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Through their biased localization and function within the cell, polarity complex 

proteins are necessary to establish the cellular asymmetry required for tissue 

organization. Well-characterized germinal zones, mitogenic signals, and cell types make 

the cerebellum and neocortex excellent models to address the critical function of 

polarity complex proteins in the generation and organization of neural tissues. Here we 

report a focal distribution of Pals1, a central component of the apical complex, in 

progenitors. Our genetic analyses revealed that Pals1 deletion in the brain developed a 

remarkably undersized and disrupted layer structure of cerebral cortex and cerebellum.  

Furthermore we demonstrated that Pals1 is not only essential for brain organogenesis, 

but is also required for maintaining a cycling pool of progenitors in germinal zones and 

preventing premature differentiation. Interestingly, we did not detect profound changes 

in the downstream effects of well-established mitogenic/morphogenetic signaling 

through Shh and Notch in the Pals1 mutant.  However, the localization of other apical 

complex proteins and tight junction proteins was severely affected by the absence of 

Pals1, which likely resulted in impaired cell adhesion and compromised tissue integrity. 

Importantly, we have found a critical function of Pals1 in regulating mitosis as Pals1 

deletion causes the delay of mitotic progression and incomplete chromosome 

segregation.  Additionally, we uncovered a crucial downstream factor mediating Pals1 
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function, Pttg1, which is known as an essential protein for sister chromatid segregation 

during mitosis.  Thus, our study identifies Pals1 as a new intrinsic factor required for the 

proliferation and differentiation of neural progenitor cells by ensuring normal progression 

of mitosis. 
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Introduction 

Cell polarity is fundamental to many aspects of cell and developmental biology, and 

is involved in developmentally integral events, such as the process of proliferation, 

differentiation and morphogenesis in both unicellular and multicellular organisms. The 

epithelial cell layer is an intensively polarized layer of cells that contacts with the outside 

environment. The loss of adhesion and cell polarity results in tumors, apoptotic cell 

death and abnormal development of organs. Polarity complex proteins are known to be 

an intrinsic mechanism responsible for the generation of the apico-basal axis in the cell 

and for the maintenance of apical junctions (Assemat et al., 2008). The role of these 

complex proteins in setting up cell and tissue polarity which is required for various 

cellular process including asymmetric cell division, directed migration and growth during 

development is well established from Caenorhabditis elegans to mammals. Furthermore, 

fundamental roles of polarity complex proteins are identified in brain development.  

The mammalian cerebellum and cortex have a very specialized germinal zones 

which share specific epithelial characteristics. An increase in neuronal number during 

brain development is a highly regulated process defined by the number and cell division 

mode of progenitors in germinal zones (Gotz & Huttner, 2005). Several neuronal and 

glial progenitors are generated from these germinal zones during the brain development, 

depending on different stages or expression of different fate determinants. Although 

many intrinsic and extrinsic factors have been identified to influence cerebellum and 

cortical development, we address Pals1 as an intrinsic molecule essential for mitotic 

progression and the maintenance of the progenitor pool. With such evidence, we 
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support Pals1’s importance in the regulation of cell fate decisions during brain 

development.  

1. Polarity Complex Proteins and their interactions 

The formation of epithelial structure in tissue refers to the asymmetric distribution 

of several protein complexes, leading to cell polarity and cell-cell junctions. Polarized 

epithelial cells can result in differentiating two sides of membrane domains by 

sequestering different biomolecules: the apical domain facing the external environment 

and basal domain interfacing with adjacent cells and connective tissue (Figure 1). 

Through genetic studies, a set of genes were discovered in the C. elegans and 

Drosophila melanogaster model organisms, which were termed polarity complexes. 

These polarity complex proteins include the following three: Par3/Par6/aPKC (Par 

complex), Crumbs/Pals1/Patj (Crbs complex), and Scribble/Lgl/Dlg (Scrib complex).  All 

of the following complexes have been confirmed to be responsible for determining 

epithelial polarity, and they often interact each other to regulate polarity via specific 

interacting domains (Figure 2). Such responsibilities include the development of the 

apico-basal polarity and the maintenance of apical junctions, such as tight junctions and 

adherens junctions, in mammalian epithelial cells. Each member of the core polarity 

complex proteins will be fully explored in extensive detail regarding their essential 

interacting partners and their individual roles in the maintenance of cell polarity. In this 

thesis, through referring back to known aspects of polarity complex proteins and their 

developmental implications, a conclusion will be made regarding the identified functions 

of the studied Pals 1 protein in various systems, including the developing cerebellum 
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and the neocortex, focusing on different types of progenitors and their regulation of 

proliferation and differentiation.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

Figure 1. The localization of apico

cells. Apico-basal complex proteins are localized in 

interact with each other but also interact with junctional molecules

and E-cadherin and β-catenin at adherens junction

localization of polarity complex proteins 

and axon specification. 
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Figure 1. The localization of apico-basal complex proteins and their function in polarized 

basal complex proteins are localized in a distinct location, where they can not only 

interact with each other but also interact with junctional molecules, such as Zo1 at tight junction

at adherens junctions, to regulate cell polarity in the cell. The 

localization of polarity complex proteins is also involved in spindle orientation, cell fate decision, 

 

 

 

 

 

and their function in polarized 

distinct location, where they can not only 

such as Zo1 at tight junctions 

to regulate cell polarity in the cell. The 

involved in spindle orientation, cell fate decision, 
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Figure 2. The structure of polarity complex proteins. A. Crb complex, B. Par complex, and C. 

Scrb complex. The various domains are shown as different symbols.  
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1.1 Par complex proteins overview 

The Par complex proteins are the first identified genes that are involved in cell 

polarization during asymmetric cell division in the zygote of C. elegans. As its name 

implies, the Par proteins are integral factors for the distribution of determinants and cell 

polarity. For example, removal of Par3 protein provides insight on the protein’s function 

resulting in asymmetrically distributed proteins in the partitioning of early fate 

determinants (Moghadam B et al., 1995). Kemphues et al. identified six par genes 

(Par1-6) through genetic screens. Mutation of these genes results in abnormal cleavage 

in dividing cells and also abnormal distribution of P granules (Kemphues et al., 1988). In 

addition, the seventh par gene named aPKC3 was discovered by Tabuse et al., and its 

knockdown resulted in a similar phenotype as seen in par3 knockdown (Tabuse et al., 

1998). With this positive link, Par complex protein, Par6/Par3/ aPKC3, was born. 

1.1.1 Mammalian Par6 

There are three Par6 proteins identified in mammals encoded by separate genes: 

Par6A/C, Par6B and Par6D/G. All of them have three conserved domains which 

mediate their interactions with other members of the complex (Assemat et al., 2008). All 

Par6 proteins bind to other polarity complex proteins, such as Par3, Pals1 and Crb3 

through the PDZ domain (Hurd et al., 2004, Joberty et al., 2000; Lemmers et al., 2004; 

Lin et al., 2000). Par6 has a Phox/Bem 1(PB1) domain, which is able to bind with aPKC, 

followed by Cdc42/Rac interaction binding motif, which can bind to the Cdc42 or Rac 

GTPases (Bose et al. 2006).   
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Although three Par6 proteins are ubiquitously expressed, they show slightly 

different expression in the tissue. Par6A expression is enriched in the brain, and both  

Par6B and Par6G are highly expressed  in the kidney (Gao & Macara, 2004). Activated 

Par6-aPKC localized at the leading edge in migrating astrocytes and keratinocytes 

directs microtubules required for polarized migration (Cline and Nelson, 2007). 

