
Texas Medical Center Library
DigitalCommons@TMC

UT GSBS Dissertations and Theses (Open Access) Graduate School of Biomedical Sciences

5-2015

FUNCTIONAL IN VIVO SCREEN
IDENTIFIES PYGO2 AS A PUTATIVE GENE
TO PROMOTE PROSTATE CANCER
Xiaolu Pan

Follow this and additional works at: http://digitalcommons.library.tmc.edu/utgsbs_dissertations

Part of the Medicine and Health Sciences Commons

This Thesis (MS) is brought to you for free and open access by the
Graduate School of Biomedical Sciences at DigitalCommons@TMC. It has
been accepted for inclusion in UT GSBS Dissertations and Theses (Open
Access) by an authorized administrator of DigitalCommons@TMC. For
more information, please contact laurel.sanders@library.tmc.edu.

Recommended Citation
Pan, Xiaolu, "FUNCTIONAL IN VIVO SCREEN IDENTIFIES PYGO2 AS A PUTATIVE GENE TO PROMOTE PROSTATE
CANCER" (2015). UT GSBS Dissertations and Theses (Open Access). 587.
http://digitalcommons.library.tmc.edu/utgsbs_dissertations/587

http://digitalcommons.library.tmc.edu?utm_source=digitalcommons.library.tmc.edu%2Futgsbs_dissertations%2F587&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.library.tmc.edu/utgsbs_dissertations?utm_source=digitalcommons.library.tmc.edu%2Futgsbs_dissertations%2F587&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.library.tmc.edu/uthgsbs?utm_source=digitalcommons.library.tmc.edu%2Futgsbs_dissertations%2F587&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.library.tmc.edu/utgsbs_dissertations?utm_source=digitalcommons.library.tmc.edu%2Futgsbs_dissertations%2F587&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/648?utm_source=digitalcommons.library.tmc.edu%2Futgsbs_dissertations%2F587&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.library.tmc.edu/utgsbs_dissertations/587?utm_source=digitalcommons.library.tmc.edu%2Futgsbs_dissertations%2F587&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:laurel.sanders@library.tmc.edu




 
 

FUNCTIONAL IN VIVO SCREEN IDENTIFIES 
PYGO2 AS A PUTATIVE GENE TO PROMOTE 

PROSTATE CANCER 

by 

Xiaolu Pan, MB  

 

 

APPROVED: 

 

______________________________ 
Ronald DePinho, MD 
Advisory Professor 
 
______________________________ 
Laura Beretta, PhD 
 
______________________________ 
Elsa Renee Flores, PhD 
 
______________________________ 
Prahlad Ram, PhD 
 
______________________________ 
Hui-Kuan Lin, PhD 
 
______________________________ 
Alan Wang, PhD 
 
 
 
APPROVED: 
 
 
 
____________________________ 
Dean, The University of Texas 

Graduate School of Biomedical Sciences at Houston 

 



 
 

FUNCTIONAL IN VIVO SCREEN IDENTIFIES 
PYGO2 AS A PUTATIVE GENE TO PROMOTE 

PROSTATE CANCER 

 
A 

THESIS  

Presented to the Faculty of  
The University of Texas  

Health Science Center at Houston  
and 

The University of Texas 
MD Anderson Cancer Center 

Graduate School of Biomedical Sciences  
in Partial Fulfillment 

of the Requirements 

for the Degree of 

MASTER OF SCIENCE  
 

by 

Xiaolu Pan, MB  
Houston, Texas 

May, 2015 

  



iii 
 

Acknowledgements 

      I would like to thank Dr. Ronald DePinho for his mentorship towards the 

completion of my thesis. His knowledge and vision have constantly inspired 

everyone around him including me. I am also grateful to Dr. Alan Y. Wang, who 

gave me the precious opportunity to study in Dr. DePinho’s laboratory and he has 

provided significant input in my project and my career development. I would like to 

express my sincere gratitude to Drs. Xin Lu and Guocan Wang, who supervised 

me in the lab and taught me many molecular biology techniques as well as animal 

handling and surgery. I am grateful that they respect and trust me as a young 

scientist from the beginning of my training. Their passion for science, sustaining 

commitment for new discoveries and scientific mindset are inspiring. During the 

past three years, I have had the opportunities to interact with many members from 

Drs. DePinho, Draetta and Chin’s laboratories (Wantong Yao, Haoqiang Yin, 

Avinish Kapoor, Baoli Hu, Flourian Muller, April, Melody, Nikunj, Ellen and Fred, 

Qiuyun Wang, Ram Vandahana, Pingna Deng, Eun-Jung Jin, Edward Chang, 

Trang Tieu) who have generously provided invaluable contribution in completion 

of my thesis project. This thesis could not have been completed without 

tremendous scientific input from Dr. Ram Prahlad, Dr. Terrance Wu and Samir 

Amin; who provided necessary bioinformatic analyses. I would also like to thank 

Shan Jiang for her gentle caring of my mouse colonies and me. I would like to 

acknowledge the fruitful ongoing collaborations with Dr. Chunru Lin on elucidating 



iv 
 

interaction networks. I am also very grateful to my advisory committee members 

who are so supportive all the time and who appreciate my work.  

        I would like to thank Dr. Xiaoping Huo, my dearest mother who dedicated 

her master thesis to me and now I will dedicate mine to her. Special thanks also 

goes to all my family and friends, especially those I met in Houston, for sharing 

their precious love and support.

  



v 
 

Functional in vivo Screen Identifies PYGO2 as a 

Putative Gene to Promote Prostate Cancer 

by 

Xiaolu Pan, MB 

 

Poor prognosis of prostate cancer is correlated with rampant chromosomal 

copy number alterations, highlighting the potential function of genes with 

copy number gains and losses in driving prostate cancer progression. To 

identify putative genes promoting prostate cancer, an in vivo 

tumorigenesis screen was performed for 286 genes that are recurrently 

amplified and overexpressed in human prostate cancer. The transcription 

co-activator protein PYGO2 was identified as a major hit for further in vivo 

functional and clinical validation. Overexpression of PYGO2 could 

enhance primary tumor growth as well as local invasion to lymph nodes 

using AR-positive prostate cancer cell line LNCaP. PYGO2 may mediate 

its pro-tumor function through upregulation of genes including WNT2, 

ADAMTS2, IGFBP3 and downregulation of KISS1. Tissue microarray 

analysis indicated that PYGO2 upregulation was correlated with higher 

Gleason score in prostate cancer. Collectively, the results suggest PYGO2 

as a potential prognostic marker as well as a therapeutic target. Additional 

functional characterization of PYGO2 in prostate cancer pathogenesis is 

warranted and ongoing.  
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1.1 Introduction 

Prostate cancer (PCa) is the most common non-cutaneous cancer in men.  

