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ABSTRACT 
 
 

ACCURATE MUTATION ANNOTATION AND FUNCTIONAL PREDICTION 
ENHANCE THE APPLICABILITY OF -OMICS DATA IN PRECISION MEDICINE  

 
Tenghui Chen, M.S. 

Advisory Professor: Ken Chen, Ph.D. 
 
 
 
        Clinical sequencing has been recognized as an effective approach for 

enhancing the accuracy and efficiency of cancer patient management and therefore 

achieve the goals of personalized therapy. However, the accuracy of large scale 

sequencing data in clinics has been constrained by many different aspects, such as 

clinical detection, annotation and interpretation of the variants that are observed in 

clinical sequencing data. In my Ph.D thesis work, I mainly investigated how to 

comprehensively and efficiently apply high dimensional -omics data to enhance the 

capability of precision cancer medicine. Following this motivation, my dissertation 

has been focused on two important topics in translational genomics. 

  

      1) Developing a computational approach to resolve ambiguities in existing 

clinical genomic annotations and to facilitate correct diagnostic and treatment 

decisions. I have developed a multi-level variant annotator, TransVar, to perform 

precise annotation at genomic, mRNA and protein levels. TransVar implements 

three main functions: 1) it performs an innovative “reverse annotation” function, 

which identifies the genomic variants that can be translated into a given protein 
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variant through alternative splicing. This function significantly improves the accuracy 

of genomic testing in clinics and functional validation in genomic laboratories; 2) It 

performs “equivalence annotation”, which identifies the protein variants having 

identical genomic origins with a given protein variant. This function resolves 

annotation inconsistencies among variants imported from different data sources, and 

is crucial for precise mutation biomarker identification and functional prediction; 3) It 

improves “forward annotation” (i.e., translation of genomic variants to protein 

variants) over existing annotators by more rigorously implementing the Human 

Genome Variation Society (HGVS) nomenclature. Our study also tried to illustrate 

the ambiguities of annotation among different transcript databases and different 

mutation types. TransVar standardizes mutation annotation and enables precise 

characterization of genomic variants in the context of functional genomic studies and 

clinical decision support and will significantly advance genomic medicine. 

 

        2) Developing a statistical framework to precisely identify hotspot mutations and 

investigate their functional impact on tumorigenesis and drug therapeutic response 

using large-scale -omics data. I have proposed a statistical model, which utilizes 

characteristics of genomic data to nominate 702 cancer type-specific hotspot 

mutations in 549 genes. It models background mutation rate variations among 

different genes, mutation subtypes and di-nucleotide sequence contexts and 

effectively identifies hotspots that have more than the expected number of recurrent 

mutations. We then investigate the mutational signatures represented by the hotspot 

mutations and find they vary from one tumor type to another, suggesting distinct 
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mutational positive selections during different cancer progressions. In addition, we 

build an integrative statistical framework by using transcriptomics, proteomics and 

pharmacogenomics data to investigate the diverse functions of each hotspot 

mutation under different disease and biological contexts and to associate the effects 

of mutations on RNA/protein expression, pathway activity, and drug sensitivity. We 

not only validate diverse functions of well-known hotspot mutations in different 

contexts, but also identify some novel hotspot mutations such as MAP3K4 A1199 

deletion, NR1H2 R175 insertion, and GATA3 P409 insertion with different functional 

associations. Our study addresses a long-term challenge of explicitly distinguishing 

driver mutations from passengers, and nominates a set of putative driver mutations 

that possess diverse functional potentials.  

 

        The translational genomics research I conducted in my Ph.D study will benefit 

the cancer research community. The tools I developed will answer translational 

genomics questions such as identification of biomarkers for clinical diagnostics and 

treatment, and promote our understanding of the biological function of driver 

mutations towards the realization of personalized medicine. 
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1.1 Application of next generation sequencing (NGS) data in personalized 

medicine 

1.1.1 Impact of NGS techniques on human health 

         Starting from the 1970’s, DNA sequencing techniques have continuously 

revolutionized our understanding of the human genome and enhanced our capability 

for learning biological principles from human genetics. The development of 

sequencing technologies originated from the pioneer works of Walter Gilbert [1] and 

Frederick Sanger [2]. After that, DNA sequencing technology continuously improved 

in terms of both instruments and mechanics to advance the generality and accuracy 

with which we understand human genome. In 2001, the human genome project 

(HGP) [3] was finished, which enabled us to have a close look at the human genetic 

codes for the first time and prompted the potential of examining different diseases in 

a personalized revolution. The achievements of the HGP lie in several aspects: 1) It 

gave a hint that people could actually utilize the genetic information to improve the 

understanding of disease susceptibilities and indications of disease prevention; 2) It 

involved the collaborations of multiple research institutes such as the Sanger 

Institute and the biotech industries, and increased the possibility of transferring 

human genetic research into business and in turn helping better monitor human 

health; 3) Most importantly, it let people believe that the era of personalized 

medicine is not far away, and comprehensively improved the clinical diagnostics and 

drug development using human genetic information. 

        After the HGP, which represented the 1st generation sequencing technology, 
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multiple 2nd generation sequencing technologies have emerged (Table 1.1), such as 

454 sequencing (http://www.my454.com), Solexa/Illumina (http://www.illumina.com), 

SOLiD (http://www. appliedbiosystems.com), and Polonator (http://www. 

polonator.org). Each technology had its own advantages and weaknesses. Thanks 

to the development of those technologies, we have been able to continuously 

understand the human health based on genetics and dramatically reduce the cost of 

sequencing from more than 100,000 dollars per genome to a few thousand dollars. 

These are important for making DNA sequencing more applicable and useful, as it 

becomes affordable to individuals and allows people to infer more health related 

indications based on genetic information. 

Table 1.1 Popular 2nd generation sequencing technologies in the market 

Sequencing 
platform 

Sequencing 
chemistry Read length Template 

preparation Application 

Roche 454 Pyrosequencing 400bp Emulsion 
PCR 

WGS and WES of 
microbes 

Illumina 
Hiseq 3000 

Reversible 
terminator 
chemistry 

2*125bp Solid phase 
Human WGS, 
WES, RNA-seq 
and methylation 

ABI/Life 
Tech SOLiD 

Sequencing by 
ligation 2*60bp Emulsion 

PCR 

Human WGS, 
WES, RNA-seq 
and methylation 

Polonator 
Reversible 
terminator 
chemistry 

25-55bp Single 
molecule 

Human WGS, 
WES, RNA-seq 
and methylation 

* WGS represents Whole Genome Sequencing; WES represents whole exome sequencing 

1.1.2 DNA NGS data analysis workflow     

      In the practice of DNA NGS data analysis (Figure 1.1), for each analyzed 

sample, fastq files with sequencing reads are provided. The first step usually 
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involves prior sequencing data quality control using software such as FastQC 

(http://www.bioinformatics.babraham.ac.uk/projects/fastqc/) to perform sequence 

trimming and make sure the overall sequencing data quality is sufficient to perform 

downstream analysis. After that, the reads can be aligned to a human genome 

reference [4] using alignment tools such as BWA [5] and novoAlign 

(http://www.novocraft.com/products/novoalign/), followed by local reads realignment 

using GATK [6] and PCR duplicate removal using Picard 

(http://sourceforge.net/projects/picard/) or Samtools [7]. After obtaining a bam file of 

aligned and filtered reads, further data quality assessments should be performed to 

evaluate the read duplicate rate, coverage, and coverage uniformity. This step is 

very useful in evaluating the workability of a sequencing platform and the quality of 

sequenced samples.  

        After data quality assessment, multiple types of genomic alterations such as 

single nucleotide variant (SNV), small insertions and deletions (indels), structural 

variants (SV) and copy number alterations (CNA) could be investigated. There have 

been multiple algorithms developed for each type of genomic alteration study, for 

example, VarScan2 [8], GATK [6] and Mutect [9] are the most popular SNV 

detection tools and achieve high accuracy; GATK [6], Pindel [10] and Scalpel [11] 

are well known in detecting indels; BreakDancer [12], DELLY [13] and novoBreak 

are capable of detecting SVs; ExomeCNV [14], EXCAVATOR [15], and CONTRA 

[16] are well known algorithms for detecting CNAs. One challenge of using these 

tools is that none of them generally performs best for all sequencing platforms or 

types of sequencing data, therefore, given the specific data type, a detailed 
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comparison should be performed to make sure the tool achieves a good 

performance on the given data. 

 

Figure 1.1 A pipeline overview of DNA next generation sequencing data analysis 
 

        After detection of genomic alterations, one critical step is to annotate the 

mutations from the genomic level to the protein level. There have been many tools 

developed to perform such mutation annotation, such as ANNOVAR [17], Variant 

effect predictor (VEP) [18], SnpEff [19] and Oncotator [20]. Each tool was 

implemented with different annotation roles as defined by the developers and 

preferentially uses different transcript databases among Ensembl [21], Refseq [22], 

UCSC [23], GENCODE [24], etc. Another important step is to characterize functional 

mutation events that could potentially drive disease development or represent 

indications of clinical diagnostics and drug treatment. In this step, several driver 

mutation prediction algorithms were widely used such as CanDrA [25], CHASM [26], 
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VEST [26], TransFIC (http://bg.upf.edu/transfic/home) and MutationAssessor [27] to 

predict a genomic SNV is a driver mutation or not. In addition, some databases such 

as myCancerGenome in Vanderbilt University (http://www.mycancergenome.org) 

and the Institute for Personalized Cancer Therapy in MD Anderson Cancer Center 

(http://pct.mdanderson.org) have actively curated the potentially clinically functional 

and actionable mutations through literature learning and collected protein variants 

that could potentially be used to indicate clinical therapy responses. 

1.1.3 Challenges of DNA clinical sequencing and analysis         

        With the development of sequencing technologies over the last decade, there 

are many different types of sequencing which have become routinely used in 

scientific research, such as whole genome sequencing (WGS), exome sequencing 

(WES), RNA sequencing and methylation sequencing. In addition, as it comes to 

measure the applicability of using sequencing data to enhance health management 

and clinical treatment, many more cost-effective and practical methods have been 

developed and applied, such as target of DNA sequencing, which significantly 

enhances the affordability of utilizing sequencing data in clinical management.  

        There are already a lot of exciting applications of using whole-genome 

sequencing and exome sequencing to improve the understanding of inheriting 

familiar diseases. For instance, a direct relationship between a specific gene locus 

and disease was revealed by studying a family with four siblings that were affected 

by Charcot-Marie-Tooth disease (a peripheral polyneuropathy) [28]. Furthermore, 

analyses focusing on individual genomes have also been published previously [29-
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32], including the first complete individual high-throughput method [33]. 

         Besides the familiar inherited diseases, cancer is a class of diseases that 

consist of multiple disease types and could potentially benefit from the application of 

personalized therapeutic approaches, particularly given the wide spectrum of 

mutations that must be analyzed and the complexity of cancer-related genome 

variation: germline susceptibility, somatic single/multiple nucleotide substitutions and 

small insertion/deletion mutations, copy number variations, and structural variants.  

         Although it was increasingly recognized that the personal genome profiles 

obtained from clinical sequencing data can help inform more accurate clinical 

decision making [33, 34], the implementation of cancer genomic medicine is critically 

constrained by a lack of precise understanding of the impact of individual somatic 

mutations on tumor pathophysiology and response to cancer therapy. Currently, 

multiple challenges still exist to accomplish the goal of personalized therapy. For 

example, 1) limitations of current sequencing technologies and computational 

algorithms in accurately characterizing genomic alterations such as sequencing 

error, inadequate coverage and uneven coverage uniformity, which may cause loss 

of information that can be used in clinics; 2) Inconsistent annotations among 

different data sources and tools, which lead to an ambiguous interpretation of 

mutation consequences in clinical diagnostics and biomarker indications; 3) The lack 

of ability to distinguish genomic alterations that confer tumorigenesis (i.e. drivers), 

from those that provide no selective advantage to tumor growth but occur 

stochastically in cancer development; 4) Inadequate practice of using -omics data to 

reveal the specific function of different genomic alterations in different diseases and 
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biological contexts.  

1.2 Mutation annotation in NGS data analysis 

        Downstream interpretation of genomic alterations that are characterized in 

mutation detection algorithms is a critical component in NGS data analysis, bridging 

the identification of mutations and the application in determining functional and 

disease relevant mutations. One fundamental utility of variant annotation is to 

categorize each variant based on its relationship to coding sequences in the defined 

genome and see how it may change the coding sequence and then affect the protein 

level structure.  

        The coding sequences of the reference genome refer to, generally speaking, 

the genes. The “gene” comes to refer to a genomic region that produces poly-

adenylated mRNAs through transcription and followed-up translation that encodes 

an expressed protein [7]. To date, our principal understanding of the protein-coding 

sequences in the human genome is summarized in the set of transcript isoforms we 

continuously curate and believe to exist. Thus, in the mutation annotation, the 

annotation depends on the set of transcripts that were given. There are several 

widely used annotation databases and browsers such as Ensembl [21], Refseq [22], 

GENCODE [24], and UCSC [23], which independently contain different sets of 

transcripts that can be used for variant annotation, as well as a wealth of information 

of many other kinds as well, such as ENCODE [35] data about the function of non-

coding regions of the genome. In this way, a transcript set may also include 

information about non-coding regions in the genome that mainly function by 
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regulating the expression of coding transcripts. 

         Variant annotation could be straightforward and unbiased, in the cases that, 

only one transcript exists for the gene in which the given genomic variant locates or 

different transcripts exist for the gene but the given genomic variant locates in a 

position where identical coding sequences are obtained based on different alterative 

splicing. However, frequently we encounter more complex situations in the 

annotations. One situation is that a genomic variant could be transcribed by different 

transcripts and then further translated into proteins with the variant in different 

relative positions, then the question is about which one transcript to choose to report 

as the annotation result for the given variant. Another situation is a genomic variant 

is annotated by different transcript databases and then further translated into 

proteins with the variant in different relative positions, then the question will be which 

database to use for the annotation. When a genomic variant is mapped to multiple 

potential genes, the situation can be even more complex as prioritizing the genes 

should be performed in addition to choosing a transcript.  

        Based on the above mentioned facts, different transcripts existing for one 

particular gene and even different genes share a similar sequence in the DNA level, 

therefore the usages of different transcript isoforms or annotation tools would likely 

produce discordant protein variants given an identical genomic variant. 

1.3 Mutation annotation ambiguities in translational and functional genomics 

study 

1.3.1 Forward annotation        
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        In a functional genomics study, the biologists frequently want to validate a set 

of putative functional mutations with the help of bioinformatics analysis. Frequently, 

people would prefer to nominate the functional mutation candidates based on the 

variant frequency. This scenario requires a precise estimation of the variant 

frequency in a mutation cohort or across different mutation cohorts. However, 

different annotation practices, especially for data from different cohorts, would 

produce inconsistent annotation results for a genomic variant based on different 

transcript usages, and therefore underestimate the variant frequency and lose 

potentially promising candidates for functionally relevant study. For example, 

chr7:g.55221821G>A was annotated to EGFR:A244T based on transcript 

ENST00000455089, while was annotated to EGFR:A289T in COSMIC based on 

transcript ENST00000275493. EGFR:A244T was considered as a hotspot mutation 

in TCGA; However, EGFR:A244T does not even exist in COSMIC because the 

identical genomic variant was annotated to a totally different protein variant 

EGFR:A289T, which may be confusing when researchers look at these two 

annotation results separately and would argue that whether EGFR:A244T is a truly 

functional mutation since it was observed in TCGA but not in COSMIC. 

        Lack of specification can clearly affect the interpretation of variants and may 

have serious implications for patient management as well as for understanding of 

the biology. For example, it has been shown that cancer cells that carry 

BRAF:V600E have higher sensitivity to RAF inhibitors (RAF265 and PLX4720) than 

those with other BRAF:V600X variants [36]. If only the amino acid position and the 

reference amino acid are given (e.g. BRAF:V600), a treatment with little likelihood of 
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benefit for the patient might be selected [37]. Inconsistent annotations can result in 

discordance among molecular testing results from different laboratories, generating 

difficulties for clinical decision-making, particularly in the absence of strong decision 

support. For example, ABL:T315I and ABL:M351T, which are frequently seen in 

chronic myeloid leukemia patients, confer resistance to Imatinib treatment [38], but 

they can also be reported as T334I and M370T, respectively, based on different 

transcript isoforms. That difference in annotation may mislead the clinical decision-

making.  

        In genetic diagnosis or counseling for germline variants, the mutation 

annotation ambiguities could also be misleading. For example, 

chr10:123258036A>C, which is associated with Crouzon Syndrome [39], can be 

annotated as N550H in FGFR2b or N549H in FGFR2c. However, it could also be 

annotated as N432H, N433H, N460H and N461H based on the usage of other 

transcript isoforms. Those variants have not been shown to be associated with 

Crouzon Syndrome in any literature or clinical reports. If a variant annotator chooses 

to report one of the variants not known to be associated with Crouzon Syndrome, a 

clinical diagnosis or counseling opportunity might be missed. 

1.3.2 Reverse annotation        

        Conversely, different DNA variants such as chr7:55249076_55249077CT>AG 

and chr7:55242470T>C can result in the same cDNA and protein variant, 

EGFR:p.L747S, which mediates acquired resistance of non-small cell lung cancer to 

tyrosine kinase inhibitors [40]. However, the multiple options of genomic variants for 
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the protein variant could lead to another commonly encountered issue, which is 

uncertain genomic origin for a given protein variant. This exposes an important gap 

in the clinical genomic validation process, for example, when a biological researcher 

or a clinician observes EGFR:p.L747S in a genetic report as mentioned above, 

without the information of concrete transcript ID and genomic origin, it is impossible 

to precisely determine how to construct the cDNA sequence for experimental 

functional validation. 

1.3.3 Limitations of current variant annotation algorithms         

         Differences among widely used annotation algorithms such as ANNOVAR [17], 

SnpEff [19] and VEP [18] and among various transcript databases such as Ensembl 

[41], RefSeq [42] and GENCODE [24], further increase the extent of ambiguity. Ad 

hoc post-annotation filters such as reporting of the variant on the longest transcript 

may also be a problem because the longest transcript may be different in different 

systems and, further, may not represent the transcript actually present. Inconsistent 

use of conventions in annotating indels, i.e., reporting the left-most (left-aligned) or 

the right-most (right-aligned) position in the context of repetitive sequences can 

further increase ambiguity. A recent investigation indicated that variable usage of 

annotation algorithms and/or transcript databases may cause greater than 50% 

discrepancy in annotating loss-of-function variants identified from genomic 

sequencing [43]. Our investigation of the COSMIC database reveals that 92,444 out 

of 1,010,316 (9.1%) of somatic DNA variants have been reported more than once at 

different locations on proteins based on differences in isoform. 
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        Despite such significant challenges in ongoing research and clinical practice, 

we have not had an annotation tool that is capable of quantifying the extent of such 

ambiguities and resolving them in a systematic way. Existing tools (e.g., ANNOVAR, 

snpEff and VEP) perform what we call “forward annotation”, which maps a variant 

characterized at the genomic level to a set of cDNA or protein isoforms. No tool, to 

the best of our knowledge, has general capability for what we call “reverse 

annotation,” which reverse-maps a variant at a cDNA or protein level to the genome. 

A previous algorithm, Mutalyzer [44], can reverse-annotate variants at the cDNA 

level, but it has limited functionality: it annotates only single nucleotide variants; it 

does not allow input of a gene name, nor offering analysis of variants at the protein 

level. Without a fully automated reverse annotation tool, translation from a functional 

protein site (such as Y308/S473 in AKT and Y1068/Y1172 in EGFR) to a genomic 

identifier would involve a tedious manual process that is not scalable.  

1.4 Cancer gene prediction 

        With the increasingly used NGS data in biomedical research, a hot topic has 

been cancer gene identifications. The main goal was to find gene candidates that 

could drive the cancer development, promote cancer cell proliferation or enhance 

the cancer cell viability. To achieve this goal, there have been several methods that 

were developed in the past few years to predict driver genes. Essentially, different 

methods have largely diverse assumptions for defining driver genes and differences 

in the results reflect the differences in the methodologies.  

        One assumption was to consider all significantly mutated genes across the 
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cancer genome as driver genes. Motivated by that, a gene is nominated as a driver if 

it contains significantly more mutations than expected from a null background model 

[45, 46]. A variety of practical algorithms have been developed in the context of 

large-scale cancer genome sequencing, differing mainly in how they model 

background mutations. For example, MuSiC [47] assumes a homogenous 

background mutation rate across all genes. In each individual gene, a binomial 

model is used to calculate the significance level (p value) of each mutation subtype, 

then Fisher’s method is applied to combine the p values across different mutation 

subtypes and come up with an unified p value to indicate the significance level of the 

investigated gene. With realizations that the background mutation rates were not 

uniform across all the genes, MutSigCV [48] models the heterogeneous background 

mutation rate for each gene–patient–category combination based on the observed 

silent mutations in the specifically investigated gene and non-coding mutations in the 

surrounding chromosomal regions. Because in most cases these data are too 

sparse to estimate an accurate background mutation rate, the method tries to 

increase the accuracy by pooling data from other genes with similar properties (for 

example, replication time, expression level). Furthermore, the method identifies the 

significantly mutated genes by incorporating factors such as di-nucleotide sequence 

context, cancer type and epigenetic elements.  