Par6 proteins are able to bring polarity protein to specific locations, such as tight 

junctions, and out compete interactions with the other polarity complex protein (Suzuki 

& Ohno, 2006). For example, interaction between Par6-Pals1 interrupts Pals1-Patj 

binding and interferes the formation of the tight junction (Wang et al., 2004), suggesting 

that Par6 is essential for tight junction formation. In contrast with this idea, Par6B 

overexpression delays tight junction formation, although there was no effect on 

adherens junctions formation (Gao et al., 2002).  A mutation of the PDZ domain in 

Par6B is satisfactory to disrupt tight junction, suggesting the importance of its interaction 

with other polarity complex proteins in tight junction. Interestingly, despite the fact that 

Par6G is also involved in the formation of tight junctions, unlike Par6B, it does not 

interrupt tight junction formation when overexpressed (Gao & Macara, 2004).  

Although the exact molecular mechanism underlying the functions of Par6 has 

not yet been elucidated, the current known major role of Par6 is transient interaction 

with aPKC to maintain tight junctions, and physical interaction with Scribble polarity 

complex, Lgl (Yamannaka et al., 2003). Phosphorylated Lgl detaches from the aPKC-

Par6 complex due to competition of Par3, leading to the aPKC-Par6-Par3 complex 

(Yamanaka et al., 2003).  
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1.1.2  Mammalian Par3 

 Two Par3 genes, Par3A and Par3B, have been identified in mammals. The 

Par3A protein has three different isoforms each having three PDZ domains. However, 

each of them have different molecular weights: 180kDa, 150 kDa, and 100 kDa. Even 

more, amongst the three Par3A isoforms, all have aPKC binding domains except the 

100kDa isoform protein. Par3A binds with Par6 via PDZ domain to interact with aPKC 

(Lin et al., 2000), but Par3B is not able to interact with aPKC (Kohjima et al., 2002; Gao 

et al., 2002). Although Par3A has been known as a scaffolding protein that interacts 

with Par6 and aPKC, Par3A can form a homodimer via its N-terminus which leads to the 

apical localization of Par3A (Mizuno et al., 2003). 

Par3A expression is high in the heart, kidney, and brain (Lin et al., 2000). Par3B 

expression is high in the kidney, lung and skeletal muscle. Par3A and Par3B can be 

colocalized with Zo1 at tight junctions (Assemat et al., 2008).  

The proper localization and function of Par3 is regulated by the presence of 

aPKC, which has a capability to interact with and phosphorylate Par3A (Pieczynski and 

Margolis, 2011). The knockdown of Par3A delays apical protein localization to the 

membrane, leading to mislocalization of apical domain and formation of multiple lumens 

in MDCK cells when there is a point mutation in S827/829A which lacks the ability 

interacting with aPKC (Horikoshi et al., 2009). In epithelial cells, Par3A may be 

stabilized by binding with the junctional adhesion molecules (JAM) via its first PDZ 

domain, and they are colocalized to the area of cell-cell contact (Ebnet et al., 2001). The 

functional study addresses the role of Par3 essential for the growth and elongation of 
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the primary cilium through the interaction with Kinesin-2 in MDCK cells (Sfakianos et al., 

2007). In addition, Par3 can induce neuronal polarization via direct regulation of 

microtubules in mouse hippocampal neurons (Chen et al., 2013).  

1.1.3  Mammalian aPKC   

Two aPKC genes, aPKCλ/ι and aPKCζ, have been identified in mammals (Selbie 

et al., 1993; Ono et al., 1989). Both of these proteins have similar molecular weights (75 

kDa) (Bose & Wrana, 2006). aPKCλ/ι and aPKCζ can be separated from conventional 

PKCs since they have a unique PB1 domain interacting with Par6. Unlike classical 

PKCs, they do not have a C2 domain, and they only have a partial C1 domain. In turn, 

this leads to the inactivation of aPKCλ/ι and aPKCζ by Ca2+, diacyl-glycerol and 

phorbol esters (Hirano  et al., 2004). The only conserved domain from the PKC proteins 

is the catalytic domain located in the C-terminus (Akimoto et al., 1994; Moscat & Diaz-

Meco, 2000). This domain is known to phosphorylate Par3 (Nagai-Tamai et al., 2002) 

and Lgl (Plant et al., 2003).  

Both aPKCλ/ι and aPKCζ are highly expressed in the brain and lung. In addition, 

aPKCζ is observed in the testis and kidney. The aPKC proteins localize at tight 

junctions with other Par complex proteins in MDCK cells.  

Unlike other polarity complex proteins that do not have kinase activity, aPKC 

proteins have serine threonine kinase catalytic activity. The overexpression of kinase 

deficient aPKC mutant results in the disruption of tight junction formation in MDCK cells, 

followed by mislocalization of Par6 and Par3 (Suzuki et al., 2001). Noda et al. have 

identified that Par6 proteins not only bind with aPKCλ/ι and aPKCζ, but also directly 
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interact with GTP-bound Rac through CRIB-like motif and Cdc42. When the 

constitutively active form of Rac is expressed with aPKCs and Par6 in HeLa or COS-7 

cells, these proteins co-localized to membrane ruffles, where the leading edge of 

polarized cells occur. In turn, this suggests that Par6 functions as an adaptor protein 

that links activated Rac and Cdc42, as well as aPKCs (Noda et al., 2001).  When Cdc42 

is activated, phosphorylation of aPKC occurs, and as a result, activation of aPKC also 

occurs. This series of events leads to tight junction formation (Standaert et al., 1999; 

Gopalakrishnan et al., 2007).  

1.2 Crbs complex proteins overview 

The first discovery of Crbs gene is derived from D. melanogaster (Jurgens et al., 

1984). Mutations in the Crbs gene severely disrupts the embryonic cuticle and epithelia 

derived from the ectoderm, as well as leading to apoptosis during embryogenesis  

(Tepass et al., 1990). The Drosophila embryo forms a monolayer structure sharing 

many characteristics of epithelial structure, such as high polarization. At later stages of 

the Drosophila embryo development, the lateral plasma membrane is divided by three 

distinct domains: Sub-apical complex, Adherens junction and Septate junction. The 

mutations of Crbs in Drosophila embryos result in the failure of formation of adherens 

junctions, severely disrupted epithelial structure, and in some cases induced cell death 

(Tepass et al., 1990). 

The Crb protein is mainly localized in the apical domain of epithelial cells. The 

molecular weight of Drosophila Crb is 200 kDa. The small cytoplasmic domain has an 

integral function in Crb, and mutation of this domain shows complete loss of function 
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(Wodarz et al., 1993). Conversely, overexpression of Crb leads to the expansion of the 

apical domain, while the basolateral domain is decreased (Wodarz et al., 1995).  

Furthermore, single layered epithelium transforms to mutilayered tissue when Crb is 

overexpressed (Klebes & Knust, 2000).  