In 2013, around 238,590 new cases and 29,720 related deaths were reported 

(Siegel et al., 2013). Several decades of PCa research has helped to delineate the 

core progression pathways for human PCa, which sequentially develops from 

normal epithelium, to prostatic intraepithelial neoplasia (PIN), to  latent and then 

clinically manifested adenocarcinoma, and ultimately to distant metastases 

especially to bone and also to other organs (Figure 1.1) (Shen and Abate-Shen, 

2010b). Accompanying the key histopathological features are some well 

characterized molecular changes such as TMPRSS2-ERG translocation, PTEN 

inactivation and EZH2 overexpression. Despite the pathological and molecular 

understanding, current effective therapies for PCa are largely limited to androgen 

deprivation therapy (ADT) with an initial success rate of close to 90%. However, 

most PCa patients develop refractory disease to surgical or chemical castration, 

resulting in the development of castration resistant prostate cancer (CRPC) with 

high morbidity and mortality. Therefore, there remains a critical need for better 

understanding the etiology of aggressive PCa, in particular, the identification of 

bona fide PCa genes and specific molecular mechanisms that may potentially 

generate new therapeutic interventions.  
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 Figure 1.1 Currently histopathological and molecular genetic model of PCa development. Taken from (Shen and 

Abate-Shen, 2010) with permission from Cold Spring Harbor Laboratory (CSHL) Press 
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Recent genomic profiling of various cancer types, in particular efforts 

triumphed by The Cancer Genome Atlas (TCGA), has revealed that different 

cancer types displaying distinct mutation rates.  Compared to cancers such as 

melanoma and lung cancer, PCa has a relatively low mutation rate. It highlights 

the potential implication of other types of genetic or epigenetic alternations in 

driving cancer progression (Lawrence et al., 2013). The clinical significance of 

genomic instability in promoting PCa was indicated by the observed correlation of 

rampant genomic gains and losses with poor prognosis, while transcriptomic 

profiles were unable to provide significant prognostic value(Taylor et al., 2010) 

Therefore, a critically important research direction for dissecting PCa genetics 

would be the identification of driver genes that are embedded in the amplified or 

deleted peaks of the PCa genomes. My thesis project was set to address this 

question by taking a genome-informed functional screen approach, in particular, 

an open-reading frame (ORF) screen in mice for genes that are recurrently 

amplified and overexpressed in PCa genomes. 286 genes were screened for their 

functional contribution to promoting prostate tumorigenesis in mice. Several hits 

are identified and in the stage of further validation and characterization. In 

particular, the major focus of this study is on PYGO2 which may function as a 

tumor-promoting gene and may serve as a potential prognostic marker based on 

my preliminary data. 
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1.2 Anatomy of human and mouse prostate 

Prostate gland is a walnut-sized male sex hormone regulated organ. It is 

located at the base of the bladder, surrounding the urethra. Prostate gland 

secretion usually constitutes 50-75% of the volume of the semen (Leo Shedlovsky, 

1942). The mouse prostate is lobular with anterior (AP), ventral, dorsal, and lateral 

prostate. The last two lobes commonly combine as dorsolateral prostate (DLP) 

(Abate-Shen and Shen, 2002). Unlike the mouse prostate, the human adult 

prostate lacks clear lobular structure but consists of a zonal architecture. Central, 

periurethral transition, and peripheral zones as well as an anterior fibromuscular 

stroma constitute the prostate. Specifically, peripheral zone occupies ~70% of the 

prostate volume and harbors the majority of PCa. Most of the benign prostatic 

hyperplasia (BPH) arises from the transition zone.  

1.3 The biology and progression of PCa 

The heterogeneity of PCa is illustrated by the multifocal events in primary 

tumors. The neoplasm often contains multiple genetically-independent histologic 

foci that commonly attribute to the multi-event neoplastic transformation that 

parallels aging. The earliest initiation in men can be as early as 20 years of age 

(Sakr et al., 1994; Yatani et al., 1989). While some foci progress to clinical 

detectable cancerous lesion, latent PCa remains inactive likely due to a lack of 

certain genetic events that lead to an aggressive behavior.  
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High-grade prostatic intraepithelial neoplasia (PIN) refers to abnormal 

proliferation with no stromal invasion (Bostwick, 2000). Though some 

controversies exist (DeMarzo et al., 2003), high-grade PIN is generally accepted 

as a pre-invasive stage for PCa (Bostwick, 2000). The aggressive lesions may 

progress to PCa, marked by pathologically absent  basal cell layer(Bostwick et al., 

2004). Remote metastasis follows invasion, mostly located in bone (90%) 

(Bubendorf et al., 2000). Surgical or chemical ADT are applied but almost all 

patients develop CRPC eventually (Felici et al., 2012). Notably, metastases from 

the same patient maintain a signature pattern of copy number, mutation status, 

erythroblast transformation specific rearrangement methylation, and 

phosphorylation (Aryee et al., 2013; Drake et al., 2013; Grasso et al., 2012; Liu et 

al., 2009; Mehra et al., 2008). 

As a cancer type with inherent heterogeneity, PCa relies on a unique scoring 

system to inform diagnosis and prognosis(Gleason, 1992). PCa , especially 

prostatic glandular carcinomas, is graded by Gleason system according to the 

histomorphological appearance of biopsies (Mellinger et al., 1967). Five basic 

grade patterns from 1 to 5 represent the extent of glandular differentiation. Two 

scores are summed with the first score, assigned to the dominant pattern 

(occupied more than 50%), and the one second score, assigned to the next-most 

frequent pattern (less than 50%). Histological grading of Gleason score is by far 

the most prevailing indicator for clinical outcome of patients(Humphrey, 2004). It is 
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proved by multiple studies linking it to the overall survival of PCa (Gonzalgo et al., 

2006; Melissari et al., 2006).  

1.4 Subtypes of PCa  

 It is notable that PCa lacks distinguishable histopathological subtypes that 

could guide its prognosis or treatment response; compared to other epithelial 

tumors, such as breast cancer or lung cancer. Most cases of the PCa are acinar 

adenocarcinomas that express AR. Other categories of PCa are extremely rare; 

such as ductal adenocarcinoma, mucinous carcinoma, and signet ring carcinoma 

(Grignon, 2004). Neuroendocrine small cell carcinomas representing <2% of PCa 

cases are generally classified as either small cell carcinoma or carcinoid tumor. 

1.5 PCa genomics and amplified genes.  

Large-scale genomic analysis characterizes genetic alterations in PCa. 

These alternations, including point mutations, deletions, re-arrangements and 

amplification, contribute to multi-steps of tumorigenesis. 

PCa genome harbors relatively moderate number of point mutations (Berger 

et al., 2011; Taylor et al., 2010). Common mutated genes in other tumor types, 

including TP53, PTEN and KRAS, usually are not frequently observed in PCa 

genome (Taylor et al., 2010). TMPRSS2:ERG gene fusions are consistently to be 

reported in about 50 percent of clinically localized PCa samples (Kumar-Sinha et 
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al., 2008). The most frequent alteration in PCa genome is loss of chromosome 8q, 

harboring NKX3.1. Some significant deletion peaks target PTEN, RB1 and TP53 

(Taylor et al., 2010). While the mutation rate for PCa is moderate, genomes of 

more aggressive PCa and CRPC are featured by rampant chromosomal instability 

(Taylor et al, Grasso et al). Genomic gains can have functional consequences, as 

evidenced by known cancer genes altered by amplification which leads to 

overexpression  (Santarius et al., 2010). For example, a frequently amplified region 

in cancer genome, 8q24.21 which encompasses MYC and NCOA2, is also among 

the most amplified regions in aggressive PCa (Taylor et al). It is also of interest to 

note AR (Xq12) amplification in metastatic CRPC (Grasso et al). An unanswered 

question remains, as to what other genes involved in these chromosomal gains 

functionally contribute to the progression of PCa.  
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Chapter 2 Functional in vivo screen 

identifies putative drivers of prostate 

cancer 
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2.1 Introduction 

Increasingly high-resolution genomic studies with next-generation 

sequencing (NGS) technology reveal recurrent focal deletions and amplifications 

in cancer genome (Chin et al., 2011; Yates and Campbell, 2012). For prostate, a 

handful of large-scale genomic profiling studies have been reported, including 

Taylor et al. (MSKCC dataset), Grasso et al (Michigan dataset), Barbieri et al 

(Harvard dataset). A large portion of genomic data of prostate cancer TCGA can 

be downloaded and analyzed, although the paper on prostate cancer TCGA has 

not been published yet. From these datasets, putative amplified gene list was 

compiled. It was expected some of the genes on the list should play functional 

roles in promoting prostate tumor progression, and through a proper selection of a 

mouse model system which had low tumor formation background by the tumor cell 

line alone, potential driver genes on the list could be identified.  

