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Abstract 

CIRCUMVENTING CISPLATIN RESISTANCE IN OVARIAN CANCERS THROUGH 

REACTIVATION OF P53 BY NON-CROSS-RESISTANT PLATINUM ANALOGS 

Michelle Martinez-Rivera, B.S. 

Advisory Professor: Zahid H. Siddik, Ph.D. 

Cisplatin (cis-Pt), an anticancer platinum (Pt) drug, is used widely in the treatment of 

several malignancies, such as ovarian cancer. This Pt compound induces DNA 

damage, which results in p53 activation through post-translational modifications, mainly 

phosphorylation, culminating in execution of programmed cell-death. However, despite 

initial therapeutic response to cis-Pt, clinical resistance to this drug emerges leading to 

disease progression. Pt-resistance phenotypes have been associated with dysfunction 

in the p53 signaling pathway. Therefore, an effort to understand molecular mechanisms 

that prevent p53 activity and induce cis-Pt resistance becomes vital for designing Pt-

based drugs able to re-activate p53 and improve clinical management of ovarian cancer 

patients. To investigate the mechanism responsible for p53 inactivation, an ovarian 

tumor panel composed of cis-Pt sensitive (A2780) and resistant (2780CP/Cl-16, 

OVCAR-10, HEY and OVCA 433) cell lines was established, with two (2780CP/Cl-16 

and OVCAR-10) harboring missense mutant p53. The data obtained from these cancer 

cell lines have identified a correlation between cis-Pt resistance, regardless of p53 

status (wild-type vs. mutant), and lack of phosphorylation of p53 at Ser20 after cis-Pt 

treatment. Cis-Pt resistant cell lines expressed low levels of Chk2, a kinase responsible 

to phosphorylate p53 at Ser20, as a common feature. It was confirmed, through the 
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generation of Chk2 knock-out clones from A2780 cells using the CRISPR/Cas9 system, 

that Chk2 is essential for cis-Pt to mediate phosphorylation of p53 at Ser20 and induce 

p53 transcriptional activity. As validation of its critical role, Chk2 knock-out in these cells 

leads to cis-Pt resistance. However, cis-Pt resistance was circumvented by a number of 

cis-Pt analogs. In this regard, oxaliplatin (oxali-Pt), a non-cross-resistant Pt analog 

currently used in colon cancer but not ovarian cancer, was the most effective. 

Interestingly, the mechanism for oxali-Pt involved restoration of p53 phosphorylation at 

Ser20 through a Chk2 independent pathway. RPPA analysis has identified the MAPK 

pathway as a possible target of activation by oxali-Pt to phosphorylate p53 at Ser20. 

Systematic studies using targeted inhibitors have identified MEK1/2, but not ERK1/2, as 

a novel biomarker important to mediate p53-Ser20 phosphorylation by oxali-Pt. Overall, 

the findings gathered in this research project have revealed Ser20 of p53 as a key site 

that induces cis-Pt resistance when its phosphorylation is not induced by cis-Pt due to 

loss of Chk2, whereas its phosphorylation by oxali-Pt via MEK1/2 leads to 

circumvention of this resistance. This knowledge may lead to repurposing oxali-Pt in 

ovarian cancer and improve survival of cancer patients.  
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Chapter 1 

Introduction 
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Note: With the permission of Elsevier journal, parts of this Chapter were taken 

from my review publication Martinez-Rivera M and Siddik ZH, Resistance and gain-of-

resistance phenotypes in cancers harboring wild-type p53. Biochem.Pharmacol. 83: 

1049-1062, 2012. 

 

1.1. Ovarian Cancer: 

Ovarian cancer is a heterogeneous disease consisting of a variety of tumor types 

with different biological and clinical profiles that have been classified into three broad 

categories: epithelial cells, germ cells and stromal cells. Epithelial ovarian cancer 

constitutes over 90% of cases of ovarian cancer and it is further divided into five 

subtypes: serous (which is the most frequent subtype and comprises 70% of cases), 

endometrioid, clear cell, mucinous, Brenner tumors and undifferentiated tumors [1-3]. 

 

The International Federation of Gynecology and Obstetrics (FIGO) has defined 

the stages of ovarian cancer into stages I, II, III and IV (Table 1). In early stage cancer, 

the tumor is confined to the ovaries (stage I) or is limited to one or both ovaries with 

pelvic extension (stage II). Ovarian cancer patients within these stages exhibit a 

satisfactory 5-year survival rate of over 90%. Unfortunately, about 80% of ovarian 

cancer patients are diagnosed at an advanced stage, stages III and IV, where the tumor 

has metastasized outside the pelvis. Thus, the 5-year survival rate drops below 30% [4]. 

As a consequence, ovarian cancer has become the leading cause of death from 

gynecological cancers among American women. In fact, statistical studies performed in 
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the United States reported that in 2014 about 21,980 women were afflicted with ovarian 

cancer from which 14,270 cases resulted in death [5].  

 

The current treatment for advanced ovarian carcinoma involves cytoreductive 

surgery in order to remove the bulk of the tumor. Since most patients cannot be cured 

by surgery alone due to residual microscopic and macroscopic peritoneal malignant 

cells, ovarian cancer patients following surgery are administered a combination of 

platinum (Pt) chemotherapy, involving primarily cisplatin (cis-Pt) or carboplatin, with 

taxanes. At the beginning of treatment, patients exhibit a satisfactory response, 

however, about 80% of patients eventually develop resistance to treatment leading to 

the death of the patient [6;7].   

 

Pt chemotherapy has remained the first-line treatment in the fight against ovarian 

cancer for almost 40 years, yet, the survival rate of women with ovarian cancer has not 

improved due to the development of resistance. Therefore, to advance Pt-based 

therapy and enhance ovarian cancer patient responses in the clinic, studies that identify 

novel therapeutic targets which contribute to Pt resistance and the development of new 

and effective non-cross-resistant Pt analogs are pertinent [8].  
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Table 1. Staging System for Ovarian Carcinoma 

Stage Description 

I Growth limited to the ovaries 

A One ovary; no ascites; capsule intact; no tumor 
on external surface 

 B Two ovaries; no ascites; capsule intact; no tumor 
on external surface 

 C One or both ovaries with: surface tumor; ruptured 
capsule; or ascites or peritoneal washings with 
malignant cells  

 

       II Pelvic extension 

A Involvement of uterus and/or tubes 

B Involvement of other pelvic tissues 

C IIA or IIB with factors as in IC 

       III Peritoneal implants outside pelvis and/or positive 
retroperitoneal or inguinal nodes 

 A Grossly limited to true pelvis; negative nodes; 
microscopic seeding of abdominal peritoneum 

 B Implants of abdominal peritoneum 2 cm or less; 
nodes negative 

 C Abdominal implants greater than 2 cm and/or 
positive retroperitoneal or inguinal nodes 

 
 

      

IV Distant metastasis 

 

 

 

 

 

 

 

 

Table is taken with permission from Bukowski RM, Ozols RF, and Markman M, The 

management of recurrent ovarian cancer. Seminars in Oncology 34: S1-S15, 2007. 

License number: 3794370291161  
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1.2. Cisplatin:  

 

1.2.1. Discovery of cisplatin:  

Cis-Pt has been used consistently in the treatment of ovarian cancer. It was 

discovered accidentally by Dr. Barnett Rosenberg in the 1960s, while investigating the 

role of electrical currents on Escherichia coli (E. coli) bacterial cell growth. He observed 

that the shape of E. coli cells, growing in a buffer of ammonium chloride under 

administered current through Pt electrodes immersed in the buffer, changed from its 

classical sausage or rod shape to an elongated filamentous shape. It was eventually 

determined that the change in shapes was due to inhibition of cellular division triggered 

by Pt leached from the Pt electrodes. After much investigation, one of the Pt species 

was identified as cis-[PtCl2(NH3)2] (cis-Pt) [9-11]. These findings led to the hypothesis 

that cis-Pt could inhibit the proliferation of rapidly dividing cancer cells. Therefore, the 

anticancer activity of cis-Pt was tested in mice where its potent activity promoted large 

solid tumors to disappear and even after 6 months the recurrence of tumors was not 

seen [12;13]. Thus, almost 40 years ago cis-Pt entered clinical trials and in 1978 it was 

approved by the Food and Drug Administration (FDA); becoming the first Pt drug to be 

used in the treatment against cancer. Cis-Pt has been used as first-line therapy for 

several cancers, including testicular, ovarian, cervical, head and neck, small-cell lung, 

bladder, melanoma and lymphoma cancers [14]. 
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1.2.2. Mode of action of cisplatin:  

Cis-Pt is a neutral, square planar molecule that exists primarily in its inactive 

state as cis-[Pt(Cl)2(NH3)2]. For activity, it must undergo aquation reaction by 

displacement of chloride (Cl) ligands bound to Pt with water molecules, which impart a 

positive charge to make the molecule reactive toward negatively charged centers and 

form irreversible covalent links. When administered intravenously to the patient, cis-Pt 

encounters a high Cl concentration (~100 mM) in the blood plasma. This high Cl 

concentration limits aquation reaction and maintains cis-Pt primarily in its inactive state 

[15]. Even then, studies indicate that after one day of cis-Pt administration, 65-98% of 

the Pt drug is bound to plasma proteins [16;17]. Once the remaining inactive cis-Pt has 

reached tumor cells, it can cross the cell membrane either by passive diffusion or active 

transport via cooper (Cu)-transporting (CTR) transmembrane proteins. Inside the cell, 

the Cl concentration decreases substantially (~2-30 mM), allowing displacement of Cl 

ligand by water molecule to yield the activated form of cis-Pt (Figure 1) [15].   

 

The positively charged reactive cis-Pt, [PtCl(H2O)(NH3)2]
+, can be subjected to a 

variety of attacks by nucleophilic centers in nucleic acids and proteins. Studies have 

identified DNA to be the primary biological target of the activated cis-Pt, which mainly 

reacts with the N7 position of guanine (G) and adenine (A) purine bases to form the 

monoadduct complex [PtCl(G/A-DNA)(NH3)2]
+ [18]. The subsequent dissociation of the 

second Cl ligand allows the conversion of cis-Pt monoadducts to bifunctional interstrand 

and intrastrand DNA crosslinks. DNA damage produced by cis-Pt is present as 

monoadducts (9%), intrastrand cross-links (60% on dGG and 30% on dAG) and 
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interstrand cross-links (1%). These lesions can cause local distortions (unwinding and 

bending) in the DNA, which is capable of blocking DNA replication and transcription and 

leads to the activation of signaling events that lead to apoptosis [19]. 

 

The signaling pathway cascade triggered by cis-Pt-induced DNA damage 

initiates with the recognition of distortions from DNA adducts by distortion-specific DNA 

damage sensor proteins, which include the mismatch repair (MMR) proteins human 

mutL homolog 1 (hMLH1) and human mutS homolog 2 (hMSH2), the high-mobility 

group HMG1 and HMG2 proteins, the upstream binding transcription factor RNA 

polymerase I (UBTF) and the TATA binding protein (TBP). These DNA damage sensor 

proteins play a crucial role to activate transducer kinases. Some of the most relevant 

kinases implicated in this process are the ataxia telangiectasia and Rad3-related protein 

(ATR), the checkpoint kinase 1 and 2 (CHK1 and CHK2) and the mitogen-activated 

protein kinase (MAPK) family. Transducer kinases in turn drive the stabilization and 

activation of the most critical effector protein, the transcription factor p53, which is 

responsible to execute cis-Pt’s anticancer effects by inducing programmed cell death 

(apoptosis) [20]. 

 

The dependency of cis-Pt on the p53 pathway is best illustrated in testicular germ 

cell tumors (TGCT). TGCT is one of the few solid tumors in which the incidence of wild-

type p53 is nearly 100% and treatment of patients with cis-Pt in advanced stages is 

highly curative, as indicated by the 5-year survival rate of 90% [21]. The importance of 

p53 in mediating cis-Pt cytotoxicity is illustrated by the significant loss in sensitivity 
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towards cis-Pt treatment after siRNA-mediated silencing of p53 in TGCT cells [22]. In 

addition, gene-expression array profiling studies in TGCT cells identified 54% of the 

upregulated genes in response to cis-Pt treatment as p53 pro-apoptotic downstream 

targets and upregulation of such genes is prevented after p53 knock-down [23]. 
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Figure 1. Cisplatin mode of action 

 

A) Cis-Pt remains in its inactive state in the blood plasma due to the high Cl 

concentration (~100 mM). Once cis-Pt has reached its target cell, it can cross the cell 

membrane by passive diffusion or active transport via CTR1. B) Inside the cell, the 

low Cl concentration (~2-30 mM) allows the activation of cis-Pt by the replacement of 

the Cl ligand by water, creating a positively charged reactive cis-Pt species, 

[PtCl(H2O)(NH3)2]
+. C) The activated form of cis-Pt reacts with the N7 position of 

purine bases in chromosomal DNA. Cis-Pt-induced DNA damage triggers a signaling 

cascade leading to the activation of DNA damage sensor proteins, transducer 

kinases and effector proteins with the ultimate goal of inducing cell death.  
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1.3. Role of p53 in cancer and therapeutics: 

The tumor suppressor p53 protein, was first identified as an oncogene in 1989 

[24], is encoded by the TP53 gene located on chromosome 17p13.1 and is composed 

of several domains: (i) a DNA-binding domain, (ii) a transactivation domain, (iii) an 

oligomerization domain, (iv) a proline-rich domain and v) a C-terminal regulatory domain 

[25]. The p53 protein functions mainly as a transcriptional activator by binding to specific 

DNA sequences of target genes involved in a broad range of biological functions such 

as: cell cycle arrest, DNA repair, senescence, apoptosis and inhibition of angiogenesis 

[26]. Cellular levels of p53 are usually kept low because of its short half-life of ~20 

minutes. Degradation of p53 occurs mainly by binding to Mdm2, an E3 ligase that 

catalyzes monoubiquitination of p53 in the C-terminal domain and thereby targets it for 

proteasomal degradation [27;28]. A close homolog, Mdm4, can also regulate p53 

function by binding to its transactivation domain, but unlike Mdm2 it cannot directly 

ubiquitinate p53 [29]. However, Mdm2 and Mdm4 work together to promote p53 

degradation. 

 

Pt agents elicit a therapeutic response in part, through activation of p53 (Figure 

2). Activation of p53 is accomplished by post-translational modifications, including 

phosphorylation and dephosphorylation at ~23 distinct sites by a network of kinases 

[30;31]. Thus, under stress conditions, as may ensue after cis-Pt-induced DNA damage, 

specific kinases, such as ATM, ATR, Chk1 and Chk2, become activated. These kinases 

induce p53 phosphorylation, which allows p53 to dissociate from the Mdm2-Mdm4–p53 

complex. The resulting stabilization of p53 and its translocation to the nucleus enable 
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p53 to bind as a tetramer to specific DNA sequences and transactivate target genes 

[28;31;32]. This transactivation by p53 is critical for its cellular functions, which include 

arresting the cell cycle to permit DNA repair and, if the damage is too severe to be 

repaired, activating cell death pathways [33]. Although the p53 tumor suppressive 

signaling cascade paradoxically fails to prevent cancer from developing in the first 

place, it can still be activated in many cancer cells with DNA damaging drugs to induce 

an antitumor response [34;35]. However, the eventual failure of p53 to become 

activated in tumor cells during the course of chemotherapy is the most significant 

mechanism of drug resistance. This failure results from the loss of three of the most 

significant cellular pathways involved in antitumor response during chemotherapy: (i) 

induction of programmed cell death, (ii) induction of checkpoint response and cell cycle 

arrest and (iii) induction of permanent cell cycle arrest (senescence); these pathways 

normally contribute independently or collectively to final therapeutic outcomes in 

patients. A brief discussion of these processes is warranted to better appreciate p53-

dependent resistance mechanisms.  
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Figure 2. p53 transcriptional activity regulation 

 

A) Cellular levels of p53 are kept low due to its regulation by Mdm2/Mdm4. 

Degradation of p53 occurs mainly by binding to Mdm2. Mdm2 is responsible for p53 

ubiquitination in the C-terminal domain, targeting p53 for proteasomal degradation. 

B) When cells undergo stress, as mediated by cis-Pt-induced DNA damage, specific 

kinases phosphorylate p53, allowing p53 stabilization and activation. C) Activated 

p53 translocates to the nucleus, where it functions as a transcriptional factor by 

binding as a tetramer to specific DNA sequences and inducing the transcription of 

genes involved in apoptosis, cell cycle arrest and senescence.  
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1.3.1. Induction of apoptosis:  

Although p53 can mediate apoptosis in a transcription-dependent manner, it is 

also involved in transcription-independent apoptosis. In the transcription-dependent 

process, two distinct signaling pathways are involved: extrinsic and intrinsic pathways. 

In the extrinsic pathway, p53 induces the transcription of death receptors of the tumor 

necrosis factor receptor (TNFR) family: Fas, APO-1, CD95, DR5 and PERP. After a 

ligand binds to its specific receptor, the formation of the death-inducing signaling 

complex (DISC) is accomplished by recruitment of the Fas-associated death domain 

(FADD) and caspase-8 and -10, leading to the activation of the effector caspases (e.g. 

caspase-3 and -7) and resultant DNA fragmentation as a hallmark of apoptosis [36].  

 

In contrast, the intrinsic pathway is activated through a DNA damage mechanism 

that involves mitochondrial apoptotic events, which are regulated largely by the Bcl-2 

family of proteins. Upon stabilization and activation, p53 translocates to the nucleus 

where it transactivates the pro-apoptotic genes Bax, Noxa, PUMA and Bid [37]. Of 

these, Bax is the most important pro-apoptotic gene to be induced by p53, but its 

translocation and functional multimerization depend on other proapoptotic family 

members [38]. Bax can either homo-multimerize or hetero-multimerize with Bak in the 

outer mitochondrial membrane and thereby induce the release of cytochrome c, 

Smac/DIABLO and apoptosis-inducing factor (AIF) from the mitochondrial 

intermembrane space to the cytosol. The apoptosome complex, formed by cytochrome 

c, apoptotic protease-activating factor 1 (APAF-1), and pre-cleaved caspase-9, 

activates effector caspase-3, -6, and -7 to induce DNA fragmentation as the final stage 
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of apoptosis [39]. Interestingly, the intrinsic and extrinsic pathways are connected via 

Bid, which upon cleavage to t-Bid by caspase-8 translocates to the mitochondria and 

activates the proapoptotic proteins Bax and Bak [37].  

 

In the transcription-independent mechanism of apoptosis, some of the induced 

p53 translocates to the mitochondria and physically interacts with the anti-apoptotic 

proteins Bcl-xL and Bcl-2 to promote the pro-apoptotic homo- or hetero-multimerization 

between Bak and Bax [40;41]. This occurs rapidly and before p53 exhibits its 

transcriptional activity. In addition, p53 disrupts the inhibitory Bak–Mcl1 complex by 

binding to Bak directly [42]. Taken together, these actions of p53 permeabilize the outer 

mitochondrial membrane and allow the release of pro-apoptotic factors into the 

cytoplasm. DNA damaging drugs may activate both membrane death receptors and the 

endogenous mitochondrial damage pathway; because these apoptotic mechanisms are 

deregulated in cancers, proteins involved in these pathways are molecular targets of 

great interest for cancer therapy [43]. Indeed, most of the anticancer agents that act 

through DNA damage or stress-inducing mechanisms require p53 to exhibit the 

apoptotic phenotype [44].  

 

1.3.2. Induction of checkpoint response and cell cycle arrest:  

DNA damage promoted by Pt agents can also result in the inhibition of cyclin-

dependent kinase (Cdk) activities, thereby impacting cell cycle kinetics. More 

specifically, inhibition of distinct Cdk/cyclin complexes that are present throughout the 

cell cycle prevents or slows G1/S transition, S phase progression, G2/M transition, or all 
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three [45;46]. Although many of the Cdks can be inhibited by members of the Cip/Kip 

family members of Cdk inhibitors (p21, p27, and p57), p21 as a critical target of p53 is 

the most significant for inhibiting G1-phase Cdk4/cyclin D and Cdk2/cyclin E. This 

significance is reflected in the fact that p21 deletion alone can prevent G1-phase arrest 

[46-48], whereas other mechanisms exist to inhibit S- and G2-phase Cdk activities [47]. 

Indeed, DNA damaging agents can induce S- and G2-phase arrest even if p53 function 

is not present [49]. Cell cycle arrest is considered a critical step to allow DNA repair and 

cell survival, but if repair fails then apoptosis is induced. Whether persistent p21-

dependent G1 arrest is actually a trigger for cell death is unclear. However, tumors 

retaining G1 checkpoint response appear to be more sensitive to therapeutic agents 

[50;51]. A strong positive correlation has been demonstrated between the ability of 

tumor cells to arrest in G1 and their sensitivity to Pt-based drugs in the National Cancer 

Institute (NCI) panel of 60 tumor cell lines [52]. This correlation is also consistent with 

the finding that mutant p53 tumor cells transfected with a p21 expression vector are 

sensitized to antitumor drugs [53;54]. In addition, small-molecule inhibitors of G1-phase 

Cdks not only arrest cells but also induce apoptosis [55;56]. Moreover, cells from p21 

knockout mice lack G1 checkpoint response [57], and because such mice develop 

tumors [58], the tumor suppressive function of p53 may be mediated in part through the 

downstream effects of p21 in checkpoint response.  

 

1.3.3. Induction of senescence:  

Cellular senescence is defined as a permanent cell cycle arrest that prevents cell 

immortalization and transformation to a genetically unstable phenotype [59]. Therefore, 
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senescence is identified as an additional tumor suppressive mechanism in benign or 

premalignant cancer lesions [60]. Senescent cells remain metabolically active but 

acquire distinct changes in morphology and physiology characterized by enlarged cell 

size, chromatin condensation, changes in gene expression and high levels of 

senescence associated β-galactosidase. The senescence phenotype occurs as a result 

of various forms of stress stimuli such as telomerase shortening, oncogenic stimuli, 

ionizing radiation and DNA damaging agents [61]. Not surprisingly, p53 is the pivotal 

player in regulating replicative as well as premature (stress-induced) senescence. In 

line with this evidence, tumor cells containing wild-type p53 are more likely to undergo 

senescence in response to chemotherapy [62]. Stress-induced senescence is driven via 

the ATM/ATR-Chk2/Chk1-p53 pathway, with the involvement of several p53-dependent 

downstream molecular markers, such as p21, PML, PAI-1 and DEC1 [62]. Of these, p21 

is the seminal controller of the senescence program. In this respect, p21-dependent G1 

arrest in senescence is similar to that after checkpoint response, but the significant 

difference is that activation of the senescence program requires prolonged p53-

dependent expression of p21, whereas the checkpoint response pathway requires a 

relatively transient transactivation of p21 by p53. Despite this difference, premature 

senescence, like apoptosis and G1 checkpoint response, can significantly contribute to 

the antitumor effects mediated by p53 with a variety of anticancer agents. Although 

apoptosis may have greater relevance in cancer chemotherapy, p53-dependent 

senescence may provide an important anti-proliferative option in cancer cells that have 

lost their ability to undergo p53-dependent apoptosis [63-67].  
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1.4. Mechanisms leading to cisplatin resistance from failure of p53 activity: 

As previously discussed, induction of cell death by cis-Pt requires (i) the 

recognition of DNA damage, (ii) activation of transducer kinases, (iii) stabilization and 

activation of p53 via post-translational modifications, (iv) activation of downstream p53-

dependent transcription of pro-apoptotic genes such as Bax, Noxa, p53 upregulated 

modulator of apoptosis (PUMA) and Bid, and finally (v) execution of cytotoxic programs. 

Studies have highlighted the importance of Bax in apoptosis and failure to increase Bax 

levels contributes to cis-Pt resistance. In addition, p53 transactivates target genes 

involved in cell cycle arrest and senescence, two processes that have an important role 

in mediating cis-Pt cytotoxicity. Therefore, p53 plays a pivotal role in mediating cis-Pt 

cell death, and thus, dysfunction in the p53 pathway has been associated with cis-Pt 

resistance [20]. Since p53 protein has a central role in facilitating the effects of cis-Pt by 

activating antiproliferative/pro-apoptotic pathways, it becomes a vulnerable target and 

tumor cells will select to attenuate p53 function leading to drug resistance and cell 

survival. The mechanisms that directly affect p53 function to induce drug resistance 

include failure of upstream pathways that stabilize and activate p53 through post-

translational modifications, mutation in the p53 protein or a combination of both 

mechanisms (Figure 3) [68].  
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Figure 3. Mechanisms leading to failure of p53 activity 

 

The mechanisms that directly affect p53 function to induce drug resistance include: 

failure of upstream pathways that stabilize and activate (1) wild-type and (2) mutant 

p53 (capable of retaining wild-type p53 function) through post-translational 

modifications, mainly phosphorylation, and (3) loss-of-function (LOF) and/or gain-of-

function (GOF) mutation in the p53 protein.  
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1.4.1. Significance of phosphorylation in post-translational modifications of p53:  

Stabilization and activation of p53 is governed by covalent post-translational 

modifications, such as phosphorylation, ubiquitination, acetylation, methylation, 

SUMOylation, neddylation, glycosylation and ribosylation [69;70]. A total of ~50 sites on 

p53 are now known to be subject to modifications after a stress stimulus [71]. The N-

terminus is modified primarily by phosphorylation, whereas the C-terminus can be 

targeted by a variety of modifications, including phosphorylation [69]. Although an 

optimal combination of post-translational modifications is required for maximal p53 

function, the antitumor effects of DNA damaging agents such as cis-Pt are dominantly 

governed by phosphorylation events [72;73]. There are ~23 possible sites on p53 that 

can be phosphorylated and each site can be targeted by multiple kinases, suggesting 

possible redundancy [31]. However, it is likely that a specific antitumor agent only 

activates an individual kinase for each of the several sites targeted for phosphorylation. 

As a result, a DNA damaging agent produces a unique signature of p53-phosphorylated 

sites that induces p53 to adopt a specific structural conformation and thereby 

transactivate a select set of downstream target genes specific for that agent. Therefore, 

deregulation of any critical kinase will alter the unique p53 phosphorylation signature, 

impede gene transactivation, and attenuate antitumor response.  

 

Of the multiple p53 phosphorylation sites that have been associated with its 

antiproliferative and apoptotic functions, Ser15 and Ser20 in the DNA-binding domain at 

the N-terminus are recognized as the most critical and are therefore the most 

extensively studied (Figure 4) [31;74]. Studies demonstrate that phosphorylation at 
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these sites promote not only dissociation of p53 from Mdm2, as a prerequisite for p53 

stabilization, but also its transcriptional activity [71;75-77]. Moreover, several studies 

suggest that the effects of phosphorylation at these sites may be cooperative, 

particularly because Ser20 phosphorylation is strongly dependent on the priming 

phosphorylation at Ser15 [78-80]. Indeed, dual phosphorylation at Ser20 with Ser15 is 

sufficient to induce apoptosis in glioma cells harboring wild-type p53 [81;82]. Further 

support is provided by studies in transgenic mice where mutations induced by replacing 

both Ser15 and Ser20 with alanine produced a more severe phenotype than a single 

mutation at either site, as evidenced by loss in apoptotic capacity, defects in replicative 

senescence, and latency in tumor appearance [69].  
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Figure 4. p53 post-translational modifications 

 

There are ~23 possible sites on p53 that can be phosphorylated. Each 

phosphorylation site can be targeted by multiple kinases and a single kinase can 

target multiple phosphorylation sites. From the therapeutic point of view, such 

redundancy may enable the phosphorylation of p53 at a common site by 

chemotherapeutic agents, with each agent activating the same or a different kinase 

targeting the common site.  

Adapted from Toledo F and Wahl GM, Regulating the p53 pathway: in vitro 

hypotheses, in vivo veritas. Nat.Rev.Cancer 6: 909-923, 2006. 

 

Figure 4. p53 post-translational modifications 

 

Specific residues are modified as shown, with phosphorylation (P) in orange, 

acetylation (A) in green, ubiquitylation (Ub) in purple, neddylation (N) in pink, 

methylation (M) in blue and sumoylation (SU) in brown. Proteins responsible for 

these modifications are shown in matching colors. There are ~23 possible sites on 

p53 that can be phosphorylated. Each phosphorylation site can be targeted by 

multiple kinases and a single kinase can target multiple phosphorylation sites. From 

the therapeutic point of view, such redundancy may enable the phosphorylation of 

p53 at a common site by chemotherapeutic agents, with each agent activating the 

same or a different kinase targeting the common site.  

Figure is taken with permission from Toledo F and Wahl GM, Regulating the p53 

pathway: in vitro hypotheses, in vivo veritas. Nat.Rev.Cancer 6: 909-923, 2006. 

License number: 3794361100557  
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1.4.2. Mutant p53: 

One major mechanism acquired by cancer cells to inactivate p53 is through 

mutations, as occurs in ~50% of all human cancers. The majority of somatic p53 

mutations are missense in nature, in which a point mutation is generated resulting in the 

expression of the full-length p53 protein with only a single amino acid substitution 

compared to its wild-type state. p53 missense mutations occur primarily in exons 4–9, 

which encode the DNA-binding domain [83]. Specific mutations in p53 are grouped into 

“contact” and “structural” classes, but both types impede the pro-apoptotic p53 

transactivation functions by preventing binding of p53 with target promoter sites on 

DNA. Thus, “contact” mutations are located at amino acid positions in p53 that normally 

make direct contact with DNA and will disrupt promoter binding without necessarily 

altering p53 conformation. In contrast, “structural” mutations are located at amino acid 

positions in p53 that do not make direct contact with DNA and will induce a p53 

configuration that is unable to bind to the specific DNA sites [84;85]. Nevertheless, both 

type of p53 mutations are sufficient to cause LOF of p53; altering the response of 

tumors to a wide range of clinical treatment regimens, including cis-Pt [29;86].  

 

The spectrum of mutations in TP53 is diverse. However, there are several 

frequent mutations in p53, denoted as “hotspot” mutations, such as R175, G245, R248, 

R249, R273 and R282. These “hotspot” mutations may not only confer loss of p53 

functions but can also induce novel functions, leading to the so-called p53 GOF 

phenotype [95]. Evidence suggests that p53 GOF mutant activity includes 1) inactivation 

of transcriptional factors that have an important role in the cell death pathway (i.e. p63 
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and p73) and/or 2) transcriptional activation or repression of genes whose expression is 

not normally regulated by wild-type p53 (BFGF, EGFR, HSP70 and C-Myc). In general, 

mutant p53 directly or indirectly impacts the transcriptional regulation of genes that 

mediate proliferation, metastasis and survival of tumor cells [87-90]. From the 

perspective of therapeutic response, it is clear that GOF mutations in p53 will inhibit 

both anti-proliferative and pro-apoptotic pathways, and, thus, induce resistance. 

 

1.5. The role of TP53 gene status in response to platinum treatment in ovarian 

cancer: 

Several clinical studies have examined the role of TP53 gene status in patient 

survival and the development of chemoresistance in ovarian cancer, and have 

concluded that the prognostic value of this tumor suppressor is somewhat conflicting. 

This conclusion stems from clinical observations in ovarian cancers in which therapeutic 

resistance in both mutant and wild-type p53 cancers is obtained. For instance, in a 

clinical study using cis-Pt treatment, it was found that cis-Pt induced a response in 46% 

of the patients in the wild-type p53 group and in a similar percentage (37%) of patients 

in the mutant p53 group [91]. Other studies with the Pt/paclitaxel combination have 

demonstrated that responses in the mutant p53 group are in fact significantly greater 

(wild-type, 47%; mutant, 86%) [92]. However, another similar clinical study with the 

Pt/paclitaxel combination demonstrated, in direct contrast, that responses in the wild-

type p53 group were significantly greater (wild-type, 90.0%; mutant, 60.8%) [93]. 

Recently, The Cancer Genome Atlas (TCGA) project has identified TP53 as the most 

commonly mutated gene in high grade serous ovarian carcinoma (HGSOC), exhibiting a 
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p53 mutation rate of 86% [94]. Furthermore, the survival curve in relation with TP53 

status in HGSOC patients generated from data extracted from TCGA indicates that 

there is no significant difference between patients stratified according to wild-type 

(34.4%) or mutant (39.9%) p53 (Figure 5). These reports provide evidence that TP53 

status is not a reliable marker to predict chemotherapeutic outcome in ovarian cancer 

patients. 

 

The discrepancy seen in the role of TP53 gene status in patient survival could be 

due to 1) inadequate methods to detect p53 gene status, 2) insufficient characterization 

of TP53 mutations and/or 3) loss of p53 post-translational activation.  

 

1) Inadequate methods to detect p53 gene status :  

Some studies have determined TP53 mutation by sequencing only partial 

segments of the gene, which may result in omitting the identification of possible 

mutations in the non-sequenced areas, thus, generating false negative results. Another 

method employed to detect mutant p53 is immunohistochemistry (IHC) staining. Mutant 

p53 status is indicated when IHC staining indicates high cellular levels of p53, since 

mutant p53 can escape proteasomal degradation by Mdm2/Mdm4 complex, resulting in 

an increased p53 half-life and hyper-stabilization. In contrast, identification of wild-type 

p53 is suggested when IHC staining shows low expression levels of p53 since it is 

tightly regulated by Mdm2/Mdm4 complex, as discussed in Section 1.3. However, 

mutant p53 in tumors may also exist at lower levels and, conversely, wild-type p53 may 

present at higher levels. Therefore, the IHC staining method has the potential to 
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produce both false negative and false positive results [95-97], indicating that this is not 

ta good method to detect muatations.  

 

2) Insufficient characterization of TP53 mutations:  

 A detailed study evaluating p53 transcriptional activity in 2,314 distinct p53 

mutants, representing all possible p53 missense mutations, revealed that only 9.6% of 

p53 mutants exhibited no activity, 26.5% of p53 mutants had partial activity, whereas 

63.9% of p53 mutants retained p53 activity comparable with that of wild-type p53 [98]. 

These results clearly demonstrate that not all p53 mutants are inactivating or 

dysfunctional and, therefore, classification of p53 status goes beyond the typical and 

simplistic categories of wild-type vs. mutant. Instead, TP53 mutations should be 

categorized based on their functional activity: 1) functional, 2) LOF or 3) GOF. Thus, 

extensive research should be conducted to study the intrinsic biological behavior of 

each p53 mutant in order to predict patient response to chemotherapy, to identify 

common signaling pathways leading to chemoresistance and to better design anti-

cancer drugs that can restore dysfunctional mutant p53 activity to one capable of 

promoting tumor drug response [83].  

 

3) Loss of p53 post-translational activation:  

One post-translational modification event playing an essential role in p53 

response to chemotherapeutic treatment is phosphorylation of p53. It has been shown 

that wild-type p53 stabilization and activation, in response to DNA damaging agents, is 

regulated by a series of phosphorylation events of numerous serine and threonine 



26 
 

residues within its N- and C-terminal regions [31]. Ser15 and Ser20 are two of the most 

critical phosphorylation sites at the N-terminus region on p53 that are associated with 

enhancing wild-type p53 stabilization, transcriptional activity, anti-proliferative and 

apoptotic functions. Therefore, deregulation in the ability of Pt compounds to induce p53 

phosphorylation may jeopardize p53 transcriptional activity and lead to a resistant 

phenotype. Indeed, studies have shown that downregulation of Chk2, a kinase reported 

to phosphorylate p53 at Ser20 after cis-Pt treatment, leads to resistance to some DNA 

damaging agents [99-101].  
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Figure 5. Effect of p53 status on survival curves for ovarian cancer patients 

 

In HGSOC patients the rate of p53 mutation is ∼86%. However, the 5-year survival 

curve of ovarian cancer patients shows that there is no significant improvement in the 

therapeutic outcome of patients containing wild-type (34.4 months) vs. mutant p53 

(39.9 months). 
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1.6. Other mechanisms inducing resistance to cisplatin:  

Tumors cells express multiple mechanisms of resistance that may include p53 

dysfunction, as discussed above. The combined mechanisms can severely limit the 

clinical anticancer activity of cis-Pt. Resistance of tumor cells towards cis-Pt can either 

be intrinsic or acquired over time after exposure to cis-Pt [102]. Even though the 

mechanisms of cis-Pt resistance are multifactorial, they can be classified into two major 

categories: 1) Mechanisms limiting the degree of cis-Pt-induced DNA damage and 2) 

Mechanisms that disrupt the cis-Pt-induced DNA damage signaling pathway that 

execute cell death. A brief discussion of the most relevant mechanisms involved in 

these two major categories that may coexist with the p53 dysfunctional state is provided 

in the following paragraphs.  

 

Mechanisms limiting the degree of cis-Pt-induced DNA damage: 

 

1) Decreased intracellular drug accumulation:  

This mechanism of cis-Pt resistance includes decreased uptake and/or increased 

efflux of cis-Pt. As previously discussed, cis-Pt can be actively transported inside the 

cell through several transmembrane transporters, including the Na+/K+-ATPase [103] 

and members of solute carrier (SLC) transporters (e.g., CTR) [104]. Therefore, any 

alteration in these transporters will reduce the intracellular uptake of cis-Pt. On the other 

hand, efflux of cis-Pt is mainly achieved through the ATP-dependent glutathione (GSH)-

conjugated efflux pump upon reaction of cis-Pt with GSH, a protein rich in sulfhydryl 

groups [105]. 
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In ovarian cancer, it has been shown that the P-type ATPase membrane proteins 

play an important role in mediating cis-Pt resistance. The Cu transporters ATP7A and 

ATP7B have been found to be highly expressed in cis-Pt resistant ovarian cancer cells 

when compared with cis-Pt sensitive cells and have been shown to be involved in 

intracellular cis-Pt trafficking and export [106-109]. In vivo combinational therapy 

experiments of ATP7B siRNA with cis-Pt effectively reduced tumor growth [110]. In 

addition, knock-down of ATP7B resulted in cis-Pt sensitivity and increased DNA-Pt 

adducts formation in cis-Pt-resistant cells [110]. The mechanism by which ATP7B 

inactivates cis-Pt is by directly interacting with cis-Pt through its Cu-binding domain at 

the NH2-terminal, which is rich in methionine [110]. Such interaction leads to cis-Pt 

resistance. Similarly, another P-type ATPase member, ATP11B, has been associated 

with cis-Pt resistance in ovarian cancer cells [111]. It has been shown that ATP11B 

expression correlates with higher tumor grade in human ovarian cancer samples and 

with cis-Pt resistance in human ovarian cancer cell lines. Furthermore, knock-down of 

ATP11B through siRNA in cis-Pt sensitive and resistant ovarian cancer cells in vitro and 

in mice leads to sensitivity towards cis-Pt [111]. In contrast, overexpression of ATP11B 

in ovarian cancer cells leads to cis-Pt resistance [111]. ATP11B shares a high homology 

in protein structure with ATP7A and ATP7B; however, unlike ATP7A and ATP7B, 

ATP11B does not contain a metal-binding motif at the amino terminus, which is required 

for Pt binding. Therefore, ATP11B does not inactivate cis-Pt through direct interaction. 

ATP11B major role is to translocate phospholipids from the outer and inner leaflet of 

membrane bilayers [112]. This major function of ATP11B along with cellular Pt content 

and cis-Pt efflux kinetics studies strongly suggest that ATP11B enhances the export of 
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cis-Pt from cells via the vesicular secretory pathway [111]. Taken together, these 

findings have identified ATP family proteins as important targets for overcoming cis-Pt 

resistance. 

 

2) Increased inactivation by thiol-containing molecules: 

Even though the primary mode of action of cis-Pt is to react with chromosomal 

DNA in order to induce DNA damage, cis-Pt can also react with thiol groups found in 

cysteine and methionine amino acids from sulfur donating proteins. GSH and 

metallothionein are rich in thiol groups whereby, an increase in GSH and 

metallothionein will decrease the availability of activated cis-Pt to react with DNA; thus, 

contributing to cis-Pt resistance [12;113].  

 

3) Increased DNA repair of cis-Pt-induced DNA damage:  

The first response from tumor cells towards cis-Pt-induced DNA damage is to 

attempt to repair such damage. The most abundant form of DNA crosslinks produced by 

cis-Pt are the intrastrand crosslinks, which are primarily repaired by the nucleotide 

excision repair (NER) pathway. Thus, upregulation of proteins involved in the NER 

pathway, such as Xeroderma Pigmentosum (XP) and excision repair cross-

complementation (ERCC) proteins, will enhance repair and prevent the capacity of cis-

Pt to induce persistent DNA damage and, thereby, cause cis-Pt resistance [102].  

 

 

 



31 
 

Mechanisms that disrupt cis-Pt-induced DNA damage signaling: 

 

1) Overexpression of human epidermal growth factor receptor 2 (HER-2) and the 

phosphatidylinositol-4,5-bisphosphate 3-kinase (PI3K)/Akt  pathway:  

Activation of the tyrosine kinase transmembrane receptor HER-2 leads to 

activation of the PI3K/Akt pathway. Akt activity leads to several antiapoptotic features by 

promoting phosphorylation of p21, which sequesters p21 in the cytoplasm and reduces 

its level in the nucleus [114], induces translocation of Mdm2 into the nucleus leading to 

degradation of the p53 tumor-suppressor protein [115;116] and inactivate the pro-

apoptotic proteins Bcl-2-associated death promoter (Bad) and procaspase-9 [117;118]. 

 

2) Role of Ras and MAPK pathway: 

Binding of extracellular stimuli, such as cytokines, growth factors or mitogens, to 

their respective receptors at the cell membrane leads to the formation of the coupling 

complex Shc/Grb2/SOS. The Shc/Grb2/SOS complex promotes a GDP to GTP 

exchange in Ras, thus, activating Ras [119]. The GTP-bound active Ras can then 

initiate a series of sequential phosphorylation events in the MAPK family comprised of 

three protein kinases [120]. First, RAS phosphorylates MAP kinase kinase kinase 

(MAPKKK), which phosphorylates MAP kinase kinase (MAPKK), which in turn 

phosphorylates MAP kinase (MAPK). Mammalian cells possess three well characterized 

MAPK subfamily members: the extracellular signal-regulated kinases (ERK), the c-Jun 

N-terminal kinases (JNK) and the p38 kinases [121]. These activated MAPKs target 

many other substrates, such as transcription factors, regulating cell proliferation, 



32 
 

differentiation, cell survival and apoptosis (Figure 6) [122]. In the ERK1/2 MAPK 

module, Raf phosphorylates MEK1/2 and MEK1/2 phosphorylates ERK1/2. This 

phosoho-ERK1/2 phosphorylates other proteins in the cytoplasm (e.g. p53) or nucleus 

(e.g. Elk1) [123]. 