Stardust (Sdt), Drosophila homologue of Pals1, is expressed in embryonic epithelia 

from the onset of gastrulation. The Sdt mutant shows the loss of epithelial integrity and 

cell shape, causing failure to concentrate the scattered spot adherens junctions into a 

continuous zonula adherens (ZA). As a result, cells lose adhesion, and the epithelium 

becomes a mutilayered structure. The developmental defects induced by sdt mutations 

are homologous to those associated with crb mutations, suggesting the idea that these 

genes are linked in a common pathway. Studies on double mutant by Knust et al. show 

that sdt acts downstream of Crb (Knust et al., 1993) and binds to the four C-terminal 

amino acids of Crb through its PDZ domain (Bachmann et al., 2001).  

Dpatj has been known as a component of Crb complex with Crb and Sdt in 

Drosophila (Roh et al., 2002; Pellikka et al., 2002). The discovery of Dpatj was from the 

study of dlt (Disk Lost) locus. Bhat et al. addressed a newly identified protein that 

interacts with Crb through four PDZ domains. They showed that this protein is essential 

for epithelial cell polarity (Bhat et al., 1999). Subsequent studies have identified that the 

dlt locus actually encodes several genes, and mutations on dlt would disrupt the 

Drosophila Codanin-1 homolog, which is a cytoplasmic proteins. Finally, this newly 

identified protein is Dpatj (Pielage et al., 2003). The depletion of Dpatj induces loss of 
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polarity (Pielage et al., 2003).  Dpatj is known to bind at the N-terminus of L27 domain 

of Sdt, therefore, a second polarity complex has emerged. 

1.2.1 Mammalian Crb 

There exists only one Crb gene in D. melanogaster. However, three Crb genes, 

have been identified in mammals: Crb1, 2, 3 with sizes of 154, 134, and 13 kDa, 

respectively (Medina et al., 2002). These three Crb proteins have highly conserved 

transmembrane and cytoplasmic domain (Assemat et al., 2008). Crb1 contains 3 

Laminin A/G domains, and Crb2 has 19 and 14 EGF-like domains, respectively in its 

extracellular domain (Hollander et al., 1999; Katoh, 2004). In contrast, Crb3 has only a 

short extracellular domain, which does not have any other domains that interact with 

other proteins (Medina et al., 2002). The cytoplasmic tail of Crbs has two motifs: a 

FERM binding domain and a PDZ binding domain (Makarova et al., 2003). 

Crb1 is mainly localized in the retina, and Crb2 is highly expressed in the retina and 

brain (Hollander et al., 2001), but Crb3  is expressed in skeletal muscles and in 

epithelial tissues (Fogg et al., 2005, Makarova et al., 2003).  

CRB1 mutations are involved in Leber congenital amaurosis (LCA) and retinitis 

pigmentosa (RP) which are retinal diseases. This suggests that Crb1 may impair cell 

adhesion and the formation of the retina layer structure to contribute to these disorders 

(Hollander et al., 1999 & 2001). Interestingly, Crb 1 and Crb2 show significantly similar 

homology in their molecular structure but Crb2 mutations have not been identified in 

patients with these pathological conditions (Hurk et al., 2005). As Crbs has also been 

known to stabilize apical junctions in Drosophila, mutations of the FERM binding motif 
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and loss of the ERL1 severely disrupts the formation of tight junctions in MCF10 cells 

(Fogg et al., 2005). Besides the common role of Crb in the formation of tight junctions, 

Crb3 has unique function that is essential for the formation of cilia via the kinesin motor 

protein. When Crb3 was knocked down in MDCK cells, ciliogenesis is profoundly 

impaired  (Fan eta l., 2002). 

1.2.2 Mammalian Pals1 

PALS1 is a scaffolding protein that has multiple protien interaction domains. The 

strong mRNA expression of Pals1 has been identified in the placenta, kidney, apical 

side of neocortex, and its protein localization is observed in the tight junction (Kamberov 

et al., 2000). 

We will discuss more detail in chapter 1.4 regarding the role of Pals1 with the 

significance of Pals1 in the thesis.  

1.2.3 Mammalian Patj/Mupp1 

Two homologues of the Drosophila Dpatj are identified in mammals: Patj (Pals1 

associated tight junction protein) and Mupp1 (multi PDZ domain protein) (Roh et al., 

2002). 

Patj protein is 196 kDa and is an interacting protein with Pals1 and localizes at tight 

junctions together with Pals1. Patj is characterized by having one L27 domain and 10 

PDZ domains that interact directly with ZO3 and Claudin1 via its 6 and 8 PDZ domains 

(Roh et al., 2002). In addition, Pals1 and Patj interact with each other via the L27 

domain (Roh et al., 2002). On the other hand, the size of Mupp1 is 219 kDa and 
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interacts with the serotonin 5-hydroxytryptamine type 2 receptor (Ullmer et al., 1998). 

Mupp1 contains one L27 domain and characterized with 13 PDZ domains. Mupp1 binds 

with Pals1 via L27 domain as Patj does. Mupp1 and Patj are structurally similar having 

multiple PDZ domains and the ability to bind Claudin1, a tight junction protein (Assemat 

et al., 2008). 

Patj is mainly expressed in epithelial tissues such as bladder, testis, colon, heart, 

kidney, brain, and skeletal muscle (Lemmers et al., 2002; Philipp & Flockerzi, 1997). 

Similarly, the expression of Mupp1 is observed at tight junctions (Hamazaki et al, 2002) 

and also identified in the brain, heart, placenta, liver kidney and skeletal muscle (Ullmer 

et al, 1998).  

The disruption of Patj by overexpression or downregulation with RNAi induces 

destructive localization of ZO family proteins and Occludin, leading to the idea that Patj 

is essential for the stabilization of tight junctions (Lemmers et al, 2002; Michel et al, 

2005; Shin et al, 2005). Specifically, the results from a Patj knockdown support that 

Crb3 and Pals1 are not localized at the tight junction, suggesting that Patj stabilizes the 

Crb3 complex (Michel et al,2005). Although its functional role has not been elucidated, it 

has been reported that Mupp1 binds with several tight junction molecules such as JAM 

(junctional adhesion molecules), CAR (Coxsackievirus-adenovirus receptor) and 

Claudins in addition to Pasl1 and Crb. This leads to the idea that Mupp1 may serve as a 

scaffolding protein (Hamazaki et al, 2002; Coyne et al, 2004; Jeansonne et al, 2003; 

Poliak et al 2002).   

1.3 Scrib complex proteins overview 
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In Drosophila, the defect of Scrib was characterized by the disruption of cell 

adhesion and polarity. The Scrib mutant shows a corrugated cuticular surface, whereas 

wild type cuticle shows a smooth and continuous shape (Bilder & Perrimon, 2000). Scrib 

protein has 195 kDa moclular weight and as a member of the LAP (LRR  and PDZ) 

protein family, contains 16 leucine rich repeats (LRR) and four PDZ domains (Bilder et 

al., 2000).  

The expression pattern of Scrib at early embryonic stage is at zonula adherens, 

whereas in mature epithelial cells it expresses at the septate junction. The mutants of 

Scrib do not induce the loss of entire cell polarity, instead, apical proteins are 

mislocalized (Bilder & Perrimon, 2000).  

