capillary electrophoretic detection of microsatellite markers.  Seven 

microsatellite markers were used in this method.  These markers included BAT 25, BAT 

26, BAT 40, D2S123, D5S346, D17S250, and TGFBR2.  The number of tumor 

microsatellite repeats for each of the markers was compared to normal tissue from the same 

case.  A tumor was considered to have microsatellite instability if three or more of the 

seven markers demonstrated allelic shift.  

DNA MMR Deficiency by IHC 

 The process for identification of DNA MMR deficiency was developed by the 

Molecular Diagnostic Laboratory at MDACC as previously described (62), and the 

information was collected retrospectively from the pathology report.  

Immunohistochemistry was performed on FFPE tumor blocks to assess expression of 

MMR proteins (MLH1, MSH2, MSH6, PMS2).  Lack of protein expression of MSH2, 

MSH6, or PMS2 in the tumor, by this method, was considered probable Lynch syndrome.  

For those with MLH1 loss by IHC, MLH1 promoter methylation was performed.  Those 

cases showing MLH1 loss by IHC and without MLH1 promoter methylation were 
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classified as probable Lynch syndrome.  IHC was used to define probable Lynch syndrome 

as germline MMR gene mutation testing was not available on all case.   

Promoter Methylation 

 MLH1 promoter methylation status was also determined via a method developed 

by the MDACC Molecular Diagnostic Laboratory and collected retrospectively from the 

pathology reports in the electronic medical record.  Briefly, bisulfate was used to treat 

extracted DNA from FFPE samples.  This resulted in conversion of cytosine to uracil in 

unmethylated cases. PCR amplification of methylated and unmethylated MLH1 promoter 

region was performed and these sequences were labeled fluorescently and detected via 

capillary electrophoresis as previously described (63).   

IMMUNOHISTOCHEMISTRY STAINING 

Antibody Optimization 

 Prior to initiation of IHC multiplexing, each antibody of interest was tested to 

determine optimal antibody dilution and antigen retrieval (AR) temperature.  A set of serial 

dilutions for each antibody was performed based on published IHC data and the 

manufactures recommendations to establish the best dilution and AR temperature.      

Multiplexing  

Multiple panels were required to enable evaluation of nine total markers.  Some markers 

were repeated on multiple panels to allow for colocalization studies. The individual panels 

are described in detail below. Details of the IHC multiplexing protocol follow the 

multiplexing panel descriptions.   

Multiplexing (6-plex) Panel #1 
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For the first IHC multiplexing panel, the following antibodies were used: anti-Granzyme 

B for activated CTLs and NK cells, anti-CD8 for CD8+ T cells, anti-NKp46 for NK cells, 

anti-CD68 for macrophages, anti-PD-L1 for PD-L1 expressing cells, and DAPI. The order 

of antibody application and associated fluorescent TSA reagent was as follows: (1) anti-

Granzyme B/Cyanine 3 (Cy3), (2) anti-CD8/Fluorescein (FITC), (3) anti-CD68/Cyanine 

5.5 (Cy5.5), (4) anti-PD-L1/Cyanine 3.5 (Cy3.5), (5) anti-NKp46/Cyanine 5 (Cy5), and (6) 

DAPI.  The staining sequence is also represented in Table 4 along with the specific 

antibody dilution and manufacturer.   

Multiplexing (5-plex) Panel #2 

 For the second multiplexing panel, a slightly modified set of reagents had been 

updated by the manufacturer.  The new fluorescent TSA reagents had undergone further 

stringent evaluation and optimization by the manufacturer for IHC multiplexing use; 

however, all IHC processing steps remained the same.  Names of the new fluorophores 

(shown below and in Table 4) reflect the excitation wavelength in nanometers (nm).  The 

following antibodies were used for this multiplexing set: anti-CD3 for all T cells, anti-CD4 

for helper T cells, anti-PD-L1 for PD-L1 expressing cells, and anti-CD11c for dendritic 

cells.  The order of antibody application and associated fluorescent TSA reagent was as 

follows: (1) anti-CD3/520 nm, (2) anti-CD4/540 nm, (3) anti-PD-L1/620 nm, (4) anti-

CDllc/690 nm, and (5) DAPI.   

Multiplexing (3-plex) Panel #3 

 Antibodies for this set included: anti-CD8 for CD8+ T cells and anti-CD103 for 

intraepithelial T cells.   The order of antibody application and associated fluorescent TSA 
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reagent was as follows: (1) anti-CD103/520 nm, (2) anti-CD8/620 nm, and (3) DAPI.  

Table 4 contains the specific antibody conditions and staining sequence.  

 

Table 4. Fluorescent IHC multiplexing antibodies and conditions. 

 

Abbreviations: Conc, concentration; AR, antigen retrieval; TSA tyramide signal 

amplification. 

. 

Immunohistochemistry Protocol 

The OpalTM fluorescent multiplexing kit from Perkin Elmer (Waltham, MA) was 

used according to the manufacturer’s protocol as previously described by Stack et al (64).  

 

Primary Antibody 

 

Company 

 

Host 

 

Conc. 

AR 

Temp 

(ᵒC) 

 

TSA 

 

Order 

Multiplexing Panel #1       

Granzyme B Leica mouse 1:300 96 Cy3 1 

CD8 Leica mouse 1:400 96 FITC 2 

CD68 Biogenex mouse 1:500 120 Cy5.5 3 

PD-L1 Cell 

Signaling 

rabbit 1:1600 96 Cy3.5 4 

NKp46 Lifespan 

Biosciences 

rabbit 1:4000 120 Cy5 5 

DAPI      6 

Multiplexing Panel #2       

CD3 Thermo 

Scientific 

rabbit 1:900 96 520 1 

CD4 Thermo 

Scientific 

mouse 1:450 96 540 2 

PD-L1 Cell 

Signaling 

rabbit 1:1600 96 620 3 

CD11c Leica mouse 1:1000 96 690 4 

DAPI      5 

Multiplexing Panel #3       

CD103 Abcam rabbit 1:5000 96 520 1 

CD8 Leica mouse 1:400 96 620 2 

DAPI      3 
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Details are given below and a flow chart of the steps can also be seen in Figure 3. Antibody 

details including dilutions, manufacturers, and AR conditions are shown in Table 4.  

 

 

Figure 3. Flow chart of fluorescent IHC multiplexing method.   

 

STEP 1: DEPARAFFINIZATION 

Deparaffinization was performed by submerging slides into three successive 

containers of xylene for 10 minutes each.   A series of ethanol solutions was then used to 

rehydrate the tissue as follows: 100% for five minutes, 95% for five minutes, and 70% for 
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two minutes.  Following rehydration, the slides were washed in distilled water (dH2O) for 

two minutes then in Tris-Buffered Saline with 0.05% Tween 20 (TBST) for two minutes.   

After deparaffinization, care was taken to ensure slides were kept in light blocking 

containers throughout the remaining IHC process to limit unnecessary light exposure.  

STEP 2: ANTIGEN RETRIEVAL 

 Next, AR was carried out by placing the slides in citrate buffer (pH 6.0) and heating 

the slides via a decloaking chamber for 15 minutes.  The set temperature for AR was 

determined based on laboratory optimization and antibody manufacturers’ 

recommendations.   

STEP 3: WASH 

 After heating was completed, the slides were removed from the decloaking 

chamber and cooled for 20-30 minutes to room temperature.  The slides were then washed 

in dH2O for two minutes followed by TBST for two minutes.  For the NKp46 antibody, an 

additional wash of 1% hydrogen peroxide for 10 minutes followed by a TBST was for two 

minutes was used to decrease endogenous peroxidase activity.  This step was not required 

for any of the other antibodies.   

STEP 4: BLOCKING 

 Slides were then removed from the wash solution.  Excess liquid was wiped from 

the slides and the tissue was demarcated using a hydrophobic barrier pen.  Sufficient 10% 

normal goat serum (Life Technologies, CA) blocking solution was applied to cover the 

tissue (75-100 microliters (μL)) and slides were incubated in a humidified chamber. 
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STEP 5: PRIMARY ANTIBODY 

 After 30 minutes, the blocking solution was removed from the slides and primary 

antibody was applied to the tissue.  Again, sufficient diluted antibody solution (75-100 μL) 

was used to cover the tissue.  Slides incubated with the primary antibody in a humidified 

chamber at 4ᵒC overnight.   For the anti-CD103 antibody, the slides were incubated at room 

temperature for 30 minutes in a humidified chamber before proceeding with washing as 

described below. All other antibodies used the overnight incubation procedure.   