        The other assumption was that driver genes tend to have highly recurrent 

mutations that are enriched in clusters. Some algorithms have also been developed 

to nominate driver genes using cluster-based methods. For example, 

OncodriveCLUST [49] estimates a background model from coding-silent mutations 
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and tests whether the mutations on each individual site are significantly mutated, 

after that, the method arbitrarily chooses to combine mutational hotspots that are 

within 5 amino acids of each other, and detects clusters of missense mutations that 

are significantly mutated and therefore where driver genes lie. Essentially, those 

clusters would be likely to contain mutations that can alter the protein structure and 

thus affect the gene function during cancer development. E-Driver [50] exploits the 

internal distribution of missense mutations between different proteins’ functional 

regions (for example, functional domains or intrinsically disordered regions) to 

nominate clusters of missense mutations in protein-protein interaction (PPI) 

interfaces that show a bias in their mutation rate as compared with other regions of 

the same protein, providing evidence of positive selection and suggesting that these 

proteins may be actual cancer drivers.  

        However, increasingly many studies indicate that a mutation may have 

substantially different functions at different amino acid positions in the same gene 

[51, 52] and may be associated with different clinical utilities in different disease and 

biological contexts [53, 54]. Similarly, not every mutation within a cancer gene can 

be assumed to have equal function in one cancer type or across different cancer 

types. In addition, the previous studies that focused on identifying significantly 

mutated genes mostly ignored potential functional mutations in infrequently mutated 

genes, and in under-investigated mutation types such as insertions and deletions.  

1.5 Driver mutation prediction 

        To characterize the function of individual mutations, multiple computational 
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tools such as TransFIC (http://bg.upf.edu/transfic/home) [55], CHASM [26], Condel 

[56], MutationAssessor [27] and CanDrA [25] have been developed. Essentially, 

CHASM uses a random forest classifier and incorporates 49 features to rank the 

investigated mutations with different probabilities of being driver (the lower p-value 

indicates higher driver potential). In terms of the training data, CHASM uses 

manually curated oncogenic functional mutations as true drivers from breast, 

colorectal, and pancreatic tumor resequencing studies [46, 57] and the COSMIC 

database [58], and uses synthetic passenger mutations that are generated by 

sampling from eight multinomial distributions that depend on dinucleotide context 

and tumor type [26]. CanDrA uses a support vector machine classifier and 

incorporates 95 different features to classify the investigated mutations to be either 

driver or passenger in a tumor type-specific manner. In terms of the training data, 

CanDrA defines a driver mutation as one that is observed in at least two different 

samples, from either TCGA or COSMIC. Compared to CHASM and CanDrA, other 

methods such as Condel, MutatationAssessor, Polyphen2 [59] and SIFT [60], tend 

to use a scoring system to predict the functional impact of a mutation. For example, 

Condel uses a weighted average of the normalized scores that are integrated from 

five different tools including Logre, MAPP, MutationAssessor, Polyphen2 and SIFT. 

TransFIC takes as input the Functional Impact Score of a somatic mutation 

observed in cancer provided by MutationAssessor, Polyphen2 and SIFT. It then 

compares that score to the distribution of scores of germline SNVs observed in 

genes with similar functional annotations (for instance genes with the same 

molecular function as provided by the Gene Ontologies), and eventually reports a Z-
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score to indicate the tolerance of the mutation. 

        Although the algorithms have been actively used in identifying functional 

mutations from multiple aspects and contributed significantly to the cancer research, 

several limitations have been frequently observed: 1) Many algorithms are designed 

to tackle a generic problem about the function of a driver, but do not account for 

cancer type specificity and ignore the potential functional heterogeneity of a mutation 

in different cancers; 2) Many machine leaning-based algorithms simply select as 

positive training data mutations in known cancer genes, which may significantly bias 

the assessment of mutations in previously unknown non-cancer genes, while it is 

unfair to assume that the driver mutations only occur in known cancer genes; 3) 

Previous studies generally lack adequate functional assessment, which usually 

involves interrogation of RNA expression, protein activity and drug response data, to 

investigate the biological and therapeutic relevance of predicted mutations; 4) All the 

algorithms predict a large number of driver mutations (most are non-recurrent) and 

thus significantly sacrifice specificity, which is impractical for thorough functional 

genomic validations and individual evaluations using currently available functional 

data.  

        Since the potential driver mutations are supposed to be defined under a 

specific disease context, a driver mutation prediction algorithm that does not take 

into consideration disease-specific factors such as cancer type, disease stage, 

mutation prevalence, mutation spectrum, and other clinical characteristics, may not 

be accurate enough. As a result, these functional predictions often disagree with 

each other and are not accurate enough for practical use. The number of clinically 
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actionable mutations, which could potentially be used as training data, will likely 

remain in the hundreds (currently 285 in MyCancerGenome.org and 269 in 

PersonalizedCancerTherapy.org). Therefore, it is critical to improve predictive 

approaches that do not completely rely on known actionable mutations, but are 

capable of accurately predicting driver mutations. 

1.6 Application of high-dimensional -omics data in translational genomics 

        With the accumulating knowledge of cancer genome, many genetic variants 

have been shown to affect tumor expression architecture through the transcriptional 

regulation either in -cis or in -trans manner [61, 62]. The effort to map genetic 

variation to specific expression quantitative trait loci (eQTL) has illustrated the value 

of transcriptomics data in the functional interpretation of genetic variants [63]. Thus, 

the transcriptomics data could serve as a unique resource to evaluate the impact of 

individual genomic mutations on the expression level. In addition to transcriptomics 

data such as RNA sequencing or microarray data, in the past few years, proteomics 

data such as Mass Spectrometry [64] or Reverse Phase Protein Array (RPPA) [65] 

has become one of most promising data types for investigating biological activity at 

the gene/pathway level, as well as the effects of post-translational modification. 

Therefore, in terms of investigating the genome-wide effect of genomic alterations, 

proteomics data will serve as a novel data type. 

        Cancer pharmacogenomics studies have recently become an important way for 

discovering the molecular determinants of drug response, thus representing the 

potential benefits of personalized cancer treatment. Multiple works such as seminal 
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work on the NCI-60 cancer cell lines [66, 67] and other subsequent research efforts 

[68, 69] highlighted specific genetic alterations as drug targets or biomarkers of drug 

response. For example, BRAF:V600E and NRAS mutations have been shown to 

increase cancer cell sensitivity to MEK inhibitors (such as AZD6244) [53, 70]. 

However, it was also elucidated that cells with BRAF:V600E mutations are sensitive 

to RAF inhibitors in melanoma but not in colon cancer [70], which suggested the 

disease specificity of the biomarker indication. The emerging large-scale 

pharmacogenomics datasets such as CCLE [71] and GDSC [72] have been 

designed to facilitate an increased understanding of the molecular features that 

influence drug response in cancer cells and will enable the design of improved 

cancer therapies. 

1.7 Impact of variant annotation on hotspot mutation prediction 

        Regarding hotspot mutations, it is common to make predictions using either 

genomic or protein variants. Many computational algorithms have tried to predict the 

impact of functional mutations on the genomic level [25, 26, 60]. Compared to using 

genomic variants, one advantage of using protein variants is to substantially 

increase the statistical power, since different genomic variants could happen at one 

identical protein amino acid position and actually represent very similar biological 

functions [73, 74]. For hotspot mutation prediction that relies on the amino acid 

residue information, it is important to have a correct representation of the protein 

variant frequency within a defined cohort or across different cohorts. Fundamentally, 

the protein variant was inferred from the genomic variant that was detected in each 

sample within a specific cohort, therefore, it is important to know that whether an 
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observed protein variant was from one single genomic variant and whether a 

genomic variant was annotated to a uniform protein variant. 

       The variant annotation process from the genomic to protein level, is not an 

absolute one-to-one correspondence. Ambiguities may come from: 1) different 

annotation rules that are implemented; 2) different transcript databases that are 

used; 3) different transcript isoforms that are used within one identical transcript 

database. Due to those concerns, one genomic variant is frequently annotated to 

various protein variants in different practices. This means if we solely use the protein 

residue information to identify the functional variants such as hotspot mutations, the 

frequency of protein residues could be largely underestimated and the function of a 

specific protein residue may be misinterpreted because of incorrect frequency 

calculations.  

1.8 Motivations and Rationale of the thesis study 

        Next generation sequencing has been recognized as an effective approach to 

enhance the accuracy and efficiency of cancer patient management. Based on the 

massive information that is obtained from analyzing such high dimensional data, we 

could potentially achieve the goals of personalized therapy. Through the 

investigations since the emergence of NGS techniques, the accuracy of applying the 

NGS data in clinics has been largely constrained by many different aspects, such as 

clinical detection, annotation and interpretation of the variants that were observed in 

clinical sequencing data.  

        A large amount of ambiguity exists in current mutation annotations, which could 
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potentially prevent the precise identification of functional mutations, biomarkers, and 

target therapies in basic research and clinical practice. For example, one genomic 

variant can be annotated to different protein variants based on different transcript 

isoform usages within one dataset or across different datasets, which could lead to 

significant underestimation of targeted protein variant frequency and 

misinterpretation of the functional impact of the targeted protein variant. Due to the 

annotation ambiguities, the genomic variant that corresponds to a protein biomarker 

for a drug treatment indication could be annotated to another different protein variant 

and lead to incorrect clinical decision-making. Given these problematic practices in 

research and in clinics, it is important to systematically investigate the existence of 

annotation ambiguities in the commonly used mutation datasets such as COSMIC 

and TCGA. In addition, development of a method that enables cross-level variant 

annotations, would allow the researchers and clinicians to fully capture the potential 

genomic origins of an observed protein variant and minimize the ambiguities of using 

genomic information to make a decision. Motivated by these considerations, we 

developed a novel variant annotator, TransVar, which performs multi-level variant 

annotation such as forward annotation from genomic to RNA and to protein level, 

and reverse annotation from protein to RNA and to genomic level. The novel reverse 

and equivalence annotation function of TransVar could potentially contribute in: 1) 

experimental validation design; 2) clinical pharmacogenomics; and 3) hotspot 

mutation prediction. 

        Another critical challenge of oncogenomics and pharmacogenomics is to 

distinguish genomic alterations that confer tumorigenesis (i.e. drivers), from those 
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that provide no selective advantage to tumor growth but occur stochastically in 

cancer development. Previously many driver gene algorithms have been proposed 

to distinguish cancer related genes that could promote cancer development. 

However, more recently researches found that 1) it is incorrect to assume equal 

function of different mutations within one cancer gene in all cancer types. For 

example, one mutation such as BRAF:V600E, can have different functional 

indications in different cancer types. In BRAF, quite a lot of mutations do not actually 

have clear functional indications in many cancer types; 2) it is unfair to simply focus 

on significantly mutated genes while ignoring infrequently mutated genes. More and 

more studies indicate now that infrequently mutated genes could also be functional 

in certain cancer types. After that, some driver mutation algorithms were proposed to 

distinguish driver mutations from passengers. However, most of the methods still 

assume the same function of a variant in different cancer types; they did not 

consider using additional functional data to justify the performance of the driver 

mutation prediction, and they do not assess the function of a variant in a specific 

biological context. Therefore, people gradually realized that it is important to obtain 

accurate biological and therapeutic interpretations of a mutation in a tumor type-

specific manner to help improve the efficacy of using genomics information in clinical 

applications. With those motivations, we systematically identified tumor type-specific 

hotspot mutations in 17 tumor types, and analyzed the potential impact of hotspot 

mutations by performing genome-wide and population-based analysis across 

different tumor types and assessing functionality using transcriptomics, proteomics 

and pharmacogenomics data.  
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2.1 Materials and Methods 

2.1.1 COSMIC and TCGA somatic mutation data 

        We downloaded the COSMIC somatic mutation dataset version 67 for our 

study. As introduced in the COSMIC data source, this total mutation set includes 

many sources of curated mutation data. In terms of TCGA mutations, we 

downloaded TCGA pan-cancer level-3 somatic mutation data from Synapse 

(https://www.synapse.org/#!Synapse:syn300013) as last updated in November 

2014. 

2.1.2 Transcriptome definitions 

        For human genome reference, TransVar supports hg18, hg19 and hg38. 

TransVar supports transcriptome definitions in 1) UCSC knownGene [75], 2) 

RefGene built from the UCSC table browser [76], 3) Ensembl annotation [41] in 

General Transfer Format (GTF), 4) RefSeq annotation [42] in General Feature 

Format version 3 (GFF3), 5) Consensus Coding Sequence (CCDS) [77], 6) 

GENCODE [24] release 19, and 7) AceView [78]. TransVar not only supports the 

transcript annotation in human, but also supports which in mouse. When using 

TransVar, the users can use any one or a combination of different transcript sources 

or else user-provided definitions (such as ncRNA and miRNA databases, as long as 

they are based on the same genome reference assembly).  

2.1.3 Reverse annotation 

         TransVar is designed for reverse annotation of four categories of mutations at 
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the mRNA level (single-nucleotide substitution, insertion, deletion and block 

substitution) and four categories of aberrations at the protein level (single-amino acid 

substitution, insertion, deletion and frame-shift). The input format of TransVar was 

designed to follow the Human Genome Variation Society (HGVS) nomenclature 

(http://www.hgvs.org/mutnomen/) [44]. Small formatting variation from HGVS is 

allowed to accommodate non-standard identifiers frequently seen in the literature (as 

illustrated by examples on the web site, www.transvar.net). The output of TransVar 

strictly follows the HGVS nomenclature. For each input variant, based on the gene 

name and the correspondingly available transcript information in the defined 

databases, TransVar iterates through all of the associated transcripts and infers the 

relative coordinates on each transcript based on the genomic coordinates of the 

coding sequence defined for each transcript. TransVar builds in multiple checkpoints 

to restrict the search scope of valid transcripts. That filter takes into account: 1) the 

length of the transcript, 2) the sequence of the optionally provided reference 

transcript or isoform, 3) exon boundaries in the transcript, and 4) any transcript 

identifiers provided. For protein-level variants, TransVar provides parsimonious 

inference of nucleotide changes that could best explain the observed amino acid 

change. Taking single-amino acid substitution as an example, TransVar iterates over 

all possible target codon sequences to identify a set of most likely base changes that 

minimize the distance between the altered codon and the reference sequence in 

each transcript. Meanwhile, TransVar outputs all candidate variant identifiers to a 

report that informs the user of all possible sourcing variant annotations.  

        For insertions and deletions, TransVar aligns the alternative indel sequences to 
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the reference sequence when generating identifiers at the mRNA and protein levels, 

conforming to the HGVS nomenclature. TransVar uses a walk-and-roll strategy for 

the realignment to ensure accurate positioning of the resulting identifiers despite the 

presence of repeats, intron splicing, and redundant codon usage. Contrary to the 

HGVS specification---3ʹ-alignment (or right-alignment or C-terminal-alignment under 

the protein representation) of indels---a commonly used rule in the genomics 

community is to 5ʹ-align (or left-align or N-terminal-align) indels. Thus, TransVar also 

provides a left-aligned identifier in the output to allow users to reference annotations 

created under other rules. For frame-shift variants, TransVar iterates from the 

reported location all possible single and double nucleotide insertions and deletions 

and reports those that result in the corresponding frame-shift at the protein level, as 

delimited by the amino acid sequence between the first altered amino acid and the 

first stop-codon. 

2.1.4 Forward annotation 

        Forward annotation starts from a genomic location. The input follows HGVS 

nomenclature (http://www.hgvs.org/mutnomen/) [44] and small formatting variations 

are allowed (as illustrated in the examples on the web site). The output strictly 

follows HGVS nomenclature. TransVar hashes transcript definitions based on each 

transcript’s start and end positions and retrieves all of the isoform definitions that 

overlap with the genomic coordinate of the input identifier. If the input variant falls 

within the span of an exon, TransVar reports the consequence of the variant and 

generates variant identifiers at both the mRNA and protein levels. TransVar also 

reports mRNA identifiers for variants that overlap intronic or UTR regions. Additional 
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sequence features can optionally be hashed to allow more extended annotation of 

regulatory elements. Those features are similar in concept to ones in existing 

annotators such as ANNOVAR, snpEff and VEP. 

        The input to TransVar can use a specific variant (e.g., 

chr6:g.4241214_4241218del) or simply a genomic interval (e.g., 

chr6:g.4241214_4241218) without specifying the reference and alternative alleles. 

For example, chr6:g.4241214A>T denotes a single-nucleotide substitution, whereas 

omitting the alternative allele T indicates a single genomic position. Both forms are 

valid inputs to TransVar. The annotation of genomic position/interval is of great utility 

for understanding the potential translational consequences of indels and structural 

variations (SVs) if the corresponding breakpoints on the transcripts can be revealed. 

For example, for chr3:g.178936091_178936192, a 102-bp interval, one can use 

TransVar to show that it encodes PIK3CA:p.E545_R555, which begins in the coding 

sequence of PIK3CA exon 10 and ends in the intron between exon 10 and 11, 

covering codons 1633 to 1664 and 70 intron bases. That variation may introduce not 

just an indel but also a novel splicing, resulting in complex mRNA and protein 

products. Given a long altered genomic interval, TransVar can also reveal which 

genes are contained within the interval. 

2.1.5 Equivalence annotation 

        TransVar automates the search for alternative codon identifiers that are 

potentially of the same genomic origin, a task we call “equivalence annotation.” Two 

codon identifiers such as MET:p.T1010 and MET:p.T992 are considered equivalent 
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because they can be translated from the same genomic variant 

chr7:g.116411990C>T, based on different isoform definitions. The equivalence 

annotation functionality can be used to ascertain the functional or clinical 

interpretation of important variants and also provide more accurate estimation of 

variant frequency in a disease cohort. For a protein level identifier, TransVar 

performs reverse annotation and then forward annotation to map the resulting 

genomic variants back to protein level. Both steps may result in multiple valid 

candidate identifiers that are equivalent to the original variant. All of the equivalent 

identifiers are reported in the TransVar output. By providing specific transcript 

identifiers from different databases, TransVar allows the user to map a protein-level 

variant annotated using one of the databases (e.g., RefSeq) to protein-level variants 

annotated using a different database (e.g., Ensembl). That type of analysis can be 

particularly important for decision support in patient management. For example, 

MET:p.T1010 is generally designated as an activating germline SNP, whereas 

MET:p.T992 is not annotated in most decision-support algorithms [79]. 

        TransVar maximally uses available information such as reference sequence to 

reduce the number of equivalent identifiers. For example, for ABL1:p.255, TransVar 

finds 6 equivalent codon identifiers (p.236, p.237, p.254, p.256, p.273, and p.274) in 

the RefGene database. When the reference amino acid (E) is provided, only 2 

codons remain (E236 and E274), instead of 6. Including the reference amino acid 

can substantially reduce the number of equivalent identifiers. For example, for a set 

of 1821 hotspot mutations in COSMIC, specifying the reference amino acid reduces 

the number of mutations with non-unique codon identifiers from 1260 (69.19%) to 
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1021 (56.07%) based on Ensembl v75. 

2.1.6 Tool Implementation 

        TransVar provides reverse, forward and equivalence annotation algorithms that 

can be accessed via a command line utility, a programmable Python API, or a web 

interface (www.transvar.net). The web interface uses application programming 

interface (API) calls in the common gateway interface (CGI) and allows use of 

TransVar without writing code or issuing commands in a terminal. The user can 

either type in the variant identifiers or upload a file for batch processing. TransVar 

can optionally load the coordinates of the entire transcriptome definition into memory 

but reads in the corresponding reference transcript/protein sequences only when 

necessary. That procedure limits the memory footprint to the size of the 

transcriptome definition. For the web interface, the transcript definitions are stored in 

disk-indexed database tables. Gene names (in the case of reverse annotation) and 

genomic locations (in the case of forward annotation) are indexed to facilitate quick 

look-up. TransVar can map directly to different versions of human genome 

assemblies. Choices of reference assemblies and transcript definitions are provided 

as options in the web-form submission. Each line characterizes the annotation 

based on one specified transcript definition. If no valid gene name matches or if no 

transcript definition matches, a warning message is provided in the last field of the 

output. 
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2.2 Results 

2.2.1 Overview of the functions of TransVar 

        To facilitate standardization and reveal inconsistency in existing variant 

annotations, we have designed a novel variant annotator, TransVar, to perform three 

main functions supporting diverse reference genomes and transcript databases 

(Figure 2.1): (i) “forward annotation”, which annotates all potential effects of a 

genomic variant on mRNAs and proteins; (ii) “reverse annotation”, which traces an 

mRNA or protein variant to all potential genomic origins; and (iii) “equivalence 

annotation”, which, for a given protein variant, searches for alternative protein 

variants that have identical genomic origin but are represented based on different 

isoforms.  