There are two other Scrib complex components: Lgl (Lethal giant larvae) and Dlg 

(Discs large). Lgl and Dlg were originally identified as tumor suppressor genes in 

Drosophila during larvae formation. The mutations of Lgl and Dlg led to tissue-specific 

tumors (Stark & Bridges, 1926).  

The molecular weight of Lgl is a 130 kDa that has short domains consisting of 

WD repeats (Lutzelschwab et al., 1987). Lgl mutations induces defective embryonic and 

larval development (Mechler et al., 1985), such as neoplastic overgrowth of larval brains 

and imaginal discs (Woodhouse et al., 1998).  

The molecular weight of Dlg is a 102 kDa and as a member of MACUK proteins 

consists of one L27 domain, three PDZ domains, one SH3 domain, and one GUK 

domain. The mutations of dlg induce overgrowth of the imaginal discs (Woods & Bryant, 

1991).  
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Although there is no physical interaction among Scrib complex proteins, relative 

localization and their similar loss of function suggest that Scrib, Lgl, and Dlg may form a 

biochemical complex to control apical and basolateral membrane domains (Bilder et al., 

2000). 

1.3.1 Mammalian Scrib  

Mammalian Scrib is a 175 kDa protein and contains a large cytoplasmic multi-

domain (Bilder & Perrimon, 2000), and is a member of  LRR and LAP family of proteins 

due to the 16 LRRs and 4 PDZ domains (Bilder et al., 2000). It has been known that the 

LRR repeats direct Scrib protein’s target to the basolateral membranes (Navarro et al., 

2005).  

The expression of Scrib is highly expressed in the skin, placenta, breast and 

intestine, but low in the liver, kidney and skeletal muscles (Navarro et al., 2005).  

Scrib directly interacts with ZO2 through its PDZ domains (Metais et al., 2005), 

but Scrib localization does not overlap with ZO2 molecules at tight junction. Instead, 

Scrib colocalizes with adherens junction molecule such as β-catenin and N-cadherin 

(Navarro et al., 2005). Although Scrib does not colocalize with tight junction molecules, 

the downregulation of Scrib induces delayed assembly of tight junctions and defective 

morphology in MDCK cells (Qin et al., 2005).   

1.3.2 Mammalian Dlg  

Dlg is a member of MAGUK and have 5 family members (Dlg1-5). However, in 

this chapter, we will focus on Dlg1 due to its close relation to Drosophila Dlg and that it 

is a well-studied molecule in epithelial cells (McLaughlin et al., 2002). Besides being a 
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part of the MAGUK family, having three PDZ domains, one SH3 domain, one hook 

domain and a GUK domain, an L27 domain is located at N-terminus of Dlg1. Dlg1 binds 

with multiple proteins including membrane palmitolyated protein (MPP) family members 

such as MPP2, MPP3, and MPP7 (Karnak et al., 2002), suggesting that Dlg1 functions 

as a scaffolding protein. 

Dlg1 mRNA expression was detected in the lung, kidney, liver, brain and skeletal 

muscle (Laprise et al., 2004).  

It has been shown that Dlg1 deficient mice demonstrate delayed embryonic 

growth and die after birth (Caruana & Bernstein, 2001; Iizuka-Kogo et al., 2007). In 

addition, the loss of Dlg1 demonstrated that Dlg1 is only expressed in adherens junction, 

and this induced the disruption of polarity and nephrogenesis, led by delayed 

mesenchyme to epithelial transition (Iizuka-Kogo et al., 2007). The SH3, Hook, and 

GUK domains that are localized in C-terminus are known to be essential for 

development. The truncation of the C-terminus induces defective cleft palate (Caruana 

and Bernstein, 2001). 

1.3.3 Mammalian Lgl  

 Multiple Lgl proteins are identified in mammals: Lgl1, Lgl2, Lgl3 (Syntaxin-binding 

protein 5) and Lgl4 (Syntaxin-binding protein 5-like). The molecular weight of each 

protein is 115 kDa, 113 kDa, 120-130 kDa, and 130 kDa, respectively. They are 

characterized with repeated WD40 domains that may be interacting with Scrib via these 

domains (Kallay et al., 2006).  
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The localization of Lgl1 and Lgl2 is observed in the basolateral membrane, which 

is below the adherens juctions, and both proteins are expressed in the stomach and 

brain (Assemat et al., 2008).  

The overexpression of Lgl1 and Lgl2 shows disruption of the formation of 

junctional complexes during the polarity establishment phase. Despite this disruption, 

there is no effect in confluent MDCK cells. In order to be localized in basal membrane, 

Lgl1 and Lgl2 need to be phosphorylated by aPKC to release the interaction between 

Par6 and aPKC, as non-phosphorylated Lgl1 is localized in the apical domain 

(Yamanaka et al., 2003). Although the overexpression of aPKC at the apical side does 

not change cell proliferation, it triggers cytoplasmic accumulation of Lgl in Drosophila 

epithelia, suggesting that Lgl may be involved in tissue homeostatsis (Grifoni et al., 

2007) 

Collectively, polarity complex proteins are inter-connected and share their 

functions to maintain cell polarity and tissue integrity. The primodia of many organs 

shares the characteristics of epithelium, and this suggests that cell polarity is an 

essential factor for the proper organogenesis. This leads to the idea that cell polarity is 

integral to the maintenance of epithelia in the primodia, and the failure to establish cell 

polarity during development may induce defective cell-cell adhesion, eventually 

malformation of organs.  

1.4 Functional studies of Pals1 

Pals1 is a 77 kDa protein working as a scaffolding protein, mediating other 

polarity complex proteins such as Par6, Crumbs, and Patj via direct or indirect 
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interaction . The yeast two-hybrid screen using the intracellular domain of CRB1 on a 

retinal cDNA library as bait showed that Pals1 was the only interacting protein identified 

(Roh et al., 2002). Pals1 downregulation induces defects in tight junction and cell 

polarity (Straight et al., 2004), followed by mislocalization of E-cadherin in MDCK cells 

(Wang et al., 2007). In addition, Pals1 depletion causes loss of Patj, but Crb expression 

is not significantly changed by the removal of Pals1 (Straight et al., 2004; Wang et al., 

2007).  

1.4.1   Gene structure of Pals1, a member of p55-like MAGUK 

Membrane-associated guanylate kinase (MAGUK) proteins are scaffolding 

proteins having Src homology 3 (SH3), PSD-95 Discs Large-zona occludens-1 (PDZ), 

and guanylate kinase (GUK) domains (Roh et al., 2002). A subfamily of MAGUK 

proteins are divided by DLG-like, ZO1-like, p55-like, and LIN2-like, depending on the 

presence of additional domains (Tseng et al., 2001). Pals1, known as membrane-

associated palmitoylated protein 5 (MPP5), is a subset of p55-like MAGUK in the 

human gene. It contains highly conserved domains from flies to mammals: evolutionarily 

conserved region 1(ECR1), a bipartite L27 (L27N & L27C), PDZ, SH3, and GUK 

domains (Figure 3).  Pals1 is an adaptor protein that contains several domains to 

interact with other proteins. Pals1 can bind directly to the ERL1 motif of Crb1 via PDZ 

domain and can link with CRB3 as well through its PDZ domain (Roh et al., 2002, 

Makarova et al., 2003). In addition, L27N can interact with Patj and L27C with Lin7. 