 

All three MAPKs have been shown to become activated in tumor cells by cis-Pt 

treatment [124]. Activation of MAPKs can lead to either resistance or sensitivity towards 

cis-Pt. This cis-Pt driven sensitivity or resistance by MAPKs could depend on cell 

context or the extent of DNA damage promoted by cis-Pt. MAPK pathway leads to cis-

Pt resistance by activating transcription factors, such as c-Myc, c-Fos and c-Jun, which 

promote the induction of genes that increase thiol-containing molecules and/or 

upregulate DNA adduct repair pathways [125]. Alternatively, MAPK pathway leads to 

cis-Pt sensitivity by inducing post-translational modifications of p53 which are necessary 

for p53 to exert its transcriptional activity and induce cell death [126]. Indeed, it has 

been shown that ERK, JNK and p68 are able to phosphorylate p53 and some of these 

phosphorylation sites are depicted in Figure 4 [31]. However, it has been suggested 

that ERK activation plays the most critical role in inducing apoptosis after cis-Pt 

treatment [127]. Studies have shown that the RAF/MEK/ERK pathway drives apoptosis 

in a p53 dependent manner [128] and activation of ERK upon cis-Pt treatment has been 

shown to contribute to p53 phosphorylation at Serine-15 (Ser-15) in ovarian cancer 

[129]. In addition, inhibition of the MEK/ERK pathway leads to cis-Pt resistance in 

human cervical carcinoma cells  [130].   
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Figure 6. Ras/MAPK pathway 

 

Ras/MAPK signaling pathway originates by activation of Ras through GDP to GTP 

exchange promoted by the Shc/Grb2/SOS complex. Active Ras phosphorylates the 

MAPKKK, which phosphorylates MAPKK, which in turn phosphorylates MAPK. 

Activated MAPKs target many other substrates in the cytoplasm or nucleus leading to 

the regulation of cell proliferation, differentiation, cell survival and apoptosis. 
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1.7. Platinum analogs non-cross-resistant to cisplatin:  

Since the discovery of cis-Pt, Pt drugs have been used in the clinic for the 

treatment of a wide range of solid tumors. However, intrinsic and acquired resistance 

against approved Pt compounds remain a major obstacle for their effectiveness in 

cancer treatment. Therefore, extensive research has been employed in developing new 

Pt analogs that may circumvent such resistance and improve therapeutic outcome of 

patients. In order to achieve this goal, it is essential to take a close look at the basic 

structure of Pt compounds. Pt compounds have a square planar configuration with a 

general chemical structure of [Pt(X)2(L)2], in which X is an equatorial leaving (labile) 

group, L is an equatorial (stable) carrier amine ligand and the central metal atom is in a 

bivalent Pt (II) oxidation state [15]. Thus, cis-Pt is a simple structure with L= NH3 and X= 

Cl [131]. There are some modifications that can be performed, individually or as a 

group, for the synthesis of new promising Pt compounds: 1) substitution of X, L or both 

with alternate chemical groups, 2) creation of different Pt isomers (cis vs. trans) and 3) 

increasing the oxidation state of the Pt atom to tetravalent Pt(IV) [132]. A more detailed 

explanation of each group with their respective examples will be provided in the 

following paragraphs.   

 

1) Substitution of X, L or both with alternate chemical groups: 

Oxaliplatin (oxali-Pt), a third generation Pt derivative, is an excellent example 

where modifications to the basic structure of cis-Pt yields a different activity profile. The 

chemical structure of oxali-Pt has L= bidentate 1,2-diaminocyclohexane (DACH) and X= 

oxalate [131]. Even though oxali-Pt forms similar DNA damage as cis-Pt (described in 
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Section 1.2.2), oxali-Pt DNA damage reflects different distortion angle and degree of 

local unwinding in the formation of DNA-adducts due to its different carrier ligand. 

DACH-Pt-DNA adducts formed by oxali-Pt are bulkier, more hydrophobic, more 

effective at inhibiting DNA synthesis and more cytotoxic than cis-diammine-Pt-DNA 

adducts formed by cis-Pt. Moreover, due to differences in unwinding and bending 

angles of DNA between cis-Pt and oxali-Pt-DNA adducts, the specialized proteins 

recognizing these drug-specific adducts are different. For instance, it has been shown 

that the DNA damage induced by oxali-Pt is not recognized by HMGB and MMR 

proteins, whereas cis-Pt adduct recognition is highly dependent on these proteins. 

Thus, loss of these proteins result in resistance to cis-Pt but not to oxali-Pt [133]. As a 

consequence, DNA adducts formed by cis-Pt and oxali-Pt induce the activation of 

independent DNA damage signaling pathways, but which converge on p53-dependent 

apoptosis.  

 

In 2002, oxali-Pt, was approved by the FDA in the United States for the treatment 

of advanced colorectal cancer, a disease in which cis-Pt treatment has proven to be 

ineffective. In advanced ovarian cancer, oxali-Pt entered Phase II and Phase III clinical 

trials in patients that do not respond to the current first-line treatment [133]. Clinical 

results from these trials have shown synergistic effect of oxali-Pt cytotoxicity in 

combination with other chemotherapeutic agents, thus, making oxali-Pt an attractive 

compound to be considered for the treatment against ovarian cancer. In addition, oxali-

Pt has shown favorable cytotoxic and antitumor activity against tumor models that 
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demonstrate intrinsic and/or acquired cis-Pt resistance, such as in leukemia, colon, 

ovarian cancer, breast, melanoma, bladder and glioma cancers [134].  

 

2) Creation of different Pt isomers (cis vs. trans): 

Pt compounds with trans geometry (that is, where X or L in [Pt(X)2(L)2] is in a 

trans configuration) were initially proven to be inactive [135]. Pharmacokinetic studies 

have shown that transplatin (trans-Pt) is highly reactive, with 70% of the drug 

inactivated by conjugation with GSH after 4 hours incubation with red blood cells, 

whereas only 35% of cis-Pt-GSH conjugate was formed in the same time [136]. The 

rapid inactivation of trans-Pt by blood plasma components decreases the amount of 

trans-Pt available to react with DNA and induce programed cell death. As a 

consequence, the anticancer activity of trans-Pt is low. Recently, a new class of 

modified trans-platinum (II) compounds, with chemical structure trans-[Pt(X)2(L)2] where 

L= planar heterocyclic amine, have been reported to have novel activity profile against 

different cancer cell lines. In addition, a group of trans-planar heterocyclic amine Pt (II) 

compounds from the NCI were identified to be active against cis-Pt resistant cell lines, 

suggesting that these compounds may be able to overcome cis-Pt mechanisms of 

resistance [137]. One possible explanation could be in the difference of DNA adducts 

formed by these Pt compounds. While cis-Pt and oxali-Pt mainly generate DNA damage 

in the form of intrastrand crosslinks, trans-Pt compounds generate DNA interstrand 

cross-links between the N7-Guanine and N3-Cytosine bases. These two types of 

crosslinks are likely to activate intrinsic signaling pathway cascades, each leading to 

different biological outcomes [138]. However, further pharmacological and biological 
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characterization of these novel compounds should be conducted in order to identify their 

potential for clinical development. 

 

3) Changes on the oxidation state of the Pt atom: 

Modification of Pt (II) to Pt (IV) compounds is achieved by increasing the 

oxidation state of the Pt atom through the addition of two axial ligand groups, enabling 

the formation of the tetrahedral chemical structure: [Pt(AL)2(X)2(L)2], where AL= axial 

ligand. Axial ligands have been shown to play an essential role in the stability and 

lipophillicity of Pt compounds [139]. In terms of stability, addition of axial ligands 

significantly decrease the rate of reduction of Pt compounds in the bloodstream, thus, 

promoting a decrease in the participation of the Pt compound in unwanted side 

reactions, which leads to lower toxicity. Likewise, there will be an increase in the intact 

levels of the activated Pt compound reaching its target site at the DNA; enabling a 

higher cytotoxic activity. In addition, studies have revealed that different axial ligands 

have different reduction potentials. For example, the reduction potential for the most 

utilized axial ligands decreases as follows: chloro > carboxylate > hydroxyl. 

Incorporation of axial ligands may also lead to higher lipophilicity of some Pt (IV) 

complexes, which may improve the ability of the compound to cross the cell membrane 

through passive diffusion, leading to an increase in cellular uptake [140]. Finally, the 

activity of the Pt (IV) compound relies on its reduction to Pt (II), since it is the Pt (II) 

complex which confers the cytotoxic mechanism of action [141]. The rational design of 

Pt (IV) compounds from already proven active Pt (II) compounds may improve the 

compound’s stability, lipophilicity, enhancing its ability to circumvent cis-Pt resistance. 
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Indeed, the promising potential of Pt (IV) compounds can be appreciated by iproplatin, 

tetraplatin, and JM216, which are Pt (IV) compounds that have entered clinical trials 

[15;142].  
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1.8. Hypothesis and Specific Aims: 

Cis-Pt is used as the first-line treatment in ovarian cancer patients. Even though 

patients exhibit initial therapeutic response to this drug, they eventually develop clinical 

resistance to therapy, leading to disease progression, a 5-year survival rate below 30% 

and patient death. Therefore, in order to improve Pt-based therapy it is pertinent to 

identify novel mechanisms of Pt resistance that could then be used as rational 

therapeutic targets. Dysfunction of tumor-suppressor p53 has been identified to play a 

fundamental role in the development of Pt-resistant phenotypes. Attenuation of p53 

function is affected by failure of upstream pathways that induce p53 post-translational 

modifications, by mutation in the p53 protein or a combination of both. Recent data from 

TCGA in the form of survival curves for ovarian cancer patients show that status of p53 

does not impact response to Pt treatment. That is, wild-type p53 does not present a 

survival advantage to the patients. Therefore, I hypothesize that cisplatin fails to 

activate p53 in Pt resistance, but which can be overcome by structurally-distinct 

platinum analogs.  

 

The following specific aims, with the intended goals (Figure 7), were designed to test 

this hypothesis: 

 

Aim 1: To characterize the cytotoxic and biochemical/molecular pharmacologic 

properties of structurally-distinct platinum analogs in cisplatin-resistant ovarian 

tumor models 
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Aim 2: To determine the failure in p53 post-translational modifications as a 

causative factor in cisplatin resistance 

 

Aim 3: To define the novel mechanism of action of the structurally-distinct lead 

analog that circumvents cisplatin resistance 

 

The findings gathered in this research project will help reveal possible 

approaches for circumventing cis-Pt resistance and, thus, may lead to improvements in 

the survival of ovarian cancer patients, and perhaps also in other types of cancers 

relying on Pt therapy. 
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Figure 7. Research goals 

 

(1) Aim 1: To characterize the cytotoxic and biochemical/molecular pharmacologic 

properties of structurally-distinct platinum analogs in cis-Pt-resistant ovarian tumor 

models (2) Aim 2: To determine the failure in p53 post-translational modifications as 

a causative factor in cisp-Pt resistance (3) Aim 3: To define the novel mechanism of 

action of the structurally-distinct lead analog that circumvents cisp-Pt resistance 



42 
 

 

 

 

 

 

 

 

 

 

Chapter 2 

Materials and Methods 

 

 

 

 

 

 

 

 



43 
 

2.1. Synthesis of trans-[Pt(Py)2Cl2]: 

The procedure employed for the synthesis of trans-[Pt(Py)2Cl2] (trans-PyPt) was 

adapted from [143]. In a 50 mL round bottle, a magnetic stir bar, 500 mg of K2PtCl4 (s) 

(GFS Chemicals, Columbus, OH, USA) and 5 mL of water were added. The mixture 

was stirred at room temperature using a hot plate until K2PtCl4 (s) completely dissolved 

in water and became K2PtCl4 (l). In a separate 10 mL beaker, 700 µL of pyridine (0.978 

g/mL) (Sigma-Aldrich, St. Louis, MO, USA) were mixed with 5 mL of EtOH (Pharmco-

AAPER, Brookfield, CT, USA). The pyridine/EtOH mixture was added to the K2PtCl4 (l) 

solution and the reaction was stirred at 85ºC for 20 min. After 5 min, a ready precipitate 

corresponding to cis-[Pt(Py)2Cl2] (s) (cis-PyPt) was observed. At the end of the reaction, 

the solution turned clear, which indicated the formation of [Pt(Py)4Cl2] (l). The 

temperature of the reaction was then increased to 100ºC. The volume of the reaction 

was reduced through evaporation to 1 mL, at which point a bright yellow precipitate 

corresponding to trans-PyPt (s) began to form. In order to ensure maximal trans-PyPt 

precipitation, small aliquots of 500 µL of acetone (Fisher Chemical, Fair Lawn, NJ, USA) 

were added. Trans-PyPt was filtrated using a Büchner funnel, washed with water, EtOH 

and acetone three times and left drying under vacuum overnight. The percent yield 

achieved for trans-PyPt was 88.4%. 10 mg of trans-PyPt was submitted for independent 

elemental analysis (Galbraith Laboratories, Inc., Knoxville, TN, USA). A separate 25 mg 

of trans-PyPt was dissolved in 0.6 mL of N-N-Dimethylformamide-D7 (DMF) 

(Cambridge Isotope Laboratories, Inc., Andover, MA, USA) and was characterized by 

NMR (Nuclear Magnetic Resonance Facility, The University of Texas MD Anderson 

Cancer Center, Houston, TX, USA).  
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2.2. FAAS parameters:  

Pt content was measured by flameless atomic absorption spectrometry (FAAS) 

using the GTA 120 Graphite Tube Atomizer (Agilent Technologies, Mulgrave, Victoria, 

Australia). FAAS was set up with the following detection parameters: wavelength of 

265.9 nm, slit width of 0.5 nm, lamp current of 10.0 mA, graphite furnace tubes, argon 

as the inert gas to prevent oxidation of furnace tubes, and the ramp temperatures and 

time durations listed in Table 2.  

 

Table 2. FAAS parameters used to measure Pt metal 

Step 
Temperature 

(ºC) 
Time   
(s) 

Ar 
Flow 

(L/min) 

Pt 
Signal 
Read 

Signal 
Storage 

1 75 5.0 0.3 No No 

2 120 60.0 0.3 No No 

3 300 20.0 0.3 No No 

4 750 25.0 0.3 No No 

5 1200 25.0 0.3 No No 

6 1200 10.0 0.3 No No 

7 1200 2.0 0.0 No Yes 

8 2700 0.7 0.0 Yes Yes 

9 2700 3.0 0.0 Yes Yes 

10 2700 1.0 0.3 No Yes 

 

Calibration curve preparation: A calibration curve was generated using the following 

working standards: 100 µg/L, 200 µg/L, 400 µg/L, 800 µg/L, 1600 µg/L. Working 

standards were generated from the certified Pt standard stock solution containing 1,000 

µg/mL Pt in 5% HCl (Sigma-Aldrich, St. Louis, MO, USA). Serial dilutions from the Pt 

stock solution were made using 0.1 N HCl as follows: 1,000 µg/mL Pt → 10 µg/mL Pt → 

0.2 µg/mL Pt. 
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2.3. Preparation of stock platinum drug solutions: 

Cis-Pt, oxali-Pt, 1R,2R-diaminocyclohexane (trans-

diacetato)(dichloro)platinum(IV) (DAP) [144] and trans-PyPt (present study) were 

synthesized in our lab. Trans-Pt and cis-PyPt were purchased from Sigma-Aldrich (St. 

Louis, MO, USA). Solutions were made with the following solvents: 0.9% sodium 

chloride (Baxter, Deerfield, IL, USA) for cis-Pt, water for oxali-Pt and DAP and 100% 

DMF (OmniSolv, Gibbstown, NJ, USA) for trans-Pt, cis-PyPt and trans-PyPt. The 

general procedure for preparing the stock drug solutions was as follows: In a liquid 

scintillation vial, 10 mg of the Pt compound and 10 mL of the corresponding solvent 

were added. The mixture was sonicated in a water bath for 15 min in order to facilitate 

dissolution of the Pt compound. Undissolved particles were removed by filtration using a 

25 mm syringe filter with membrane pore size of 0.2 μm (Fisher Scientific, Fair Lawn, 

NJ, USA). Pt concentration was measured using FAAS (Section 2.2).  

 

2.4. Cell culture:  

A2780 cell line was derived from patient before treatment and is considered to be 

sensitive towards cis-Pt [145]. 2780CP/Cl-16 cell line was derived as a clone from 

A2780/C30 cells, which were made cis-Pt-resistant by intermittent exposure to cis-Pt 

[146].  A2780 and A2780/C30 cell lines were kindly provided by Dr. Thomas Hamilton 

(Fox Chase Cancer Center, Philadelphia, PA, USA). OVCAR-10, HEY and OVCA-433 

were established from cis-Pt resistant patients [49] and were obtained from Dr. Robert 

Bast (The University of Texas MD Anderson Cancer Center, Houston, TX, USA). 
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A2780, 2780CP/Cl-16, OVCAR-10 and HEY were maintained in RPMI 1640 (Sigma-

Aldrich, St. Louis, MO, USA) supplemented with 10% fetal bovine serum (FBS) (Sigma-

Aldrich, St. Louis, MO, USA) and antibiotics (100 μg/mL streptomycin and 100 units/mL 

penicillin). OVCA-433 was maintained in Minimum Essential Medium Eagle (MEM) with 

Earle’s salts and L-glutamine (Corning Cellgro, Manassas, VA, USA) containing 10% 

FBS, 1 mM sodium pyruvate (HyClone Laboratories, Inc., South Logan, UT), 1 mM 

nonessential amino acids (Corning Cellgro, Manassas, VA, USA) and antibiotics (100 

μg/mL streptomycin and 100 units/mL penicillin). All cell lines were grown in an 

atmosphere of 37ºC and 5% CO2. 

 

2.5. Cytotoxic evaluations:  

The procedure employed for cytotoxic evaluations was adapted from [49]. 

Ovarian cancer cells  growing in tissue culture dishes were trypsinized, diluted to 

appropriate concentrations and plated in 96-well plates in aliquots of 100 μL/well to 

achieve the following densities: A2780, 200 cells/well; 2780CP/Cl-16 and OVCAR-10, 

500 cells/well; HEY, 150 cells/well; and OVCA-433, 300 cells/well. Plates were 

incubated overnight at 37ºC. Aliquots of 100 μL/well from serial dilutions of Pt drugs in 

medium (Table 3) were added to cells. Plates were further incubated at 37ºC for 5 days. 

The final DMF concentration in wells containing trans-Pt, cis-PyPt and trans-PyPt, was 

0.125% (v/v). After drug exposure for 5 days, 50 μL of an MTT solution (3 mg/mL) 

(Acros Organics, Morris Plains, NJ, USA) was added to each well and plates were 

incubated for 4 hr. The medium was removed and purple MTT formazan crystals were 

dissolved in 100 μL of 100% DMSO (Fisher Scientific, Fair Lawn, NJ, USA). Plates were 



47 
 

shaken for 5-10 min and absorbance values were measured at 570 nm with a multiwell 

scanning spectrophotometer (Molecular Devices, Sunnyvale, CA, USA). IC50 values 

were determined from the sigmoidal plot of % cell survival vs. log of drug concentration 

using the Prism software (GraphPad v.6, La Jolla, CA, USA). 

 

Table 3.  Range of concentrations (μM) of Pt drugs and geometric factor 
used to assess cytotoxicity in the ovarian panel by MTT assay 

A2780 cis-Pt trans-Pt cis-PyPt trans-PyPt oxali-Pt DAP 

Geometric factor 2 3 3 3 2.5 2 

Treatment (μM) 
0.031-

8.0 
0.026-
57.5 

0.009-
20.0 

0.008-
17.0 

0.0005-
0.80 

0.006-
1.60 

2780CP/Cl-16 cis-Pt trans-Pt cis-PyPt trans-PyPt oxali-Pt DAP 

Geometric factor 2 3 3 3 2 2 

Treatment (μM) 
0.5-
128 

0.026-
57.5 

0.009-
20.0 

0.008-
17.0 

0.031-
8.0 

0.031-
8.0 

OVCAR-10 cis-Pt trans-Pt cis-PyPt trans-PyPt oxali-Pt DAP 

Geometric factor 2 3 3 3 2 2 

Treatment (μM) 
1.0-
256 

0.026-
57.5 

0.009-
20.0 

0.008-
17.0 

0.013-
3.2 

0.013-
3.2 

HEY cis-Pt trans-Pt cis-PyPt trans-PyPt oxali-Pt DAP 

Geometric factor 2 3 3 3 2 2 

Treatment (μM) 
0.25-
64.0 

0.026-
57.5 

0.009-
20.0 

0.008-
17.0 

0.05-
12.8 

0.05-
12.8 

OVCA-433 cis-Pt trans-Pt cis-PyPt trans-PyPt oxali-Pt DAP 

Geometric factor 2 3 3 3 2.5 2.5 

Treatment (μM) 
0.60-
160 

0.026-
57.5 

0.009-
20.0 

0.008-
17.0 

0.026-
39.2 

0.025-
38.5 

 

2.6. Cellular Pt drug uptake: 

Cellular Pt drug uptake measurement were made using the procedure from [147]. 

2 x 106 A2780 or 2 x 106 2780CP/Cl-16 cells were plated and incubated in 10-cm dishes 

at 37ºC overnight. A final concentration of 200 μM of the Pt drug was added to the cells, 
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and dishes were further incubated at 37ºC for 2 hr. Cells were then washed with ice cold 

phosphate buffered saline (PBS) three times, scraped with a rubber policeman and 

pelleted by centrifugation at 2,000 rpm at 4°C for 3 min in 15 mL Falcon tubes. The 

pellet was washed twice with 10 mL of ice cold PBS, resuspended in a final PBS 

volume of 300 µL and transferred to a 1.5 mL microfuge tube. For protein 

measurements, cell lysate was generated by taking 1/3 of the final PBS suspension 

(100 µL) and adding 25 µL of ice-cold extraction buffer (composed of 50 mM Tris HCl; 

pH 7.4) (Fisher Scientific, Fair Lawn, NJ, USA), 10 mM NaF (Sigma-Aldrich, St. Louis, 

MO, USA), 2 mM EDTA (Sigma-Aldrich, St. Louis, MO, USA), 150 mM NaCl (Fisher 

Scientific, Fair Lawn, NJ, USA)) with 0.5% NP-40 (Sigma-Aldrich, St. Louis, MO, USA), 

and 2 mM phosphatase inhibitors (Thermo Fisher Scientific, Rockford, IL). Cell lysates 

were centrifuged at 15,000 rpm at 4°C for 10 min and protein concentration was 

quantified by bicinchoninic acid (BCA) assay (Bio-Rad, Hercules, CA, USA). The 

remaining pellet, corresponding to 2/3 of the final PBS volume (200 µL), was digested 

with 25 µL of benzethonium hydroxide (Sigma-Aldrich, St. Louis, MO, USA) in a water 

bath at 55°C overnight. Finally, to the samples were added 100 µL of 0.3 N HCl (Sigma-

Aldrich, St. Louis, MO, USA). Samples were vortexed for 15 s and the Pt content 

determined by FAAS using the parameters described in Section 2.2. The Pt 

concentrations were normalized to protein levels, and drug uptake was expressed as ng 

Pt/mg protein/hr. 
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2.7. DNA extraction and purification: 

A pellet corresponding to 1 x 106 cells was washed with ice cold PBS. DNA from 

these pellets was extracted using the QIAamp® DNA Mini Kit (QIAGEN, Valencia, CA, 

USA) following the manufacturer’s protocol. Extracted DNA was quantified using the 

NanoDrop (Thermo Fisher Scientific, Wilmington, DE, USA). 

 

2.8. DNA Pt adducts: 

Measurements of DNA Pt adducts were made using the procedure previously 

reported [147]. 2 x 106 A2780 or 2 x 106 2780CP/Cl-16 cells were plated and incubated 

in 10-cm dishes at 37ºC overnight. A final concentration of 200 μM of the Pt drug was 

added to the cells and dishes were further incubated at 37ºC for 2 hr. Cells were 

washed with ice cold PBS three times, scrapped and pellet was obtained by 

centrifugation at 2,000 rpm at 4°C for 3 min in 15 mL Falcon tubes. The pellet was 

washed twice with 10 mL of ice cold PBS. DNA extraction, purification and quantification 

were performed as described in Section 2.7 and the Pt content determined by FAAS 

using the parameters described in Section 2.2. The Pt concentrations were normalized 

to DNA concentration, and Pt adducts were expressed as ng Pt/mg DNA/hr. 

 

2.9. Partition coefficient: 

The reported procedure [148] was followed to assess partition coefficient. Pt drug 

was diluted in 500 μL of water to a final concentration of 50 μM in 1.5 mL microfuge 
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tube. 500 μL of n-octanol (0.824 g/mL) (Acros Organics, Morris Plains, NJ, USA) were 

added to the drug solution and tubes were shaken mechanically for 15 min. Samples 

were then centrifuged at 15,000 rpm for 5 min. After centrifugation, two phases were 

obtained. The top phase corresponded to the organic phase (n-octanol) and the phase 

in the bottom to the aqueous phase (water). The phases were separated by transferring 

the organic phase into a new 1.5 mL microfuge tube. Pt content in each phase was 

analyzed by FAAS using the parameters described in Section 2.2. Partition coefficients 

were expressed as log(Partition Ratio), where Partition Ratio =
Ptn−octanol

Ptwater
. 

 

2.10. DNA interstrand crosslinks: 

The procedure for measurements of DNA interstrand crosslinks (ICLs) has been 

previously validated [149]. Briefly, to 13 x 100 mm borosilicate tubes containing 200 μL 

of Calf thymus DNA (70 μg/mL) (Sigma-Aldrich, St. Louis, MO, USA) a final 

concentration of 25 μM of Pt drug was added. For control calf thymus DNA was used 

with no Pt treatment. The reaction was allowed to take place at 37ºC for 30 min. 

Samples were divided in aliquots of equal volumes into two 13 x 100 mm borosilicate 

tubes. 400 μL of EB Buffer (20 mM potassium phosphate (Sigma-Aldrich, St. Louis, MO, 

USA), 2 mM EDTA (Sigma-Aldrich, St. Louis, MO, USA), pH 11.8) were added to all 

samples. One of the sample pairs was heated in a heating block at 100ºC for 10 min to 

denature the DNA and the other pair was left at room temperature. Both sample pairs 

were then placed in a water bath at 13ºC for 3 min, followed by the addition of 1 mL of 

EB buffer. The water bath temperature was increased to 15ºC and samples were further 
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incubated for 3 min. Finally, 1.5 mL of EtBr from a working stock of 2 μg/mL in EB Buffer 

was added to both samples. Fluorescence was measured at λexcitation=305 nm and 

λemission=590 nm using a fluorimeter (Perkin Elmer Norwalk, CT, USA). ICLs index was 

calculated using the following formula: 𝐼𝐶𝐿𝑠 𝑖𝑛𝑑𝑒𝑥 = (−𝑙𝑛𝑥𝑡𝑟𝑒𝑎𝑡𝑒𝑑) − (−𝑙𝑛𝑥𝑐𝑜𝑛𝑡𝑟𝑜𝑙); 

where 𝑥 =
(𝑓𝑙𝑢𝑜𝑟𝑒𝑠𝑐𝑒𝑛𝑐𝑒𝑛𝑜𝑛−ℎ𝑒𝑎𝑡𝑒𝑑)−(𝑓𝑙𝑢𝑜𝑟𝑒𝑠𝑐𝑒𝑛𝑐𝑒ℎ𝑒𝑎𝑡𝑒𝑑)

(𝑓𝑙𝑢𝑜𝑟𝑒𝑠𝑐𝑒𝑛𝑐𝑒𝑛𝑜𝑛−ℎ𝑒𝑎𝑡𝑒𝑑)
. 

  

2.11. Platination of FBS proteins: 

Reactivity of the Pt drug to FBS proteins was assessed as described previously 

[147]. A final concentration of 25 μM of Pt drug was added to 3 mL of 100% FBS in a 15 

mL Falcon tubes. The reaction was incubated at 37°C for 0, 5 min, 15 min, 30 min, 1 hr, 

2 hr, 4 hr and 6 hr. At each time point, a reaction tube (FBS + Pt drug) was taken and 

an aliquot of 200 µL was added to 800 µL of ice cold methanol (Fisher Chemical, Fair 

Lawn, NJ, USA) in a 1.5 mL microfuge tube. Samples were vortexed and left on ice for 

5 min in order to ensure maximal FBS precipitation. Precipitated FBS was removed by 

centrifugation at 15,000 rpm at 4°C for 5 min. The content of free (unreacted) Pt in the 

supernatant was analyzed by FAAS using the parameters described in Section 2.2. Pt 

drug half-lives were determined from the first order reaction equation, ln[A] =

ln[A]0 − kt, where t1/2 =
0.693

k
, using the GraphPad Prism software. 
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2.12. TP53 sequencing:  

DNA samples extracted from ovarian cancer cell lines following the procedure 

described in Section 2.7 were sent for TP53 sequencing to the Sequencing and 

Microarray Core Facility at The University of Texas MD Anderson Cancer Center, 

Houston, TX. 

 

2.13. Generation of stable knock-out clones: 

CRISPR/Cas-GFP vectors were purchased from Sigma-Aldrich, St. Louis, MO, 

USA and the gRNA designs were obtained from Sigma webpage: 

http://crispr.sigmainformatics.com/CrisprSearch. The selected designs to generate 

control (ctrl), TP53 (p53-/-) and CHEK2 (Chk2-/-) knock-out are as follow: TP53 

(HS0000019748, NM_001126117), CHEK2 (HS0000041294, NM_001005735) and 

universal negative control (CRISPR08). p53-/- was generated in A2780, 2780CP/Cl-16, 

OVCAR-10 and HEY cell lines. Chk2-/- was carried out in A2780 cells. 

 

A2780, 2780CP/Cl-16, OVCAR-10 and HEY cell lines at 70% confluence were 

transfected with 25 μg of CRISPR/Cas9-GFP plasmid using Lipofectamine 2000 (Life 

Technologies, Carlsbad, CA, USA) following the manufacturer’s recommended protocol. 

After 48 hr of transfection, GFP positive cells were sorted using the BD FACSAria™ cell 

sorter (BD Biosciences, Franklin Lakes, NJ, USA). GFP positive cells were collected 

and grown in T75 flask. At 80% confluence, cells were trypsinized and dilutions of 

aliquots of 100, 200, 300, 400 and 500 cells were grown in 10-cm dishes. Single clones 

http://crispr.sigmainformatics.com/CrisprSearch
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from the 10-cm dishes were selected, grown in 12-well plates and characterized through 

Western blot analysis (Section 2.15). Clones expressing the knock-out phenotype were 

selected for further experiments including cytotoxic evaluations (Section 2.5). The 

concentration range and the geometric constant used for concentration increments used 

in cytotoxic evaluations are listed in Table 4.  

 

Table 4.  Range of concentrations of Pt drugs (μM) and geometric 
factor used in concentration increases to assess cytotoxicity in p53-/-  
and Chk2-/- clones 

Clones: A2780-ctrl; A2780-p53-/-; A2780-Chk2-/- 

 
cis-Pt  oxali-Pt    

Geometric factor 2 2 

Treatment (μM) 0.078-20.0 0.039-10.0 

Clones: 2780CP/Cl-16-ctrl; 2780CP/Cl-16-p53-/- 
OVCAR-10-ctrl; OVCAR-10-p53-/- 

 
cis-Pt  oxali-Pt    

Geometric factor 2 2 

Treatment (μM) 0.586-150 0.078-20.0 

Clones: HEY-ctrl; HEY-p53-/- 

 cis-Pt  oxali-Pt    

Geometric factor 2 2 

Treatment (μM) 0.313-20.0 0.039-2.5 

 

2.14. Knock-in transfections: 

p53 Plasmids: 6 x 105 A2780-p53-/- cells were seeded into 6-well plates and were 

incubated overnight at 37ºC. Cells were transfected with pcDNA3 control (1 µg), p53 

wild-type (0.5 µg) or p53 mutant (1 µg p53-S20A  or 0.5 µg p53-S20D) expression 

vectors. The reagent Lipofectamine 2000 was used for the transfection process 

following the manufacturer’s recommended protocol. After 48 hr of transfection, cells 



54 
 

were collected and processed for Western blot analysis (Section 2.15). p53 plasmids 

were kindly provided by Dr. Mickey C.-T. Hu (Stanford University School of Medicine, 

Stanford, CA, USA) [150]. 

Chk2 Plasmid: 5 x 105 A2780-Chk2-/- cells were seeded into 6-well plates and 

incubated overnight at 37ºC. A2780-Chk2-/- cells were transfected with 2 µg of pEGFP-

C1 control or Chk2 expression vectors using Lipofectamine 2000 following the 

manufacturer’s recommended protocol. After 48 hr of transfection, cells were untreated 

or treated with Pt drugs (cis-Pt: 1µM; oxali-Pt 0.6 µM) for 24 hr, collected and processed 

for Western blot analysis (Section 2.15). For IC50 determinations, transfected cells were 

trypsinized after 24 hr of transfection, diluted to appropriate concentrations and aliquots 

of 100 μL/well containing 1200 cells were plated to 96-well plates. The previously 

described cytotoxic evaluations procedure in Section 2.5 was followed. Cells were 

exposed to the range of final Pt drug concentrations, shown in Table 5 for 3 days. Chk2 

plasmid was a gift from Dr. Junjie Chen and Dr. Kathy McGowan (The University of 

Texas MD Anderson Cancer Center, Houston, TX, USA). 

Table 5.  Concentration range (μM) for Pt drugs and geometric factor 
used in concentration increases for cytotoxic evaluations after Chk2-
ki in A2780-Chk2-/- 

Clones: A2780-Chk2-/--pEGFP-C1; 
A2780-Chk2-/--pEGFP-C1 Chk2 

 
cis-Pt  oxali-Pt    

Geometric factor 2 2 

Treatment (μM) 0.078-20.0 0.039-10.0 
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2.15. Western blot analysis: 

Ovarian cancer cells exposed to vehicle or Pt drugs were scraped and pelleted 

by centrifugation at 3,000 rpm and 4°C for 1 min. Cell pellets were resuspended in 50-

100 µL ice-cold extraction buffer (Section 2.6) containing 0.5% NP-40 and 2 mM 

phosphatase inhibitors, and sonicated. Cell lysates were centrifuged at 15,000 rpm at 

4°C for 10 min. Supernatants were isolated, quantified by BCA assay and processed for 

immunoblotting. 50 μg of protein extracts were run in a 4-15% gradient SDS-PAGE 

ready gel (Bio-Rad, Hercules, CA, USA), electrophoretically transferred for 1 hr at 300 

mA to a nitrocellulose membrane, blocked with 5% milk for 1 hr, probed with primary 

antibody overnight and secondary antibody for 1 hr (Section 2.29). Finally, blots were 

developed using the chemiluminescence detection kit Clarity™ Western ECL Substrate 

(Bio-Rad, Hercules, CA, USA). For densitometric analysis of the band, the X-ray films 

were scanned and the signals were analyzed using ImageJ software. 

 

2.16. Chk2 expression in cisplatin-resistant ovarian tumor cell lines:  

 7 x 105 A2780 cells, 8 x 105 2780CP/Cl-16 cells, 8 x 105 OVCAR-10 cells, 6 x 105 

HEY cells and 7 x 105 OVCA-433 cells were seeded into 6-well plates and were 

incubated overnight at 37ºC. After 24 hr of incubation, Western blot analysis, as 

described in Section 2.15, was performed.  
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2.17. Chk2 knock-down: 

5 x 105 A2780 cells were seeded into 6-well plates and were incubated overnight 

at 37ºC. A2780 cells were transfected with 100 nM of control siRNA (siCtrl) or Chk2 

siRNA (siChk2) using RNAimax (Life Technologies, Carlsbad, CA, USA) following the 

manufacturer’s recommended protocol. After 48 hr of transfection, cells were treated 

with Pt drugs (1 µM cis-Pt; 0.6 µM oxali-Pt) for 24 hr, then collected and processed for 

Western blot analysis (Section 2.15).  

Primers used for siRNA were as follows: siCtrl: Forward-

CUUACGCUGAGUACUUCGAdTdT; Reverse-UCGAAGUACUCAGCGUAAGdTdT 

(Sigma Life Science, The Woodlands, TX)  

siChk2: Forward-GAACAGAUAAAUACCGAACtt; Reverse-

GUUCGGUAUUUAUCUGUUCtt (Sigma Life Science, The Woodlands, TX).  

 

2.18. Proteasomal regulation of Chk2: 

7 x 105 A2780 cells, 8 x 105 2780CP/Cl-16 cells, 8 x 105 OVCAR-10 cells, 6 x 105 

HEY cells and 7 x 105 OVCA-433 cells were seeded into 6-well plates and were 

incubated overnight at 37ºC. Cells were treated with DMSO or 1 μM of MG132 (Sigma-

Aldrich, St. Louis, MO, USA) for 6 hr at 37ºC, collected and processed for Western blot 

analysis (Section 2.15).  
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2.19. Chk2 half-life determination: 

7 x 105 A2780 cells were seeded into 6-well plates and were incubated overnight 

at 37ºC. Cells were treated with DMSO or 4 μM of Cycloheximide (Sigma-Aldrich, St. 

Louis, MO, USA) at 37ºC for 0.5 hr, 2 hr, 4 hr and 8 hr. At each time point, cells were 

collected and processed for Western blot analysis (Section 2.15). Chk2 and p53 bands 

at each time-point were quantified by densitometry and half-lives were determined by 

generating a plot of Normalized densitometric readings (%) vs Time (hr) using Prism 

software.  

 

2.20. Quantification of CHEK2 transcripts: 

7 x 105 A2780 cells, 8 x 105 2780CP/Cl-16 cells, 8 x 105 OVCAR-10 cells, 6 x 105 

HEY cells and 7 x 105 OVCA-433 cells were seeded into 6-well plates and were 

incubated overnight at 37ºC. RNA was isolated from ovarian cancer cells using the 

AurumTM Total RNA Mini kit (Bio-Rad, Hercules, CA, USA) following the manufacturer's 

protocol. Extracted RNA was quantified using NanoDrop and normalized to the same 

concentration. Expression levels of CHEK2 and the internal control GAPDH were 

evaluated using the quantitative real-time PCR (RT-PCR) method. RT-PCR was 

performed using 1 µg of RNA, the iTaqTM Universal SYBR Green One-Step Kit (Bio-

Rad, Hercules, CA, USA) and CFX384TM Real-Time System (Bio-Rad, Hercules, CA, 

USA) following the manufacturer's protocol. Primers for CHEK2 and GAPDH were 

purchased from Bio-Rad and have been previously validated against the desired target 

by the manufacturer. Relative expression levels were calculated using the 2-ΔCt method. 
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2.21. CHEK2 gene methylation: 

DNA was extracted from A2780, 2780CP/Cl-16, OVCAR-10, HEY and OVCA-

433 cells following the procedure described in Section 2.7. DNA samples were sent to 

the DNA Methylation Analysis Core at The University of Texas MD Anderson Cancer 

Center, Houston, TX, USA, where the Bisulfite Pyrosequencing and Methylation-

Specific PCR (MSP) procedures were employed in order to assess CHEK2 methylation 

levels [151-153]. Primers used for CHEK2 methylation studies were purchased from 

Sigma Life Science, The Woodlands, TX and their sequences are as follows:  

 

1) Bisulfite Pyrosequencing: Near exon 1: CHEK2-P1: Forward 1-

GAGGGGAATTAGGGTTTTAAGTTT, Reverse 1-

CTCCCCAACCTCAACCAACAAAATAAC; CHEK2-P1: Forward 2-

GTTATATGGGGAATTTTTGTTGGGTGTTT, Reverse 2-

CCCCCTTCAACTCAAAACTACA; Near exon 2: CHEK2-P2: Reverse 3-

AAACCAAAAATATACTAATACAATCAACAC, Forward 3-

TTTTTAAAGTGAGGGATTATAGGAGTGAA  

 

2) MSP: Near exon 1: P1 (Methylation): Forward-TTACGTTTGTTTTTTAGATTTTCGT, 

P1 (Methylation): Reverse-AAATTCTTCTACCCACAATACCG, P2 (Unmethylation): 

Forward-TTATGTTTGTTTTTTAGATTTTTGT, P2 (Unmethylation): Reverse-

CAAATTCTTCTACCCACAATACCA; Near exon 2: P3 (Methylation): Forward-

TTTTTCGGGTTTAAGCGATTTTTTTGTTT, P3 (Methylation): Reverse-
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ACGCGAAAATTCACTCCTATAATCCCGCA, P4 (Unmethylation): Forward-

TTTTTTGGGTTTAAGTGATTTTTTTGTTT, P4 (Unmethylation): Reverse-

ACACAAAAATTCACTCCTATAATCCCACA. 

 

2.22. miRNA TaqMan assays: 

An in silico assay to predict microRNAs interacting with CHEK2 mRNA levels 

was performed using the miRBase: the microRNA database (http://www.mirbase.org/). 

Total RNA samples were prepared from A2780, 2780CP/Cl-16, OVCAR-10, HEY and 

OVCA-433 tumor cells using TRIzol LS Reagent (Invitrogen, Carlsbad, CA, USA). RNA 

extraction was performed according to manufacturer’s instructions. RNA quantity was 

assessed with NanoDrop and RNA integrity was analyzed by gel electrophoresis. 

MicroRNA expression was tested using TaqMan microRNA assays (Applied 

Biosystems, Foster City, CA, USA) following the manufacturer’s protocol. The cDNA 

was synthesized using TaqMan Reverse Transcription Reagents kit (Applied 

Biosystems, Foster City, CA, USA) and employed for quantitative RT-PCR analysis 

together with TaqMan probes (hsa-miR-134, -300, -340, -381, -425) (Applied 

Biosystems, Foster City, CA, USA), internal control U6 snRNA (Applied Biosystems, 

Foster City, CA, USA) and SsoFast Supermix (Bio-Rad, Hercules, CA, USA) following 

the manufacture’s protocol. Relative expression levels were calculated using the 2-ΔCt 

method.  

 

 

http://www.mirbase.org/
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2.23. MicroRNA expression 

6 x 105 A2780 cells were seeded into 6-well plates and were incubated overnight 

at 37ºC. Cells were transfected with 100 nM of pre-miR-Ctrl, pre-miR-340 or pre-miR-

425 (Applied Biosystems, Foster City, CA, USA) using Lipofectamine 2000 following the 

manufacturer’s recommended protocol. After 48 hr and 72 hr of transfection, cells were 

collected, lysed and microRNA TaqMan assay (Section 2.22) and Western blot analysis 

(Section 2.15) were performed. 

 

2.24. RPPA analysis: 

1 x 106 A2780 or 2780CP/Cl-16 cells were plated and incubated in 10-cm dishes 

at 37ºC overnight. A2780 cells were untreated or treated with 1 μM cis-Pt or 0.6 μM 

oxali-Pt and, similarly, 2780CP/Cl-16 cells were untreated or treated with 5 μM cis-Pt or 

3 μM oxali-Pt for 24 hr. Cells were washed with ice cold PBS three times, scraped and 

pelleted by centrifugation at 2,000 rpm at 4°C for 3 min in 15 mL Falcon tubes. The 

resultant pellet was sent for reverse phase protein lysate (RPPA) analysis to the RPPA 

Core Facility-Functional Proteomics at The University of Texas MD Anderson Cancer 

Center, Houston, TX, USA. The core provided normalized values for 217 antibodies. A 

description of the procedure for the core facility can be found at 

https://www.mdanderson.org/education-and-research/resources-for-

professionals/scientific-resources/core-facilities-and-services/functional-proteomics-

rppa-core/rppa-process/index.html   

A log2(x+1) transformation to the normalized data was applied and further 

analyses using the functions of LIMMA library was performed.  A linear model was fitted 
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to each protein and empirical Bayes methods were used to obtain the statistics.   

