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TESTING IN ENDOMETRIAL CANCER 

 

Jean Marie Hansen, DO 

Advisor: Anil K. Sood, MD 

 

Abstract 

 

Objectives: Homologous recombination deficiency (HRD) score is related to chemotherapy 

response in breast and ovarian cancers. The role of HRD is unknown in endometrial cancer. 

We examined the relationship between HRD score and survival in a cohort of endometrial 

cancer patients and with tumor growth using murine orthotopic models.  

 

Methods: TCGA was queried to determine frequency and clinical significance of alterations 

in the HR pathway in endometrial cancer. 137 formalin-fixed paraffin-embedded endometrioid 

adenocarcinoma patient samples were tested for HRD score, microsatellite instability (MSI) 

and high mutation load (HML) using a next generation sequencing assay targeting the coding 

regions of 43 genes and 54,091 genome wide single nucleotide polymorphisms (SNPs) 

developed by Myriad Genetics. The HRD score is the sum of three previously described 

scores (loss of heterozygosity, telomeric allelic imbalance, and large-scale state transition) 

that quantitate genome rearrangement. Clinical records were obtained. HRD scores were also 

generated on a panel of established endometrial cancer cell lines and their in vivo growth and 
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response to olaparib and chemotherapy were assessed. Tumor growth and patterns of 

metastatic spread were assessed in orthotopic mouse models of endometrial cancer. 

 

Results: Median age at diagnosis was 62 years. The majority of patients presented with early 

stage disease (54%, 11%, 27%, 8% stage I, II, III, IV respectively), and FIGO grade 2 histology 

(1%, 73%, 26% grade 1, 2, 3). HRD scores were generated for 112 patient samples, MSI 

status was determined for 126 samples, and HML status determined for 137 samples. The 

median HRD score was 3. Patients with HRD score ≥ 10 trended toward worse survival as 

compared to patients with HRD score <10 (P=0.17). Hec1a cell line (HRD score = 19) was 

highly sensitive to olaparib and was selected for in vivo use. At the time of necropsy, mice 

injected with Hec1a and treated with PARP inhibitor had significantly decreased tumor growth 

and HR function as compared with untreated controls, regardless of BRCA1 function.  

 

Conclusions: High HRD score was associated with worse survival in our patient cohort. Our 

findings support the use of HRD score in guiding the choice of adjuvant therapy for patients 

with advanced endometrial cancer.  
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Introduction 

Epidemiology and treatment of endometrial cancer 

 Endometrial cancer is the most common gynecologic malignancy in the United States 

and other developed countries, and second most common worldwide [1]. In 2015, an 

estimated 54,870 women were diagnosed with uterine cancer, and there were an estimated 

10,170 deaths from the disease [1]. The most common site of disease in the uterus is the 

endometrium, and the most common histology is adenocarcinoma. Approximately 80% of 

endometrial adenocarcinoma cases have endometrioid histology [2], which is the primary 

focus of the work discussed here. Endometrioid endometrial cancer is graded according to 

the percentage of solid tumor growth present, with grade 3 histology corresponding with 

greater than 50% solid tumor growth [3]. The remaining 20% of cases are comprised of non-

endometrioid histologies, including serous and clear cell [4,5]. The median age of diagnosis 

of endometrial cancer is 62 [6], and risk factors for endometrioid endometrial cancer include 

exposure to unopposed estrogen due to obesity, exogenous estrogen administration, chronic 

anovulation, and estrogen-secreting tumors [7,8,9,10,11]. Additional risk factors include 

tamoxifen use [12], early menarche, late menopause [13], and familial cancer syndromes 

including Cowden and Lynch syndrome [14,15,16]. 

  Patients with endometrial cancer most commonly present with pre-menopausal 

abnormal uterine bleeding, or post-menopausal bleeding, prompting endometrial sampling via 

office endometrial biopsy or endometrial curetting [17]. Endometrial cancer is staged 

surgically via hysterectomy, bilateral salpingo-oophorectomy [18], with the addition of pelvic 

and para-aortic lymphadenectomy in cases of serous, clear cell or high grade endometrioid 

histology, tumor size greater than 2 cm, or greater than 50% myometrial invasion on frozen 

pathology [19,20,21]. Approximately two-thirds of endometrial cancer cases are diagnosed 

when the disease is confined to the uterus, and five-year overall survival is greater than 78% 
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when diagnosed at this early stage [6]. (Table 1) When regional or distant metastases are 

present at the time of diagnosis, five year survival decreases to 56% and 21%, respectively 

[6]. 

 

Table 1. Staging of endometrial carcinoma (International Federation of Gynecology and 

Obstetrics [FIGO]) [22] and survival by stage [6]. 

 

 The majority of women with endometrial cancer are cured with surgery alone, and do 

not require further treatment. The need for adjuvant therapy is based on risk for recurrence, 

which is stratified by stage, tumor and patient factors. Patients with grade 2 or 3 histology, 

invasion into the outer third of the myometrium, or lymphovascular space invasion, in 

combination with increasing age, are designated high-intermediate risk for recurrence by the 

Gynecologic Oncology Group (GOG) [23]. In this subset of patients, both postoperative pelvic 

radiation [23] and vaginal brachytherapy have been shown to decrease the rate of recurrence 
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[24]. Patients with endometrioid histology and stage III or IV disease, or serous and clear cell 

histology of any stage are defined as having high risk for recurrence, and are typically 

dispositioned to receive adjuvant therapy. This is a heterogeneous group of patients with rare 

tumor types, making prospective study challenging. The optimal type of adjuvant therapy has 

not been defined for either early or advanced stage uterine serous carcinoma, but existing 

retrospective data suggest that platinum-taxane chemotherapy does improve outcomes, and 

radiation may decrease local recurrence rates [5,25]. 

 Prognosis is poor in patients who have metastatic or recurrent disease. Approximately 

16% of patients with endometrial cancer have regional lymph nodes or widely metastatic 

spread at the time of diagnosis [26], and 15% of all patients with endometrial cancer eventually 

develop disease relapse [27], typically within the first three years [27]. Again, this is a 

heterogeneous group of patients with varying histologies, sites of recurrence, and 

performance status. Depending on these factors, surgical resection, radiation, chemotherapy, 

hormonal or targeted therapies may be appropriate [25,26,28,29]. Because of the overall poor 

prognosis of this group of patients, a better understanding of the biological behavior of these 

aggressive tumors is warranted.  

 

Genomic characteristics and targeted therapies in endometrial cancer 

The Cancer Genome Atlas (TCGA) performed an analysis of 373 endometrial 

carcinoma samples that provided an in depth view of the genomic characteristics of this 

disease. The cohort included 307 endometrioid cancer samples and 66 serous or mixed 

histology samples [30]. Through an integrated genomic and proteomic approach, four tumor 

subtypes or clusters were identified: ultramutated tumors with frequent POLE mutations and 

underlying endometrioid histology, hypermutated endometrioid tumors with microsatellite 
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instability, copy-number low tumors of endometrioid histology, and copy-number high tumors 

with serous histology. The focus of our work here is primarily on the endometrioid subgroups, 

which have frequent mutations in PTEN, PIK3CA, CTNNB1, ARID1A, and KRAS. Loss of 

function of the tumor suppressor gene PTEN is the most common mutation in endometrioid 

endometrial cancer, and occurs in about 80% of cases [30,31]. PTEN mutations were 

particularly common in the endometrioid subgroups, which is relevant for our work presented 

here. These subgroups tend to have infrequent mutations in TP53, however, approximately 

25% of the tumors in the TCGA cohort that were classified as high grade (grade 3) 

endometrioid had molecular characteristics similar to the serous tumors [30]. These 

characteristics include high frequency of TP53 mutations and somatic copy number 

alterations, which set them apart from low grade endometrioid tumors. Endometrioid 

endometrial cancer is thus a diverse disease, and genomic classification may allow providers 

to offer more individualized care in order to exploit specific molecular characteristics of the  

tumor. 