Following this rationale, we performed genome-informed in vivo screen, and 

41 hits were identified. The mechanisms for promoting PCa progression of the top 

12 amplified genes were further analyzed. Moving the project forward PYGO2 was 

set as focus based on the following reasons: 1) overexpression of PYGO2 induced 

anchorage-independent colony formation in LHMK cell line; 2) PYGO2 promoted 

in vitro migration and invasion of LHMK cell line; 3) Recent studies in development 

biology has suggested PYGO2 as an important gene regulating stem cell function 
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and tissue homeostasis in skin and mammary and spermiogenesis (Gu et al., 2013; 

Nair et al., 2008; Sun et al., 2014).  

Pygopus was first reported as an essential transcription co-activator with 

Arm/β-catenin-Tcf complex for Wnt signal transduction pathways in Drosophila 

(Belenkaya et al., 2002). Two mouse and human pygopus genes Pygo1 and Pygo2, 

have been identified. The later expressed in a broader range of adult and 

developing tissue consistent with the Wnt signaling activity to regulate proper 

development and maintenance(Li et al., 2004). In contrast with Pygo1 null mice, 

Pygo2 null mice presented serious developmental defects like lens agenesis and 

a kidney phenotype with high penetrance, exencephaly, and cleft palate 

incomplete penetrance and exhibit perinatal lethality (Li et al., 2007; Schwab et al., 

2007).  

PYGO2 has highly conserved plant homeodomain (PHD) in its C-terminus 

that is associated with histone modifications (Miller et al., 2013). It was reported to 

directly bind to histone H3 (Fiedler et al., 2008) (Gu et al., 2013) (Kessler et al., 

2009) and recruited histone-modifying enzymes to generate more H3K4me as 

active histone marks to facilitate transcription (Gu et al., 2009). The recruitment of 

PYGO2 was associated with Wnt pathway activation (Städeli and Basler, 2005) 

and Rb attenuation (Tzenov et al., 2013). Moreover, PYGO2 has also been 

implicated in histone acetylation independent of Wnt signaling (Nair et al., 2008). 

Interestingly, a recent paper reported lncRNA PCGEM1 recruited PYGO2 to 

enhance AR-bound enhancers targeting gene promoters (Yang et al., 2013). 
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Despite the reported up-regulation in skin (Sun et al., 2014), hepatocellular 

carcinoma (Zhang et al., 2014), and lung cancer (Zhou et al., 2014), the function 

of PYGO2 has not been thoroughly investigated in PCa.  

2.2 Material and methods 

2.2.1 Bioinformatic analysis of global gene expression to determine pro-

progression genes. 

Exome sequencing data is frequently adopted in current study to investigate 

the somatic copy-number amplification in cancer genome. To generate a list for 

putative genes that are recurrently amplified in PCa and also expressed at higher 

level in metastasis than primary tumor, Dr. Xin Lu and Dr. Terrance Wu conducted 

an integrative bioinformatics analysis on four exome sequencing datasets, Grasso 

and colleagues (Grasso et al., 2012), Taylor and colleagues (Aravindaram and 

Yang, 2010), Barbieri and colleagues (Barbieri et al., 2012) and the Cancer 

Genome Atlas (TCGA; Research Networks, https//tcga-

data/nci.nih.gov/tcga/dataAccessMatrix.htm, DOI # 2012-10-04). In the analysis, 

recurrently amplified genes across multiple datasets were further selected based 

on copy number – expression correlation (p<0.01) and displaying higher 

expression level in metastasis compared with primary tumor in at least 3 out of 8 

microarray-based expression datasets from Oncomine® (Figure 2.1) Lu and Wu 

also reasoned that some pro-metastasis genes can be upregulated through non-

amplification mechanisms therefore a separate branch of analysis was applied. 

Genes were selected if they were highly expressed in metastatic compared to 



13 

 

primary tumor in 6 out of 8 Oncomine® datasets (Figure 2.1). To elaborate the 

process in more details, majority of the genes are collected to identify the putative 

driver genes at amplicons. The genes at focal amplification peaks were selected 

by GISTIC (Bubendorf et al., 2000) analysis on the previously mentioned prostate 

exome sequencing studies. G-score was set as a cut-off to eliminate unimportant 

passenger alterations. The evaluation of copy number-expression correlation was 

followed to identify the amplified genes correlated with up-regulation. A cutoff was 

also set to spotlight genes more enriched in metastasis comparing to primary sites 

because they are more relevant to aggressive PCa progression. It is based on the 

following criteria: call if p< 0.05 (student t test) in 3 out of 8 expression datasets 

from Oncomine® (https://www.oncomine.org). On the other hand, in order to 

include some of the functionally important genes with high expression levels but 

without discernible amplification cases in analyzed patient samples, we added 

genes based on the following criteria: call if p< 0.05 (student t test) in 6 out of 8 

expression datasets from Oncomine® (https://www.oncomine.org). Following 

these strategies, in total 741 genes were compiled. From the MDA LentiORF 

library, 286 ORFs were available, whose vectors were the reagents for the 

functional in vivo screen  
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Figure 2.1 Bioinformatic genomic analysis to generate amplified/overexpression gene list for PCa progression
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2.2.2 Cell culture 

HEK293T cell were obtained from American Type Culture Collection (ATCC, 

Manassas, VA). LHMK and LHMK-AR cell lines were generous gifts from Dr. Bill 

Hahn’s lab. Cells were cultured in DMEM (Live technologies) with 10% fetal bovine 

serum (FBS) (Live technologies) in a humidified incubator at 37°C in a 5% CO2 

atmosphere. BPH-1 were obtained from American Type Culture Collection (ATCC, 

Manassas, VA) and maintained in RPMI (Live technologies) with 10% FBS (Live 

technologies) in a humidified incubator at 37°C in a 5% CO2 atmosphere. 

2.2.3 Establishment of the library of blasticidin-selected stable cell lines 

overexpressing 286 candidate genes 

The following work flow was used to establish the library of stable cell lines 

overexpressing putative driver genes of PCa. Glycerol stocks contained bacteria 

with desired open reading frames (ORFs) constructs were obtained from MD 

Anderson core. The ORFs were cloned by Gateway cloning to the pLOC vector. 

The pLOC vector contains blasticidin-selection cite and turboGFP as indicated in 

the Figure 2.11. Bacteria were then individually multiplied in 96-well-plate format, 

followed by midi-prep (Qiagen). The result pool was validated by sequencing 10 

clones randomly. High throughout-put normalization to the same concentration 

was conducted by QiAgility (Qiagen) in 96 well plates. Virus packaging was 

achieved to target 286 genes individually. Virus was infected with seeded LHMK 

cells in 96-well plates. 24 hours post-infection, desired clones were obtained by 

blasticidin selection (10ug/mL) for 1 week to maintain the cells while they were 

expanded for 2 passages to acquire enough cell for in vivo injection.  
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Figure 2.2 Workflow of in vivo ORF screen for amplified/overexpressed genes 

Schematic representation of the approach. LHMK cells were infected with single ORFs and injected subcutaneously 
to allow tumor formation with 10 replications. The injection sites on left side of the mice were marked as stars shown in 

the figure.
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Figure 2.3 Vector structure for LentiORF library establishment (Taken From 

Thermo Fisher Scientific Inc., Techinical Manual, Thermo Scientific Open 

Biosystems Precision LentiORF Collection) 

2.2.4 Xenograft studies and in vivo ORF screen for putative genes promoting PCa 

All animal experimental protocols were approved by the Institutional Animal 

Care and Use Committees at the University of Texas MD Anderson Cancer Center 

(Houston, TX) (IACUC number: 1169-RN01). Three prostate cell lines, LHMK, 

LHMK-AR and BPH-1, were tested for in vivo tumor formation by intradermal 

injection of 5 X 10^5 cells into the flanks of male nude mice (Taconic). LHMK was 

as parental lines because of the relatively long tumor latencies, which were seen 

no visible subcutaneous tumor formation in 6 months. 1 X 106 cells were injected 

subcutaneously into the 10 sites of each nude mouse. All the injected cells were 

diluted in PBS (Life technologies) and then mixed with BD MatrigelTM basement 

membrane matrix (BD Biosciences).  
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2.2.5 RNA extraction, cDNA synthesis and quantitative RT-PCR.  