Protein differentially expressed (p<0.005) between different types of samples were thus 

identified. The protein of interest for this thesis were the ones exhibiting significant 

upregulation by A2780 treated with cis-Pt or oxali-Pt and 2780CP/Cl-16 treated with 

oxali-Pt only. Statistical analysis and set intersections were performed in R (version 

3.2.2). 

 

2.25. Platinum treatment for Western analysis:  

6 x 105 A2780 cells, 7 x 105 2780CP/Cl-16 cells, 7 x 105 OVCAR-10 cells, 5 x 105 

HEY and 6 x 105 OVCA-433 cells were seeded into 6-well plates and were incubated 

overnight at 37ºC. Cells were exposed to Pt drugs for 24 hr, collected and processed for 

Western blot analysis (Section 2.15). 

 

2.26. MEK/ERK inhibitor exposure:  

7 x 105 2780CP/Cl-16 cells were seeded into 6-well plates and were incubated 

overnight at 37ºC. Cells were treated for 1 hr with DMSO, 1.5 µM of ERK1/2 inhibitor 

SCH772984 (Selleckchem, Houston, TX, USA), 100 µM of MEK1/2 inhibitor PD98059 

(Cell Signaling, Danvers, MA, USA) or 10 µM of the MEK1/2 inhibitor U0126-EtOH 

(Selleckchem, Houston, TX, USA). After 1 hr, 2780CP/Cl-16 cells were treated with 5 

μM cis-Pt or 3 μM oxali-Pt for 24 hr. Cells were collected and processed for Western 

blot analysis (Section 2.15).  
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2.27. Effect of MEK inhibitor U0126 on platinum cytotoxicity:  

2780CP/Cl-16 were trypsinized, diluted to appropriate concentrations and 1200 

cells/well were plated to 96-well plates in aliquots of 100 μL/well. Plates were incubated 

overnight at 37ºC. Similar to the procedure reported [154], cells were treated for 1 hr 

with aliquots of 50 μL/well of 10 μM of U0126-EtOH inhibitor, followed by addition of 

aliquots of 50 µL/well of cis-Pt 5 µM or oxali-Pt 3 µM for 3 days. At this time, aliquots of 

50 μl/well of an MTT solution (3 mg/ml) were added to the plates and cells were further 

incubated at 37ºC for 4 hr. The medium was removed and 100 μL of 100% DMSO was 

added in order to dissolve MTT formazan crystals. Plates were shaken for 5-10 min, 

absorbance values were measured at 570 nm with a multiwell scanning 

spectrophotometer and % cell survival determined. 

 

2.28. Ability of MEK1/2 to phosphorylate p53 at Ser20: 

The procedure was similar to that reported [155;156]. 25 μM of ATP (Sigma-

Aldrich, St. Louis, MO, USA), 12.5 ng/μL of recombinant p53 (Santa Cruz 

Biotechnology, Dallas, TX, USA) and 20 ng/μL of recombinant MEK-1 or MEK-2 

(SignalChem, Richmond, BC, Canada) were added in a 1.5 mL microfuge tube. Chk2 

plasmid (Section 2.14) was immunoprecipitated from A2780 cells treated with cis-Pt 1 

μM and used as a control. Immunoprecipitated Chk2 was mixed with 25 μM of ATP and 

12.5 ng/μL of recombinant p53. Reaction Buffer (150 mM NaCl, 4 mM MnCl2 (Sigma-

Aldrich, St. Louis, MO, USA), 6 mM MgCl2 (Sigma-Aldrich, St. Louis, MO, USA), 10% 

(v/v) glycerol (Sigma-Aldrich, St. Louis, MO, USA), 1 mM dithiothreitol (Sigma-Aldrich, 
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St. Louis, MO, USA), 100 μM Na3VO4 (Sigma-Aldrich, St. Louis, MO, USA), 50 mM 

HEPES (pH 7.5) (Sigma-Aldrich, St. Louis, MO, USA)) was then added to complete a 

final volume reaction of 25 μL. The reaction was incubated at 30ºC for 20 min. At the 

end of the reaction, samples were processed for Western blot analysis (Section 2.15).   

 

2.29. Antibodies:  

Antibodies specific to p53 (1:2000) (sc-126 and sc-6243), p21 (1:500) (sc-6246), 

β-actin (1:4000) (sc-47778), Ser20-p53 (1:500) (sc-18079-R), Chk2 (1:500) (sc-9064), 

Ser217/221-MEK (1:1000) (sc-81503), Mdm2 (1:1000) (sc-13161) and Mdm4 (1:500) 

(sc-374147) were purchased from Santa Cruz Biotechnology, Dallas, TX, USA. 

Antibodies against Ser15-p53 (1:1000) (9284), Thr68-Chk2 (1:1000) (2197), ERK1/2 

(1:1000) (4695), T202/Y204-ERK (1:1000) (4376), MEK1/2 (9122), MEK1 (2352), MEK2 

(9125) and Ser217/221-MEK (9154) were purchased from Cell Signaling, Danvers, MA, 

USA. Secondary ECL Anti-Mouse IgG, Horseradish (1:4000) (from sheep) (NA931) and 

ECL Anti-Rabbit IgG, Horseradish (1:4000) (from sheep) (NA934) were purchased from 

GE Healthcare, Houston, TX, USA. 

 

2.30. Ovarian cancer patient survival analysis: 

 We downloaded RPPA Level3 data publicly available from the Cancer Genome 

Atlas Project (TCGA; http://tcga-data.nci.nih.gov/) for Chk2 and MEK1/2 in patients with 

ovarian serous cystadenocarcinoma (OV). Patient overall survival information, Pt status 

and TP53 mutation status were retrieved for OV patients from cbioPortal 
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(http://www.cbioportal.org/). The analyses were carried out in R (version 3.2.2). All the 

tests were two-sided and considered statistically significant at the 0.05 level. The Log-

rank test was employed to determine the association between TP53 mutation status 

(wild-type vs. mutant) and overall survival and the Kaplan-Meyer method was used to 

generate survival curves. For Chk2 and MEK1/2, the tumor samples were dichotomized 

into high and low RPPA level groups at percentile cutoffs between 0.25 and 0.75 with a 

step of 0.01. We tested whether a log-rank test applied at any cut-point would yield a 

nominal P value <0.05.  The optimal cutoff percentile (as determined by the lowest P 

value) was thus identified for Chk2 and MEK1/2. Proteins levels were stratified by low 

and high groups according to Pt status. The Kaplan-Meier plots were generated for high 

and low Chk2 and MEK1/2 groups stratified according to Pt status.  The numbers of 

patients at risk in each group at different time points are presented at the bottom of the 

graphs.   

 

2.31. Statistical Analysis: 

 Experiments were repeated three independent times and mean values with 

standard error of mean were calculated and presented. A two tailed unpaired Student’s t 

test or ANOVA test was used to compare two groups or multiple groups, respectively, in 

an experiment. A p value <0.05 was considered statistically significant. 
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Chapter 3 

To characterize the cytotoxic and biochemical/molecular 

pharmacologic properties of structurally-distinct platinum 

analogs in cisplatin-resistant ovarian tumor models 
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3.1. Rationale and Background: 

Despite efforts to develop better therapeutic options for the treatment of ovarian 

cancer, cis-Pt still remains one of the most effective chemotherapeutic agents available 

against this disease. Indeed, for almost four decades cis-Pt has been the first-line 

treatment for ovarian cancer patients. However, one of the major challenges that 

ovarian cancer patients face is intrinsic or acquired resistance of tumor cells towards 

cis-Pt. Therefore, the search for novel Pt drugs able to circumvent cis-Pt resistance 

continues. In this regard, studies performed by Tito Fojo and colleagues led to the 

classification of 107 Pt compounds into 12 groups based on their chemical structures 

and distinctive activity profiles against 60 diverse NCI human cancer cell lines. 

Interestingly, further structure-activity studies of 38 Pt compounds from 4 groups against 

cis-Pt resistant cells led to the identification of novel Pt compounds able to retain 

cytotoxic activity in these cells [137]. However, the biochemical and molecular 

pharmacologic properties of such Pt compounds are poorly understood. Such 

information is important in defining the mode of action of novel compounds and/or the 

specific mechanism targeted in tumor cells to circumvent cis-Pt resistance. Therefore, 

the aim of this study is to select structurally-distinct Pt analogs that exhibit a potential to 

circumvent cis-Pt resistance in ovarian cancer cell lines and characterize their cytotoxic 

and pharmacological properties. The analogs selected were trans-PyPt and oxali-Pt, 

together with cis-Pt. These compounds are clustered in three different groups based on 

their ligand “L” in the chemical structure: A) Amine (cis-Pt), B) Pyridine (trans-PyPt) and 

C) DACH (oxali-Pt) ligand groups (Figure 8). The cis-PyPt and trans-Pt analogs were 

included to test the specificity of the trans-PyPt compound and the generality of trans-
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structures to circumvent cis-Pt resistance. DAP was also included as a DACH-Pt(IV) 

analog to assess the effect of the tetravalent Pt(IV) state by comparison to the 

analogous divalent Pt(II) structure in oxali-Pt. These Pt drugs were evaluated in an 

ovarian tumor panel consisting of a sensitive model (A2780) and four cis-Pt-resistant 

models (2780CP/Cl-16, OVCAR-10, HEY and OVCA-433). The intent of this study is to 

identify a lead Pt analog, which exhibits the desirable pharmacologic characteristics and 

circumvents cis-Pt resistance, for mechanistic evaluation.  
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Figure 8. Chemical structure of platinum analogs investigated  

 

Pt compounds containing A) Amine, B) Pyridine or C) DACH ligand selected to 

explore their capacity to circumvent cis-Pt resistance.   
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3.2. Results: 

3.2.1. Determination of the structure and purity of trans-PyPt: 

The majority of the Pt compounds were available in the lab or purchased, except 

for the trans-PyPt, which was synthesized. The chemical structure of trans-PyPt was 

characterized through 195Pt NMR (Figure 9A) and 1H NMR spectroscopy (Figure 9B). 

The 195Pt NMR spectrum showed a clear peak at –1955 ppm, which indicates the 

presence of the Pt atom with the pyridine ligands in a trans configuration. Presence of 

any cis impurity would have been indicated by a peak at –2002 ppm [143], but this was 

absent to indicate that the synthesized compound was exclusively in the trans state. 

The 1H NMR spectrum exhibited three different peaks corresponding to three protons in 

unique chemical environment in the pyridine molecule: H1 at 8.94 ppm, H2 at 7.35 ppm 

and H3 at 7.82 ppm. The error in the values obtained from NMR analysis ranged 

between 0.15%-0.34% (Table 6), demonstrating that the synthesized trans-PyPt was 

indeed the correct structure. In addition, values obtained from elemental analysis of 

carbon, hydrogen and nitrogen (CHN) reflected percentage of errors of <10% (Table 6), 

establishing that the trans-PyPt compound was obtained with high purity.    
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Figure 9. Nuclear magnetic resonance studies of trans-PyPt  

  

Spectra were obtained by 
195

Pt NMR (A) and 
1
H NMR (B) spectroscopy.  
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Table 6. Values for elemental and NMR analysis of trans-PyPt 

 
NMR (ppm) 

 
Elemental analysis (%) 

 
H1 H2 H3 Pt 

 
C H N 

Experimental Value 8.94 7.35 7.82 -1955 
 

28.2 2.19 6.49 

Theoretical Value 8.91 7.33 7.8 -1952   28.3 2.38 6.6 

Percentage Error (%) 0.34 0.27 0.26 0.15   0.35 7.98 1.67 
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3.2.2. Cytotoxic evaluations of DMF and pyridine: 

Several of the Pt analogs are insoluble in aqueous solvents and require 

solubilization in an organic solvent. However, solvents such as DMSO were avoided to 

prevent inactivation of the Pt drug. Due to its inertness towards Pt, DMF was selected 

as the optimal solvent, but it can be cytotoxic. Also, interaction of the two PyPt analogs 

with macromolecules in tissue culture media and in cells could release the potentially 

cytotoxic pyridine ligand into the environment. Therefore, it was first necessary to 1) set 

the maximal % (v/v) DMF concentration permissible in media containing the trans-Pt, 

cis-PyPt and trans-PyPt compounds that induces only moderate cytotoxicity and avoids 

significant impact on the determination of IC50 values for these compounds, and 2) 

determine the cytotoxic potency, if any, of the pyridine ligand alone. Dose-response 

curves for DMF (%, v/v) against sensitive A2780 and isogenic cis-Pt-resistant 

2780CP/Cl-16 cells are sigmoidal and demonstrate that cell survival ranges from 90-

100% at 0.02-0.16% DMF, but drop close to 0% at 0.63-5% DMF (Figure 10A). The 

IC50 values obtained for DMF in A2780 and 2780CP/Cl-16 tumor models were 0.23% ± 

0.013% and 0.33% ± 0.012%, respectively (Figure 10B), and demonstrate a 1.5-fold 

cross-resistance of 2780CP/Cl-16 cells to DMF. As a consequence, a final 

concentration of 0.125% DMF (v/v) was selected in the measurement of IC50 values of 

trans-Pt, cis-PyPt and trans-PyPt compounds. Finally, dose-response curves of the 

pyridine ligand in five ovarian tumor cell lines (A2780, 2780CP/Cl-16, OVCAR-10, HEY 

and OVCA-433) demonstrate that cell survival is maintained between 80-100% at all 

treatment concentrations (0.04-27 µM) (Figure 10C). Thus, the pyridine compound 
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alone did not exhibit significant cytotoxic effects in the ovarian tumor panel in the 

concentration range examined.   
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Figure 10. Cytotoxic evaluations of DMF and pyridine 

 

A) Dose-response curve for DMF in A2780 and 2780CP/Cl-16 tumor models using 

final dilutions of DMF from 0.02%-5% (v/v). B) IC50 values of DMF (%, v/v) in A2780 

and 2780CP/Cl-16 tumor models. C) Dose-response relationship for pyridine in 

A2780, 2780CP/Cl-16, OVCAR-10, HEY and OVCA-433 cell lines using final 

concentrations of pyridine ranging from 0.04-27 µM in 0.125% DMF. N=3; Mean ± 

SD 
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3.2.3. Activity of structurally-distinct Pt analogs in ovarian cancer cell lines: 

The activity of Pt compounds was determined using the MTT assay 5 days after 

initiating drug exposure. Cytotoxicity studies show that IC50 values for cis-Pt are low for 

A2780 cells (0.298 μM). In contrast, 2780CP/Cl-16, OVCAR-10, HEY and OVCA-433 

cell lines exhibited high IC50 values for cis-Pt (3.289-8.89 μM) (Figure 11A and Table 

7). Therefore, the resistance factors calculated for cis-Pt in 2780CP/Cl-16, OVCAR-10, 

HEY and OVCA-433 cell lines relative to A2780 are high (>10) in all four cell lines 

(Figure 11B and Table 8). These data clearly establish that the ovarian tumor panel 

selected for this study is composed of a sensitive cell line (A2780) and 4 resistant cell 

lines (2780CP/Cl-16, OVCAR-10, HEY and OVCA-433) toward cis-Pt. In addition, the 

data demonstrate that the Pt compounds investigated had variable potencies in 

comparison to cis-Pt, with the trans-PyPt, oxali-Pt and DAP having greater potencies 

(lower IC50 values when compared to cis-Pt) in each cell line (Figure 11A and Table 7). 

However, all Pt analogs gave lower resistance factors in cis-Pt resistant cell lines, but 

trans-PyPt, oxali-Pt and DAP compounds exhibited the lowest resistance factors 

ranging from 1.36-4.89 (Figure 11B and Table 8).  
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Figure 11. Activity of structurally-distinct Pt analogs in ovarian cancer cell 

lines 

 

A) IC50 values for Pt compounds were determined using a 5-day continuous Pt 

exposure MTT protocol in A2780, 2780CP/Cl-16, OVCAR-10, HEY and OVCA-433. 

B) Resistance factor (RF) values relative to A2780 cells for 2780CP/Cl-16, OVCAR-

10, HEY and OVCA-433 were calculated from the formula RF =
IC

50−Resistant Cell Line
 

IC
50−Sensitive Cell Line

. 

N=3; Mean ± SD 

 



77 
 

Table 7. IC
50

 values (μM) of structurally-distinct Pt analogs in ovarian cancer cell lines 

Pt-Compound A2780 2780CP/Cl-16 OVCAR-10 HEY OVCA-433 
cis-Pt 0.298 ± 0.010 6.217 ± 0.076 8.89 ± 0.29 3.289 ± 0.068 6.34 ± 0.21 

trans-Pt 3.26 ± 0.38 20.16 ± 0.64 17.9 ± 1.0 31.21 ± 0.85 23.0 ± 2.0 
cis-PyPt 1.064 ± 0.027 7.65 ± 0.43 7.68 ± 0.15 7.95 ± 0.40 4.69 ± 0.30 

trans-PyPt 0.60 ± 0.11 1.77 ± 0.20 2.116 ± 0.043 0.793 ± 0.031 1.04 ± 0.15 
oxali-Pt 0.1540 ± 0.0040 0.2090 ± 0.0040 0.282 ± 0.024 0.589 ± 0.013 0.354 ± 0.016 

DAP 0.1370 ± 0.0040 0.236 ± 0.014 0.1930 ± 0.0040 0.666 ± 0.026 0.401 ± 0.026 
 

 

Table 8. Resistance factor values relative to A2780 of structurally-distinct Pt analogs in ovarian cancer cell lines 
Pt-Compound A2780 2780CP/Cl-16 OVCAR-10 HEY OVCA-433 

cis-Pt 1.000 ± 0.054 20.73 ± 0.82 29.7 ± 1.5 10.97 ± 0.46 21.0 ± 1.1 
trans-Pt 1.00 ± 0.17 6.12 ± 0.77 5.45 ± 0.75 9.5 ± 1.2 7.0 ± 1.1 
cis-PyPt 1.000 ± 0.039 7.26 ± 0.43 7.26 ± 0.26 7.45 ± 0.43 4.43 ± 0.30 

trans-PyPt 1.00 ± 0.27 3.00 ± 0.64 3.53 ± 0.68 1.32 ± 0.26 1.67 ± 0.43 
oxali-Pt 1.000 ± 0.037 1.357 ± 0.044 1.82 ± 0.16 3.83 ± 0.12 2.27 ± 0.13 

DAP 1.000 ± 0.042 1.752 ± 0.099 1.409 ± 0.051 4.89 ± 0.22 2.92 ± 0.19 
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3.2.4. Pt uptake and DNA-Pt adducts formation of structurally-distinct Pt analogs:  

Circumvention of cis-Pt resistance by structurally-distinct Pt compounds may be 

due to greater uptake into the cell and formation of higher levels of DNA adducts. 

Therefore, Pt uptake and DNA-Pt adducts formation from each Pt analog was studied in 

A2780 and its isogenic cell line 2780CP/Cl-16 (Figure 12). Results demonstrate a 

reduction of cis-Pt uptake (Figure 12A and Table 9) and DNA-Pt adducts (Figure 12B 

and Table 10) in the resistant 2780CP/Cl-16 cells when compared to A2780, and such 

behavior is also seen with all other Pt compounds. Oxali-Pt and DAP exhibited lower 

levels of Pt uptake and DNA-Pt adducts when compared to cis-Pt in both cell lines. 

Therefore, circumvention of cis-Pt resistance with these two analogs is not due to 

enhanced capacity for Pt uptake and to form DNA-Pt adducts. In contrast, trans-PyPt 

accumulated at high levels (Figure 12A and Table 9) as well as substantially greater 

levels of DNA-Pt adducts (Figure 12B and Table 10) in both cell lines, which indicates 

that this analog, unlike oxali-Pt and DAP, may depend on its favorable biochemical 

pharmacologic property to circumvent cis-Pt resistance. This may also apply to trans-Pt 

as the data demonstrate that trans analogs are accumulated in both cell lines to a 

greater extent and form greater level of DNA adducts than the corresponding cis 

compounds. It is also worth noting that the higher uptake correlates with higher DNA 

adducts.  
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Figure 12. Pt uptake and DNA-Pt adducts formation of structurally-distinct Pt 

analogs 

 

A) Pt uptake after exposing A2780 and 2780CP/Cl-16 cell lines to 200 μM of Pt 

compound for 2 hr at 37ºC. B) DNA-Pt adducts formation after exposing A2780 and 

2780CP/Cl-16 cell lines to 200 μM of Pt compound for 2 hr at 37ºC. N=3; Mean ± SD 
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Table 9. Cellular platinum uptake (x 10
3
 

ng Pt/ mg Protein/ hr) values for structurally-distinct platinum 
analogs in A2780 and 2780CP/Cl-16 tumor models 

Pt Compound A2780 2780CP/Cl-16 
cis-Pt 0.962 ± 0.070 0.4830 ± 0.0070 

trans-Pt 9.30 ± 0.33 3.01 ± 0.27 
cis-PyPt 3.22 ± 0.22 2.12 ± 0.30 

trans-PyPt 235.4 ± 8.9 182.4 ± 12.6 
oxali-Pt 0.267 ± 0.015 0.127 ± 0.011 

DAP 0.108 ± 0.016 0.0770 ± 0.0060 
 

 

Table 10. DNA platinum adducts (ng Pt/ mg DNA/ hr) values of 
structurally-distinct platinum analogs in A2780 and 2780CP/Cl-16 

tumor models 
Pt Compound A2780 2780CP/Cl-16 

cis-Pt 232.4 ± 14.7 118.7 ± 13.4 
trans-Pt 579.8 ± 7.8 391.4 ± 5.5 
cis-PyPt 306.8 ± 2.0 163.3 ± 20.1 

trans-PyPt 2595.9 ± 177.1 1673.4 ± 34.3 
oxali-Pt 125.2 ± 4.0 61.2 ± 8.8 

DAP 59.6 ± 4.6 44.6 ± 10.1 
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3.2.5. Partition coefficient of structurally-distinct platinum analogs:  

The greater cellular uptake and DNA adduct formation with trans Pt analogs and 

the relatively lower uptake and adducts with oxali-Pt and DAP, together with the 

knowledge that the trans Pt analogs and cis-PyPt require DMF for dissolution, suggests 

that lipophilicity may be a factor contributing to biochemical and molecular 

pharmacologic characteristics of the Pt analogs. Therefore, it was important to 

investigate the lipophilicity of Pt compounds by measuring their partition ratio and 

partition coefficient in a hydrophobic vs. hydrophilic phase using n-octanol and water as 

solvents, respectively. Partition coefficient values were as follows: trans-PyPt > cis-PyPt 

> DAP > trans-Pt > oxali-Pt > cis-Pt (Figure 13 and Table 11). In addition, the partition 

ratio is less than 1 for cis-Pt, trans-Pt, cis-PyPt, oxali-Pt and DAP, thus, the majority of 

the concentration of these compounds is retained in the hydrophilic aqueous phase 

(Table 11). In contrast, the partition ratio is greater than 1 only for trans-PyPt, indicating 

that most of the trans-PyPt is found in the hydrophobic n-octanol phase (Table 11). 

Therefore, the lipophilicity of trans-PyPt more likely contributes to increased uptake and, 

thereby, increased DNA adduct formation. However, the relationship between uptake 

and partition coefficient is not readily apparent for the diverse Pt structures involved. On 

the other hand, comparing structures within a given class indicates a positive 

correlation. Thus, the greater uptake of trans-Pt vs. cis-Pt and of trans-PyPt vs. cis-PyPt 

can be explained by difference in partition coefficients between the isomeric pairs. 
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Figure 13. Partition coefficient of structurally-distinct platinum analogs 

 

Partition coefficient (PC) of Pt compounds (25 μM) after allowing 15 min for 

distribution between an n-octanol/water phase, where PC = log P and P =
Ptn−octanol

Ptwater
. 

Student’s t test was used to determine statistical significance, which was indicated by 

p value ≤0.05. N=3; Mean ± SD 

 

P
a

r
ti

ti
o

n
 C

o
e

ff
ic

ie
n

t

c
is

-P
t

tr
a
n

s
-P

t

c
is

-P
y
P

t

tr
a
n

s
-P

y
P

t

o
x
a
li
-P

t

D
A

P

-4

-2

0

***

***

**
***

**



83 
 

Table 11. Partition coefficient values of structurally-distinct platinum analogs 

Pt-Compounds 
Partition Ratio  

(P)  
Partition Coefficient  

(log P) 
cis-Pt 0.00620 ± 0.00020 -2.206 ± 0.017 

trans-Pt 0.0457 ± 0.0054 -1.346 ± 0.050 
cis-PyPt 0.2240 ± 0.0036 -0.6500 ± 0.0070 

trans-PyPt 3.76 ± 0.38 0.571 ± 0.045 
oxali-Pt 0.02030 ± 0.00030 -1.6920 ± 0.0060 

DAP 0.1115 ± 0.0021 -0.9530 ± 0.0080  
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3.2.6. DNA interstrand crosslinks index of structurally-distinct platinum analogs:  

Cis-Pt forms both interstrand and intrastrand DNA crosslinks, with interstrand 

constituting about 5-8% of adducts and intrastrand about 82-95% [157;158].The nature 

of crosslinks determines which DNA damage signaling pathways may become 

activated. Thus, the potential ability of Pt analogs to induce greater levels of ICLs was 

investigated as this may provide a general understanding of how the Pt analogs may 

circumvent cis-Pt resistance. The ICLs assay relies on completely denaturing DNA, with 

presence of ICLs preventing local DNA denaturation, and this is detected by the 

intercalating agent ethidium bromide (EtBr). The spectra for EtBr was first generated to 

confirm that the reported excitation and emission wavelengths are acceptable (Figure 

14A). Based on these data, it was acceptable to measure the relative light unit (RLU) for 

fluorescence intensity using the reported wavelengths, λexcitation=305 nm and 

λemission=590 nm [149], as these wavelengths were close to their respective λmax found in 

the present study (Table 12 and Table 13). DNA ICLs data with Pt compounds shows 

that cis-Pt has an ICLs index of 0.106, with trans-Pt, cis-PyPt and trans-PyPt 

demonstrating a 2- to 6-fold higher index and oxali-Pt and DAP giving a 2- to 3-fold 

lower value (Figure 14B and Table 14). Interestingly, there appears to be a correlation 

between ICLs index in a cell-free system and DNA-Pt adducts formed intracellularly 

(Table 14 vs.Table 10). 
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Figure 14. DNA interstrand crosslink index of structurally-distinct platinum 

analogs 

 

A) Emission and excitation spectrum of ethidium bromide. B) Interstrand crosslink 

index from the reaction of 25 μM of Pt compounds with 7 μg of calf thymus DNA for 

30 min at 37ºC, where ICLs index = [− ln(xtreated)] − [− ln(xcontrol)] and                  

x =
fluorescencenon−heated−fluorescenceheated

fluorescencenon−heated
. Student’s t-test was used to determine 

statistical significance, p value ≤0.05. N=3; Mean ± SD 

 

 



86 
 

Table 12. Excitation values for ethidium bromide at a given 
wavelength 

Wavelength 
(nm) 

Excitation 
(RLU) 

Wavelength 
(nm) 

Excitation  
(RLU) 

230 401 410 366 
240 628 420 503 
250 978 430 669 
260 1682 440 908 
270 3998 450 1080 
280 6792 460 1261 
290 6438 470 1402 
300 3996 480 1568 
310 2771 490 1525 
320 2144 500 1388 
330 1585 510 1117 
340 944 520 887 
350 499 530 629 
360 275 540 416 
370 226 550 285 
380 207 560 169 
390 219 570 538 
400 270     
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Table 13. Emission values for ethidium bromide at a given 
wavelength 

Wavelength 
(nm) 

Emission 
(RLU) 

Wavelength 
(nm) 

Emission  
(RLU) 

520 71 690 1323 
530 81 700 1118 
540 123 710 955 
550 210 720 814 
560 364 730 672 
570 591 740 561 
580 891 750 463 
590 1223 760 397 
600 1524 770 320 
610 1772 780 270 
620 1947 790 211 
630 1976 800 185 
640 1994 810 159 
650 1909 820 126 
660 1768 830 112 
670 1666 840 62 
680 1469 850 61 

 

 

Table 14. DNA interstrand crosslink (ICLs) index of 
structurally-distinct platinum analogs 

Pt-Compounds ICLs index 
cis-Pt 0.106 ± 0.011 

trans-Pt 0.283 ± 0.031 
cis-PyPt 0.208 ± 0.040 

trans-PyPt 0.670 ± 0.032 
oxali-Pt 0.034 ± 0.011 

DAP 0.043 ± 0.015 
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3.2.7. Studies to determine reactivity of structurally-distinct platinum analogs: 

Trans-Pt has been shown to be inactive due to its high reactivity [159].  

Therefore, the reactivity of Pt compounds was assessed by measuring their reactivity 

rate by mixing 25 μM of each compound in FBS, analyzing unreacted (free) Pt at 0, 5 

min, 15 min, 30 min, 1 hr, 2 hr, 4 hr and 6 hr, and determining the half-life by fitting the 

data to a monoexponential decay equation. The decay curves for the compounds are 

shown in Figure 15A and the half-lives in Figure 15B. The data show that cis-Pt, cis-

PyPt and oxali-Pt have similar reaction rates with t1/2 of 4.0, 3.4 and 2.4 hr, respectively 

(Table 15). However, trans-PyPt was found to be highly reactive exhibiting a 

substantially low t1/2 (<1 min), with the corresponding trans-Pt also demonstrating a high 

reactivity with a t1/2 of about 10 min (Table 15), thus most of the compound is expected 

to become inactivated by side reactions before interacting with DNA. In contrast, DAP, 

the only Pt (IV) compound in the group, was the most stable compound with a relatively 

longer t1/2 of 12 hrs, which may preserve the compound in its inactivated state and 

enhance the concentration of the compound reacting with DNA.  
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Figure 15. Reactivity of structurally-distinct platinum analogs 

 

A) Reaction rate of 25 μM of Pt compound with FBS at 37ºC for 0, 5 min, 15 min, 30 

min, 1 hr, 2 hr, 4 hr and 6 hr. B) Half-life (t1/2) of Pt drugs calculated using             

ln[A] = ln[A]0 − kt and t1/2 =
0.693

k
. Student’s t test was used to determine statistical 

significance, p value ≤0.05. N=3; Mean ± SD 
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Table 15. Half-life (t
1/2

) and rate constant (k) values of structurally-

distinct platinum analogs 

Pt-Compound 
k  t

1/2 
(1/hr)  (hr) 

cis-Pt 0.1740 ± 0.0050 3.99 ± 0.34 
trans-Pt 3.87 ± 0.12 0.1790 ± 0.0060 
cis-PyPt 0.2030 ± 0.0020 3.42 ± 0.14 

trans-PyPt 46.5 ± 3.6 0.0150 ± 0.0010 
oxali-Pt 0.2890 ± 0.0080 2.40 ± 0.22 

DAP 0.0580 ± 0.0050 12.0 ± 5.9 
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3.3. Conclusions: 

This Chapter has demonstrated the successful synthesis of trans-PyPt with high 

purity, as demonstrated by the low errors (<10%) in NMR and CHN analysis. 

Cytotoxicity studies performed with structurally-distinct Pt analogs showed that among 

the Pt compounds investigated, oxali-Pt, DAP and trans-PyPt exhibited greater 

potencies compared to cis-Pt in both sensitive and cis-Pt-resistant cell lines. Moreover, 

these Pt compounds were able to circumvent cis-Pt resistance. The mechanism by 

which oxali-Pt, DAP and trans-PyPt circumvented cis-Pt resistance was further 

investigated by examining Pt uptake and DNA-Pt adducts formation with each Pt analog 

in cis-Pt sensitive A2780 and its isogenic cis-Pt resistant 2780CP/Cl-16 cell lines. 

Generally, a reduction in Pt uptake and DNA-Pt adducts with all Pt analogs was 

observed in 2780CP/Cl-16 cells when compared to A2780 cells. Interestingly, 

circumvention of cis-Pt resistance by oxali-Pt and DAP was observed even though 

these two compounds exhibited lower levels of Pt uptake and DNA-Pt adducts when 

compared to cis-Pt in both cell lines. Unlike oxali-Pt and DAP, trans-PyPt was 

accumulated at high levels and it formed substantially greater levels of DNA-Pt adducts 

in both cell lines. Thus, its capacity to circumvent cis-Pt resistance could be triggered by 

multiple mechanisms, including those that may be independent of the DNA damage 

signaling pathway. The greater cellular uptake and DNA adduct formation by trans-PyPt 

was shown to be due to its greater lipophilicity, as noted by a partition ratio greater than 

1, indicating that most of the compound is found in the hydrophobic phase. Therefore, it 

is likely that the lipophilicity of trans-PyPt favors its transport through the cell membrane 

allowing this compound to accumulate in high concentrations inside the cell. Since Pt 
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compounds can also form links between the two DNA strands, the potential of Pt 

analogs to induce ICLs was examined as a possible mechanism used by Pt analogs to 

circumvent cis-Pt resistance. Results for DNA ICLs again show that oxali-Pt and DAP 

had a lower cross-link index value and trans-PyPt had a higher value when compared to 

cis-Pt. Finally, it was important to investigate the reactivity of Pt compounds since past 

studies have demonstrated that trans-Pt is a very reactive molecule, which results in its 

clinical inactivity. Indeed, trans-Pt and trans-PyPt were found to be highly reactive with 

t1/2 less than 10 min. In contrast, DAP, the only Pt (IV) compound in the group, was the 

most stable compound with a relatively longer t1/2 of 12 hrs. Cis-Pt, cis-PyPt and oxali-Pt 

had similar reaction rates. In conclusion, the results in this Chapter suggest that oxali-Pt 

and DAP were able to circumvent cis-Pt resistance more efficiently. Nevertheless, trans-

PyPt also exhibited intrinsic molecular pharmacologic characteristics, thus, efforts by 

researchers in modifying and optimizing its chemical structure to increase its stability 

could enhance its clinical potential. Perhaps increasing trans-PyPt oxidation state to (IV) 

by addition of axial ligands could result in a more stable compound as observed for 

DAP. Oxali-Pt was selected as the lead structurally-distinct analog for further studies 

since it is an already FDA approved compound, but so far only for the treatment of colon 

cancer. Oxali-Pt induced DNA damage is different from cis-Pt induced DNA damage 

due to the difference in their carrier ligand, DACH vs NH3, respectively. This difference 

in DNA damage result in the activation of an intrinsic signaling pathway (Figure 16). 
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Figure 16. Conclusions Chapter 3 

 

Oxali-Pt was selected as the lead structurally-distinct analog for studies performed in 

Chapter 4 and Chapter 5. It forms distinctly different adducts by virtue of the “L” 

ligand; specifically NH3 vs. DACH. These distinct adducts likely transduce DNA 

damage signals along independent pathways. 
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Chapter 4 

To determine the failure in p53 post-translational 

modifications as a causative factor in cisplatin resistance 
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4.1. Rationale and Background: 

The tumor suppressor p53 has been shown to play an important role in mediating 

cis-Pt cytotoxicity, driving cancer cells to death. Conversely, loss of p53 activity has 

been associated with cis-Pt resistance [22;23]. The two main ways in which p53 loss of 

function is seen are through mutations and loss of post-translational modifications (e.g. 

phosphorylation events) in the p53 molecule. Furthermore, the data on the prognostic 

value of p53 status for therapeutic outcome in clinical studies with ovarian cancer 

patients has been highly variable [91-93]. More specifically, wild-type p53 can lead to a 

better, worse or similar response to treatment when compared to mutant p53, with the 

similar response best demonstrated by the TCGA survival curves shown in Figure 5 

[94]. Such studies make it questionable to use p53 status as a molecular marker in 

ovarian cancer patients to predict response to treatment. This is likely due to such use 

of p53 status, without considering p53 functional status. For instance, mutation of p53 

may not necessarily lead to loss of function, as has been demonstrated for about 64% 

of all potential p53 mutants [98]. Similarly, regulation of p53 stability and/or 

transcriptional activity is dependent on p53 phosphorylation, especially on the critical 

Ser15 and Ser20 residues [68]. Hence, intrinsic p53 phosphorylation events promoted 

by Pt compounds could activate the function of the p53 molecule and the resultant 

potent cytotoxicity of the Pt drug. Conversely, absence of post-translational modification 

could result in failure of p53 activation and Pt-drug resistance. This is exemplified by 

loss of wild-type p53 function and resistance to fludarabine in chronic lymphocytic 

leukemia that lack ATM kinase activity, which is important for post-translational 

modification of p53 [160]. Therefore, the aim of this study is to determine the potential 
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failure of p53 post-translational modifications in promoting cis-Pt resistance. To 

investigate this premise, special focus will be given to Ser15 and Ser20 phosphorylation 

of p53 and p53 molecular pathway and their response to cis-Pt. In Chapter 3, oxali-Pt 

has been demonstrated to be a lead non-cross-resistant Pt to cis-Pt ovarian cancer cell 

lines. Hence, oxali-Pt was selected to examine whether circumvention of cis-Pt 

resistance is associated with an opposite effect to cis-Pt on phosphorylation at the two 

critical sites of p53. For consistency, the studies will be conducted in cis-Pt-resistant 

ovarian cancer cell lines used in Chapter 3. The results obtained in this chapter will give 

a better understanding in how cis-Pt resistance arises based on p53 function and how 

oxali-Pt may be able to circumvent this resistance in cis-Pt resistant ovarian cancer cell 

lines.   
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4.2. Results: 

4.2.1. TP53 sequencing in the ovarian tumor panel: 

Given that mutation may lead to inactivation of p53 as a major mechanism 

leading to cis-Pt resistance, TP53 gene status in the ovarian tumor panel was 

determined by DNA sequencing. The results demonstrate that the cis-Pt-sensitive 

A2780 cell line has wild-type p53. In contrast, 2780CP/Cl-16, OVCAR-10, HEY and 

OVCA-433 cells were demonstrated to have p53 missense mutations (Table 16). 

Specifically, 2780CP/Cl-16 harbored heterozygous V172F mutation, OVCAR-10 

expressed V172F and G266R heterozygous mutations, and HEY and OVCA-433 were 

found to have the same P72R homozygous mutation. Whether these mutations are the 

primary cause of cis-Pt resistance needs to be addressed. The P72R mutation is an 

extensively studied polymorphism, but evidence does not support a role for this 

mutation in cancer susceptibility, including ovarian cancer susceptibility [161;162]. In 

fact, this mutation has been shown to promote apoptosis [161]. Based on the 

transcriptional activity in a yeast functional assay (FASAY), this P72R mutant appears 

to behave like wild-type p53 (Table 16). As regards V172F and G266R mutations, both 

induce a loss of p53 function in the FASAY. However, a previous report has 

demonstrated that the mutant p53V172F in 2780CP/Cl-16 cells responds normally to 

ionizing radiation by becoming stabilized and then transactivating the target p21 gene 

[146]. Thus, mutation in p53 may not necessarily prevent normal p53 function in cells 

challenged with DNA damaging agents, and this is possible with non-cross-resistant Pt 

analogs such as oxali-Pt. 
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Table 16. Analysis of p53 status in ovarian cancer cell lines 

Cell Line 
Base 

Change 
Type Effect 

Gene 

Status 

p53  

transcriptional activity 

A2780 None None None Wild-type + 

2780CP/Cl-16 139G>K Heterozygous V172F Mutant - 

OVCAR-10 
139G>K Heterozygous V172F Mutant - 

14G>R Heterozygous G266R Mutant - 

HEY 119C>G Homozygous P72R Mutant + 

OVCA-433 119C>G Homozygous P72R Mutant + 
The p53 transcriptional activity (or p53 function) is predicted using a database of p53 mutants 

assessed in a yeast functional assay (http://p53.fr/TP53Mutload/database_access/search.php). 

+, functional; -, inactive. 
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4.2.2. Generation of stable p53 knock-out clones in ovarian cancer cell lines: 

To further characterize the relationship between p53 and Pt resistance, several 

p53-/- from A2780, 2780CP/Cl-16, OVCAR-10 and HEY cells using the novel 

CRISPR/Cas9 technique were generated. Selected stable p53-/- clones were confirmed 

as lacking p53 expression by immunoblots, whereas control clones expressed p53 

(Figure 17A-D). Absence of p53 also caused loss of expression of the target p21. To 

further test lack of p53 expression, knock-out clones were exposed to the Pt drugs. 

Immunoblots indicated continued absence of p53 by a lack of p53 and p21 inductions, 

even after 24 hr of cis-Pt or oxali-Pt treatment. Control clones exposed to cis-Pt either 

had no effect or modestly induced p53, with little or no upregulation of p21, in all four 

cell lines. These studies were not designed to examine the relative expression of p53 

and p21 after cis-Pt treatment in sensitive A2780 clones vs. clones from resistant cells, 

as this would have required immunoblot development on the same gel for direct 

comparison. However, it is apparent that oxali-Pt robustly induced p53 and p21 in 

clones from both cis-Pt sensitive and resistant cell lines (Figure 17A-D). This is 

noteworthy for another reason: the data with oxali-Pt indicate that p53 is functional in all 

control clones from the four cell lines, irrespective of the specific p53 mutation present, 

as shown in Table 16, and that p21 upregulation by cis-Pt and oxali-Pt is p53-

dependent.  