         Essentially, uncertainty frequently exists in mutation annotation. One DNA 

sequence with a mutation could be transcribed into different transcript isoforms 

based on alternative splicing, and therefore be further translated into proteins with 

the mutation on different relative positions (Figure 2.1 Upper). For example, 

chr14:g.105239423C>T (hg19) can be forwardly annotated to coding mutations 

AKT1: E17K, AKT1: E322K or non-coding mutation AKT1:intronic. Compared to 

forward annotation, reverse annotation from the protein level to genomic level is a 

novel concept. One protein with a variant could potentially come from multiple 

transcripts with the mutations on various locations, and multiple genomic variants 

are responsible for each of the corresponding transcript (Figure 2.1 Lower). For 

example, EGFR: p. L747S (hg19) can be reversely annotated to  
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Figure 2.1 Overview of TransVar. TransVar performs forward (green arrows) and reverse 
annotation (pink arrows) and considers all possible mRNA transcripts or protein isoforms 

available in user-specified reference genome and transcript databases (colored boxes 
representing exons in various transcripts or isoforms of a gene). Given a variant (black 
triangle) at any of the genomic, mRNA or protein levels, TransVar is able to infer the 

associated variants at the other two levels. In reverse annotation, TransVar searches all 
potential transcripts and reports one variant on each transcript. When there are multiple 

variants on the same transcript, TransVar reports the variant with minimal nucleotide 
changes (red text) instead of other alternatives (purple text). (Figure reprinted from 

TransVar: a multilevel variant annotator for precision genomics. Wanding Zhou, Tenghui 
Chen, Zechen Chong, Mary A Rohrdanz, James M Melott, Chris Wakefield, Jia Zeng, John 

N Weinstein, Funda Meric-Bernstam, Gordon B Mills, and Ken Chen, Nature Methods, 
2015. According to the journal policy, the author retains the right to include the published 

article in full or in part in a dissertation.) 
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chr7:g.55242470T>C and chr7:g.55249076_55249077delinsAG. In addition, multiple 

genomic alterations on an identical transcript may result in a similar protein variant. 

        In the reverse annotation practice of TransVar, When there are multiple 

variants on the same transcript, TransVar reports the variant with minimal nucleotide 

changes chr7:g.55242470T>C and chr7:g.55249076_55249077delinsAG, instead of 

other alternatives such as chr7:g.55242470_55242471delinsCT, and 

chr7:g.55249076_55249078delinsTCG. 

2.2.2 Forward annotation of COSMIC mutations using TransVar, ANNOVAR, 

VEP, snpEff and Oncotator 

         To illustrate the degree of inconsistency in existing variant data and evaluate 

TransVar’s accuracy in performing comprehensive annotation, we conducted 

forward annotation on COSMIC mutation data v67, using TransVar and several 

widely used variant annotators, ANNOVAR [17], VEP [18], snpEff [19], and 

Oncotator [80], and asked whether the resulting protein identifiers (gene name, 

protein coordinates, and reference amino acid (AA)) match those in COSMIC.  

         We downloaded 964,132 unique single-nucleotide substitutions (SNSs) such 

as chr1:g.87369101C>A, 3,715 multi-nucleotide substitutions (MNSs) such as 

chr10:g.52595929_52595930delinsAA, 11,761 in-frame and frame-shift insertions 

such as chr2:g. 69741762_69741762insTGC and chr12:g. 9021138_9021138insG, 

24,595 in-frame and frame-shift deletions such as chr3:g.137843433_137843435del 

and chr19:g.58863869_58863869del, and 166 block substitutions (BLSs) from the 

catalogue of somatic mutations in cancer (COSMIC v67). BLS represents in-frame 
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or frame-shift replacements that potentially incorporate both insertion and deletion in 

one event, such as chr5:g.112175419_112175425delinsGCA and 

chr7:g.55249018delinsAACCCCT.  

        We used the genomic and corresponding protein variants reported in COSMIC 

as the ground truth for this comparison. The ground truth here was clearly subject to 

any annotation biases when variants were submitted to COSMIC. Differences from 

the ground truth largely indicate inconsistency among annotators or rules used 

(instead of correctness in any absolute sense). Although TransVar can jointly utilize 

multiple transcript databases in annotation, we tried to use a consistent one for our 

comparison in Table S2.1. Specifically, TransVar (version 2.1.15.20150827), 

ANNOVAR (released on 2015Mar22), VEP (version 81) and snpEff (version 4.1) 

used Ensembl v75, while Oncotator (version 1.5.1.0) used GENCODE v19. Minor 

differences may exist among the instances of databases used by these tools. We 

used the default settings of each tool. We considered one genomic variant as being 

annotated consistently with COSMIC if the results reported by an algorithm contain 

the corresponding entry in COSMIC, as each algorithm may output multiple 

annotation entries for a given genomic variant, due to alternative isoform usages. 

For all types of variants, we required that the gene name, protein coordinate and 

reference amino acid match exactly with those in COSMIC. 

        For SNSs, ANNOVAR, VEP, Oncotator and snpEff achieved similar results with 

around 92% consistencies. TransVar achieved slightly higher consistency at 96% 

(Figure 2.2 and Table S2.1). Since the forward annotation algorithm in TransVar did 

not have major differences from others, such difference in consistency may be 
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attributed to minor differences in the databases used or other implementation 

details. The small percentage (4%) of SNSs that TransVar failed to annotate 

consistently was due mostly to invalid or imprecise use of gene names (e.g., ANXA8 

for ANXA8L2) or missing matched transcript definitions (e.g., unmatched reference 

alleles at specified coordinates) in Ensembl v75. Thus, TransVar’s forward 

annotation algorithm might have achieved the best possible result in this experiment. 

In addition, we found that the consistency of TransVar dropped to 68.8% if only the 

longest transcripts in Ensembl v75 were selected. This indicated the importance of 

considering all available transcripts in performing annotation to avoid inaccurate 

interpretation. 

 

Figure 2.2 Comparison of forward annotation consistency among TransVar, VEP, 
ANNOVAR, snpEff and Oncotator. Plotted are percentages of variants (Y axis) that had 

matched protein annotations in COSMIC v67 based on 964,132 unique SNSs, 3,715 MNSs, 
11,761 INSs, 24,595 DELs and 166 BLSs (X axis). NA: Protein level annotations not 
available. (Figure reprinted from TransVar: a multilevel variant annotator for precision 

genomics. Wanding Zhou, Tenghui Chen, Zechen Chong, Mary A Rohrdanz, James M 
Melott, Chris Wakefield, Jia Zeng, John N Weinstein, Funda Meric-Bernstam, Gordon B 
Mills, and Ken Chen, Nature Methods, 2015. According to the journal policy, the author 

retains the right to include the published article in full or in part in a dissertation.) 
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         TransVar achieved higher consistency than ANNOVAR, snpEff, Oncotator and 

VEP in annotating insertions, deletions and BLSs, due mainly to its more 

comprehensive support of different indel reporting rules (Figure 2.2 and Table S2.1). 

Most indel variants are reported at 3'-aligned amino acid (AA) positions in COSMIC, 

conforming to the HGVS conventions. However, ANNOVAR, snpEff and Oncotator 

reported them at only the 5'-aligned AA positions, resulting in relatively large extents 

of inconsistency. VEP achieved better consistency because it reported indels at the 

3'-aligned AA positions. TransVar achieved the highest consistency because it 

reported not only 3'-aligned AA positions but also 5'-aligned, as well as unshifted AA 

positions as alternatives. Interestingly, there are some variants for which none of the 

annotators (including TransVar) could produce annotation consistent with COSMIC. 

For example, chr11:g.32417943_32417943delinsGGG, which was annotated as 

WT1:p.302 in COSMIC, was consistently annotated as WT1:p.121, p.141, p.158, or 

p.370 by TransVar, snpEff, Oncotator and VEP, suggesting some transcripts that 

generated the original annotations in COSMIC have become obsolete in Ensembl 

v75 or GENCODE v19. 

         The above findings of the annotation inconsistencies between TransVar and 

other variant annotators can largely be attributed to a lack of standardization among 

variant annotations (codon or AA positions of variants) submitted to COSMIC and 

among conventions implemented in various annotators. Inconsistency in annotations 

blurred the lines of evidence for variant frequency estimation and led to inaccurate 

determination of variant function. TransVar revealed hidden inconsistency in these 

variant annotations by comprehensively outputting alternative annotations in all  
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Figure 2.3 Comparison of forward annotation consistency between COSMIC and TCGA 
mutation data using TransVar. The datasets were investigated in several different ways: (A) 

using all the available mutations, (B) using all the point mutations (including missense, 
nonsense and silent mutations), and (C) using all the indel mutations. 
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available transcripts in standard HGVS nomenclature, and thus resulted in greater 

consistency in this experiment. 

2.2.3 Forward annotation ambiguities in TCGA and COSMIC mutation data 

         Beside the annotation ambiguities that exist when using different transcript 

databases or different database versions, we also found a large inconsistency of 

annotation among various data sources such as TCGA and COSMIC. To specifically 

investigate the forward annotation inconsistency between TCGA and COSMIC, we 

thoroughly compared the annotation datasets from TCGA and COSMIC in 19 cancer 

types. In Figure 2.3A, in the majority of the investigated cancer types, the 

inconsistency rate was above 10%, which means more than 10% of the genomic 

variants shared by TCGA and COSMIC were actually annotated to different protein 

variants. To further investigate the ambiguities from different types of mutations, we 

dissect the mutation sets into SNV and indels.  

       In Figure 2.3B, we found most of the inconsistency rates of SNV annotation 

were a bit lower than 10%, while in Figure 2.3C, we found most of the inconsistency 

rates of indel annotation were higher than 10%. The results indicated that indels 

overall have a higher annotation ambiguity as compared to SNVs. As we explained 

above, this might be due to the more complex rules implemented when annotating 

indels, such as alignment options. 

2.2.4 Forward annotation of RNA-editing sites by TransVar 

        Recent studies indicate that RNA-editing contributes to human disease, 
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including cancer [81, 82]. RNA-editing sites are typically discovered by comparing 

matched RNA-seq and DNA-seq reads based on their alignment to a common 

genomic reference [83]. However, the functional interpretation of resulting RNA-

editing sites may be ambiguous due to lack of clarity about the isoform used. For 

example, an RNA-editing site in the coding region of one isoform may be in a UTR 

region of another. To quantify the extent of such ambiguity in current RNA-editing 

studies, we downloaded a set of 1,379,403 curated A-to-I RNA-editing sites [83]. 

Using TransVar, based on the human reference assembly GRCh37 and Ensembl 

v75 transcript database, we found that 401,146 (29.8%) sites could affect different 

regions on different isoforms. For example, chr12:g.69237552 could affect the 

coding region of exon 1 or exon 2, the 3ʹ-UTR, or the intronic region between exons 

5 and 6 of various isoforms of MDM2. TransVar also revealed many sites such as 

chr3:g.126299981 and chr6:g.43585896 that could be annotated as either in an 

intronic region or in the UTR, whereas the original annotation reported only one of 

the possibilities [83].  

2.2.5 Reverse annotation accuracy for SNV, indels and frame-shift variants 

        TransVar’s novel reverse annotation can be used to ascertain if two protein 

variants have an identical genomic origin, thus reducing inconsistency in annotation 

data. It can also reveal whether or not a protein variant has non-unique genomic 

origins and requires caution in genetic and clinical interpretation. We evaluated 

TransVar’s reverse annotation accuracies of single amino acid substitutions (SASs), 

amino acid insertions (INSPs), deletions (DELPs) and frame-shift substitutions 

(FSPs) in various databases.  
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         For SASs, given a protein variant, the accuracy was calculated based on 

whether the position of the genomic variants inferred by TransVar contains the one 

that was reported in COSMIC. Using the Ensembl database v75 (Table 2.1), we 

found 91.8% of the SASs protein variants in COSMIC can be accurately traced back 

to the genomic variants by using TransVar’s reverse annotation. Among those 

SASs, only 79.8% of the SASs protein variants can be uniquely traced back to the 

genomic variants by using TransVar reverse annotation, the remaining 12% have 

multiple genomic mapping positions because of different transcript isoform usages. 

We also tried to estimated the reverse annotation accuracies using the RefSeq v105 

and CCDS v37.3 databases, the consistencies and uniqueness of reverse 

annotation were different from what has been observed using Ensembl database 

v75 (Table 2.1). In addition, we tried to combine the above-mentioned three 

databases, and found that the consistency was improved to 94.7% while the 

uniqueness was dropped to 74.7% due to redundant transcript isoforms that are 

used in different transcript databases. 

         For INSPs, DELPs and FSPs, We regarded that a reverse annotation reported 

by TransVar was consistent if the genomic start position of the annotated variant 

was within 5 bp of the original genomic start position in COSMIC. Uniquely mapping 

INSP, DELP and FSP to genomic coordinates was much more challenging than 

SASs and sometime impossible due to repeats, which resulted in lower consistency 

in these variant types (Table 2.1). For example, an insertion of a glutamine (Q) into 

any location in a five-glutamine peptide usually results in a notation of the insertion 

before the first glutamine following the reporting rule of 5ʹ-alignment (Figure S2.1).  
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Table 2.1 Reverse annotation consistency of COSMIC protein identifiers via different 
transcript databases 

 
 

  Ensembl RefSeq CCDS Merged* 

SAS 
Uniquely 79.8% 81.0% 85.8% 74.2% 

Consistently 91.8% 88.6% 88.0% 94.7% 

INSP 
Uniquely 74.4% 74.7% 75.6% 73.8% 

Consistently 75.6% 75.7% 76.0% 75.8% 

DELP 
Uniquely 68.4% 75.2% 64.7% 65.8% 

Consistently 87.6% 87.3% 83.9% 87.9% 

FSP 
Uniquely 44.0% 45.1% 47.7% 41.7% 

Consistently 50.9% 49.2% 48.8% 55.8% 
 

 
*The merged database contains all the transcripts in Ensembl v75, RefSeq (release 105) 

and CCDS (NCBI release 37.3) databases. A variant is called “consistently” annotated if its 
reverse-annotation result contains the matched original genomic identifier from COSMIC, 

and “uniquely” annotated if its reverse-annotation result matched uniquely with the genomic 
identifier in COSMIC (allowing ±5 bp positioning ambiguity). (Table reprinted from TransVar: 
a multilevel variant annotator for precision genomics. Wanding Zhou, Tenghui Chen, Zechen 

Chong, Mary A Rohrdanz, James M Melott, Chris Wakefield, Jia Zeng, John N Weinstein, 
Funda Meric-Bernstam, Gordon B Mills, and Ken Chen, Nature Methods, 2015. According to 
the journal policy, the author retains the right to include the published article in full or in part 

in a dissertation.) 
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Using the Ensembl database v75, we found 75.6% of INSPs, 87.6% of DELPs and 

50.9% of FSPs in COSMIC can be accurately traced back to the genomic variants 

by using TransVar reverse annotation. Among those variants, 74.4% of INSPs, 

68.4% of DELPs and 44.4% of FSPs can be uniquely traced back to the genomic 

variants by using TransVar reverse annotation, the remaining variants have multiple 

genomic mapping positions because of different transcript isoform usages. Similar to 

what have been investigated in SASs, we also tried to estimated the reverse 

annotation accuracies on INSPs, DELPs and FSPs using RefSeq v105 and CCDS 

v37.3 databases, the consistencies and uniqueness of reverse annotation were 

different from what has been observed using Ensembl database v75 (Table 2.1). 

When combining the three transcript databases, the consistency was much 

improved while the uniqueness rate was further dropped due to redundant transcript 

isoform usages. 

         Besides the different consistencies that were observed using different 

transcript databases in an identical mutation types. We consistently found that 

insertions have a lower fraction of unique mapping compared with deletions. This is 

because of the lack of a reference allele that can be used to constrain the search 

scope of transcripts. For example, ABCA5:c.742_743insA does not contain 

reference bases to constrain the search whereas a deletion 

ABCA10:c.1328_1331delTGTC, contains “TGTC” which provides the deleted 

reference bases to constrain the search. Insertions on the protein level are less 

affected since the first and the last amino acids are usually specified in the identifier 

(e.g., ACIN1:p.S647_A648insRS), which enables TransVar to include reference  
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Table 2.2 Reverse annotation consistency of COSMIC mRNA identifiers via different 

transcript databases 

 
 

  Ensembl RefSeq CCDS Merged* 

SNS 
Uniquely 63.7% 73.2% 89.7% 49.1% 

Consistently 95.5% 92.3% 91.8% 97.3% 

INSN 
Uniquely 24.1% 34.1% 60.5% 11.9% 

Consistently 81.0% 78.3% 77.9% 85.1% 

DELN 
Uniquely 61.0% 66.2% 80.2% 50.5% 

Consistently 90.5% 87.2% 86.9% 93.9% 

BLSN 
Uniquely 78.0% 80.2% 86.4% 71.9% 

Consistently 92.0% 89.7% 88.8% 95.3% 
 

 
*The merged database is a combination of Ensembl v75, RefSeq (release 105) and CCDS 

(NCBI release 37.3). A variant is called “consistently” annotated if its reverse-annotation 
result contains the matched genomic identifier in COSMIC, and “uniquely” annotated if its 

reverse-annotation result exactly matched the genomic identifier in COSMIC (allowing ±5 bp 
positioning ambiguity). (Table reprinted from TransVar: a multilevel variant annotator for 
precision genomics. Wanding Zhou, Tenghui Chen, Zechen Chong, Mary A Rohrdanz, 
James M Melott, Chris Wakefield, Jia Zeng, John N Weinstein, Funda Meric-Bernstam, 

Gordon B Mills, and Ken Chen, Nature Methods, 2015. According to the journal policy, the 
author retains the right to include the published article in full or in part in a dissertation.) 
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alleles to narrow the search scope and reduce the ambiguity.  

        Furthermore, we also investigated the reverse annotation performance of 

TransVar using the cDNA variants. Similar to what has been observed using the 

protein variants, a large number of inconsistencies were observed using different 

types of variants and different transcript databases (Table 2.2). 

2.2.6 Reverse annotating protein phosphorylation sites using TransVar 

        TransVar’s novel reverse annotation functionality can greatly facilitate 

identification of the genomic origins of variants that are functionally interesting at 

protein or mRNA levels, such as those identified from mass spectrometry data. For 

example, identifying the genomic locations of phosphorylation sites (such as 

p.Y308/p.S473 in AKT1 and p.Y1068/p.Y1172 in EGFR) can lead to the recognition 

of DNA variants that affect phosphorylation-mediated signal transduction, a 

biological process central to current pharmacogenomics research. Translation from 

a protein (e.g., EIF4ENIF1:p.Y580) to a genomic identifier 

(chr22:g.31845362_31845364) usually involves a tedious manual process that is not 

scalable. First, the UniProt ID must be mapped to a transcript ID. Then, a sentinel 

site with a known protein-level coordinate must be identified to enable one to 

measure the distance from the desired site to the sentinel site and step the 

corresponding number of amino acids. That process must be repeated for all of the 

isoforms until a matching reference amino acid is identified. With TransVar, all of 

those processes are automated. As a demonstration, we downloaded and analyzed 

191,903 sites of protein phosphorylation in human proteins from PhosphoSitePlus 



	
  44	
  

[84]. In just a few minutes of compute time, we were able to map 167,696 sites 

(87.4%) to genomic coordinates using CCDS transcripts and 187,464 (97.69%) sites 

using a combined transcript definition from CCDS, Ensembl and RefSeq. Most of the 

mapping failures were attributable to obsolete UniProt identifiers that were no longer 

present in the current releases. 

2.2.7 Impact of TransVar on designing experimental validation 

         In clinical genetics and translational genomics investigations, frequently only 

the protein variant information is provided to the biological researchers. However, it 

is critical to know the genomic information of the specific protein variant to allow for 

precise experimental validation to show the exact function of the variant. For 

example, FGFR2:p.N549K is a protein variant from FGFR2, which is known to be an 

oncogene that promotes cell proliferation, however, the specific role of FGFR2: 

p.N549K is still unknown. It is important for the researchers to know the 

chromosomal and cDNA locations of this protein variant, then the genomic and 

transcriptomic information can be used to implement a specific mutation on the wild-

type FGFR2 transcript and investigate the functional consequences through in vitro 

and in vivo experiments. Therefore, a tool that is capable of performing reverse 

annotation from protein to genomic level would be highly desired. With this 

motivation, we implemented the reverse annotation function of TransVar. In this 

case, TransVar could efficiently take FGFR2:p.N549K as an input and output all 3 

potential genomic variants along with their corresponding transcript identifiers (Table 

2.3). Given the results provided by TransVar, the users will be able to fully capture 

the potential ambiguities in annotating the specific variant and obtain the necessary 
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information to design the experiments. 