Total RNA was isolated from cells by RNeasy Mini kit (Qiagen). After 

normalization, total cDNA was synthesized by reverse transcription (RT) kit 

SuperScript III as manufacturer’s protocol (12574-026, Invitrogen). Semi 

quantitative PCR was performed to detect the expression level of genes of interest, 

comparing level between negative control and the established cell lines by SYBR 

Green methods (Invitrogen). RPL30 were detected for an internal control for 

normalization purpose. Sequences of primers used for PCR reactions are in 

supplement material  

2.2.6 Genomic sequencing 

Plasmid DNA was prepared by QIAGEN Midiprep kit. Samples were sent to 

MD Anderson Sequencing Core for Sanger Sequencing. The result sequence was 

‘BLAST’ed by NCBI online tool compared with targeting ORF sequence.  

2.2.7 Protein lysate and western blot assays 

Protein lysate of PCa cell lines for the characterization of PYGO2 expression 

level was obtained from DePinho Lab including 22Rv1-TR,  

Cells were lysed and sonicated in RIPA buffer (89901, Thermo) with protease 

inhibitor and phosphatase inhibitor cocktails (Roche). Bradford assay (Bio-rad) 

was applied for quantifying the amount of total protein. Lysates were fractionated 

by sodium dodecyl sulfate (SDS)-PAGE and transferred onto nitrocellulose 

membrane (Invitrogen). The membranes were blocked with 5% nonfat dried milk 

and then incubated with desired primary antibodies dilution in 5% bovine serum 
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albumin (overnight at 4°C. After applying second antibodies, peroxidase-

conjugated anti-rabbit or anti-rabbit IgG, protein bands were detected by 

chemiluminescent detect system (Thermo).  

Primary antibodies used in this project includes monoclonal anti-KRAS 

antibody (sc-30, Santa Cruz), polyclonal anti-PYGO2 (1:1000) (HPA023689, 

Sigma).  

2.2.8 Proliferation analysis 

LHMK cells with overexpression of gene of interest were plated on 24 wells 

plate and assessed of their confluence by IncuCyte® (Essen BioScience) for 7days. 

2.2.9 Soft agar analysis 

2mL bottom agar mixture (DMEM + Glutamax with 1% FBS, 0.6% LE 

Agarose) (Lonza) was applied to coat a 6-well culture plate and solidified in 4°C 

for 1 hour. Cells were trypsinized, counted and diluted to 2X104mL in 2mL top agar 

mixture (DMEM + Glutamax with 1% FBS, 0.3% SeaPlaque ® Agarose) (Lonza). 

Mixture was plate in the top agar and incubated with 2mL desired media at 37°C 

for 3 weeks. At endpoint, crystal violet was used to stain the plate. The colonies 

were quantified by counting 3 representative fields at 4X magnification. 

2.2.10 Migration assay 

Consisting of a 24-well companion plate with inserts containing 8µm pore 

size filters, Cell Culture Insert (BD Falcon) was used for the migration assay. Cells 

were first starved in DMEM with 1% FBS overnight and then seeded onto the 
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inserts in serum-free DMEM at a density of 5X105 cells/200µL. DMEM containing 

10% FBS was placed in outer wells as a chemoattractant. After 12 hours of 

incubation, none-migrating cells were removed with cotton swaps while migrated 

cells were fixed with methanol and stained with 0.2% crystal valet containing 2% 

ethanol. Migrated cells on the entire chamber were observed and counted under 

microscope. 

2.2.11 Matrigel invasion assay 

Matrigel invasion assay were performed applying 8µL pore size BioCoat 

Matrigel Invasion Chamber (BD Falcon) as protocol. Starved with DMEM with 0.1% 

FBS overnight, 5X105 cells were prepared in serum-free 500µL DMEM and then 

added into the chambers. DMEM containing 10% FBS was provided in outer wells 

as chemoattractant. After 18 hours of incubation, none-migrating cells were 

removed with cotton swabs while migrating cells were fixed with methanol and 

stained with 0.2% crystal valet containing 2% ethanol. Invading cells on the entire 

membrane were observed and counted under light microscope. 

2.2.12 Tissue specimen, histology and immunohistochemistry 

Tissue microarray was ordered at US Biomax, Inc as catalog number 

PR803b, the clinical information was listed available online. Patient-derived 

xenograft (PDX) models were generous gifts from Dr. Nora Navone. Transgenic 

mice were generated from DePinho ab. After fixed in 10% formalin overnighted, 

tissues were embedded in paraffin. The primary antibody used in IHC was rabbit 
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anti-PYGO2 ordered from Sigma Aldrich (HPA-023689), which were also used in 

western blot.  

2.2.13 Expression profiling  

RNA was isolated as previous described and sent for profiling at MD 

Anderson Microarray Core facility by the Human Genome U133 plus 2.0 Array 

(Affymetrix).  

2.2.14 Bioinformatic study and statistical analysis 

Gene Set Enrichment Analysis (Subramanian et al., 2005) was conducted as 

User Guide. As recommendation, FDR (False Discovery Rate) q-value<0.025 was 

set as a cutoff for appropriate indicator of gene enrichment. Gene sets collection 

from Kyoto Encyclopedia of Genes and Genomes (KEGG) were included in the 

analysis. Statistical analyses were performed by t test and one-way ANOVA using 

GraphPad Prism 4. In all experiments with error bars, Standard Deviation Ellipse 

(SDE) was calculated to indicate the variation within all replicates. 

2.3 Results 

2.3.1 Identification of putative genes contributing to tumor progression  

741 putative genes were identified as candidates genes associated with PCa 

progression by integrative comparative genomic analysis. Gain of function 

screening experiments were performed using the 286 available expression vectors 

carrying ORFs derived from the above-mentioned list. In order to establish a 

screening system which has low background of tumorigenesis in immunodeficient 
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mice thus facilitating the detection of emergence of tumors formed by ORF 

overexpression, we chose the cell line LHMK. LHMK was derived from a normal 

human prostate epithelial cell line that was transformed with SV40 large T antigen, 

hTERT, PI3K and c-Myc (Berger et al., 2004a). LHMK cells were selected as the 

screen model system because the subcutaneous tumor latency for this cell line in 

nude mice is more than 200 days. Thus it is expected the tumors formed by 

overexpression of any particular ORF would highly likely indicate a real biological 

consequence from a potent pro-tumor gene.  

 Next, 286 ORFs were screened for their in vivo tumor promoting activity. 

Individual lentivirus harboring each of the 286 ORFs was prepared and used to 

infect LHMK cells followed by blasticidin selection for a week. Then, 286 stable 

sublines were generated and maintained to enough number for subcutaneous 

injection (injection sites N=10) (Figure 2.2). The approach of pooling viruses into 

multiple pools and infecting cells followed by injection was not used in our methods. 

Our approach is superior in terms of avoidance of the caveat of tumor phenotype 

emergence due to more than one gene in the same pool and eliminating the need 

for further sub-screen to identify which gene(s) of a pool leads to tumor phenotype. 

I followed tumor growth using caliper measurement and monitored for 226 days 

before all mice without tumors were euthanized. In total, 41 ORFs were identified 

(TTable 2.1). 

As shown in table 2.1, the control line with RFP infection showed no tumor 

growth from 30 injection sites over the observation period. Among the 41 hits, 
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some genes with previously characterized pro-tumor functions in PCa were 

identified (e.g. KRAS, FGFR1, CCNE2, SDC1, EZH2 and AURKA). This result 

supported the validity of the screen system. The in vivo growth patterns of ORF-

mediated tumor promotion varied and ranged from 23-226 days (Figure 2.4). 