 After overnight incubation (approximately 16 hours), primary antibody was 

removed from the slides.   The slides were then washed in TBST with agitation and at room 

temperature for two minutes.  This wash process was repeated three times.   

STEP 6: SECONDARY HRP CONJUGATE 

 Slides were wiped of excess liquid and 100 μL of diluted secondary HRP conjugate 

(Invitrogen, CA) was applied to the tissue.  Depending on the host species of the primary 

antibody, either mouse or rabbit secondary HRP conjugate was used.  Slides were 

incubated in a humidified chamber at room temperature for 10 minutes.  The slides were 

again washed three times in TBST with agitation at room temperature for two minutes.   

STEP 7: TSA APPLICATION 

 The fluorophore labeled TSA reagent was first resuspended in 150 μL of dimethyl 

sulfoxide (DMSO) and then diluted 1:50 in 1X Amplification Diluent (Perkin Elmer, MA) 

to produce the working TSA solution.  Slides were wiped of excess liquid and 75-100 μL 

of TSA working solution (Perkin Elmer, MA) was applied to the tissue.  The slides were 

incubated in a humidified chamber at room temperature with the TSA solution for 10 
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minutes.  The slides were again washed in TBST for two minutes at room temperature three 

times. A different fluorophore labeled TSA solution was used for each antibody.     

STEP 8: ANTIGEN RETRIEVAL/HEATING 

 Slides were again heated in citrate buffer of pH 6.0 for 15 minutes in a decloaking 

chamber.  Following heating, the slides were left to cool to room temperature for 20-30 

minutes in the citrate buffer.  The slides were then washed with dH20 for two minutes, 

followed by TBST for two minutes at room temperature. The specific temperature was 

determined by the conditions needed for AR of the next antibody to be applied.  For the 

last heating step in the multiplexing sequence, 96ᵒC was used.   

 After step 8, the process was repeated beginning at step 3 for each subsequent 

antibody used.  After the final antibody and fluorophore labeled TSA solution was applied, 

the process proceeded to step 9.   

STEP 9: DAPI 

 DAPI solution from the OpalTM fluorescent multiplexing kit (PerkinElmer, MA) 

was then applied.  This solution was diluted two drops in one mL of TBST prior to 

application.  100 μL of the diluted DAPI solution was applied to the tissues and incubated 

in a humidified chamber at room temperature for five minutes.  DAPI was then removed 

and the slides were washed in dH20 for two minutes.  A drop of aqueous mounting solution 

(Thermo Scientific, CA) was applied to the slides for cover slip mounting.  The slides were 

stored in a dark container at 4ᵒC.   

Control Slides 
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 Individual fluorophore control slides were prepared for each antibody and 

associated fluorophore labeled TSA reagent in order to create a spectral library and to 

determine imaging exposure times for each fluorophore.  This was accomplished using 

IHC steps 1-8 as described above.  Similarly, a DAPI only slide was stained using the 

described IHC steps 1-3.  DAPI was then applied as described in step 9.  Lastly, an 

unstained slide of uterine tissue was deparaffinized and heated as above and mounted to be 

used for determination of autoflourescence during the imaging analysis process.   

IMAGING AND DATA ANALYSIS 

The imaging and inForm® analysis portion of the project was performed with 

assistance from the MDACC Flow Cytometry and Cellular Imaging Facility. 

Imaging 

 Due to the multiple antibodies and multiple fluorophores used for several markers 

on each slide, unique imaging was required. This multispectral imaging was accomplished 

with the Vectra® 2 automated system (PerkinElmer, MA).  This system allows for the 

capture of tissue images at multiple wavelengths and is able to analyze multiple markers, 

or antibodies, on a single slide.  Analysis of multiple markers on a single slide also enables 

colocalization studies.  

Initial low power images at 4X were obtained for all tissue on each slide. Up to 30 

high power field images were then randomly captured at 20X through automation by the 

Vectra® system.  These fields were captured based on highest density of tumor cells in the 

images.  A series of sample EC multiplex images from the data set were used to define 

areas of tumor, stroma, and normal tissue that was then applied to create a pattern 

recognition algorithm for high power field acquisition. For the multiplexing sets, four 
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filters were used to capture images (DAPI, Cy3, FITC, and Cy5).  Exposure times were 

determined for each of the filters using a representative individually stained slide, and 

subsequently used for acquisition of all images.  

inForm® Analysis 

Once images were obtained, the inForm® system version 2.1.5430.24864 was used 

to create a spectral library of each of the fluorophores.  Images from the single fluorophore 

slides were used for this library.  This allowed for unmixing of the individual fluorophores, 

and confirmed unique staining for each of the antibodies.  

This same system was also used to identify tissue regions of interest and to score 

positive cellular tagging of the antibodies of interest.  A series of multiplex images were 

randomly selected to provide a sample set of images to define areas of tumor epithelium, 

tumor associated stroma, myometrium and blank space. This sample set of images was then 

used to train the inForm® system in pattern recognition of these different tissue segments.  

The training algorithm also included DAPI and each spectral component, specific to the 

multiplex staining panel, to create the tissue segmentation algorithm that was applied to all 

images.  The system was subsequently able to classify the pixels within the training set 

with 85-94% accuracy.   

 Next, DAPI staining was used to identify nuclei within each of the tissue 

compartments, and to obtain total cell counts with in each of the compartments. The DAPI 

staining was also used as a reference to determine cellular cytoplasm and membrane 

segmentation based on the inForm® algorithm.  Thresholds and scoring for positively 

staining cells for each of the antibodies were determined through manual examination of 

each antibody among the EC multiplex training images.  This examination included 
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identifying a fluorescent pixel intensity that accurately identified positive staining cells 

across the training set within the cellular compartment (cytoplasm or membrane) unique to 

each of the antibodies. Signal thresholds were determined using average fluorescent pixel 

density for each of the fluorophores and corresponding antibodies.  Thresholds, along with 

cellular compartment of interest, are as follows: 

 Multiplexing Panel #1: Granzyme B/Cy3 - membrane (score >3), CD8/FITC - 

membrane (score >2), PD-L1/Cy3.5 - cytoplasm (score >5), NKp46/Cy5 - 

membrane (score >1), and CD68/Cy5.5 – cytoplasm (score >1).  

 Multiplexing Panel #2: CD3/520 nm – membrane (score >0.83), CD4/540 nm - 

membrane (score >0.33), PD-L1/620 nm - cytoplasm (score >2.5), and CDllc/690 

nm - membrane (score >0.2). 

 Multiplexing Panel #3: CD103/520 nm – membrane (score >2.0) and CD8/620 nm 

- membrane (score >4.5). 

For each antibody, signal greater than the determined threshold was considered 

positive staining.    

 An inForm® algorithm was then run based on the previously defined tissue 

segmentation, identification of individual cells and corresponding cellular compartments, 

and the scoring system for each of the antibodies of interest.  The generated composite 

images were reviewed manually, and the reviewer was blinded to MSI status during this 

review.  In the manual review, images that were determined to have inaccurate tissue 

segmentation were added to the training set of images to improve segmentation accuracy.  

However due to the wide variation of tissue architecture, 100% accuracy was unable to be 

obtained and those images that appeared to have gross segmentation inaccuracy were 
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excluded from the analysis.  Overall, there were on average 16 images analyzed per 

specimen (range 1-35).  A small subset of slides required reimagining due to poor 

identification of tissue and tumor by the automated system, and in these cases, more than 

30 images were allowed in repeat image capture.  This accounts for the increased number 

of images in two cases with greater than 30 images.  

Some cases were not included in the overall analysis due to problems with tissue 

quality or imaging.  This occurred because of tissue degradation (likely due to multiple 

rounds of heating from the multiplexing process), lack of tumor cells present in that section, 

or lack of tumor images captured by the automated system from inaccurate tissue 

segmentation for image acquisition.  If the removed case was MSI-H, the corresponding 

MSS matched pairs were also removed.  Additionally, if a MSS case that was removed 

resulted in no matched cases for a MSI-H case, the MSI-H case was also removed from the 

analysis. 