Direct protein-protein interaction between Pals1 and Par6 has been known to require 

the ECR1 of Pals and PDZ of Par6, respectively (Wang et al., 2004). Sequence analysis 
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of Pals1 addressed two prospective NLS motifs located between the ECR1 and L27 

domains and between the SH3 and GUK domains, respectively. This suggests that 

Pals1 may be located and play a significant role in the nucleus, despite Pals1 

localization and function at the apical junction is mainly considered in the most of 

previous studies. Together, domain analysis of Pals1 demonstrated that Pals1 can bring 

Crb and patj together to form the Crb tripatate complex and mediate physical interaction 

with Par complex.   

1.4.2   The significance of Pals1 during development 

Although previous studies revealed the role of Pals1 as a scaffolding protein in 

Crb complex proteins for the maintenance of cell polarity and adhesion in epithelia, only 

limited number of studies has been done for the role of Pals1 during development. As 

the mutations of Crbs and Dpatj impair morphogenesis of photoreceptor cells and 

induce light-dependent retinal degeneration in Drosophila, mutations in Sdt also lead to 

the light-dependent retinal degeneration depending on its isoforms (Berger et al.,2007). 

Rohr et al. reported that heart and soul (Has)/protein kinase C iota (PRKCi)  and Pals1 

ortholog, nagie oko (Nok)/MPP5 are necessary for the polarized epithelial organization 

and coherence of myocardial cells during heart cone formation in zebrafish. The zygotic 

mutations of Nok induces myocardial defects at later stages such as incomplete heart 

tube elongation and failure of myocardial cell expansion. Thus, they identified that Nok 

is essential for cardiac morphogenesis by regulating the polarized epithelial organization, 

coherence of the myocardium and expansion of myocardial cell size to form an 

elongated tube from the heart cone (Rohr et al., 2005).  Using deletion constructs of 
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Nok to define essential domains for cell polarity and cardiac morphogenesis, the 

deletion of the PDZ domain completely recapitulates all Nok mutant phenotype (Bit-

Avragim et al., 2008), suggesting the critical importance of interaction with Crb proteins.  

 Unlike the Crb family which is comprised of three different genes, Pals1 is a 

single gene in mammals. Pals1 mRNA expression is high in the placenta and kidney, 

and moderate in the brain, heart and skeletal muscle (Kamberov et al., 2000). During 

eye development, Pals1 is known to be required for Crb1 localization in the subapical 

region of the Muller glia (Rossum et al., 2006).  Conditional deletion of Pals1 in the 

developing retinal progenitor cells inhibits the assembly of Crb complex proteins and 

leads to the neural cell death, adhesion defects, tissue polarity disruption and 

photoreceptor degeneration, followed by visual impairment and mimicking the human 

LCA phenotypes (Cho et al., 2011).  
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Figure 3. The schematic diagram of Pals1 and its conserved domain with putative NLS 

and NES sequences within the Sdt/nok/Pals1/MPP5 protein family. 

MAGUK protein family and contains evolutionarily conserved domains: ECR1, a bipartite L

PDZ, SH3, and GUK. Protein-protein interactions of Pals1 with other polarity complex proteins 

take place through the major domains: ECR1.

conserved in different species. T
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the N-terminal of L27N domain.   
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In the developing cortex, Pals1 deletion leads to the precocious progenitor cells 

withdrawal from the cell cycle, inducing premature differentiation to neurons during early 

neurogenesis followed by massive apoptotic cell death, resulting in significantly reduced 

size of the brain (Kim et al., 2010). Although previous studies have elucidated the role of 

Pals1 in different species and organs, it still remains to be elucidated how and why the 

depletion of Pals1 induces cell death and progenitor depletion and to identify the 

underlying mechanisms that cause these phenotypes. 

1.5  Cerebellum development 

The cerebellum is the primary center for motor coordination and essential for brain 

organization in cognitive processing and sensory discrimination (Schmahmann 2004).  

Impaired neuronal defects in the cerebellum usually results in motor dysfunction and 

ataxia such as Zelweger syndrome, paroxysmal ataxia, and Fryns syndrome in humans 

(Volpe & Adams, 1972). The volume of the cerebellum occupies only 10% of the total 

brain, but contains 80 to 85% of human neurons (Herrup & Kuemerle 1997). The 

cerebellum comprises an outer cortical structure, white matter, and a set of cerebellar 

nuclei (CN) beneath the white matter. The CN can project efferent fibers to other organs 

such as the thalamus, brainstem, and spinal cord (Paxinos 1995) to mediate motor 

movements and balance.  

Although the cerebellum is a morphologically complex organ, the cerebellar cortex 

is histologically homogeneous and divided into three distinct cellular layers. First, the 

molecular layer (ML) contains two major interneurons, the basket and stellate cells. 
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Second, the Purkinje cell layer (PCL) is occupied by the cell bodies of Purkinje cells (PC) 

whose dendrites arborize in the ML and Bergmann glia (BG). Third, the granule cell 

layer (GCL) is located in the deepest area from the cerebellar cortex, and contains 

mainly GCs and other interneurons such as Golgi cells, Lugaro cells and unipolar brush 

cells.  

The neuroepithelium that gives rise to the cerebellum undergoes sequential stages 

of structural and genetic transformations to generate a complex foliated structure with 

different molecular coding (Sillitoe & Joyner, 2007). In mice at E9, the cerebellum arises 

from dorsal rhombomere 1(r1) of the developing hindbrain (Millet et al. 1996, Wingate & 

Hatten 1999, Zervas et al. 2004). From E9 to E12, the wing-like morphology is 

generated by forming medial-lateral axis of the cerebellar primordium (Sgaier et al. 

2005), and this medial-lateral axis is maintained until adulthood.  At E17, four fissures 

separate cerebellum into five folds along with the anterior to posterior axis. The 

cerebellum acquires a three-dimensional structure AP folds intersected by ML molecular. 

Rudimentary synaptic connections and the circuitry of the cerebellum has been 

established by the animal’s birth. By postnatal day 16, the cerebellum completes the 

organization of all cell types in the layers (Sillitoe & Joyner, 2007). 

1.5.1 Progenitors  in cerebellum development 

The cerebellum has two spatially distinct germinal zones: the ventricular zone 

(VZ) and the upper rhombic lip (URL). A genetic fate-mapping study in mice has 

addressed that GC precursors originate from the dorsal portion of rhombomere 1 

(Machold & Fishell 2005, Sgaier et al 2005, Wang et al 2005). However, GC precursors 
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are only generated from upper rhombic lip (URL) which is located adjacent to the fourth 

ventricle (Wingate & Hatten 1999). In addition, other cerebellar neurons (unipolar brush 

cells, projection neurons of the deep nuclei) and noncerebellar glutamatergic neurons 

also arise from the URL (Carletti & Rossi 2008). The specification of GC precursors in 

the URL is regulated by several transcription factors such as Atoh1 (Ben-Arie et al 

1997), and secreted factors, FGFs and BMP, diffusing from the boundary of 

mesencephalon/rhombencephaon and the dorsal midline, respectively (Chizhikov et al 

2006, Machold et al 2007, Basson et al 2008). GC precursors start tangential migration 

over the surface of the URL at around E13.5 in mouse (Miale & Sidman 1961) to form 

the external granular layer (EGL). Similarly like migrating interneurons in telencephalon, 

migrating GC precursors have a unipolar morphology and do not follow radial glia (Metin 

et al 2008, Ryder & Cepko 1994, Gilthorpe et al 2002). Time-lapse experiments showed 

that GC precursors are saltatory during the migration, alternating phases of forward 

movement with pauses (Gilthorpe et al 2002, Rieger et al 2009).  