        Given the truth that we observed large ambiguities in both forward and reverse 

annotations due to different transcript isoform usages, we investigated 537 clinically 

actionable protein variants and found that 78 (14.5%) could be annotated to multiple 

genomic origins (Table 2.4), indicating the criticalness of using a reverse annotation 

tool such as TransVar to resolve such ambiguities in clinics. 

 
Table 2.3 Reverse annotation results of FGFR2:p.N549K using TransVar 

 
 

Input Transcript Coordinate Region 

FGFR2:p.N549K ENST00000357555 chr10:g.123247577A>C/c.1647T>G/p.N549K Exon 13 

FGFR2:p.N549K ENST00000358487 chr10:g.123258034A>C/c.1647T>G/p.N549K Exon 12 

FGFR2:p.N549K ENST00000360144 chr10:g.123247580G>C/c.1647C>G/p.N549K Exon 13 

 

2.2.8 Impact of TransVar on Pharmacogenomics and hotspot mutation 

prediction 

         Another application of TransVar lies in clinical pharmacogenomics and 

functional mutation prediction.  

         When performing clinical treatment decision-making using genetic biomarker 

status, frequently the clinicians just use the protein variant information to make a 

treatment decision. However, due to the fact that a genomic variant that is 

discovered in a patient could potentially be annotated to different protein variants 

because of multiple transcript isoform usages, an ambiguity in using the protein 

variant as the biomarker could come up and potentially lead to incorrect treatment 
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decision making. For example, EGFR:p.T790M is a well known biomarker that 

indicates resistance to Tyrosine kinase inhibitor (TKI) treatment [85-87]. In the 

COSMIC dataset, EGFR:p.T790M (ENST00000275493) is frequently observed. 

However, this protein variant is absent in the TCGA dataset. When we investigate 

the genomic origin of this protein variant in COSMIC, it corresponds to 

chr7:g.55249071C>T, but if we trace this genomic variant chr7:g.55249071C>T in 

TCGA, it was actually annotated to EGFR:p.T745M (ENST00000455089) because 

of different transcript isoform usage (Figure 2.4A). Therefore, based on the 

annotation that was performed in TCGA, the biomarker indication could be missed. 

With the equivalence annotation function of TransVar, we were able to infer that 

EGFR:p.T745M is actually an equivalent protein identifier for EGFR:p.T790M. By 

this manner, even if EGFR:p.T745M is observed in a clinical genetic report, the 

clinicians could still link it to EGFR:p.T790M and know that the patient may have 

drug resistance to TKI treatment. 

        It is common for a variant and its functional consequence to be described 

based on protein level information, such as hotspot mutations. However, due to the 

fact that a genomic variant that is discovered in a patient could potentially be 

annotated to different protein variants because of multiple transcript isoform usages, 

an ambiguity could be observed when try to define a hotspot mutation and 

investigate its functional consequence based on the protein variant information. For 

example, EGFR:p.A244T (ENST00000455089) is a hotspot mutation that was 

detected in the TCGA dataset. However, this variant is absent in the COSMIC 

dataset. When we try to figure out the genomic origin of this protein variant in TCGA,  
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Table 2.4 Clinically actionable cancer mutations with non-unique genomic origins 
 
 

Protein Identifier # of Possible 
Genomic Origins PMID 

CDKN2A:M53_R58del 9 11255261 
CDKN2A:R87P 6 12352668 

ERBB2:L755_T759del 5 23220880 
ERBB2:774_775insAYVM 5 16843263|19122145 

CDKN2A:A36P 3 11595726 
CDKN2A:L63V 3 11255261 
FGFR1:N546K 3 21367659|15509736|16186508 

EGFR:L747_S752del 3 18981003 
EGFR:E746_A750del 3 16373402|15837736|17318210 

AKT1:P42T 3 23134728 
FGFR2:G227E 3 19147536 
FGFR2:N549H 3 17525745 
FGFR2:N549K 3 22383975|17525745 
PTCH1:P681L 2 | 
PTCH1:Q688* 2 | 
CDKN2A:A57V 2 19260062 
CDKN2A:R58* 2 12362978|11255261 

CDKN2A:W110* 2 11255261 
CDKN2A:E69* 2 8668202 

CDKN2A:P114S 2 23190892 
CDKN2A:P114L 2 7777061|8755727 
CDKN2A:R80* 2 8668202 

CDKN2A:R124fs*22 2 11255261 
ABL1:V299L 2 23086624|19201023|21509757 
ABL1:E255V 2 20038234|15293570|19164531|21505103 
ABL1:E255K 2 12663457|12692682|20697894|19768693 

ABL1:L248_K274del 2 17008892|21221851|18354488 
ABL1:L184_K274del 2 18354488 

EGFR:L838V 2 19147750 
EGFR:H835L 2 21422421 
EGFR:G810S 2 19147750 
EGFR:L747S 2 17973572 
EGFR:E709G 2 16205628 
EGFR:E709A 2 19671738 
EGFR:E709K 2 19726454 
EGFR:A702S 2 19020901 
EGFR:R521K 2 | 
BRAF:T241P 2 19206169 
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KIT:D816V 2 7691885|7512180|23777495|19718013 
KIT:D816A 2 16188233|22847983 
KIT:D816F 2 9990072 
KIT:D816I 2 19865100 
KIT:D816Y 2 21504297|19698218|9990072 
KIT:D816H 2 21504297|14695343|16188233 

KIT:D579del 2 12727838|9797363 
KIT:V559_V560del 2 9797363|9438854 

KIT:V559del 2 9989791 
KIT:W557_K558del 2 12727838|12918066|16203282 
KIT:Y553_Q556del 2 9438854|12727838 
KIT:M552_Y553del 2 12727838 
KIT:P551_V555del 2 11719439|12727838|9438854 
KIT:K550_K558del 2 15824741|12727838 

PIK3CA:G118D 2 23246288|22949682 
ERBB2:V842I 2 23220880 
ERBB2:L755S 2 16397024|18413839|23220880 
ERBB2:R896C 2 23220880 
ERBB2:T733I 2 16397024|18413839 
AKT1:R25C 2 23246288|8702995|18823366|17138652 
AKT1:Q79K 2 23134728 
AKT1:D32Y 2 23134728 
AKT1:E17K 2 17611497|23134728|23888070 
AKT1:L52R 2 23134728 

AKT1:T435P 2 23246288 
FLT3:I836del 2 | 

FLT3:I836del>MN 2 12036858|12663439 
CDK4:K22Q 2 9426066|9228064|9712735 
CDK4:K22R 2 22197931|9228064|9426066|9712735 
CDK4:K22M 2 9228064|9426066|9712735 
KRAS:F156L 2 17875937 
KRAS:R164Q 2 20147967 
PTEN:L181P 2 21828076 
PTEN:V166I 2 21828076 
PTEN:Q171A 2 21828076 
PTEN:S170R 2 21828076|10866302 
PTEN:C105F 2 19644652|10560660|10866302 
PTEN:K13E 2 14711368 

FGFR2:K659E 2 22383975|17525745|23527311 
FGFR2:K659N 2 23527311|17525745 

 
PMID: PubMed IDs of the publications that indicate the clinical actionability of mutations. 

Ensembl v75 and GRCh37/hg19 assembly were used to obtain this result. 
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Figure 2.4 Inconsistent forward annotation in TCGA and COSMIC. (A) chr7:g.55249071C>T 
was annotated to EGFR:p.T790M using transcript isoform ENST00000275493 in COSMIC 
while it was annotated to EGFR:p.T745M using transcript isoform ENST00000455089 in 

TCGA. (B) chr7:g.55221821G>A was annotated to EGFR:p.A244T using transcript isoform 
ENST00000455089 in TCGA while was annotated to EGFR:p.A289T using transcript 

isoform ENST00000342916 and ENST00000344576 in COSMIC. 
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it corresponds to chr7:g.55221821G>A, but if we track this genomic variant 

chr7:g.55221821G>A in COSMIC, it was actually annotated to EGFR:p.A289T 

(ENST00000342916 and ENST00000344576) because of different transcript isoform 

usage (Figure 2.4B). As a result, based on the inconsistent annotations that were 

used in COSMIC and TCGA, the frequency of EGFR:p.A244T/EGFR:p.A289T can 

be largely underestimated. In addition, some potential hotspot mutations may be 

missed due to this type of annotation inconsistencies within a single mutation cohort 

or across different mutation cohorts. With the equivalence annotation function of 

TransVar, we were able to infer that EGFR:p.A289T is actually an equivalent protein 

identifier for EGFR:p.A244T. In this way, we would be able to recover the frequency 

of observed protein variants and correctly classify their functionalities. 

2.2.9 Web interface of TransVar 

 

Figure 2.5 The web interface of TransVar that shows how to perform reverse 
annotation and what type of information could be obtained from the output. 
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Figure 2.6 A screenshot of the homepage of TransVar. It provides detailed information of 
obtaining the source code, installing TransVar and running examples of different annotation 

functions. 
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To allow for easy usage of TransVar, we developed a web interface 

(www.transvar.net), in which the users are free to perform different types of 

annotation (forward, reverse and equivalence annotation) using different reference 

genomes and different transcript databases. Currently we support human reference 

genome hg18, hg19 and hg38 as well as all available transcript databases that 

correspond to each reference genome. For example, when performing the reverse 

annotation, the user could choose ‘Reverse annotation: Protein’ as the annotation 

option followed up any specific reference genome and any available transcript 

database, and the results will output all the available genomic variants along with 

their corresponding transcript identifiers of the given protein variant (Figure 2.5). 

2.2.10 Command line usage of TransVar 

        In addition to the web interface, we also provide a command line tool for batch 

analysis. On the homepage of TransVar (Figure 2.6), we provide detailed 

instructions of how to obtain the source code and how to install TransVar on the 

user’s machine, and a bunch of examples to run different types of annotations of 

TransVar, such as forward, reverse and equivalence annotation. 
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2.3 Discussion 

        We developed TransVar, which is a comprehensive variant annotator that 

performs multi-level variant annotation such as forward annotation from genomic to 

RNA and to protein level, and reverse annotation from protein to RNA and to 

genomic level. We developed TransVar as a web-based bioinformatics tool to 

enable the complete and accurate characterization of the origin and functionality of 

genomic variants identified by the research community. 

        Using TransVar, we have identified frequent ambiguities in the current 

transcript databases (such as Ensembl, RefSeq and CCDS) available for basic and 

translational research. These include ambiguities in translation among genomic, 

cDNA and protein levels that involve cancer hotspot mutations, biomarkers that 

affect clinical treatment decision-making, potentially clinically actionable variants, 

protein phosphorylation sites and RNA-editing sites. With TransVar, we were able to 

(i) pinpoint such ambiguities efficiently; (ii) associate variant identifiers accurately 

across genomic, cDNA and protein levels; and (iii) achieve unambiguous data 

exchange across different sources.  

        Our results indicated an urgent need to standardize variant annotation and to 

improve the quality of information technology that implements the standards. It is not 

sufficient to specify only the variants themselves; the isoforms that have been used 

in annotation must also be specified completely in variant databases, and the 

information must be included in data-sharing processes.   

         One important application of TransVar lies in revealing all the potential 
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genomic origins of a given protein variant. In our current study, we have focused on 

somatic mutations in cancer and have created lists and tables that are useful for 

disambiguating clinically actionable mutations. Similar lists and tables can be 

created for other diseases using TransVar to ensure accurate use of information for 

clinical decision support, genetic diagnosis and counseling.  
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CHAPTER 3 

 

Hotspot mutations delineating diverse mutational signatures and 

biological utilities across cancer types 

 

 

(Most of the methods and results in this chapter have been accepted for a 

publication in BMC Genomics: Tenghui Chen, Zixing Wang, Wanding Zhou, 

Zechen Chong, Funda Meric-Bernstam, Gordon B Mills, and Ken Chen, 

“Hotspot mutations delineating diverse mutational signatures and biological 

utilities across cancer types”. The manuscript is currently in final 

proofreading and not online yet.) 
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3.1 Materials and Methods 

3.1.1 COSMIC somatic mutation data 

        We downloaded the COSMIC somatic mutation dataset version 71 for our 

study. As introduced in the COSMIC data source, this total mutation set (12250 

samples) includes many sources of curated mutation data. We excluded samples 

that underwent targeted-sequencing [88], and selected only those that were 

subjected to either whole genome or whole exome sequencing (Table S3.1). In this 

manner, we ensured that all the exons of investigated genes were uniformly 

examined in the selected samples.  

3.1.2 Cancer gene candidates 

        We collected a set of candidate cancer genes from the literatures, which 

included 546 genes reported in cancer gene census [89], 435 genes in Pancan12 

[90], and 221 genes reported in Lawrence et al [91]. For OncodriveCLUST [49] and 

e-Driver [50], we applied their algorithms to predict tumor type-specific driver genes 

using COSMIC v71 mutation data. We used q-value<0.01 and q-value<0.05 to 

determine driver genes in OncodriveCLUST and in e-Driver, respectively.  

3.1.3 Definition of hotspot mutations 

        Our algorithm identifies hotspots based on amino acid (AA) positions (Figure 

3.1). To make sure we have an adequate count of mutations, five major mutation 

types were included in our statistical modeling: missense, nonsense, coding-silent, 

insertion and deletion. For missense, nonsense and coding-silent mutations, six 
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types of di-nucleotide sequence context were considered: A/T transition (ATts), A/T 

transversion (ATtv), CpG island G/C transition (CpG_CGts), non-CpG island G/C 

transition (NoCpG_CGts), CpG island G/C transversion (CpG_CGtv), non-CpG 

island G/C transversion (NoCpG_CGtv), as previously introduced [47]. Altogether, 

20 mutation subtypes were considered (Table S3.2). For each mutation subtype in 

each gene, we counted the number of subtype-specific mutations across all the 

samples. For each gene, we calculated the mean subtype-specific mutation rate as 

the total number of subtype-specific mutations in the coding regions (E) divided 

(normalized) by the protein length. We calculated a p-value based on the number of 

observed subtype-specific mutations (O) in a given AA, assuming the number of 

mutations in each mutation subtype follows a Poisson distribution. After obtaining a 

p-value for each mutation subtype, we computed an integrated p-value for each AA 

based on Fisher’s method [92] 

𝑥 = −2 𝑙𝑜𝑔(𝑝𝑜𝑖𝑠(𝑂! ,𝐸!))!
!!! , 

where 𝑖 represents a mutation subtype, and 𝑝𝑜𝑖𝑠 the Poisson distribution; 𝑥 follows a 

chi-square distribution with 2𝑘 degrees of freedom, where 𝑘 is the number of 

mutation subtypes tested. We further applied false discovery rate (FDR) correction 

[93] and reported hotspot mutations in AA positions with adjusted p-value < 0.001 in 

COSMIC.   
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Figure 3.1 A schematic overview of HotDriver. Providing a mutational profile from a 
specific tumor type, the variants were classified into 20 mutation subtypes, then the mutation 

subtype-specific mutation rates were computed for each investigated gene and the 
significance level of each amino acid position in the corresponding gene was calculated. 

After that, the significance level of each amino acid position was calculated by combining p 
values from different mutation subtypes using Fisher’s method, and an adjusted p value was 

computed for each amino acid position. 
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3.1.4 TCGA pan-cancer data 

        We downloaded TCGA pan-cancer level-3 somatic mutation, copy number 

alteration and RNA expression data from Synapse 

(https://www.synapse.org/#!Synapse:syn300013) as last updated in November 

2014, and RPPA data from TCPA 

(http://app1.bioinformatics.mdanderson.org/tcpa/_design/basic/index.html) [94] for 

19 cancer types. More than 4400 tumor samples were assayed by whole exome 

sequencing, total RNA sequencing [95], or reverse phase protein array (RPPA) 

technologies. The number of tumor samples available for each cancer type is listed 

in Table S3.3. In terms of copy number alterations, we called deletions where the 

normalized copy number value is less than -1 and amplifications where the value is 

greater than 1. In terms of RNA expression data, we used the normalized TCGA 

level-3 RNA expression data in our study. To allow for log transformation, the RPKM 

values of 0 were set to the minimum nonzero RPKM in the given samples. We 

applied log2 transformation to all mRNA RPKM expression values, as described by 

Jacobsen et al. [96]. In terms of protein expression data, we analyzed the 

expression level of 181 proteins in total using RPPA, which contains 181 high-quality 

antibodies targeting 128 total proteins and 53 post-translationally modified proteins. 

We used the normalized level-3 RPPA data (level-4 data for Breast invasive 

carcinoma) in our study [94]. 

       To test associations between mutations and RNA expression, we used samples 

that had both somatic mutations and RNA expression data available. To test 

associations between mutations and protein expression, we used samples that had 
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both somatic mutation and RPPA data available (Table S3.3).  

3.1.5 Cancer Cell Line Encyclopedia (CCLE) mutation and drug sensitivity data  

        The CCLE [71] contains drug activity data for 24 different compounds in 504 

cell lines and somatic mutation data of 906 cell lines. In our analysis, we included 

cell lines with both drug sensitivity and mutation data. Drug sensitivity data were fit 

using a logistical-sigmoidal function and described by 4 different variables: the 

maximal effect level (Amax), the drug concentration at half-maximal activity of the 

compound (EC50), the concentration at which the drug response reached an 

absolute inhibition of 50% (IC50), and the activity area, which is the area above the 

dose-response curve [71]. In our analysis, we used the activity area (the under curve 

area), which captures both efficacy and potency of drug activity according to the 

CCLE, to measure drug responses.  

3.1.6 Tumor-type prevalence of hotspot mutations 

        To measure the prevalence of a hotspot mutation in tumor type A, we 

calculated the number of A samples that contain a target mutation B, the number of 

A samples that do not contain B, the number of non-A samples that contain B, and 

the number of non-A samples that do not contain B, respectively (Table S3.4). Then 

we used Fisher’s exact test to compute the significance and applied an FDR 

correction. A hotspot is considered to be highly prevalent in a specific tumor type if 

the adjusted p-value < 0.01. 

3.1.7 Conservation score comparison  
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         We downloaded the chromosomal base-wise Genomic Evolutionary Rate 

Profiling (GERP) scores computed by GERP++ [97]. In our study, we extracted the 

resistant substitution (RS) scores from the nucleotide bases that belong to hotspot 

mutations and that belong to non-hotspot mutations, and tested if the scores 

between these two groups were significantly different. A higher RS score represents 

stronger evolutionary conservation. 
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3.2 Results 

3.2.1 Variable mutation rates among different tumor types and mutation 

subtypes 

         As mentioned previously in the methods, we classified all the mutations into 20 

subtypes based on both mutation types and di-nucleotide sequence contexts (Table 

S3.2). In the COSMIC mutation dataset, skin, stomach, bladder and colon tumors 

have relatively high overall mutational rates, which were consistent with a previous 

report [48]. Besides, we also observed high mutational rates in bone and 

endometrium tumors (Figure 3.2). However, we observed highly variable mutational 

rates across different mutation subtypes (Kruskal-Wallis H-test, p=2.22e-05). In one 

tumor type, different mutation subtypes have largely inconsistent mutational rates. 

For example, in bone tumors, nonsense non-CpG C/G transversion has a mutation 

rate of 0.69/Mb while nonsense CpG C/G transition has a mutation rate of 14.2/Mb. 

In skin tumors, missense non-CpG C/G transition has a mutation rate of 6.18/Mb 

while silent AT transversion has a mutation rate of 0.53/Mb. Similarly, the mutational 

rate of one mutation subtype can vary substantially across different tumor types 

(Kruskal-Wallis H-test, p=3.49e-40). For example, missense non-CpG C/G transition 

has an average rate of 6.18/Mb in skin tumors, much higher than in brain tumors 

(0.61/Mb). Therefore, to identify potential drivers that are positively selected in 

cancer, it is important to account for mutation rate variations among mutation 

subtypes and sequence contexts in different tumor types, instead of assuming an 

uniform background mutation rate and examining only variant frequencies in the 

population. 
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Figure 3.2 Statistics of the mutation distribution in different tumor types in COSMIC. 
The mutation rate of 20 mutation subtypes in 17 main tumor types of COSMIC v71 whole 

genome and whole exome sequencing data. 
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3.2.2 Identifying hotspot mutations in COSMIC 

        We started with all the mutations in 17 tumor types in COSMIC v71 (Figure 

3.3). Only data that were obtained via either whole exome or whole genome 

sequencing were used (Methods, Table S3.1) [88]. Estimation of background 

mutation rates may be biased by outlier hyper-mutated samples. To avoid such bias, 

we calculated the mean µ and the standard deviation σ of the number of mutations 

in each sample, labeled the samples with numbers of mutations greater than µ + 2σ 

as hyper-mutated, and excluded them from further consideration (Table S3.1).  