 Microsatellite instability (MSI) occurs in approximately 20% of endometrioid 

endometrial cancer cases, and results from defects in mismatch repair genes (MLH1, MSH2, 

MSH6, PMS2) [32]. MSI can occur in the context of Lynch syndrome by means of germline 

mutations in these genes, which accounts for 2-5% of all endometrial cancer cases [33]. More 

commonly, microsatellite instability occurs sporadically due to methylation of the MLH-1 

promoter. MLH-1 promoter methylation, a form of epigenetic silencing, accounts for 

approximately 70% of cases of MSI endometrial cancer [3,34]. Bilallelic inactivation of 

mismatch repair genes, either by mutation or epigenetic silencing, leads to genomic instability 

via accumulation of DNA mismatches in microsatellite regions [35]. This subtype of 

endometrial cancer has unique biological behavior as compared to the microsatellite stable, 
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copy number low endometrioid tumors, and is predictive of a more favorable clinical outcome 

[36].  

 The detailed genomic characterization by the TCGA provides a framework for rational 

therapy in endometrial cancer. Mutations in components of the PI3K/AKT pathway and its 

targets are common in this disease, and PTEN loss of function, which is frequent, leads to 

constitutive activation of this pathway [37,38]. The mammalian target of rapamycin (mTOR) is 

an important downstream target of the PI3K/AKT pathway [39], and the mTOR inhibitors 

temsirolimus and everolimus have shown activity in patients with advanced or recurrent 

endometrial cancer [40,41,42]. However, agents individually targeting PI3K and AKT as such 

have had only modest response rates. Vascular endothelial growth factor (VEGF) expression 

is associated with increased tumor growth and metastasis in endometrial cancer  [43], 

indicating that bevacizumab, a monoclonal antibody targeting VEGF-A, may be efficacious in 

this disease. A phase 2 trial of single agent bevacizumab in advanced endometrial cancer 

yielded promising response rates [44]. Other agents targeting the VEGF pathway, including 

cediranib and sunitinib, are also under investigation [45]. Despite the variety of rational targets 

for endometrial cancer therapy, clinical benefit has been modest in recurrent or advanced 

cases of this disease, emphasizing the need for further investigation.  

 

Homologous recombination deficiency and malignancy 

 The ability of a cell to survive requires accurate transmission of genetic material to 

daughter cells, which is dependent on its ability to repair DNA damage prior to cell division 

[46]. This is accomplished by a complex network of pathways that repair a variety of types of 

DNA damage, including double strand breaks, which can lead to cellular lethality if improperly 

repaired [47]. Homologous recombination (HR) is one of the mechanisms by which double 
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strand breaks, as well as interstrand crosslinks, are detected and repaired. ATM and ATR 

kinases are early responders to double strand breaks; ATM is recruited to the area of double 

strand breaks by the Mre11-Rad50-Nbs1 (MRN) complex, an early responder to DNA double 

strand breaks [48]. ATM phosphorylates several downstream targets which function as tumor 

suppressors, and their phosphorylation is essential for the initiation of HR. One such 

downstream target is BRCA1 [49]; upon phosphorylation, BRCA1 localizes to RAD51 foci at 

sites of double strand breaks during the S and G2 phases of the cell cycle [50,51,52]. The role 

of BRCA1 in DNA damage repair is diverse [53], and BRCA1 also colocalizes with the MRN 

complex [54]. BRCA2 plays a similar but distinct role by colocalizing with RAD51 nuclear  foci, 

regulating its activity, and is essential for homology-directed double strand break repair 

[55,56]. PTEN loss of function has also been implicated in HR deficiency [57] via the inhibition 

of RAD51 foci formation [58], although its primary role is regulation of the phosphatidylinositol 

3-kinase (PI3K)/AKT/mTOR signaling pathway [59,60].  

Germline mutations of BRCA1 and 2 are associated with a markedly increased risk of 

developing breast and ovarian cancer. The population risk varies by study, but when the data 

from several large studies are considered [61,62,63], in BRCA1 mutation carriers, the lifetime 

risk of breast cancer is 57-65% and the lifetime risk of ovarian cancer is 40-60%. In BRCA2 

mutation carriers, the lifetime risk of breast cancer is 45-47% and the lifetime risk of ovarian 

cancer is 11-18%. Mutations resulting in nonfunctional BRCA1 or 2 lead to increased 

sensitivity to inhibitors of poly(ADP-ribose) polymerase (PARP-1), a nuclear protein that is an 

early responder to DNA single strand breaks along the base excision repair pathway and 

prevents further processing of DNA until breaks are repaired [64]. The loss of PARP-1 function 

inhibits repair of single strand breaks, which in turn increases the quantity of DNA lesions to 

be repaired by HR in the S phase [65]. In cells lacking BRCA1 or 2 function, and thus deficient 

in HR, the inhibition of PARP-1 results in chromosomal instability, cell cycle arrest and 
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eventual cell death [66,67]. Likewise, in some preclinical studies as well as a case report, loss 

of PTEN function showed increased sensitivity to PARP inhibition [58,68]. The use of PARP 

inhibitors has proven to be an effective strategy in patients with breast [69] and ovarian cancer 

[70] and germline BRCA1 or BRCA2 mutations. Indeed, olaparib, an oral inhibitor of PARP, 

was approved by the FDA in 2014 for use in patients with recurrent ovarian cancer and a 

BRCA mutation. In a phase 2 trial of olaparib maintenance therapy in patients with relapsed 

ovarian cancer [71], patients with BRCA mutations derived the greatest survival benefit from 

the use of olaparib as maintenance therapy. However, patients with wild type BRCA treated 

with olaparib also had significantly longer progression free survival than those treated with 

placebo, suggesting other mechanisms for susceptibility to PARP inhibition may be involved, 

including mutations in other genes important for HR [72].  

 

The homologous recombination deficiency (HRD) score 

 Genomic instability secondary to homologous recombination deficiency (HRD) can be 

caused by a multitude of genetic aberrations and has many important contributors besides 

BRCA deficiency. Recently, techniques have been developed that allow investigators to 

capture and understand the degree of HRD in a tumor. Three independent DNA-based metrics 

have been developed to detect major contributors to genomic instability due to HRD: loss of 

heterozygosity (HRD-LOH score) [73], telomeric allelic imbalance (HRD-TAI score) [74], and 

large-scale state transition (HRD-LST score) [75]. The HRD-LOH score refers to the number 

of regions of LOH in the tumor longer than 15Mb but shorter than the whole chromosome [73]. 