Because of practicality, I only validated some but not all of the overexpression at 

RNA levels. Among all 10 tested ORFs, their overexpression were confirmed in 

the sublines (Figure 2.5).  
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No. Replicates Average tumor initiation 
Time (Day) 

Gene name 

0 0 in 30 N/A (LHMK-RFP) 
1 20 in 20 <23 KRAS 
2 1 in 10 23 RBM19 
3 4 in 10 35 MOS 
4 3 in 10 44 FGFR1 
5 1 in 10 46 SLC45A4 
6 1 in 10 46 CDC20 
7 1 in 10 52 BOP1 
8 1 in 10 60 NCBP2 
9 2 in 10 64 CCNE2 
10 1 in 10 64 SDC1 
11 3 in 10 74 TOMM40L 
12 1 in 10 75 PPOX 
13 1 in 10 76 ARL6IP1 
14 2 in 10 85 EZH2 
15 1 in 10 85 ST3GAL1 
16 2 in 10 86 PYGO2 
17 1 in 10 86 IRF5 
18 1 in 10 86 CDCA4 
19 1 in 10 86 WDYHV1 
20 1 in 10 95 TTC35 
21 1 in 10 111 OGFR 
22 2 in 10 120 TAF6 
23 1 in 10 131 CPSF4 
24 1 in 10 152 ATP5G1 
25 5 in 20 153 RPS20 
26 2 in 10 154 MTBP 
27 1 in 10 154 KRTCAP2 
28 1 in 10 154 AURKA 
29 3 in 10 164 ZKSCAN5 
30 2 in 10 167 TROAP 
31 1 in 10 187 POLR2H 
32 1 in 10 187 SPAG1 
33 1 in 10 187 WDR53 
34 1 in 10 187 DERL1 
35 1 in 10 188 ZNF706 
36 1 in 10 189 NUSAP1 
37 1 in 10 205 ESRRA 
38 1 in 10 218 NASP 
39 1 in 10 218 MRPL28 
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Figure 2.4 Representative hits growth of ORFs 

40 1 in 10 216 RRM1 
41 1 in 10 226 MCM7 

TTable 2.1 List of ORFs facilitating LHMK xenograft growth in injected mice in 6 

months 
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Figure 2.5 Representative validation of the expression level of interested 

genes in injected LHMK lines 

Endogenous and exogenous mRNA expression level were validated in LHMK cell lines by 
different primers by qRT-PCR. All expression level were normalized to ∆∆CT to represent 

the relative expression level comparing with RFP-LHMK control. All experiments repeated 3 
times. All error bars are SDM. 
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The penetrance of the hits indicate their potency to promote the tumor 

progression of LHMK cells. To prioritize hits for further functional analysis, 12 hits 

with at least 2 tumor incidences in 10 injection sites were selected ( 

 

 

 

 

Table 2.2). To discover new putative genes promoting PCa, the genes which 

has been characterized as pro-tumorous genes in PCa (i.e. KRAS, FGFR1, 

CCNE2, and EZH2) will not be validated in all of the following in vitro assays but 

served as positive controls in some of the assays.  

 

 

 

 

 

 

 

Replicates Average tumor initiation time (Day) Gene Name 
0 in 30 N/A (LHMK-RFP) 
20 in 20 <23 KRAS 
4 in 10 35 MOS 
3 in 10 44 FGFR1 
2 in 10 64 CCNE2 
3 in 10 74 TOMM40L 
2 in 10 85 EZH2 
2 in 10 86 PYGO2 
2 in 10 120 TAF6 
5 in 20 153 RPS20 
2 in 10 154 MTBP 
3 in 10 164 ZKSCAN5 
2 in 10 167 TROAP 
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Table 2.2 List of ORFs that promoted multiple tumor growth 

 

2.3.2 Functional validation using cell proliferation assay 

It is possible that some or all of the 12 hits promote tumor growth in vivo by 

enhancing cell division and proliferation. To test this hypothesis, I performed 2D 

growth curve assay using IncuCyte®. However, in preliminary experiments of 9 

hits I observed limited consistent differentiation of the curves when ORFs sublines 

were compared with RFP control line (Figure 2.6). I reason that the lack of 

observed in vitro growth advantage by ORF overexpression was partly caused by 

the already very short doubling time of LHMK (~8h).  

 

Figure 2.6 2D proliferation assays showed similar growth rates among 

LHMK cells overexpressing ORFs 

Growth curve of top hits were obtained by IncuCyte®. Confluence of each lines was 
recorded in multiple time points. All the result was normalized with control lines. 
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2.3.3 Genes promoting anchorage-independent growth 

Since I was not able to obtain proliferation differences in 2D culture, I resorted 

to another approach, the soft agar colony formation assay, which is routinely used 

to explore the anchorage independent growth and often delivers results that are 

more reminiscent of the in vivo growth properties of tumor cells. While the control 

LHMK line was unable to form colonies, several tested hit genes including PYGO2 

showed surprisingly robust colony formation in LHMK cells in 10 days (Figure 2.7). 

It is interesting to note that mechanisms for promoting anchorage independent 

growth by different genes may be through separate pathways, as colonies formed 

by different ORFs displayed different sizes, for example, LHMK-BOP1 and LHMK-

MOS exhibited larger colony size compared with those by LHMK-PYGO2.  
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Figure 2.7 ORFs facilitated anchorage-independent growth of LHMK cells 

a) Overexpression of top hit genes affects anchorage-independent growth in LHMK. Results of soft-agar colony 
formation assays of LHMK sublines. All experiments repeated 3 times. All error bars are SDM. b)  Representative cell 
colonies in soft agar are shown. 
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2.3.4 Functional validation by migration/invasion assay 

Increased mobility and invasiveness are important characteristics of 

malignant tumor cells. In our initial ORF list, the genes are all upregulated in 

metastasis at RNA level across several transcriptome datasets. Therefore, I 

reason that it is possible that one or more of the genes in the hit list may promote 

migration and invasion, properties that could be examined with in vitro Boyden 

chamber assays. Several genes, such as BOP1, MTBP, PYGO2, ST3GAL1 and 

TROAP, showed significant enhancement of migration and invasion in LHMK 

(Figure 2.8).  Although MOS strongly promoted soft agar growth, its effect on 

migration and invasion was lowest in assessed genes.  



32 

 

 

Figure 2.8 Hits showed promoting LHMK in vitro migration (a) and invasion (b) in Boyden chamber assay. 

a & b) LHMK cells overexpressed with hit genes seeded in Boyden chamber were stimulated with FBS. RFP controls 
are highlighted in blue. Experiments were repeated for two independent experiments with three replicates for each. *, 

P<0.05, student t test. All error bars are SDM. c) Migrated or invaded cells were analyzed by light microscope 
(magnification, 4X). 
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2.3.5 Alteration of MAPK pathway activity 

Due to the 100% penetrance of KRAS as being the screen hit, it is of interest 

to assess the ability of the above-tested genes to activate MAPK pathway, the 

prototypical downstream signaling pathway activated by KRAS. Using western blot, 

both KRAS and MOS overexpression induced more pronounced phospho-MEK 

signal, yet both seemed to suppress phospho-AKT signals (Figure 2.9). Given 

MOS being identified as a serine/threonine kinase that activates the MAP kinase 

cascade through direct phosphorylation of the MAP kinase activator MEK (Prasad 

et al., 2008), this result was expected. 
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Figure 2.9 Immunoblotting analysis of various cellular signaling proteins in 

cell lysates of LHMK cells overexpressing ORFs 
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2.3.6 PYGO2 up-regulation was correlated with PCa pathological aggressiveness. 