Note: Repeated efforts to generate p53-/- clones from OVCA-433 cells failed, and 

the cause of this is not known. 
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Figure 17. Generation of p53 knock-out clones in ovarian cancer cell lines 

 

A) A2780, B) 2780CP/Cl-16, C) OVCAR-10 and D) HEY cell lines were transfected 

with 25 μg of CRISPR/Cas-GFP plasmid. After 48 hr of transfection, GFP positive 

cells were collected and expanded. Clones were selected and characterized through 

Western blot. A2780 clones were exposed to cis-Pt (1µM) or oxali-Pt (0.6 µM) for 24 

hr. 2780CP/Cl-16, OVCAR-10 and HEY clones were similarly exposed to cis-Pt (5 

µM) or oxali-Pt (3 µM) for 24 hr. Levels of p53 and p21 were examined by Western 

blot. 
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4.2.3. Cytotoxicity of platinum drugs in p53-/- ovarian cancer cell lines: 

Dependence of cis-Pt and oxali-Pt on p53, as indicated in the preceding section, 

was examined using cytotoxicity as the end-point in p53-/- clones (Figure 18). Control 

clones from 2780CP/Cl-16, OVCAR-10 and HEY cells displayed resistance to cis-Pt, 

which was consistent with results in Chapter 3. Knock-out of p53 in clones from A2780 

and 2780CP/Cl-16 cells led to a significant increase in cis-Pt IC50 values (Figure 18A 

and Table 17); thus, presence of p53 is essential for cis-Pt cytotoxicity in these cell 

lines. On the other hand, p53 knock-out in OVCAR-10 and HEY clones led to a 

significant decrease in cis-Pt IC50 values (Figure 18A and Table 17), indicating that the 

presence of potentially functional p53 in these cell lines is associated with cis-Pt 

resistance. Interestingly, oxali-Pt was less active in each p53-/- clone, but the effect was 

more pronounced in A2780 and HEY clones (Figure 18B and Table 17). Thus, the 

cytotoxicity of oxali-Pt relies on the presence of p53 in all four cell lines (A2780, 

2780CP/Cl-16, OVCAR-10 and HEY), and that the p53 in these cells is functional, as 

indicated by the significant increase in oxali-Pt IC50 values in p53 knock-out cell lines 

(Figure 18B and Table 17). Moreover, the data clearly demonstrates how the 

cytotoxicity is impacted differently between cis-Pt and oxali-Pt by the loss of p53 in 

some resistant cells. 
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Figure 18. Cytotoxicity of platinum drugs in p53-/- ovarian cancer cell lines  

 

Cytotoxicity of A) cis-Pt or B) oxali-Pt was measured in two p53-/- clones derived from 

A2780, 2780CP/Cl-16, OVCAR-10 and HEY tumor cells. Clones were continuously 

exposed to Pt drug for 5 days at 37ºC. MTT was used to assess IC50 values, which 

were determined by sigmoidal fit of data using GraphPad Prism software. ANOVA 

test was used to determine statistical significance, p value ≤0.05. N=3; Mean ± SD 



103 
 

Table 17. IC
50

 values (μM) of Pt drugs in CRISPR engineered p53
-/-

 ovarian cancer cell lines 
Pt-Drug Clones A2780 2780CP/Cl-16 OVCAR-10 HEY 

cis-Pt 

Ctrl-1 0.305 ± 0.030 6.61 ± 0.67 9.87 ± 0.11 2.722 ± 0.092 
Ctrl-2 0.379 ± 0.017 7.19 ± 0.24 10.38 ± 0.32 2.68 ± 0.23 

p53
-/-

-1 1.083 ± 0.046 16.03 ± 0.30 7.49 ± 0.11 1.15 ± 0.16 
p53

-/-
-2 0.998 ± 0.036 18.03 ± 0.60 7.08 ± 0.22 1.47 ± 0.16 

oxali-Pt 

Ctrl-1 0.0780 ± 0.0040 0.1810 ± 0.0080 0.1450 ± 0.0010 0.223 ± 0.014 
Ctrl-2 0.0620 ± 0.0030 0.1460 ± 0.0040 0.1220 ± 0.0090 0.188 ± 0.019 

p53
-/-

-1 0.649 ± 0.016 0.2700 ± 0.0080 0.3430 ± 0.0060 1.627 ± 0.084 
p53

-/-
-2 0.6360 ± 0.0060 0.314 ± 0.019 0.219 ± 0.017 1.57 ± 0.11 
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4.2.4. Oxali-Pt treatment results in greater p53 expression and functional activity 

than cis-Pt at equimolar concentrations in the ovarian tumor panel: 

Since cis-Pt and oxali-Pt cytotoxicity in p53-/- cells exhibited different cytotoxic 

sensitivity, p53 expression and p53 activity, as indicated by p21 upregulation in 

immunoblots, following exposure to increasing equimolar concentrations of cis-Pt or 

oxali-Pt for 24 hr was examined (Figure 19). In cis-Pt sensitive A2780 cells, low 

concentrations of cis-Pt and oxali-Pt (starting at 1 µM) are able to increase levels of p53 

and p21. In addition, the two Pt-drugs increased p53 levels in a dose-dependent 

manner in A2780 cells (Figure 19A). Cells appeared to demonstrate a saturation of p53 

activity in response to cis-Pt and oxali-Pt treatment above 5 µM, as indicated by little or 

no increase in p21. However, in cis-Pt resistant 2780CP/Cl-16, OVCAR-10 and HEY 

cell lines, oxali-Pt promoted a more robust induction of levels of p53 at all 

concentrations when compared to cis-Pt (Figure 19B-D). In addition, p21 levels after 

oxali-Pt treatment remain fairly constant over the concentration range (Figure 19B-D). 

Therefore, at equimolar concentrations, oxali-Pt is able to trigger a more robust p53 

response and this leads to greater transcriptional activity compared to cis-Pt in resistant 

cell lines.     

 



105 
 

 

 

 

 

 

 

  

  

Figure 19. Dose-response relationship for p53 expression and p21 upregulation 

with cis-Pt and oxali-Pt in the ovarian tumor panel 

 

Examination of p53 and p21 levels in A) A2780, B) 2780CP/Cl-16, C) OVCAR-10 

and D) HEY cell lines 24 hr after treatment with 1, 5, 10 and 20 μM of cis-Pt or oxali-

Pt.  
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4.2.5. Comparison of activation and phosphorylation of p53 between cis-Pt and 

oxali-Pt: 

The preceding section provided immunoblots that allowed direct comparison 

between cis-Pt and oxali-Pt in a dose-dependent manner for their effects on p53 or p21 

in each cell line. For comparison between cell lines, it is necessary to examine the 

changes in the same immunoblot. Given the dose-response effects for cis-Pt and oxali-

Pt on p53 transcriptional activity using p21 as a biomarker, the 5 μM drug concentration 

was selected to compare the effects as higher drug exposures in the cis-Pt sensitive 

A2780 cells did not result in further increases in p21. Using this concentration in cis-Pt 

resistant cell lines (2780CP/Cl-16, OVCAR-10 and HEY), the potential of these two Pt 

compounds to phosphorylate the two sites on p53 that have been reported as most 

critical for its anti-proliferative and apoptotic functions, Ser15 and Ser20, was studied 

[68]. After 24 hr of cis-Pt treatment increased p53 levels were seen in all cell lines 

(Figure 20A). However, p53 increases in cis-Pt resistant 2780CP/Cl-16, OVCAR-10 

and HEY cells were lower than in cis-Pt sensitive A2780 cells. Similarly, p21 increases 

in these cis-Pt resistant cells were lower as compared to A2780 cells. In contrast, oxali-

Pt increased greater levels of p53 and p21 than cis-Pt in all cell lines (Figure 20A). In 

terms of phosphorylation events, increases in p53-Ser15 phosphorylation promoted by 

cis-Pt or oxali-Pt were observed in all cell lines, but the relative increases by the two 

drugs were not consistent with increases in p53 or p21. Specifically, in the HEY cell line 

cis-Pt induces greater p53-Ser15 phosphorylation than oxali-Pt, whereas increases in 

p53 and p21 by cis-Pt were much lower than by oxali-Pt (Figure 20A and 20B). On the 

other hand, cis-Pt and oxali-Pt are both able to induce p53-Ser20 phosphorylation in 
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sensitive A2780 and cis-Pt resistant 2780CP/Cl-16, OVCAR-10 and HEY cells and its 

relative induction correlates with relative increases in p53 and p21 (Figure 20A and 

20B). Based on the data presented, phosphorylation at Ser20 is a good correlate for 

p53 stabilization and activation by the Pt drugs. 
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Figure 20. Induction of p21 and p53 phosphorylation at Ser15 and Ser20 by cis-

Pt and oxali-Pt 

 

A) Examination of p53, p21, p53-Ser15 and p53-Ser20 levels in A2780, 2780CP/Cl-

16, OVCAR-10 and HEY cell lines treated with 5 μM of cis-Pt or oxali-Pt for 24 hr. B) 

Densitometric analysis of p53 phosphorylation at Ser15 and Ser20 in A2780, 

2780CP/Cl-16, OVCAR-10 and HEY cell lines treated with 5 μM of cis-Pt or oxali-Pt 

for 24 hr. 
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4.2.6. p53-Ser20 phosphorylation strongly enhances expression of p21: 

Since a strong correlation after Pt treatment was established between p53-Ser20 

phosphorylation and p21 expression in cis-Pt resistant cell lines, the importance of p53-

Ser20 phosphorylation in promoting p53 transcriptional activity was investigated. 

Therefore, p21 levels were measured in p53-deficient A2780 p53-/- cells transfected with 

plasmids expressing: 1) wild-type p53, 2) mutant p53-S20A (constitutively 

dephosphorylated mimic) or 3) mutant p53-S20D (constitutively phosphorylated mimic). 

Transfections were titrated to provide similar levels of total p53 expression at 48 hr, as 

shown in Figure 21A. As anticipated, p53-Ser 20 phosphorylation was detected only in 

the phosphomimetic S20D mutant. All three forms of p53 demonstrated activity by their 

ability to transactivate p21. However, the immunoblot and densitometric data for p21 

expression show that there was no difference between wild-type p53 and mutant p53-

S20A, but the p53-S20D is able to increase p21 to significantly greater levels compared 

to wild-type p53 or mutant p53-S20A (Figure 21A and 21B). These results validate the 

significance of Ser20 phosphorylation for p53 activation. 
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Figure 21. p53-Ser20 phosphorylation strongly enhances expression of p21 

 

A) Evaluation of basal levels of p53, p53-Ser20 and p21 in A2780 p53-/- cells 

transfected with pcDNA3 control (1 µg), wild-type p53 (0.5 µg), mutant p53-S20A (1 

µg) or p53-S20D (0.5 µg) expression vectors for 48 hr. B) Densitometric analysis of 

p21 levels induced by wild-type p53, p53-S20A or p53-S20D in A2780 p53-/- cells. 

Student’s t test was used to determine statistical significance, p value ≤0.05. N=3; 

Mean ± SD 
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4.2.7. Activation of p53 by cis-Pt and oxali-Pt at equitoxic concentrations in the 

ovarian tumor panel: 

Preceding studies were conducted at equimolar drug concentrations. However, 

each cell line expresses different sensitivity to each drug, as defined by the IC50 value, 

which is a composite of all resistance mechanisms, including reduced drug uptake and 

enhanced DNA repair. Thus, it is possible that differences in p53 expression and 

activation between cis-Pt and oxali-Pt may become minimal using concentrations based 

on IC50 values. Therefore, to further characterize the different capacity of cis-Pt and 

oxali-Pt in promoting p53 phosphorylation and transcriptional activity, p53 response at 

equitoxic Pt drug concentrations (IC50 X1, X3 and X5) (Table 18) in A2780, 2780CP/Cl-

16, OVCAR-10 and HEY cell lines was examined (Figure 22). The immunblots 

developed from cell lysates prepared 24 hr after drug exposure show in general that cis-

Pt and oxali-Pt increase p53 levels with increasing drug concentrations in all four cell 

lines (Figure 22A-D). Furthermore, in cis-Pt sensitive A2780 cells, both Pt compounds 

are able to promote an increase in p53-Ser20 phosphorylation and levels of p53 

transcriptional targets p21 and Mdm2 in a concentration-dependent manner, with oxali-

Pt demonstrating a greater effect at each equitoxic concentration (Figure 22A). 

Similarly, in cis-Pt resistant 2780CP/Cl-16, OVCAR-10 and HEY cell lines, the low 

equitoxic concentration of cis-Pt was as effective or less effective than oxali-Pt at 

inducing p53-Ser20 phosphorylation, p21 and Mdm2 levels. However, higher equitoxic 

concentrations of cis-Pt were more effective than oxali-Pt at inducing Ser20 

phosphorylation in resistant cell lines, but this greater Ser20 phosphorylation by cis-Pt 

did not necessarily translate into comparably greater expression of p53 transcription 
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factors, p21 or Mdm2 (Figure 22B-D). One explanation is that cis-Pt in general is not as 

efficient as an equitoxic concentration of oxali-Pt at Mdm2-dependent reduction in 

Mdm4, which is also a prerequisite in the transactivation function of p53.  

Although equitoxic concentrations were effective as anticipated in eliminating 

differences between cis-Pt and oxali-Pt for p53-dependent induction of p21 in 

2780CP/Cl-16 and OVCAR-10 cells, this was not the case in A2780 and HEY where 

oxali-Pt still demonstrated a greater effect (Figure 22A-D). Nevertheless, the data 

obtained are useful in correlating p53 activation, using p21 expression as a marker, with 

drug sensitivity and resistance. For this exercise, actual concentrations were used in 

defining this correlation, which is shown in Figure 22E. It is readily apparent from this 

figure that cis-Pt increased p21 at lower concentrations in A2780, whereas higher 

concentrations of this drug are needed for this increase in cis-Pt resistant cells. In 

contrast, increases in p21 with oxali-Pt clustered at lower concentrations, similar to that 

for cis-Pt in A2780 cells. Thus, high cytotoxicity of cis-Pt in A2780 cells and of oxali-Pt in 

all four cell lines correlates with p53-dependent p21 expression at low drug 

concentrations and, conversely, low cytotoxicity of cis-Pt in 2780CP/Cl-16, OVCAR-10 

and HEY cell lines was associated with p21 expression occurring at high drug 

concentrations. In other words, higher cis-Pt concentrations were needed to overcome 

the factor preventing p53 activation by cis-Pt in resistant cells.          
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Table 18. Multiples of IC50 (X1, X3 and X5) concentrations of cis-Pt 
and oxali-Pt used for treating the ovarian tumor panel  

Pt-
Compound 

IC50 
(µM) 

A2780 2780CP/Cl-16 OVCAR-10 HEY 

cis-Pt 

X1 0.30 6.2 8.9 3.3 

X3 0.90 18.6 26.7 9.9 

X5 1.5 31.0 44.5 16.5 

oxali-Pt 

X1 0.15 0.20 0.28 0.60 

X3 0.45 0.60 0.84 1.8 

X5 0.75 1.0 1.4 3.0 

 

 

 

 

 

 

 

 

 

 

 

Figure 22. Expression and activation of p53 after cis-Pt or oxali-Pt treatment at 

equitoxic concentrations in the ovarian tumor panel 

 

A) A2780, B) 2780CP/Cl-16, C) OVCAR-10 and D) HEY cell lines treated with cis-Pt 

or oxali-Pt at equitoxic concentrations based on multiples of IC50 (X1, X3 and X5) for 

24 hr. Cell lines were collected and the immunoblot developed with the indicated 

antibody. E) Densitometric analysis of p21 bands in immunoblots shown in Figures 

A-D. 
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4.2.8. Cis-Pt resistant ovarian tumor cell lines exhibit substantial downregulation 

of Chk2 as a common feature: 

As suggested in the above section, resistance to cis-Pt in 2780CP/Cl-16, 

OVCAR-10 and HEY may be due to mechanism(s) inhibiting facile activation of p53. 

One such mechanism may be related to Ser20 phosphorylation, which can regulate p21 

transactivation, as seen in results obtained above with mutant p53-S20D plasmid. It has 

been reported that downregulation of Chk2, a kinase that phosphorylate p53 at Ser20 

after cis-Pt treatment, leads to resistance [99;165]. In addition, our lab has previously 

reported that knock-down of Chk2 in A2780 cells reduced cis-Pt ability to induce p53 

and p21 [180]. Therefore, it was reasonable to evaluate basal levels of Chk2 in the 

ovarian cancer panel, in order to assess if this kinase is downregulated in cis-Pt 

resistant cells. Indeed, the basal levels of Chk2 were substantially lower in all cis-Pt 

resistant cell lines (2780CP/Cl-16, OVCAR-10, HEY and OVCA-433) than in A2780 

cells (Figure 23A and 23B). Thus, downregulation of Chk2 could account for failure of 

cis-Pt to induce p53-Ser20 phosphorylation, and provide an important mechanism in the 

development of cis-Pt resistance. 
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Figure 23. Cis-Pt resistant ovarian tumor cell lines exhibit substantial 

downregulation of Chk2 as a common feature 

 

A) Evaluation of basal levels of Chk2 in A2780, 2780CP/Cl-16, OVCAR-10, HEY and 

OVCA-433 cell lines. B) Densitometric analysis of immunoblots in Figure A. 
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4.2.9. Chk2 knock-out or knock-down in A2780 cells inhibits cis-Pt mediated 

phosphorylation of p53-Ser20 and p53 transcriptional activity:  

To definitively test the inability of cis-Pt to induce p53-Ser20 phosphorylation and 

p53 transcriptional activity in absence of Chk2, Chk2-/- clones were generated using the 

CRISPR technique. In addition, Chk2 silencing through siRNA transfection in cis-Pt 

sensitive A2780 cells was performed. In A2780 control clone, cis-Pt and oxali-Pt 

treatment after 24 hrs confirmed increases in total p53, p53-Ser15 phosphorylation, 

p53-Ser20 phosphorylation, p21 and Mdm2 levels and decreases in Mdm4 levels 

(Figure 24A). In addition, both drugs were shown to have no effect on total Chk2 but 

induce Chk2-Thr-68 phosphorylation. Similar results were also observed in A2780 cells 

transfected with control siRNA (Figure 24B). Immunoblots of A2780 Chk2-/- clones and 

A2780 cells transfected with siRNA targeting Chk2 confirmed absence or substantial 

reduction of Chk2 (Figure 24A and 24B). Treatment of these Chk2 knock-out or knock-

down cells with cis-Pt or oxali-Pt induced p53 and p53-Ser15 phosphorylation, but a 

slightly lower induction was noted with cis-Pt compared to control cells (Figure 24A and 

24B). More importantly, the results show that p53-Ser20 phosphorylation and inductions 

of p21 and Mdm2 were severely diminished in Chk2 knock-out or knock-down cells after 

cis-Pt treatment in comparison to A2780 control cells (Figure 24A and 24B). In 

contrast, loss of Chk2 did not overtly affect the ability of oxali-Pt to induce p53-Ser20 

phosphorylation, p21 and Mdm2. Finally, loss of Chk2 also impacted the ability of cis-Pt, 

but not oxali-Pt, to decrease levels of Mdm4 (Figure 24A and 24B). In conclusion, 

these results confirmed that Chk2 mediates cis-Pt-induced p53 phosphorylation at 

Ser20 and promote p53 transcriptional activity by increasing levels of p21 and Mdm2, 
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but that oxali-Pt induction of p53-Ser20 phosphorylation and p53 transcriptional activity 

occurs through a Chk2-independent pathway.  
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Figure 24. Downregulation of Chk2 in A2780 cells inhibits cis-Pt mediated 

phosphorylation of p53-Ser20 and p53 transcriptional activity  

 

A) A2780 cell line was transfected with 25 μg of CRISPR/Cas-GFP plasmid. After 48 

hr of transfection, GFP positive cells were collected and expanded. Chk2-/- single 

clones were selected and characterized through Western blot. A2780 Chk2-/- clones 

were exposed to cis-Pt 1µM or oxali-Pt 0.6 µM for 24 hr. Proteins involved in the p53 

pathway were examined through Western blot. B) A2780 cells were transfected with 

100 nM of Control siRNA (siCtrl) or Chk2 siRNA (siChk2) for 48 hr. A2780 cells were 

treated with cis-Pt 1µM or oxali-Pt 0.6 µM for 24 hr. Proteins involved in the p53 

pathway were examined through Western blot. 
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4.2.10. Chk2 expression directly correlates with cytotoxic and therapeutic 

response to platinum: 

The demonstration that cis-Pt is dependent on Chk2 for p53 stabilization and 

activation provided the rationale to investigate the involvement of Chk2 in Pt resistance 

in tumor models and ovarian cancer patients. Cytotoxicity experiments were conducted 

in A2780 control and Chk2-/- clones using the standard 5-day MTT assay. The results 

demonstrate that IC50 values of cis-Pt and oxali-Pt increased significantly (~2- to 3-fold) 

in A2780 Chk2-/- clones when compared to controls (Figure 25A and Table 19). To 

demonstrate whether this increase in resistance after Chk2 knock-out was of clinical 

relevance, the TCGA data was mined to see the effect of Chk2 expression on survival 

of ovarian cancer patients in the clinic setting. Ovarian cancer patients were stratified as 

sensitive or resistant to Pt-therapy and further grouped according to Chk2 expression 

(high vs. low). In either sensitive or resistant patient group, high levels of Chk2 led to 

increased overall survival, whereas low levels of Chk2 was associated with reduced 

overall survival (Figure 25B). Thus, a low Chk2 expression inhibits cytotoxic response 

to cis-Pt not only in model systems, but also in patients. 
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Figure 25. Chk2 expression directly correlates with cytotoxic and therapeutic 

response to platinum 

 

A) Cytotoxicity of cis-Pt or oxali-Pt was assessed in A2780 Chk2-/- clones. Cells were 

continuously exposed to a range of Pt concentrations for 5 days at 37ºC. IC50 values 

were determined using Prism. ANOVA test was used to determine statistical 

significance, p value ≤0.05. N=3; Mean ± SD B) Kaplan-Meyer curves for ovarian 

cancer patients grouped into high and low levels of Chk2 and further stratified 

according to  Pt status. The analysis was carried out in R (version 3.2.2). All the tests 

were two-sided and considered statistically significant at p value ≤0.05.   
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Table 19. IC
50

 values (μM) of Pt drugs in A2780 

Chk2
-/-

 cells  
Pt-Drug Clones A2780 

cis-Pt 

Ctrl-1 0.305 ± 0.030 
Ctrl-2 0.379 ± 0.017 

Chk2
-/-

-1 0.682 ± 0.024 
Chk2

-/-
-2 0.736 ± 0.012 

oxali-Pt 

Ctrl-1 0.0780 ± 0.0040 
Ctrl-2 0.0620 ± 0.0030 

Chk2
-/-

-1 0.1940 ± 0.0030 
Chk2

-/-
-2 0.1820 ± 0.0070 
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4.2.11. Chk2 knock-in restores the capacity of cis-Pt to induce p53 transcriptional 

activation and increase cytotoxicity in A2780 Chk2-/- cells:   

Evidence has been provided that loss or low expression of Chk2 leads to cis-Pt 

resistance or poor survival of ovarian cancer patients treated with Pt-based therapy. In 

order to further validate Chk2 as a key kinase required for cis-Pt to induce p53 

transcriptional activity and regulate Pt sensitivity, Chk2 knock-in experiments in A2780 

Chk2-/- cells were executed. The results in Figure 26A show that transfection of Chk2 

plasmid led to good expression of Chk2. As expected, cis-Pt treatment in A2780 Chk2-/- 

cells transfected with empty vector (EV) did not induce p21 expression. In contrast, 

oxali-Pt treatment in A2780 Chk2-/- cells transfected with EV was able to promote p21 

expression, which confirmed earlier data presented. However, cis-Pt treatment after 

Chk2 knock-in in A2780 Chk2-/- restored the ability of cis-Pt to induce p21 expression, 

but no further increase in p21 expression was noted with oxali-Pt (Figure 26A). These 

studies were also extended to determine cytotoxicity of Pt drugs after Chk2 knock-in in 

A2780 Chk2-/- cells by measuring IC50 values using the MTT assay. In A2780 Chk2-/- 

cells transfected with Chk2, a significant decrease in IC50 values of cis-Pt and oxali-Pt 

was observed when compared to A2780 Chk2-/- cells transfected with EV (Figure 26B 

and Table 20).  

 

 

 

 



124 
 

 

 

 

 

 

 

 

 

 

 

 

Table 20. IC
50

 values (μM) of Pt drugs in A2780 

Chk2
-/-

 cells after Chk2 knock-in  
Pt-Drug Plasmid IC

50 (μM) 

cis-Pt 
EV 0.735 ± 0.040 

Chk2 0.554 ± 0.010 

oxali-Pt 
EV 0.1520 ± 0.0050 

Chk2 0.1300 ± 0.0040 
 

 

 

 

 

Figure 26. Chk2 knock-in restores the capacity of cis-Pt to induce p53 

transcriptional activation and increase cytotoxicity in A2780 Chk2-/- cells 

 

A) A2780 Chk2-/- cells were transfected with 2 µg of pEGFP-C1 control (EV) or Chk2 

(Chk2-ki) expression vectors for 48 hr. Cells were treated with cis-Pt 1µM or oxali-Pt 

0.6 µM for 24 hr and processed for Western blot analysis. B) A2780 Chk2-/- cells 

were transfected with 2 µg of pEGFP-C1 control (EV) or Chk2 (Chk2-ki) expression 

vectors for 24 hr. Cells were continuously exposed to a range of Pt concentrations for 

3 days at 37ºC. IC50 values were determined using Prism. Student’s t-test was used 

to determine statistical significance, p value ≤0.05. N=3; Mean ± SD 
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4.2.12. Examination of mechanism of Chk2 downregulation in cis-Pt resistant 

cells:  

The demonstration that Chk2 is important in cis-Pt mediated activation of p53 

and greater cytotoxic response made it necessary to examine the mechanism of Chk2 

downregulation in cis-Pt-resistant cells at the transcript and protein level. Relative 

expression levels of CHEK2 transcripts were examined in A2780, 2780CP/Cl-16, 

OVCAR-10, HEY and OVCA-433 cell lines by RT-PCR (Figure 27A). Results show that 

CHEK2 transcript levels are significantly reduced in these cis-Pt resistant cell lines 

compared to cis-Pt sensitive A2780 cells. Therefore, transcriptional regulation of 

CHEK2 transcripts plays a role in downregulation of Chk2 in cis-Pt resistant cells. To 

further examine if Chk2 downregulation is also regulated at the protein level, the 

involvement of enhanced proteasomal degradation was evaluated in A2780, 

2780CP/Cl-16, OVCAR-10, HEY and OVCA-433 cell lines using MG132 (Figure 27B). 

MG132 is a specific, potent, reversible and cell-permeable proteasome inhibitor, which 

results in inhibition of the degradation of ubiquitin-conjugated proteins. For this 

experiment p53 was used as an experimental control. Data shows that p53 levels 

increased in the ovarian tumor panel when treated with MG132, as a result inhibition of 

p53 proteasomal degradation was obtained. However, MG132 treatment did not 

increase levels of Chk2 compared to control in the ovarian tumor panel, which could be 

possible if the half-life of Chk2 was long. To test this possibility, the stability of Chk2 was 

examined in A2780 cells using cycloheximide, which serves as an inhibitor of protein 

biosynthesis. Using p53 as an experimental control, the results show that over time, p53 

levels by immunoblot decrease (Figure 27C) with a p53 half-life of 0.43 hr (Figure 
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27D). In contrast, Chk2 levels did not change over time (Figure 27C) resulting in a long 

Chk2 half-life of ~29 hr (Figure 27D). This long half-life indicates that protein 

degradation may not be rapid enough to affect low levels of Chk2 in resistant cells.  

Hence, Chk2 downregulation in cis-Pt resistant cells occurs at the transcriptional level.  
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Figure 27. Examination of Chk2 downregulation in cis-Pt resistant cells 

 

A) RT-PCR was performed using 1 µg of RNA from A2780, 2780CP/Cl-16, OVCAR-

10, HEY and OVCA-433 cell lines to examine expression levels of CHEK2, using the 

internal control GAPDH. Relative expression levels were calculated using the 2-ΔCt 

method. B) A2780, 2780CP/Cl-16, OVCAR-10, HEY and OVCA-433 cell lines were 

treated with DMSO or 1 μM of MG132 for 6 hr at 37ºC and processed for Western 

blot analysis. C) A2780 cell line was treated with DMSO or 4 μM of cycloheximide for 

0.5 hr, 1 hr, 2 hr, 4 hr and 8 hr at 37ºC and processed for Western blot analysis. D) 

p53 and Chk2 half-lives determined from Relative Protein Values (%) vs Time (hr) 

using Prism software. Student’s t test was used to determine statistical significance, 

p value ≤0.05. N=3; Mean ± SD 
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4.2.13. Analysis of CpG island methylation of CHEK2 in the ovarian tumor panel:   

It has been previously reported in gliomas and non-small cell lung cancer that 

Chk2 downregulation is due to promoter methylation [152;153]. Since cis-Pt resistant 

cells showed decreased levels of CHEK2 transcripts, the presence of CpG island 

methylation in the CHEK2 promoter regions in A2780, 2780CP/Cl-16, OVCAR-10, HEY 

and OVCA-433 cell lines was determined. Basic Local Alignment Search Tool (BLAST) 

analysis of CHEK2 identified two promoter regions of interest for this study (Figure 

28A). S1 and S2 are primers that recognize exon 1 region and S3 is a primer targeting 

exon 2 region. Bisulfite pyrosequencing and methylation-specific PCR (MSP) analysis 

identified that CHEK2 exon 1 is not methylated in A2780, 2780CP/Cl-16, OVCAR-10, 

HEY and OVCA-433 cell lines. In contrast, these cell lines in general exhibited 

methylation at CHEK2 exon 2 (Figure 28B and 28C). Therefore, there was no 

difference in CHEK2 methylation between cis-Pt sensitive and resistant cells and 

decrease in levels of CHEK2 transcripts is not due to promoter methylation.  
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Figure 28. Analysis of CpG island methylation of CHEK2 in the ovarian tumor panel  

 

A) Schematic representation of CpG island analysis (•) in CHEK2 gene (•). Exon 1 region is targeted by S1 and S2 

primers and exon 2 region is targeted by S3 primer. B) Bisulfite pyrosequencing analysis in DNA samples from A2780, 

2780CP/Cl-16, OVCAR-10, HEY and OVCA-433 cell lines. C) Methylation-specific PCR (MSP) analysis in DNA 

samples from A2780, 2780CP/Cl-16, OVCAR-10, HEY and OVCA-433 cell lines. Bisulfite pyrosequencing and MSP 

experiments were performed with experimental controls SssI (methyltransferase) and whole genome amplification 

(WGA). 
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4.2.14. Expression levels of microRNAs predicted to target CHEK2:  

Since Chk2 is not regulated in cis-Pt resistant cells by promoter 

hypermethylation, it was appropriate to consider microRNA as a possible explanation.  

Regulation of CHEK2 transcripts through microRNA was studied using the miRBase: 

the microRNA database (microRNA.org). Predicted microRNAs for CHEK2 regulation 

were miR-134, -300, -340, -381 and -425 and their affinity predicted score values were 

105, 67, 60, 67 and 28, respectively (Figure 29A and Table 21). Only significant 

expression of miR-340 and miR-425 were detected in A2780, 2780CP/Cl-16, OVCAR-

10, HEY and OVCA-433 by RT-PCR. There was no specific pattern observed in the 

expression levels of miR-340 and miR-425 between cis-Pt sensitive A2780 vs. cis-Pt 

resistant 2780CP/Cl-16, OVCAR-10, HEY and OVCA-433 cell lines which could help 

explain the difference in levels of Chk2 between these two groups (Figure 29B). 

Therefore, it is possible that microRNA is not the mechanism suppressing CHEK2 

transcripts. On the other hand, in the isogenic pair of cell lines A2780 and 2780CP/Cl-

16, both microRNA-340 and -425 were upregulated in the cis-Pt resistant cell line 

(2780CP/Cl-16) suggesting that there could be a relationship with CHEK2 suppression 

when cell lines of the same genetic background are compared. 

 

 

 

 

 

 



131 
 

 

 

 

 

 

 

 

 

Table 21. miRNAs predicted to target CHEK2 
using miRBase: the microRNA database 

miRNAs Score Values 
-134 105 
-300 67 
-340 60 
-381 67 
-425 28 

 

 

 

 

 

Figure 29. Expression levels of microRNAs predicted to interact with CHEK2: 

 

A) Schematic representation of the expected interaction of microRNAs (•) with 

CHEK2 (•). B) Levels of expression of microRNAs-340 and -425 in A2780, 

2780CP/Cl-16, OVCAR-10, HEY and OVCA-433 cell lines using RT-PCR. 

MicroRNAs-134, -300, -340, -381 and -425 were not detected. MicroRNAs -340 and -

425 were expressed in all the cell lines tested and their levels of expression are 

reported as 2-ΔCt values. Student’s t test was used to determine statistical 

significance, p value ≤0.05. N=3; Mean ± SD 
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4.2.15. Examination of Chk2 expression by miR-340 and miR-425:  

Since levels of miR-340 and miR-425 appeared to be high in the cis-Pt resistant 

2780CP/Cl-16 vs. cis-Pt sensitive A2780 cell lines, the role of these microRNAs in 

regulating Chk2 expression by transfecting A2780 cells with pre-miR-340 and pre-miR-

425 for 48 hr and 72 hr was examined. The excellent miR-340 and miR-425 transfection 

efficiency in A2780 at 48 hr and 72 hr was followed by RT-PCR (Figure 30A). However, 

high levels of miR-340 and miR-425, and even combinations of the two, were not able 

to completely abolish Chk2 expression (Figure 30B and 30C). As a consequence, miR-

340 and miR-425 are not implicated in the mechanism responsible for decreased levels 

of CHEK2 transcripts. 
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Figure 30. Examination of Chk2 regulation by miR-340 and miR-425 

 

A) Expression levels of miR-340 and miR-425 in A2780 cells transfected with 100 nM of pre-miR-Ctrl, pre-miR-340 

or pre-miR-425 for 48 hr and 72 hr using RT-PCR. B) Western blot analysis of Chk2 levels in A2780 cells 

transfected with 100 nM of pre-miR-Ctrl, pre-miR-340 or pre-miR-425 for 48 hr and 72 hr. C) Densitometric 

analysis of Chk2 relative levels in A2780 cells transfected with 100 nM of pre-miR-Ctrl, pre-miR-340 or pre-miR-

425 for 48 hr and 72 hr. 
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4.3. Conclusions: 

DNA sequencing has identified the cis-Pt-sensitive A2780 cell line as wild-type 

p53 and the cis-Pt resistant 2780CP/Cl-16, OVCAR-10, HEY and OVCA-433 cells as 

containing p53 missense mutations. Although the dogma exists that p53 mutation leads 

to p53 inactivation and Pt resistance, the studies performed in this Chapter indicate that 

this is not always the case. It has been shown that mutation in p53 did not prevent 

normal p53 function in cis-Pt resistant cells challenged with the non-cross-resistant Pt 

analog oxali-Pt. In fact, p53-/- clones responded differently to cis-Pt or oxali-Pt treatment. 

In the case of cis-Pt, knock-out of p53 led to increase in IC50 values in A2780 and 

2780CP/Cl-16 clones but decrease in OVCAR-10 and HEY clones. Interestingly, oxali-

Pt cytotoxicity relies on the presence and functionality of p53 in all four cell lines, as 

indicated by the significant increase in oxali-Pt IC50 values in p53 knock-out cell clones. 

Further studies have indicated that these two Pt agents exert different post-translational 

modifications in p53 resulting in different ways to regulate p53 activity. Indeed, oxali-Pt 

is able to trigger a more robust p53 response and this leads to greater p53 

transcriptional activity, as indicated by p21 and Mdm2 levels, compared to cis-Pt in the 

resistant cell lines. The capacity of each Pt compound to induce p53 expression and 

p53 transcriptional activity was shown to correlate with their potential to induce p53-

Ser20 phosphorylation. It was also shown that p53-Ser20 phosphorylation strongly 

enhances p21 expression, thus, p53-Ser20 phosphorylation is a good marker to assess 

p53 transcriptional activation. In addition, cis-Pt resistant ovarian tumor cell lines 

exhibited substantial downregulation of Chk2, a kinase that has been shown to induce 

p53-Ser20 phosphorylation after cis-Pt treatment. Chk2 downregulation in cis-Pt 
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resistant cell lines occurs at the transcriptional level. Indeed, Chk2 knock-out or knock-

down in A2780 cells inhibited cis-Pt mediated phosphorylation of p53-Ser20 and p53 

transcriptional activity. In contrast, loss of Chk2 did not affect the ability of oxali-Pt to 

induce p53-Ser20 phosphorylation nor p53 transcriptional activity. Furthermore, Chk2 

knock-out in A2780 cells led to cis-Pt and oxali-Pt resistance. Finally, in the clinic setting 

this Chapter also demonstrates that Pt sensitive or resistant ovarian cancer patients 

with high levels of Chk2 had increased overall survival when compared to 

corresponding patients expressing low levels of Chk2. In conclusion, cis-Pt mechanism 

of action has been elucidated (Figure 31). In essence, Chk2 is an important kinase that 

mediates cis-Pt response by phosphorylating p53 at Ser20 and promote p53 

transcriptional activity. That is, presence of Chk2 is essential for cis-Pt cytotoxic 

response in tumor cells and in patients. However, parallel studies in this Chapter show 

that oxali-Pt induction of p53-Ser20 phosphorylation and p53 transcriptional activity 

occurs through a Chk2-independent pathway. Therefore, oxali-Pt mechanism of action 

will be investigated in Chapter 5.  
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Figure 31. Conclusions Chapter 4 

 

Chk2 is essential for cis-Pt to phosphorylate p53 at Ser20 and to promote p53 

transcriptional activity. In contrast, oxali-Pt induction of p53-Ser20 phosphorylation 

and p53 transcriptional activity through a Chk2-independent pathway.  
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Chapter 5 

To define the novel mechanism of action of the structurally-

distinct lead analog that circumvents cisplatin resistance 
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5.1. Rationale and Background: 

It has been shown that cis-Pt and oxali-Pt induce different DNA damage, due to 

their different carrier ligands, which leads to the activation of distinct signal transduction 

pathways. That is, the two drugs have different mechanisms of action. However, Pt-

induced DNA damage signaling by both drugs converges to trigger phosphorylation of 

p53 by upstream activation of transducer kinases, and such phosphorylation of p53 is 

required for its transcriptional activation. There are multiple sites in p53 that can be 

phosphorylated, and each site can be targeted by multiple kinases, which suggests 

some redundancy [31]. The focus of attention in this chapter is the Ser20 site as the 

data in Chapter 4 demonstrates that cis-Pt fails to promote p53-Ser20 phosphorylation 

and p53 transcriptional activity due to downregulation of Chk2 in ovarian cancer cells 

lines resistant to cis-Pt. Whereas, it was observed that oxali-Pt is able to induce p53-

Ser20 phosphorylation and p53 transcriptional activity in the same cell lines through a 

Chk2-independent pathway. Therefore, the aim of this study is to delineate the 

mechanism of action of oxali-Pt. More specifically, identification of the unknown novel 

kinase activated by oxali-Pt to promote p53-Ser20 phosphorylation and p53 

transcriptional activity in ovarian cancer cells lines resistant to cis-Pt is a primary goal. 

To accomplish this goal, RPPA analysis will be conducted following exposure to cis-Pt 

and oxali-Pt of isogenic cis-Pt sensitive A2780 and cis-Pt resistant 2780CP/Cl-16 cell 

lines. The RPPA array provides an opportunity to investigate a series of untested 

kinases for Ser20 phosphorylation of p53 that may enhance insights in the field of Pt 

treatment.    
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5.2. Results: 

5.2.1. Time-dependent activation of p53 in A2780 and 2780CP/Cl-16 by cis-Pt and 

oxali-Pt: 

The results in Chapter 4 have demonstrated that cis-Pt lacks the ability to 

phosphorylate p53 at Ser20, but oxali-Pt has full capacity to modify this site. However, 

those studies examined immunoblots at 24 hr. Since it was possible that an earlier 

timepoint may be more desirable for additional investigations, it was appropriate to 

study the p53 pathway in response to cis-Pt and oxali-Pt in a time dependent manner in 

cis-Pt sensitive A2780 and cis-Pt resistant 2780CP/Cl-16 cell lines. As uncovered in 

Chapter 4, expression of Chk2 was observed in A2780, but not in 2780CP/Cl-16 cells 

(Figure 32A-B). Cis-Pt promoted Chk2-Thr68 phosphorylation, which was maximal in 

A2780 cells at 12 hr. In A2780 and 2780CP/Cl-16 cell lines, cis-Pt treatment increased 

levels of total p53 and p53-Ser15 phosphorylated form in a time dependent manner, 

with maximal levels observed at 24 hr. Furthermore, cis-Pt treatment in A2780 was able 

to induce p53-Ser20 phosphorylation, p21and Mdm2 at 12 hr and the levels at this time 

point were either maintained or further increased at 24 h (Figure 32A). Interestingly, in 

cis-Pt resistant 2780CP/Cl-16 cells, cis-Pt treatment only promoted minimal increases in 

p53-Ser20 phosphorylation, p21 and Mdm2 levels when compared to the levels 

observed in A2780 (Figure 32A). However, p53-Ser15 phosphorylation by cis-Pt in 

resistant cells remained robust, although p53 induction was attenuated. This confirms 

that p53-Ser15 phosphorylation likely contributes to p53 stabilization, and does not 

appear to be associated in a significant way to transactivation of p21 or Mdm2. On the 

other hand, oxali-Pt treatment of A2780 and 2780CP/Cl-16 cell lines leads to robust 
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induction in a time dependent manner of p53-Ser15 and p53-Ser20 phosphorylation, 

and p53, p21 and Mdm2 proteins (Figure 32B). Although Chk2-Thr68 phosphorylation 

was observed in A2780 cells only, it is clear that this Chk2 activation was not required 

for p53-Ser20 phosphorylation by oxali-Pt, which reaffirms conclusions in Chapter 4. 

Thus, oxali-Pt treatment in 2780CP/Cl-16 produces similar temporal changes as those 

seen in A2780. Based on these observations, the 24 hr treatment time with oxali-Pt and 

cis-Pt appears appropriate for further investigations, including RPPA analysis. 
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Figure 32. Time-dependent activation of p53 in A2780 and 2780CP/Cl-16 by 

cis-Pt and oxali-Pt 

 

A) p53 pathway response in A2780 cells treated with cis-Pt 1 µM and in 

2780CP/Cl-16 cells treated with cis-Pt 5 µM for 6 hr, 12 hr and 24 hr. B) p53 

pathway response in A2780 cells treated with oxali-Pt 0.6 µM and in 2780CP/Cl-

16 cells treated with oxali-Pt 3 µM for 6 hr, 12 hr and 24 hr.    
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5.2.2. Analysis of differences in the mechanism of action of cis-Pt vs. oxali-Pt in 

A2780 and 2780CP/Cl-16: 

The drug exposure time of 24 hr was established in the preceding section for 

undertaking RPPA analysis. The approach taken was to treat cis-Pt sensitive A2780 

and its isogenic cis-Pt resistant 2780CP/Cl-16 with cis-Pt or oxali-Pt, but before 

submitting samples for RPPA analysis by the Core Facility, differential drug effects at 

the level of p53-Ser20 phosphorylation on the same immunoblots were confirmed. In 

essence, the data confirm that A2780, but not 2780CP/Cl-16, contains p53-Ser20 

phosphorylation when exposed to cis-Pt, whereas oxali-Pt induces p53-Ser20 

phosphorylation to a similar level in both cell lines (Figure 33A). The resultant 

differential effects of the two Pt drugs in 2780CP/Cl-16 cells were also confirmed for p21 

and Mdm2 inductions and Mdm4 degradation. As observed in Section 5.2.1, 

phosphorylation of p53 at Ser15 was not drastically different between the two Pt drugs. 

These results demonstrate that specific responses to the two drugs in A2780 and 

2780CP/Cl-16 cells is reproducible and validate the samples for processing by the 

RPPA facility. The heat map obtained from RPPA analysis is shown in Figure 33B. 