The HRD-TAI score is the number of regions in the tumor with allelic imbalance that extend 

to one of the subtelomeres but do not cross the centromere [74]. HRD-LST identifies 

chromosome breaks including inversions, translocations and deletions in adjacent segments 

of at least 10Mb, and the score is equal to the number of break points between regions  [75]. 
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All three metrics are associated with platinum sensitivity in breast and ovarian cancer, and 

correlate with mutations in BRCA1 and 2 as well as other HR pathway genes [76]. While each 

has clinical relevance separately, the sum of the three metrics (HRD-LOH, HRD-TAI, HRD-

LST), known as the HRD score, is a more robust predictor of HR deficiency than each score 

alone in breast and ovarian cancer patients [76,77]. In addition, HRD score is a better predictor 

of platinum sensitivity than clinical variables or BRCA mutation status; indeed, when wild type 

BRCA tumors were analyzed, platinum response was superior in patients with high HRD 

scores [77].  

The clinical implications of HR deficiency in breast and ovarian cancer due to BRCA 

mutation status are well-established, and new information about HR deficiency due to other 

causes continues to emerge. There is limited knowledge, however, about the clinical 

significance of HR deficiency in endometrial cancer. Preclinical work and genomic analysis by 

TCGA suggests that HR deficiency may be an important factor in the biological behavior of 

these tumors. Because of the high prevalence of this disease, and the paucity of effective 

treatments in advanced cases, further investigation is certainly warranted.  

 

Hypothesis and specific aims 

Hypothesis: In patients with endometrial cancer, defects in the homologous recombination 

pathway will be associated with worse clinical outcomes, and homologous recombination 

deficiency (HRD) score will be both predictive and prognostic in this disease.  

Specific aim 1: Determine the frequency and clinical significance of homologous 

recombination pathway alterations in endometrial cancer. 

Specific aim 2: Assess the effect of HRD on tumor growth and response to PARP inhibition 

in murine orthotopic models of uterine cancer. 
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Materials and Methods 

Cell line maintenance  

Endometrial cancer cell lines (AN3CA, Hec1a, Hec1b, Hec265, Ishikawa, and KLE) 

were obtained from the American Type Culture Collection. All cell lines were maintained in 

5% CO2 at 37 °C. Hec265 cells were maintained and propagated in RPMI 1640 (GE 

Healthcare Life Sciences) supplemented with 15% fetal bovine serum and 0.1% gentamicin 

sulfate (GeminiBioproducts). Ishikawa cells were maintained and propagated in MEM 

(Mediatech, Inc) supplemented with 10% fetal bovine serum and 0.1% gentamicin 

sulfate. Hec1a cells were maintained and propagated in McCoy’s 5A medium (Mediatech, Inc) 

supplemented with 10% fetal bovine serum and 0.1% gentamicin sulfate. Hec1b and AN3CA 

cells were maintained in MEM supplemented with 10% fetal bovine serum, glutamine, sodium 

pyruvate (Lonza BioWhittaker) and non-essential amino acids (Life Technologies 

Laboratories). KLE cells were maintained and propagated in 1:1 DMEM:F12 media (Sigma-

Aldrich) supplemented with 10% fetal bovine serum and 0.1% gentamicin sulfate[78].   

Cell lines were obtained within one year of the work described, and per institutional 

policy (MD Anderson policy ACA#1044) cell line authentication was performed at least once 

per year. Authentication was performed by the short tandem repeat method using the 

Promega Power Plex 16HS kit (Promega). Somatic mutations were detected using a 

Sequenom MALDI TOF MassArray system (Sequenom). Mycoplasma detection was 

performed using the MycoAlert Kit (Lonza), and all experiments were conducted with 60-80% 

confluent cultures[78]. 
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siRNA transfections 

Hec1a was selected for use in vivo and all transfections were performed using this cell 

line. All siRNA transfections were performed using Lipofectamine 2000 (Invitrogen) reagent 

using forward transfection protocol from the manufacturer. Cells were seeded in 6 well plates 

at low density, and media was changed six hours after transfection to minimize toxicity. The 

siRNA sequences used for BRCA1 siRNA experiments are as follows: Control: Sense 

UUCUCCGAACGUGUCACGU / Antisense ACGUGACACGUUCGGAGAA, sequence #1: 

Sense CUACUGUCCUGGCUACUAA / Antisense UUAGUAGCCAGGACAGUAG (Sigma-

Aldrich, SASI_Hs01_00179500), sequence #2: Sense CUAUGCAAGGGUCCCUUAA / 

Antisense UUAAGGGACCCUUGCAUAG (Sigma-Aldrich, SASI_Hs01_00179502). Following 

forward transfection, cells were incubated for 48, 72 or 96 hours. Trizol reagent (Invitrogen) 

was then added to cells in preparation for RNA isolation[79].  

 

Quantitative real-time PCR 

For mRNA quantification, total RNA was isolated using the Qiagen RNeasy kit 

(Qiagen). Using 1,000 ng of RNA, complementary DNA was synthesized using a Verso cDNA 

kit (Thermo Scientific), as per the manufacturer’s instructions. Analysis of mRNA levels was 

performed on a 7500 Fast Real-Time PCR System (Applied Biosystems, CA) with SYBR 

Green-based real-time PCR for all genes. PCR was done with reverse-transcribed RNA and 

100 ng/μL of sense and antisense primers in a total volume of 20 μL. Each cycle consisted of 

15 seconds of denaturation at 95°C and 1 minute of annealing and extension at 60°C (40 

cycles)[79]. BRCA1 primer sequences, Forward: 5’ TGTGAAGGCCCTTTCTTCTG, Reverse: 

5’ TCCCATCTGTCTGGAGTTGA. 18S was used as a housekeeping gene; primer 

sequences, Forward: 5’ CGCCGCTAGAGGTGAAATTC, Reverse: 5’ 

TTGGCAAATGCTTTCGCTC. 
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Liposomal nanoparticle preparation 

BRCA1 sequence #2 was selected for in vivo use based on knockdown efficiency as 

determined by quantitative real-time PCR. siRNA for in vivo delivery was incorporated into 

DOPC nanoliposomes [80,81,82]. DOPC and siRNA were mixed in the presence of excess 

tertiary butanol at a ratio of 1:10 (w/w) siRNA/DOPC. Tween 20 was added to the mixture in 

a ratio of 1:19 Tween 20: siRNA/DOPC. The mixture was vortexed, frozen in an acetone/dry 

ice bath, and lyophilized. Before in vivo administration, this preparation was hydrated with 

PBS at room temperature at 5 μg in 200 μl of PBS per injection[83]. Treatment was given 

twice weekly via intraperitoneal injection. 

 

In vivo models 

Female athymic nude mice were purchased from Taconic Farms (Hudson, NY). Mice 

were housed and cared for according to guidelines set forth by the American Association for 

Accreditation of Laboratory Animal Care and the US Public Health Service policy on Human 

Care and Use of Laboratory Animals. All mouse studies were approved and supervised by 

The University of Texas MD Anderson Cancer Center Institutional Animal Care and Use 

Committee. All animals were 8–12 weeks old at the time of cell injection. 