The expression of PYGO2 in normal prostate tissue and PCa was 

investigated by IHC using LHMK-RFP and LHMK-PYGO2 cell lines as negative 

and positive controls, respectively. PYGO2 staining was clearly localized in the 

nuclei. Notably, the expression of PYGO2 was significantly upregulated in 

adenocarcinoma comparing to that of normal prostate tissue (Table 2.3). Further, 

PYGO2 expression levels in adenocarcinoma patients and their correlation with 

clinicopathological factors were studied. As shown in Figure 2.10, PYGO2 staining 

intensity in prostate tissues was classified in four groups with scores ranging from 

no staining (score 0) to intense staining (score 3). Each sample was scored twice 

with clinical information blind.  

 PYGO2 Expression 

 - + 
Normal 4 0 
Adenocarcinoma 13 54 

Table 2.3 PYGO2 up-regulation in PCa patient samples (n=71) 
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Figure 2.10 Expression intensity of PYGO2 in PCa patient samples from 

low to high (0-4). 

 

 

 

 

 

 

 



37 

 

  PYGO2 expression level  
  IHC intensity score 

p value   0 1 2 3 
  (n=13) (n=24) (n=15) (n=15) 
Stage       
 I+II 6 15 5 6 

0.2937 
 III+IV 7 9 10 9 
T-stage       
 1+2 7 17 6 9 

0.2911 
 3+4 6 7 9 6 
M-stage       
 M0 10 19 8 9 

0.2834 
 M1 3 5 7 6 
Gleason 
Score 

      

 6-7 5 8 6 0 
0.0274*  8-9 4 10 6 4 

 10 4 6 3 11 

Table 2.4 PYGO2 up-regulation is associated with high Gleason Score 

(n=71) 

As the result shown in Table 2.4, higher PYGO2 expression was significantly 

associated with higher Gleason Score (p=0.0274). However, PYGO2 expression 

was not correlated with tumor staging. PYGO2 expression pattern is being further 

characterized with more samples recapitulating the heterogeneity and multi-stage 

of PCa, including samples of metastatic sites, from MD Anderson pathology bank.  

 Patient-derived xenograft (PDX) model has been increasingly used as a 

preclinical platform due to its more close histopathological and genetic 

resemblance to human disease. When IHC of PYGO2 was performed in four PCa 

PDX models that we obtained from the PDX core run by Dr. Nora Navone at MD 

Anderson, PYGO2 was intensely stained in the nuclei of adenocarcinoma tissues 

in all models (Figure 2.11).  
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Figure 2.11 Representative PDX samples showed strong positive staining 

of PYGO2 

2.3.7 PYGO2 promotes LNCaP local invasion to draining lymph nodes 

To further characterize PYGO2 function in vivo, PYGO2 was overexpressed 

using a lentiviral construct with constitutive GFP marker in LNCaP (Figure 2.12). . 

LNCaP, as an androgen-responsive PCa cell line, was established from a 

metastatic lesion of human prostatic adenocarcinoma (Horoszewicz et al., 1983). 

PYGO2 overexpression boosted the in vivo tumor progression modestly as 

determined by tumor weight at end point (Figure 2.12). Interestingly, while 

metastasis was not observed in parental LNCaP cells, three of the five PYGO2 

overexpressing LNCaP lines developed local invasion to draining lymph nodes 

(Figure 2.13) (Table 2.5).  
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Figure 2.12 PYGO2 enhanced LNCaP subcutaneous tumor progression in 

vivo 

a) Generation of PYGO2 overexpressing lines in LNCaP; b) Tumor weight 

increased in LNCaP overexpressing PYGO2 
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Line Mouse Mets 
LNCaP-
Original 

1 no metastasis 
2 no primary tumor 
3 no metastasis 
4 no metastasis 
5 no metastasis 

LNCaP-
PYGO2 

1 lymph nodes met 
2 lymph nodes met 
3 no metastasis 
4 no metastasis 
5 lymph nodes met 

 

Table 2.5 High penetrance of LNCaP local invasion to draining lymph nodes 

in PYGO2 overexpressed cells 
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Figure 2.13 PYGO2 promotes LNCaP local invasion to draining lymph nodes  

a & b) local s. q. tumor and draining lymph nodes were visualized by bright filed microscopy (BF) and FITC; c) 

histology of primary subcutaneous tumor by HE staining; d) draining lymph nodes were largely overtaken by invading 

tumor cells. 
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2.3.8 Elevated expression of Pygo2 in Wnt-upregulated genetic engineered 

mouse models (GEMMs) and in PCa patients. 

To investigate which signaling pathway is enriched in clinical samples with 

high PYGO2 expression, I collaborate with Dr. Amin Samirkumar to perform Gene 

Set Enrichment Analysis (Subramanian et al., 2005). From at least one publically 

available large-scale transcriptome datasets with both local and metastasis PCa 

samples (Grasso et al., 2012), we observed significant statistical enrichment for 

Wnt signature (http://www.genome.jp/kegg /pathway/hsa/hsa04310.html) in both 

localized (FDR q-value < 0.05064655) and metastatic (FDR q-value < 0.0689247) 

PCa (Figure 2.14). This result suggests that the function of PYGO2 might be 

directly associated with Wnt pathway in PCa patients. 
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Figure 2.14 Wnt pathway enrichment in local (a) and metastasis (b) PCa samples with higher PYGO2 expression 

level at RNA level  
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Knowing that PYGO2 may be related to Wnt pathway in PCa, I took 

advantage of the several GEMM models, including one with prostate-specific APC 

loss, established by Dr. Xin Lu in the lab and evaluated PYGO2 expression pattern 

(Figure 2.15). The expression levels of Pygo2 were elevated in the prostate of PB-

Cre+ PTENL/L mice comparing with wild type, and markedly enhanced in tumors 

from  PB-Cre+ PTENL/L APCL/L mice where there is an expected upregulation of 

Wnt signaling resulted from the deletion of APC gene. This result suggests that 

PYGO2 upregulation may be downstream of Wnt signaling, a hypothesis that is 

being explored in depth by Dr. Lu in the lab.  
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Figure 2.15 Pygo2 IHC on anterior and dorsolateral prostate tissue from wild type, PB-Cre+ PTENL/L and PB-Cre+ 

PTENL/L APCL/L mice 
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Transcriptome profiling identified differential gene expression in PYGO2 

overexpressed LHMK (Figure 2.16). The cutoff was set for a fold change of greater 

than 2.5 times in either direction as shown in Table 2.6. Some of the genes in the 

list were selected for expression validation based on their potential functions in 

cancer after literature study, such as WNT2, KISS1, ADAMTS2, and IGFBP3. 

Their expression levels in LHMK-RFP and LHMK-PYGO2 cells were validated 

(Figure 2.17). In LHMK-PYGO2, the expression levels of WNT2, ADAMTS2 and 

IGFBP3 increased as expected while KISS1 was down-regulated compared to 

those in LHMK-RFP.  
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Figure 2.16 Microarray analysis of LHMK and overexpression cells 

 

 

 

 

 



48 

 

Fold Change  Regulation ([LHMK‐
PYGO2] vs [LHMK‐RFP]) 

Gene Symbol 

6.62884  Up  CNR1 

4.9924645  Up  COL21A1 

4.917648  Up  ANK3 

4.568018  Up  ZNF804A 

4.339982  Up  SPOCK3 

4.2134004  Up  WNT2 

3.9524667  Up  JPH1 

3.8303087  Up  RARRES1 

3.766973  Up  PCDH10 

3.7488606  Up  RARRES1 

3.7367597  Up  ADAMTS2 

3.6632433  Up  EBF1 

3.5750515  Up  HS3ST3B1 

3.5061955  Up  EBF1 

3.4354672  Up  LDLRAD4 

3.3923466  Up  EBF1 

3.3704123  Up  TNFSF10 

3.3625364  Up  ISL1 

3.3579595  Up  AHNAK2 

3.240252  Up  FRAS1 

3.2399745  Up  COL4A4 

3.2212367  Up  ARHGAP24 

3.1589348  Up  ANK3 

3.13414  Up  LXN 

3.0961728  Up  HMCN1 

3.0851064  Up  PDE8B 

3.048719  Up  PCDH7 

3.0126672  Up  GPC6 

2.9809773  Up  PLCB1 

2.9315355  up  ZFHX4‐AS1 

2.9252326  up  MAN1C1 

2.9163897  up  WISP2 

2.9149344  up  GRIK2 

2.9112802  up  COL3A1 

2.868886  up  TNFSF10 

2.8234982  up  NLGN4Y 

2.8198066  up  TNFSF10 

2.8013465  up  TOX 

2.7908678  up  IGFBP3 
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2.7850227  up  FLRT2///LOC100506718 