        Our goal was to identify hotspot mutations within individual genes (Methods) 

and to explore their potentially biological utilities under different biological and 

disease contexts. The large number of samples in COSMIC made it possible to 

reliably estimate a background mutation rate for each gene in each tumor type and 

mutation subtype (Methods). We identified a hotspot mutation as the set of genomic 

aberrations that affect an amino acid (AA) position and occur significantly more 

frequently than expected from the background. In total, we identified a set of 702 

putative hotspot mutations in 549 genes in 17 tumor types (Figure 3.3, Methods).  

         We measured the composition of different mutational subtypes in the hotspot 

mutations (Figure S3.1). As expected, 510 (72.65%) were missense and 17 (2.42%) 

were nonsense, occupying a high proportion of hotspot mutations. We also identified 

31 insertion (4.42%) and 78 deletion (11.11%) hotspots, which were largely ignored 

in previous studies [49, 50] and potentially offer novel candidates for driver mutation 

and cancer gene prediction. Besides, we examined the insertion and  
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Figure 3.3 Illustration of hotspot mutation definition and functional utility analysis. We 
used COSMIC v71 data as the input. We first selected the samples that were examined with 
whole genome or whole exome sequencing, and then removed the hyper-mutated samples 

in each tumor type. Hotspot mutations were identified in individual tumor types, and the 
biological utility investigations were performed. 
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deletion hotspots and found that 17/31 were in-frame insertions and 17/78 were in-

frame deletions. Among the remaining frame-shift insertion and deletion hotspots, 

more than 70% have slightly different start positions and/or sizes. For example, the 

ESRP1 N512 hotspot deletion has two genomic variants chr8:95686611A/- and 

chr8:95686611-95686612AA/-. 

3.2.3 Evaluate the performance of hotspot mutation identification 

        We found that the hotspot-mutation-containing-genes (HMCGs) identified in our 

study overlapped significantly (98/546 vs 451/24405, Fisher exact test, p=1.28e-53) 

with the 546 cancer genes reported in the Caner Gene Census (CGC). Among 

24,951 available genes in COSMIC, 549 genes were identified to contain at least 

one hotspot, among which 98 were the CGC cancer genes. Similarly, we found that 

HMCGs overlapped significantly with the significantly mutated genes reported in 

TCGA PANCAN analysis (101/435 vs 448/24516, Fisher exact test, p=6.56e-74) and 

in Lawrence et al (73/221 vs 476/24630, Fisher exact test, p=2.56e-65). The non-

overlapping genes were detected due likely to that 1) the previous studies had 

different background mutation rate assumptions than our study; 2) they detected 

large numbers of tumor suppressors that do not contain clear hotspot mutations; 3) 

our study was not only able to detect hotspot mutations in known cancer genes, but 

was also capable of detecting hotspot mutations in infrequently mutated genes, 

which may have previously unknown biological functionality; 4) our study included 

mutation types (indels) that previous studies did not. To evaluate the robustness of 

our statistical modeling, we examined the extent of overlap between HMCGs and the 

union of the above mentioned cancer gene sets, and found that the overlap 
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remained highly significant when we chose various adjusted p value cutoffs to 

identify the hotspot mutations (Figure S3.2), which indicated the statistical 

robustness of our approach. 

        Furthermore, we found significantly overlapped genes between our set with 

those predicted by other cluster-based methods such as e-Driver [50] (151/552 vs 

398/24499, Fisher exact test, p=3.42e-139) and OncodriveCLUST [49] (106/489 vs 

443/24462, Fisher exact test, p=2.31e-74). Additionally, regarding the mutational 

clusters, we found 213 hotspots overlapped with 1125 significant mutational clusters 

as identified by e-Driver (213/1125 vs 489/92822, Proportional test, p=2.14e-87) and 

261 hotspots overlapped with 1042 significant mutational clusters as predicted by 

OncodriveCLUST (261/1042 vs 441/89561, Proportional test, p=4.98e-121). Non-

overlapping results were found due mainly to: 1) e-Driver and OncodriveCLUST 

predicted clusters based mainly on missense mutations in a uniform mutational 

background; 2) our study identified not only missense hotspot mutations but also a 

substantial proportion of insertion (4.42%) and deletion (11.11%) hotspots (Figure 

S3.1); 3) our study chose a more stringent statistical significance cutoff to increase 

the confidence of identified hotspot mutations.  

        The number of hotspot mutations varied to a great extent from one tumor type 

to another (Figure 3.4 and Table S3.5). Most tumor types had 5 to 100 hotspot 

mutations. However, colorectal cancer had 253 hotspot mutations despite its 

relatively small sample size (684 samples), including a high proportion of insertion 

(10%) and deletion (23%) hotspot mutations (Figure 3.5). In contrast, only 65 

hotspot mutations were found in myeloid cancer (1,344 samples). Such enrichment  
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Figure 3.4 Number of hotspot mutations defined in individual tumor types using 
COSMIC data. 
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may reflect a higher extent of genetic heterogeneity in the initiation and progression 

of colorectal cancer, as has been suggested previously [98, 99] and also that 

colorectal cancer is predominantly driven by mutations rather than by copy number 

alterations [100]. In addition, we examined the numbers of hotspot mutations and the 

total numbers of mutations (mutation burden) in each tumor type, but did not find a 

clear correlation between them (Figure S3.3). 

3.2.4 Sequence context signature of hotspot mutations 

        We investigated the mutational signatures of 702 hotspot mutations under 

different sequence contexts across different tumor types. As shown in Figure 3.5, in 

7 different tumor types (stomach, ovarian, brain, breast, skin, pancreas and kidney 

cancer), NoCpG_CGts was the most prevalent sequence context compared to other 

sequence contexts under which the hotspot mutations happened (p<0.05), indicating 

a higher strength of positive selection on DNA sequences with NoCpG_CGts 

mutation. In 3 tumor types (head&neck, liver, and myeloid cancer), NoCpG_CGtv 

appears to be the most prevalent sequence context (p<0.05). In several tumor types 

such as brain and ovarian cancer, although NoCpG_CGtv did not act as the 

predominant mutation sequence context, it represented a fairly high percentage 

(brain: 32% and ovarian: 35%). However, in some tumor types such as bladder 

cancer, the hotspot mutations are significantly enriched in ATtv sequence context 

(35%, p=1.77e-2).  

        In terms of the specific sequence context that hotspot mutations occur across 

different tumor types, although insertion is not the most prevalent sequence context  
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Figure 3.5 Mutational signatures of hotspot mutations in 16 tumor types. The x-axis 
represents the tumor types and the y-axis represent the 8 types of sequence contexts 

(concatenating missense, nonsense and silent mutations). Each bar represents the 
percentage of specific sequence contexts under which the hotspot mutations happen. In 
each tumor type, the addition of the percentages of different sequence contexts might be 
larger than 1, because one or more types of mutations may happen on a single hotspot 

driver mutation site. 
 
 

within breast cancer, the percentage of insertion in breast cancer (22%) was 

significantly higher than in any other tumor types (p= 1.14e-02), similarly, the 

percentage of deletion in colorectal cancer (27%) was obviously higher than in other 

tumor types (p=1.84e-4), so as the percentage of ATts (36%, p=5.84e-3) in 

colorectal and ATtv (35%, p=3.73e-3) in myeloid cancer.  

         These observations revealed the common genomic features such as 

NoCpG_CGts and NoCpG_CGtv sequence context that were positively selected 

across various tumor types as well as distinct genomic features that occurred in 

individual tumor types, and highlighted the significance of investigating the hotspot 

mutations under different sequence contexts separately to better understand their 

genetic complexities and functional indications. 
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        To gain a novel functional insight with respect to these mutations that were 

predicted based on statistics of mutation data, we performed a set of additional 

statistical tests to associate these 702 hotspot mutations with functional evidence.  

3.2.5 Exploring the biological utilities of hotspot mutations using TCGA 

mRNA/protein expression data  

        The functional consequences of mutations may manifest in two aspects: 

affecting the expression of the gene containing the mutation or leading to abnormal 

signaling pathway activity. To address these questions, we divided the mRNA and 

protein expression values of a set of TCGA samples into multiple groups based on 

the mutational status of a specific gene in these samples: having a hotspot mutation, 

no hotspot mutation, or no mutations [95]. Only mutations occurring at least twice 

were included in the comparison. Mann-Whitney U tests were performed to measure 

the difference between samples with individual hotspot mutations and samples with 

non-hotspot mutations, as well as between samples with individual hotspot 

mutations and samples without mutation [96]. Among 702 hotspot mutations, we 

found 42 hotspot mutations resulted in significant mRNA or protein expression 

alterations (Table S3.5). 

        It is known that TP53 contains gain of function mutations associated with 

increased expression of TP53 [101, 102] through down-regulation of downstream 

targets such as MDM2/MDM4, which in return attenuate the suppression on the 

expression of TP53. However, it is not well investigated whether different mutations 

in TP53 exhibit different functions across different cancer types. Motivated by this, 
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we examined the association of TP53 hotspot mutations and RNA and protein 

expression of TP53 in different cancer types. To focus on the effect of mutations on 

TP53 expression, we excluded samples harboring TP53 deletions from the analysis 

(Methods). As shown in Figure 3.6A, in breast invasive carcinoma (BRCA), samples 

with R175, R248 and R273 missense mutations have obviously higher mRNA or 

protein expression levels, compared to samples with non-hotspot mutations and with 

no mutation in TP53. In ovarian serous cystadenocarcinoma (OV), similar effects 

were observed for R248 and R273, which are associated with increases in the TP53 

mRNA and protein expressions (Figure S3.4). However, in rectal adenocarcinoma 

(READ), although R175 is associated with increases in TP53 RNA expressions 

similar to what is observed in BRCA, R248 and R273 missense mutations are not 

significantly associated with the TP53 mRNA or protein expression, comparing to 

samples with non-hotspot or no mutations in TP53 (Figure 3.6B), implicating distinct 

functions of R248 and R273 in different disease contexts. In addition, G108 frame-

shift deletion, I195 missense and R213 nonsense mutations, which were uniquely 

detected as hotspot mutations in BRCA, OV and READ respectively, are associated 

with either reduced or enhanced TP53 expression in corresponding cancer types, 

suggesting the functional heterogeneity of hotspot mutations in different cancer 

types (Figure 3.6 and Figure S3.4).  

         Instead of altering the RNA/protein level, certain mutations may function via 

altering downstream protein activity through signaling transduction. For example, 

activation of PIK3CA could lead to activation of downstream targets such as AKT 

phosphorylation [103]. A set of PIK3CA mutations have been detected in various  
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Figure 3.6 Functional implications of hotspot mutations in RNA and protein 
expression. (A) In BRCA, tumor samples with G108 deletion hotspot mutations in TP53 
exhibit lower TP53 RNA expression than those with non-hotspot mutations and without 

TP53 mutations. In contrast, tumor samples with missense hotspot mutations (R175, Y220, 
R248 and R273) in TP53 show higher TP53 RNA and protein expression. (B) In READ, 

tumor samples with R175 missense mutations show higher TP53 RNA and protein 
expression than those with non-hotspot mutations and without TP53 mutations, while R213 

nonsense mutations has the opposite effect. * indicates p<0.05 and ** indicates p<0.001 
between samples with specified hotspot mutations and samples with non-hotspot mutations 

in examined gene; # indicates p<0.05 and ## indicates p<0.001 between samples with 
specified hotspot mutations and samples without mutations in examined gene. 
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cancer types such as BRCA and colon adenocarcinoma (COAD). We examined the 

association of individual PIK3CA mutations and AKT activation by comparing the 

phosphorylated AKT levels in samples with various PIK3CA mutations to those in 

samples without PIK3CA mutation. Surprisingly, in BRCA, only PIK3CA H1047 was 

associated with dramatically higher AKT pT308 and pS473 levels, compared to 

samples that did not have any PIK3CA mutations (Figure 3.7A); in COAD, only 

PIK3CA E542 were associated with significantly higher AKT pT308 and pS473 

levels, compared to samples that did not have any PIK3CA mutations (Figure 3.7B). 

Notably, in both cases, PIK3CA mutations did not affect the total AKT level (data not 

shown), suggesting that different PIK3CA mutations in different cancer types may 

selectively activate AKT via signaling transduction, rather than expression 

regulation. 

         Therefore, the availability of mRNA and protein expression data enable an 

opportunity to characterize the biological consequences of different mutations in one 

cancer type, as well as one mutation under different cancer contexts, reiterating the 

rationale of distinguishing the function of individual mutations in different disease 

contexts.  

3.2.6 Exploring the pharmacogenomics properties of hotspot mutations  

        It has been shown that cancer cells respond to specific drugs when they harbor 

mutations in driver genes such as BRAF and NRAS [53]. However, it is not entirely 

clear whether different mutations in a driver gene can trigger different drug 

responses. Here, we assessed the effects of individual mutations on drug  
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Figure 3.7 Functional implications of hotspot mutations in signaling pathway activity. 
(A) In BRCA, tumor samples with H1047 missense hotspot mutations in PIK3CA show 

higher AKT pT308 and pS473 levels than those with no mutations in PIK3CA. (B) In COAD, 
tumor samples with E542 missense hotspot mutations in PIK3CA show higher AKT pT308 

and pS473 levels than those with no mutations in PIK3CA. * indicates p<0.05 and ** 
indicates p<0.001 between samples with specified hotspot mutations and samples with non-
hotspot mutations in examined gene; # indicates p<0.05 and ## indicates p<0.001 between 
samples with specified hotspot mutations and samples without mutations in examined gene. 
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responsiveness using data from the CCLE [71]. We divided cancer cell-line samples 

into different groups, depending on whether they contain specific hotspot, non-

hotspot, or no mutations in investigated gene candidates. Only mutations occurring 

at least twice were included in the comparison. Mann-Whitney U tests were 

performed to measure the difference between samples with individual hotspot 

mutations and samples with non-hotspot mutations, as well as between samples 

with individual hotspot mutations and samples without mutation [96]. Among 702 

hotspot mutations, we found 35 hotspot mutations lead to significantly altered drug 

sensitivities (Table S3.5). 

         We first illustrated the effect of individual hotspot mutations in BRAF, KRAS 

and NRAS on the sensitivity of cancer cells treated by MEK inhibitors (PD-0325901 

and AZD6244). As expected, cells with BRAF V600E mutations demonstrated 

significantly higher sensitivity to MEK inhibitors than those without BRAF mutations 

(data not shown). We also divided cells depending on their mutational status in 

NRAS. Specifically, we found that cells with NRAS Q61 hotspot mutations 

demonstrated significantly higher sensitivity to MEK inhibitors than those with non-

hotspot mutations and those without mutations in NRAS (Figure 3.8A). We further 

divided cells depending on their mutational status in KRAS and found only cells with 

KRAS G12 hotspot mutations demonstrated significantly higher sensitivity to MEK 

inhibitors than those with non-hotspot mutations and those without mutations in 

KRAS (Figure 3.8A). 

         It has been reported that TP53 mutations make cancer cells resistant to MDM2 

inhibitor (Nutlin-3) [104]. We specifically investigated the effect of different hotspot  
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Figure 3.8 Functional implications of hotspot mutations in drug sensitivity. (A) Cancer 
cells with NRAS Q61 or KRAS G12 missense hotspot mutations exhibit higher sensitivity to 

MEK inhibitors (PD-0325901 and AZD6244) than those with non-hotspot mutations or 
without any mutations in NRAS or KRAS. (B) Cancer cells with MAP3K4 A1199 deletion 
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hotspot mutations exhibit lower sensitivity to different EGFR inhibitors (Erlotinib, Lapatinib, 
TKI258 and AZD0530) than those with non-hotspot mutations or without any mutations in 

MAP3K4. * indicates p<0.05 between samples with specified hotspot mutations and 
samples with non-hotspot mutations in examined gene; # indicates p<0.05 between samples 

with specified hotspot mutations and samples without mutations in examined gene. 
 

mutations and non-hotspot mutations of TP53. Surprisingly, we found cancer cells 

with four TP53 hotspot mutations (R175, R213, R248 and R273) showed 

significantly lower sensitivity to Nutlin-3 compared to cells without TP53 mutations 

(Figure S3.5 upper panel). Previous study has also suggested that HSP90 inhibitor 

(17-AAG) exhibits different effects on TP53 wild-type and mutant cells [105], we 

specifically measured the effect on cells with different TP53 mutations and found 

that only cells with two nonsense hotspot mutations (R213 and R342) are resistant 

to 17-AAG (Figure S3.5 lower panel) compared to cells without TP53 mutations, all 

the other missense hotspot mutations do not show significant effects.  

          Epidermal growth factor (EGF) is one of the high affinity ligands of EGFR. The 

EGF/EGFR system induces cell growth, differentiation, migration, adhesion and cell 

survival through various interacting signaling pathways such as the MAPK pathway 

[106], in which MAP3K4 is an important component [107]. Clinically, EGFR inhibitors 

such as Erlotinib were used to repress EGFR signaling activations and suppress 

tumor cell growth. However, we found that cancer cell-lines with MAP3K4 A1199 

deletion hotspot mutations were more resistant to all four examined EGFR inhibitors 

(Erlotinib, Lapatinib, TKI258 and AZD0530) in comparison to cancer cell-lines 

without MAP3K4 mutations (Figure 3.8B). These EGFR hotspot mutant cell-lines are 

also more resistant to three inhibitors (Erlotinib, Lapatinib and TKI258) in 
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comparison to cell-lines containing non-hotspot mutations in MAP3K4 (Figure 3.8B), 

suggesting the unique function of MAP3K4 A1199 deletion in disrupting the MAPK 

pathway function and its potential biomarker utility.  

         It has been well known that KRAS occupies a central role in multiple RTK 

signaling pathways, such as the IGF1-R and MET signaling pathway [108]. As 

expected, we measured the response of cancer cells with KRAS mutations and 

without KRAS mutations to IGF1-R inhibitor (AEW541) and c-MET inhibitors 

(PF2341066 and PHA-665752) and observed that cancer cells with KRAS mutations 

are resistant to IGF1-R inhibitor and c-MET inhibitors compared to cancer cell 

without KRAS mutation (data not shown). To specifically investigate the effect of 

individual KRAS mutations, we grouped the cancer cells by KRAS hotspot 

mutations, and found they were functionally diverse. As shown in Figure S3.6, KRAS 

G13 demonstrated the ability of making cells resistant to IGF1-R compared to cells 

with non-hotspot mutations and cells without KRAS mutations, KRAS G12 and 

KRAS Q61 showed minor resistant effect. KRAS G12 and G13 made cells resistant 

to c-MET inhibitors compared to cells with non-hotspot mutations and cells without 

KRAS mutations, while KRAS Q61 does not have notable resistant effects. 

         These observations above support that hotspot mutations we identified may 

have distinct roles in mediating signaling pathways and are associated with different 

drug sensitivities. Therefore, it is critical to obtain accurate genomic information and 

interpret them in context-specific manner in order to achieve desirable outcomes in 

personalized cancer treatment. 
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3.2.7 Tumor type-specific hotspot mutations 

        TCGA pan-cancer data enabled us to investigate the diverse function of a 

cancer gene in different tumor types. For example, TP53 was found to be important 

in most tumor types [109], and APC was important mostly in rectal (READ) and 

colon adenocarcinoma (COAD) [110]. However, related studies have thus focused 

on characterizing genes and it is largely unclear whether individual mutations 

demonstrate functionality that is specific to different tumor types. We performed an 

analysis to assess whether a hotspot mutation in our set is highly prevalent in 

specific tumor types. Among all the 702 hotspots, we found that 68 were highly 

prevalent in one tumor type, 11 in two tumor types, 2 (KRAS G12 and PIK3CA 

E542) in three tumor types, and 1 (KRAS G13) in four tumor types (Figure S3.7 and 

Table S3.6). Among these, 34 hotspot mutations such as CD209 R129 missense 

(4.0%) in bladder cancer, MAGI1 Q421 insertion (0.8%) and NR1H2 Q175 insertion 

(1.8%) in breast cancer were not well investigated based on previous studies and 

are potentially novel targets.  