Prior to injection into mice, cells were harvested using trypsin-EDTA (GE Healthcare 

Life Sciences), neutralized with complete media, washed and resuspended in Hanks’ 

balanced salt solution (HBSS; Gibco). Cells were injected into the left uterine horn (4 × 

106 cells in 100 μl of HBSS). Prior to injection, mice were anaesthetized with a combination of 

ketamine (100mg/kg), xylazine (2.5mg/kg) and acepromazine (2.5mg/kg), given 

intraperitoneally in a volume of 200 μl. To inject cells, an incision in the midline was made and 

using blunt dissection, the left uterine horn identified. A 1-ml tuberculin syringe with a 30-

gauge needle was used to inject the cell suspension directly into the uterine horn. After 
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injection, the incision was closed using interrupted 4-0 Vicryl sutures followed by surgical clips 

and the mouse was returned to a warmed cage until fully recovered. Mice received 

buprenorphine for analgesia at the time of surgery and twice daily for 72 hours postoperatively. 

For all therapeutic experiments, Olaparib (LC Laboratories) was administered at a 

dose of 50mg/kg by oral gavage daily. Olaparib was dissolved in DMSO and then diluted 10% 

v/v in 2-hydroxy-propyl-β-cyclodextrin (Sigma-Alridch) [84,85,86]. siRNA was given 

intraperitoneally twice weekly. Treatment with siRNA began 10 days after cell injection and 

treatment with olaparib began 14 days after cell injection, and continued for approximately 

three to four weeks. Once mice in any group became moribund, all mice were sacrificed and 

necropsied. Tumors were harvested, and weight, number and location of metastatic nodules 

were recorded. Tumor tissue was preserved and fixed in formalin for paraffin embedding, 

frozen in optimal cutting temperature media to prepare frozen slides, or snap-frozen for lysate 

preparation. 

 

Immunoblotting 

Lysates from cultured cells were prepared using modified RIPA buffer (50 mM Tris–

HCl [pH 7.4], 150 mM NaCl, 1% Triton, 0.5% deoxycholate) plus 25 μg ml−1 leupeptin, 

10 μg ml−1 aprotinin, 2 mM EDTA and 1 mM sodium orthovandate. The protein concentrations 

were determined using a BCA Protein Assay Reagent kit (Pierce Biotechnology). Lysates 

were loaded and separated on SDS–PAGE. Proteins were transferred to a nitrocellulose 

membrane by semidry electrophoresis (Bio-Rad Laboratories) overnight, blocked with 5% milk 

for one hour and then incubated at 4°C overnight with primary antibody: BRCA1 (Santa Cruz 

Biotechnology, sc-642 [1:500]), RAD51 (Santa Cruz Biotechnology, sc-8349 [1:500]), p-H2AX 

(Cell Signaling, 9718P [1:1000]). After washing with tris-buffered saline with Tween 20, 

membranes were then incubated with horseradish peroxidase-conjugated horse anti-Mouse 
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(GE Healthcare, NA931V [1:2000]) or Rabbit (GE Healthcare, NA934V [1:2000]) IgG for one 

hour. Visualization of horseradish peroxidase was performed using an enhanced 

chemiluminescence detection kit (Pierce Biotechnology). To confirm equal sample loading, 

the blots were probed with an antibody specific for vinculin (Sigma-Aldrich, V9131 

[1:5000]).[78] 

 

Cell viability assays 

MTT: Cell viability assays were performed by testing cell's ability to reduce the 

tetrazolium salt [3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-

2H-tetrazolium, inner salt] to a formazan. Cells were seeded in a 96-well plate at low density. 

24 hours after seeding, cells were treated for 72 hours with increasing concentrations of 

paclitaxel, for 96 hours with increasing concentrations of cisplatin, or for 7 days with increasing 

concentrations of olaparib. After the designated time based on treatment, cells were incubated 

with 0.15% 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) for 2 hours at 

37°C. The supernatant was removed, cells were dissolved in 100-μL DMSO, and the 

absorbance at 540 nm was recorded[78]. 

Colony formation assay: Cells were seeded in 6-well plates at low density. 24 hours 

after seeding, cells were treated with increasing concentrations of paclitaxel, cisplatin or 

olaparib for 72, 96 hours or 7 days, respectively. Following treatment, colonies were stained 

with a solution of 0.25% crystal violet and 50% methanol in PBS. Colonies containing 50 or 

more cells were counted manually using ImageJ software. 

 

Immunohistochemistry and immunofluorescence 

Paraffin-embedded tissues were used to detect cell proliferation (with Ki67) and 

apoptosis (with cleaved caspase 3). Sections were deparaffinized sequentially in xylene and 
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declining grades of ethanol prior to rehydration and transferred to PBS. After antigen retrieval 

with citrate buffer (pH 6.0), the sections were blocked with 3% hydrogen peroxide in methanol 

and protein blocker at room temperature. The sections were then incubated with the Ki-67 

(DakoCytomation [1:200]) or monoclonal mouse antibody against cleaved caspase 3 (Biocare 

Medical [1:100]) overnight at 4°C. After being washed with PBS, sections were incubated with 

horseradish peroxidase-conjugated rat anti-mouse immunoglobulin G2a (Serotec, Harlan 

Bioproducts for Science [1:100] for Ki67 staining) for 1 hour, or biotinylated 4+ goat anti-rabbit 

secondary antibody (Biocare Medical) for 20 minutes followed by streptavidin 4+ (Biocare 

Medical) for 20 minutes for cleaved caspase 3 staining. To quantify Ki67 expression and 

cleaved caspase 3, five samples from each group were examined. The number of positive 

cells was determined in five random fields at 40x magnification. 

γ-H2AX staining was performed on frozen sections. Sections were fixed in cold 

acetone for 15 min and washed with PBS. Immunofluorescent staining was performed using 

phospho-histone H2AX antibody (Cell Signaling, 9718S, 1:500), according to the 

manufacturer protocol. Slides were developed with 3, 3”-diaminobenzidine chromogen 

(Invitrogen, Carlsbad, CA) and counterstained with Gil’s No. 3 hematoxylin (Sigma-Aldrich). 

The number of γ-H2AX foci per cell was determined in five random fields at 40x magnification.  

 

Patient tumor samples 

After the study was approved by the Institutional Review Board and written informed 

consent was obtained from the patients for the use of clinical specimens for research, 156 

formalin-fixed paraffin-embedded (FFPE) endometrioid endometrial adenocarcinoma tumor 

samples were obtained from the MD Anderson Cancer Center Tumor Bank. Demographic, 
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clinical and outcome data were obtained from patient records. Responses to initial treatment 

and treatment for recurrent disease were recorded.  

 

HRD score calculation 

 For each patient, one 5-micron slide and five 10-micron slides cut from FFPE primary 

endometrial tumor specimens were sent to Myriad Genetics, Inc (Salt Lake City, UT). All tissue 

was processed in the research laboratory according to the CLIA protocol.  A 5-micron 

hematoxylin and eosin slide was created and reviewed by the patholog ist to facilitate 

enrichment of tumor-derived DNA. DNA extraction was performed on 10-micron sections in 

the area of highest tumor cell density [77]. DNA was analyzed using a next-generation 

sequencing-based assay to generate a genome-wide single nucleotide polymorphism (SNP) 

profile from which the three components of the HRD score are calculated. The panel used 

targets 54,091 SNPs distributed across the genome. A detailed description of the assay is 

available in Timms, et al [76]. 