Relative expression by RPPA of over 217 proteins are presented in the Appendix.  
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Figure 33. Differences in the mechanism of action of cis-Pt vs. oxali-Pt in A2780 and 2780CP/Cl-16 

 

A) Analysis of the p53 pathway by Western blot and B) RPPA heat-map analysis of A2780 treated with cis-Pt 1µM or 

oxali-Pt 0.6 µM and 2780CP/Cl-16 treated with cis-Pt 5 µM or oxali-Pt 3 µM for 24 hr.  
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5.2.3. Analysis of RPPA data to identify the unknown kinase responsible for p53 

phosphorylation at Ser20 and p53 transcriptional activation by oxali-Pt: 

To identify hits of possible kinases responsible for p53-Ser20 phosphorylation 

and p53 transcriptional activity in cis-Pt resistant 2780CP/Cl-16 cell line by oxali-Pt, the 

RPPA data obtained (Section 5.2.2) was subjected to different intersections. For these 

studies, the intersection of interest is the one exhibiting a significant increase in the 

signal obtained from A2780 treated with cis-Pt and oxali-Pt, and 2780CP/Cl-16 treated 

with oxali-Pt only. This is depicted as A2780 cis-Pt up, A2780 oxali-Pt up and 

2780CP/Cl-16 oxali-Pt up (Figure 34A). This stipulation is based on the premise that 

the unknown kinase can be activated by either cis-Pt or oxali-Pt in sensitive cells, but 

only oxali-Pt can activate it in resistant cells. Based on this intersection, five proteins 

were identified: p53, BAX, MAPK pT202_Y204, Mcl-1 and Notch1 (Figure 34B). The 

only positive kinase hit was MAPK pT202_Y204, which is also known as p-ERK1/2-

T202/Y204. These results provided the basis to study the involvement of the MAPK 

pathway; either the ERK1/2 kinase or upstream kinase MEK1/2 in mediating p53 

phosphorylation at Ser20 and p53 transcriptional activation after oxali-Pt treatment. 

Validation of these RPPA results for the kinases by Western blot analysis was 

employed (Figure 34C). In general, total levels of MEK1/2 and ERK1/2 remain largely 

unchanged after cis-Pt and oxali-Pt treatment in A2780 and 2780CP/Cl-16 cells. 

Moreover, levels of MEK1/2-S217/221 phosphorylation increased in A2780 and 

2780CP/Cl-16 after cis-Pt and oxali-Pt treatment. Finally, it was observed that the level 

of ERK1/2-T202/Y204 phosphorylation is lower in 2780CP/Cl-16 cells compared to 

A2780 cells after cis-Pt treatment. In contrast, ERK1/2-T202/Y204 phosphorylation was 
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robust in both cell lines after oxali-Pt treatment (Figure 34C). These results positively 

validate the RPPA data.  
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Figure 34. Analysis of RPPA data to identify the unknown kinase responsible 

for p53 phosphorylation at Ser20 and p53 transcriptional activation by oxali-Pt 
  
A) Diagram for RPPA analysis from A2780 treated with cis-Pt 1µM or oxali-Pt 0.6 µM 

and 2780CP/Cl-16 treated with cis-Pt 5 µM or oxali-Pt 3 µM for 24 hr. Only proteins 

significantly upregulated (up) by Pt treatment were included in the analysis. B) 

Output obtained from the intersection A2780 cis-Pt up, A2780 oxali-Pt up and 

2780CP/Cl-16 oxali-Pt up. C) RPPA data validation through Western blot analysis in 

A2780 treated with cis-Pt 1µM or oxali-Pt 0.6 µM and 2780CP/Cl-16 treated with cis-

Pt 5 µM or oxali-Pt 3 µM for 24 hr. 
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5.2.4. Involvement of ERK1/2 in mediating p53 phosphorylation at Ser20 and p53 

transcriptional activation by oxali-Pt: 

To further explore the involvement of ERK1/2 as the novel kinase required by 

oxali-Pt to exert its mechanism of action, the ERK1/2 SCH772984 inhibitor was used. 

SCH772984 is a novel, specific inhibitor of ERK1/2 with IC50 of 4 nM and 1 nM, 

respectively, which has been shown to inhibit ERK1/2 phosphorylation at T202/Y204 

[163;164]. The capacity of SCH772984 to inhibit ERK1/2-T202/Y204 phosphorylation 

was examined at 0.5 µM, 1.5 µM and 5 µM for 1 hr and 24 hr in 2780CP/Cl-16 (Figure 

35A). The data show 1.5 µM of SCH772984 as the optimal concentration to inhibit 

ERK1/2 phosphorylation at T202/Y204; thus, this concentration was selected for further 

experiments involving SCH772984. The capacity of oxali-Pt to induce p53-Ser20 

phosphorylation and p53 transcriptional activation in cis-Pt resistant 2780CP/Cl-16 cell 

line through an ERK1/2 dependent manner was then evaluated. Thus, 2780CP/Cl-16 

cells were treated with the ERK1/2 inhibitor SCH772984 or DMSO for 1 hr followed by 

cis-Pt or oxali-Pt treatment for 24 hr (Figure 35B). The data shows that SCH772984 

was able to inhibit ERK1/2-T202/Y204 phosphorylation. Moreover, 2780CP/Cl-16 cells 

treated with cis-Pt treatment in combination with SCH772984 for 24 hr exhibited a 

reduction in p53 and p53-Ser15 phosphorylation levels. In addition, induction of p53-

Ser20 phosphorylation and p21 were not observed after cis-Pt treatment in 2780CP/Cl-

16 cells treated with DMSO or SCH772984. Finally, SCH772984 did not impact the 

ability of oxali-Pt to induce p53, p53-Ser15 phosphorylation, p53-S20 phosphorylation 

and p21 expression in 2780CP/Cl-16 cells since high levels of these proteins were 

obtained after oxali-Pt treatment in DMSO and SCH772984 treated cells. As a 
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conclusion, these results demonstrate that ERK1/2 is not the kinase activated by oxali-

Pt to restore p53-Ser20 phosphorylation and p53 transcriptional activity in the cis-Pt 

resistant 2780CP/Cl-16 cell line.  
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Figure 35. Involvement of ERK1/2 in p53 phosphorylation at Ser20 and p53 

transcriptional activation by oxali-Pt 

 

A) Evaluation of ERK1/2-T202/Y204 phosphorylation levels in 2780CP/Cl-16 treated 

with 0.5 µM, 1.5 µM and 5 µM of the ERK1/2 inhibitor SCH772984 for 1 hr and 24 hr. 

B) Evaluation of the p53 signaling pathway in 2780CP/Cl-16 pre-treated with 

SCH772984 1.5 µM for 1 hr and treated with cis-Pt 5 µM or oxali-Pt 3 µM for 24 hr. 
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5.2.5. Involvement of MEK1/2 in p53 phosphorylation at Ser20 and p53 

transcriptional activation by oxali-Pt: 

Since ERK1/2 is not the kinase involved in Ser20 phosphorylation of p53 by 

oxali-Pt in 2780CP/Cl-16 cells, but is itself phosphorylated by MEK1/2, it was rational to 

evaluate the involvement of MEK1/2 as the novel kinase required by oxali-Pt to exert its 

mechanism of action. This was assessed by using the MEK1/2 inhibitor, U0126 [165].To 

determine the appropriate concentration of U0126 to be used in the study, a 

concentration-response relationship of U0126 was evaluated using 1 µM, 5 µM, 10 µM, 

25 µM, 50 µM, 75 µM and 100 µM for 24 hr in 2780CP/Cl-16 cells (Figure 36A). The 

results obtained indicate 1 µM of U0126 as the lowest concentration able to inhibit 

ERK1/2 phosphorylation at T202/Y204. Next, oxali-Pt induction of p53-Ser20 

phosphorylation and p53 transcriptional activation in cis-Pt resistant 2780CP/Cl-16 cell 

line through a MEK1/2 dependent manner was examined. In addition, a second MEK1/2 

inhibitor, namely PD98059, at a concentration reported previously was used [129]. 

Inhibition of MEK1/2 by either U0126 or PD98059 was able to decrease ERK1/2-

T202/Y204 phosphorylation in 2780CP/Cl-16 cells after cis-Pt or oxali-Pt treatment 

(Figure 36B and 36C). Moreover, 2780CP/Cl-16 cells treated with cis-Pt treatment in 

combination with MEK1/2 inhibitors for 24 hr exhibited a reduction in p53 and p53-Ser15 

phosphorylation levels. In addition, inductions of p53-Ser20 phosphorylation and p21 

were not observed after cis-Pt treatment in 2780CP/Cl-16 cells in the presence of 

MEK1/2 inhibitors. In terms of oxali-Pt, a slight reduction in p53 and p53-Ser15 

phosphorylation levels in the presence of MEK1/2 inhibitors in 2780CP/Cl-16 cells was 

observed. Finally, MEK1/2 inhibitors drastically impacted oxali-Pt capacity to induce 
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p53-Ser20 and p21 expression in 2780CP/Cl-16 cis-Pt resistant cells. In summary, 

results show that the ability of oxali-Pt to induce p53-S20 phosphorylation and p21 

expression in 2780CP/Cl-16 cells is decreased in the presence of the MEK1/2 inhibitors. 

Therefore, these results demonstrate that the kinase activity of MEK1/2 plays an 

important role in mediating oxali-Pt capacity to restore p53-Ser20 phosphorylation and 

p53 transcriptional activity in the cis-Pt resistant 2780CP/Cl-16 cell line.  
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Figure 36. Involvement of MEK1/2 in mediating p53 phosphorylation at Ser20 

and p53 transcriptional activation by oxali-Pt 

 

A) Evaluation of ERK1/2-T202/Y204 phosphorylation levels in 2780CP/Cl-16 cells 

treated with 1 µM, 5 µM, 10 µM, 25 µM, 50 µM, 75 µM and 100 µM of the MEK 

inhibitor U0126 for 24 hr. B) Evaluation of the p53 signaling pathway in 2780CP/Cl-

16 cells pre-treated with U0126 10 µM for 1 hr, followed by cis-Pt 5 µM or oxali-Pt 3 

µM treatment for 24 hr. C) Evaluation of the p53 signaling pathway in 2780CP/Cl-16 

cells pre-treated with PD98059 100 µM for 1 hr, followed by cis-Pt 5 µM or oxali-Pt 3 

µM treatment for 24 hr. 
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5.2.6. MEK1/2 expression positively correlates with cell survival and therapeutic 

response to Pt: 

With the demonstration that MEK1/2 plays a role in mediating oxali-Pt 

mechanism of action, it was appropriate to assess whether MEK1/2 inhibition will impact 

Pt cytotoxic response. Therefore, the involvement of MEK1/2 in Pt resistance and 

therapeutic response was investigated in the 2780CP/Cl-16 cell line and ovarian cancer 

patients. Cell survival experiments were performed in 2780CP/Cl-16 in the presence of 

the MEK1/2 inhibitor U0126 followed by cis-Pt or oxali-Pt treatment. Inhibition of 

MEK1/2 promotes a significant decrease in cell survival percentage after cis-Pt 

treatment in 2780CP/Cl-16 cells. In direct contrast, MEK1/2 inhibition promotes a 

significant increase in cell survival after oxali-Pt treatment in 2780CP/Cl-16 cells (Figure 

37A), which supports the relevance of MEK1/2 in the mode of action of oxali-Pt. To 

further investigate if these observations are clinically relevant in ovarian cancer patients, 

the TCGA data was mined for correlation of survival and phospho-MEK1/2 levels. The 

analysis indicates that Pt sensitive or resistant patients having high levels of MEK1/2-S-

217/221 phosphorylation in their tumors had better overall survival following Pt 

treatment than Pt sensitive or resistant patients expressing low levels of MEK1/2-S-

217/221 phosphorylation (Figure 37B). These results indicate that higher expression of 

phospho-MEK1/2 has a prognostic value within the sensitive or resistant cohort.  
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Figure 37. MEK1/2 expression positively correlates with cytotoxic and 

therapeutic response to Pt 

 

A) 2780CP/Cl-16 cells were treated for 1 hr with DMSO or 10 μM of U0126 inhibitor, 

followed by addition of cis-Pt 5 µM or oxali-Pt 3 µM for 3-days at 37ºC. Student’s t 

test was used to determine statistical significance, p value ≤0.05. N=3; Mean ± SD B) 

Kaplan-Meyer curves for ovarian cancer patients grouped into high and low levels of 

MEK1/2 pS217/S221 and further stratified according to  Pt status. The analysis was 

carried out in R (version 3.2.2). All the tests were two-sided and considered 

statistically significant at p value ≤0.05.   
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5.2.7. MEK1/2 phosphorylate p53 at Ser20 in vitro: 

Finally, the capacity of MEK1/2 to phosphorylate p53 at Ser20 directly was 

evaluated by performing a kinase assay with recombinant MEK1, MEK2 and substrate 

p53.  Chk2 was used as an experimental control, since it is already known that Chk2 

induces p53-Ser20 phosphorylation. Indeed, it was observed that Chk2 induced p53 

phosphorylation at Ser20 when incubated with recombinant p53 (Figure 38). Incubation 

of either MEK1 or MEK2 with p53 led to p53-Ser20 phosphorylation (Figure 38). 

Therefore, in a cell free system MEK1/2 is capable of phosphorylating p53 at Ser20. 

This demonstrates that MEK1/2 clearly has potential to phosphorylate p53 at the Ser20 

site. 
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Figure 38. MEK1/2 phosphorylate p53 at Ser20 in vitro 

 

Western blot analysis of p53 and p53-Ser20 phosphorylation in the kinase activity 

assay performed with 25 μM of ATP, 12.5 ng/μL of recombinant p53, 20 ng/μL of 

recombinant MEK1 or MEK2 and immunoprecipitated Chk2 incubated at 30ºC for 20 

min.  
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5.3. Conclusions: 

In this Chapter, the mechanism of action of oxali-Pt was investigated. Overall, 

similar responses seen in Chapter 4 by the A2780 Chk2-/- clones treated with cis-Pt or 

oxali-Pt were observed in cis-Pt resistant 2780CP/Cl-16 cells. In summary, Chk2 was 

expressed in A2780, but not in 2780CP/Cl-16 cells. Furthermore, cis-Pt treatment in 

A2780 was able to induce p53-Ser20 phosphorylation, p21 and Mdm2. However, in 

2780CP/Cl-16 cells, cis-Pt failed to promote a robust increase in p53-Ser20 

phosphorylation, p21 and Mdm2 levels when compared to the levels observed in 

A2780. On the other hand, in both A2780 and 2780CP/Cl-16 cell lines, oxali-Pt 

treatment led to robust induction of p53-Ser20 phosphorylation, p21 and Mdm2 

proteins. RPPA analysis using the restricted parameters of a significant increase in the 

signal obtained from A2780 treated with cis-Pt and oxali-Pt, and 2780CP/Cl-16 treated 

with oxali-Pt led to the identification of the MAPK kinase ERK1/2 as a positive hit. Thus, 

the involvement of the MAPK kinase family, in specific the Ras/MEK1/2/ERK1/2 

pathway, in mediating p53 phosphorylation at Ser20 and p53 transcriptional activation 

by oxali-Pt was investigated. Studies performed in 2780CP/Cl-16 cells with selective 

ERK1/2 inhibitor SCH772984 demonstrated that this inhibitor did not affect oxali-Pt 

capacity to induce p53 phosphorylation at Ser20 and p53 transcriptional activation. 

Thus, these results exclude the possibility of ERK1/2 as the novel kinase utilized by 

oxali-Pt to exert its mechanism of action. However, inhibition of MEK1/2 by the MEK1/2 

specific inhibitors, U0126 or PD98059, in cis-Pt resistant 2780CP/Cl-16 cells treated 

with oxali-Pt led to decrease p53-S20 phosphorylation and p21 expression. Therefore, 

MEK1/2 plays an important role in mediating oxali-Pt capacity to restore p53-Ser20 
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phosphorylation and p53 transcriptional activity. In addition, MEK1/2 inhibition promotes 

a significant increase in cell survival after oxali-Pt treatment in 2780CP/Cl-16 cells, 

which supports the relevance of MEK1/2 in the mode of action of oxali-Pt. In the clinic 

setting, Pt sensitive or resistant ovarian cancer patients with high levels of MEK1/2-S-

217/221 had increased overall survival when compared to corresponding patients 

expressing low levels of MEK1/2-S-217/221. Finally, kinase assay with recombinant 

MEK1/2 and p53 as the substrate has demonstrated that MEK1/2 has potential to 

phosphorylate p53 at the Ser20 site. In conclusion, it was demonstrated in Chapter 4 

that cis-Pt fails to activate p53 due to loss of Chk2 leading to resistance. However, 

oxali-Pt was able to circumvent cis-Pt resistance by rewiring the p53 response. In this 

Chapter, it was identified that MEK1/2 play an important role in mediating p53 response 

by oxali-Pt (Figure 39). These studies are the first to uncover the importance of MEK1/2 

in p53-Ser20 phosphorylation. Such discovery will have a great impact in the way 

patients undergoing Pt-chemotherapy are treated. 
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Figure 39. Conclusions Chapter 5 

 

Cis-Pt fails to activate p53 due to loss of Chk2, leading to resistance. However, oxali-

Pt was able to circumvent cis-Pt resistance by rewiring the p53 response via 

MEK1/2.  
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Chapter 6 

Discussion 
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6.1. Overall Discussion: 

Cis-Pt is currently used as the first line treatment in ovarian cancer patients. 

However, the clinical use of cis-Pt has many drawbacks such as irreversible toxic side 

effects and development of resistance [20]. Therefore, structurally-distinct Pt analogs 

were studied in cis-Pt-resistant ovarian tumor models with the goal of identifying Pt 

compounds able to overcome cis-Pt resistance that could be of clinical relevance. More 

specifically, Pt analogs with different ligand groups, namely 1) Amino, 2) Pyridine and 3) 

DACH based on Fojo et al. [137], were studied. In the beginning of the history of Pt 

complexes, the significance of the cis configuration to obtain anticancer activity almost 

became a dogma since transplatinum compounds were thought to be inactive 

[159;166]. Along with this concept, our studies have reported trans-Pt compound 

exhibiting the highest IC50 values in all the cis-Pt resistant cell lines. Interestingly, newer 

classes of transplatinum compounds containing bulky amino planar ligands (instead of 

amino ligands) have been shown to retain activity against cis-Pt resistant cells from 

various NCI-60 cell types [137]. Moreover, trans-PyPt has been previously shown to be 

active in leukemia and human ovarian tumor cells resistant to cis-Pt [137;167]. Our 

cytotoxic studies demonstrated that trans-PyPt was able to circumvent cis-Pt resistance 

in all cis-Pt resistant ovarian cancer cell lines. This increase in potency was observed to 

be intrinsic for the trans isomer since the activity exhibited by cis-PyPt was similar to the 

one obtained for cis-Pt. As a consequence, cis-PyPt was found to be cross-resistant to 

cis-Pt. Thus, these results confer a unique characteristic for the trans compounds with 

bulky amino planar ligands as is the case for trans-PyPt, which is not conferred by its 

cis isomer, cis-PyPt, nor trans-Pt in which the carrier ligand is an amino group. 
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Circumvention of cis-Pt resistance by trans-PyPt was found to be driven by its 

high cellular concentration. In fact, from all Pt analogs, trans-PyPt exhibited the greatest 

Pt cellular uptake and Pt-DNA adducts concentration values. Studies performed in 

leukemia cells have found similar Pt cellular uptake results [168]. It was noted that 

trans-Pt and cis-PyPt also exhibited high Pt uptake values. Therefore, the greater Pt 

uptake observed for trans-PyPt compound could be a consequence of an addition from 

its trans configuration and the hydrophobic pyridine ligand, which in turn results in high 

Pt-DNA adducts. In fact, this greater cellular uptake and DNA adduct formation by trans-

PyPt was shown to be due to its greater lipophilicity and reactivity. Lipophilic 

compounds are mostly found in the hydrophobic phase [139]; thus, it is likely that the 

lipophilicity of trans-PyPt favors its transport through the cell membrane allowing this 

compound to accumulate in high concentrations inside the cell. Reactivity studies of Pt 

compounds towards calf thymus DNA have reported the order of binding affinity as: 

trans-Pt > cis-Pt > cis-PyPt > trans-PyPt [167]. Such results suggest that trans-PyPt is a 

stable compound. In contrast, we found that among all Pt analogs, trans-PyPt formed 

greater DNA-Pt adducts in cis-Pt sensitive and resistant cell lines. Therefore, it would be 

expected that trans-PyPt will exhibit high binding capacity towards DNA in a cell free 

system. In fact, our studies show that trans-PyPt is a highly reactive compound, even 

more than trans-Pt. The high reactivity of trans-PyPt raises a barrier in its delivery to the 

tumor site since it is expected that most of the compound will become deactivated in the 

bloodstream. In fact, it has been shown that the inactivity of trans-Pt compound in vitro 

and in vivo is based on its chemical reactivity since most of the compound becomes 

deactivated by side reactions before targeting the DNA [15]. In addition, the reactivity of 
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cis-PyPt was similar to cis-Pt, thus, it appears that the high reactivity is due to the trans 

configuration of the compound independently of the ligand group.  

 

The cytotoxicity observed in cis-Pt resistant ovarian cancer cell lines by trans-

PyPt could be a result of its high concentrations inside the cell, which could trigger the 

activation of multiple mechanisms, including those that may be independent of DNA 

damage signaling pathway. Nevertheless, trans-PyPt compound was found to promote 

greater ICL index levels. The capacity of trans-PyPt to promote ICLs makes this 

compound very attractive since such capacity is not shared by cis-Pt. In fact, evidence 

shows that cis-Pt mainly produces intrastrand cross-links between neighboring purine 

residues, specifically 60% on dGG and 30% on dAG [18]. On the other hand, trans-Pt 

has been found to mainly promote ICLs and monofunctional adducts [159]. Trans-Pt 

compound can form high levels of ICLs because it is sterically restricted and is unable 

to crosslink neighboring bases in a DNA strand as with cis-Pt [159]. Our results also 

indicate that the pyridine ligand adds to steric restriction of the compound resulting in 

substantially greater ICLs levels. As a consequence, the capacity of trans-PyPt to form 

ICLs could also account for the toxicity obtained in cis-Pt resistant ovarian cancer cell 

lines. Thus trans-PyPt has been shown to differ from cis-Pt in its molecular 

pharmacologic capacity. These intrinsic DNA damage capacity of trans-PyPt, together 

with its different carrier ligand group (pyridine vs. amino) could result in important 

mechanistic implications. Thus, efforts by researchers in modifying and optimizing trans-

PyPt chemical structure to increase its stability could enhance its clinical potential.  
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Along with trans-PyPt, oxali-Pt and DAP were also able to circumvent cis-Pt 

resistance in all cis-Pt resistant ovarian cancer cell lines. In fact, these two compounds 

have shown favorable cytotoxic and antitumor activity against tumor models that 

demonstrate cis-Pt resistance [49;137]. In addition, oxali-Pt treatment has shown 

positive response in Phase II and Phase III clinical trials of advanced ovarian cancer 

patients that do not respond to cis-Pt [133]. Furthermore, oxali-Pt is currently used in 

the treatment of colon cancer, a disease in which cis-Pt treatment has proven to be 

ineffective [169]. On the other hand, DAP has been shown to be a novel Pt compound 

effective against cis-Pt –sensitive and –resistant ovarian cancer cells [170]. However, 

the clinical potential of DAP still relies on the investigation of its mechanism of action. 

One difference between cis-Pt and DAP, recently reported by our lab, is that at 18 hrs 

cis-Pt induces G2/M arrest but DAP induces G1 arrest [171]. Hence, there are some 

differences between DAP and cis-Pt as regards their mechanisms of action. Taken 

together, oxali-Pt and DAP are attractive compounds for the treatment against ovarian 

cancers that have failed to respond to cis-Pt treatment.  

 

Interestingly, the capacity of oxali-Pt and DAP to overcome cis-Pt resistance 

does not rely on increased Pt uptake or DNA-Pt adducts formation. In fact, oxali-Pt and 

DAP exhibited the lowest Pt uptake and, in turn, the lowest DNA-Pt adducts between all 

Pt compounds. This low Pt uptake of oxali-Pt and DAP could be due to their lipophilicity. 

Therefore, modification of the chemical structure of these Pt compounds to increase 

their lipophilicity could enhance their Pt uptake. It has been shown that conjugation of 

oxali-Pt linked to texaphyrin results in higher Pt uptake when compared to oxali-Pt [147]. 
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Whether increasing oxali-Pt or DAP cellular uptake could enhance their cytotoxic 

capacity still needs to be addressed. However, it is worth highlighting that low 

concentrations of Pt uptake and DNA-Pt adducts from oxali-Pt and DAP were sufficient 

to result in high cytotoxic activity. In addition, oxali-Pt and DAP exhibited the lowest 

ICLs index values between all compounds, which correlated with their capacity to form 

DNA-Pt adducts. Oxali-Pt has been shown to induce 3 types of crosslinks: DNA 

intrastrand crosslinks, DNA interstrand crosslinks and protein crosslinks. However, 

oxali-Pt predominantly induces similar DNA lesions as cis-Pt in the form of dGG and 

dAG intrastrand crosslinks [172]. Thus, formation of ICLs seems less important in the 

mechanism of action of oxali-Pt and DAP for overcoming cis-Pt resistance.  

 

The low capacity of oxali-Pt and DAP to interact with DNA suggests that the 

cytotoxic activity of these compounds could be driven by their capacity to form highly 

toxic DNA lesions, in such a way that even low DNA damage is potent enough to trigger 

cell death. In fact, Woynarowski et al. reported that oxali-Pt-induced DNA-Pt adducts in 

leukemia cells were significantly lower than the respective lesions induced by equimolar 

concentrations of cis-Pt, regardless of oxali-Pt increased cytotoxicity [172]. These 

paradoxical findings suggest that cis-Pt-induced DNA damage may differ from that of 

oxali-Pt and DAP. A possible explanation of the capacity of these compounds to induce 

different DNA damage relies in their different chemical structures. In general, Pt 

compounds contain a central Pt atom with oxidation state (II) and have a square planar 

configuration with a chemical structure of [Pt(X)2(L)2] (X= equatorial leaving group and 

L= equatorial carrier amine ligand) [15]. In the case of cis-Pt L= NH3 and X= Cl. In 
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contrast, oxali-Pt possess L= DACH and X= oxalate. DAP is a Pt (IV) compound with a 

tetrahedral chemical structure [Pt(AL)2(X)2(L)2] (AL= axial ligand) with L= DACH, X= Cl 

and AL= acetate. Thus, oxali-Pt and DAP share the same L group. The main difference 

between these two compounds is that DAP is a Pt (IV) compound. Pt (IV) compounds 

have been shown to have greater stability and lipophillicity than their Pt (II) counterparts 

[139]. Indeed, our studies indicate that DAP exhibited the greater half-life between all 

compounds, including its Pt (II) counterpart oxali-Pt. In addition, DAP exhibited greater 

lipophillicity than oxali-Pt. However, Pt (IV) compounds are activated by their reduction 

to Pt (II), and it is the Pt (II) complex which interacts with DNA [140]. Therefore, oxali-Pt 

and DAP are expected to produce the same DNA damage: DACH-Pt-DNA adducts. In 

contrast, cis-Pt will produce cis-diammine-Pt-DNA adducts. Although cis-Pt and oxali-Pt 

produce the same type of intrastrand crosslinks, the bulky DACH moiety may lead to 

different biological properties. In fact, DACH-Pt-DNA adducts have been shown to be 

more effective at inhibiting DNA synthesis and more cytotoxic than cis-diammine-Pt-

DNA adducts formed by cis-Pt [133]. In direct contrast with cis-diammine-Pt-DNA 

adducts, DACH-Pt-DNA adducts formed by oxali-Pt and DAP do not depend on the 

recognition by HMGB and MMR proteins, resulting in greater irreversibility of the lesions 

[133]. As a consequence, cis-diammine-Pt-DNA adducts and DACH-Pt-DNA adducts 

induce the activation of independent DNA damage signaling pathways, but which 

converge on p53-dependent apoptosis. Such mechanism could provide insights in the 

circumvention of cis-Pt resistance.  

 



167 
 

The design of novel Pt compounds circumventing cis-Pt resistance should take 

into account three basic fundaments: 1) proper pharmacokinetic and toxicity properties, 

2) its mechanisms of action and the corresponding target biomolecules and 3) its 

possible mechanisms of resistance [173]. Thus, the ideal Pt compound is that exhibiting 

the best pharmacokinetics properties when compared to cis-Pt in terms of: 1) increased 

stability, 2) lower cytotoxic values in resistant cell lines, 3) higher Pt uptake and DNA 

damage formation and 4) different type of DNA damage. All these parameters are 

needed to trigger the activation of a signaling cascade pathway resulting in apoptosis. 

Therefore, from a mechanistic point of view, the ideal Pt compound should be able to 

produce a DNA damage resulting in the activation of different targets from those 

activated by cis-Pt since this will allow the circumvention of cis-Pt resistance. For the 

design of Pt (IV) compounds it is best to oxidize the already proven active Pt (II) 

compounds, which may improve the compound’s stability, lipophilicity, thus, enhancing 

its ability to circumvent cis-Pt resistance. This stems from the fact that ultimately the Pt 

(IV) compound activity relies on its reduction to Pt (II), since it is the Pt (II) complex 

which confers the cytotoxic mechanism of action [141].  

 

The p53 pathway has been proven to play a major role in mediating Pt-

chemotherapy response. This is best illustrated by the significant loss in sensitivity 

towards cis-Pt treatment after siRNA-mediated silencing of p53 in TGCT cells [22;23]. 

Therefore, loss of p53 function leads to cis-Pt resistance. The most popular mechanism 

that directly impedes p53 function is through mutation in the p53 protein as occurs in 

50% of all human cancers [161]. Thus, it would be reasonable to think that mutation in 
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the p53 protein will lead to a Pt resistant phenotype. In our studies, all cis-Pt resistant 

cell lines contained p53 missense mutations (heterozygous V172F mutation in 

2780CP/Cl-16, V172F and G266R heterozygous mutations in OVCAR-10 and P72R 

homozygous mutation in HEY and OVCA-433). Based on the transcriptional activity in a 

yeast functional assay (FASAY) from 

http://p53.fr/TP53Mutload/database_access/search.php, the P72R mutant has p53 wild-

type like activity. However, V172F and G266R mutations, both were detected to have 

LOF. Nevertheless, it was reported that the mutant p53V172F in 2780CP/Cl-16 cells 

responds normally to ionizing radiation by becoming stabilized and then transactivating 

the target p21 gene [146]. Along this concept, our studies also demonstrate that these 

p53 mutations did not prevent p53 stabilization and transcriptional activity when 

challenged with cis-Pt or oxali-Pt. Therefore, mutation of p53 did not prevent its 

functional activity and, thus, it is not the reason for the development of cis-Pt resistance 

in the ovarian cancer cell lines. Similarly, a previous report has demonstrated that the 

mutant p53V172F in 2780CP/Cl-16 cells become stabilized and transactivated by ionizing 

radiation [146]. Moreover, a detailed study evaluating p53 transcriptional activity in 

2,314 distinct p53 mutants, representing all possible p53 missense mutations, revealed 

that 63.9% of p53 mutants retained p53 activity comparable to that of wild-type p53 [98]. 

Our results clearly demonstrate that not all p53 mutants are inactivating or 

dysfunctional. These findings raise a concern in utilizing TP53 status as a biological 

marker to predict chemotherapeutic response. 
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According to TCGA, TP53 is the most commonly mutated gene in HGSOC 

patients, exhibiting a mutation rate of 86% [94]. However, we have found that p53 

status, wild-type or mutant, did not provide any advantage capabilities in terms of 

survival response in HGSOC patients treated with Pt chemotherapy. In accordance with 

our findings, results gathered from many clinical studies that attempted to correlate 

mutant p53 with chemoresistance were contradictory with each other [91-93]. Such 

discrepancies could be due to incomplete analysis since we have shown that mutations 

in p53 alone cannot provide definite information regarding its functional activity. 

Therefore, p53 status is not a reliable marker to predict chemotherapeutic outcome in 

ovarian cancer patients and classification of p53 status goes beyond the typical and 

simplistic categories of wild-type vs. mutant. In fact, we found in HGSOC patients using 

the TCGA data bank that 21% of p53 missense mutations were predicted by FASAY to 

have either completely or partial p53 functional activity (Appendix 4). In addition, as 

demonstrated by our data, the G266R p53 mutation in OVCAR-10 was predicted by 

FASAY to be functionally inactive, however, after Pt treatment transcriptional activity of 

p53 was obtained. Hence, there could be a possibility that the p53 transcriptional 

activity could be restored for the other 79% of p53 missense mutations in patients after 

Pt treatment. These results denote that even from a clinical level p53 mutation does not 

equal inactivation. As a consequence, we propose that each p53 molecule should be 

classified by their functional activity (functional, LOF or GOF) in order to better 

understand and predict its biological role and response to Pt treatment.  

 



170 
 

We further study the role of p53 in mediating Pt response in p53-/- ovarian cancer 

clones generated by the noble CRISPR/Cas9 technique. Interestingly, we found that 

p53 had a dual role in mediating response to Pt treatment. In the case of cis-Pt, p53 

mediated sensitivity in A2780 and 2780CP/Cl-16 clones but resistance in OVCAR-10 

and HEY clones. However, p53 was found to be essential to mediate sensitivity to oxali-

Pt treatment in all cell lines. These results are the first to show that the same p53 

molecule (in the case of OVCAR-10 and HEY cell lines) can exert different cytotoxic 

responses depending on the Pt compound used. Thus, these Pt compounds appeared 

to be regulating the transcriptional activity of a given p53 molecule differently and such 

regulation dictates the way in which p53 mediates Pt response. In fact, we found that 

even though cis-Pt and oxali-Pt treatment led to p53 expression and transcriptional 

activity, oxali-Pt was able to trigger a more robust p53 response, which led to greater 

transcriptional activity (as indicated by p21 levels) compared to cis-Pt in resistant cell 

lines. These findings show that different chemotherapeutic agents, such as oxali-Pt, can 

reactivate a given p53 molecule, wild-type or mutant, as long as it can exhibit wild-type 

p53-like activity.   

 

It has been shown that p53 transcriptional activity is highly dependent on p53 

post-translational modifications, mainly through phosphorylation events [31]. 

Phosphorylation of p53 at Ser15 and Ser20 has been reported as most critical for its 

anti-proliferative and apoptotic functions [81;82]. We have found that oxali-Pt triggered a 

better p53-Ser20 phosphorylation response than cis-Pt in all cell lines. However, there 

was no specific pattern observed in differences of Ser15 induction between the two Pt 
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compounds. Furthermore, the capacity of cis-Pt and oxali-Pt to induce Ser20, but not 

Ser15, correlated with their capacity to induce p53 transcriptional activity. A study 

performed in cell lines from UV-induced murine tumors showed that mutant p53 is 

constitutively phosphorylated at Ser15, but not Ser20, and such phosphorylation 

contributed mainly to mutant p53 stabilization [156]. Therefore, Ser15 phosphorylation is 

a good marker to determine p53 stabilization. In addition, we showed in A2780 p53-/- 

cells transfected with wild-type p53, mutant p53-S20A (constitutively dephosphorylated 

mimic) or mutant p53-S20D (constitutively phosphorylated mimic) that Ser20 

phosphorylation significantly enhanced p53 transcriptional activity. These results 

corroborate that Ser20 phosphorylation is a good marker to determine p53 

transcriptional activity. There are different ways in which Ser20 phosphorylation 

enhances p53 transcriptional activity. For instance, Ser20 phosphorylation is important 

to disrupt the Mdm2-p53 binding complex, which allows the free p53 to interact with 

coactivators, such as p300 [174]. In fact, Ser20 phosphorylation has been shown to play 

a critical role in promoting p53 activation by stabilizing the binding of p300 to p53. The 

p53-p300 complex is essential for sequence-specific DNA-dependent acetylation of 

p53, which allows the complex to clamp at a specific DNA site [175;176]. Finally, an 

inverse correlation between Mdm4 levels and p53-Ser20 phosphorylation was observed 

in our studies. Thus, it would be interesting to study the role of Ser-20 phosphorylation 

in mediating p53-Mdm4 interaction. 

 

Pt-induced DNA damage triggers p53 phosphorylation via the activation of 

specific kinases [31]. Studies have shown that downregulation of Chk2, a kinase 



172 
 

reported to phosphorylate p53 at Ser20 after cis-Pt treatment, leads to resistance 

[99;177]. In our studies, we found that Chk2 protein levels were substantially lower in all 

cis-Pt resistant cell lines (2780CP/Cl-16, OVCAR-10, HEY, and OVCA-433) relative to 

cis-Pt sensitive cell line (A2780). Furthermore, downregulation of Chk2 in cis-Pt 

resistant cells occurred at the transcriptional level. MicroRNAs have been shown to play 

an important role in regulation of cell cycle checkpoint and apoptotic proteins [178]. 

Expression of microRNAs -340 and -425, which were predicted to interact with CHEK2 

transcripts, were detected in A2780, 2780CP/Cl-16, OVCAR-10, HEY and OVCA-433 

by RT-PCR. However, miR-340 and miR-425 were not implicated in the mechanism 

responsible for decreased levels of CHEK2 transcripts since knock-in of these 

microRNAs did not lead to decrease levels of Chk2 in A2780 cells. It has been 

previously reported in gliomas and non-small cell lung cancer that Chk2 downregulation 

is due to promoter methylation [152;153]. However, our bisulfite pyrosequencing and 

MSP studies indicated that decrease in levels of CHEK2 transcripts is not due to 

promoter methylation since no differences in CHEK2 methylation between cis-Pt 

sensitive and resistant cells were observed. Specifically, no cell line exhibited 

methylation of CHEK2 at exon 1. In contrast, all cell lines exhibited methylation of 

CHEK2 at exon 2, including cis-Pt sensitive cell line A2780. The ideal scenario would 

have been to observe high CHEK2 exon methylation in cis-Pt resistant cells since low 

levels of Chk2 were found in these cells. The results gathered for A2780 cells were 

found to contradict the data published by Zhang et al {Zhang, 2004 1771 /id}. In fact, the 

MSP studies for CHEK2 performed in non-small cell lung cancer by this lab included 

A2780 cells as control and it was reported that CHEK2 exon 2 was not methylated in 
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this cell line. However, in their studies a very light band for CHEK2 methylation at exon 

2 was observed in A2780 cells. It could be possible that methylation levels of CHEK2 at 

exon 2 in A2780 are substantially lower in comparison with non-small cell lung cancer 

cell lines but not with cis-Pt resistant ovarian cancer cell lines, thus, leading to different 

results. Nevertheless, it has been reported that expression of Chk2 in lymphoid 

malignancies was restored following treatment with histone deacetylase inhibitors or 

with DNA methyltransferase inhibitors [179]. Therefore, the epigenetic changes in the 

form of histone modifications should be considered as a valuable mechanism leading to 

decreased levels of Chk2 in cis-Pt resistant cell lines.  

  

Our lab has previously reported that knock-down of Chk2 in A2780 cells reduced 

cis-Pt ability to induce p53 and p21 [171]. However, whether Chk2 is involved in cis-Pt 

sensitivity via p53 Ser20 phosphorylation and activation has not been investigated. Cis-

Pt treatment of A2780 control and Chk2–/– clones revealed that Chk2 knock-out resulted 

in a dramatic decrease in p53-Ser20 phosphorylation and p21 levels. Remarkably, loss 

of Chk2 did not affect the ability of oxali-Pt to induce p53-Ser20 phosphorylation and 

p21 expression. Moreover, loss of Chk2 in A2780 led to significantly decreased cis-Pt 

and oxali-Pt sensitivities (i.e. increased IC50) when compared to controls, thus indicating 

that loss of Chk2 leads to dual Pt resistance. Such results were expected since both Pt 

compounds were able to induce Chk2-Thr68 phosphorylation. In fact, cis-Pt was found 

to induce higher levels of Chk2-Thr68 phosphorylation compared to oxali-Pt, and 

therefore cis-Pt mechanism of action is more dependent on Chk2. We have shown that 

a mechanism contributing to cis-Pt resistance in A2780 Chk2-/- clones is the inability of 
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cis-Pt to activate p53 due to loss of Chk2. However, since oxali-Pt capacity to induce 

p53 activity is not dependent on Chk2, the resistance observed in A2780 Chk2-/- clones 

is mediated through p53 independent mechanisms. In fact, Chk2 has been shown to 

regulate apoptosis through different proteins, such as PML and E2F-1 [180]. 

Furthermore, exogenous re-expression of Chk2 in A2780 Chk2-/- clones restored cis-Pt 

and oxali-Pt sensitivity and the ability of cis-Pt to induce p53 transcriptional activity. A 

greater sensitivity was observed with cis-Pt treatment, which supports that cis-Pt is 

more dependent on Chk2. Analysis from the TCGA data bank of HGSOC Pt sensitive or 

resistant patients clustered into two groups according to their Chk2 expression (high 

versus low), showed that Pt-sensitive patients with high levels of Chk2 had greater 

overall survival. In agreement with our findings, it has been reported that ovarian cancer 

cell lines expressing low levels of Chk2 have reduced Pt sensitivity [177]. In addition, 

Chk2 has been reported as a good biomarker for Pt chemotherapy in advanced stage 

HGSOC patients [181]. Taken together, we have shown that Chk2 is essential for cis-

Pt-induced p53-Ser20 phosphorylation and p53 transcriptional activity, and is an 

important mediator of cis-Pt chemotherapy sensitivity. Oxali-Pt, however, retained the 

capacity to induce p53-Ser20 phosphorylation and p53 transcriptional activity 

independently of Chk2.    

 

Finally, we investigated the involvement of the Ras-MEK1/2-ERK1/2 pathway as 

a possible mechanism mediating oxali-Pt-induced p53-Ser20 phosphorylation and p53 

transcriptional activity since the intersections made to the RPPA data gathered for 217 

proteins from A2780 and its isogenic 2780CP/Cl-16 cells treated with cis-Pt or oxali-Pt 
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identified ERK1/2 kinase as the only positive hit.  ERK1/2 has been previously shown to 

induce p53-Ser15 phosphorylation in UV-induced mouse skin tumors [156]. However, 

there is no evidence indicating that ERK1/2 is capable of inducing p53-Ser20 

phosphorylation. Our data demonstrated that ERK1/2 is not directly involved in oxali-Pt 

mechanism of action since treatment of 2780CP/Cl-16 cells with the ERK1/2 inhibitor 

SCH772984 did not impact the ability of oxali-Pt to induce p53-Ser20 phosphorylation or 

p21 expression. In accordance with published data [156], inhibition of ERK1/2 promoted 

a reduction in the capacity of cis-Pt, but not oxali-Pt, to induce p53-Ser15 

phosphorylation.  

 

Moving upstream in the MAPK signaling pathway, we discovered that the ability 

of oxali-Pt to induce p53-Ser20 phosphorylation and p21 expression in 2780CP/Cl-16 

cells drastically decreased in the presence of MEK1/2 inhibitors U0126 and PD98059. 