         Of the 21 hotspot mutations detected in TP53 (Figure 3.9), 2 were found to be 

prevalent in multiple cancer types (R248 in bladder urothelial carcinoma (BLCA), 

BRCA and OV, R273 in lower grade glioma (LGG), BRCA and OV), and 9 (G108, 

R158, R175, I195, R213, Y220, R249, R282, E285) in one tumor type, confirming 

the functional diversity of TP53 hotspot mutations in different cancer types (Figure 

3.9). Our results indicated that the function of mutations in a gene may be highly 

heterogeneous in different tumor types. In addition, most hotspots appeared to be 

highly homogeneous, containing one subtype of mutation at any given amino acid  
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Figure 3.9 Prevalence of TP53 hotspot mutations in different TCGA cancer types. The 
hotspot mutations of TP53 are differentially prevalent in different tumor types, indicating their 

differential functions. 
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position. 

       Among various tumor types, COAD&READ had the highest number (24) of 

tumor type-enriched hotspot mutations (15 in APC, 3 in KRAS, 2 in FBXW7, and 1 in 

TP53, SMAD4, NRAS, and ERBB3 respectively), which again suggested a high 

degree of genetic complexity in colorectal cancer. We did not identify any tumor 

type-specific hotspot mutations in kidney renal papillary cell carcinoma (KIRP), 

which suggests that the development of KIRP may not involve a unique pathway and 

so may be generally similar to that of other tumor types (Figure S3.8).  

        We further identified 30 hotspot mutations that were exclusively detected in 

only one tumor type (Table 3.1). Included were DNMT3A R882 and NPM1 W288, 

which occur in 14.9% and 25.6% of acute myeloid leukemia (LAML) patients, 

respectively and have been shown important in LAML oncogenesis [111]. Besides 

these expected hotspots, we found some potentially novel hotspots. For example, 

we found an in-frame insertion hotspot mutation, NR1H2 Q175 in 1.8% of BRCA 

patients, further investigation using BRCA mRNA expression data showed that 

NR1H2 Q175 insertion is associated with reduced mRNA expression of NR1H2, 

comparing to NR1H2 non-hotspot mutations (Mann-Whitney U test, p=2.60e-2, 

Figure 3.10A). Although having been reported to regulate cholesterol homeostasis 

and tumorigenesis of liver cancer [112], the role of NR1H2 Q175 insertion in BRCA 

has not been well characterized. In addition, GATA3 P409, a frame-shift insertion 

hotspot mutation was detected in 1.6% of BRCA patients. BRCA samples with 

GATA3 P409 insertions had higher expressions of GATA3 compared to samples  
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Table 3.1 Hotspot mutations exclusively detected in only one tumor type in TCGA pan-
cancer data 

 

Tumor_Type Gene aa_Pos Frequency adj_Pvalue 
BLCA RXRA S427 5.00% 4.26E-08 
BRCA GATA3 P409 1.60% 5.48E-09 
BRCA GOLGA6L2 E537 0.90% 1.27E-04 
BRCA MAGI1 Q421 0.80% 4.95E-04 

COAD&READ APC R876 5.30% 4.01E-14 
KIRC NEFH P655 0.70% 2.16E-03 
LAML FLT3 D835 8.20% 1.94E-21 
LAML NPM1 W288 25.60% 1.58E-69 
LAML DNMT3A R882 14.90% 4.24E-38 
SKCM AGAP10 M293 2.80% 1.62E-08 
SKCM C15orf23 S24 2.80% 1.62E-08 
SKCM PCDHGA1 R293 2.00% 3.48E-06 
SKCM TRRAP S722 1.60% 4.83E-05 
STAD BMPR2 N583 2.00% 1.49E-04 
STAD CCDC43 R216 2.00% 1.49E-04 
STAD ESRP1 N512 3.30% 3.25E-07 
STAD FAM18A F140 2.00% 1.49E-04 
STAD GTF2I N440 2.00% 1.49E-04 
STAD STAMBPL1 K405 2.00% 1.49E-04 
STAD ZNF365 K399 2.00% 1.49E-04 
STAD CNBD1 L396 2.00% 4.68E-04 
STAD DOCK3 P1852 6.60% 2.47E-13 
STAD PGM5 I98 10.50% 5.36E-22 
STAD SLC3A2 K331 2.60% 3.15E-05 
STAD UBR5 E2121 5.30% 1.72E-10 
UCEC FGFR2 S252 3.60% 6.31E-11 
UCEC MAX H28 1.60% 4.55E-05 
UCEC BCOR N1459 3.20% 7.14E-09 
UCEC PIK3CA R93 2.40% 1.25E-06 

 
Note: Frequency was calculated by dividing number of mutations over number of samples in 
specific tumor type; adjusted p-value was computed based on Fisher’s exact test followed by 

FDR correction. 
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Figure 3.10 Prevalence of hotspot mutations in different TCGA cancer types and their 
functional implications. (A) In BRCA, samples with NR1H2 Q175 in-frame insertion 

hotspot mutations have significantly lower NR1H2 expression compared to samples with 
NR1H2 non-hotspot mutations. (B) In BRCA, sample with GATA3 P409 insertion hotspot 

mutations have obviously higher GATA3 compared to samples without GATA3 mutation. * 
indicates p<0.05 between samples with specified hotspot mutations and samples with non-
hotspot mutations in examined gene; # indicates p<0.05 between samples with specified 

hotspot mutations and samples without mutations in examined gene. 



	
  85	
  

without GATA3 mutations based on both the BRCA mRNA expression (Mann-

Whitney U test, p=2.03e-2) and RRPA data (Mann-Whitney U test, p=5.94e-2, 

Figure 3.10B). Because GATA3 has been proposed as a prognostic biomarker in 

breast cancer [113], the high frequency of GATA3 P409 and elevated GATA3 

expression in BRCA make them potential useful therapeutic targets in clinics. 

3.2.8 Conservation and protein-domain characteristics of the hotspot 

mutations 

         In general, functional and structural important mutations are expected to locate 

in highly evolutionally conserved region and domain in the protein. To evaluate our 

hotspot mutation, we used the RS scores computed by GERP++ [97], to measure 

the evolutionary constraints across different chromosomal sites (Methods). We 

compared the RS score difference between the sites that belong to hotspot 

mutations and those belong to non-hotspot mutations. The RS scores of 702 hotspot 

mutations were significantly higher than those of non-hotspot mutations (Figure 

3.11A), suggesting the sites that harbor hotspot mutations were more conserved 

than those do not. In addition, we also examined the relative location of mutations on 

the protein. The non-hotspot mutations were evenly distributed across different 

domains of the protein (lower panel), while the hotspot mutations showed clustering 

in the middle and the terminals (Figure 3.11B, upper panel), suggesting the 

functional preference of mutations in different protein domains. 
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Figure 3.11 Comparing the conservation and proteomic domain localization of the 
hotspot and the non-hotspot mutations. (A) Comparison of GERP score between the 

hotspot and non-hotspot mutations. (B) Investigation of the proteomic domain location of the 
hotspot (upper) and non-hotspot (lower) mutations. 
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3.3 Discussion 

         We nominated 702 hotspot mutations in 549 genes from the COSMIC 

database, among which 53 were associated with statistically significant functional 

evidences in currently available TCGA and CCLE data (Table S3.5). The rest of the 

hotspot mutations could not be associated with additional functional evidence, which 

may due to sparseness in the data and limitations in the current knowledge bases. 

For example, only 187 antibodies were measured on the RPPAs, the sample size 

was relatively small and some observed patterns might change as the sample size 

increases in the future. Nonetheless, our study revealed differential biological 

consequences and pharmacogenomics utilities of mutations under different disease 

contexts and highlighted the significance of allocating the specific function of 

individual mutations using functional genomics and pharmacogenomics data. These 

aspects have not been systematically explored in previous studies. Besides 

investigating previous known hotspot mutations in different contexts, we also 

nominated a set of novel hotpot mutations such as those in MAP3K4, NR1H2 and 

GATA3 with corresponding functional associations, which represent good 

candidates for developing predictive biomarkers and drug targets. 

        Investigating the mutational signatures in different cancer types has been a 

useful tool for understanding the underlying biological processes of cancer 

development. Alexandrov et al. [114] dissected all the mutations in TCGA into 21 

distinct mutational signatures with diverse sequence context enrichments and 

associated them with different phenotypes such as age of the patient at cancer 

diagnosis, known mutagenic exposures or defects in DNA maintenance. Kandoth et 
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al. [115] investigated 12 cancer types in TCGA and reported that mutations were 

enriched in C/G transitions such as C->T and C/G transversions such as C->A in 

different cancer types using all the mutation data. In our study, we focused on 

predicted hotspot mutations and illustrated the mutational signatures that hotspot 

mutations represented. We found that hotspot mutations were enriched in 

NoCpG_CGts and NoCpG_CGtv sequence context in 10 tumor types and some 

sequence contexts such as ATtv in bladder cancer. In addition, we elucidated that 

insertion mutations were highly enriched in breast cancer and deletion mutations 

were enriched in colorectal cancer, which was a novel finding in our study. 

        Another novel contribution of our current investigation was to highlight the 

criticalness of distinguishing the biological roles of individual hotspot mutations 

within one cancer gene under different disease contexts. Different hotspot mutations 

within one gene can exhibit diverse functional indications. For example, only PIK3CA 

H1047 but not any other hotspot mutations enhances the AKT pathway activity in 

BRCA, while only PIK3CA E542 enhances the AKT pathway activity in COAD. 

Previous studies observed that PIK3CA H1047R and E545K both result in a 

constitutively active enzyme with oncogenic capacity but the effect of H1047R is 

much stronger than E545K [116, 117]. We may not have seen obvious E545K 

enhancement of the AKT pathway activity because: 1) insufficient samples carrying 

the PIK3CA E545K mutation in our current analysis; and 2) highly sparse expression 

of phospho-AKT in samples without PIK3CA mutation. Similarly, one hotspot 

mutation can represent different functional relevance in different cancer types. For 

example, with TP53, R248 and R273 significantly increase its RNA and protein 
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expression in BRCA and OV but not in READ. In addition, different TP53 hotspot 

mutations were prevalent in various cancer types, and 30 hotspot mutations 

exclusively occur in only one cancer type. Although it was interesting to observe the 

differential functional correlation of hotspot mutations in different disease contexts, to 

further improve the convincingness of the conclusions achieved in our study, power 

analysis would be an ideal way to evaluate the reliability of functional correlation 

analysis, especially when measuring the differential functional impact of an identical 

hotspot mutation across different cancer types. 

         Along the line of identifying hotspot mutations, it was commonly assumed that 

mutations close to each other are expected to exhibit similar functions and grouping 

nearby mutations as a hotspot would improve the power of identifying driver 

mutations. One important observation of our study was we found that even hotspot 

mutations close to each other could have distinct biological implications in the same 

cancer type. For example, PIK3CA E542 was significantly associated with 

enhancement of phospho-AKT activities in COAD, while E545 did not; cell-lines with 

KRAS G13 were resistant to IGF-1R inhibitor (AEW541), while those with G12 did 

not (data not shown). Nearby hotspot mutations demonstrated distinct functions 

under different disease context. Simply collapsing mutations based on proximity and 

assuming that nearby mutations have the same functions may result in errors in 

functional prediction. 

         Although available functional genomic data prohibited us from systematically 

characterizing every hotspot mutation we predicted, our integrative assessment 

based on mRNA expression, protein activity, drug sensitivity, and tumor specificity 
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data in TCGA and CCLE, indicated potential utility of each of our predicted hotspot 

mutations. Such functional characterization can be unequivocally improved in the 

future by using systematic pathway-aware algorithms such as DriverNet [118] and 

PARADIGM-SHIFT [119], and by integrating additional functional genomic datasets 

such as Genomics of Drug Sensitivity in Cancer (GDSC) [72]. In addition, further 

dissecting the mutation data into different groups would be helpful to distinguish 

distinct mutation profiles and precisely investigate the specific function of hotspot 

mutations in different cancer subtypes. For example, different cancer subtype 

groups (such as MSI and non-MSI in colorectal cancer, ER+, HER2+ and TNBC in 

breast cancer) or considering the co-founding factors across the population (such as 

age, sex, ethics). When evaluate the enrichment of hotspot mutations in a specific 

cancer type, it is also valuable to dive into cancer subtypes and investigate whether 

any hotspot mutations only occur in specific cancer subtype (for example, TNBC in 

breast cancer). Importantly, our results demonstrated a high degree of functional 

heterogeneity at the mutational level, which has not been sufficiently apprehended 

or investigated in current research and clinical practice. Despite all the caveats, the 

hotspot mutations we identified provide a step forward in cataloging hotspot driver 

mutations in different cancer types and biological contexts, which is critical for 

realizing the promise of personalized cancer medicine. 

 

 

 

 



	
  91	
  

 

 

 

CHAPTER 4 

 

Conclusions and future directions 
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4.1 Conclusions 

         In the dissertation study, I focused on investigating the possibility of applying -

omics data to enhance the capability of precision medicine. To achieve this essential 

goal, we performed the studies through two aspects: 1) Illustrated the potential 

ambiguities in variant annotations, and developed TransVar to help resolve such 

ambiguities and greatly increase the accuracy of applying variant annotations in 

different research and clinical fields; 2) Proposed a population-based statistical 

model to identify hotspot mutations in amino acid resolution, and elucidated their 

mutational signatures and diverse biological utilities across different cancer types. 

        We developed TransVar, which is a comprehensive variant annotator that 

performs multi-level variant annotation such as forward annotation from genomic to 

RNA and to protein level, and reverse annotation from protein to RNA and to 

genomic level. We implemented the command line tool and make TransVar highly 

flexible of handling different formats of data input. Essentially, TransVar supports not 

only the standard variant format that was recommended by HGVS nomenclature, but 

also formats that were frequently used by researchers. 

        We investigated the various areas that the reverse and equivalence annotation 

function of TransVar could potentially contribute to: 1) experimental validation 

design; 2) clinical pharmacogenomics; and 3) hotspot mutation prediction. With the 

comprehensive functions of TransVar, the ambiguities that were encountered 

frequently in biological investigation and clinical treatment decision-making could be 

largely removed. In addition, our investigation revealed the frequent annotation 
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inconsistencies in current databases. We used the mutation data in TCGA and 

COSMIC to show large inconsistencies between the annotation practices in these 

two mutation databases. We used the COSMIC data to compare the forward 

annotation consistencies that were achieved by TransVar and other existing 

annotations, and showed that TransVar could provide the most comprehensive 

information available to allow the users to fully capture the potential protein variants 

that were annotated from a specific genomic variant. Our study also tried to illustrate 

the ambiguities of reverse annotation among different transcript databases and 

different mutation types. With both forward and reverse annotation that was enabled 

in TransVar, we can reveal hidden inconsistency and significantly improve the 

precision of translational and clinical genomics. The source code and detailed 

instructions for TransVar are available at https://bitbucket.org/wanding/transvar and 

a web interface is at http://www.transvar.net. 

        By investigating mutation data of 17 different tumor types in COSMIC, we 

observed a large discordancy of mutation rates across different mutation subtypes 

and tumor types. By respecting those mutation variations, we developed a 

population-based statistical model to nominate 702 hotspot mutations in 549 cancer 

genes using COSMIC data in a gene, tumor type, mutation subtype and sequence 

context specific manner. We illustrated the common and distinct mutational 

signatures of hotspot mutations across different tumor types, we found a high 

enrichment of Non-CpG island C/G transition and transversion in 10 tumor types, 

insertion hotspots are highly prevalent in Breast cancer, and deletion hotspots are 

enriched in colon cancer. We also employed multi-dimensional functional evidence 
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(RNA sequencing, reverse phase protein array and pharmacogenomics data) to 

demonstrate the diverse functional relevance of hotspot mutations in different 

biological and disease contexts and nominate a set of novel hotspot mutations such 

as MAP3K4 A1199 deletion, NR1H2 R175 insertion, and GATA3 P409 insertion with 

different functional associations. Our results will promote our understanding of the 

process of genomic positive selection by investigating the mutational signatures on 

hotspot mutations and facilitate ongoing efforts in cancer target discovery and 

development [120]. The source code used for our analysis is available at 

https://sourceforge.net/projects/hotdriver/.  
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4.2 Future directions 

        With the quick expansion of high dimensional data in the past few years, more 

and more attention has been paid to exploring the utility of -omics data in clinical 

applications. These greatly improved our capability of performing clinical 

management and developing novel drugs, and therefore allowed us to get close to 

the goal of personalized medicine. 

        Through the current functions enabled by TransVar, we are able to perform 

cross-level variant annotation in genomic, RNA and protein levels. The functions of 

TransVar could help the researchers and clinicians resolve some ambiguities such 

as experimental validation design, clinical pharmacogenomics and hotspot mutation 

prediction. In the future, we will try to further expand the potential applications of 

TransVar in other biological contexts: 1) annotate the functional impact of a variant 

such as in any specific protein domain locations, epigenetic regulatory domains, etc; 

2) explore the application of TransVar in shRNA design to make sure that the 

shRNA targeted region globally exists in all transcript isoforms of a specific gene; 3) 

investigate the effects of genomic editing CRISPR-Cas9 on the protein level and the 

consequence on the RNA expression. 

         We developed a population-based statistical model to nominate 702 hotspot 

mutations in 549 cancer genes using COSMIC data in a gene, tumor type, mutation 

subtype and sequence context specific manner. We employed multi-dimensional 

functional evidence to demonstrate the diverse functional relevance of hotspot 

mutations in different contexts and nominate a set of novel hotspot mutations with 
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functional indications. In the future, we can apply the statistical model to different in-

house or publically available mutation cohorts to identify hotspot mutations. 

Specifically, it would be interesting to identify hotspot mutations in different public 

datasets such as ICGC and TCGA, and investigate whether the hotspot mutations 

nominated are different and if there are any specific hotspot mutations occur in 

specific dataset. Beside, our current model focused on identify hotspot mutations of 

single amino acids, we will further investigate whether grouping close-by mutations 

will enhance the power of identifying functional mutations. In terms of functional 

indication of hotspot mutations, we will try to 1) evaluate the pathway activities and 

systematically evaluate the effect of hotspot mutations on different pathway 

activities; and 2) utilize power analysis to evaluate the confidence of our statistical 

analysis.  

         With the advance of genomics and pharcogenomics research, people 

gradually realize that that clinical drug response is partially determined by the 

genomic alterations and gene expression changes in each particular patient. In the 

future, we will be interested in utilizing comprehensive -omics data to help predict 

specific drug response and looking for promising biomarker signatures that could 

help inform the clinical treatment decision making given a patient’s -omic profiles. 

Through this type of study, we will be able to 1) implement a statistical model that is 

suitable to identify the drug response in a drug-based manner; and 2) discover 

biomarkers that can be used to stratify the patient groups when decide which drug 

should be choose to treat the patient. These observations could greatly help the 

capability of future patient diagnosis and clinical treatment. In addition, given 
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different molecular data types for each drug, we tend to investigate which we could 

achieve the best drug response prediction, such as using a specific data type or a 

combination of different data types. Furthermore, we tend to evaluate whether 

additional knowledge can be helpful to further improve the drug response prediction, 

such as accurate mutation annotation, driver/hotspot mutation information and 

pathway network knowledge. This will be a good continuation of our efforts in the 

current thesis and will illustrate whether my thesis can be further helpful in different 

biological and therapeutic contexts. 
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Appendix 

 

Supplemental Figures: 

 

 

 

Figure S2.1 Illustration of reporting ambiguity for a 3 bp insertion CTG at (A) 
genomic/mRNA levels and (B) protein level. Note that positional justifications on the 

protein level are agnostic of the base sequence on the DNA level and may result in variable 
amount of shifts. 
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Figure S3.1 The percentage of different mutational subtypes across all defined 
hotspot mutations. On each hotspot locus, only the mutational subtype that occupies the 

highest number of mutations was counted. 
 

 

 

 

Figure S3.2 The significance of overlap (y-axis, calculated using Fisher exact test) 
between hotspot-mutation-containing-genes and previously known cancer genes at 

various adjusted p value cutoffs (x-axis). 
 