 

MSI assay 

35 microsatellites which could be used to measure MSI were identified within the SNP 

flanking sequence from the HRD assay. The criteria for these microsatellites were 1) the 

microsatellite was within 100 based of the SNP position, 2) the microsatellite was 15-20 bases 

in length, 3) the average SNP coverage was over 100 independent reads, 4) the microsatellite 

was of a consistent length among normal tissue samples with low noise around the defaults 

length having CV less than 20%, and 5) in a control set of MSI positive samples two or more 

samples must exhibit instability around the same microsatellite. The length of all 35 
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microsatellites is assessed in all samples. If ≥3 microsatellites show deletions then the sample 

is defined as MSI positive. 

 

High mutation load (HML) assay 

Somatic mutation load is assessed by analysis of SNP flanking sequence from the 

HRD assay. The forward and reverse read sequenced, trimmed for quality, were aligned to 

801 bp segments around each target SNP, with a maximum of 7 mismatches and no gaps 

used as criteria to exclude low quality reads. Mismatches between the template segment 

sequences and the read sequences were counted for each test locus. Excluded from the 

analysis were repetitive positions, positions with SNPs listed by NCBI’s dbSNP, positions with 

consistently low coverage among different samples (with coverage <50 in half of more of 100 

previously tested samples), and positions that were found by previous analysis to consistently 

have mutations in unrelated samples (mutated in more than one sample out of 100 previously 

tested samples). The remaining 9,084,648 test loci were used to count mutations. Analysis 

was limited to bases with a minimum of 50 independent reads, and only independent reads 

were included in the analysis. The analysis was limited to variants with allele rations in the 

range 11%-65%. Samples were considered to have high mutation load if they exhibited 

greater than 50 test loci harboring variants. 

 

Analysis of data from TCGA 

Level 1 TCGA exome sequencing data for 499 uterine corpus endometrial carcinoma 

(UCEC) tumor-normal pairs were downloaded from the Cancer Genomics Hub. VarScan2 was 

used to make somatic mutation calls, including both single nucleotide polymorphisms and 

insertion-deletions. ANNOVAR was used to annotate the mutation points and extract the 
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exonic alterations, including synonymous single nucleotide variants (SNV), non-synonymous 

SNV, stop gain SNV, non-frameshift insertions, non-frameshift deletions, frameshift insertions 

and frame shift deletions. Samples with non-synonymous SNV, stop gain SNV or insertions-

deletions in a gene were defined as having mutations in that specific gene. For samples with 

more than one mutation site, insertions-deletions were considered to be the most severe 

category, followed by stop gain SNV, non-synonymous SNV, and synonymous SNV; each 

sample was assigned to the most severe category matched. 

 

Statistical analysis 

Continuous variables were compared with the two-sample t test (between two groups) 

or with one-way analysis of variance (ANOVA; for all groups) if normally distributed (as 

determined by the Kolmogrov-Smirnov test), and the Mann-Whitney test was used if 

distributions were nonparametric. A p-value of less than 0.05 from a two-tailed statistical test 

was considered statistically significant. All statistical tests were two-sided[87]. All p-values 

appearing on Kaplan-Meier curves are two-sided p-values from log-rank tests. HRD scores 

are grouped into non-continuous categories. 

 

Results 

Homologous recombination pathway alterations in endometrial cancer  

Analysis of TCGA data 

 To determine the frequency and clinical significance of alterations in homologous 

recombination pathway genes in endometrial cancer, TCGA data were queried. Data for 499 

patients with endometrial cancer were analyzed. Of these, 76 patients (15%) had serous 
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histology, 335 (67%) had endometrioid histology, 18 (4%) had mixed histology, and in the 

remaining 70 patients (15%), histology was unknown. First, emphasis was placed on somatic 

mutations in BRCA, due to the established role of germline BRCA mutations in breast and 

ovarian cancer. In addition, TCGA was queried to determine the frequency and clinical 

significance of somatic PTEN mutations in in this cohort, as it is frequently mutated in 

endometrial cancer and some preclinical studies support the role of PTEN in HR deficiency. 

In the TCGA cohort, mutations in BRCA1 or 2 were present in 52 of the 335 patients (16%) 

with endometrioid histology. PTEN mutations were present in 260 of 335 patients (78%), and 

presented with a concomitant BRCA1 or 2 mutation in 47 patients (14%).  (Figure 1) 

 

Figure 1. Mutations in BRCA1, BRCA2 and PTEN in the TCGA endometrioid cohort (N=335) 
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In the subset of 52 patients who had BRCA mutations, 34 (65%) had stage I disease and the 

remainder had stage II disease or higher. (Table 2) 

 

Table 2. Distribution of BRCA mutations by stage in the TCGA endometrioid cohort (N=335)  

Stage Number of patients (%) (%) 

I 34 (64) 

II 6 (12) 

III 10 (20) 

IV 2 (4) 
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When BRCA and PTEN somatic mutations were examined in relation to overall survival in the 

TCGA cohort, which included endometrioid, serous and mixed histologies, patients with 

concomitant BRCA and PTEN somatic mutations had significantly improved survival as 

compared to patients who were wild type for both genes (p=0.02). (Figure 2)  

 

Figure 2. Kaplan-Meier plot of overall survival in the entire TCGA cohort (N=499) 
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When BRCA and PTEN somatic mutations were examined in relation to overall survival in the 

endometrioid portion of the TCGA cohort (N=335), there was no significant difference in 

survival when patients with both BRCA and PTEN mutations were compared to patients who 

were wild type for both genes (p=0.18). (Figure 3) 

 

Figure 3. Kaplan-Meier plot of overall survival in the TCGA cohort, endometrioid histology only 

(N=335) 
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Given that there was a significant difference in survival within the entire cohort when 

BRCA/PTEN double mutants were compared with those who were wild type for both genes, 

and this survival difference was not present when the endometrioid histology was examined 

alone, we postulated that the patients with serous or mixed subtypes may be driving the 

survival difference seen when the entire cohort was examined together. When the patients 

with serous and mixed histology tumors were examined alone, there was no significant 

difference in survival between BRCA/PTEN double mutants and those who were wild type for 

both genes (P=0.37). It is likely that within the serous and mixed group, the number of patients 

with BRCA and PTEN mutations was not large enough to detect differences in survival.  

 

Analysis of MD Anderson patient data 

To address the higher than expected frequency of BRCA mutations in the TCGA 

cohort, and to address the possible role of HR deficiency in endometrial cancer, we utilized a 

cohort of patients enriched for endometrioid histology and whom had received adjuvant 

therapy of any kind. Because the majority of patients with endometrioid endometrial cancer 

are cured by surgery alone and do not require adjuvant therapy, we chose to focus on those 

with advanced stage and high-intermediate risk features as these are the patients that would 

most likely benefit from targeted therapy. The cohort included 156 patients. Patient median 

age at diagnosis was 62 years. 54% of patients presented with stage I disease, 11% 

presented with stage II disease, 27% presented with stage III disease, and 8% presented with 

stage IV disease. 1% of patients had FIGO grade 1 histology, 73% of patients had grade 2 

histology, and the remaining 26% had grade 3 histology. 74 of 156 patients (47%) received 

platinum chemotherapy, and the remaining 82 (53%) received radiation only (by any route). 