The number of positive staining cells for each of the antibodies was determined per 

millimeter squared (mm2) within the tumor epithelium and tumor associated stroma for 

each of the cases using code written in SAS version 9.2 (Cary, NC) by collaborator Gary 

Chisholm (Programmer/Analysis, Department of Gynecologic Oncology and Reproductive 

Medicine). 

  

STATISTICAL ANALYSIS 

 Statistical analysis was performed using Stata version 14.1 (College Station, TX).  

The Mann-Whitney and Kruskal-Wallis tests were used to compare demographic data 

between the groups as indicated. For overall comparison of immune cellular markers 
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between MSI-H and matched MSS cases, the nonparametric Mann-Whitney test was used.  

The Mann-Whitney test was also used for comparison of sporadic MSI-H and matched 

MSS cases, as well as, MSI-H Lynch cases compared to MSS matches. A p value of < 0.05 

was used to signify statistical significance.  Box plots were also created to compare 

differences among mRNA levels, positive staining cell counts, and percent positive 

staining cells.  The upper border of the box represents the third quartile, the lower border 

the first quartile, and the line the median.  The whiskers are defined using the Tukey box 

plot method where they represent 1.5 times the upper and lower interquartile range.   
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Chapter 3: Results 

TCGA ANALYSIS 

 Using TCGA uterine cancer RNAseq data, global gene expression was compared 

for 118 MSI-H endometrioid endometrial cancers and 160 microsatellite stable tumors.  

Analysis of the differential gene expression revealed 2148 upregulated and 2645 

downregulated genes in MSI-H tumors compared to MSS tumors. Further examination of 

global pathway alterations using IPA demonstrated significant activation of the granzyme 

B signaling pathway in MSI-H compared to MSS tumors (p<0.01), but not in other 

immune- or inflammatory-related pathways.  Genes in the granzyme B pathway include 

but are not limited to: granzyme B, perforin, caspase 3, caspase 8, caspase 9, apoptotic 

peptidase activating factor, DNA fragmentation factor, endonuclease G, and cytochrome 

c.  Upon cytotoxic cell activation, the granzyme B pathway triggers cellular apoptosis of 

target cells and increased pathway activation suggests increased CTL activity in MSI-H 

tumors. 

A panel of specific immune- and inflammatory-related genes was also compared 

using TCGA RNAseq data.   Of the 64 genes evaluated, mRNA levels in MSI-H tumors 

were significantly elevated for 11 genes (p<0.01).  These genes included multiple T cell 

effector (CD8a, ICOS, MICB, ULBP1), T cell attractant chemokine (CXCL9), immune 

checkpoint (LAG3), NK cell effector (ULBP2, ULBP3), immune cytokine (IFNG), 

regulatory T cell (FOXP3), and beta actin (ACTB) genes.  A subset of the significant 

mRNA comparisons between MSI-H and MSS EC is represented in Figure 4. MSI-H 

tumors also had significantly decreased mRNA levels of an eosinophil chemotactic 

cytokine gene (CCL11) (p<0.01).  
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Figure 4. MSI-H ECs demonstrate increased expression of multiple T cell effector 

genes compared to MSS EC.   

Analysis of RNAseq TCGA uterine cancer data comparing log2 mRNA level differences 

in MSI-H and MSS EC for (A) FOXP3, (B) CD8A, (C) IFNG, (D) LAG3, (E) CXCL9, 

and (F) ICOS represented by box plots.   

 

SPECIMENS 

 Analysis of EC cases was conducted using specimens from the gynecologic 

oncology archived tumor bank and Lynch syndrome patient registry. In total, 59 MSI-H 

cases were identified and matched approximately 1:2 to 108 MSS cases.  Of the MSI-H 

cases, 20 were found to have IHC defects in MMR genes consistent with probable Lynch 

syndrome and this group was used for the LS MSI-H sub-analysis.  37 MSI-H cases 
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demonstrated sporadic promoter methylation of MLH1 and were used for the sporadic 

MSI-H sub-analysis.  One case had loss of MSH2 and MSH6 on IHC, but no germline 

deleterious mutations of DNA MMR genes. One case had unknown specific protein loss, 

but was positive for microsatellite instability with allelic shift in 5 of 7 microsatellite 

markers.  These last two cases were included only in the overall MSI-H versus MSS 

analysis. Among the 20 LS MSI-H cases, IHC loss of primary MMR proteins were as 

follows: 3 (15.0%) in MLH1, 14 (70.0%) in MSH2, 3 (15.0%) in MSH6, and no cases 

showed loss of PMS2 or EPCAM.   

DEMOGRAPHICS 

 There were no significant differences in characteristics used for case matching 

(histology, age at diagnosis, BMI, stage, and grade) as shown in Table 5.  Some data could 

not be obtained for a small number of cases in the MSI-H cohort, almost exclusively Lynch 

Syndrome EC cases. The majority of these cases were obtained from a Lynch syndrome 

patient registry where specimens included those collected from outside institutions, which 

had more limited associated clinical information.  Of these, 11 cases were missing details 

of depth of myometrial invasion and 12 were missing LVSI information.  As comparison 

of depth of invasion and LVSI were not primary objectives, and these cases were not 

excluded from the cohort. In addition, 2 cases had unknown grade (both LS MSI-H) and 5 

had unknown stage (All LS MSI-H).  However, these cases were matched according to the 

data available and were included in the analysis given the limited number of cases of the 

LS MSI-H subtype.  

The majority of cases were stage IA in both groups (MSI-H 59.3% vs MSS 66.7%; 

p=0.80) with about 13% representing more advanced stage III or IV cases (MSI-H 13.6% 
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vs MSS 13.0%; p = 0.80).  The majority of cases were grade 2 in each of the groups (MSI-

H 69.5% vs MSS 75.9%; p=0.63), and more aggressive grade 3 cases made up 17.0% in 

the MSI-H and 13.0% in the MSS cohort.  As most cases were stage IA, only 25.4% had 

myometrial invasion equal to or greater than 50% in the MSI-H and 26.9% in the MSS 

cases. Lastly, there was a significant difference in lymphovascular space invasion (LVSI) 

between the two groups with more MSS cases having LVSI present (67.6%) than that seen 

in the MSI-H (39.0%) cases (p=0.02).   

Table 5. Baseline patient characteristics by MSI-H and MSS status.  

 

 MSI-H (N=59) MSS (N=108) P value 

Mean Age (y) 63.0 59.5 0.84 

Mean BMI (kg/m2) 34.3 36.5 0.19 

Histology, N (%)   0.60 

   Endometrioid 55 (93.2) 106 (98.2)  

   Undifferentiated 1 (1.7) 1 (0.9)  

   Mixed 3 (5.1) 1 (0.9)  

Stage, N (%)   0.80 

IA 35 (59.3) 72 (66.7)  

IB 8 (13.6) 17 (15.7)  

II 3 (5.1) 5 (4.6)  

III/IV 8 (13.6) 14 (13.0)  

Unknown 5 (8.5) --  

Grade, N (%)   0.63 

     1 6 (10.2) 12 (11.1)  

     2 41 (69.5) 82 (75.9)  

     3 10 (17.0) 14 (13.0)  

     Unknown 2 (3.4) --  

Depth of Myometrial 

Invasion, N (%) 

  0.46 

No invasion 8 (13.6) 24 (22.2)  

< 50% 25 (42.4) 55 (50.9)  

≥ 50% 15 (25.4) 29 (26.9)  

Unknown 11 (18.6) --  

LVSI, N (%)   0.02* 

Present 23 (39.0) 73 (67.6)  

Absent 24 (40.7) 33 (30.6)  

Unknown 12 (20.3) 2 (1.9)  
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Abbreviations: BMI, body mass index; kg/m2, kilograms per meter squared; LVSI, 

lymphovascular space invasion   

IMMUNE MICROENVIRONMENT OF MSI-H ENDOMETRIAL CANCER COMPARED TO MSS 

TUMORS 

 The immune microenvironment in MSI-H versus MSS EC was examined using 

three fluorescent IHC multiplexing panels. The first panel evaluated positive staining of 

CD8 (CD8+ T cells), granzyme B (activated CTLs or NK cells), CD68 (macrophages), PD-

L1 (immune checkpoint ligand), and NKp46 (NK cells).  Staining with the NKp46 antibody 

was difficult to optimize and ultimately resulted in nonspecific staining.  As a result, this 

marker could not be analyzed. The second panel measured positive staining for CD3 

(general T cell marker), CD4 (CD4+ T cells), PD-L1 (immune checkpoint ligand), and 

CD11c (dendritic cell marker).  Finally, the third panel evaluated positive staining of 

CD103 (intraepithelial T cell or dendritic cell marker) and CD8 (CD8+ T cells). 