	
  100	
  

 

 
Figure S3.3 Relationship between the number of hotspot mutations and the total 

number of mutations (mutation burden) in each tumor type. 
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Figure S3.4 Functional implications of hotspot mutations in RNA and protein 
expression. In OV, tumor samples with missense hotspot mutations (I195, Y220, R248 and 
R273) in TP53 show higher TP53 RNA and protein expression than those with non-hotspot 

mutations and without TP53 mutations. * indicates p<0.05 and ** indicates p<0.001 between 
samples with specified hotspot mutations and samples with non-hotspot mutations in 
examined gene; # indicates p<0.05 and ## indicates p<0.001 between samples with 

specified hotspot mutations and samples without mutations in examined gene. 
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Figure S3.5 Functional implications of hotspot mutations in drug sensitivity. Cancer 
cells with TP53 R175, R213, R248 and R273 hotspot mutations show resistant to MDM2 

inhibitor (Nutlin-3) compared to those without TP53 mutations, while cancer cells with TP53 
R213 and R342 nonsense mutations are resistant to HSP90 inhibitor (17-AAG) compared to 
those without TP53 mutations. * indicates p<0.05 between samples with specified hotspot 
mutations and samples with non-hotspot mutations in examined gene; # indicates p<0.05 

between samples with specified hotspot mutations and samples without mutations in 
examined gene. 
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Figure S3.6 Functional implications of hotspot mutations in drug sensitivity. 
Cancer cells with KRAS G13 missense hotspot mutations show resistant to IGF-1R inhibitor 

(AEW541) compared to those with non-hotspot mutations and without KRAS mutations, 
while cancer cells with KRAS G12 and G13 missense mutations are resistant to c-MET 

inhibitor (PF2341066 and PHA-665752) compared to those with non-hotspot mutations and 
without TP53 mutations. * indicates p<0.05 between samples with specified hotspot 

mutations and samples with non-hotspot mutations in examined gene; # indicates p<0.05 
between samples with specified hotspot mutations and samples without mutations in 

examined gene. 
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Figure S3.7 Prevalence of hotspot mutations in different TCGA cancer types. 82 
hotspot mutations were highly prevalent in one or more cancer types. Most are highly 

prevalent in only one tumor type, while a few were in two or more tumor types. 
 
 

 

Figure S3.8 Numbers of highly prevalent hotspot mutations in different tumor types 
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Supplemental Tables: 

 

 
 

Table S2.1 Comparing the annotation consistency of different mutation types using 
TransVar, VEP, ANNOVAR, snpEff and Oncotator. We annotated 964,162 unique SNSs, 
3,715 MNSs, 11,761 INSs, 24,595 DELs and 166 BLSs in catalogue of somatic mutations in 

cancer (COSMIC) and counted if the resulting annotations (gene names, amino acid 
positions and alterations) match the corresponding protein identifiers in COSMIC. 

 
 

 TransVar VEP ANNOVAR snpEff Oncotator 
SNS 96.1% 92.9% 91.6% 91.9% 91.8% 
MNS 96.8% 92.6% NA1 77.5% 92.6% 
INS2 80.6% 75.8% 32.4% 34.6% 38.4% 
DEL2 87.8% 77.1% 48.7% NA1 55.6% 
BLS 81.9% 75.6% NA1 70.5% 35.5% 

 
 

1 Protein level annotations not available. 2 TransVar reports both 5’-aligned and 3’-aligned 
results; VEP only reports the 3’-aligned protein variants with or without --shift_hgvs option, 

while ANNOVAR, snpEff and Oncotator report only 5’-aligned results. 
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Table S3.1 Number of samples in 17 tumor types in COSMIC v71 
 

 
Tumor Type COSMIC samples * WGS&WEX ^ Exclude Hyper-mutator # 

Bladder 3872 364 358 
Bone 704 81 79 
Brain 8457 1366 1354 

Breast 4994 1152 1140 
Colon 29413 694 684 

Endometrium 2293 271 260 
Head&Neck 3036 710 699 

Kidney 3616 879 867 
Liver 2448 900 890 
Lung 10520 969 951 

Myeloid 52500 1344 1336 
Ovarian 3378 647 640 

Pancreas 5561 800 789 
Prostate 953 508 501 

Skin 9072 655 650 
Stomach 3615 621 613 
Thyroid 13967 444 439 

 
 

* Number of samples that were collected by COSMIC v71; ^ Number of samples that were 

subjected to either whole genome or whole exome sequencing; # Number of samples after 

excluding samples that were shown to be hyper-mutated. 
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Table S3.2 20 mutation subtypes that were included in the statistical modeling of 
hotspot mutation definition 

 
 

Mutation_subtype 
Missense A/T transition 

Missense A/T transversion 
Missense non-CpG C/G transition 

Missense non-CpG C/G transversion 
Missense CpG C/G transition 

Missense CpG C/G transversion 
Nonsense A/T transition 

Nonsense A/T transversion 
Nonsense non-CpG C/G transition 

Nonsense non-CpG C/G transversion 
Nonsense CpG C/G transition 

Nonsense CpG C/G transversion 
Silent A/T transition 

Silent A/T transversion 
Silent non-CpG C/G transition 

Silent non-CpG C/G transversion 
Silent CpG C/G transition 

Silent CpG C/G transversion 
Insertion 
Deletion 
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Table S3.3 Number of samples available in different TCGA cancer types. 

 

Abbreviation Tumor_Type Mutation RNA RPPA Mut_RNA Mut_RPPA 

BRCA Breast Invasive 
Carcinoma 772 817 748 752 637 

KIRC Kidney Renal Clear Cell 
Carcinoma 417 470 455 391 386 

THCA Thyroid Carcinoma 323 426 NA 303 NA 

OV Ovarian Serous 
Cystadenocarcinoma 316 263 413 163 210 

HNSC Head & Neck Squamous 
Cell Carcinoma 306 303 213 299 208 

GBM Glioblastoma Multiforme 291 161 216 150 146 

SKCM Skin Cutaneous 
Melanoma 253 NA NA NA NA 

UCEC Uterine Corpus 
Endometrioid Carcinoma 248 333 404 239 203 

LUAD Lung Adenocarcinoma 230 353 238 169 135 

COAD-READ Colon & Rectum 
Adenocarcinoma 224 263 466 217 157 

LAML Acute Myeloid Leukemia 194 173 NA 169 NA 

LUSC Lung Squamous Cell 
Carcinoma 178 220 196 177 112 

LGG Brain Lower Grade 
Glioma 170 205 NA 166 NA 

STAD Stomach 
Adenocarcinoma 151 58 NA 58 NA 

KIRP Kidney Renal Papillary 
Cell Carcinoma 100 78 NA 77 NA 

BLCA Bladder Urothelial 
Carcinoma 99 96 128 95 92 

PRAD Prostate Adenocarcinoma 83 142 NA 72 NA 

CESC Cervical Squamous Cell 
Carcinoma 39 97 NA 38 NA 

PAAD Pancreatic 
Adenocarcinoma 34 41 NA 19 NA 

 
Note: The number of samples with somatic mutation data, RNA expression data, RPPA 
data, or both data types (Mut_RNA and Mut_RPPA) in each TCGA cancer type. The data 
was last updated in November 2014. 
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Table S3.4 2×2 table of calculating the prevalence of target mutation B in samples A 
 

Number of A samples  
with B mutations 

Number of A samples 
without B mutations 

Number of non-A samples 
with B mutations 

Number of non-A samples 
without B mutations 
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Table S3.5 List of the predicted hotspot mutations in different tumor types based on 
COSMIC version 71 

 
 

Gene aaPos Tumor_type 
ATXN2L R382 Bladder 
CD209 R129 Bladder 
CD36 V103 Bladder 

COQ10A L35 Bladder 
COQ10A L50 Bladder 
COQ10A L67 Bladder 

ENSG00000196306 D252 Bladder 
FGFR3 R248 Bladder 
FGFR3 S249 Bladder 

FGFRL1 H485 Bladder 
FRG2C A277 Bladder 
HRAS G12 Bladder 
HRAS Q61 Bladder 

KDM3A R157 Bladder 
KRAS G12 Bladder 

KRTAP10-1 D159 Bladder 
MUC4 D2389 Bladder 
MUC6 Y1920 Bladder 
NEFH P655 Bladder 

NOTCH2 A21 Bladder 
PCDH11X A89 Bladder 
PIK3CA E542 Bladder 
PIK3CA E545 Bladder 
PLXNA1 G36 Bladder 

RALGAPA1 Q15 Bladder 
RP5-1086D14.3 F374 Bladder 

RXRA S427 Bladder 
SENP6 Y599 Bladder 
TCF7L2 A87 Bladder 

TMPRSS13 A77 Bladder 
TMPRSS13 Q78 Bladder 
TNKS1BP1 A944 Bladder 

TP53 R248 Bladder 
TP53 E285 Bladder 

ZBTB17 A144 Bladder 
ZBTB17 A207 Bladder 
ZNF233 L662 Bladder 
ZNF83 G267 Bladder 
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ZNF83 E293 Bladder 
IDH1 R132 Bone 

OBSCN L1039 Bone 
TTN R139 Bone 

ACTR3B V136 Brain 
AKR1C2 L261 Brain 
AKR1C2 Y5 Brain 

ANK2 L1097 Brain 
ANK2 T3651 Brain 
ASPM K3446 Brain 
BRAF V600 Brain 

CDC42BPA P422 Brain 
CDKL5 S603 Brain 
CHEK2 Y390 Brain 
CHEK2 A392 Brain 
CHEK2 R519 Brain 
CHEK2 P522 Brain 
CHEK2 P536 Brain 
COBL P23 Brain 

CTNNB1 S33 Brain 
EGFR A289 Brain 
EGFR G598 Brain 
EPHA5 V475 Brain 
ERC2 R20 Brain 

FGFR1 N546 Brain 
FGFR1 K656 Brain 
FKBP9 R107 Brain 
FKBP9 I274 Brain 
FKBP9 I42 Brain 
H3F3A K28 Brain 
HIF1A K213 Brain 
HIF1A D238 Brain 
IDH1 R132 Brain 
IDH2 R172 Brain 
IRS4 A640 Brain 

ITGAV R775 Brain 
KLF4 K409 Brain 

KPNA2 F17 Brain 
KTN1 E687 Brain 

MAP3K6 N614 Brain 
MAP3K6 N622 Brain 

MAX R60 Brain 
NBPF10 K3445 Brain 
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NBPF10 E3455 Brain 
NCOA6 Q269 Brain 

PARD3B G308 Brain 
PARG A584 Brain 

PIK3C2B R41 Brain 
PIK3CA H1047 Brain 
PIK3CA E545 Brain 
POTEM V308 Brain 
RGPD8 P1760 Brain 

RPSAP58 Q111 Brain 
SMAD4 L23 Brain 
SOX11 L326 Brain 

SYNPO2 R340 Brain 
TBK1 E109 Brain 
TBK1 T79 Brain 

THAP3 E160 Brain 
TP53 R158 Brain 
TP53 R175 Brain 
TP53 H179 Brain 
TP53 R196 Brain 
TP53 R213 Brain 
TP53 Y220 Brain 
TP53 G245 Brain 
TP53 R248 Brain 
TP53 R249 Brain 
TP53 R273 Brain 

UBBP4 L149 Brain 
UBBP4 R73 Brain 

WASH3P G374 Brain 
ZNF429 E395 Brain 
ZNF429 N426 Brain 
ZNF429 K528 Brain 
ZNF429 K556 Brain 
ZNF429 K568 Brain 
ZNF429 R672 Brain 
ZNF814 D404 Brain 

AKT1 E17 Breast 
BCL6B S244 Breast 
BTNL8 V21 Breast 

C10orf140 E428 Breast 
DDX11 E310 Breast 

FLJ42177 V295 Breast 
GOLGA6L2 E537 Breast 
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HSPD1 R24 Breast 
KCNN3 L66 Breast 
KRAS G12 Breast 
MAGI1 Q421 Breast 

MAP3K4 A1199 Breast 
NCOA3 Q1255 Breast 
NCOR2 Q510 Breast 
NR1H2 Q175 Breast 
PIK3CA H1047 Breast 
PIK3CA N345 Breast 
PIK3CA E542 Breast 
PIK3CA E545 Breast 
RBMX P106 Breast 
SF3B1 K700 Breast 

TBP Q76 Breast 
TP53 G108 Breast 
TP53 R175 Breast 
TP53 C176 Breast 
TP53 H193 Breast 
TP53 R196 Breast 
TP53 R213 Breast 
TP53 Y220 Breast 
TP53 R248 Breast 
TP53 R273 Breast 

USP36 K959 Breast 
AATK G703 Colon 

ABCA7 A2045 Colon 
ABCF1 K76 Colon 
ACTR5 F6 Colon 
ADAD2 G44 Colon 

ADAM22 P81 Colon 
ADAM29 T746 Colon 
ALDH2 L189 Colon 

ALOX12 P41 Colon 
ANKRD30A P818 Colon 

ANTXR2 A357 Colon 
ANXA2 C8 Colon 

APC R1114 Colon 
APC R1450 Colon 
APC R876 Colon 

ARHGAP5 V474 Colon 
ARHGEF33 S582 Colon 

ATM R337 Colon 
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ATR I774 Colon 
ATXN7 T781 Colon 

BAX E41 Colon 
BCAS4 E56 Colon 
BCL9L P1128 Colon 
BIRC6 K4503 Colon 

BMPR1A R486 Colon 
BMPR2 N583 Colon 
BRAF V600 Colon 

BRAT1 R644 Colon 
BRCA2 S1682 Colon 

C17orf82 L186 Colon 
C1orf106 R538 Colon 
C8orf55 L63 Colon 
C8orf80 N631 Colon 

CACNA1H D2133 Colon 
CASP5 R23 Colon 
CBWD6 L260 Colon 
CCDC43 R216 Colon 

CD3G K71 Colon 
CD8B L9 Colon 

CDC42BPA S344 Colon 
CDKN2D R30 Colon 
CEBPB A147 Colon 
CHEK2 S372 Colon 
CHEK2 K373 Colon 
CHML S514 Colon 
CLK4 R2 Colon 

CLOCK L123 Colon 
CSNK1D S97 Colon 
CSNK1E N172 Colon 
CYP21A2 L10 Colon 
D2HGDH R55 Colon 
DDHD1 G112 Colon 
DDX26B L120 Colon 

DDX4 P48 Colon 
DEFB126 P106 Colon 

DLC1 K237 Colon 
DLC1 R347 Colon 

DNAH3 S1608 Colon 
DNTTIP1 P13 Colon 
DOCK3 P1852 Colon 
DOT1L G1386 Colon 
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DSC2 K270 Colon 
DSG4 A601 Colon 
DSPP S879 Colon 
EBPL F172 Colon 

EEF1D D189 Colon 
ENSG00000269210 G98 Colon 

ERI1 L16 Colon 
ESRP1 N512 Colon 
ETHE1 A2 Colon 
ETNK2 P10 Colon 
FADS3 A18 Colon 

FAM18A F140 Colon 
FAM190A D515 Colon 
FAM190A E611 Colon 
FAM194B E135 Colon 
FAM194B E136 Colon 
FAM194B E138 Colon 
FAM194B Y139 Colon 
FBXW7 R465 Colon 
FEZ2 P50 Colon 

FGFR1 T141 Colon 
GLTPD2 D209 Colon 
GOT1L1 T415 Colon 
GPHB5 R53 Colon 
GPRIN2 G237 Colon 
GRID2IP A221 Colon 
GRIK2 N849 Colon 
GSG2 R82 Colon 
GSX1 L78 Colon 

GTPBP3 T66 Colon 
HAP1 K4 Colon 

HCLS1 P368 Colon 
HECW1 R1502 Colon 

HLA-DQA1 G79 Colon 
HSD17B1 G313 Colon 
HSPA12B C627 Colon 

IDH3A S8 Colon 
IFI27 A43 Colon 

IFITM3 P55 Colon 
IGF2R D1317 Colon 
IRF5 P183 Colon 
JPH4 A502 Colon 

KDM5A G1200 Colon 
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KIAA1024 S702 Colon 
KIF17 R13 Colon 
KIF25 W3 Colon 
KLF14 S112 Colon 

KLHL30 A213 Colon 
KNDC1 A432 Colon 
KNDC1 V806 Colon 
KRAS G12 Colon 
KRAS G13 Colon 
KRT4 G155 Colon 

KRTAP4-3 R26 Colon 
KRTAP4-3 Q31 Colon 
KRTAP9-1 C153 Colon 

KSR1 P291 Colon 
LATS2 A324 Colon 
LIG1 K152 Colon 

LMAN1 E305 Colon 
LRRIQ1 R329 Colon 

MAGEB2 R23 Colon 
MAML2 Q596 Colon 
MAPK9 K56 Colon 

MEGF11 A102 Colon 
MEGF11 A177 Colon 

MLL3 Y366 Colon 
MLL3 T3698 Colon 

MRE11A F237 Colon 
MSH3 K374 Colon 
MTX1 T63 Colon 
MUC2 T1541 Colon 
MUC2 T1542 Colon 
MUC4 T113 Colon 
MUC6 P1570 Colon 
MUC6 P1571 Colon 
MUC6 T1911 Colon 

MYOM1 R212 Colon 
NEFH E645 Colon 
NEFH A646 Colon 

NFATC3 K474 Colon 
NFKB2 P423 Colon 

NIN E1559 Colon 
NIPBL K603 Colon 

NOTCH3 P1521 Colon 
NRAS G12 Colon 
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NRAS Q61 Colon 
NTSR2 A54 Colon 
OBSCN A94 Colon 
OPRD1 C27 Colon 
OR5K4 I301 Colon 

OR6C76 K311 Colon 
ORAI1 P43 Colon 
PANX2 P505 Colon 
PANX2 L555 Colon 

PCDHA7 L352 Colon 
PCDHGC3 N689 Colon 

PCSK5 E562 Colon 
PDXDC1 A384 Colon 
PDXDC1 A407 Colon 

PHF2 P988 Colon 
PIK3CA H1047 Colon 
PIK3CA E542 Colon 
PIK3CA E545 Colon 
PIK3CA R88 Colon 
PKD1L2 N236 Colon 
PKDCC G17 Colon 
PLEC L1184 Colon 
PLEC A1976 Colon 
POLE V1394 Colon 

PPP2R3B P533 Colon 
PRRT4 R391 Colon 

PRSS36 S423 Colon 
PTPLA E64 Colon 
PTPRD R584 Colon 
PURB A107 Colon 

RAPGEF6 S640 Colon 
RASA2 E759 Colon 

RASSF5 L16 Colon 
RBBP8 K357 Colon 
RBP1 P18 Colon 

RHPN2 A353 Colon 
RIC8A P210 Colon 
RLIM S501 Colon 

RNF145 K23 Colon 
RNF145 N27 Colon 

SBK2 A298 Colon 
SCARF2 R727 Colon 
SCRIB P1450 Colon 
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SF1 E28 Colon 
SLAMF1 S277 Colon 
SLC39A3 V236 Colon 
SLC3A2 K331 Colon 
SMAD4 R361 Colon 
SNX13 L652 Colon 
SNX18 G204 Colon 
SOLH A840 Colon 
SP5 A75 Colon 

SPHK1 A34 Colon 
SRPR K170 Colon 

STAMBPL1 K405 Colon 
STARD3NL T130 Colon 

SVIL M1863 Colon 
SgK069 A298 Colon 
SgK223 G350 Colon 
SgK493 G160 Colon 
TAF1B N66 Colon 

TBC1D8B K118 Colon 
TCERG1 K957 Colon 
TCF15 T113 Colon 
TCF15 V114 Colon 
TEAD2 H295 Colon 
TFAM E148 Colon 

TMBIM4 Y174 Colon 
TMEM131 G44 Colon 

TMEM151B L332 Colon 
TMEM60 A78 Colon 

TMPRSS13 A77 Colon 
TMPRSS13 Q78 Colon 

TNRC6C N615 Colon 
TP53 R175 Colon 
TP53 R213 Colon 
TP53 R248 Colon 
TP53 R273 Colon 

TRRAP K159 Colon 
TTK R854 Colon 

TTLL11 A163 Colon 
TTN I2725 Colon 
TTN I2771 Colon 

TYSND1 L258 Colon 
UBR5 E2121 Colon 

UHRF1 P674 Colon 
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USP35 T411 Colon 
USP35 T655 Colon 
USP36 K959 Colon 
USP6 V148 Colon 
VEZT S74 Colon 

VPS13A R161 Colon 
VPS13A K372 Colon 
VSIG10L M356 Colon 
WDTC1 E290 Colon 
ZBTB42 R15 Colon 
ZDBF2 K1728 Colon 
ZNF233 L662 Colon 
ZNF365 K399 Colon 
ZNF516 V1037 Colon 

ZNF518A T929 Colon 
ZNF696 R341 Colon 
ZNF717 E818 Colon 
ZNF814 G320 Colon 
ZNF837 A242 Colon 
ZSCAN1 L54 Colon 
AGAP10 H228 Endometrium 
BCOR N1425 Endometrium 
BCOR N1459 Endometrium 

CTNNB1 S33 Endometrium 
CTNNB1 S37 Endometrium 
FBXW7 R465 Endometrium 
FGFR2 S252 Endometrium 
GTF2I N440 Endometrium 
KRAS G12 Endometrium 
KRAS G13 Endometrium 
MAX H28 Endometrium 

OR8I2 A270 Endometrium 
PIK3CA H1047 Endometrium 
PIK3CA G118 Endometrium 
PIK3CA E542 Endometrium 
PIK3CA E545 Endometrium 
PIK3CA Q546 Endometrium 
PIK3CA R88 Endometrium 
PIK3CA R93 Endometrium 

PPP2R1A P179 Endometrium 
PTEN R130 Endometrium 

RGPD3 L812 Endometrium 
RGPD3 R816 Endometrium 
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RP11-231C14.2 H27 Endometrium 
RSBN1L L432 Endometrium 
SPDYE3 S418 Endometrium 