Previous studies performed in A2780 cells reported that PD98059 decreased cis-Pt 

capacity to induce p53-Ser15 phosphorylation and p21 levels and mistakenly addressed 

this effect to ERK1/2 [129]. As discussed, PD98059 is a selective MEK1/2 inhibitor; 

therefore, any effect should have been ascribed to MEK1/2. However, effective 

inhibition of MEK1/2 is assessed by probing for ERK1/2-T202/Y204 phosphorylation, 

which could have led to the wrong interpretation. We have provided solid evidence to 

demonstrate, by using multiple MAPK inhibitors, that MEK1/2, but not ERK1/2, is the 

key player in mediating oxali-Pt-induced p53 activation. Another gap in their study is the 

absence of p53-Ser20 phosphorylation data. In our studies, we have shown that p53-

Ser20, but not Ser15, plays a major role in p53 transcriptional activity. In addition, we 
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have shown that both MEK1/2 inhibitors U0126 and PD98059 decreased the ability of 

oxali-Pt to induce p53-Ser20 phosphorylation. Therefore, the decreased capacity of cis-

Pt to induce p21 levels in A2780 cells in the presence of MEK1/2 inhibitor PD98059 

reported by Persons et al. {Persons, 2000 2004 /id} could be due to p53-Ser20 

phosphorylation. Up to date there is no literature evidence that shows that MEK1/2 

induces p53-Ser20 phosphorylation. For the first time, to our knowledge, we have 

demonstrated by performing a kinase activity assay that MEK1/2 has the potential to 

directly phosphorylate p53 at the Ser20 site.  

 

Furthermore, MEK1/2 inhibition promoted a significant increase in cell survival in 

2780CP/Cl-16 cells after oxali-Pt treatment, but not cis-Pt treatment, which strongly 

supports the crucial role of MEK1/2 in the mode of action of oxali-Pt-induced 

cytotoxicity. Along with our findings, there are many studies showing that inhibition of 

MEK1/2 increases tumor response to cis-Pt [182;183]. In such case MEK1/2 leads to 

resistance possibly by activating transcription factors implicated in the induction of 

genes that increase thiol-containing molecules and/or upregulate DNA adduct repair 

pathways [20]. One major limitation in our studies was having performed the MEK1/2 

studies in a single resistant cell line. Therefore, to further strengthen our MEK1/2 

findings it will be necessary to perform similar experiments in the other cis-Pt resistant 

cell lines: OVCAR-10, HEY and OVCA-433. Additionally, for these studies results from 

the cis-Pt sensitive A2780 cell line were not included since this cell line contains high 

levels of Chk2, which could have affected the signaling pathway under study. 

Nevertheless, MEK1/2 was found to have a significant prognostic value in HGSOC 
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patients. Survival analysis on HGSOC Pt-sensitive or -resistant patients with high 

versus low MEK1/2-Ser217/Ser221 phosphorylation revealed that both Pt-sensitive and 

-resistant patients had overall increased survival if tumors expressed high levels of 

MEK1/2-Ser217/Ser221 phosphorylation following Pt chemotherapy. Our studies are 

the first one to identify MEK1/2 as a novel biomarker for oxali-Pt-induced p53-Ser20 

phosphorylation, p53 transcriptional activity and chemotherapy sensitivity.  

 

The different signaling pathway triggered by cis-Pt or oxali-Pt via Chk2 or 

MEK1/2, respectively could be due to the different DNA damage produce by these two 

Pt compounds. Although cis-Pt and oxali-Pt mainly produce DNA damage in the form of 

intrastrand crosslinks, mainly the 1,2-GG intrastrand form, the different carrier ligand 

groups from these compounds can affect differently the degree of the DNA bending and 

unwinding angles [19]. In fact, it has been reported that in a 1,2-GG intrastrand adduct, 

cis-Pt promotes in the DNA a bending of 34º and unwinding of 20º, whereas oxali-Pt 

promotes a bending of 31º or 23º in the [Pt(R,R-DACH)]2+ enantiomer and unwinding of 

19º or 16º depending in the in the [Pt(S,S-DACH)]2+ enantiomer [184]. Therefore, their 

capacity to distort the DNA differently results in the recognition by different DNA 

damage sensor proteins. For instance, cis-Pt-DNA adducts, but not oxali-Pt, are highly 

recognized by HMGB and MMR proteins [19]. Therefore, if the signaling pathway that 

recognized cis-Pt DNA damage has been shut down for whatever reason, the capacity 

of oxali-Pt to form different DNA distortion could result in circumvention of cis-Pt 

resistance by using an alternate signaling pathway.  
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It could be possible that eventually ovarian tumors could give rise to oxali-Pt 

resistance.  However, other Pt compounds with different carrier ligands groups that 

could promote different DNA distortions could circumvent oxali-Pt resistance. In fact, a 

study by Tito Fojo et al. [137] classified 107 Pt compounds into 12 groups based on 

their chemical structures and distinctive activity profiles against 60 diverse NCI human 

cancer cell lines including cis-Pt and oxali-Pt ovarian cancer cell lines. In this study, they 

reported that Pt compounds from the same group were cross-resistant with each other 

as was the case for cis-Pt and carboplatin. However, Pt compounds from a different 

group were non-cross-resistant with each other as was the case for cis-Pt and oxali-Pt. 

Interestingly, further structure-activity studies of 38 Pt compounds from 4 groups using 

A2780 (1A9) E-80 cells (highly resistant to cis-Pt (150-fold) and much less resistant to 

oxali-Pt (9-fold)) and A2780 (1A9) OX60 cells (highly resistant to oxali-Pt (733-fold) and 

considerably less resistant to cis-Pt (112-fold)) showed that the compounds in the 

Pyridine and Mixed Groups retained activity against these resistant cell lines [137]. 

Moreover, correlation studies suggest that Pt compounds in different groups act through 

the activation of distinct principal targets.  

 

In conclusion, these novel findings provide a better understanding of how Pt 

chemotherapy works in relation with p53 status, and thus, establish a foundation for 

personalized therapy and combinational treatment depending on the tumor gene 

expression profile. Specifically, this study identified Chk2 and MEK1/2 as important 

biomarkers mediating differential Pt responses by cis-Pt and oxali-Pt, respectively, 

which also uncovers connection between ubiquitously studied cellular pathways. 
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Specifically, patients treated with cis-Pt will be expected to rely on Chk2 activity to 

promote p53-Ser20 phosphorylation and transcriptional activity.  Alternatively, oxali-Pt 

induces p53-Ser20 phosphorylation and transcriptional activity through MEK1/2. The 

fact that cis-Pt and oxali-Pt work through different kinases to activate p53 will help 

determine which patients will benefit from either treatment and will offer alternative 

treatment options to HGSOC patients (Figure 40). These discoveries will ultimately 

impact the way in which HGSOC patients and perhaps other patients undergo Pt 

chemotherapy treatment, ultimately enhancing survival of patients.  
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Figure 40. Targeted Pt chemotherapy in ovarian cancer patients 

 

Cis-Pt and oxali-Pt work through different kinases to activate p53, Chk2 or MEK1/2, 

respectively. Patients exhibiting differences in expression of Chk2 or MEK1/2 can be 

clustered in order to determine the predicted beneficial Pt targeted chemotherapy. 

These alternative treatment options will enhance the survival of HGSOC patients. 
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Future Directions 
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7.1. Future Directions: 

 

1. Enhance the stability of trans-PyPt:  

 

Trans-PyPt exhibited intrinsic molecular pharmacologic characteristics when 

compared to the other Pt analogs (cis-Pt, trans-Pt, cis-PyPt, oxali-Pt and DAP). 

However, trans-PyPt was found to be the most reactive compound within this group, 

which is an obstacle for its delivery to the tumor site since most of the compound will 

become inactivated in the bloodstream by aquation reactions before reaching its DNA 

target. Therefore, it would be interesting to further modify and optimize the chemical 

structure of trans-PyPt through synthesis to increase its stability. Our studies showed 

that DAP, a Pt (IV) compound, was the most stable among all Pt compounds. In fact, 

axial ligands in Pt (IV) compounds have been shown to enhance the compound’s 

stability and lipophillicity [96;140]. With the goal to make a more stable compound, we 

oxidized trans-PyPt by adding hydroxyl groups, as axial ligands, giving rise to trans-

Pt[(Py)2Cl2](OH)2 (IV). However, the stability of this compound slightly increased when 

compared to trans-PyPt but not with the rest of the Pt analogs. Therefore, substitution 

with other chemical groups should be considered for further optimization of trans-PyPt. 

Some of the axial ligand groups that could be considered to develop a more stable 

trans-PyPt (IV) compound are: acetate, propionate, butyrate, valerate, hexanoate, 

heptanoate and carboxylic acids [140;170]. 
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2. Evaluation of p53 GOF capacity in OVCAR-10 and HEY cell lines:  

 

It was shown that p53 knock-out in OVCAR-10 and HEY clones led to a significant 

decrease in cis-Pt IC50 values, indicating that the presence of potentially functional p53 

in these cell lines is associated with cis-Pt resistance. Therefore, the capacity of p53 to 

exert GOF through inactivation of transcriptional factors that have an important role in 

the cell death pathway (i.e. p63 and p73) and/or transcriptional activation or repression 

of genes whose expression is not normally regulated by wild-type p53 (BFGF, EGFR, 

HSP70 and C-Myc) [68] should be evaluated through Western blot and/or RT-PCR in 

OVCAR-10 and HEY cell lines after cis-Pt treatment. BFGF and EGFR have been 

shown to play a fundamental role in enhancing tumor growth, invasion and metastasis 

[185;186]. In specific, BFGF and EGFR lead to resistance by activating pathways 

involve in cell survival, such as RAS–RAF–MAPK, PI3K–AKT, STAT and PLCγ 

[187;188]. Similarly, C-Myc has been identified as an oncogene. C-Myc expression is 

obtained from many growth promoting signal transduction pathways (i.e. MAPK) and it 

acts as a transcription factor regulating the expression of genes involved in cell 

proliferation [189]. In addition, oxali-Pt should be included in parallel studies to compare 

it with cis-Pt results, since a significant increase in oxali-Pt IC50 values in all p53 knock-

out cell lines was obtained (including OVCAR-10 and HEY), indicating that the p53 in 

these cells is functional and leads to sensitivity. Thus, it would be expected that only cis-

Pt, but not oxali-Pt, will be capable to exert p53 GOF in OVCAR-10 and HEY. 
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3. Characterization of p53-Thr18 phosphorylation in Pt mode of action:  

 

We showed that Chk2 is essential for cis-Pt induced p53-Ser20 phosphorylation and 

p53 transcriptional activity, and is an important mediator of cis-Pt chemotherapy 

sensitivity. Chk2 has been shown to also induce p53 phosphorylation at multiple sites, 

such as Thr18 [31]. In addition, p53-Thr18 phosphorylation has been shown to play an 

important role in inducing p53 transcriptional activity [81]. Therefore, it would be 

interesting to investigate the role of p53-Thr18 phosphorylation in mediating cis-Pt and 

oxali-Pt response in sensitive and resistant ovarian cancer cell lines. Levels of p53-

Thr18 phosphorylation should be evaluated in the studies performed for p53-Ser15 and 

p53-Ser20 phosphorylation. It is expected that p53-Thr18 phosphorylation exhibit a 

similar response as the one obtained for p53-Ser20 phosphorylation. Therefore, cis-Pt 

is expected to induce p53-Thr18 phosphorylation in a Chk2 dependent manner, thus, it 

is highly expected that cis-Pt  capacity to induce levels of p53-Thr18 are low in cis-Pt 

resistant cell lines, which were shown to have low levels of Chk2. It is important to 

mention that it is possible that cis-Pt mechanism of action could be inducing 

compensatory pathways through activation of different kinases specific to induce p53-

Thr18 phosphorylation, in which case different results could be obtained. In addition, it 

would be interesting to study if oxali-Pt induces p53-Thr18 phosphorylation through 

MEK1/2. Overall these studies will help define the role of p53 phosphorylation in relation 

with Pt chemotherapy. 
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4. Role of MEK1/2 in oxali-Pt-induced Mdm4 degradation:  

 

In normal cells, p53 levels are kept low due to its negative interaction with Mdm2 

and Mdm4 [68]. Mdm2 and Mdm4 can bind independently to the N-terminus domain of 

p53 and can also bind to each other to form heterodimers through the C-terminal RING 

domain. Such interaction is required for the E3 ligase activity of Mdm2, culminating in 

p53 proteosomal degradation [190]. Therefore, the transcriptional activity of p53 is 

negatively regulated by Mdm2 and Mdm4 levels. DNA damage signals after treatment 

with Pt compounds can inhibit interaction between p53 and Mdm2 or Mdm4, and 

accelerate Mdm4 degradation by Mdm2, to stabilize and transcriptionally activate p53 

[190]. Furthermore, Chk2 has been shown to phosphorylate Mdm4 at Ser342 and 

Ser367, leading to Mdm2-mediated ubiquitination and degradation of Mdm4 [191-193]. 

Therefore, in accordance with the literature, it was observed that Mdm4 control levels 

increased in A2780 Chk2-/- clones when compared to A2780 clones (see Figure 24), 

thus, Chk2 reduced levels of Mdm4. Furthermore, oxali-Pt treatment, but not cis-Pt, was 

able to reduce Mdm4 levels in A2780 Chk2-/-. Therefore, cis-Pt, but not oxali-Pt, relies 

on Chk2 to decrease levels of Mdm4. Since we showed that MEK1/2 is implicated in 

oxali-Pt mechanism of action, it would be interesting to investigate whether MEK1/2 is 

involved in oxali-Pt-induced Mdm4 degradation.  
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5. Identification of kinases inducing p53 activity after Pt treatment:  

 

We were able to identify Chk2 and MEK1/2 as important biomarkers mediating 

differential Pt responses by cis-Pt and oxali-Pt, respectively, thus, proving that Pt 

compounds work through different mechanisms of action. It has been shown that an 

individual phosphorylation site can be targeted by multiple kinases [31]. Therefore, a 

high-throughput screening [194] using a universal luminescent kinase assay should be 

performed in order to identify the involvement of other possible kinases in cis-Pt or 

oxali-Pt-induced p53 activity. For this experiment, specific kinases will be knocked-down 

using a validated siRNA library, followed by Pt treatment and measurement of p53 

activity by using a luciferase reporter. Knock-down of essential kinases are expected to 

decrease the signal obtained for p53 activity after cis-Pt or oxali-Pt treatment.  

 

6. Study the role of Chk2-Thr68 expression in Pt therapy outcomes in HGSOC 

patients:  

 

Ovarian cancer patients stratified as sensitive or resistant to Pt-therapy and grouped 

according to Chk2 expression (high vs. low) showed that high levels of Chk2 led to 

increased overall survival, whereas low levels of Chk2 was associated with reduced 

overall survival (see Figure 25B). Phosphorylation of Chk2 at Thr-68 has been shown 

to be a biomarker for Chk2 kinase activity [195]. Therefore, it would be interesting to 

investigate the role of Chk2-Thr68 phosphorylation expression in the survival of HGSOC 
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patients treated with Pt therapy. It would be expected that Pt sensitive and resistant 

patients have overall increased survival if tumors express high levels of Chk2-Thr68 

phosphorylation following Pt chemotherapy. 

 

7. Epigenetic regulation of CHEK2 transcripts:  

 

Our data showed that cis-Pt resistant ovarian tumor cell lines exhibit substantial 

downregulation of Chk2 as a common feature at the transcriptional level (see Figure 23 

and 27A). Therefore, the mechanism by which CHEK2 levels are decreased in cis-Pt 

resistant cell lines should be investigated. Recently, it has been reported that Hodgkin’s 

lymphoma (HL) cell lines had drastically decreased expression of Chk2 due to altered 

epigenetic regulation [179]. In specific, treatment of HL cell lines with the histone 

deacetylase inhibitors trichostatin A (TsA) and sodium butyrate (SB), or with the DNA 

methyltransferase inhibitor 5-aza-20-deoxycytidine (5Aza-dC) restored Chk2 expression 

and chromatin-immunoprecipitation (ChIP) assays revealed that this was obtained 

through increased levels of acetylated histones H3 and H4, and decreased levels of 

dimethylated H3 lysine 9 at the Chk2 promoter [179]. Therefore, CHEK2 levels should 

be evaluated in cis-Pt resistant cell lines after treatment with TsA, SB or 5Aza-dC. In 

addition, a ChIP assay would be able to determine specific histone modifications at the 

CHEK2 promoter after TsA, SB or 5Aza-dC treatment. It is expected that cis-Pt resistant 

cells (containing low levels of Chk2) will have decreased levels of acetylated histones 
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H3 and H4, and increased levels of dimethylated H3 lysine 9 at the CHEK2 promoter 

when compared to cis-Pt sensitive cell lines (containing high levels of Chk2). 

 

8. Characterization of p53 and MEK1/2 interaction:  

 

Oxali-Pt was found to induce p53-Ser20 phosphorylation via MEK1/2. In addition, 

MEK1/2 was found to be able to induce p53-Ser20 phosphorylation in vitro. However, 

there is no evidence to ascribe that MEK1/2 phosphorylates p53 via a direct interaction. 

Therefore, to further define the mechanism by which MEK1/2 mediates oxali-Pt-induced 

p53-Ser20 phosphorylation; immunoprecipitation studies should be performed in order 

to assess if MEK1/2 and p53 are able to interact after oxali-Pt treatment in 2780CP/Cl-

16 cells. For this experiment similar procedure as the one reported in [156] could be 

followed. Briefly, 2780CP/Cl-16 cells should be treated with cis-Pt 5 μM or oxali-Pt 3 μM 

for 6 hr or 12 hr. After each time point, cells should be collected. Lysates from pellets 

should be incubated overnight at 4ºC under mechanical rotation with p53-FL antibody. 

Samples should be added Protein A-Agarose beads and should be further incubated for 

1 hr at 4ºC under mechanical rotation. Beads should be pulled down and washed with 

ice-cold extraction buffer three times. Samples should be processed for western blot 

analysis. If MEK1/2 induces p53-Ser20 phosphorylation via direct interaction after oxali-

Pt treatment, then interaction between p53 and MEK1/2 should be detected. 
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9. Role of Raf in mediating MEK1/2-oxali-Pt-induced p53-Ser20 phosphorylation:   

 

As previously stated oxali-Pt was able to induce p53-Ser20 phosphorylation via 

MEK1/2. As discussed in Section 1.6 MEK1/2 is itself phosphorylated by Raf [123]. Raf 

is widely recognized as an oncogene and mutations in these protein promoting its 

activity leads to tumor progression [196-198]. Therefore, studies determining if oxali-Pt 

activates MEK1/2 through the conventional Raf pathway will uncover a new role of the 

Raf protein in cancer. To answer this question, knocked-down or knock-out of Ras 

should be accomplished in 2780CP/Cl-16 by siRNA or CRISPR techniques, 

respectively. After knock-down or knock-out of Raf is achieved, cells should be treated 

with Pt compounds for 24 hrs. Finally, the effect of decreased levels of Raf in the p53-

Ser20 phosphorylation and p53 transcriptional activation as well as cytotoxicity should 

be evaluated.     

 

10. Evaluation of RPPA intersections:   

 

The RPPA data obtained in this project for 217 proteins from A2780 and 2780CP/Cl-16 

cell lines treated with cis-Pt or oxali-Pt was subjected to multiple intersections. To better 

define the mechanisms of action of cis-Pt and oxali-Pt, these intersections should be 

carefully evaluated. In Appendix 2, evaluations of significant upregulation or 

downregulation of proteins were made to A2780 or 2780CP/Cl-16 independently. These 

evaluations may enable the identification of common as well as different targets in 



190 
 

response to Pt therapy. In addition, in Appendix 3, several intersections between 

A2780 and 2780CP/Cl-16 cell lines treated with cis-Pt or oxali-Pt were made. These 

intersections may identify novel targets utilized by either cis-Pt or oxali-Pt for Pt therapy 

sensitivity. These intersections may also enable the identification of targets involved in 

Pt therapy resistance. 
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Appendix I. RPPA values for heatmap for A2780 and 2780CP/Cl-16 treated with cis-Pt and oxali-Pt  

SAMPLE 
ACVRL1-

R-C 
ADAR1-M-

V 
Akt-R-

V 
Akt_pS473-R-

V 
Akt_pT308-R-

V 
AMPK-alpha-

R-C 

AMPK-
alpha_pT172-R-

V 

Annexin-I-M-
V 

Annexin-VII-M-
V 

AR-R-
V 

A2780 
Control_A 

0.001 0.035 -0.049 -1.275 -0.784 -0.166 -0.235 -0.232 -0.436 0.084 

A2780 
Control_B 

0.069 0.115 -0.108 -1.091 -0.687 -0.140 0.011 -0.167 -0.380 0.094 

A2780 
Control_C 

-0.034 0.092 -0.072 -1.148 -0.854 -0.182 -0.234 -0.141 -0.312 0.131 

A2780      
Cis-Pt_A 

-0.017 -0.039 -0.001 -1.360 -0.743 -0.055 -0.147 -0.196 -0.484 0.058 

A2780      
Cis-Pt_B 

-0.161 0.003 0.001 -1.094 -0.624 -0.016 -0.202 -0.162 -0.325 0.119 

A2780    
Cisp-Pt_C 

-0.097 -0.003 0.043 -1.202 -0.730 -0.004 -0.057 -0.186 -0.399 0.139 

A2780   
Oxali-Pt_A 

-0.009 0.051 0.027 -0.582 -0.337 0.004 -0.025 -0.018 -0.349 0.090 

Oxali-Pt_B 
A2780 

 -0.0003 0.685 -0.069 -0.520 -0.285 -0.008 -0.144 -0.115 -0.426 0.073 

A2780   
Oxali-Pt_C 

0.021 -0.034 0.065 -0.692 -0.351 0.034 -0.011 -0.054 -0.313 0.017 

2780CP/Cl16 
Control_A 

0.016 -0.330 0.125 1.361 1.140 -0.033 0.106 0.125 0.335 -0.237 

2780CP/Cl16 
Control_B 

-0.023 -0.392 0.117 1.570 1.250 -0.027 -0.051 0.272 0.312 -0.288 

2780CP/Cl16 
Control_C 

0.059 -0.289 0.042 1.302 0.926 0.160 0.021 0.068 0.363 -0.158 

2780CP/Cl16 
Cis-Pt_A 

-0.003 -0.262 -0.067 1.115 0.606 0.183 0.029 0.200 0.464 -0.153 

2780CP/Cl16 
Cis-Pt_B 

0.000 -0.322 0.120 1.278 1.011 0.177 0.131 0.080 0.355 -0.161 

2780CP/Cl16 
Cis-Pt_C 

-0.060 -0.268 0.056 1.097 0.865 0.419 0.074 0.018 0.319 -0.133 

2780CP/Cl16 
Oxali-Pt_A 

0.172 0.285 -0.473 0.520 0.285 0.169 0.519 0.491 0.933 -0.017 

2780CP/Cl16 
Oxali-Pt_B 

0.181 0.068 -0.432 0.691 0.393 0.516 0.368 0.440 0.769 -0.089 

2780CP/Cl16 
Oxali-Pt_C 

0.046 0.165 -0.533 0.545 0.373 0.278 0.395 0.291 0.806 -0.160 
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Appendix I. RPPA values for heatmap for A2780 and 2780CP/Cl-16 treated with cis-Pt and oxali-Pt  

SAMPLE 
ARHI-M-

C 
ATM-R-V 

ATM_pS1981-
R-V 

ATP5H-M-C ATR-R-C 
b-Catenin-R-

V 
b-Catenin_pT41_S45-

R-V 
B-Raf-
M-C 

B-Raf_pS445-
R-V 

Bad_pS112-
R-V 

A2780 
Control_A 

-0.261 0.250 -0.201 0.185 0.117 -0.842 -0.059 -0.079 0.001 -0.019 

A2780 
Control_B 

-0.063 0.527 -0.100 0.377 0.222 -0.846 -0.083 0.081 0.085 -0.077 

A2780 
Control_C 

-0.054 0.471 -0.186 0.125 0.215 -0.955 -0.120 0.072 0.040 -0.037 

A2780      
Cis-Pt_A 

-0.004 0.511 0.548 0.184 -0.003 -0.518 -0.004 -0.019 0.012 -0.089 

A2780      
Cis-Pt_B 

-0.044 0.575 0.201 0.085 0.103 -0.777 -0.119 -0.037 0.069 -0.017 

A2780    
Cisp-Pt_C 

0.002 0.478 0.282 -0.032 0.063 -0.740 -0.140 0.051 0.085 -0.054 

A2780   
Oxali-Pt_A 

0.038 0.507 0.039 0.014 -0.093 -0.733 -0.149 0.019 0.141 0.053 

A2780   
Oxali-Pt_B 

0.009 0.304 0.394 -0.046 -0.163 -0.451 -0.059 -0.166 0.078 0.031 

A2780   
Oxali-Pt_C 

-0.002 0.453 0.236 -0.014 -0.065 -0.573 -0.184 -0.182 0.172 0.017 

2780CP/Cl16 
Control_A 

-0.156 -0.347 -0.322 -0.165 0.075 0.568 0.004 0.040 -0.041 0.094 

2780CP/Cl16 
Control_B 

-0.127 -0.468 -0.139 -0.259 0.119 0.762 0.042 0.112 -0.020 0.026 

2780CP/Cl16 
Control_C 

-0.026 -0.295 -0.167 -0.106 0.003 0.653 0.140 0.111 -0.021 0.107 

2780CP/Cl16 
Cis-Pt_A 

0.065 -0.250 -0.009 -0.157 0.014 0.451 0.158 -0.077 -0.051 0.031 

2780CP/Cl16 
Cis-Pt_B 

0.103 -0.412 0.022 -0.204 -0.054 0.796 0.183 0.332 -0.001 0.037 

2780CP/Cl16 
Cis-Pt_C 

0.110 -0.381 -0.074 -0.294 -0.108 0.555 0.095 0.336 -0.014 0.038 

2780CP/Cl16 
Oxali-Pt_A 

0.294 -0.833 0.009 0.565 -0.303 1.324 0.285 -0.513 -0.424 -0.067 

2780CP/Cl16 
Oxali-Pt_B 

0.321 -0.787 0.010 0.458 -0.232 1.441 0.271 -0.666 -0.413 -0.081 

2780CP/Cl16 
Oxali-Pt_C 

0.132 -0.863 -0.038 0.454 -0.192 1.436 0.226 -0.640 -0.554 -0.142 
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Appendix I. RPPA values for heatmap for A2780 and 2780CP/Cl-16 treated with cis-Pt and oxali-Pt  

SAMPLE Bak-R-C BAP1-M-V 
Bax-
R-V 

Bcl-xL-R-V Bcl2-M-V Beclin-G-C Bid-R-C Bim-R-V BRCA2-R-C 
c-

Jun_pS73-
R-V 

A2780 
Control_A 

0.009 -0.044 -0.465 -0.011 -0.132 0.237 0.061 0.210 0.168 -0.445 

A2780 
Control_B 

-0.033 0.033 -0.419 -0.160 -0.075 0.091 -0.022 0.180 0.067 -0.479 

A2780 
Control_C 

-0.062 -0.009 -0.395 -0.197 -0.240 -0.016 -0.010 0.034 0.000 -0.467 

A2780      
Cis-Pt_A 

0.038 -0.060 0.086 0.419 -0.334 -0.062 0.063 -0.163 -0.026 -0.452 

A2780      
Cis-Pt_B 

0.050 -0.066 0.075 0.093 -0.277 -0.091 -0.019 -0.182 -0.063 -0.390 

A2780    
Cisp-Pt_C 

-0.004 -0.091 0.014 0.006 -0.394 0.061 -0.010 -0.158 -0.091 -0.496 

A2780   
Oxali-Pt_A 

-0.052 0.004 0.426 -0.006 -0.285 0.045 -0.050 -0.467 -0.231 -0.472 

A2780   
Oxali-Pt_B 

0.101 -0.151 0.729 0.237 -0.300 0.065 0.105 -0.328 -0.346 -0.081 

A2780   
Oxali-Pt_C 

-0.022 -0.053 0.342 0.133 -0.259 0.003 -0.001 -0.536 -0.303 -0.440 

2780CP/Cl16 
Control_A 

-0.219 0.091 -0.158 -0.226 0.303 0.036 0.001 0.069 -0.012 0.178 

2780CP/Cl16 
Control_B 

-0.100 0.084 -0.233 -0.022 0.232 -0.076 0.032 0.048 0.040 0.154 

2780CP/Cl16 
Control_C 

-0.063 0.063 -0.187 -0.203 0.075 -0.077 -0.004 -0.142 0.177 0.231 

2780CP/Cl16 
Cis-Pt_A 

-0.187 0.101 -0.206 -0.318 0.281 -0.045 -0.006 0.212 0.253 0.365 

2780CP/Cl16 
Cis-Pt_B 

0.053 0.018 -0.014 0.116 0.102 -0.115 0.016 -0.198 0.265 0.081 

2780CP/Cl16 
Cis-Pt_C 

0.004 -0.004 -0.094 0.019 0.184 0.041 -0.017 -0.034 0.167 0.253 

2780CP/Cl16 
Oxali-Pt_A 

0.036 0.081 0.469 -0.085 0.728 -0.003 0.132 0.498 0.026 0.781 

2780CP/Cl16 
Oxali-Pt_B 

0.027 -0.053 0.362 0.011 0.681 -0.007 0.133 0.506 -0.007 0.646 

2780CP/Cl16 
Oxali-Pt_C 

0.058 0.006 0.352 0.101 0.675 0.018 0.139 0.554 0.000 0.747 
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Appendix I. RPPA values for heatmap for A2780 and 2780CP/Cl-16 treated with cis-Pt and oxali-Pt  

SAMPLE c-Kit-R-V 
c-Met-M-

QC 

c-
Met_pY1234_Y1235-

R-V 
c-Myc-R-C C-Raf-R-V 

C-Raf_pS338-
R-V 

Caspase-7-
cleaved-R-C 

Caspase-8-
M-QC 

Caveolin-1-
R-V 

CD29-
M-V 

A2780 
Control_A 

-0.063 -0.032 0.086 0.040 -0.170 -0.162 0.050 0.083 0.062 -0.104 

A2780 
Control_B 

-0.077 -0.078 0.031 -0.016 -0.035 -0.062 -0.246 0.077 0.003 -0.030 

A2780 
Control_C 

0.004 0.007 0.030 -0.065 -0.004 -0.165 -0.437 0.039 -0.173 0.065 

A2780      
Cis-Pt_A 

0.023 -0.081 -0.026 -0.382 -0.138 -0.169 0.279 0.080 -0.122 -0.012 

A2780      
Cis-Pt_B 

-0.028 -0.092 0.013 -0.309 -0.114 -0.156 0.528 0.051 -0.146 0.012 

A2780    
Cisp-Pt_C 

-0.031 -0.034 -0.007 -0.504 -0.150 -0.161 0.357 0.016 0.009 -0.081 

A2780   
Oxali-Pt_A 

-0.034 -0.110 -0.066 -0.390 -0.082 0.088 0.197 -0.041 -0.003 -0.036 

A2780   
Oxali-Pt_B 

0.070 0.050 0.026 0.182 -0.259 -0.012 0.258 -0.059 0.213 -0.114 

A2780   
Oxali-Pt_C 

0.002 -0.092 -0.037 -0.305 -0.061 0.062 0.207 -0.022 0.054 -0.078 

2780CP/Cl16 
Control_A 

-0.093 0.044 0.004 -0.013 0.632 0.286 -0.579 -0.016 -0.120 -0.021 

2780CP/Cl16 
Control_B 

-0.032 -0.038 0.055 0.013 0.650 0.157 -0.497 -0.023 -0.081 -0.122 

2780CP/Cl16 
Control_C 

0.048 0.055 -0.070 0.154 0.735 0.246 -0.500 -0.035 -0.124 0.150 

2780CP/Cl16 
Cis-Pt_A 

-0.002 0.032 0.005 0.683 0.501 0.160 -0.300 0.074 -0.314 0.115 

2780CP/Cl16 
Cis-Pt_B 

0.170 0.021 -0.090 -0.030 0.678 0.062 -0.335 0.020 -0.148 0.075 

2780CP/Cl16 
Cis-Pt_C 

0.163 -0.007 -0.140 1.188 0.662 0.250 -0.056 0.069 0.044 0.016 

2780CP/Cl16 
Oxali-Pt_A 

0.085 0.366 -0.027 0.530 0.062 0.012 0.001 -0.086 0.265 0.639 

2780CP/Cl16 
Oxali-Pt_B 

0.036 0.263 -0.004 1.357 0.008 -0.092 0.179 -0.342 0.200 0.475 

2780CP/Cl16 
Oxali-Pt_C 

-0.035 0.286 0.037 0.658 0.004 -0.048 -0.001 -0.299 0.159 0.460 
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Appendix I. RPPA values for heatmap for A2780 and 2780CP/Cl-16 treated with cis-Pt and oxali-Pt  

SAMPLE CD31-M-V 
CD49b-M-

V 
CDK1-

R-V 
Chk1-M-C 

Chk1_pS345-
R-C 

Chk2-M-V Chk2_pT68-R-C 
Claudin-7-R-

V 
Collagen-VI-R-

V 

Complex-
II-Subunit-

M-V 

A2780 
Control_A 

-0.237 -0.060 0.012 -0.157 -0.167 1.429 0.001 -0.010 -0.582 -0.077 

A2780 
Control_B 

-0.498 0.241 -0.034 0.006 -0.280 1.453 -0.001 -0.015 -0.266 -0.089 

A2780 
Control_C 

-0.034 0.097 0.010 0.017 -0.144 1.240 0.028 0.051 0.120 -0.113 

A2780      
Cis-Pt_A 

0.016 0.188 0.314 -0.025 0.040 1.583 0.093 0.035 -0.243 -0.088 

A2780      
Cis-Pt_B 

-0.021 0.022 0.309 -0.006 0.073 1.433 0.233 0.029 0.175 0.010 

A2780    
Cisp-Pt_C 

-0.046 0.014 0.327 0.117 0.026 1.445 0.178 -0.018 0.060 -0.016 

A2780   
Oxali-Pt_A 

0.084 -0.005 -0.032 -0.405 -0.105 1.349 0.088 0.010 0.020 0.113 

A2780   
Oxali-Pt_B 

-0.050 0.005 -0.010 -0.610 -0.009 1.454 0.067 0.011 -0.020 -0.109 

A2780   
Oxali-Pt_C 

-0.109 0.074 -0.082 -0.496 -0.058 1.512 0.197 0.109 0.079 0.015 

2780CP/Cl16 
Control_A 

-0.016 -0.239 -0.146 0.329 0.009 -1.260 -0.066 -0.104 -0.210 0.081 

2780CP/Cl16 
Control_B 

-0.129 -0.202 -0.184 0.299 0.061 -1.633 -0.181 -0.148 0.045 0.111 

2780CP/Cl16 
Control_C 

0.046 -0.080 -0.092 0.390 0.028 -1.825 -0.106 -0.124 -0.025 0.092 

2780CP/Cl16 
Cis-Pt_A 

0.096 -0.088 0.377 0.232 0.250 -2.346 -0.067 -0.051 -0.196 -0.012 

2780CP/Cl16 
Cis-Pt_B 

0.137 -0.183 0.056 0.488 0.435 -1.584 -0.137 -0.212 -0.049 -0.049 

2780CP/Cl16 
Cis-Pt_C 

0.125 -0.196 0.317 0.510 0.350 -1.249 -0.047 -0.086 -0.048 -0.010 

2780CP/Cl16 
Oxali-Pt_A 

0.554 0.139 -0.148 -0.462 -0.138 -1.473 0.142 0.216 0.385 0.903 

2780CP/Cl16 
Oxali-Pt_B 

0.479 -0.086 0.539 -0.566 -0.055 -1.520 -0.124 0.269 0.340 0.836 

2780CP/Cl16 
Oxali-Pt_C 

0.290 0.099 -0.060 -0.565 -0.176 -1.240 -0.078 0.287 0.470 0.914 
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Appendix I. RPPA values for heatmap for A2780 and 2780CP/Cl-16 treated with cis-Pt and oxali-Pt  

SAMPLE 
Cox-IV-M-

C 
Cox2-R-C 

Cyclin-
B1-R-

V 
Cyclin-D1-R-V 

Cyclin-E1-M-
V 

Cyclophilin-F-
M-V 

DJ1-R-V Dvl3-R-V 
E-Cadherin-R-

V 
E2F1-
M-V 

A2780 
Control_A 

-0.180 0.193 -0.457 -0.054 0.006 -0.075 -0.113 0.062 -0.028 -0.011 

A2780 
Control_B 

-0.065 0.056 -0.139 -0.038 0.075 -0.046 -0.075 0.015 0.038 0.251 

A2780 
Control_C 

0.126 0.081 -0.376 -0.004 -0.006 -0.166 0.029 0.038 -0.111 -0.127 

A2780      
Cis-Pt_A 

-0.070 0.536 0.982 -0.086 -0.182 -0.217 -0.015 0.110 -0.062 -0.142 

A2780      
Cis-Pt_B 

-0.076 0.284 1.146 -0.092 -0.235 -0.175 0.037 0.036 -0.102 -0.143 

A2780    
Cisp-Pt_C 

-0.101 0.272 1.110 -0.046 -0.233 -0.185 0.003 -0.006 -0.022 -0.084 

A2780   
Oxali-Pt_A 

-0.086 0.342 -0.039 0.135 0.463 -0.264 0.143 0.148 -0.002 -0.119 

A2780   
Oxali-Pt_B 

-0.017 0.500 -0.170 0.167 0.222 -0.209 -0.002 0.058 -0.048 -0.136 

A2780   
Oxali-Pt_C 

0.060 0.372 -0.235 0.064 0.406 -0.250 0.054 0.189 -0.105 -0.056 

2780CP/Cl16 
Control_A 

-0.057 -0.271 0.039 0.004 0.159 0.220 -0.045 0.006 0.207 0.085 

2780CP/Cl16 
Control_B 

-0.118 -0.263 0.086 -0.045 0.110 0.213 -0.027 -0.033 0.232 0.092 

2780CP/Cl16 
Control_C 

0.538 -0.229 0.053 0.108 0.135 0.085 0.040 -0.058 0.002 0.011 

2780CP/Cl16 
Cis-Pt_A 

0.051 -0.229 0.609 0.127 0.062 0.090 0.195 -0.124 0.026 0.089 

2780CP/Cl16 
Cis-Pt_B 

0.032 -0.056 0.760 0.079 -0.015 0.046 0.002 -0.101 0.011 -0.071 

2780CP/Cl16 
Cis-Pt_C 

0.017 -0.326 0.826 -0.013 -0.039 0.077 0.037 -0.231 -0.070 0.101 

2780CP/Cl16 
Oxali-Pt_A 

0.400 -0.349 -0.082 0.145 -0.112 0.886 -0.390 -0.261 0.304 0.186 

2780CP/Cl16 
Oxali-Pt_B 

0.377 -0.157 -0.203 0.040 -0.216 0.825 -0.542 -0.280 0.304 0.154 

2780CP/Cl16 
Oxali-Pt_C 

0.430 -0.198 -0.207 -0.004 -0.192 0.786 -0.578 -0.299 0.047 0.194 
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Appendix I. RPPA values for heatmap for A2780 and 2780CP/Cl-16 treated with cis-Pt and oxali-Pt  

SAMPLE eEF2-R-C 
eEF2K-R-

V 
EGFR-

R-V 
EGFR_pY1068-

R-C 
EGFR_pY1173-

R-V 
eIF4E-R-V eIF4G-R-C 

ER-alpha-R-
V 

ER-
alpha_pS118-

R-V 

ERCC1-
M-V 

A2780 
Control_A 

0.747 0.067 0.193 0.344 0.091 0.091 0.153 -0.458 0.091 0.235 

A2780 
Control_B 

0.136 0.106 -0.279 0.512 0.082 0.151 0.163 -0.110 -0.003 0.099 

A2780 
Control_C 

0.107 0.168 -0.594 0.101 0.009 0.024 0.098 -0.223 0.028 -0.056 

A2780      
Cis-Pt_A 

0.829 0.202 -0.237 -0.184 0.000 0.044 -0.098 -0.090 0.222 0.162 

A2780      
Cis-Pt_B 

0.176 0.071 -0.453 -0.080 0.000 0.092 -0.122 -0.052 0.100 -0.134 

A2780    
Cisp-Pt_C 

0.158 0.135 -0.317 -0.045 0.005 0.122 -0.138 0.041 0.004 -0.143 

A2780   
Oxali-Pt_A 

0.012 -0.183 -0.392 -0.320 -0.068 0.146 -0.220 -0.035 -0.079 -0.166 

A2780   
Oxali-Pt_B 

0.374 -0.280 0.024 -0.189 0.030 0.105 -0.333 -0.077 0.069 -0.070 

A2780   
Oxali-Pt_C 

0.168 -0.278 -0.479 -0.313 -0.011 0.157 -0.254 -0.101 -0.051 -0.110 

2780CP/Cl16 
Control_A 

-0.124 -0.061 0.042 -0.014 -0.119 -0.024 0.421 0.035 -0.141 0.423 

2780CP/Cl16 
Control_B 

-0.012 -0.028 -0.017 0.086 -0.054 -0.052 0.202 -0.161 -0.129 0.441 

2780CP/Cl16 
Control_C 

-0.214 0.016 0.034 0.029 0.053 -0.102 0.338 0.046 -0.051 0.197 

2780CP/Cl16 
Cis-Pt_A 

-0.358 -0.016 -0.043 -0.016 -0.046 -0.128 0.229 0.086 -0.099 0.343 

2780CP/Cl16 
Cis-Pt_B 

-0.108 0.131 0.075 0.039 0.017 -0.096 0.280 0.077 0.064 0.170 

2780CP/Cl16 
Cis-Pt_C 

-0.271 0.070 0.017 -0.013 -0.007 -0.062 0.304 0.090 0.234 0.056 

2780CP/Cl16 
Oxali-Pt_A 

-0.742 -0.996 0.590 0.111 -0.009 -0.351 -0.190 0.464 -0.148 -0.182 

2780CP/Cl16 
Oxali-Pt_B 

-0.696 -1.015 0.608 0.181 0.010 -0.329 -0.194 0.360 -0.139 -0.076 

2780CP/Cl16 
Oxali-Pt_C 

-0.742 -1.132 0.513 0.013 -0.081 -0.362 -0.174 0.230 0.003 -0.144 
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Appendix I. RPPA values for heatmap for A2780 and 2780CP/Cl-16 treated with cis-Pt and oxali-Pt  