Representative images for each of the multiplexing panels are demonstrated in Figure 5.   

Markers repeated in multiple panels (PD-L1 and CD8) demonstrated substantial variation 

in overall total positive cell counts in subsequent multiplexing panels. However, as noted 

in Methods, batch effects for multiplex staining (due to differences in conditions between 

panels) make it necessary for comparison of these markers to only be performed within a 

multiplexing batch.  PD-L1+ staining showed a 1.2-1.4 fold difference in the stroma and a 

1.4-2 fold difference in the tumor epithelial compartment. While CD8+ staining had a 1.2-

1.3 fold difference in the stroma and a 1.5-2.1 fold difference in the tumor epithelial 

compartment. Additionally, the counts in the tumor epithelial compartment may be less 

reliable due to the low overall positive cell counts which are reflected in the wider variation 

of fold difference within the tumor epithelial compartment.  
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Figure 5. Fluorescent IHC multiplexing panel images.  

(A) Representative image of IHC multiplexing panel 1 including: CD8 (green), Granzyme 

B (red), CD68 (orange), PD-L1 (magenta), and DAPI (blue). (B) Representative image of 

IHC multiplexing panel 2 including: CD3 (green), PD-L1 (red), CD4 (magenta), CD11c 

(white), and DAPI (blue). (C) Representative image of IHC multiplexing panel 3 including: 

CD 103 (green), CD8 (red), and DAPI (blue).  S indicates peritumoral stroma; G indicates 

tumor glandular epithelium.  



 

40 

 

 

 Details of the number of positively stained cells per marker within both the stromal 

and tumor epithelial compartments for the entire cohort are shown in Table 6 to enable 

comparison of the relative abundance of positive staining across different tissue 

compartments and markers (within each individual multiplex panel, as indicated on the 

table). Among all MSI-H tumors, the mean number of granzyme B+, PD-L1+, and CD4+ 

staining cells were significantly higher within the tumor associated stroma. As other studies 

have looked at the percentage of PD-L1+ cells, this was also assessed in our cohort to allow 

for comparison across studies.  The percentage of PD-L1+ staining stromal cells was also 

significantly increased in the MSI-H cases (59.2% vs 49.0%; p<0.01), but not in the tumor 

epithelium (5.4% vs 3.8%; p=0.26) when compared to MSS EC (Figure 6A and 6B).  There 

was no statistically significant difference seen in the mean number of stromal cells staining 

positive for CD3, CD8, CD103, CD68, or CD11c between MSI-H and MSS tumors.  

In evaluating the tumor epithelial compartment, the mean number of granzyme B+ 

staining cells in the MSI-H group was significantly higher, while the mean number of 

CD68+ staining cells within the tumor epithelial compartment was significantly lower in 

the MSI-H versus MSS cases.  There was no significant difference seen in mean number 

of cells staining positive for CD3, CD4, CD8, CD103, CD11c, or PD-L1 between MSI-H 

and MSS tumors in the tumor epithelial compartment.   

 

Table 6. Comparison of positive staining cell counts between MSI-H and MSS ECs 

 

 

Marker 

All MSI-H EC 
Mean No of positive 

cells/mm2 (range) 

MSS EC 
Mean No of positive 

cells/mm2 (range) 

 

P value 

Stromal Compartment    
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CD81 50.7 (0-180.1) 39.4 (0-342.6) 0.06 

Granzyme B1 114.9 (0.1-440.4) 75.8 (0-657.2) <0.01* 

CD681 29.1 (0-156.6) 22.9 (0-127.9) 0.86 

PD-L11 291.6 (107.6-434.2) 240.5 (28.6-408.3) <0.01* 

CD32 89.5 (0.3-282.2) 69.7 (3.4-179.0) 0.05 

CD42 25.4 (0-82.4) 17.8 (0.2-76.1) 0.02* 

CD11c2 22.1 (0-133.9) 17.4 (0-133.3) 0.49 

CD1033 7.9 (0-107.4) 4.8 (0-128.8) 0.30 

Tumor Epithelial 

Compartment  

   

CD81 7.9 (0-53.5) 5.1 (0-38.4) 0.07 

Granzyme B1 38.9 (0-391.0) 32.6 (0-433.8) <0.01* 

CD681 1.8 (0-8.5) 2.8 (0-19.2) 0.03* 

PD-L11 21.3 (0-243.8) 15.4 (0-214.2) 0.29 

CD32 51.5 (0.1-349.6) 37.9 (1.0-236.1) 0.23 

CD42 25.6 (0-255.8) 17.1 (0-130.4) 0.31 

CD11c2 8.9 (0-83.1) 11.1 (0-87.7) 0.27 

CD1033 23.5 (0-111.6) 17.7 (0-92.5) 0.48 
1Multiplex panel 1; 2Multiplex panel 2; 3Multiplex panel 3; *p<0.05. Abbreviations: 

MSI-H, high microsatellite instability; MSS, microsatellite stable; EC endometrial 

cancer. 

 

 

 

 

 

Figure 6. MSI-H ECs show increased stromal PD-L1 expression compared to MSS 

ECs.  

(A) Box plot representing the percentage of PD-L1+ cells within the peritumoral stroma 

compartment of MSI-H vs MSS EC.  (B) Box plot of the percentage of PD-L1+ cells 
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within the tumor intraepithelial compartment of MSI-H vs MSS EC. The center line of 

the box plot indicates the median. *p value <0.05.  Abbreviations: MSI-H, high 

microsatellite instability; MSS, microsatellite stable.  

 

 

 Comparison of marker colocalization in each tissue compartment is shown in Table 

7. Co-staining of CD8+ and granzyme B+ cells was analyzed to assess the number of 

activated CTLs within the two groups.  In all MSI-H tumors, there were significantly more 

activated CTLs in both the stromal and in the tumor epithelial compartments. There was 

also a significant increase seen in colocalization of PD-L1+ and CD11c+ staining cells (PD-

L1+ dendritic cells) among the stroma in all MSI-H versus MSS EC, but not in the tumor 

epithelial compartment.  Stromal colocalization staining for activated CTLs and PD-L1+ 

dendritic cells is shown in Figures 7A and 7C. Colocalization of CD3+ and CD4+ staining 

cells, denoting T helper cells, demonstrated a significant increase in mean number of cells 

between all MSI-H and MSS in the stroma, but not within the tumor epithelial 

compartment.  Lastly, no difference was seen in colocalization of CD103+ and CD8+ 

positive cells (intraepithelial CD8+ cells) or of PD-L1+ and CD68+ staining cells (PD-L1+ 

macrophages) in either of the compartments in all MSI-H versus MSS EC.  Stromal PD-

L1+ macrophages are represented in Figure 7B.  

 

Table 7. Comparison of co-staining positive cell counts between MSI-H and MSS 

ECs 

 

Marker 

All MSI-H EC 
Mean No of positive 

cells/mm2 (range) 

All MSS EC 
Mean No of positive 

cells/mm2 (range) 

 

P value 

Colocalization in Stromal 

Compartment 

   

CD81/Granzyme B1 45.6 (0.7-179.1) 28.0 (0-228.4) <0.01* 

PD-L11/CD681 25.1 (0-148.4) 15.6 (0-93.8) 0.49 
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CD32/CD42 24.9 (0-82.3) 17.4 (0.2-75.7) 0.02* 

PD-L12/CD11c2 6.7 (0-66.3) 4.3 (0-97.9) 0.01* 

CD83/CD1033 5.22 (0-83.0) 2.92 (0-94.0) 0.26 

Colocalization in Tumor 

Epithelial Compartment 

   

CD81/Granzyme B1 5.7 (0-53.5) 2.3 (0-11.6) 0.03* 

PD-L11/CD681 0.5 (0-5.5) 0.2 (0-1.8) 0.74 

CD32/CD42 25.0 (0-255.8) 16.8 (0-130.3) 0.25 

PD-L12/CD11c2 0.4 (0-11.3) 0.2 (0-1.6) 0.14 

CD83/CD1033 1.7 (0-43.3) 0.51 (0-1.5) 0.20 
1Multiplex panel 1; 2Multiplex panel 2; 3Multiplex panel 3; *p<0.05. Abbreviations: 

MSI-H, high microsatellite instability; MSS, microsatellite stable; EC, endometrial 

cancer. 
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Figure 7.  MSI-H ECs have increased stromal activated CTLs and PD-L1+ dendritic 

cells compared to MSS ECs. 