The second germinal zone of the cerebellum is the ventricular zone (VZ). The 

genetic inducible fate mapping (GIFM)  using Ptf1a-Cre allele showed that PCs, and 

three of the GABAergic interneurons (Golgi, stellate, basket) are generated from VZ, 

and possibly astrocytes (Hoshino et al., 2005; Pascual et al., 2007).  Ascl1CreER  allele 

GIFM discovered different time stages that GABAergic neurons and glial cells were 

generated by administration of tamoxifen. They described that PCs and GABAergic 

deep cerebellar nueclei are the first born cells from VZ from E10 to 11.5 and E10.5 to 

13.5, respectively. A subset of Bergmann glia are produced from E13.5 to 14.5, and 
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other majority of GABAergic interneurons are generated from E13.5 to early postnatal 

stages (Sudarov et al., 2011).      

1.5.2 Neural progenitors & major signaling pathway in cerebellum development 

The generation, proliferation and differentiation of cerebellar progenitors is a 

tightly regulated process. Several signaling pathways are essential for the proper 

regulation to maintain the progenitor pool. I address two signaling pathways, Shh and 

Notch, that have been known to be critical for the maintenance of neurogenesis and 

gliogenesis during cerebellar development.  

1.5.2.1  Shh signaling pathway in cerebellum 

The regulation of GC precursor (CGNP) proliferation and cerebellar foliation is 

controlled by sonic hedgehog (Shh) signaling pathway. Hedgehog was first identified in 

Drosophila embryo, and mammalian hedgehog comprises three proteins: Sonic 

hedgehog, Indian hedgehog, and Desert hedgehog (Vaillant & Monard, 2009). The Shh 

signaling pathway activates its target genes through the activity of the Gli transcription 

family such as Gli1, Gli2, and Gli3. When Shh is absent, Patched 1 (Ptc) 

transmembrane protein inhibits Smoothened (Smo) transmembrane protein G coupled 

receptor. This induces Gli3 cleavage and transformation to a transcriptional repressor 

form to repress their target genes (Figure 4). Upon binding of Shh to PTC, this inhibition 

between Ptc and Smo is released, and Gli3 is not cleaved, leading to the initiation of 

transcriptionally active Gli1 and Gli2 transcription factors (Fuccillo et al., 2006).  

PCs express Shh mitogen from around E17 onward, as a result, massive 

proliferation of GCs are induced by Shh expressed from PCs (Sidman et al., 1962; 
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Caddy & Biscoe, 1979; Wetts & Herrup, 1982; Herrup, 1983). The first study shown on 

the role of Shh in GC proliferation was in culture experiments. It was shown that the 

treatment with Shh antibodies into the cerebellum reduces GC proliferation (Dahmane & 

Ruiz-i-Altaba, 1999; Wallace, 1999; Wechsler-Reya & Scott, 1999). Conditionally 

inactivated Shh in the mouse using loxP-Cre system showed that Shh is necessary for 

GCP proliferation and cerebellar foliation (Lewis et al., 2004). The Gli2 downstream 

factor of Shh signaling play a role as a main activator for Shh induced proliferation of 

GCPs (Corrales et al., 1999), and SMO transmembrane protein functions as a critical 

component of the receptor complex in Shh signaling (Murone et al., 1999).  

 

 

 

 

 



 

Figure 4. Schematic diagram for Shh signaling.

repress target genes. In the presence of ligand, this inhibition is released, and Gli activator 

induces target gene expression. 
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Figure 4. Schematic diagram for Shh signaling. In the absence of ligand, Ptc inhibits Smo to 

repress target genes. In the presence of ligand, this inhibition is released, and Gli activator 

 

 

In the absence of ligand, Ptc inhibits Smo to 

repress target genes. In the presence of ligand, this inhibition is released, and Gli activator 
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1.5.2.2  Notch signaling pathway in cerebellum 

Notch is an evolutionarily conserved signaling pathway throughout the animal 

kingdom. Mammalian Notch receptors are composed of four proteins from Notch1 to 

Notch4 (Bolos et al., 2007), and they contain a large extracellular domain that is 

involved in ligand binding and a cytoplasmic domain that is important for signal 

transduction. The extracellular domain has epidermal growth factor (EGF)-like repeats 

that are essential for binding with Notch ligands (Fehon et al.,1990; Rebay et al., 1991), 

followed by three cysteine-rich LIN12/Notch repeats (LNR) to inhibit signaling in the 

absence of the ligands.  Upon ligand binding to Notch extracellular domain, this induces 

proteolytic cleavage of extracellular domain. This generates the translocalization of 

Notch intracellular domain (NICD) to the nucleus to activate target gene expression 

shown in Figure 5 (Oswald et al., 2001).  

Glutamatergic interneurons and astrocytes, including Bergmann glia, stem from 

the same germinal neuroepithelia (Carletti & Rossi, 2008; Hoshino, 2012), leading to the 

idea that the two lineages might be related. This idea is supported by studies of Notch 

signaling in the cerebellar primordium, indicating that both cerebellar neurons and glia 

may be generated by common ancestors. Notch is expressed in the VZ, starting from 

around E10 in the mouse (Machold et al., 2007). The ablation of Notch in the 

cerebellum results in premature neuronal differentiation and undergoes apoptotic cell 

death arising from the VZ (Lütolf et al., 2002; Machold et al., 2007), leading to the 

reduced size of cerebellum (Lütolf et al., 2002). In contrast, the Notch intracellular 
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domain is constitutively activated by retroviral expression and promotes the genesis of 

astrocytes at the expense of neurons (Machold et al., 2007).  

 

 

 

 

 

 

 



 

Figure 5. Canonical Notch signaling pathway.

undergoes proteolysis. This leads to the translocalization of Notch intracellular domain to the 

nucleus to activate target genes. 
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Figure 5. Canonical Notch signaling pathway. Upon binding with ligand, the 

undergoes proteolysis. This leads to the translocalization of Notch intracellular domain to the 

nucleus to activate target genes.  