SAMPLE Ets-1-R-V FAK-R-E 
FAK_pY397-

R-V 
FASN-R-V 

Fibronectin-R-
V 

FoxM1-R-V FoxO3a-R-C 
FoxO3a_pS318_S321-

R-C 
G6PD-M-

V 
Gab2-
R-V 

A2780 
Control_A 

0.337 0.056 0.380 0.283 -0.373 -0.842 -0.006 0.064 0.041 -0.269 

A2780 
Control_B 

0.103 0.038 0.633 0.584 0.025 -0.771 0.117 -0.182 -0.167 -0.053 

A2780 
Control_C 

-0.081 0.033 0.353 0.493 -0.018 -0.721 0.168 -0.123 -0.155 -0.026 

A2780      
Cis-Pt_A 

0.207 -0.045 0.147 0.254 0.200 -0.081 -0.109 -0.078 0.030 -0.351 

A2780      
Cis-Pt_B 

-0.051 -0.016 -0.041 0.276 -0.129 -0.018 -0.071 -0.138 -0.071 -0.604 

A2780    
Cisp-Pt_C 

0.009 -0.002 0.038 0.379 0.030 -0.022 -0.108 -0.101 -0.100 -0.413 

A2780   
Oxali-Pt_A 

-0.149 0.026 -0.128 0.347 0.043 -0.519 -0.137 -0.041 -0.152 -0.791 

A2780   
Oxali-Pt_B 

0.187 -0.042 -0.097 0.172 0.018 -0.658 -0.215 0.079 -0.015 -0.799 

A2780   
Oxali-Pt_C 

0.005 0.029 0.000 0.280 -0.150 -0.589 -0.156 -0.001 -0.055 -0.695 

2780CP/Cl16 
Control_A 

0.075 0.114 -0.151 -0.247 -0.363 0.129 0.047 0.147 0.122 0.768 

2780CP/Cl16 
Control_B 

0.269 0.109 -0.337 -0.310 -0.387 0.018 0.040 0.114 0.230 0.797 

2780CP/Cl16 
Control_C 

-0.077 0.021 0.067 -0.172 -0.158 0.064 0.060 0.001 -0.014 0.856 

2780CP/Cl16 
Cis-Pt_A 

-0.024 0.002 -0.020 -0.212 -0.090 0.439 0.075 0.069 0.067 0.895 

2780CP/Cl16 
Cis-Pt_B 

-0.051 -0.108 0.000 -0.250 -0.037 0.505 0.006 -0.039 0.014 0.728 

2780CP/Cl16 
Cis-Pt_C 

-0.075 -0.096 -0.108 -0.181 0.603 0.572 0.024 -0.079 -0.102 0.674 

2780CP/Cl16 
Oxali-Pt_A 

-0.075 -0.308 -0.038 -0.993 0.236 0.278 0.006 0.378 0.067 0.388 

2780CP/Cl16 
Oxali-Pt_B 

0.096 -0.304 0.068 -1.022 0.139 0.136 -0.150 0.526 0.107 0.349 

2780CP/Cl16 
Oxali-Pt_C 

-0.005 -0.382 0.016 -1.122 0.598 0.148 -0.132 0.558 0.051 0.026 
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Appendix I. RPPA values for heatmap for A2780 and 2780CP/Cl-16 treated with cis-Pt and oxali-Pt  

SAMPLE 
GAPDH-M-

C 
GATA3-M-

V 
GCN5L2-

R-V 
GPBB-R-V GSK-3ab-M-V 

GSK-
3ab_pS21_S9-

R-V 

GSK-3b_pS9-R-
V 

Gys-R-V 
Gys_pS641-R-

V 
HER2-

M-V 

A2780 
Control_A 

0.278 0.431 -0.018 0.153 -0.012 -0.201 -0.103 -0.486 -0.058 -0.177 

A2780 
Control_B 

0.571 0.123 0.161 -0.003 -0.012 -0.161 -0.207 -0.139 -0.175 1.176 

A2780 
Control_C 

-0.041 -0.135 0.162 -0.374 -0.029 -0.324 -0.264 -0.274 -0.229 -0.028 

A2780      
Cis-Pt_A 

0.112 0.446 0.001 -0.146 0.000 -0.006 -0.017 -0.440 -0.138 1.233 

A2780      
Cis-Pt_B 

0.003 0.108 0.148 -0.440 0.029 0.037 -0.042 -0.292 -0.132 0.060 

A2780    
Cisp-Pt_C 

-0.003 0.109 0.160 -0.200 0.003 0.086 -0.036 -0.277 -0.096 -0.015 

A2780   
Oxali-Pt_A 

-0.118 -0.119 0.211 -0.413 0.000 0.326 0.203 -0.295 -0.201 0.017 

A2780   
Oxali-Pt_B 

0.107 0.366 -0.119 -0.100 -0.088 0.381 0.238 -0.389 -0.119 0.008 

A2780   
Oxali-Pt_C 

0.033 -0.061 0.055 -0.393 0.007 0.318 0.220 -0.239 -0.078 0.030 

2780CP/Cl16 
Control_A 

0.327 -0.081 -0.133 0.674 0.071 0.087 0.342 0.688 0.593 -0.120 

2780CP/Cl16 
Control_B 

0.496 0.307 -0.151 0.581 0.046 0.027 0.303 0.638 0.671 -0.008 

2780CP/Cl16 
Control_C 

0.047 -0.202 -0.058 0.559 0.010 0.006 0.236 0.843 0.404 -0.124 

2780CP/Cl16 
Cis-Pt_A 

-0.015 -0.183 -0.160 0.534 -0.114 -0.119 0.017 0.688 0.179 -0.083 

2780CP/Cl16 
Cis-Pt_B 

-0.120 0.121 -0.037 0.464 0.116 0.011 0.199 0.645 0.627 -0.271 

2780CP/Cl16 
Cis-Pt_C 

-0.243 -0.055 -0.035 0.502 0.084 -0.055 0.078 0.882 0.393 -0.207 

2780CP/Cl16 
Oxali-Pt_A 

-0.632 -0.095 0.131 0.003 -0.384 -0.705 -0.379 0.240 0.058 0.383 

2780CP/Cl16 
Oxali-Pt_B 

-0.470 0.002 -0.001 0.038 -0.445 -0.703 -0.400 0.139 0.165 0.476 

2780CP/Cl16 
Oxali-Pt_C 

-0.900 -0.002 0.030 -0.071 -0.383 -0.718 -0.472 0.164 0.127 0.475 
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Appendix I. RPPA values for heatmap for A2780 and 2780CP/Cl-16 treated with cis-Pt and oxali-Pt  

SAMPLE 
HER2_pY1248-

R-C 
HER3-R-V 

HER3_pY1289-
R-C 

Heregulin-R-V HIAP-R-C 
Histone-H3-R-

V 
IGF1R-beta-

R-V 
IGFBP2-R-V INPP4b-R-V 

IRS1-
R-V 

A2780 
Control_A 

0.140 0.001 0.358 -0.003 -0.089 -0.262 0.145 -0.167 -0.065 0.251 

A2780 
Control_B 

0.646 -0.174 0.199 -0.048 -0.099 -0.448 0.220 -0.063 0.000 0.207 

A2780 
Control_C 

0.152 -0.119 0.157 0.055 -0.029 -0.254 0.267 -0.074 0.091 0.192 

A2780      
Cis-Pt_A 

-0.002 -0.117 0.281 0.025 -0.070 -0.016 0.239 -0.011 -0.022 0.246 

A2780      
Cis-Pt_B 

-0.129 -0.214 0.188 0.007 -0.164 0.079 0.223 0.011 -0.063 0.153 

A2780    
Cisp-Pt_C 

0.013 -0.182 0.190 -0.021 -0.183 0.053 0.152 -0.063 -0.091 0.189 

A2780   
Oxali-Pt_A 

-0.010 -0.344 0.048 -0.029 -0.023 0.016 0.202 0.038 0.004 0.053 

A2780   
Oxali-Pt_B 

-0.042 -0.221 0.239 0.080 -0.102 0.216 0.046 -0.139 -0.105 0.172 

A2780   
Oxali-Pt_C 

-0.083 -0.276 0.036 0.003 -0.060 0.146 0.210 -0.057 0.000 0.120 

2780CP/Cl16 
Control_A 

-0.008 0.092 -0.085 -0.234 0.047 -0.143 -0.683 -0.157 0.348 -0.206 

2780CP/Cl16 
Control_B 

-0.117 0.154 -0.036 -0.156 0.023 -0.106 -0.767 -0.200 0.371 -0.104 

2780CP/Cl16 
Control_C 

-0.017 0.014 -0.208 -0.053 0.141 -0.249 -0.700 0.049 0.507 -0.215 

2780CP/Cl16 
Cis-Pt_A 

0.083 0.043 -0.870 0.035 0.067 0.446 -0.707 0.105 0.431 -0.190 

2780CP/Cl16 
Cis-Pt_B 

0.002 0.085 -0.036 -0.047 0.055 -0.164 -0.706 0.132 0.296 -0.242 

2780CP/Cl16 
Cis-Pt_C 

-0.037 -0.001 -0.085 0.562 0.083 1.791 -0.796 0.270 0.304 -0.148 

2780CP/Cl16 
Oxali-Pt_A 

0.383 0.373 -1.083 0.075 0.061 -0.122 -0.046 0.403 -0.132 -0.062 

2780CP/Cl16 
Oxali-Pt_B 

0.282 0.371 -0.576 -0.017 0.091 0.320 -0.095 0.239 -0.169 -0.053 

2780CP/Cl16 
Oxali-Pt_C 

0.250 0.305 -0.410 0.525 0.110 1.339 -0.053 0.281 -0.296 -0.056 
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Appendix I. RPPA values for heatmap for A2780 and 2780CP/Cl-16 treated with cis-Pt and oxali-Pt  

SAMPLE JAB1-M-C 
JNK_pT183_Y185-

R-V 
JNK2-
R-C 

Lck-R-V 
MAPK_pT202_Y204-

R-V 
Mcl-1-R-V 

MDM2_pS166-
R-V 

MEK1-R-
V 

MEK1_pS217_S221-
R-V 

MEK2-
R-V 

A2780 
Control_A 

-0.106 0.663 0.086 0.028 -0.136 -0.237 0.101 -0.008 -0.636 0.045 

A2780 
Control_B 

-0.039 0.186 -0.163 0.003 -0.100 -0.211 -1.059 -0.066 -0.735 -0.001 

A2780 
Control_C 

-0.011 0.237 -0.176 0.104 -0.079 -0.187 -0.965 0.036 -0.610 0.028 

A2780      
Cis-Pt_A 

0.142 0.067 0.221 0.173 0.945 -0.009 0.410 0.012 -0.028 0.014 

A2780      
Cis-Pt_B 

-0.049 0.071 0.028 0.073 1.084 0.065 -0.225 0.006 0.028 -0.040 

A2780    
Cisp-Pt_C 

0.022 -0.041 -0.018 0.029 1.068 0.009 -0.098 -0.025 -0.023 -0.089 

A2780   
Oxali-Pt_A 

-0.120 -0.033 -0.057 0.132 1.534 0.282 0.182 -0.077 0.294 -0.090 

A2780   
Oxali-Pt_B 

0.096 0.017 0.126 0.427 1.831 0.193 0.949 -0.120 0.302 -0.058 

A2780   
Oxali-Pt_C 

-0.065 0.047 0.063 0.063 1.701 0.292 0.557 0.016 0.266 -0.095 

2780CP/Cl16 
Control_A 

-0.173 -0.100 0.143 -0.642 -0.157 -0.045 -0.151 0.060 0.104 0.106 

2780CP/Cl16 
Control_B 

-0.034 -0.091 0.351 -0.600 -0.240 -0.159 0.557 -0.006 0.165 0.167 

2780CP/Cl16 
Control_C 

0.028 -0.027 0.018 -0.520 -0.415 -0.055 -0.814 0.056 0.023 0.109 

2780CP/Cl16 
Cis-Pt_A 

0.104 0.022 -0.154 -0.508 -0.401 0.013 -0.860 0.153 -0.104 0.267 

2780CP/Cl16 
Cis-Pt_B 

-0.039 -0.017 0.286 -0.383 -0.438 -0.058 0.269 0.048 0.123 0.029 

2780CP/Cl16 
Cis-Pt_C 

0.013 -0.113 -0.035 -0.353 -0.297 -0.176 -0.741 0.056 0.117 0.001 

2780CP/Cl16 
Oxali-Pt_A 

0.076 0.027 -0.577 -0.003 0.304 0.557 -0.411 -0.480 -0.198 -0.121 

2780CP/Cl16 
Oxali-Pt_B 

0.011 -0.089 -0.381 -0.097 0.267 0.426 0.124 -0.529 -0.255 -0.122 

2780CP/Cl16 
Oxali-Pt_C 

0.104 -0.087 -0.424 -0.163 0.079 0.435 0.098 -0.522 -0.304 -0.078 
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Appendix I. RPPA values for heatmap for A2780 and 2780CP/Cl-16 treated with cis-Pt and oxali-Pt  

SAMPLE Merlin-R-C MIG6-M-V 
MSH2-

M-V 
MSH6-R-C mTOR-R-V 

mTOR_pS2448-
R-C 

Myosin-11-R-V 
Myosin-

IIa_pS1943-
R-V 

N-Cadherin-R-
V 

N-
Ras-
M-V 

A2780 
Control_A 

-0.383 -0.090 -0.018 0.153 0.066 0.095 0.091 0.230 -0.085 -0.173 

A2780 
Control_B 

-0.545 -0.196 0.274 0.213 0.115 0.153 0.111 -0.077 -0.296 0.016 

A2780 
Control_C 

-0.664 -0.101 0.413 0.113 0.166 0.086 0.034 -0.184 -0.099 0.037 

A2780      
Cis-Pt_A 

-0.395 -0.011 -0.020 0.225 0.178 0.011 0.056 0.140 -0.090 -0.210 

A2780      
Cis-Pt_B 

-0.419 -0.146 0.496 0.285 0.106 -0.081 0.061 -0.200 0.094 -0.016 

A2780    
Cisp-Pt_C 

-0.531 -0.196 0.348 0.238 0.083 -0.079 -0.070 -0.007 -0.104 -0.179 

A2780   
Oxali-Pt_A 

-0.567 -0.175 0.389 0.043 0.074 -0.116 -0.018 -0.181 -0.141 0.079 

A2780   
Oxali-Pt_B 

-0.502 -0.156 0.018 0.155 0.126 -0.073 0.036 0.044 0.043 -0.067 

A2780   
Oxali-Pt_C 

-0.571 -0.254 0.159 0.058 0.228 0.077 -0.001 -0.059 -0.187 -0.028 

2780CP/Cl16 
Control_A 

0.694 0.167 -0.193 -0.307 -0.150 0.131 0.034 0.442 -0.101 0.028 

2780CP/Cl16 
Control_B 

1.085 0.151 -0.311 -0.234 -0.126 0.082 0.056 0.405 -0.043 -0.093 

2780CP/Cl16 
Control_C 

0.603 0.132 -0.075 -0.418 -0.066 0.071 0.001 0.519 0.148 0.102 

2780CP/Cl16 
Cis-Pt_A 

0.383 0.176 -0.270 -0.582 -0.315 -0.073 -0.034 0.007 0.086 0.100 

2780CP/Cl16 
Cis-Pt_B 

1.164 0.059 0.236 -0.043 -0.103 -0.008 -0.072 0.574 0.519 -0.100 

2780CP/Cl16 
Cis-Pt_C 

0.828 0.034 0.261 -0.209 -0.073 0.008 -0.170 0.492 0.133 -0.052 

2780CP/Cl16 
Oxali-Pt_A 

0.708 0.091 -0.345 -0.791 -0.398 -0.118 -0.098 -0.105 0.480 0.377 

2780CP/Cl16 
Oxali-Pt_B 

0.818 0.043 -0.578 -0.709 -0.356 -0.043 -0.033 -0.131 0.585 0.270 

2780CP/Cl16 
Oxali-Pt_C 

0.815 0.011 -0.534 -0.689 -0.279 -0.075 -0.192 -0.286 0.486 0.312 
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Appendix I. RPPA values for heatmap for A2780 and 2780CP/Cl-16 treated with cis-Pt and oxali-Pt  

SAMPLE 
NAPSIN-A-

R-C 
NDRG1_pT346-

R-V 

NF-kB-
p65_pS536-

R-C 
Notch1-R-V 

p16INK4a-R-
V 

p21-R-V 
p27-Kip-1-R-

V 
p27_pT157-

R-C 
p27_pT198-R-

V 

p38-
alpha-
M-V 

A2780 
Control_A 

0.064 -0.270 -0.698 -0.614 0.223 -0.111 -0.063 -0.029 0.016 0.000 

A2780 
Control_B 

0.115 0.102 -0.735 -0.551 0.378 0.031 -0.083 -0.008 -0.040 0.000 

A2780 
Control_C 

0.063 -0.159 -0.543 -0.568 -0.048 -0.094 0.041 0.132 0.077 -0.036 

A2780      
Cis-Pt_A 

0.141 0.555 -0.221 -0.264 0.235 0.543 0.026 -0.177 -0.166 -0.006 

A2780      
Cis-Pt_B 

-0.097 0.241 -0.021 -0.214 -0.057 0.387 -0.012 -0.157 -0.074 -0.047 

A2780    
Cisp-Pt_C 

-0.115 0.357 0.025 -0.190 0.023 0.541 -0.017 -0.163 -0.133 -0.006 

A2780   
Oxali-Pt_A 

-0.126 -0.065 0.118 0.126 -0.041 1.651 0.448 -0.050 -0.106 0.003 

A2780   
Oxali-Pt_B 

-0.048 -0.074 -0.093 -0.096 0.127 1.612 0.357 0.008 0.107 -0.040 

A2780   
Oxali-Pt_C 

-0.077 -0.167 0.021 -0.032 -0.113 1.528 0.367 -0.044 -0.158 0.077 

2780CP/Cl16 
Control_A 

-0.114 0.428 0.433 0.056 0.001 -0.100 0.072 0.097 -0.075 0.275 

2780CP/Cl16 
Control_B 

0.063 0.329 0.432 0.011 -0.047 -0.155 -0.004 0.090 -0.122 0.209 

2780CP/Cl16 
Control_C 

0.021 0.566 0.726 0.008 -0.041 -0.176 0.132 0.049 0.068 0.289 

2780CP/Cl16 
Cis-Pt_A 

0.060 -0.077 0.543 -0.008 -0.001 -0.282 -0.045 0.011 0.277 0.300 

2780CP/Cl16 
Cis-Pt_B 

-0.006 0.163 0.719 0.066 -0.092 -0.227 -0.036 -0.099 -0.016 0.247 

2780CP/Cl16 
Cis-Pt_C 

0.006 0.065 0.592 0.061 0.111 -0.229 -0.042 -0.021 0.370 0.217 

2780CP/Cl16 
Oxali-Pt_A 

-0.028 -0.137 -0.239 0.580 -0.019 0.321 0.024 0.062 0.202 -0.081 

2780CP/Cl16 
Oxali-Pt_B 

-0.034 -0.296 -0.298 0.477 0.015 -0.031 0.004 0.034 0.587 -0.137 

2780CP/Cl16 
Oxali-Pt_C 

0.103 -0.670 -0.536 0.416 0.006 0.143 -0.089 0.015 0.231 -0.055 
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Appendix I. RPPA values for heatmap for A2780 and 2780CP/Cl-16 treated with cis-Pt and oxali-Pt  

SAMPLE p38-R-V 
p38_pT180_Y182-

R-V 
p53-
R-C 

p70-
S6K_pT389-

R-V 

p70-S6K1-R-
V 

PAI-1-M-V 
PARP-cleaved-

M-QC 
PARP1-R-V Paxillin-R-C 

PCNA-
M-C 

A2780 
Control_A 

-0.103 0.964 -0.264 -0.096 0.059 -0.424 -0.038 0.086 -0.307 -0.032 

A2780 
Control_B 

0.049 0.978 -0.265 0.359 0.267 -0.171 0.028 0.163 -0.610 0.228 

A2780 
Control_C 

0.000 0.840 -0.179 0.239 0.331 -0.211 0.105 0.350 -0.520 0.011 

A2780      
Cis-Pt_A 

-0.090 0.447 -0.109 -0.370 0.279 -0.415 0.300 0.258 0.012 -0.011 

A2780      
Cis-Pt_B 

0.000 0.564 -0.012 -0.254 0.291 -0.311 0.217 0.425 -0.381 0.102 

A2780    
Cisp-Pt_C 

-0.003 0.387 0.012 -0.384 0.217 -0.375 0.175 0.410 -0.361 0.014 

A2780   
Oxali-Pt_A 

0.034 0.279 0.659 -1.020 0.202 -0.085 0.135 0.370 -0.390 0.056 

A2780   
Oxali-Pt_B 

-0.113 0.284 0.583 -0.906 0.127 -0.238 0.063 0.334 -0.099 -0.044 

A2780   
Oxali-Pt_C 

-0.014 0.333 0.464 -0.791 0.242 -0.257 0.086 0.230 -0.305 0.113 

2780CP/Cl16 
Control_A 

0.428 -0.439 -0.144 1.188 -0.254 0.085 -0.368 -0.771 0.577 0.012 

2780CP/Cl16 
Control_B 

0.479 -0.520 -0.305 1.227 -0.229 0.155 -0.312 -0.852 0.595 0.086 

2780CP/Cl16 
Control_C 

0.459 -0.279 -0.078 1.045 -0.059 0.316 -0.040 -0.283 0.620 -0.114 

2780CP/Cl16 
Cis-Pt_A 

0.266 -0.518 -0.121 0.627 -0.075 0.517 -0.188 -0.514 0.464 0.028 

2780CP/Cl16 
Cis-Pt_B 

0.490 -0.403 0.040 0.831 -0.174 0.265 -0.189 -0.139 0.587 -0.286 

2780CP/Cl16 
Cis-Pt_C 

0.505 -0.472 0.017 0.938 -0.202 0.295 -0.147 -0.086 0.515 -0.249 

2780CP/Cl16 
Oxali-Pt_A 

-0.350 -1.033 0.725 0.038 -0.676 2.014 0.242 -0.280 0.052 -0.476 

2780CP/Cl16 
Oxali-Pt_B 

-0.380 -1.261 0.632 -0.038 -0.757 1.876 -0.028 -0.284 0.035 -0.379 

2780CP/Cl16 
Oxali-Pt_C 

-0.352 -1.307 0.612 -0.172 -0.833 1.794 -0.120 -0.562 -0.012 -0.395 
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Appendix I. RPPA values for heatmap for A2780 and 2780CP/Cl-16 treated with cis-Pt and oxali-Pt  

SAMPLE 
Pdcd-1L1-

G-C 
Pdcd4-R-

C 

PDGFR-
beta-R-

V 
PDK1-R-V 

PDK1_pS241-
R-V 

PEA-15-R-V 
PEA-15_pS116-

R-V 
PI3K-p110-
alpha-R-C 

PI3K-p85-R-V 
PKC-
alpha-
M-V 

A2780 
Control_A 

0.246 0.965 1.179 -0.022 -0.111 0.341 0.472 0.000 -0.103 -0.585 

A2780 
Control_B 

0.097 1.030 1.490 -0.118 -0.118 -0.007 0.266 0.068 -0.088 -0.400 

A2780 
Control_C 

-0.147 1.098 1.409 -0.004 -0.002 -0.030 0.152 0.159 -0.014 -0.749 

A2780      
Cis-Pt_A 

-0.190 1.427 1.296 0.066 -0.163 0.318 0.194 -0.019 -0.023 -0.419 

A2780      
Cis-Pt_B 

-0.021 1.485 1.268 0.099 0.002 0.021 0.000 0.088 -0.004 -0.653 

A2780    
Cisp-Pt_C 

0.017 1.499 1.260 0.055 0.008 0.007 -0.019 0.070 0.011 -0.616 

A2780   
Oxali-Pt_A 

-0.010 2.007 1.175 0.000 0.092 -0.008 -0.055 0.091 0.044 -0.699 

A2780   
Oxali-Pt_B 

0.011 1.964 0.980 0.028 -0.101 0.146 0.248 0.039 -0.030 -0.513 

A2780   
Oxali-Pt_C 

-0.077 2.100 1.222 0.062 0.013 0.117 0.078 0.069 0.030 -0.814 

2780CP/Cl16 
Control_A 

-0.121 -1.062 -1.443 -0.067 0.023 0.062 0.211 -0.027 0.004 0.506 

2780CP/Cl16 
Control_B 

-0.067 -1.209 -0.980 0.000 -0.042 0.160 0.236 -0.023 0.041 0.479 

2780CP/Cl16 
Control_C 

-0.089 -1.022 -1.434 0.042 0.082 -0.027 0.000 0.000 0.097 0.408 

2780CP/Cl16 
Cis-Pt_A 

-0.078 -0.965 -1.448 0.054 0.115 -0.041 -0.244 0.094 0.259 0.400 

2780CP/Cl16 
Cis-Pt_B 

0.010 -1.102 -1.436 0.016 0.029 0.010 -0.084 -0.090 0.065 0.413 

2780CP/Cl16 
Cis-Pt_C 

0.185 -0.999 -1.173 -0.012 0.046 -0.076 -0.099 -0.058 0.129 0.436 

2780CP/Cl16 
Oxali-Pt_A 

0.371 -1.280 -1.207 -0.307 -0.342 -0.527 -0.269 -0.171 -0.421 0.988 

2780CP/Cl16 
Oxali-Pt_B 

0.142 -1.330 -1.240 -0.178 -0.419 -0.349 -0.125 -0.171 -0.224 1.066 

2780CP/Cl16 
Oxali-Pt_C 

0.178 -1.458 -1.155 -0.158 -0.439 -0.432 -0.255 -0.216 -0.367 1.023 
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Appendix I. RPPA values for heatmap for A2780 and 2780CP/Cl-16 treated with cis-Pt and oxali-Pt  

SAMPLE 
PKC-

alpha_pS657-
R-C 

PKC-beta-
II_pS660-

R-V 

PKC-
delta_pS664-

R-V 
PMS2-R-V Porin-M-V PR-R-V 

PRAS40_pT246-
R-V 

PREX1-R-V PTEN-R-V 
Rab11-

R-E 

A2780 
Control_A 

-0.755 -0.109 -0.101 0.205 -0.171 0.097 0.058 0.019 -0.100 0.134 

A2780 
Control_B 

-0.442 0.113 -0.177 0.108 0.109 -0.027 0.257 -0.128 -0.176 0.076 

A2780 
Control_C 

-0.578 0.059 -0.052 -0.002 -0.179 -0.029 0.148 -0.104 -0.043 -0.033 

A2780      
Cis-Pt_A 

-0.825 0.139 -0.006 0.091 -0.003 0.248 -0.101 -0.163 0.009 -0.067 

A2780      
Cis-Pt_B 

-0.650 0.332 -0.008 -0.082 -0.093 -0.011 -0.058 -0.115 -0.006 -0.207 

A2780    
Cisp-Pt_C 

-0.720 0.393 -0.053 -0.004 -0.126 0.051 -0.074 -0.159 -0.072 -0.123 

A2780   
Oxali-Pt_A 

-0.678 0.959 0.006 0.057 0.029 0.009 -0.259 -0.062 -0.002 -0.027 

A2780   
Oxali-Pt_B 

-0.833 0.965 0.328 0.014 0.796 0.213 -0.144 -0.069 0.002 -0.016 

A2780   
Oxali-Pt_C 

-0.829 0.870 0.013 -0.057 0.141 -0.009 -0.192 -0.331 0.021 -0.090 

2780CP/Cl16 
Control_A 

0.538 0.002 -0.053 0.083 0.003 -0.197 0.834 0.053 0.050 0.092 

2780CP/Cl16 
Control_B 

0.463 -0.097 0.015 0.002 0.053 -0.070 0.783 -0.012 0.051 -0.064 

2780CP/Cl16 
Control_C 

0.635 -0.033 0.088 -0.124 -0.249 -0.093 0.714 0.118 0.068 0.016 

2780CP/Cl16 
Cis-Pt_A 

0.454 -0.071 -0.023 0.020 -0.237 -0.205 0.464 0.069 0.037 0.027 

2780CP/Cl16 
Cis-Pt_B 

0.500 -0.048 0.123 0.005 -0.203 0.024 0.590 0.084 0.092 -0.079 

2780CP/Cl16 
Cis-Pt_C 

0.442 -0.002 -0.100 -0.004 -0.272 -0.145 0.590 0.174 0.030 0.934 

2780CP/Cl16 
Oxali-Pt_A 

1.216 -0.162 1.047 -0.354 0.848 0.062 -0.125 0.239 -0.407 0.302 

2780CP/Cl16 
Oxali-Pt_B 

1.223 -0.254 0.820 -0.450 0.740 0.056 -0.084 0.245 -0.357 0.210 

2780CP/Cl16 
Oxali-Pt_C 

1.241 -0.268 0.826 -0.454 0.742 0.065 -0.134 0.012 -0.366 0.861 



207 
 

Appendix I. RPPA values for heatmap for A2780 and 2780CP/Cl-16 treated with cis-Pt and oxali-Pt  

SAMPLE Rab25-R-V 
Rad50-M-

V 
Rad51-

R-V 
Raptor-R-V Rb-M-QC 

Rb_pS807_S811-
R-V 

RBM15-R-V Rictor-R-C 
Rictor_pT1135-

R-V 
RSK-
R-C 

A2780 
Control_A 

0.149 0.143 0.313 0.308 0.099 -0.253 0.278 -0.004 -0.032 0.249 

A2780 
Control_B 

-0.002 0.012 0.273 0.289 0.093 -0.165 0.005 0.141 0.072 0.138 

A2780 
Control_C 

-0.053 0.047 0.065 0.188 0.061 -0.337 0.003 0.109 0.040 0.151 

A2780      
Cis-Pt_A 

-0.152 0.267 0.335 0.358 0.039 0.455 -0.003 -0.063 -0.094 0.532 

A2780      
Cis-Pt_B 

-0.134 0.035 0.213 0.227 0.010 0.429 -0.017 -0.008 -0.080 0.531 

A2780    
Cisp-Pt_C 

-0.087 0.004 0.195 0.249 -0.010 0.498 -0.049 -0.086 -0.160 0.541 

A2780   
Oxali-Pt_A 

0.005 -0.004 -0.230 0.164 0.036 -0.319 0.116 -0.075 -0.122 0.662 

A2780   
Oxali-Pt_B 

-0.062 0.137 -0.067 0.148 0.079 -0.409 1.271 -0.149 -0.112 0.583 

A2780   
Oxali-Pt_C 

0.073 0.073 -0.215 0.221 0.056 -0.397 0.160 -0.066 -0.077 0.730 

2780CP/Cl16 
Control_A 

-0.012 -0.113 0.067 -0.225 -0.024 0.165 -0.014 0.321 0.666 -0.219 

2780CP/Cl16 
Control_B 

-0.117 0.019 0.126 -0.148 0.014 0.240 -0.077 0.327 0.591 -0.200 

2780CP/Cl16 
Control_C 

0.099 -0.048 -0.055 -0.230 -0.097 0.293 -0.161 0.418 0.502 -0.314 

2780CP/Cl16 
Cis-Pt_A 

0.002 -0.042 0.016 -0.420 -0.058 0.244 -0.044 0.282 0.399 -0.336 

2780CP/Cl16 
Cis-Pt_B 

0.062 -0.084 -0.016 -0.303 -0.111 0.622 -0.153 0.249 0.367 -0.165 

2780CP/Cl16 
Cis-Pt_C 

-0.016 -0.092 -0.170 -0.334 -0.140 0.551 -0.202 0.251 0.381 -0.318 

2780CP/Cl16 
Oxali-Pt_A 

0.425 -0.143 -0.556 -0.553 -0.118 -0.982 0.858 0.004 0.032 -0.605 

2780CP/Cl16 
Oxali-Pt_B 

0.350 -0.146 -0.483 -0.487 -0.204 -0.993 0.554 -0.075 -0.079 -0.197 

2780CP/Cl16 
Oxali-Pt_C 

0.362 -0.056 -0.446 -0.429 -0.189 -0.931 0.767 -0.269 -0.195 -0.138 
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Appendix I. RPPA values for heatmap for A2780 and 2780CP/Cl-16 treated with cis-Pt and oxali-Pt  

SAMPLE 
S6_pS235_S236-

R-V 
S6_pS240_S244-

R-V 
SCD-
M-V 

SETD2-R-QC SF2-M-V 
Shc_pY317-R-

V 
Smac-M-QC Smad1-R-V Smad3-R-V 

Smad4-
M-V 

A2780 
Control_A 

-0.926 -0.366 0.124 0.180 -0.071 0.157 0.084 -0.060 0.173 0.514 

A2780 
Control_B 

-0.529 -0.332 0.206 0.327 -0.013 0.074 -0.049 -0.140 0.006 0.506 

A2780 
Control_C 

-0.858 -0.523 0.009 0.269 0.013 0.033 -0.012 -0.066 0.082 0.418 

A2780      
Cis-Pt_A 

-1.370 -0.721 -0.081 0.169 0.016 -0.126 0.263 -0.061 0.098 0.459 

A2780      
Cis-Pt_B 

-1.059 -0.695 -0.220 0.148 -0.054 -0.110 0.012 -0.120 0.006 0.382 

A2780    
Cisp-Pt_C 

-1.059 -0.747 -0.044 0.134 0.068 -0.155 -0.017 -0.181 0.010 0.475 

A2780   
Oxali-Pt_A 

-0.903 -1.017 0.033 -0.026 0.027 -0.097 0.101 -0.224 -0.072 0.347 

A2780   
Oxali-Pt_B 

-1.109 -1.001 0.066 -0.033 0.098 -0.143 0.164 -0.149 0.104 0.369 

A2780   
Oxali-Pt_C 

-0.987 -0.902 -0.006 -0.077 -0.024 -0.140 0.157 -0.173 -0.014 0.287 

2780CP/Cl16 
Control_A 

2.065 1.378 0.006 0.010 -0.127 -0.006 -0.461 0.101 -0.017 -0.526 

2780CP/Cl16 
Control_B 

1.956 1.641 -0.062 -0.010 -0.205 0.093 -0.219 0.145 -0.006 -0.568 

2780CP/Cl16 
Control_C 

1.980 1.149 -0.061 0.064 0.035 0.036 -0.324 0.110 -0.083 -0.464 

2780CP/Cl16 
Cis-Pt_A 

1.527 0.896 -0.161 0.041 -0.034 0.088 -0.360 0.060 -0.153 -0.440 

2780CP/Cl16 
Cis-Pt_B 

1.921 1.608 -0.143 -0.010 -0.063 -0.084 -0.263 0.067 -0.061 -0.520 

2780CP/Cl16 
Cis-Pt_C 

1.899 1.414 -0.138 -0.020 -0.017 -0.091 -0.324 0.072 -0.060 -0.344 

2780CP/Cl16 
Oxali-Pt_A 

0.739 0.354 0.151 -0.117 0.207 0.084 0.375 0.088 -0.023 -0.287 

2780CP/Cl16 
Oxali-Pt_B 

0.545 0.332 0.092 -0.146 0.104 0.006 0.362 0.133 0.010 -0.410 

2780CP/Cl16 
Oxali-Pt_C 

0.529 0.363 0.081 -0.065 0.064 0.058 0.336 0.124 0.050 -0.384 
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Appendix I. RPPA values for heatmap for A2780 and 2780CP/Cl-16 treated with cis-Pt and oxali-Pt  

SAMPLE Snail-M-QC Src-M-V 
Src_pY416-

R-C 
Src_pY527-R-

V 
Stat3_pY705-

R-V 
Stat5a-R-V Stathmin-1-R-V Syk-M-V TAZ-R-V 

TFRC-
R-V 

A2780 
Control_A 

-0.139 -0.315 0.745 0.221 -0.164 -0.075 -0.062 0.116 -0.173 0.288 

A2780 
Control_B 

-0.068 -0.117 1.202 0.183 0.034 -0.077 0.014 -0.023 -0.211 -0.071 

A2780 
Control_C 

-0.032 -0.015 1.371 0.077 -0.026 -0.014 0.010 -0.229 -0.204 -0.003 

A2780      
Cis-Pt_A 

-0.117 -0.065 0.937 -0.077 -0.084 0.201 -0.022 0.102 -0.269 0.395 

A2780      
Cis-Pt_B 

-0.043 -0.112 0.955 -0.180 -0.002 0.012 -0.005 -0.171 -0.230 0.104 

A2780    
Cisp-Pt_C 

-0.047 -0.085 1.147 -0.131 -0.083 0.002 0.029 -0.025 -0.313 0.083 

A2780   
Oxali-Pt_A 

-0.049 0.084 0.744 0.262 -0.060 -0.072 0.023 -0.055 -0.271 0.003 

A2780   
Oxali-Pt_B 

-0.041 0.015 1.051 0.718 0.037 0.063 0.030 0.005 -0.041 0.178 

A2780   
Oxali-Pt_C 

-0.063 -0.093 0.291 0.265 0.015 -0.035 0.045 -0.069 -0.242 0.164 

2780CP/Cl16 
Control_A 

0.032 -0.025 -0.596 -0.369 -0.044 0.077 0.027 0.204 0.268 -0.316 

2780CP/Cl16 
Control_B 

0.138 -0.197 -0.529 -0.410 -0.074 0.074 -0.039 -0.074 0.286 -0.140 

2780CP/Cl16 
Control_C 

0.287 0.160 -0.372 -0.441 0.113 0.128 0.089 -0.063 0.260 -0.463 

2780CP/Cl16 
Cis-Pt_A 

0.321 0.378 -0.291 -0.479 0.072 0.058 -0.079 0.075 0.191 -0.662 

2780CP/Cl16 
Cis-Pt_B 

0.285 0.028 -0.325 -0.576 -0.020 0.062 -0.009 0.072 0.159 -0.153 

2780CP/Cl16 
Cis-Pt_C 

0.358 0.217 -0.610 -0.678 0.002 -0.002 0.005 0.077 0.158 -0.512 

2780CP/Cl16 
Oxali-Pt_A 

0.549 1.023 -0.618 0.383 0.194 -0.380 -0.072 0.282 0.102 -0.177 

2780CP/Cl16 
Oxali-Pt_B 

0.487 0.638 -0.608 0.335 0.051 -0.280 -0.140 0.252 0.041 0.335 

2780CP/Cl16 
Oxali-Pt_C 

0.462 0.504 -1.025 0.416 0.118 -0.258 -0.263 -0.005 0.105 0.409 
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Appendix I. RPPA values for heatmap for A2780 and 2780CP/Cl-16 treated with cis-Pt and oxali-Pt  

SAMPLE TIGAR-R-V 
Transglutaminase-

M-V 
TSC1-

R-C 
TTF1-R-V Tuberin-R-V 

Tuberin_pT1462-
R-V 

TWIST-M-C Tyro3-R-V UBAC1-R-V 
UGT1A-

M-V 

A2780 
Control_A 

0.090 -0.025 0.240 0.176 -0.042 -0.059 1.069 -0.657 0.174 0.020 

A2780 
Control_B 

0.153 0.065 0.464 0.116 0.295 -0.205 0.850 -0.551 0.122 0.452 

A2780 
Control_C 

0.042 0.027 0.424 0.126 0.087 -0.152 0.644 -0.379 -0.004 0.005 

A2780      
Cis-Pt_A 

0.285 -0.036 0.177 0.343 0.050 -0.018 0.954 -0.665 0.109 -0.052 

A2780      
Cis-Pt_B 

0.306 -0.066 0.270 0.374 0.148 0.017 0.708 -0.722 0.089 -0.069 

A2780    
Cisp-Pt_C 

0.333 -0.087 0.273 0.315 0.145 0.026 0.752 -0.675 0.031 -0.001 

A2780   
Oxali-Pt_A 

0.503 -0.049 0.389 0.117 0.183 0.041 1.117 -1.130 -0.017 -0.070 

A2780   
Oxali-Pt_B 

0.402 0.064 0.061 0.001 0.006 0.112 1.991 -1.180 0.073 0.120 

A2780   
Oxali-Pt_C 

0.529 0.070 0.327 0.060 0.141 0.102 1.102 -1.087 0.017 0.001 

2780CP/Cl16 
Control_A 

-0.049 -0.037 -0.081 -0.001 -0.104 0.075 -1.327 0.379 -0.022 -0.031 

2780CP/Cl16 
Control_B 

-0.042 0.012 -0.162 -0.102 -0.131 0.091 -1.401 0.398 0.030 0.096 

2780CP/Cl16 
Control_C 

-0.126 0.030 -0.061 -0.109 0.009 0.017 -1.101 0.602 -0.041 -0.033 

2780CP/Cl16 
Cis-Pt_A 

-0.053 0.147 -0.134 -0.188 -0.130 -0.061 -1.136 0.433 -0.153 -0.082 

2780CP/Cl16 
Cis-Pt_B 

-0.113 -0.012 -0.122 -0.052 -0.006 0.037 -1.113 0.552 0.004 -0.058 

2780CP/Cl16 
Cis-Pt_C 

-0.065 -0.043 -0.064 -0.015 -0.063 -0.017 -0.986 0.511 -0.090 -0.067 

2780CP/Cl16 
Oxali-Pt_A 

-0.191 0.181 -0.546 -0.510 -1.257 -0.048 -0.644 1.118 -0.658 0.145 

2780CP/Cl16 
Oxali-Pt_B 

-0.205 0.029 -0.592 -0.733 -1.439 -0.119 -0.787 1.012 -0.476 0.216 

2780CP/Cl16 
Oxali-Pt_C 

-0.199 -0.041 -0.640 -0.569 -1.419 -0.113 -0.822 1.009 -0.594 0.255 
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Appendix I. RPPA values for heatmap for A2780 and 2780CP/Cl-16 treated with cis-Pt and oxali-Pt  

SAMPLE 
UQCRC2-

M-C 
VEGFR-2-

R-V 
XRCC1-

R-C 
YAP-R-E 

YAP_pS127-
R-E 

YB1-R-V YB1_pS102-R-V 

A2780 
Control_A 

0.488 -0.080 0.158 0.085 -0.014 0.103 -0.511 

A2780 
Control_B 

0.351 0.138 0.182 0.102 -0.013 -0.204 -0.465 

A2780 
Control_C 

-0.073 0.152 0.088 0.064 -0.116 -0.180 -0.449 

A2780      
Cis-Pt_A 

0.370 -0.012 0.038 0.003 -0.006 0.016 -0.328 

A2780      
Cis-Pt_B 

-0.085 0.084 0.024 -0.003 -0.039 0.049 -0.252 

A2780    
Cisp-Pt_C 

-0.049 0.073 0.136 0.027 0.006 -0.160 -0.290 

A2780   
Oxali-Pt_A 

-0.154 0.109 0.153 0.034 0.224 -0.177 -0.103 

A2780   
Oxali-Pt_B 

0.151 0.012 0.362 0.220 -0.079 -0.073 -0.131 

A2780   
Oxali-Pt_C 

-0.145 -0.111 0.115 0.087 0.099 -0.179 -0.044 

2780CP/Cl16 
Control_A 

0.049 -0.048 -0.078 -0.104 0.264 0.026 0.144 

2780CP/Cl16 
Control_B 

0.268 -0.025 -0.163 -0.137 0.247 -0.048 0.145 

2780CP/Cl16 
Control_C 

-0.296 0.152 -0.210 -0.069 0.265 -0.144 0.192 

2780CP/Cl16 
Cis-Pt_A 

-0.248 -0.149 -0.184 0.036 0.379 -0.016 0.102 

2780CP/Cl16 
Cis-Pt_B 

-0.255 0.033 -0.202 -0.126 0.197 0.188 0.044 

2780CP/Cl16 
Cis-Pt_C 

-0.441 0.053 -0.172 -0.032 0.214 0.150 0.094 

2780CP/Cl16 
Oxali-Pt_A 

0.304 -0.255 -0.024 -0.151 -0.407 0.287 0.389 

2780CP/Cl16 
Oxali-Pt_B 

0.350 -0.322 -0.168 -0.129 -0.378 0.219 0.318 

2780CP/Cl16 
Oxali-Pt_C 

0.201 -0.420 -0.055 -0.123 -0.427 0.331 0.311 
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Appendix 2: Analysis of protein changes from RPPA data generated for A2780 

and 2780CP/Cl-16 treated with cis-Pt and oxali-Pt  

Proteins significantly downregulated in A2780 after cis-Pt treatment 

Protein Name Fold Change 

MAPK14_p38_pT180_Y182-R-V -1.19 

EIF4EBP1_4E-BP1_pS65-R-V -1.18 

ACACA ACACB_ACC_pS79-R-V -1.15 

EIF4G1_eIF4G-R-C -1.13 

SRC YES1 FYN FGR_Src_pY527-R-V -1.13 

MYC_c-Myc-R-C -1.13 

EIF4EBP1_4E-BP1_pT37_T46-R-V -1.11 

RPS6_S6_pS240_S244-R-V -1.11 

BCL2L11_Bim-R-V -1.09 

MTOR_mTOR_pS2448-R-C -1.06 

CCNE1_Cyclin-E1-M-V -1.06 

SHC1_Shc_pY317-R-V -1.06 

GAB2_Gab2-R-V -1.05 

CDKN1B_p27_pT198-R-V -1.04 

RICTOR_Rictor_pT1135-R-V -1.04 

ATR_ATR-R-C -1.04 

PTK2_FAK_pY397-R-V -1.03 

ARAF_A-Raf-R-V -1.03 

SCD_SCD-M-V -1.02 

YAP1_YAP-R-E -1.02 

PTK2_FAK-R-E -1.02 

RAB11A RAB11B_Rab11-R-E -1.02 

RB1_Rb-M-QC -1.02 

BCL2_Bcl2-M-V -1.02 

ADAR_ADAR1-M-V -1.01 

 