(A) Box plots demonstrating the number of positive cells per mm2 of activated CTLs (co-

staining of CD8 and granzyme B), (B) PD-L1+ macrophages (co-staining of PD-L1 and 

CD68), and (C) PD-L1+ dendritic cells (co-staining of CD11c and PD-L1) in the 

peritumoral stroma. The center box plot line indicates the median positive cell count. *p 

value <0.05. Abbreviations: CTL, cytotoxic T lymphocyte; MSS, microsatellite stable; 

MSI-H, high microsatellite instability. 

 

SPORADIC MSI-H ENDOMETRIAL CANCER 

 A secondary sub-analysis was then performed to assess differences in the immune 

microenvironment of sporadic MSI-H EC compared to MSS tumors (excluding LS MSI-

H cases).  This analysis included only MSI-H tumors with MLH1 promoter methylation 

compared to matched MSS tumors. The overall mean values for each marker are depicted 

in Table 8.  Within this subgroup, the number of granzyme B+, CD3+, and CD4+ staining 

cells within both the tumor associated stroma and the tumor epithelial compartments was 

higher among the sporadic MSI-H versus MSS cases.  This was in comparison to only 

increased stromal and tumor epithelial granzyme B+ staining cells and stromal CD4+ 

staining cells in all MSI-H versus MSS cases. The percentage of PD-L1+ staining cells 

(61.1% vs 45.3%; p<0.01) was significantly higher in the stromal compartment for 

sporadic MSI-H versus MSS cases like that seen in all MSI-H cases (Fig 8A), as well as 

within the tumor epithelial compartment (sporadic MSI-H 6.3% vs MSS 2.3%; p=0.03) 

(Fig 8B).  As seen in all MSI-H versus MSS cases, there was no difference in the mean 

number of positive staining cells within the stroma for CD8, CD68, CD11c, or CD103 in 

sporadic MSI-H compared to MSS EC.  In the tumor epithelial compartment, mean positive 

staining cell counts for CD8, CD68, CD11c, or CD103 were also not significantly different 

between sporadic MSI-H versus MSS cases.  
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Table 8. Comparison of positive staining cell counts between sporadic MSI-H and 

MSS ECs.   

 

Marker 

Sporadic MSI-H EC 
Mean No of positive 

cells/mm2 (range) 

MSS EC 
Mean No of positive 

cells/mm2 (range) 

 

P value 

Stromal Compartment     

CD81 36.9 (0-133.7) 45.3 (0-342.6) 0.62 

GranzymeB1 107.4 (12.3-377.9) 84.1 (0-657.2) 0.02* 

CD681 36.6 (0.5-156.6) 20.9 (0-127.9) 0.25 

PD-L11 297.3 (112.7-433.9) 225.9 (28.6-408.3) <0.01* 

CD32 88.1 (11.7-233.7) 65.9 (3.4-179.0) 0.03* 

CD42 26.6 (2.7-73.4) 16.5 (0.2-76.1) <0.01* 

CD11c2 22.8 (0-133.9) 16.5 (0-133.3) 0.21 

CD1033 7.2 (0-107.4) 5.7 (0-128.8) 0.40 

Tumor Epithelial 

Compartment 

   

CD81 5.9 (0.1-20.1) 5.5 (0-38.4) 0.30 

Granzyme B1 43.5 (0-391.0) 35.2 (0-433.8) <0.01* 

CD681 2.4 (0-8.5) 2.8 (0-19.2) 1.0 

PD-L11 25.0 (0.2-243.8) 10.0 (0-68.3) 0.02* 

CD32 56.5 (4.0-349.6) 33.3 (1.4-181.7) 0.04* 

CD42 29.7 (0.9-255.8) 14.5 (0.1-117.4) 0.04* 

CD11c2 9.9 (0-83.1) 11.6 (0-87.7) 0.63 

CD1033 24.8 (0-111.6) 18.4 (0-92.5) 0.43 
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1Multiplex panel 1; 2Multiplex panel 2; 3Multiplex panel 3; *p<0.05. Abbreviations: 

MSI-H, high microsatellite instability; MSS, microsatellite stable; EC, endometrial 

cancer. 

 

 

 

 

 
 

 

Figure 8. Sporadic MSI-H ECs show increased stromal and tumor epithelial PD-L1 

expression compared to MSS ECs.  

(A) Box plot representing the percentage of PD-L1+ cells within the peritumoral stroma 

compartment of sporadic MSI-H vs MSS EC.  (B) Box plot of the percentage of PD-L1+ 

cells within the tumor intraepithelial compartment of sporadic MSI-H vs MSS EC. The 

center line of each box plot represents the median.  *p value <0.05.  Abbreviations: MSI-

H, high microsatellite instability; MSS, microsatellite stable. 

 

 

 Table 9 compares positive co-staining cell counts within the stromal and tumor 

epithelial compartments. Sporadic MSI-H cases demonstrated an increase in stromal PD-

L1+ dendritic cells (co-staining of PD-L1 and CD11c).  This finding was similar to that 

seen in the analysis of all MSI-H versus MSS cases. There was no difference in PD-

L1+dendritic cells in the tumor epithelial compartment of sporadic MSI-H compared to 

MSS cases. There was also an increase in PD-L1+ macrophages (co-staining PD-L1 and 

CD68) in the stroma of sporadic MSI-H versus MSS cases which was not seen in the 
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analysis of all MSI-H versus MSS cases, but no differences in the intraepithelial 

compartment.  Additionally, T helper cells (co-staining of CD3 and CD4) were 

significantly increased in both the stromal and tumor epithelial compartments in sporadic 

MSI-H versus MSS cases in contrast to only in the stroma of all MSI-H versus MSS cases.  

No difference was seen in activated CTLs (co-staining of CD8 and granzyme B) in either 

the stroma or tumor epithelial compartment in contrast to that seen in all MSI-H compared 

to MSS EC. There was also no difference seen in intraepithelial CD8+ cells (co-staining of 

CD103 and CD8) in either the stromal or tumor epithelial compartments like that in all 

MSI-H versus MSS EC. Box plot comparisons of stromal CTLs, PD-L1+ macrophages, 

and PD-L1+ dendritic cells are shown in Figures 9A, 9B, and 9C.  

 

Table 9. Comparison of co-staining positive cell counts between sporadic MSI-H 

and MSS ECs. 

 

Marker 

Sporadic MSI-H EC 
Mean No of positive 

cells/mm2 (range) 

MSS EC 
Mean No of positive 

cells/mm2 (range) 

 

P value 

Colocalization in the Stromal 

Compartment 

   

CD81/Granzyme B1 32.4 (0.7-98.3) 31.0 (0-228.4) 0.41 

PD-L11/CD681 31.3 (0-148.4) 13.4 (0-93.8) 0.04* 

CD32/CD42 26.0 (2.4-73.1) 16.0 (0.2-75.7) 0.01* 

PD-L12/CD11c2 6.5 (0-66.3) 3.7 (0-97.9) 0.01* 

CD83/CD1033 4.3 (0-72.1) 3.4 (0-13.3) 0.36 

Colocalization in the Tumor 

Epithelial Compartment 

   

CD81/Granzyme B1 3.8 (0-18.4) 2.5 (0-11.6) 0.15 

PD-L11/CD681 0.7 (0-5.5) 0.2 (0-1.8) 0.05 

CD32/CD42 29.1 (0.9-255.8) 14.1 (0.1-117.2) 0.03* 

PD-L12/CD11c2 0.2 (0-1.1) 0.2 (0-1.6) 0.34 

CD83/CD1033 0.8 (0-8.3) 0.5 (0-13.3) 0.30 
1Multiplex panel 1; 2Multiplex panel 2; 3Multiplex panel 3; *p<0.05. Abbreviations: 

MSI-H, high microsatellite instability; MSS, microsatellite stable: EC, endometrial 

cancer. 
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Figure 9. Sporadic MSI-H ECs have increased stromal PD-L1+ macrophages and 

PD-L1+ dendritic cells compared to MSS ECs.  