All 156 samples were submitted to Myriad Genetics for processing. Of the 156 patient samples 

submitted, 137 samples had adequate tissue for laboratory processing. Of these 137 samples, 
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HRD score was determined for 112 samples and MSI status was determined for 126 samples; 

the remainder of the samples failed the analysis. HML status was determined for all 137 

samples. All three molecular tests were determined on 104 samples. The median HRD score 

was 3, with a range of 0 to 54 (Figure 4). The data set is skewed right and has a mean HRD 

score of 5.5.  

 

Figure 4. Histogram of HRD scores in MD Anderson patient cohort. 
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with somatic mutations in TP53 have scores of 10 or greater, and the majority of the oncogene 

mutated tumors, as well as MSI and HML positive tumors have scores less than 10. The 

differences in mutational profiles are thought to contribute to biological differences in the 

tumors.  While there was no statistically significant difference between the groups, the patients 

with higher HRD scores trended toward worse survival. Initially, the cohort was split at the 

median of 3 to divide the cohort into high and low HRD score groups and there was a 

statistically significant survival difference between the two groups (P=0.003), favoring those 

with low HRD scores. However, due to the fact that many of the patients in our cohort had 

very low HRD scores (Figure 4), this was not felt to be a clinically significant cutoff between 

patients who had HR deficiency and those who did not. Using an HRD score of 10 reflects 

their differing mutational profiles and is likely to be more clinically relevant.  

 

Figure 5. Kaplan-Meier plot of disease free survival, HRD score ≥ 10 vs HRD score < 10.  
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When testing for microsatellite instability was performed on tumor samples and the patients 

with MSI (N=36) were compared to those who had microsatellite stable tumors (N=90), there 

was no statistically significant difference in survival between groups (P=0.53). (Figure 6) 

 

Figure 6. Kaplan-Meier plot of disease free survival, MSI-positive vs MSI-negative tumors.  

 

 

 

 



26 

Testing for high mutation load (HML) was also performed. When patients with HML positive 

tumors (N=12) were compared with HML negative tumors (N=125), there was no significant 

difference in survival between the groups (P=0.15). (Figure 7)  

 

Figure 7. Kaplan-Meier plot of disease free survival, HML-positive vs HML-negative tumors.  

 

 

The cohort was then separated into four groups according to molecular subtype:  1. Tumors 

with high mutation load (HML positive; MSI negative; any HRD status): 8 patients, 2. Tumors 

with MSI (MSI positive; HML negative; any HRD status): 36 patients, 3. Tumors with HRD 

score greater than or equal to 10 (MSI and HML negative): 10 patients, and 4. All others: 56 

patients. Groups 1-3 had HRD scores less than 10. These analyses were based on 110 
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patients, which includes the 104 patients with passing results for all three molecular scores, 

plus 6 patients who failed HRD scores but met criteria to be included in the HML positive or 

MSI positive groups. There was no significant difference in survival between the four groups 

(p=0.13), however, the patients with HRD scores above 10 tended to have worse outcomes 

(Figure 8) 

 

Figure 8. Kaplan-Meier plot of disease free survival in relation to HRD score, MSI and HML 

status for the entire MD Anderson cohort.  
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The cohort was then split into two groups: the patients with stage I and II disease (N=67), and 

the patients with stage III and IV disease (N=43). When the analysis was performed on these 

two groups (Figure 9 and Figure 10), the trend survival trends remained the same (P=0.31 

and P=0.52, respectively). Patients with HRD scores ≥ 10 were found in all disease stages. 

 

Figure 9. Kaplan-Meier plot of disease free survival in relation to HRD score, MSI and HML 

status for the stage I and II patients in the MD Anderson cohort.   
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Figure 10. Kaplan-Meier plot of disease free survival in relation to HRD score, MSI and HML 

status for the stage III and IV patients in the MD Anderson cohort.   

 

Overall, while there is not a significant difference in survival at the 5% level between the 

groups, dividing the groups as such by molecular subtype provides a clinically relevant means 

of capturing survival differences between tumors that are HR deficient and those that are not.  

 

Effect of HRD on tumor growth 

 HRD score has been shown to be a better predictor of platinum sensitivity than BRCA 

mutation status in breast cancer patients [77], so we performed a series of experiments to 

determine whether HRD score had a similar predictive ability in endometrial cancer. First, the 

HRD score of a panel of endometrial cancer cell lines were assessed. Cell viability after 

treatment with cisplatin, paclitaxel and olaparib was determined and the cell lines were 

categorized as either sensitive or resistant to each agent. Platinum-taxane combination 
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therapy is often used in advanced endometrial cancer and was therefore selected for in vitro 

use. Olaparib was selected for in vitro and in vivo use due to its known efficacy in the setting 

of HR deficiency due to BRCA mutation. Finally, an in vivo experiment was performed in which 

mice were injected with tumor cells, and treated with siRNA targeting BRCA1, or a control 

sequence. Within each group, half of the mice were treated with olaparib, with the goal of 

determining whether functional BRCA was necessary for response to olaparib. BRCA1 was 

selected as a target due to its diverse role in HR and significant contribution to hereditary 

ovarian cancer. We hypothesized that in a high HRD score cell line, olaparib treatment would 

lead to decreased tumor growth, regardless of whether BRCA1 was functional or not.  

 

Characterization of endometrial cancer cell lines 

HRD scores were determined for 12 established endometrial cancer cell lines (Figure 

11) using the same method as described above for the patient samples. HRD scores ranged 

from 2 to 24. A panel of six cell lines with varying HRD scores were selected for experimental 

use from those listed in Figure 11: Ishikawa (HRD score 6), AN3CA (HRD score 11), Hec265 

(HRD score 12), Hec1a (HRD score 19), KLE (HRD score 20) and Hec1b (HRD score 24). 

Table 3 demonstrates the BRCA1, BRCA2 and PTEN mutation status as obtained from the 

Cancer Cell Line Encyclopedia, as well as HRD score, of the six selected cell lines. The three 

cell lines with highest HRD scores (Hec1a, Hec1b, KLE) are wild type BRCA1, BRCA2 and 

PTEN.   
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Figure 11. HRD scores of endometrial cancer cell lines. 

 

 

Table 3. BRCA1, BRCA2 and PTEN mutation status and HRD scores of selected endometrial 

cancer cell lines. 
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Identification of sensitive and resistant cell lines 

 In order to determine the sensitivity of the selected cell lines to cisplatin, paclitaxel and 

olaparib, MTT and colony formation assays were performed with each drug. Advanced 

endometrial cancer is often treated with platinum-taxane combination chemotherapy, so these 

were selected for in vitro use. Olaparib was selected based on its known efficacy in patients 

with BRCA mutations. MTT and colony formation assay were performed after treatment with 

cisplatin for 96 hours (Figure 12). Half maximal inhibitory concentration (IC50) represented in 

the figures below was then determined for each cell line by averaging the IC50 obtained from 

the MTT and colony formation assays, which were repeated in triplicate. Error bars for the 

figures below represent the standard error of the mean. IC50 values ranged from 2.05µM to 

23.14µM after treatment with cisplatin. Hec1b was the most sensitive cell line with IC50 3.46 

µM, and Ishikawa was the most resistant with IC50 22.2 µM. 