2.7831643  up  SPOCK3 

2.7190666  up  C6orf141 

2.71883  up  ITGA4 

2.7138515  up  SYNPO 

2.7098184  up  PCDH7 

2.6812658  up  KAL1 

2.675754  up  DCN 

2.6699352  up  RCAN2 

2.6692655  up  ITGA1 

2.6661928  up  DNER 

2.6522381  up  DCN 

2.6519594  up  ZNF503 

2.6400201  up  PARM1 

2.634583  up  SLC44A5 

2.6236303  up  NFIA 

2.6227007  up  SLC4A4 

2.606458  up  FLRT2///LOC100506718 

2.6019416  up  PELI2 

2.5822084  up  DHRS3 

2.5606158  up  LMO4 

2.5561075  up  CASP1 

2.5494325  up  CLEC3B///EXOSC7 

2.5493717  up  PBX1 

2.5459576  up  TSHZ1 

2.5437036  up  COL3A1 

2.5408363  up  IL7 

2.5340688  up  MAN1C1 

2.5280597  up  FOXA1 

2.5186205  up  LRRC8C 

2.5179226  up  CASP1 

2.5177903  up  MEGF6 

2.511516  up  DKK2 

2.5098848  up  GPRC5B 

2.509565  up  RARB 

2.508565  up  LOC100505946 

2.5054262  up  CASP1 

2.5045822  up  EFNB2 

2.504143  up  IFITM1 

2.5226448  down  DUSP4 

2.5354156  down  REXO2 

2.553761  down  NCAM1 
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2.55806  down  CLMP 

2.5622652  down  USP28 

2.5985959  down  MIR612///NEAT1 

2.625526  down  USP28 

2.6316588  down  MGST1 

2.6578946  down  ZNF883 

2.6836455  down  ATF7IP2///LOC100287628 

2.691571  down  MGST1 

2.723695  down  TMEM47 

2.7501042  down  RARRES2 

2.7749934  down  KISS1 

2.7972617  down  POU3F2 

2.8331623  down  VLDLR 

2.9318223  down  DSC2 

2.9504306  down  PAX6 

2.9601073  down  LOC100506303///LOC100653149///LOC101060483///LOC400

2.9910436  down  OTTHUMG00000175814///RP11‐13L2.4 

3.0252461  down  PDZK1 

3.2035272  down  ND6 

3.249426  down  GAL 

3.2839582  down  DCDC2 

3.2858608  down  MGST1 

3.382219  down  MAP7D2 

3.4408128  down  NRXN3 

3.7098405  down  CADM1 

3.7897563  down  DSC2 

3.8596961  down  NRXN3 

3.9882278  down  PAX6 

4.4886146  down  SYTL5 

4.5460978  down  CNN1 

4.622783  down  CNKSR2 

4.7903833  down  NRXN3 

5.27109  down  CADM1 

5.482167  down  NPPB 

5.779805  down  CADM1 

5.8380966  down  C12orf39 

6.579152  down  CXCL14 

Table 2.6 Up-regulated and down-regulated genes in PCa 
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Figure 2.17 Expression level of WNT2, IGFBP3, ADAMTS2 and KISS1 and 

PYGO2 in LHMK and LHMK-PYGO2 

PYGO2-induced gene expression in LHMK. a) PYGO2 up-regulation in in LHMK 
overexpressed with PYGO2. b) Down-regulation of KISS1 in LHMK overexpressed with 
PYGO2. c) Overexpression of WNT2, IGBP3, ADAMTS2. Bars: mean+SDE (n=3) 

2.3.9 PYGO2 expression in established PCa cell lines.  

For continued validation of PYGO2 function in PCa, PYGO2 expression 

levels in 10 PCa cell lines were characterized. As shown in Figure 2.18, PYGO2 
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is expressed in most PCa lines analyzed. 22Rv1 and PacMetUT cell lines showed 

higher expression levels comparing to the rest.  

 

 

Figure 2.18 Investigation of PYGO2 expression level of PCa cell lines 
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Chapter 3 Discussion and future directions 
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3.1 Discussion 

3.1.1 Functional in vivo screen identify genes with potential to promote PCa 

progression 

Human cancer genome alternations consist of amplifications, indels 

(insertions and deletions) and mutations. Equipped with new cutting-edge tools 

such as exome sequencing and bioinformatics analysis, studies on copy number 

variations nowadays bring new perspective to discover novel bona fide oncogenes. 

In this study, functional in vivo screen advanced the current understanding based 

on cancer genome and transcriptome, collected the information about biological 

function of candidate genes in a high-throughput manner and ultimately pinpointed 

several putative oncogenes potentially playing various roles in multistep PCa 

progression.  

The screen system is proved to be effective, as it successfully identified 

several known oncogenes in PCa, such as KRAS, CCNE2 and EZH2. However, 

in the in vivo screen, 29 out of 41 hits developed only 1 tumor out of 10 replicates. 

As the parental line LHMK for cell library is initially unable to form subcutaneous 

tumor (Berger et al., 2004b), the screen design sets a very high bar to push an 

extremely weakly tumorigenic cell line in nude mice to grow subcutaneous tumor. 

The penetrance of all the hits was general quite low while they were expected to 

play a potent role in PCa progression. Nevertheless, other amplified genes may 

also promote PCa or even be the driver since the screen was only design to identify 

most potent amplified genes in current screen system.  
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To link the hits to the context of PCa genomic and transcriptomic profile, the 

gene amplification and overexpression levels were re-examined in the original 

databases (Table 3.1). Most of the genes showed amplified in multiple databases 

despite that the bioinformatics study also included genes overexpressed without 

known amplification. Most strikingly, most of hits showed amplification in datasets 

from Grasso et al with the biggest number of malignant patients.  

 

Name Amplification 

Taylor TCGA Grasso et al 

MOS   + 

PYGO2   + 

BOP1 +  + 

ST3GAL1 +  + 

MTBP +  + 

ZKSCAN5  +  

TOMM40L   + 

CCNE2 +  + 

Table 3.1 Amplification of prioritized hit in PCa genomic datasets 

Netwalker was used to explore potential interactions among hits in 

collaboration with Dr. Ram Prahald (data not shown). However, no clear 

interactions were shown, which indicated the hits per se rather than synergistically 
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promoted PCa progression. Moreover, it was interesting to note that 6 out of 44 

genes are located on 8q24 chromosome (SLC45A4, BOP1, ST3GAL1, WDYHV1, 

MTBP, and DERL1) but not MYC. It indicates that other genes located at 8q24 can 

also promote PCa progression. I validated some but not all of their effect by in vitro 

assays (BOP1, ST3GAL1, and MTBP). They may act as driver gene working with 

or without MYC in PCa progression. Their potential interactions await in-depth 

study to identify the driver genes as well as to investigating their function in PCa. 

As mentioned above, PYGO2 is selected as an interesting gene for further 

study because of its putative role in driving PCa progression based on its known 

biological functions. At the same time, BOP1 is another gene validated to promote 

sphere-formation, migration and invasion in LHMK cells. However, I was not able 

to find a good BOP1 antibody for western blot. By current commercial available 

antibodies, I am not able to confirm overexpression or knockdown in LHMK-BOP1 

and LNCaP-BOP1 (data not shown), despite in qRT-PCR assays BOP1 

expression levels are manipulated as expected. Moreover, the subcellular 

localization in tissue staining by current commercial available antibodies is 

questionable (data not shown). Thus, BOP1 awaits further study when reagents 

are available, as it can be a possible putative tumor promoting gene. 