(A) Box plots demonstrating the number of positive cells per mm2 of activated CTLs (co-

staining of CD8 and granzyme B), (B) PD-L1+ macrophages (co-staining of PD-L1 and 

CD68), and (C) PD-L1+ dendritic cells (co-staining of CD11c and PD-L1) in the 

peritumoral stroma. The center box plot line indicates the median positive cell count. *p 

value <0.05.  Abbreviations: CTL, cytotoxic T lymphocyte; MSS, microsatellite stable; 

MSI-H, high microsatellite instability. 

 

 

 LYNCH-RELATED MSI-H ENDOMETRIAL CANCER 

 Lastly, evaluation of the differences in the immune microenvironment in LS MSI-

H EC compared to matched MSS cases was conducted, and mean positive staining cell 
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counts are depicted below in Table 10.  LS MSI-H EC demonstrated a significantly higher 

mean number of granzyme B+ staining cells within the tumor associated stroma compared 

to MSS tumors as was also seen in all MSI-H and sporadic MSI-H analyses.  In contrast to 

that seen in the all MSI-H and sporadic MSI-H  versus MSS analyses, there were also a 

significantly higher mean number of CD8+ staining cells in both the stromal and tumor 

epithelial compartments among LS MSI-H versus MSS tumors. The mean number of 

CD68+ staining cells was found to be significantly reduced in both the stromal and tumor 

epithelial compartments in LS MSI-H cases compared to MSS EC, in contrast to all MSI-

H versus MSS analyses where CD68+ positive staining cells were only reduced in the tumor 

epithelial compartment.  

 There was no significant difference observed in the mean number of granzyme B+ 

staining cells within the tumor epithelial compartment between LS MSI-H and MSS EC in 

contrast to the other analyses. Mean positive staining cell counts in the stroma between LS 

MSI-H and MSS tumors showed no difference in CD3, CD4, CD103, or CD11c as 

compared to the increased CD3+ and CD4+ staining cell counts in sporadic MSI-H  versus 

MSS EC. In the tumor epithelial compartment, mean positive staining cells counts were 

not significantly different between LS MSI-H and MSS EC for CD3, CD4, CD11c, or 

CD103.  This finding was similar to that seen in the analyses of all MSI-H compared to 

matched MSS EC. There was no difference in mean PD-L1+ staining cells between the LS 

MSI-H and MSS EC in either the stromal or tumor epithelial compartments which was 

different from the increased PD-L1+ staining among stromal cells in both sporadic MSI-H 

and all MSI-H versus MSS analyses.  There was also no difference in mean percentage of 

PD-L1+ staining cells in the stroma (LS MSI-H 56.2% vs MSS 58.1%; p=0.92) and tumor 
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epithelial (LS MSI-H 3.5% vs MSS 7.2%; p=0.15) compartments in LS MSI-H versus MSS 

EC (Figure 10A and 10B).   

 

Table 10. Comparison of positive staining cell counts between LS MSI-H and MSS 

ECs.   

 

Marker 

LS MSI-H EC 
Mean No of positive 

cells/mm2 (range) 

MSS EC 
Mean No of positive 

cells/mm2 (range) 

 

P value 

Stromal Compartment    

CD81 78.4 (6.6-180.1) 25.9 (0-86.4) <0.01* 

Granzyme B1 150.7 (12.1-440.4) 58.3 (2.3-323.9) 0.01* 

CD681 14.6 (0-58.0) 28.3 (0-82.7) 0.03* 

PD-L11 281.5 (107.6-434.2) 274.0 (118.6-387.6) 0.54 

CD32 94.0 (0.3-282.2) 80.9 (17.2-167.4) 0.82 

CD42 21.7 (0-82.4) 21.8 (0.7-63.1) 1.0 

CD11c2 19.6 (0-92.1) 20.1 (0-75.5) 0.46 

CD1033 9.44 (0-85.1) 2.61 (0-34.3) 0.81 

Tumor Epithelial 

Compartment 

   

CD81 12.0 (0.6-53.5) 4.1 (0.1-14.0) 0.04* 

Granzyme B1 46.6 (0.6-248.8) 28.3 (0.1-402.6) 0.10 

CD681 0.7 (0-5.7) 3.1 (0.2-11.8) <0.01* 

PD-L11 15.6 (0-71.4) 29.2 (0.2-214.2) 0.15 

CD32 36.0 (0.1-120.0) 51.3 (1.0-236.1) 0.42 

CD42 12.6 (0-92.1) 24.9 (0-130.4) 0.23 

CD11c2 5.9 (0-24.7) 9.8 (0-39.0) 0.12 

CD1033 19.1 (0-73.9) 16.5 (0-50.8) 0.79 
1Multiplex panel 1; 2Multiplex panel 2; 3Multiplex panel 3; *p<0.05. Abbreviations: LS 

MSI-H, Lynch syndrome high microsatellite instability; MSS, microsatellite stable; EC 

endometrial cancer. 
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Figure 10. LS MSI-H ECs show no difference in stromal or tumoral PD-L1 

expression compared to MSS ECs.  

(A) Box plot representing the percentage of PD-L1+ cells within the peritumoral stroma 

compartment of LS MSI-H vs MSS EC.  (B) Box plot of the percentage of PD-L1+ cells 

within the tumor intraepithelial compartment of LS MSI-H vs MSS EC. The center line 

of each box plot represents the median.   Abbreviations: LS MSI-H, Lynch syndrome 

high microsatellite instability; MSS, microsatellite stable. 

 

 Colocalization staining is represented in Table 11.  There was a significantly higher 

mean number of activated CTLs (co-staining with CD8 and granzyme B) in LS MSI-H 

versus MSS cases with higher stromal and tumor epithelial positive cells as was seen in all 

MSI-H compared to matched MSS EC.  Within the tumoral epithelial compartment, there 

was a significant decrease in colocalization of PD-L1 and CD68 (PD-L1+ macrophages) in 

LS MSI-H compared to MSS EC, but no difference within the stroma.  Lastly, there was 

no difference seen in colocalization of PD-L1 and CD11c (PD-L1+ dendritic cells), CD3 

and CD4 (T helper cells), or CD103 and CD8 (CD8+ intraepithelial cells) in either of the 

compartments between LS MSI-H and MSS EC.  This was in contrast to the increased 

stromal PD-L1+ dendritic cells seen in the comparison of all MSI-H and sporadic MSI-H 

cases to matched MSS 
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Table 11. Comparison of co-staining positive cell counts between LS MSI-H and 

MSS ECs. 

 

Marker 

LS MSI-H EC 
Mean No of positive 

cells/mm2 (range) 

MSS EC 
Mean No of positive 

cells/mm2 (range) 

 

P value 

Colocalization in the Stromal 

Compartment 

   

CD81/Granzyme B1 68.4 (6.1-179.1) 21.4 (0.2-74.4) 0.01* 

PD-L11/CD681 4.1 (0-15.0) 7.5 (0-21.0) 0.06 

CD32/CD42 21.7 (0-82.3) 21.5 (0.7-61.8) 0.98 

PD-L12/CD11c2 7.4 (0-26.8) 6.2 (0-48.9) 0.56 

CD83/CD1033 7.45 (0-83.0) 1.68 (0-33.7) 0.73 

Colocalization in the Tumor 

Epithelial Compartment 

   

CD81/Granzyme B1 9.1 (0.3-53.5) 2.0 (0-6.9) 0.03* 

PD-L11/CD681 0.8 (0-5.0) 2.5 (0-12.0) 0.02* 

CD32/CD42 12.5 (0-47.5) 24.8 (0-130.3) 0.22 

PD-L12/CD11c2 1.2 (0-11.3) 0.1 (0-0.6) 0.23 

CD83/CD1033 4.0 (0-43.3) 0.6 (0-11.2) 0.58 
1Multiplex panel 1; 2Multiplex panel 2; 3Multiplex panel 3; *p<0.05. Abbreviations: LS 

MSI-H, Lynch syndrome high microsatellite instability; MSS, microsatellite stable; EC, 

endometrial cancer. 