 

Figure 12. Effect of cisplatin treatment on endometrial cancer cell lines. Red: resistant, blue: 

sensitive.   
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MTT and colony formation assay were performed after treatment with  olaparib for 7 days 

(Figure 13). IC50 was determined for each cell line, and IC50 values ranged from 10.7µM to 

223.43µM. Hec1a was the most sensitive cell line with IC50 11.8 µM, and Ishikawa was the 

most resistant with IC50 209.5 µM.  

 

Figure 13. Effect of olaparib treatment on endometrial cancer cell lines. Red: resistant, blue: 

sensitive.  
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MTT and colony formation assay were performed after treatment with paclitaxel for 72 hours 

(Figure 14). IC50 was determined for each cell line, and the IC50 values ranged from 3.22µM 

to 365.90µM. KLE was the most sensitive cell line with IC50 4.86 µM, and AN3CA was the 

most sensitive with 358.6 µM. 

 

Figure 14. Effect of paclitaxel treatment on endometrial cancer cell lines. Red: resistant, blue: 

sensitive.  

 

The three cell lines with the highest HRD scores (Hec1a, Hec1b and KLE) were significantly 

more sensitive to all three agents tested (cisplatin, paclitaxel and olaparib) than were the cell 

lines with low (Ishikawa) or intermediate HRD score (AN3CA, Hec265). Our in vitro findings 

are similar to previous studies that found higher HRD score predictive of response to platinum 

chemotherapy in patients with breast cancer.  
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Effect of olaparib treatment in high HRD score orthotopic model 

Effect of olaparib on tumor growth 

 Hec1a was selected for in vivo use due to its high HRD score, wild type BRCA status, 

and high sensitivity to olaparib. 40 mice nude mice were inoculated with Hec1a cells (4 x 10 6̂ 

into the left uterine horn); 10 mice per group were used in order to have adequate power to 

detect differences between groups. Mice were treated with siRNA targeting BRCA1 (20 mice) 

or a control sequence (20 mice) (5ug intraperitoneally twice weekly). BRCA1 was selected as 

a target due to its multiple roles within the DNA damage repair pathways. Within each group, 

10 mice were treated with olaparib (50mg/kg daily by oral gavage). In the group receiving 

control siRNA, treatment with olaparib resulted in a significant reduction in tumor weight 

(Figure 15-A). In the group receiving BRCA1 siRNA, treatment with olaparib also resulted in 

a significant reduction in tumor weight (Figure 13-A). The same trend was observed in the 

number of tumor nodules (Figure 15-B). Treatment with BRCA1 siRNA alone resulted in a 

significant decrease in tumor weight as compared to control siRNA. There was no significant 

reduction in mouse weight in any of the treatment groups as compared to controls (Figure 15-

C). Figure 15-D demonstrates photos taken at necropsy, with tumors outlined in white.  
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Figure 15 (A-D). Effect of control or BRCA1 siRNA +/- olaparib on tumor growth in Hec1a 

model. (A) Tumor weight, (B) Number of tumor nodules, (C) Mouse weight, (D) Representative 

necropsy pictures. Error bars represent the standard error of the mean (SEM). ***, P < 0.001 

and ****, P<0.0001. 

 

 

 

Biological effects of olaparib treatment 

 Given the differences in tumor growth between groups, we evaluated for biological 

effects within tumors collected at necropsy. In the group treated with control siRNA, the 

addition of olaparib to control siRNA resulted in significant reduction in cellular proliferation as 

determined by Ki67 (Figure 16). Treatment with BRCA1 siRNA alone resulted in significantly 

increased proliferation as compared to control siRNA. In the group treated with BRCA1 siRNA, 

addition of olaparib to BRCA1 siRNA resulted in significantly reduced proliferation.  
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Figure 16. Representative pictures of the four treatment groups after Ki67 staining. Error bars 

represent SEM. ***, P < 0.001 and ****, P<0.0001. 

 

 

In the group treated with control siRNA, the addition of olaparib to control siRNA resulted in 

significant increase in apoptosis as determined by cleaved caspase 3 (Figure 17). In the group 

treated with BRCA1 siRNA, addition of olaparib to BRCA1 siRNA resulted in significantly 

increased apoptosis. 

 

Figure 17. Representative pictures of the four treatment groups after cleaved caspase 3 

staining. Error bars represent SEM. ****, P<0.0001. 
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Histone H2AX is phosphorylated in response to DNA double strand breaks and is an early 

marker for HR function [88]. Phosphorylated H2AX (γ-H2AX) is necessary for both BRCA1 

recruitment as well as MRN complex formation at the site of DNA double strand breaks 

[89,90]. Immunofluorescent staining for γ-H2AX was performed in order to detect differences 

in the number of double strand breaks between groups (Figure 18). In both siRNA conditions, 

treatment with olaparib significantly decreased the number of γ-H2AX per cell. This indicates 

that in the setting of HR deficiency, which we assume based on the HRD score of 19, olaparib 

further decreases HR function, independent of BRCA1 expression.  

 

Figure 18. Representative pictures of the four treatment groups after H2AX staining.  Error 

bars represent SEM. ****, P<0.0001. 

 

We determined the efficacy of BRCA1 silencing in the four treatment groups (Figure 19, top 

panel) using tumor samples obtained at the time of necropsy. In the groups treated with 

BRCA1 siRNA, there was fairly uniform silencing as shown by decreased protein expression. 

Differences within groups are likely due to tumor heterogeneity. We also determined RAD51 

expression in all four groups using tumor samples obtained at the time of necropsy (Figure 

19, middle panel). In the two groups treated with olaparib, there is decreased expression of 

RAD51 as compared to the untreated groups. The panels have equal exposure time. When 
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the left middle panel (siRNA only) is compared to the right middle panel (siRNA plus olaparib), 

there is decreased expression of RAD51 in the groups treated with olaparib, indicating that in 

this model with HR deficiency, olaparib further decreases HR function regardless of BRCA1 

expression. 

 

Figure 19. Western blots demonstrating BRCA1 protein expression levels (top panel) and 

RAD51 protein expression levels (middle panel) across four treatment groups in tumor 

samples obtained at the time of necropsy. Vinculin was used as a loading control. 
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Discussion 

 The key findings of the work shown here are that HRD scores of 10 or greater are 

prognostic of poor survival outcomes in patients with advanced endometrial cancer.  Our 

cohort was the first group of endometrial cancer patients to undergo HRD score testing.  In an 

orthotopic mouse model with an HRD score of 19, olaparib treatment significantly decreased 

tumor growth, proliferation and HR function, regardless of BRCA1 expression status. 

 The analysis provided here describes the molecular characteristics of a cohort of 

patients with endometrial cancer who had advanced disease at the time of diagnosis, or who 

had high risk features noted at the time of initial surgery. While there is not statistical evidence 

that survival differs between the four molecular subtypes, nor when the group is split between 

HRD scores above and below 10, there are clear trends toward differences in survival in our 

cohort. Of particular interest is the group of patients with HRD scores ≥ 10, which comprises 

11 patients. Of these, nine patients had mutations in TP53 with LOH of the second allele, and 

five patients had mutations in PTEN. In this group, the majority had stage III or IV disease and 

grade 3 histology at the time of diagnosis. Likewise, the three cell lines in our study with the 

highest HRD scores (Hec1a, Hec1b and KLE) also have missense mutations in TP53.  In 

endometrioid endometrial cancer, mutations in TP53 are more common with increasing grade  

[91]. The reported rate of rate of TP53 mutations in endometrioid endometrial cancer is 11.4% 

in the TCGA analysis. In contrast, the rate of TP53 mutations in serous uterine carcinoma is 

approximately 90% [30] which is comparable to that of high grade serous ovarian cancer [92]. 