TLK2 R262 Endometrium 
TMEM106B R140 Endometrium 

TP53 R248 Endometrium 
VIT G344 Endometrium 
ALK F1174 Head&Neck 
ALK R1275 Head&Neck 

ATP2B3 G272 Head&Neck 
BRD4 A467 Head&Neck 

CACNA1G S1109 Head&Neck 
CHD4 R1353 Head&Neck 
CHD4 P799 Head&Neck 
DDR1 I141 Head&Neck 

DMBT1 G158 Head&Neck 
DMBT1 S716 Head&Neck 
DNM1 G146 Head&Neck 

DOCK7 D185 Head&Neck 
ERBB2IP T1116 Head&Neck 
ERBB2IP S750 Head&Neck 
ERBB3 N101 Head&Neck 
ESR2 H115 Head&Neck 

FAM22D C197 Head&Neck 
FAM83A H119 Head&Neck 

FYB D285 Head&Neck 
HEATR8 N219 Head&Neck 
HEATR8 A701 Head&Neck 

HRAS G12 Head&Neck 
HRAS G13 Head&Neck 
HRAS Q61 Head&Neck 

MCMDC2 R369 Head&Neck 
MLST8 D181 Head&Neck 
NACAD P905 Head&Neck 
NFASC V258 Head&Neck 

NUTM2A C197 Head&Neck 
PIK3CA H1047 Head&Neck 
PIK3CA E542 Head&Neck 
PIK3CA E545 Head&Neck 
PTPRD V225 Head&Neck 

QKI D131 Head&Neck 
RP11-368J21.2 A454 Head&Neck 

SETDB1 F234 Head&Neck 
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SLMAP I195 Head&Neck 
TP53 R175 Head&Neck 
TP53 R196 Head&Neck 
TP53 R213 Head&Neck 
TP53 Y220 Head&Neck 
TP53 R248 Head&Neck 
TP53 R282 Head&Neck 
TTN R62 Head&Neck 

ABCA6 V801 Kidney 
ADAMTS10 R182 Kidney 

AHNAK P5445 Kidney 
APOBEC3H N15 Kidney 
ARHGEF5 E487 Kidney 
C22orf31 A261 Kidney 
C8orf45 Y111 Kidney 
CCKBR R396 Kidney 
CCKBR R465 Kidney 
CDH5 V141 Kidney 

CENPH K138 Kidney 
CHEK2 K373 Kidney 
COL5A3 P176 Kidney 
CUZD1 R355 Kidney 
DIEXF K229 Kidney 
F2RL2 C143 Kidney 
FCRLA L196 Kidney 
GBP6 K155 Kidney 

GCNT2 F107 Kidney 
GNLY L76 Kidney 

GOLGA6L10 A469 Kidney 
GPR158 K1027 Kidney 

IL34 N155 Kidney 
KIF6 D714 Kidney 

LILRB3 R143 Kidney 
LRRK2 I1294 Kidney 
MCCC2 A249 Kidney 
MED13 P1012 Kidney 
MLLT3 S167 Kidney 
N4BP2 G560 Kidney 
NIPBL N141 Kidney 

NUP155 P990 Kidney 
OPRK1 V380 Kidney 
OR11H4 P89 Kidney 
OR2B11 T244 Kidney 
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PIP4K2A R133 Kidney 
POTEB C221 Kidney 
PREX2 G233 Kidney 
PSKH2 G312 Kidney 
RFX3 I519 Kidney 

RNF213 S1184 Kidney 
RNF213 S3160 Kidney 

RP13-996F3.4 V159 Kidney 
RPL8 G153 Kidney 

RPS12 I94 Kidney 
RPS9 L25 Kidney 
RYBP G291 Kidney 
SCYL2 Q715 Kidney 

SEMA5B G44 Kidney 
SERPINA10 E64 Kidney 

SH3GL1 R184 Kidney 
SLC11A2 Y357 Kidney 
SLC2A5 P496 Kidney 

SLC36A2 G317 Kidney 
SRBD1 R464 Kidney 

SRGAP3 R559 Kidney 
TLK2 R262 Kidney 

TUBA3E A126 Kidney 
UBA7 L383 Kidney 

UBBP4 R73 Kidney 
UBE3C T888 Kidney 
UBE4A N800 Kidney 
UPF3A L91 Kidney 

XPNPEP1 S299 Kidney 
ZNF462 Q759 Kidney 
ZNF605 S82 Kidney 
ZNF776 V299 Kidney 
ACO1 S174 Liver 

AGAP3 G21 Liver 
AUTS2 L102 Liver 

CACNA1C T79 Liver 
CACNA1G Q767 Liver 

CFLAR I190 Liver 
CNOT4 A188 Liver 
COL6A2 G283 Liver 
CTNNB1 S45 Liver 
CTNNB1 T41 Liver 
CTNNB1 S33 Liver 
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CTNNB1 S37 Liver 
CTNNB1 G34 Liver 
DACT3 G278 Liver 
FGFR1 A21 Liver 
FUBP1 Y582 Liver 
HSPD1 R24 Liver 
HSPD1 G56 Liver 

KCNMA1 T254 Liver 
KIF4A R598 Liver 
MAGI1 Q410 Liver 
MAPK9 G35 Liver 
MBD1 G177 Liver 
NPM1 G90 Liver 

PCDH11X V38 Liver 
PIK3CA H1047 Liver 
SEC16A R280 Liver 

TMEM50B A139 Liver 
TMPRSS13 S70 Liver 

TP53 R249 Liver 
TP53 Y163 Liver 
TP53 G245 Liver 
TP53 R213 Liver 
TTN E155 Liver 
TTN S147 Liver 
TTN G156 Liver 

YEATS2 L316 Liver 
ZNF208 V325 Liver 
AGAP10 H228 Lung 
ATXN3 K295 Lung 

CD6 S52 Lung 
CHEK2 K373 Lung 
DSPP D881 Lung 
EGFR L858 Lung 
KRAS G12 Lung 
KRAS Q61 Lung 
KRT2 G104 Lung 
MUC6 S2085 Lung 

PIK3CA H1047 Lung 
PIK3CA E542 Lung 
PIK3CA E545 Lung 
PNKP P16 Lung 

RP11-671M22.1 R443 Lung 
RPSAP58 Q111 Lung 
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TP53 T125 Lung 
TP53 R158 Lung 
TP53 R248 Lung 
TP53 R249 Lung 
TP53 R273 Lung 

U2AF1 S34 Lung 
WASH3P G374 Lung 
ZNF814 S332 Lung 
ACSM3 G485 Myeloid 
AKIRIN2 Y201 Myeloid 

AKT3 K172 Myeloid 
ALPP D64 Myeloid 

ANGPTL4 Q143 Myeloid 
AP4B1 M100 Myeloid 
BRAF V600 Myeloid 

BZRAP1 S1417 Myeloid 
CALR K385 Myeloid 

CCND1 Y44 Myeloid 
CD79B Y196 Myeloid 
CLCN2 G715 Myeloid 
CNDP1 L20 Myeloid 
CXCL10 R93 Myeloid 
DCTN2 R181 Myeloid 

DNMT3A R882 Myeloid 
EIF3D A43 Myeloid 

EIF4G1 K643 Myeloid 
EZH2 Y602 Myeloid 
EZH2 Y646 Myeloid 
FLT3 D835 Myeloid 
GRN L46 Myeloid 

HLA-DRB1 H256 Myeloid 
IDH1 R132 Myeloid 
IDH2 R140 Myeloid 
JAK2 V617 Myeloid 
KRAS G12 Myeloid 

MICAL2 A388 Myeloid 
MPL W515 Myeloid 

MUC6 P1965 Myeloid 
MYD88 L265 Myeloid 
NEDD9 D178 Myeloid 
NEFH P655 Myeloid 
NIT1 R33 Myeloid 

NOTCH1 P2514 Myeloid 



	
  125	
  

NPM1 W288 Myeloid 
NPR2 K683 Myeloid 
NRAS Q61 Myeloid 

NSMAF R850 Myeloid 
NSMAF R881 Myeloid 
ORM1 R86 Myeloid 
P4HA1 R118 Myeloid 
PARP4 A1096 Myeloid 
PEX6 V788 Myeloid 

PFKFB3 K147 Myeloid 
PKD1L2 N236 Myeloid 
PLIN4 A811 Myeloid 
PLIN4 A883 Myeloid 

PSME2 V17 Myeloid 
PSRC1 D7 Myeloid 
PYGM A610 Myeloid 

RECQL4 L1132 Myeloid 
RPE65 V287 Myeloid 
RPS16 V100 Myeloid 
SF3B1 K700 Myeloid 
SF3B1 G742 Myeloid 

SH3BP1 R229 Myeloid 
TP53 R248 Myeloid 

TUBA1B D76 Myeloid 
U2AF1 Q157 Myeloid 
U2AF1 S34 Myeloid 
USP3 E443 Myeloid 
XPO1 E571 Myeloid 

ZNF217 R629 Myeloid 
ZNF98 T451 Myeloid 
ABL1 S349 Ovarian 

ANKRD36C V306 Ovarian 
ARFIP1 Q373 Ovarian 
BAHD1 W653 Ovarian 
BEND5 S173 Ovarian 
BEND5 S342 Ovarian 
CDSN H260 Ovarian 

CEP152 G1415 Ovarian 
CHEK2 R519 Ovarian 

CHRNA5 T148 Ovarian 
CLASP1 A1272 Ovarian 
CNGA2 I524 Ovarian 
CYFIP2 D543 Ovarian 
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DDX23 R351 Ovarian 
DHX8 H768 Ovarian 

FCAMR T88 Ovarian 
FUBP1 G358 Ovarian 
HHLA2 V145 Ovarian 

KIAA0355 G168 Ovarian 
KLK2 Q39 Ovarian 
KRAS G12 Ovarian 

LRRC34 V374 Ovarian 
LRRIQ4 G151 Ovarian 
MYCBP2 S3024 Ovarian 

MYOF T92 Ovarian 
NFXL1 R815 Ovarian 
NOXA1 A300 Ovarian 
PEAR1 P62 Ovarian 
PKD1L2 N236 Ovarian 

PLEKHG6 G68 Ovarian 
POLDIP3 A94 Ovarian 
POLR1C V193 Ovarian 
PREX1 K872 Ovarian 

PTGER3 H314 Ovarian 
SCUBE3 P821 Ovarian 

SIK2 T878 Ovarian 
SI W1086 Ovarian 

TP53 Y103 Ovarian 
TP53 R175 Ovarian 
TP53 I195 Ovarian 
TP53 Y220 Ovarian 
TP53 N239 Ovarian 
TP53 R248 Ovarian 
TP53 R273 Ovarian 

WDR37 R303 Ovarian 
ZBBX L299 Ovarian 

ZFP112 H827 Ovarian 
ZFR2 P441 Ovarian 

ZNF510 T356 Ovarian 
ZYG11A N606 Ovarian 
ADRA1A R235 Pancreas 
ATP2B3 E151 Pancreas 
BMPR1A D414 Pancreas 

CACNA1C N348 Pancreas 
ERBB2IP R1037 Pancreas 
GALR3 L256 Pancreas 
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GNAS R201 Pancreas 
GNAS R844 Pancreas 
GRIA4 R368 Pancreas 
IFT43 L44 Pancreas 
KLKB1 I199 Pancreas 
KRAS G12 Pancreas 
KRAS Q61 Pancreas 
MSL2 S419 Pancreas 
NTM T166 Pancreas 

NTNG1 S289 Pancreas 
PCSK5 S487 Pancreas 
PRKCB G88 Pancreas 
SF3B1 K700 Pancreas 
SHPRH Q798 Pancreas 

SLC26A5 E30 Pancreas 
SLC8A3 D72 Pancreas 

TP53 R175 Pancreas 
TP53 C176 Pancreas 
TP53 R196 Pancreas 
TP53 R213 Pancreas 
TP53 G245 Pancreas 
TP53 R248 Pancreas 
TP53 R273 Pancreas 
TP53 R342 Pancreas 
TTN Q369 Pancreas 

USP20 V422 Pancreas 
AGAP10 H228 Prostate 

ENSG00000103472 W375 Prostate 
FAM129C G603 Prostate 
MCMDC2 T314 Prostate 
MED12 L1224 Prostate 
NBPF10 K3445 Prostate 
NCOA6 Q269 Prostate 
RGPD8 P1760 Prostate 
SPOP F133 Prostate 
SYT16 R131 Prostate 
UBBP4 L149 Prostate 

ZDHHC11 A303 Prostate 
ZNF91 R333 Prostate 

AGAP10 H228 Skin 
AGAP10 M293 Skin 

BRAF V600 Skin 
C15orf23 S24 Skin 
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CTAGE1 F739 Skin 
DDX11 R167 Skin 
DTNA R255 Skin 
IDH1 R132 Skin 
LEPR I740 Skin 

NLRP1 R698 Skin 
NRAS Q61 Skin 

PCDHGA1 R293 Skin 
RAC1 P29 Skin 

RGPD8 P1760 Skin 
RGS7 R44 Skin 
TP53 R213 Skin 

TRRAP S722 Skin 
WASH3P G374 Skin 
CNBD1 L396 Stomach 
ERBB3 V104 Stomach 
KRAS G12 Stomach 
KRAS G13 Stomach 
PGM5 I98 Stomach 

PIK3CA H1047 Stomach 
PIK3CA E542 Stomach 
PIK3CA E545 Stomach 
RIMS2 S231 Stomach 
TP53 R175 Stomach 
TP53 C176 Stomach 
TP53 R196 Stomach 
TP53 R213 Stomach 
TP53 G245 Stomach 
TP53 R248 Stomach 
TP53 R273 Stomach 
TP53 R282 Stomach 

ADRA1A A104 Thyroid 
BRAF V600 Thyroid 

CACNA1A H2219 Thyroid 
CBWD6 A154 Thyroid 
CLIP1 L271 Thyroid 
DIDO1 T580 Thyroid 

FBXW10 L261 Thyroid 
GOLGA8B A488 Thyroid 
HAVCR1 L34 Thyroid 

HRAS Q61 Thyroid 
KREMEN1 P4 Thyroid 

MAML3 Q491 Thyroid 
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MAML3 Q493 Thyroid 
MLL3 I882 Thyroid 

MUC16 P328 Thyroid 
MUC6 N1519 Thyroid 
NEFH E645 Thyroid 

NOTCH1 T349 Thyroid 
NRAS Q61 Thyroid 

OBSCN A998 Thyroid 
PI4KA P1714 Thyroid 

RAB11FIP3 A30 Thyroid 
RGPD8 P1121 Thyroid 

RP11-578F21.5 Q441 Thyroid 
SCN5A D1978 Thyroid 

TMPRSS13 S70 Thyroid 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 



	
  130	
  

Table S3.6 A full list of the hotspot mutations that were highly prevalent in specific 
cancer types in TCGA 

 
 

Cancer_Type Gene aa_Pos Mut_Percent adj_Pvalue 
thca AGAP10 H228 2.80% 7.35E-04 
skcm AGAP10 M293 2.80% 1.62E-08 
brca AKT1 E17 2.30% 7.97E-09 

coadread APC R1114 2.70% 2.54E-06 
coadread APC R1450 8.40% 4.96E-22 
coadread APC R876 5.30% 4.01E-14 

ucec BCOR N1459 3.20% 7.14E-09 
stad BMPR2 N583 2.00% 1.49E-04 
thca BRAF V600 56.20% 3.31E-145 
skcm BRAF V600 37.80% 5.74E-49 

coadread BTNL8 V21 1.30% 9.06E-03 
skcm C15orf23 S24 2.80% 1.62E-08 
stad CCDC43 R216 2.00% 1.49E-04 
paad CD209 R129 8.60% 2.98E-04 
blca CD209 R129 4.00% 3.27E-04 
stad CNBD1 L396 2.00% 4.68E-04 
ucec CTNNB1 G34 2.00% 1.88E-04 
lgg DDX11 R167 2.90% 1.23E-03 
laml DNMT3A R882 14.90% 4.24E-38 
stad DOCK3 P1852 6.60% 2.47E-13 

coadread ERBB3 V104 2.20% 5.63E-04 
stad ESRP1 N512 3.30% 3.25E-07 
stad FAM18A F140 2.00% 1.49E-04 

coadread FBXW7 R465 5.30% 6.20E-09 
ucec FBXW7 R465 2.80% 9.17E-04 
ucec FGFR2 S252 3.60% 6.31E-11 
blca FGFR3 S249 4.00% 7.02E-05 
laml FLT3 D835 8.20% 1.94E-21 
brca GOLGA6L2 E537 0.90% 1.27E-04 
stad GTF2I N440 2.00% 1.49E-04 
hnsc HRAS G12 2.00% 1.36E-05 
thca HRAS Q61 3.70% 9.05E-10 
lgg IDH1 R132 76.60% 1.28E-169 
laml IDH1 R132 9.70% 8.35E-04 

coadread KRAS G12 29.80% 8.22E-39 
luad KRAS G12 22.90% 7.20E-24 
paad KRAS G12 57.10% 1.17E-17 
ucec KRAS G12 14.50% 1.24E-09 
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coadread KRAS G13 4.90% 4.80E-07 
ucec KRAS G13 3.60% 7.62E-05 
stad KRAS G13 3.90% 1.01E-03 
paad KRAS Q61 11.40% 3.44E-05 
brca MAGI1 Q421 0.80% 4.95E-04 
ucec MAX H28 1.60% 4.55E-05 
gbm NBPF10 E3455 2.10% 1.37E-03 
kirc NEFH P655 0.70% 2.16E-03 
laml NPM1 W288 25.60% 1.58E-69 
brca NR1H2 Q175 1.80% 2.44E-10 

coadread NRAS G12 2.70% 3.80E-04 
skcm NRAS Q61 23.60% 1.89E-44 
thca NRAS Q61 8.00% 7.74E-07 
skcm PCDHGA1 R293 2.00% 3.48E-06 
stad PGM5 I98 10.50% 5.36E-22 
brca PIK3CA E542 4.10% 5.20E-06 
ucec PIK3CA E542 5.20% 1.04E-03 
hnsc PIK3CA E542 4.60% 2.27E-03 
brca PIK3CA E545 6.50% 2.92E-06 
hnsc PIK3CA E545 6.80% 2.43E-03 
ucec PIK3CA G118 2.40% 1.97E-04 
brca PIK3CA H1047 15.40% 6.47E-53 
ucec PIK3CA H1047 8.00% 2.75E-03 
brca PIK3CA N345 1.70% 1.63E-04 
ucec PIK3CA Q546 4.40% 5.53E-07 
ucec PIK3CA R88 4.40% 4.50E-08 
ucec PIK3CA R93 2.40% 1.25E-06 
ucec PTEN R130 23.30% 1.09E-57 
skcm RAC1 P29 3.90% 2.25E-10 
skcm RGS7 R44 2.40% 2.87E-05 
hnsc RPSAP58 Q111 3.90% 5.20E-06 
blca RXRA S427 5.00% 4.26E-08 
brca SF3B1 K700 1.00% 1.08E-04 
blca SLAMF1 S277 3.00% 6.19E-04 
stad SLC3A2 K331 2.60% 3.15E-05 

coadread SMAD4 R361 3.10% 7.01E-05 
stad SMAD4 R361 3.90% 7.97E-05 
stad STAMBPL1 K405 2.00% 1.49E-04 
stad TAF1B N66 2.60% 7.88E-05 
blca TP53 E285 3.00% 2.96E-03 
brca TP53 G108 0.60% 5.97E-03 
ov TP53 G245 2.80% 6.70E-03 
ov TP53 I195 2.80% 1.27E-04 
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lusc TP53 R158 4.50% 4.48E-06 
coadread TP53 R175 7.60% 3.44E-07 

hnsc TP53 R213 2.90% 8.65E-03 
blca TP53 R248 10.00% 1.66E-04 
ov TP53 R248 5.40% 1.03E-03 

luad TP53 R249 3.00% 1.95E-04 
lgg TP53 R273 17.50% 2.64E-16 
ov TP53 R273 6.60% 2.30E-04 
ov TP53 Y220 3.50% 1.28E-04 

skcm TRRAP S722 1.60% 4.83E-05 
laml U2AF1 S34 3.60% 7.26E-06 
luad U2AF1 S34 2.20% 1.89E-03 
thca UBBP4 L149 2.20% 6.23E-03 
stad UBR5 E2121 5.30% 1.72E-10 
brca USP36 K959 1.30% 2.17E-05 
stad ZNF365 K399 2.00% 1.49E-04 
gbm ZNF814 D404 3.10% 7.15E-05 
blca ZNF814 D404 4.00% 5.27E-03 
paad ZNF91 R333 14.30% 1.31E-07 
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