 

 



 

53 

 

 

Figure 11. LS MSI-H ECs have increased activated CTLs compared to MSS ECs.  

(A) Box plots demonstrating the number of positive cells per mm2 of activated CTLs (co-

staining of CD8 and granzyme B), (B) PD-L1+ macrophages (co-staining of PD-L1 and 

CD68), and (C) PD-L1+ dendritic cells (co-staining of CD11c and PD-L1) in the 

peritumoral stroma. The center box plot line indicates the median positive cell count. *p 

value <0.05. Abbreviations: CTL, cytotoxic T lymphocyte; MSS, microsatellite stable; 

LS MSI-H, Lynch syndrome high microsatellite instability. 
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Chapter 4: Discussion 

As our understanding of the molecular and clinical heterogeneity of EC has grown, 

it is clear that a variety of therapeutic approaches will be required for successful outcomes 

both as upfront treatment and for recurrent/advanced cases.  While clinical trials of 

molecularly targeted single agents have shown disappointing results in EC, 

immunotherapy has emerged as a promising therapeutic option in multiple tumor types that 

previously had limited treatment options and poor overall prognosis (65, 66).  This 

immunologic tumor-directed response is thought to be activated by tumor-specific 

neoantigens that correlate with somatic mutational load and infiltration of CD8+ CTLs.  

This thesis sought to provide a detailed analysis of the immune microenvironment of MSI-

H EC and potential implications for response to immunotherapy.  Previous studies of the 

immune microenvironment in EC were limited and had not fully investigated sporadic 

MSI-H and LS MSI-H cases (56, 59).  These studies are critical to identifying therapeutic 

targets for advanced and recurrent EC given the limited treatment options should patients 

fail standard chemotherapy.  Currently, there are no targeted therapies in clinical use for 

molecular subsets of EC, but early studies of the immune microenvironment of MSI-H EC 

have suggested that these tumors may be more immunogenic and thus responsive to 

immunotherapy (56, 59).   

Analysis of TCGA uterine data suggested increased CTL activity in MSI-H 

compared to MSS EC.  This was shown through increased activation of the granzyme B 

pathway in MSI-H EC overall which leads to targeted cell apoptosis through CTL directed 

cytolytic activity.   Additionally, the more specific immune-related TCGA analysis 

identified upregulated mRNA levels of several T cell effector genes (CD8a, MICB, 
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CXCL9, and ICOS), that further supports at least an initial enhanced anti-tumoral response 

in MSI-H versus MSS EC.  

The comprehensive examination of the immune cell populations in MSI-H and 

MSS EC identified differences in the immune microenvironment of these two subtypes.  

MSI-H tumors had increased granzyme B+ staining cells and CTL activation within both 

the tumor epithelium and tumor associated stroma and increased Helper T cells in the 

stroma.   This suggests an immune mediated anti-tumor response in this subset of ECs. 

Stromal PD-L1 expression was also significantly increased in MSI-H EC and reflects 

immune response exhaustion and suppression.   Among all MSI-H cases, however, there 

was no significant difference in other T cell populations (CD3+, CD8+, and CD103+ 

intraepithelial T cells), CD68+ macrophages or CD11c+ dendritic cells when compared to 

MSS tumors.  

Sub-analysis of sporadic MSI-H EC also demonstrated a difference in the immune 

microenvironment compared to MSS tumors.  Sporadic MSI-H EC had increased CD3+, 

CD4+, and granzyme B+ cells in the stroma and tumor epithelium compared to MSS tumors 

reflecting an immune related response in these tumors.   Additionally, increased stromal 

and tumoral PD-L1 expression along with increased stromal PD-L1+ macrophages and PD-

L1+ dendritic cells was seen compared to MSS EC.   

Lastly, sub-analysis of LS MSI-H showed increased CTL activation compared to 

MSS EC.  This was demonstrated by increased stromal CD8+ cells, granzyme B+ cells, and 

activated CTLs in LS MI-H versus MSS EC.  CD8+ cells and activated CTLs were also 

increased in the tumor epithelial compartment in LS MSI-H versus MSS EC.  In contrast 

to the all MSI-H and sporadic MSI-H versus MSS analyses, LS MSI-H cases demonstrated 
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no difference in PD-L1+ staining in the stromal or tumor epithelial compartment compared 

to MSS EC.  Additionally, CD68+ cells were significantly reduced in the stromal and tumor 

epithelial compartments of LS MSI-H versus MSS tumors.   

Analysis of both immune cell markers and markers of immune response activity is 

needed to provide a complete view of the immune microenvironment.  Previously, studies 

in MSI-H and POLE ECs have found elevated levels of CD3+ and CD8+ infiltrating 

lymphocytes suggesting increased tumor immunogenicity in these subtypes (56, 59). 

Additionally, other studies have shown that CD103 expression enhances retention of T 

cells in the tumor epithelium and is also associated with polarization of cytolytic granules 

(47, 67).  This then primes the T cell for cytotoxic activity once antigen recognition has 

occurred.  Although our study did not show a difference in CD8+ or CD103+ cells between 

all MSI-H and MSS EC, there was a significant difference in granzyme B+ cells and 

activated CTLs as demonstrated by colocalization of CD8 and granzyme B.  This provides 

further evidence of a more active immune microenvironment in MSI-H EC, and suggests 

that the CTLs that are present are activated and capable of mounting an anti-tumor immune 

response.  Inevitability, however, such activation is followed by exhaustion and inhibition 

via immune checkpoint expression, such as PD-L1.  

While an overall characterization of immune cell types is informative, an 

understanding of expression patterns for specific markers is also important for improved 

immunotherapy studies and clinical trials.  PD-L1 expression on tumor versus stromal cells 

may have important implications for therapeutic response to anti-PD-L1 therapies, but 

expression varies among tumor types (41, 42).   Our study found low overall expression of 

tumoral PD-L1+ cells and no difference in expression between all MSI-H and MSS EC.  
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However, we did find elevated levels of stromal cell PD-L1 expression with a significant 

increase in both all MSI-H and sporadic MSI-H versus matched MSS EC.  Additionally, 

sporadic MSI-H also showed increased tumoral PD-L1 expression versus MSS EC. 

Although many studies have focused on tumor PD-L1 expression and its ability to predict 

response to anti-PD-1 and anti-PD-L1 therapy, its role as a biomarker remains unclear (41, 

42).  Further evaluation of PD-L1 expression among tumor types prior to treatment is 

needed, as well as, in responders and non-responders following immune checkpoint 

blockade therapy.     

To further define the stromal PD-L1 expressing cells in our study, colocalization 

analysis of PD-L1 with both CD68 (macrophages) and CD11c (dendritic cells) was 

conducted.  Overall there was no difference between all MSI-H and MSS EC in the number 

of CD68 or CD11c cells positive alone, but there was an increase in those co-expressing 

PD-L1 and CD11c (PD-L1+ dendritic cells).  The sporadic MSI-H sub-analysis also 

showed an elevated number of PD-L1+ macrophages and PD-L1+ dendritic cells compared 

to MSS EC, suggesting that both macrophages and dendritic cells may be key regulators 

of immune inhibition in the sporadic MSI-H EC microenvironment.  This finding along 

with the correlation of PD-L1 expression on CD163 myeloid cells in MSI-H colorectal 

cancers, seen in other studies, suggests an alternate mechanism for immune response 

inhibition in these tumors from direct tumor cell suppression.  Other immune checkpoints 

are also likely contributing to immune suppression, as suggested by increased LAG-3 gene 

mRNA levels in MSI-H tumors from our TCGA analysis. As therapies targeting these other 

immune cell populations and immune checkpoints (i.e. TAMs and LAG-3) are becoming 
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available, additional studies are needed to further characterize these populations in MSI-H 

EC in order to expand treatment options.  