 

the Notch receptor 

undergoes proteolysis. This leads to the translocalization of Notch intracellular domain to the 
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1.5.3 Cell polarity and cerebellum development  

Although the role of polarity complex proteins in dendrite development, axon 

guidance and neuronal migration are well known (Solecki et al., 2006), the intrinsic 

mechanism for the study of polarity complex proteins during cerebellum development 

remains unclear. Famulski et al. have reported the role of one of polarity complex 

proteins, Pard3A, during granule cell migration from its germinal zone. Cerebellar 

granule neurons are regulated by proteasomal degradation of Pard3A when they exit 

the germinal zone, mediated by the Seven in Absentia homolog (Siah) E3 ubiquitin 

ligase. The overexpression of Pard3A and Siah knockdown induces precocious radial 

migration of granule cells from EGL pool. Pard3A recruits junctional adhesion molecule 

C (JAM-C), known as a tight junction component that interacts with Pard3A directly to 

the neuronal cell surface, leading to the acceleration of adhesive interactions to exit the 

germinal zone (Famulski et al., 2010).  

Although the function of polarity proteins in EGL migration has been explored, 

there have been no studies performed to determine their function in cerebellar 

progenitor proliferation and differentiation. The deletion of Pals1 in cerebellum may 

reveal the significance of polarity proteins in cerebellar progenitors to answer this 

question.  

1.6 Cortical development  and developmental disorder  

The cerebral cortex is the largest structure of the brain and plays a key role in 

memory, attention, language, and consciousness.  The coordinated process of 
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progenitor self-renewal, differentiation, and cell death during the cortical development is 

essential to generate the ultimate size of the cerebral cortex.  

The identification of the cortical VZ and SVZ as the germinal zone for the genesis 

of projection neurons and astrocytes has addressed several important questions 

regarding the composition of the progenitor pool. One crucial piece of information came 

from the studies on birth dating using tracers, which defined that cortical projection 

neurons and astrocytes originate in a temporal order. During early stages of neocortical 

development, a preplate that comprises of the earliest born neurons forms between the 

VZ and the meninges at the pial surface. Subsequent splitting of the preplate generates 

two other areas called marginal zone and subplate by migrating neurons that are born 

and layer themselves in an inside out fashion. Early generated neurons form layer VI 

and V first, followed by layer IV, III, and II by temporally sequential orders (Figure 6). At 

the end of neurogenesis, progenitors generate astrocytes (Qian et al., 2000; Pinto and 

Gotz, 2007). Two different models could explain how this temporal order is established. 

One model is that a common progenitor might generate the different types of neurons 

and astrocytes in a temporal order. The other is that multiple types of progenitors may 

coexist to generate a specific neuronal types and astrocytes on a specific time line 

(Franco & Muller, 2013).  

Abnormalities in the development of the cerebral cortex is associated with severe 

mental and physical disabilities (Walsh, 1999; Francis, 2006). Microcephaly is a 

neurodevelopmental disorder characterized by a small cerebral cortex at birth, and the 

consequences of microcephaly is strongly associated with neurological defects such as 
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mental retardation and seizure (Mochida, 2001; Wood et al., 2005; Cox et al., 2006). 

The key players that have been identified in this phenotype are Abnormal Spindle-like 

microcephaly-associated protein (ASPM), Cyclin-dependent kinase 5 regulatory subunit 

associated protein 2 (CDKRAP2), Centromere protein J (CenPJ), and 

Microcephalin/MCPH1 (autosomal recessive primary  microcephaly 1) (Cox et al., 2006; 

Fish et al., 2006; Paramasivam et al., 2007). These genes are highly expressed in 

neural progenitors during cortical development.  All of the proteins encoded by these 

genes are localized to the mitotic apparatus, and some of them are known to be 

essential for the proper cell division of neural progenitors (Fish et al, 2006). This 

suggests the significance of cell division during cortical development, and the 

malfunction of proper cell division may be the presumed causation of microcephaly.  
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Figure 6. Schematic diagram for neocortical development. Until E11.5, the majority of NECs 

undergo symmetric cell division in the apical region (shown as green). Around E13.5, RGPs 

(shown as green) start asymmetric cell division and generate one progenitor by self-renewal 

and one IPC. Generated IPCs move upward from the VZ and form the SVZ for symmetric 

terminal division (shown as black). At E15.5, progenitor pool in VZ decreases, whereas more 

neurons (shown as red and blue) generated, and early cortical layers are formed.  At E17.5, 

extensive neurogenesis occurs, but RGP pool is significantly reduced. Furthermore, glial cells 

start to be generated.  
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1.6.1 Progenitors in cortical development 

During corticogenesis, neural progenitors undergo symmetric and asymmetric 

cell division (Caviness et al, 1995). Symmetric cell division generates two progenitor 

cells, while asymmetric cell division produces one progenitor and a neuron, or another 

type of neural progenitor (Cotz & Huttner, 2005; Huttner & Kosodo, 2005). The 

proliferation of neural progenitors tightly regulated by cellular and molecular events, and 

these different cellular and molecular events lead to the balance of two neuronal types, 

early born and late born neurons, to maintain progenitor pools in the neocortex.  

All neocortical neurons and glial cells originate from neural stem cells derived 

from anterior neuroectoderm. Neural stem cells contain several epithelial characteristics 

such as polarity and adhesion, and these cells are known as neuroepithelial cells 

(NECs). At E8, during neurulation in the mouse, anterior NECs undergo symmetric cell 

division to expand the neural stem cell niche by rapid proliferation, leading to the 

formation of forebrain (Smart, 1973). By E9, the anterior neural tube closes to form the 

lateral ventricles, and the NECs form a pseudostratified neuroepithelial structure lining 

with lateral ventricles. NECs have apico-basal polarity and are tightly anchored at the 

ventricular surface by tight junctions and adherens junctions (Aaku-Saraste et al., 1996; 

Zhadanov et al., 1999; Manabe et al., 2002). They reach to the basal lamina at the pial 

surface via integrins (Graus-Porta et al., 2001; Radakovits et al., 2009). The onset of 

neurogenesis starts at E9 to E10. During neurogenesis, NECs transform their 

characteristics to another distinct progenitor type: radial glial cells (RGCs). During this 

transition, NECs lose epithelial characteristics, instead, they acquire glial characteristics. 
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However, their processes still maintain contacts with VZ and pial surfaces. The 

prominent changes at this transition is that they lose tight junctions (Aaku-Saraste et al., 

1996) and the expression of astroglial genes, such as astrocyte-specific glutamate 

transporter (GLAST), brain lipid-binding protein (BLBP) and tenascin-C (Hartfuss et al., 

2001; Heins et al., 2002; Noctor et al., 2002). In addition, RGCs are the progenitors for 

most neurons and glial cells generated in the neocortex (Miyata et al., 2001; Noctor et 

al., 2001; Noctor et al., 2002). While NECs typically undergo symmetric cell division to 

expand the progenitor pool, RGCs divide asymmetrically to generate one daughter cell 

and a neuron or another type of progenitor (Noctor et al., 2004). Time-lapse images 

have shown that only 10-20% of dividing RGCs generate neurons directly (Attardo et al., 

2008; Kowalczyk et al., 2009), but most RGCs expand their niche by producing RGCs 

or intermediate progenitor cell (IPC) (Noctor et al., 2004) or by dividing symmetrically to 

expand progenitor pools. IPCs have distinct characteristics from NECs and RGCs. The 

most significant difference is that IPCs undergo symmetric terminal division to generate 

two neurons (Miyata et al., 2004; Noctor et al., 2004). IPCs express Tbr2 transcription 

factor, while Pax6, the RGC-specific transcription factor, is downregulated (Englund et 

al., 2005). Furthermore, IPCs migrate to a more basal area to form an anatomically 

distinct proliferative region, subventricular zone (SVZ). IPCs lose their contact with the 

ventricular zone and switch their shape from the radial morphology of RGCs to a 

multipolar shape (Miyata et al., 2004; Noctor et al., 2004).    