Proteins significantly upregulated in A2780 after cis-Pt treatment 

Protein Name Fold Change 

CCNB1_Cyclin-B1-R-V 2.20 

RB1_Rb_pS807_S811-R-V 1.40 

CDKN1A_p21-R-V 1.24 

MAPK1 MAPK3_MAPK_pT202_Y204-R-V 1.23 
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MAP2K1 MAP2K2_MEK1_pS217_S221-R-V 1.21 

FOXM1_FoxM1-R-V 1.21 

BAX_Bax-R-V 1.20 

PDCD4_Pdcd4-R-C 1.19 

RELA_NF-kB-p65_pS536-R-C 1.15 

RPS6KA1 RPS6KA2 RPS6KA3_RSK-R-C 1.14 

NOTCH1_Notch1-R-V 1.14 

GSK3A GSK3B_GSK-3ab_pS21_S9-R-V 1.11 

CDC2-CDK1_CDK1-R-V 1.10 

NKX2-1_TTF1-R-V 1.10 

C12ORF5_TIGAR-R-V 1.09 

CASP7_Caspase-7-cleaved-R-C 1.07 

H3F3A H3F3B_Histone-H3-R-V 1.06 

ATM_ATM_pS1981-R-V 1.06 

PRKAA1_AMPK-alpha-R-C 1.06 

NDRG1_NDRG1_pT346-R-V 1.06 

CHEK1_Chk1_pS345-R-C 1.05 

YBX1_YB1_pS102-R-V 1.05 

MCL1_Mcl-1-R-V 1.05 

AKT1 AKT2 AKT3_Akt-R-V 1.04 

PARP1_PARP-cleaved-M-QC 1.02 

TP53_p53-R-C 1.02 

 

 Proteins significantly downregulated in A2780 after oxali-Pt treatment 

Protein Name Fold Change 

ACACA ACACB_ACC_pS79-R-V -1.31 

RPS6KB1_p70-S6K_pT389-R-V -1.28 

EIF4EBP1_4E-BP1_pS65-R-V -1.27 

MAPK14_p38_pT180_Y182-R-V -1.27 

EIF4EBP1_4E-BP1_pT37_T46-R-V -1.24 

EIF4G1_eIF4G-R-C -1.21 

RPS6_S6_pS240_S244-R-V -1.21 

EEF2K_eEF2K-R-V -1.17 

BCL2L11_Bim-R-V -1.17 

AKT1S1_PRAS40_pT246-R-V -1.17 

CHEK1_Chk1-M-C -1.15 

TYRO3_Tyro3-R-V -1.11 

RAD51_Rad51-R-V -1.10 
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GAB2_Gab2-R-V -1.08 

ATR_ATR-R-C -1.08 

PPIF_Cyclophilin-F-M-V -1.06 

BRCA2_BRCA2-R-C -1.06 

SETD2_SETD2-R-QC -1.06 

RICTOR_Rictor-R-C -1.06 

SHC1_Shc_pY317-R-V -1.06 

SMAD4_Smad4-M-V -1.04 

PTK2_FAK_pY397-R-V -1.04 

FOXO3_FoxO3a-R-C -1.04 

RICTOR_Rictor_pT1135-R-V -1.04 

NAPSA_NAPSIN-A-R-C -1.03 

EGFR_EGFR_pY1068-R-C -1.03 

MAP2K2_MEK2-R-V -1.03 

CASP8_Caspase-8-M-QC -1.03 

 

Proteins significantly upregulated in A2780 after oxali-Pt treatment 

Protein Name Fold Change 

CDKN1A_p21-R-V 2.13 

PRKCA PRKCB PRKCD PRKCE PRKCH 
PRKCQ_PKC-beta-II_pS660-R-V 

1.54 

PDCD4_Pdcd4-R-C 1.52 

MAPK1 MAPK3_MAPK_pT202_Y204-R-V 1.47 

BAX_Bax-R-V 1.44 

MAP2K1 MAP2K2_MEK1_pS217_S221-R-V 1.35 

GSK3A GSK3B_GSK-3ab_pS21_S9-R-V 1.26 

NOTCH1_Notch1-R-V 1.24 

RPS6KA1 RPS6KA2 RPS6KA3_RSK-R-C 1.20 

RELA_NF-kB-p65_pS536-R-C 1.18 

C12ORF5_TIGAR-R-V 1.18 

GSK3B_GSK-3b_pS9-R-V 1.16 

AKT1 AKT2 AKT3_Akt_pT308-R-V 1.14 

YBX1_YB1_pS102-R-V 1.11 

MCL1_Mcl-1-R-V 1.10 

CCNE1_Cyclin-E1-M-V 1.10 

AKT1 AKT2 AKT3_Akt_pS473-R-V 1.09 
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TP53_p53-R-C 1.08 

H3F3A H3F3B_Histone-H3-R-V 1.08 

PRKAA1_AMPK-alpha-R-C 1.08 

CDKN1B_p27-Kip-1-R-V 1.07 

RAF1_C-Raf_pS338-R-V 1.06 

PTGS2_Cox2-R-C 1.06 

CCND1_Cyclin-D1-R-V 1.05 

FOXM1_FoxM1-R-V 1.04 

TSC2_Tuberin_pT1462-R-V 1.04 

BAD_Bad_pS112-R-V 1.02 

ANXA1_Annexin-I-M-V 1.00 

 

Proteins significantly downregulated in 2780CP/Cl-16 after cis-Pt treatment 

Protein Name Fold Change 

RPS6KB1_p70-S6K_pT389-R-V -1.15 

AKT1S1_PRAS40_pT246-R-V -1.12 

PEA15_PEA-15_pS116-R-V -1.11 

GSK3B_GSK-3b_pS9-R-V -1.08 

RICTOR_Rictor_pT1135-R-V -1.07 

RPTOR_Raptor-R-V -1.07 

NDRG1_NDRG1_pT346-R-V -1.05 

PTK2_FAK-R-E -1.05 

SDHA_Complex-II-Subunit-M-V -1.05 

MTOR_mTOR_pS2448-R-C -1.05 

CDKN1A_p21-R-V -1.04 

WWTR1_TAZ-R-V -1.04 

CCNE1_Cyclin-E1-M-V -1.04 

YBX1_YB1_pS102-R-V -1.03 

SCD_SCD-M-V -1.01 

 

Proteins significantly upregulated in 2780CP/Cl-16 after cis-Pt treatment 

Protein Name Fold Change 

CCNB1_Cyclin-B1-R-V 1.46 

FOXM1_FoxM1-R-V 1.16 

CHEK1_Chk1_pS345-R-C 1.08 

IGFBP2_IGFBP2-R-V 1.03 

CASP8_Caspase-8-M-QC 1.02 

DIRAS3_ARHI-M-C 1.01 
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Proteins significantly downregulated in 2780CP/Cl-16 after oxali-Pt treatment 

Protein Name Fold Change 

RPS6_S6_pS235_S236-R-V -2.07 

TSC2_Tuberin-R-V -1.75 

RPS6_S6_pS240_S244-R-V -1.69 

RB1_Rb_pS807_S811-R-V -1.66 

AKT1S1_PRAS40_pT246-R-V -1.53 

RPS6KB1_p70-S6K_pT389-R-V -1.50 

EEF2K_eEF2K-R-V -1.47 

MAPK14_p38-R-V -1.46 

EIF4EBP1_4E-BP1_pS65-R-V -1.42 

AKT1 AKT2 AKT3_Akt_pT308-R-V -1.40 

BRAF_B-Raf-M-C -1.39 

GAPDH_GAPDH-M-C -1.37 

FASN_FASN-R-V -1.35 

CHEK1_Chk1-M-C -1.33 

AKT1 AKT2 AKT3_Akt_pS473-R-V -1.33 

GSK3A GSK3B_GSK-3ab_pS21_S9-R-V -1.31 

RELA_NF-kB-p65_pS536-R-C -1.30 

GSK3B_GSK-3b_pS9-R-V -1.28 

EIF4G1_eIF4G-R-C -1.28 

MAPK9_JNK2-R-C -1.26 

YAP1_YAP_pS127-R-E -1.25 

MYH9_Myosin-IIa_pS1943-R-V -1.25 

GYS1_Gys-R-V -1.25 

EIF4EBP1_4E-BP1_pT37_T46-R-V -1.24 

AKT1 AKT2 AKT3_Akt-R-V -1.24 

RAF1_C-Raf-R-V -1.24 

ACACA_ACC1-R-E -1.24 

RICTOR_Rictor_pT1135-R-V -1.23 

NKX2-1_TTF1-R-V -1.23 

PXN_Paxillin-R-C -1.22 

EEF2_eEF2-R-C -1.22 

GSK3A GSK3B_GSK-3ab-M-V -1.21 

MSH6_MSH6-R-C -1.21 

UBAC1_UBAC1-R-V -1.21 

TSC1_TSC1-R-C -1.19 

MAPK14_p38_pT180_Y182-R-V -1.18 

RICTOR_Rictor-R-C -1.17 
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GYS1_Gys_pS641-R-V -1.17 

PEA15_PEA-15-R-V -1.17 

MAP2K1_MEK1-R-V -1.16 

PARK7_DJ1-R-V -1.16 

YWHAZ_14-3-3-zeta-R-V -1.16 

RPS6KB1_p70-S6K1-R-V -1.16 

EIF4EBP1_4E-BP1-R-V -1.16 

INPP4B_INPP4b-R-V -1.16 

PDPK1_PDK1_pS241-R-V -1.15 

EIF4E_eIF4E-R-V -1.15 

ERCC1_ERCC1-M-V -1.14 

PEA15_PEA-15_pS116-R-V -1.14 

PTK2_FAK-R-E -1.13 

RPTOR_Raptor-R-V -1.13 

MSH2_MSH2-M-V -1.13 

CCNB1_Cyclin-B1-R-V -1.13 

RAD51_Rad51-R-V -1.12 

MAP2K1 MAP2K2_MEK1_pS217_S221-R-V -1.12 

GAB2_Gab2-R-V -1.12 

PYGB_GPBB-R-V -1.12 

MAPK14_p38-alpha-M-V -1.11 

PCNA_PCNA-M-C -1.11 

STAT5A_Stat5a-R-V -1.11 

MTOR_mTOR-R-V -1.11 

PMS2_PMS2-R-V -1.10 

RAF1_C-Raf_pS338-R-V -1.10 

PTEN_PTEN-R-V -1.10 

PIK3R1_PI3K-p85-R-V -1.10 

BRAF_B-Raf_pS445-R-V -1.09 

NDRG1_NDRG1_pT346-R-V -1.09 

ATM_ATM-R-V -1.09 

CCNE1_Cyclin-E1-M-V -1.08 

ATR_ATR-R-C -1.08 

PRKCA PRKCB PRKCD PRKCE PRKCH 
PRKCQ_PKC-beta-II_pS660-R-V 

-1.08 

DVL3_Dvl3-R-V -1.07 

KDR_VEGFR-2-R-V -1.07 

ARAF_A-Raf-R-V -1.07 

MTOR_mTOR_pS2448-R-C -1.07 



218 
 

WWTR1_TAZ-R-V -1.07 

MAP2K2_MEK2-R-V -1.06 

BAD_Bad_pS112-R-V -1.05 

C12ORF5_TIGAR-R-V -1.05 

PIK3CA_PI3K-p110-alpha-R-C -1.05 

PDPK1_PDK1-R-V -1.05 

CHEK1_Chk1_pS345-R-C -1.04 

PDCD4_Pdcd4-R-C -1.03 

RB1_Rb-M-QC -1.03 

ERRFI1_MIG6-M-V -1.03 

TSC2_Tuberin_pT1462-R-V -1.03 

SETD2_SETD2-R-QC -1.02 

 

Proteins significantly upregulated in 2780CP/Cl-16 after oxali-Pt treatment 

Protein Name Fold Change 

SERPINE1_PAI-1-M-V 1.62 

SDHA_Complex-II-Subunit-M-V 1.42 

PPIF_Cyclophilin-F-M-V 1.39 

SRC YES1 FYN FGR_Src_pY527-R-V 1.39 

PRKCD_PKC-delta_pS664-R-V 1.34 

CTNNB1_b-Catenin-R-V 1.32 

RBM15_RBM15-R-V 1.30 

COL6A1_Collagen-VI-R-V 1.28 

DIABLO_Smac-M-QC 1.28 

BAX_Bax-R-V 1.27 

NOTCH1_Notch1-R-V 1.23 

TYRO3_Tyro3-R-V 1.23 

PRKCA_PKC-alpha-M-V 1.19 

SRC_Src-M-V 1.19 

BCL2L11_Bim-R-V 1.18 

IGF1R_IGF1R-beta-R-V 1.18 

FOXO3_FoxO3a_pS318_S321-R-C 1.16 

PRKCA_PKC-alpha_pS657-R-C 1.16 

ANXA7_Annexin-VII-M-V 1.15 

TP53BP1_53BP1-R-V 1.14 

PRKAA1_AMPK-alpha_pT172-R-V 1.13 

MCL1_Mcl-1-R-V 1.13 

JUN_c-Jun_pS73-R-V 1.13 
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YBX1_YB1-R-V 1.12 

VDAC1_Porin-M-V 1.11 

EGFR_EGFR-R-V 1.10 

TP53_p53-R-C 1.09 

ATP5H_ATP5H-M-C 1.09 

CDH2_N-Cadherin-R-V 1.08 

ERBB3_HER3-R-V 1.07 

ADAR_ADAR1-M-V 1.07 

MAPK1 MAPK3_MAPK_pT202_Y204-R-V 1.07 

BCL2_Bcl2-M-V 1.07 

YBX1_YB1_pS102-R-V 1.06 

KAT2A_GCN5L2-R-V 1.06 

LCK_Lck-R-V 1.06 

CASP7_Caspase-7-cleaved-R-C 1.06 

CD274_Pdcd-1L1-G-C 1.05 

TWIST2_TWIST-M-C 1.05 

SNAI1_Snail-M-QC 1.05 

MET_c-Met-M-QC 1.05 

IGFBP2_IGFBP2-R-V 1.04 

CLDN7_Claudin-7-R-V 1.04 

RAB25_Rab25-R-V 1.03 

ERBB2_HER2-M-V 1.03 

BID_Bid-R-C 1.03 

SMAD4_Smad4-M-V 1.03 

CTNNB1_b-Catenin_pT41_S45-R-V 1.03 

DIRAS3_ARHI-M-C 1.03 

PGR_PR-R-V 1.03 

ITGB1_CD29-M-V 1.03 

ANXA1_Annexin-I-M-V 1.02 

PECAM1_CD31-M-V 1.02 

CAV1_Caveolin-1-R-V 1.02 

ESR1_ER-alpha-R-V 1.02 

ERBB2_HER2_pY1248-R-C 1.02 

NRAS_N-Ras-M-V 1.02 

UGT1A1_UGT1A-M-V 1.02 

SCD_SCD-M-V 1.02 

E2F1_E2F1-M-V 1.01 
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Appendix 3: RPPA data intersections  

 

A2780 RPPA Intersections 

A) Proteins significantly dowregulated by cis-Pt and oxali-Pt 

Protein Name 
Cis-Pt  

Fold Change 
Oxali-Pt  

Fold Change 

ACACA ACACB_ACC_pS79-R-V -1.15 -1.31 

ATR_ATR-R-C -1.04 -1.08 

BCL2L11_Bim-R-V -1.09 -1.17 

EIF4EBP1_4E-BP1_pS65-R-V -1.18 -1.27 

EIF4EBP1_4E-BP1_pT37_T46-R-V -1.12 -1.24 

EIF4G1_eIF4G-R-C -1.13 -1.21 

GAB2_Gab2-R-V -1.05 -1.08 

MAPK14_p38_pT180_Y182-R-V -1.19 -1.26 

PTK2_FAK_pY397-R-V -1.03 -1.04 

RICTOR_Rictor_pT1135-R-V -1.04 -1.04 

RPS6_S6_pS240_S244-R-V -1.11 -1.20 

SHC1_Shc_pY317-R-V -1.06 -1.06 

  

B) Proteins significantly dowregulated by cis-Pt and significantly upregulated oxali-
Pt 

Protein Name 
Cis-Pt 

Fold Change 
Oxali-Pt 

Fold Change 

CCNE1_Cyclin-E1-M-V -1.06 1.10 

  

C) Proteins significantly upregulated by oxali-Pt but not cis-Pt 

Protein Name 
Cis-Pt  

Fold Change 
Oxali-Pt  

Fold Change 

PRKCA PRKCB PRKCD PRKCE PRKCH 
PRKCQ_PKC-beta-II_pS660-R-V   

1.54 

GSK3B_GSK-3b_pS9-R-V   1.16 

AKT1 AKT2 AKT3_Akt_pT308-R-V   1.14 

AKT1 AKT2 AKT3_Akt_pS473-R-V   1.09 

CDKN1B_p27-Kip-1-R-V   1.07 

RAF1_C-Raf_pS338-R-V   1.06 

PTGS2_Cox2-R-C   1.06 

CCND1_Cyclin-D1-R-V   1.05 

TSC2_Tuberin_pT1462-R-V   1.04 
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BAD_Bad_pS112-R-V   1.02 

ANXA1_Annexin-I-M-V   1.01 

 D) Proteins significantly upregulated by cis-Pt but not oxali-Pt 

Protein Name 
Cis-Pt  

Fold Change 
Oxali-Pt 

Fold Change 

CCNB1_Cyclin-B1-R-V 2.20 
 RB1_Rb_pS807_S811-R-V 1.40 
 CDC2-CDK1_CDK1-R-V 1.10 
 NKX2-1_TTF1-R-V 1.10 
 CASP7_Caspase-7-cleaved-R-C 1.07 
 ATM_ATM_pS1981-R-V 1.06 
 NDRG1_NDRG1_pT346-R-V 1.06 
 CHEK1_Chk1_pS345-R-C 1.05 
 AKT1 AKT2 AKT3_Akt-R-V 1.04 
 PARP1_PARP-cleaved-M-QC 1.02 
   

E) Proteins significantly upregulated by cis-Pt and oxali-Pt 

Protein Name 
Cis-Pt  

Fold Change 
Oxali-Pt  

Fold Change 

BAX_Bax-R-V 1.20 1.44 

C12ORF5_TIGAR-R-V 1.10 1.18 

CDKN1A_p21-R-V 1.24 2.13 

FOXM1_FoxM1-R-V 1.21 1.04 

GSK3A GSK3B_GSK-3ab_pS21_S9-R-V 1.11 1.26 

H3F3A H3F3B_Histone-H3-R-V 1.06 1.08 

MAP2K1 MAP2K2_MEK1_pS217_S221-R-V 1.21 1.35 

MAPK1 MAPK3_MAPK_pT202_Y204-R-V 1.23 1.47 

MCL1_Mcl-1-R-V 1.05 1.10 

NOTCH1_Notch1-R-V 1.14 1.24 

PDCD4_Pdcd4-R-C 1.19 1.52 

PRKAA1_AMPK-alpha-R-C 1.06 1.08 

RELA_NF-kB-p65_pS536-R-C 1.15 1.18 

RPS6KA1 RPS6KA2 RPS6KA3_RSK-R-C 1.14 1.20 

TP53_p53-R-C 1.02 1.08 

YBX1_YB1_pS102-R-V 1.05 1.11 
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2780CP/Cl-16 RPPA Intersections 

A) Proteins significantly dowregulated by cis-Pt and oxali-Pt 

Protein Name 
Cis-Pt  

Fold Change 
Oxali-Pt 

Fold Change 

AKT1S1_PRAS40_pT246-R-V -1.12 -1.53 

CCNE1_Cyclin-E1-M-V -1.04 -1.08 

GSK3B_GSK-3b_pS9-R-V -1.08 -1.28 

MTOR_mTOR_pS2448-R-C -1.05 -1.07 

NDRG1_NDRG1_pT346-R-V -1.05 -1.09 

PEA15_PEA-15_pS116-R-V -1.11 -1.14 

PTK2_FAK-R-E -1.05 -1.13 

RICTOR_Rictor_pT1135-R-V -1.07 -1.23 

RPS6KB1_p70-S6K_pT389-R-V -1.15 -1.50 

RPTOR_Raptor-R-V -1.07 -1.13 

WWTR1_TAZ-R-V -1.04 -1.07 

  

B) Proteins significantly dowregulated by cis-Pt and significantly upregulated oxali-Pt 

Protein Name 
Cis-Pt  

Fold Change 
Oxali-Pt 

Fold Change 

SCD_SCD-M-V -1.01 1.02 

SDHA_Complex-II-Subunit-M-V -1.05 1.42 

YBX1_YB1_pS102-R-V -1.03 1.06 

  

C) Proteins significantly upregulated by oxali-Pt but not cis-Pt 

Protein Name 
Cis-Pt  

Fold Change 
Oxali-Pt 

Fold Change 

SERPINE1_PAI-1-M-V   1.62 

PPIF_Cyclophilin-F-M-V   1.39 

SRC YES1 FYN FGR_Src_pY527-R-V   1.39 

PRKCD_PKC-delta_pS664-R-V   1.34 

CTNNB1_b-Catenin-R-V   1.32 

RBM15_RBM15-R-V   1.30 

COL6A1_Collagen-VI-R-V   1.28 

DIABLO_Smac-M-QC   1.28 

BAX_Bax-R-V   1.27 

NOTCH1_Notch1-R-V   1.23 

TYRO3_Tyro3-R-V   1.23 

PRKCA_PKC-alpha-M-V   1.19 

SRC_Src-M-V   1.19 

BCL2L11_Bim-R-V   1.18 
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IGF1R_IGF1R-beta-R-V   1.18 

FOXO3_FoxO3a_pS318_S321-R-C   1.16 

PRKCA_PKC-alpha_pS657-R-C   1.16 

ANXA7_Annexin-VII-M-V   1.15 

TP53BP1_53BP1-R-V   1.14 

PRKAA1_AMPK-alpha_pT172-R-V   1.13 

MCL1_Mcl-1-R-V   1.13 

JUN_c-Jun_pS73-R-V   1.13 

YBX1_YB1-R-V   1.12 

VDAC1_Porin-M-V   1.11 

EGFR_EGFR-R-V   1.10 

TP53_p53-R-C   1.09 

ATP5H_ATP5H-M-C   1.09 

CDH2_N-Cadherin-R-V   1.08 

ERBB3_HER3-R-V   1.07 

ADAR_ADAR1-M-V   1.07 

MAPK1 MAPK3_MAPK_pT202_Y204-R-V   1.07 

BCL2_Bcl2-M-V   1.07 

KAT2A_GCN5L2-R-V   1.06 

LCK_Lck-R-V   1.06 

CASP7_Caspase-7-cleaved-R-C   1.06 

CD274_Pdcd-1L1-G-C   1.05 

TWIST2_TWIST-M-C   1.05 

SNAI1_Snail-M-QC   1.05 

MET_c-Met-M-QC   1.05 

CLDN7_Claudin-7-R-V   1.04 

RAB25_Rab25-R-V   1.03 

ERBB2_HER2-M-V   1.03 

BID_Bid-R-C   1.03 

SMAD4_Smad4-M-V   1.03 

CTNNB1_b-Catenin_pT41_S45-R-V   1.03 

PGR_PR-R-V   1.03 

ITGB1_CD29-M-V   1.03 

ANXA1_Annexin-I-M-V   1.02 

PECAM1_CD31-M-V   1.02 

CAV1_Caveolin-1-R-V   1.02 

ESR1_ER-alpha-R-V   1.02 

ERBB2_HER2_pY1248-R-C   1.02 

NRAS_N-Ras-M-V   1.02 
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UGT1A1_UGT1A-M-V   1.02 

E2F1_E2F1-M-V   1.01 

  

D) Proteins significantly upregulated by cis-Pt and significantly downregulated by oxali-
Pt 

Protein Name 
Cis-Pt  

Fold Change 
Oxali-Pt 

Fold Change 

CCNB1_Cyclin-B1-R-V 1.46 -1.13 

CHEK1_Chk1_pS345-R-C 1.08 -1.04 

  

E) Proteins significantly upregulated by cis-Pt but not oxali-Pt 

Protein Name 
Cis-Pt  

Fold Change 
Oxali-Pt 

Fold Change 

FOXM1_FoxM1-R-V 1.16   

CASP8_Caspase-8-M-QC 1.02   

  

F) Proteins significantly upregulated by oxali-Pt and cis-Pt 

Protein Name 
Cis-Pt  

Fold Change 
Oxali-Pt 

Fold Change 

DIRAS3_ARHI-M-C 1.01 1.03 

IGFBP2_IGFBP2-R-V 1.03 1.04 
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A2780 and 2780CP/Cl-16 RPPA Intersections 

A) Proteins significantly downregulated in A2780 and 2780CP/Cl-16 by cis-Pt and oxali-Pt 

  A2780 2780CP/Cl-16 

Protein Name 
Cis-Pt  

Fold Change 
Oxali-Pt 

Fold Change 
Cis-Pt  

Fold Change 
Oxali-Pt 

Fold Change 

RICTOR_Rictor_pT1135-R-V -1.039 -1.037 -1.072 -1.23 

  

B) Proteins significantly downregulated in A2780 by cis-Pt and oxali-Pt but not in 2780CP/Cl-16  

  A2780 2780CP/Cl-16 

Protein Name 
Cis-Pt  

Fold Change 
Oxali-Pt 

Fold Change 
Cis-Pt  

Fold Change 
Oxali-Pt 

Fold Change 

ACACA ACACB_ACC_pS79-R-V -1.153 -1.31     

PTK2_FAK_pY397-R-V -1.032 -1.041     

SHC1_Shc_pY317-R-V -1.059 -1.058     

  

C) Proteins significantly downregulated by cis-Pt and upregulated by oxali-Pt in A2780 and significantly 
downregulated by cis-Pt and oxali-Pt in 2780CP/Cl-16  

  A2780 2780CP/Cl-16 

Protein Name 
Cis-Pt  

Fold Change 
Oxali-Pt 

Fold Change 
Cis-Pt  

Fold Change 
Oxali-Pt 

Fold Change 

CCNE1_Cyclin-E1-M-V -1.061 1.0996 -1.035 -1.081 

  

D) Proteins significantly upregulated by oxali-Pt in 2780CP/Cl-16  

  A2780 2780CP/Cl-16 

Protein Name 
Cis-Pt  

Fold Change 
Oxali-Pt 

Fold Change 
Cis-Pt  

Fold Change 
Oxali-Pt 

Fold Change 

SERPINE1_PAI-1-M-V       1.6204 

PRKCD_PKC-delta_pS664-R-V       1.3388 

CTNNB1_b-Catenin-R-V       1.3239 

RBM15_RBM15-R-V       1.300 



226 
 

COL6A1_Collagen-VI-R-V       1.2757 

DIABLO_Smac-M-QC       1.2752 

PRKCA_PKC-alpha-M-V       1.1919 

SRC_Src-M-V       1.1856 

IGF1R_IGF1R-beta-R-V       1.1756 

FOXO3_FoxO3a_pS318_S321-R-C       1.1634 

PRKCA_PKC-alpha_pS657-R-C       1.1591 

ANXA7_Annexin-VII-M-V       1.146 

TP53BP1_53BP1-R-V       1.1424 

PRKAA1_AMPK-alpha_pT172-R-V       1.1337 

JUN_c-Jun_pS73-R-V       1.1257 

YBX1_YB1-R-V       1.1205 

VDAC1_Porin-M-V       1.1124 

EGFR_EGFR-R-V       1.102 

ATP5H_ATP5H-M-C       1.0863 

CDH2_N-Cadherin-R-V       1.075 

ERBB3_HER3-R-V       1.0741 

KAT2A_GCN5L2-R-V       1.0634 

LCK_Lck-R-V       1.0583 

CD274_Pdcd-1L1-G-C       1.0543 

TWIST2_TWIST-M-C       1.0509 

SNAI1_Snail-M-QC       1.0493 

MET_c-Met-M-QC       1.0465 

CLDN7_Claudin-7-R-V       1.035 

RAB25_Rab25-R-V       1.0339 

ERBB2_HER2-M-V       1.0311 

BID_Bid-R-C       1.0309 

CTNNB1_b-Catenin_pT41_S45-R-V       1.0289 
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PGR_PR-R-V       1.0272 

ITGB1_CD29-M-V       1.0256 

PECAM1_CD31-M-V       1.0207 

CAV1_Caveolin-1-R-V       1.0197 

ESR1_ER-alpha-R-V       1.0188 

ERBB2_HER2_pY1248-R-C       1.0179 

NRAS_N-Ras-M-V       1.0176 

UGT1A1_UGT1A-M-V       1.0175 

E2F1_E2F1-M-V       1.0084 

  

E) Proteins significantly upregulated by oxali-Pt in A2780  

  A2780 2780CP/Cl-16 

Protein Name 
Cis-Pt  

Fold Change 
Oxali-Pt 

Fold Change 
Cis-Pt  

Fold Change 
Oxali-Pt 

Fold Change 

CDKN1B_p27-Kip-1-R-V   1.0734     

PTGS2_Cox2-R-C   1.0597     

CCND1_Cyclin-D1-R-V   1.0496     

  

F) Proteins significantly upregulated by oxali-Pt in A2780 and in 2780CP/Cl-16  

  A2780 2780CP/Cl-16 

Protein Name 
Cis-Pt  

Fold Change 
Oxali-Pt 

Fold Change 
Cis-Pt  

Fold Change 
Oxali-Pt 

Fold Change 

ANXA1_Annexin-I-M-V   1.0076   1.021 

  

G) Proteins significantly upregulated by cis-Pt in A2780  

  A2780 2780CP/Cl-16 

Protein Name 
Cis-Pt  

Fold Change 
Oxali-Pt 

Fold Change 
Cis-Pt  

Fold Change 
Oxali-Pt 

Fold Change 

CDC2-CDK1_CDK1-R-V 1.0992       
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ATM_ATM_pS1981-R-V 1.0619       

PARP1_PARP-cleaved-M-QC 1.0193       

  

H) Proteins significantly upregulated by cis-Pt and upregulated by oxali-Pt in A2780 and significantly 
downregulated by cis-Pt and significantly upregulated by oxali-Pt in 2780CP/Cl-16  

  A2780 2780CP/Cl-16 

Protein Name 
Cis-Pt  

Fold Change 
Oxali-Pt 

Fold Change 
Cis-Pt  

Fold Change 
Oxali-Pt 

Fold Change 

YBX1_YB1_pS102-R-V 1.0517 1.1148 -1.027 1.0643 

  

I) Proteins significantly upregulated by cis-Pt and upregulated by oxali-Pt in A2780  

  A2780 2780CP/Cl-16 

Protein Name 
Cis-Pt  

Fold Change 
Oxali-Pt 

Fold Change 
Cis-Pt  

Fold Change 
Oxali-Pt 

Fold Change 

H3F3A H3F3B_Histone-H3-R-V 1.0643 1.0829     

PRKAA1_AMPK-alpha-R-C 1.0617 1.0783     

RPS6KA1 RPS6KA2 RPS6KA3_RSK-R-C 
1.1392 1.1962     

  

J) Proteins significantly upregulated by cis-Pt and upregulated by oxali-Pt in A2780 and significantly 
upregulated by oxali-Pt in 2780CP/Cl-16  

  A2780 2780CP/Cl-16 

Protein Name 
Cis-Pt  

Fold Change 
Oxali-Pt 

Fold Change 
Cis-Pt  

Fold Change 
Oxali-Pt 

Fold Change 

BAX_Bax-R-V 1.1958 1.4433   1.2667 

MAPK1 MAPK3_MAPK_pT202_Y204-R 
1.2282 1.47   1.0695 

MCL1_Mcl-1-R-V 1.0462 1.1006   1.1326 

NOTCH1_Notch1-R-V 1.1376 1.2428   1.2274 

TP53_p53-R-C 1.0167 1.0841   1.0908 
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K) Proteins significantly upregulated by cis-Pt and upregulated by oxali-Pt in A2780 and significantly 
upregulated by cis-Pt in 2780CP/Cl-16  

  A2780 2780CP/Cl-16 

Protein Name 
Cis-Pt  

Fold Change 
Oxali-Pt 

Fold Change 
Cis-Pt  

Fold Change 
Oxali-Pt 

Fold Change 

FOXM1_FoxM1-R-V 1.2065 1.0434 1.1573   

 

Appendix 4: Analysis of the functionality of p53 missense mutations in ovarian cancer patients and 
cell lines 

A) Analysis of p53 functionality for HGSOC Patients (Data for p53 mutation was extracted from TCGA, 
FASAY was used to assess p53 functionality for a given mutation and a value ≥ 20 (in green) was 
considered indicative of p53 functionality) 

AA 
change 

Freq #cases/mut Promoters 

   
WAF1 MDM2 BAX AIP GADD45 NOXA p53R2 

14-3-3-
s 

S127Y 0.57 1 13.79 18.9 14.21 4.14 6.9 7 7.98 11.53 

S127F 0.57 1 12.47 20.1 14.35 8.15 8.38 5.61 8.99 12.02 

L130V 0.57 1 8.89 18.26 18.34 14.3 24.79 24.71 20.77 16.93 

K132M 0.57 1 14.93 23.99 16.47 7.32 4.57 6.97 7.69 8.98 

K132E 0.57 1 0.56 0 0 0 0 0 0 0 

K132N 1.14 2 10.49 17.8 12.87 6.13 3.16 4.58 4.95 8.41 

F134V 0.57 1 10.89 18.79 12.4 6.43 2.64 3.88 5.09 8.74 

C135Y 0.57 1 10.88 16.63 12.63 5.66 3.45 4.59 5.35 7.4 

C135R 0.57 1 0.86 8.34 3.98 7.57 12 11.13 10 1.99 

L145Q 0.57 1 12.41 16.96 13.1 5.9 3.99 6.37 8.32 12.93 

L145R 0.57 1 12.61 16.92 13.34 5.54 3.8 5.76 7.14 10.13 

P151S 0.57 1 0.85 8.9 0.02 8.78 3.58 15.81 6.82 0 
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T155A 0.57 1 40.74 51.26 74.1 76.3 67.55 188.57 118.13 100.18 

R156P 0.57 1 8.22 13 13.41 6.6 2.57 7.83 6.39 6.44 

V157F 2.86 5 9.06 17.5 15.64 6.98 3.4 10.67 11.24 6.51 

A159V 1.14 2 6.91 23.42 26.41 16.68 10.76 18.48 15.82 9.98 

Y163N 0.57 1 11.38 14.95 11.29 5.56 2.97 8.13 6.15 6.83 

Y163H 0.57 1 11.22 16.67 12.64 6.51 3.26 8.06 12.31 5.59 

Y163C 1.14 2 18.3 17.51 12.62 4.04 2.19 5.83 5.4 3.85 

K164E 0.57 1 12.39 19.27 12.37 8.95 4.35 8.1 34.67 8 

V173L 0.57 1 3.61 0 0 0 0 0 3.52 0 

R175H 4.57 8 12.41 17.56 10.52 2.63 4.08 7.29 7.83 10.52 

C176F 0.57 1 22.88 15.7 14.96 19.49 27.85 95.79 100.91 5 

C176Y 2.86 5 14.82 12.89 13.51 7.43 11.24 29.28 73.51 3.64 

P177R 0.57 1 17.88 17.68 14.74 8.32 2.69 9.23 84.58 5.9 

H178N 0.57 1 28.34 18.3 11.97 24.33 27.95 41.2 47.73 6.69 

H179R 2.29 4 13.02 18.04 14 15.33 20.49 44.88 67.55 8.55 

H179Q 0.57 1 17.51 19.45 11.25 7.17 14.2 37.87 80.28 6.83 

R181P 0.57 1 14.12 22.86 16.66 8.71 4.96 11.72 23.08 7.24 

H193R 1.71 3 10.15 19.32 13.69 6.11 4.62 4.21 10.14 7.17 

L194R 1.14 2 10.61 22.57 14.48 7.09 4.77 3.9 9.66 10.2 

I195T 4.00 7 11.24 22.29 13.79 8.91 6.16 8.18 16.47 8.37 

I195N 0.57 1 10.54 23.64 15.7 8.2 4.9 4.55 10.95 9.07 

I195F 0.57 1 10.47 21.24 14.57 7.91 4.7 5.87 11.91 8.27 

Y205C 1.14 2 8.94 20.66 9.66 5.82 4 6.32 12.91 6.83 

D208V 0.57 1 4.74 6.36 3.52 12.76 12.55 7.83 7.09 3.64 

H214R 0.57 1 3.12 4.07 3.39 20.95 14.94 10.83 13.09 5.72 

S215R 1.14 2 1.17 2.77 2.41 0.11 1.22 0 1.23 0 

V216G 0.57 1 2.05 1.16 0 0 0.97 0 0 0 

V216M 1.14 2 0.16 13.23 0.1 3.15 1.3 0.97 2.57 0 

Y220C 4.57 8 1.21 8.6 2.55 1.39 2.97 0.24 5.11 0 

I232N 0.57 1 0.72 0 3.96 0.78 1.17 0 3.04 0 

Y234C 1.14 2 2.14 0.46 14.55 10.28 14.08 10.76 14.85 9.83 
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Y234N 0.57 1 0.36 0 3.25 0 0 0 0.48 0 

Y236C 1.14 2 0.7 23.65 3.33 0 0 0 1.84 0 

M237I 0.57 1 0.43 11.46 2.63 0 0 0 2.2 0 

M237K 0.57 1 14.24 17.35 23.93 12.51 10.57 17.53 25.4 14.23 

C238Y 0.57 1 14.58 20.39 25.25 11.07 6.01 13.13 15.79 13.07 

C238F 0.57 1 0.82 0 4.64 0 0 0 1.73 0 

N239S 0.57 1 14.86 21.81 17.98 7.64 4.2 14.97 17.17 10.2 

S241Y 0.57 1 6.57 0.04 0 0 0 0 1.84 0 

S241F 2.29 4 0 0 0.31 0 0 0 0.84 0 

G244D 0.57 1 0.52 0 0.32 0 1.61 0 131.35 0 

G244C 1.14 2 0 0 0 0 0 0 4.71 0 

G245V 1.14 2 0 0 0 0 0 0 0 0 

G245R 0.57 1 7.9 0 0 0 2.89 1.53 10.92 0 

G245D 1.14 2 1.95 8.82 11.86 2.94 0.24 3.29 2.64 2.07 

G245S 1.71 3 0 1.64 0.72 0 0 0 31.35 0 

G245C 0.57 1 0 0.34 0 0 0 0 0 0 

R248W 2.86 5 0 0 0.68 0 0 0 0 0 

R248G 0.57 1 0 0.64 0 0 0 0 0 0 

R248Q 4.57 8 0 1.75 0 0 0 0 0 0 

R249G 0.57 1 0.17 4.26 0 0 0 0 0.57 0 

P250L 1.14 2 0 2.92 1.46 5.35 14.52 10.19 11.65 0.48 

I251S 0.57 1 0 2.96 7.16 0.14 2.63 2.17 4.95 0 

L257Q 0.57 1 10.96 22.82 12.77 8.43 4.89 9.14 14.04 7.96 

D259Y 1.14 2 9.92 15.66 10.68 6.4 2.06 7.68 4.79 6.66 

G262V 0.57 1 11.71 20.21 15.24 8.17 4.44 9.42 13.09 9.29 

L265P 0.57 1 0 0 0.4 0 0 0 0.1 0 

G266R 1.14 2 10.77 19.28 16.72 8.41 5.14 8.5 13.97 10.47 

G266V 1.14 2 0 0 1.74 0 0 0 0 0 

F270L 0.57 1 8.14 24.52 24.27 12.42 13.91 20.02 23.99 16.95 

V272M 1.14 2 8.79 24.82 16.4 13.19 17.96 23.18 21.73 10.79 

R273H 5.71 10 1.01 0 2.42 0 0 0 15.97 0 
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R273C 4.00 7 0.91 0 2.69 0 0.4 0 1.21 0.26 

R273P 0.57 1 0.58 0 1.52 0 0.05 0 0 0 

R273L 1.14 2 0.86 0 0 0 0 0 0.03 0 

V274G 0.57 1 5.25 9.05 7.62 2.28 3.11 0 3.82 1.24 

V274D 0.57 1 1.32 0 0 0 0 0 0.48 0 

C275Y 1.14 2 0.42 0 0 0 0 0 0 0 

A276P 0.57 1 0.62 0 0 0 0 0 0.13 0 

C277F 0.57 1 0.31 0 0 0 0 0 1.43 0 

P278R 0.57 1 0.72 4.04 5.33 0 1.01 1.73 1.52 0 

P278H 0.57 1 0.28 0 0 0 0 0 0 0 

G279E 0.57 1 0.27 0 1.24 0 6.75 0 0.78 0 

R280I 0.57 1 0.18 0 0.66 0 0.07 0 0.38 0 

R282W 2.86 5 0.55 0 0.49 0 0 0 0 0 

R337C 0.57 1 11.86 32.19 14.66 12.85 7.92 8.86 26.16 15.64 

Total 100 175 
        

B) Analysis of p53 functionality for Ovarian Cancer Cell Lines  

AA 
change 

Promoters 
  

 WAF1 MDM2 BAX AIP GADD45 NOXA p53R2 
14-3-3-

s   

V172F 8.17 19.81 12.64 4.62 17.58 22 24.28 19.63 
  

G266R 10.77 19.28 16.72 8.41 5.14 8.5 13.97 10.47 
  

P72R 67.23 75.09 85.95 50.18 64.13 127.33 102.27 101.3 
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