Likewise, approximately 25% of the high grade endometrioid samples in the TCGA analysis 

had mutational profiles similar to that of uterine serous carcinoma[30], which has a more 

aggressive clinical course [5]. The group of patients in our cohort with HRD scores ≥ 10 

appears resembles uterine serous carcinoma both biologically and clinically.  
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The mutational characteristics of this subset of tumors provide a possible explanation 

for their late stage at diagnosis and poor survival outcomes. P53 is activated in response to 

cellular stress, and p53 levels increase in response to DNA damage, leading to cell -cycle 

arrest, DNA repair, or apoptosis in cases of irreparable DNA damage [93]. In the absence of 

normally functioning p53, as in the case of TP53 mutations, cells with DNA damage can 

continue in the cell cycle, leading to uncontrolled proliferation. In cases where TP53 is 

mutated, HR deficiency may manifest itself as uncontrolled cellular proliferation secondary to 

the potentiation of unrepaired DNA damage, ultimately leading to more aggressive disease 

and shorter survival. Preclinical studies have shown that administration of PARP inhibitors 

can sensitize TP53 mutated breast cancer cells, likely via increased apoptosis secondary to 

PARP inhibition [94]. If TP53 mutations do in fact play a role in HR deficiency and the tumor 

behavior we observe in this group of patients, then PARP inhibitor therapy may prove to be a 

rational choice. 

Likewise, mutations in PTEN have been shown to induce genomic instability by 

defective RAD51 foci formation, thus inhibiting HR [57,58]. Our in vitro work did not 

demonstrate that PTEN mutations sensitized to PARP inhibitor or platinum chemotherapy, 

and the majority of PTEN mutations occurred in patients with HRD scores less than 10. If 

PTEN loss of function does indeed sensitize to PARP inhibition in vivo, the two subsets of 

patients in our cohort with intermediate survival values in which PTEN mutations were 

common (MSI positive and the group including all others) may also benefit from PARP 

inhibition.  

In our patient cohort, BRCA1 and BRCA2 mutations were uncommon; four patients 

had BRCA1 mutations and nine patients had BRCA2 mutations. The mutations were generally 

present in only one allele, indicating BRCA was likely functional. In addition, all of these patient 

had HRD scores less than five, suggesting that HR deficiency was not present. Our initial 
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analysis using TCGA data suggested that BRCA mutations did not have a significant impact 

on survival, and the results from our patient cohort confirm this. Furthermore, our in vivo model 

demonstrates that whether or not BRCA1 is silenced, mice who received olaparib treatment 

had significantly less tumor growth than controls. We also observed a decrease in RAD51 

expression and γ-H2AX foci formation in the groups treated with olaparib, regard less of 

whether or not BRCA1 was silenced. We postulate that intrinsic HR deficiency in the cell line 

used, rather than BRCA1 function, affects HR function. The HRD score has been shown to 

be superior to both clinical variables and BRCA mutation status in identifying likely responders 

to platinum chemotherapy in breast cancer [77], and there is ample evidence that mutations 

in genes other than BRCA1 and BRCA2 can produce clinically significant HR deficiency 

[95,96,97]. 

 

Implications and future directions 

 The HRD score has previously been validated and found to have clinical relevance in 

both breast and ovarian cancer, and is logistically feasible to perform on FFPE tissue sections  

[73,77]. Our work demonstrates that a subset of patients with endometrial cancer who had 

high HRD scores have particularly poor survival in comparison to patients with low HRD 

scores. While the biology supporting the use of PARP inhibitors in endometrial cancer is less 

robust than that in breast or ovarian cancer, our in vivo work demonstrates that in the setting 

of HR deficiency, PARP inhibitors are beneficial, regardless of BRCA1 function. This is the 

first use of the HRD score in a cohort of endometrial cancer patient samples, and of the HRD 

score in an in vivo model of endometrial cancer. Despite promising results thus far, 

endometrial cancer presents some unique challenges that set it apart from breast and high 

grade serous ovarian cancer, and therefore, make our findings difficult to interpret in the 

context of what is known about the HRD score. Endometrioid endometrial cancer is commonly 
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diagnosed at early stage when tumor is confined to the endometrium, and surgery is generally 

the first intervention [17]. Except in infrequent cases of widely metastatic disease at the time 

of diagnosis, or medically inoperable patients, the majority of tumor burden is removed at the 

time of initial surgery. Because of this, it may be difficult to evaluate response to therapy in 

the same manner as in breast or ovarian cancer, because response is likely confounded with 

successful surgical resection in most cases. In breast cancer, improved platinum response is 

seen in patients with higher HRD scores [77]. We evaluated response to platinum in relation 

to HRD score in our cohort, and did not find a significant relationship. Moreover, the level of 

intrinsic HR deficiency in breast and ovarian tumors appears to be higher than in endometrial 

tumors. The cutoff threshold for high HRD score in breast and ovarian cancer has been 

established as greater than or equal to 42 after analyzing several data sets totaling over 1000 

tumors, including large proportion of BRCA deficient tumors [76,77,98]. In contrast, of the 112 

samples in our cohort for which HRD scores were generated, only 10 had HRD scores greater 

than or equal to 10. Furthermore, our rate of BRCA mutations was very low and likely not 

clinically significant, as there were no cases of biallelic loss.  

The mutational characteristics of the patients with the highest HRD scores indicate 

that several specific subsets of patients with endometrial cancer may benefit from HRD testing 

and use of the HRD score to triage into further therapy. First are the patients with endometrioid 

histology who have stage III or IV disease and/or grade 3 histology. Prior studies have shown 

similarities between the mutational profile of these tumors and uterine serous tumors [30]. 

Second, uterine serous tumors have a clinical course, mutational profile,  and recommended 

treatment similar to that of high grade serous ovarian cancer, making this tumor type an ideal 

candidate for further study in this area [5,30,92]. These patients could benefit from having 

HRD score information about their tumors for several reasons. First, uterine serous tumors 

are more likely to present with stage III or IV disease than endometrioid tumors (38% vs 16%, 
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respectively) and are more likely to recur with distant metastases or carcinomatosis [5]. 

Because surgical resection may not be feasible in these patients, assessing potential 

response to platinum is of interest. Second, because of the inherently aggressive nature of 

the disease, the use of targeted therapies if platinum is ineffective may be warranted. If indeed 

uterine serous tumors demonstrated a higher level of HR deficiency than endometrioid 

tumors, PARP inhibitors may be a rational choice for adjuvant therapy.    

  In conclusion, our work is the first report of the use of the HRD score in endometrial 

cancer, both in patient samples and in preclinical models. We demonstrated that higher HRD 

scores were prognostic of worse survival, although not at a statistically significant level. On 

the basis of this study, further investigation into the use of the HRD score in high risk 

endometrial cancer subtypes is warranted. 
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