Looking more closely at the sub-analysis of sporadic MSI-H EC, sporadic MSI-H 

tumors demonstrate both increased markers of immune cell infiltration and immune 

suppression compared to MSS EC.  MSI-H EC had increased CD3+, CD4+, and PD-L1+ 

staining cell populations in both the stromal and tumor epithelial compartments compared 

to matched MSS tumors.  From these findings we can conclude that sporadic MSI-H, 

compared to MSS ECs, have increased immune cell infiltration and subsequent suppression 

of the immune response through checkpoint activation.  These findings most closely mirror 

those found in the other MSI-H EC and colorectal microenvironment studies previously 

discussed, and suggest that sporadic MSI-H EC would respond favorably to single agent 

immune checkpoint blockade.   

The role of immune checkpoint expression in LS MSI-H ECs, on the other hand, is 

less clear. Sub-analysis of LS MSI-H EC demonstrated increased CD8+ and active CTLs 

in both the stroma and tumor epithelial compartments, but no difference in PD-L1 

expression when compared to matched MSS cases.  Similar to sporadic MSI-H versus MSS 

EC analysis, LS MSI-H EC also appears to promote an immunogenic microenvironment, 

but the same PD-L1 checkpoint expression was not seen.  We can speculate that other 

immune checkpoints such as CTLA-4, TIM-3 (T cell immunoglobulin and mucin-domain 

containing-3) or LAG-3 may play a larger role in this subtype.  Further studies specifically 

evaluating the expression of CTLA-4, TIM-3, LAG-3, and other immune checkpoints 

markers are needed to more clearly define immune checkpoint activity in these tumors, and 

to draw a more complete picture of the LS MSI-H immune microenvironment in EC. 
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Additionally, in some instances single agent immune checkpoint blockade is 

insufficient to overcome immune inhibition while combination therapy is able to target 

multiple immune checkpoint pathways (65, 68).  In melanoma, combination anti-CTLA-4 

and anti-PD-1 therapy has shown particular benefit in patients with PD-L1 negative tumors 

(65). Additionally, synergistic effects of combination immune checkpoint blocking agents 

have been shown in preclinical trials of combination anti-TIM-3 or anti-LAG-3 with anti-

PD-1. Such combination therapies may provide more clinical benefit in LS MSI-H EC than 

single agent immune checkpoint blockade (69, 70). Along with this, consideration of 

combination immunotherapy and traditional cytotoxic agents may further improve 

response rates.  In non-small cell lung cancer, preliminary phase I studies have shown 

activity and tolerability of combination of immune checkpoint blockade and 

chemotherapeutic agents (71, 72).   This may be of particular importance in LS MSI-H EC 

where there is suggestion that the immune checkpoint expression is less robust.  Here 

alternative immune checkpoint blockade or combination therapies are likely required.   

Overall, this study provides new insight into the immune microenvironment related 

to MSI status in EC.  It is the largest cohort assessing the immune microenvironment of 

MSI-H EC and the first to specifically investigate LS MSI-H EC cases.  This large cohort 

was also matched to reduce confounding factors that influence immune cell populations 

and immune marker status (matched according to histology, grade, stage, age at diagnosis 

and BMI).  There may, however, be some decrease in the overall differences of positive 

cell counts seen between MSI-H and MSS EC as MSS EC cases had higher rates of LVSI 

which is a known risk factor for disease recurrence.  In addition to this unique sample set, 
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immune microenvironment characterization was more powerful due to the use of 

multiplexed IHC coupled with digital imaging for quantitation and colocalization analysis.   

This study overcomes limitations observed in previous immune cell studies in EC, 

such as evaluation of limited high powered fields and inconsistent quantitation and scoring 

strategies.  Vectra imaging and inForm software provided computer automated random 

high power field selection and counting of positively stained cells, allowing for an 

objective and uniform assessment of immunohistochemical staining.  Traditionally, 

staining quantification by IHC is limited to a few high powered fields that are chosen based 

on areas of representative staining, and it is difficult to control for interpreter bias.  In 

contrast, the true random selection of up to 30 HPFs in our study provides a more global 

reflection of the immune microenvironment of the samples, and is less likely to be biased 

by areas of sparse or concentrated staining.   Furthermore, the identification of positive 

staining thresholds and computer quantification reduces inter- and intra-observer 

variability of positive cell counting.   

It is also important to recognize the limitations of this new imaging and quantitation 

methodology.  Despite improving the objectivity of IHC analysis in our study, some 

subjective measures are still used in the process of developing these methods, such as 

determination of positive signal thresholds and lack of 100% accuracy in identifying tumor 

and stroma compartments.  Importantly, these limitations in the analysis would not be 

skewed towards any one group and would not change the trends in the immune markers 

seen. While multiplexing IHC panels empower analysis of multiple markers on a single 

tissue section, this methodology is particularly sensitive to batch effects and must be 

considered in both study design and analysis.  Comparisons of markers between groups 
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must be confined to staining within a single batch (single panel), as demonstrated by the 

differences in PD-L1 and CD8 staining intensity among the panels.  There are multiple 

reasons that may contribute to difference in staining intensity.  Different temperatures used 

in antigen retrieval for the unique antibodies used in the different panels can impact antigen 

retrieval. Specifically, elevated temperatures used in multiplexing panel 1 may have 

enhanced antigen retrieval and staining intensity resulting in the increased intensity of PD-

L1 staining in panel 1.  Additionally, the IHC staining and processing of slides in this 

method is conducted manually.  As such, there is likely to be some slight variation between 

timing across batches in any one of the 8 steps, in particular the 5 steps that are repeated 

up to 4 times.  This points to the importance of ensuring that all slides are stained together 

and that comparisons can only be made within one batch.  In this specific case, the 

consistent trend in stromal PD-L1 expression does support a difference in PD-L1 

expression between MSI-H and MSS EC.  

This study could be further improved by adding analysis of POLE mutation status 

as this EC molecular subtype has been shown to have an even more immunogenic 

microenvironment than MSI-H EC (56, 59).  As these tumors tend to be MSS, the counts 

of immune cells and immune markers in the MSS group may have been elevated and 

resulted in a smaller overall difference in positive cell counts between the two groups.  

Despite this, stratifying patients by MSI status for consideration of immune checkpoint 

blockade is the most clinically feasible as patients with POLE mutations are much less 

likely to recur.  

In considering next steps to further evaluate efficacy of immunotherapy in the MSI-

H EC patient population, a phase 2 study evaluating response rates to immune checkpoint 
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blockade in patients with MSI-H and MSS EC is needed.  A potential study design was 

created in collaboration Dr. Amir Jazaeri and is depicted in Figure 12.   Briefly, such a 

study would include patients with advanced or recurrent EC that have failed initial standard 

chemotherapy.  Patients with MSI-H tumors would make up the first arm and those with 

MSS tumors the second arm.  Treatment would begin with a single agent anti-PD-1 or anti-

PD-L1 therapy.  Anti- CTLA-4 treatment would then be added for those that progressed or 

did not respond to single agent therapy, as combination anti-CTLA-4 and anti-PD-1 has 

previously shown improved responses to single agent therapy in other tumor types (65).   

This adaptive approach would help to maximize benefit from immune checkpoint blockade 

in the entire cohort by adding a second agent for non-responders, while also identifying 

those who do respond to a single agent to minimize adverse effects from an unnecessary 

second agent.   
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Figure 12. Proposed phase 2 trial to evaluate the role of immune checkpoint 

blockade in advanced and recurrent EC.   

Abbreviations: EC, endometrial cancer; MSI-H, high microsatellite instability; MSS; 

microsatellite stable; SD, stable disease. 
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Chapter 5: Conclusions 

In summary, this thesis shows that MSI-H ECs have an altered immune 

microenvironment compared to MSS ECs.  Specifically, MSI-H EC compared to MSS EC 

demonstrated increased activation of the granzyme B pathway and elevated levels of 

activated CTLs.  This increased cytolytic activity indicates an immune related anti-tumor 

response in MSI-H EC.  Additionally, increased stromal PD-L1 expression was seen in all 

MSI-H EC versus MSS and suggests a shift to a pro-tumorigenic microenvironment and 

suppression of the immune response. As our understanding of the spectrum of patients 

benefiting from immunotherapy and immune checkpoint blockade widens, these therapies 

may prove to be advantageous in EC patients. Our finding of increased activated CTLs and 

stromal PD-L1 expression in MSI-H ECs identifies patients with this molecular subset of 

tumors as candidates for treatment with immunotherapy.   
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