3.1.2 Activation of MAPK in PCa 

The link of MOS and wild type KRAS being able to activate pMEK and 

potentiate tumorigenesis of LHMK cells was of particular interest. In PCa, 

RAS/RAF signaling was activated in 43% of primary tumor and 90% of metastases 
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(Taylor et al., 2010). However, it has been shown that KRAS mutation was 

infrequent in PCa (Silan et al., 2012). In fact, recent study that reported that MAPK 

activation could lead to higher tumor grade and metastasis in a transgenic mouse 

model, oncogenic KRAS allele G12D was used instead of overexpression of wild 

type KRAS (Mulholland et al., 2012). Apparently, there was a level of lack of 

understanding how infrequent KRAS mutation can be reconciled with the 

hyperactviated MAPK pathway in PCa. The study shows that wild type KRAS or 

MOS, a MEK kinase, when overexpressed, could lead to higher pMEK signaling 

and higher tumorigenesis. Therefore, it is possible that this result could lead to a 

hypothesis that overexpression instead of oncogenic mutation serves as the 

mechanism for activating MAPK pathway in the context of PCa. 

3.1.3 PYGO2 function in PCa 

Further evaluation of PYGO2 as a hit from the screen has led to several 

interesting findings in functional assays both in vitro and in vivo:  

1) PYGO2 increases sphere formation, invasion and migration of LHMK cells 

(Chapter II) 

2) PYGO2 overexpression in LNCaP increases primary tumor growth and 

local invasion to lymph node(Chapter II) 

3) Dr. Xin Lu’s recent investigation on PYGO2 showed that in vivo silencing 

of PYGO2 with intratumoral injection of siRNA caused tumor shrinkage of one PDX 

model (data not shown).  
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Ongoing studies include assessing if PYGO2 knockdown in PC3 cell line can 

lead to reduced tumor formation in both orthotopic site and as bone metastasis. 

This would be of particular interest to us, as PYGO2 displayed higher expression 

level in metastases than in primary tumor in several ONCOMINE® datasets 

(Figure 3.1). The connection of PYGO2 and Wnt pathway also provides the clue 

that PYGO2 might be involved in bone metastasis, the most frequent metastasis 

type for PCa, as it has been demonstrated by previous studies that Wnt signaling 

plays an important role in osteoblastic bone metastasis of PCa (Ell and Kang, 

2012).  
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Figure 3.1 PYGO2 is upregulated in metastases in several ONCOMINE® 

datasets 

 

3.1.4 PYGO2 upregulation in PCa 

The preliminary assessment of PYGO2 expression in PCa TMA shows that 

PYGO2 is upregulated in PCa and correlated with higher Gleason score. Though 

Gleason score is designed to represent tumor aggressiveness of heterogenetic 

prostate neoplasm, it is preferable to add more cases in current study. We have 

requested three additional TMAs from PCBN, a non-profit organization distributing 

prostate cancer clinical samples to the community. These TMAs include 52 Case 

Lymph Node Mets Array, 200 Case Grade/Stage Array, 217 Biochemical 
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Recurrence (CAP6) and 726 Case PSA Progression Array. While this is exciting, 

it raises the question of how PYGO2 is regulated in cancerous prostate. Based on 

what has been reported about PYGO2 and the above-indicated result, there are 

several possibilities:  

1) PYGO2 is amplified in about 3% of PCa patients, based on an average 

estimate of several PCa genome databases including TCGA 

2) PYGO2 might be upregulated by suppressing RB pathway in PCa. It was 

reported that in cervical cancer, attenuation of RB by HPV virus induces PYGO2 

expression via ELF (Tzenov et al., 2013). RB pathway is among the three most 

altered signaling pathways in PCa (Taylor et al., 2010). Therefore, it is reasonable 

to argue that it is possible that RB pathway inactivation in PCa also induces 

PYGO2 upregulation. This is a possibility that Dr. Xin Lu is investigating.  

3) Other possible explanations for PYGO2 upregulation may include Wnt 

pathway activation and certain microRNA, possibilities that Dr. Lu is investigating 

with Dr. Eun-Jung Jin in the lab.  

3.1.5 PYGO2 mechanism for PCa  

The following working model was proposed based on my current findings 

(Figure 3.2): PYGO2 may promote PCa through both Wnt-dependent and 

independent mechanisms. Both mechanisms are based on the ability of PYGO2 

to bind to histone mark H3K4me and other chromatin regulators. The functional 

output of PYGO2-mediated chromatin regulation includes up-regulation of 
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important cancer related genes such as WNT2 and ADAMTS2 as well as down-

regulation of KISS1. This model is under active investigation by the lab members 

now.  

As identified and validated in various study (Li et al., 2007; Sun et al., 2014), 

loss of function for PYGO2 interferes with Wnt signaling pathways and leads to 

Wnt signaling deficiency. Meanwhile, preliminary study shows overexpression of 

PYGO2 activate Wnt pathways (Schlesinger et al., 2005). In our study, PYGO2 is 

selected for in vivo screen because of its focal amplification in PCa. Amplification 

is a possible mechanism for overexpression(Santarius et al., 2010). By 

amplification and/or by other unknown mechanisms(Bostwick and Qian, 2004), 

PYGO2 may overexpress and to further activate or promote Wnt signaling 

activation in PCa.  

One of the major clinical devastations of PCa is bone metastasis, which is 

the most frequent metastatic sites(Shen and Abate-Shen, 2010a). Wnt signaling 

pathway has been reported to have a key role in bone metastasis (Humphrey, 

2004; Pacelli and Bostwick, 1997; Regard et al., 2012). Besides other mechanism 

involving DKK1(Hall et al., 2005; Thudi et al., 2011), activation of β-catenin induces 

increased bone deposition and decreased osteoclast formation (Glass et al., 2005) 

Autocrine/paracrine activation Wnt signaling are reported in many studies in 

prostate cancer cell lines (Bostwick et al., 1993; Bostwick et al., 1995) and 

PCa(Chen et al., 2004). The exploration of PYGO2 in Wnt signaling especially in 

bone metastasis will provide new insight on this topic. It is of interest to study 
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PYGO2 involvement in such autocrine/paracrine Wnt signaling activation since the 

paracrine/autocrine positive feedback is formed when PYGO2 induces Wnt2 

upregulation in LHMK cell. If it is the case in PCa, PYGO2 will actively induce WNT 

signaling.  

After overexpression, PYGO2 may interfere downstream targets expression 

level by mediating chromatin regulation. The epigenetic study of PYGO2 will be 

conducted collaborating with Dr. Chunru Lin’s group. ChIP assay would be applied 

to investigate PYGO2 mediated protein-DNA interaction.  

To discover the downstream targets of PYGO, unbiased transcriptomic 

profiling is conducted. However, current validated WNT2, ADATMTS2 and KISS1 

are only putative downstream targets. Shown in the results of transcriptomic 

profiling of PYGO2 overexpression in LHMK, other genes may also involve in PCa 

progression. On the list of PYGO-mediated upregulated genes, genes encoding 

collagens are shown to promote cancer advance, such as COL21A1(Abrahams et 

al., 2003) and COL3A1 (Sakr et al., 2000). We will further analyze the gene list 

combined with our results from other cell lines with PYGO2 overexpression and 

knocking-down, since such result will provide genes with epistatic change following 

PYGO2 dysregulation.  

In summary, in my study, putative genes with amplifications and potentially 

promoting prostate cancer progression are identified and validated. Moreover, the 

study on PYGO2 will expand the current understanding of the function and 

mechanism of this specific gene in prostate cancer progression.
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Figure 3.2 Current working hypothesis of PYGO2 in PCa
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