 

 



39 

 

1.6.2 Molecular signaling regulating cortical progenitor cell division 

Several signaling pathways are involved in RGP proliferation. The major 

signaling pathways that are involved in corticogenesis are Notch, Wnt, and Shh 

signaling pathways.  

1.6.2.1 Notch signaling pathway 

Notch signaling has been known to suppress proneural genes, whereas 

Numb/Nmb-like, Notch antagonists, drives neuronal differentiation. During asymmetric 

RGPs division, higher Notch expression retains RGPs as progenitors, whereas low 

Notch expressing RGPs show higher expression of proneural genes and initiates 

differentiation (Dong et al., 2012; Shimojo et al., 2008). Therefore, the interaction 

between Notch and Numb/Numb-like is essential for the maintenance of RGPs during 

neocortical development (Franco & Muller, 2012). In the developing mouse cortex, it 

has been known that oscillating Hes1 expression in RGPs also induces oscillation of 

Delta and Ngn2 expression, suggesting differential Hes1expression levels may 

determine RGCs proliferation and differentiation (Paridaen & Huttner, 2014). However, 

one important point that has not been elucidated yet is how cells change their response 

to Notch signaling during neurogenesis as Notch signaling is still active in differentiated 

neurons. Although several notch repressors have been identified, there iss no evidence 

how these repressors are specifically upregulated when cells undergo neurogenesis. A 

recent study addressed increased Bcl6 expression during neurogenesis. Bcl6 changes 

Hes5 promoter activity by the modification of Notch dependent composition of the 

complex, and this recruits deacetylase Sirt1 and silences Hes5 permanently (Tiberi et 
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al., 2012). This epigenetic clue can be an answer that this epigenetic switch leads to 

stable Hes5 inactivation to stabilize neuronal differentiation.  

Polarity protein, Par3, can regulate the localization of cell fate determinants 

Numb/Numb-like. Asymmetric distribution of Par3 in RGPs induces unequal inheritance 

of Numb/Numb-like in their progeny, leading to the cell fate in which one daughter cell 

remains a progenitor and the other becomes IPC or neuron (Bultje et al., 2009). 

1.6.2.2 Wnt signaling 

In canonical Wnt signaling pathway, β-catenin is major downstream effector 

molecule. In the absence of Wnt, β-catenin is degraded by Ubiquitin E3 ligase following 

β-TrcP mediated ubiquitination and phosphorylation by casein kinase Iα (CKIα) and 

GSK3β (Nelson and Nusse, 2004). These proteins form a larger destruction complex 

with Axin and adenomatous polyposis coli (APC), and all play an essential role in 

ubiquitin mediated β-catenin degradation by proteasome. In the presence of Wnt signals, 

they bind to the receptor Frizzled and induce ternary formation with LRP5/6, ultimately 

leading to the dissociation of β-TrCP from the destruction complex (Li et al., 2012). This 

leads to the accumulation of β-catenin in the cytoplasm and  translocation to the 

nucleus where it can bind with T cell factor/lymphoid-enhancing factor (TCF/LEF) and 

activate target genes.  

Wnt signaling has dual roles in neurogenesis. Wnt signaling accelerates 

symmetric RGP division by continuous β-catenin expression, leading to the delay of BP 

formation (Wrobel et al., 2007). During late neurogenesis, Wnt signaling promotes BP 
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formation and induces neuronal differentiation through N-myc upregulation (Kuwahara 

et al., 2010; Munji et al., 2011; Fang et al., 2013). In the chick neural tube, N-myc was 

highly expressed in RGPs that undergo neurogenesis (Zinin et al., 2014). 

1.6.2.3 Shh signaling 

Shh signaling is integral for proper dorsoventral patterning in the central nervous 

system. During neurogenesis, the Gli3 repressor acts as a cell fate determinant that is 

necessary for BP generation and neuronal differentiation. The elevation of Gli3 

repressor appears during neurogenesis for BP generation and neuronal differentiation, 

but active Shh signaling downregulated (Wang et al., 2011). During the development of 

the neocortex, the activation of Shh enhances symmetric cell division for RGPs 

mediated by Notch transcription factor Hes1 (Dave et al., 2011).  This suggests that the 

crosstalk between different signaling pathways is essential for the regulation of 

neocortical development.  

1.6.3 Polarity proteins in cortical development 

The first study of polarity complex proteins demonstrating importance of brain 

development is the genetic study of Lgl1. The knockout of Lgl1 in mice results in 

rosette-like structures of neuroepithelium, similar to the rosettes derived from human 

primitive neuroectodermal tumors. Lgl1-/- newborns generate severe hydrocephalus 

and die neonatally. Neural progenitors fail to exit the cell cycle to differentiate and thus 

show continuous proliferation. Dividing cells, in the absence of Lgl1, fail to localize 

Notch inhibitor Numb asymmetrically, leading to the failure of asymmetric cell divisions, 

which may explain hyperproliferation without differentiation. This suggests that the 
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mammalian Lgl1 is essential for the regulation of proliferation and differentiation in 

progenitors, and tissue organization (Klezavitch et al., 2004).  

The second functional study of polarity complex proteins in brain development 

came from the manipulation of Par3 in cortical progenitors. Although there is no genetic 

mutant studies for Par 3, this study addresses the importance of mammalian Par3 

(mPar3) in dividing RGPs. During interphase, mPar3 is enriched at the lateral 

membrane domain in the endfeet of RGPs, whereas mPar3 starts to be dispersed 

asymmetrically as the cell cycle progresses. The loss or ectopic expression of mPar3 

results in the failure of asymmetric cell division and generation of two neurons or two 

RGPs, respectively. In addition, differential expression levels of mPar3 regulates Notch 

signaling through the maintenance of Numb/Numb like; thus, notch signaling acts 

downstream of mPar3 function in asymmetric cell division(Bultje et al., 2009).  

The third study was done with Mpp3, which is also known as Dlg3, and interacts 

with Pals1 (Kantardzhieva et al., 2006). Mpp3 conditional knockout mice specifically 

delete Mpp3 expression in cortical progenitor cells and result in gradual deletion of the 

apical complex proteins, leading to the disruption of adherens junctions. Although 

cortical morphology and cell integrity in VZ are maintained, the loss of Mpp3 shows 

randomized spindle orientation and ectopic localization of mitotic cells. In addition, 

neuronal migration is retarded and shows ectopic cortical layers at later stages. These 

results suggest that Mpp3 is not only essential for the maintenance of apical complex 

proteins and adherens junctions but also crucial for proper neuronal migration for 

cortical development (Dudok et al., 2013). 
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 Pals1 is an important scaffolding protein that functions as a bridge connecting 

other apical complex proteins such as Crb and Patj. Since Pals1 exists as only one 

gene unlike other polarity complex genes, it removes the possibility of redundancy. Also, 

it is possible that the deletion of Pals1 may not only disrupt the function of Crb complex 

proteins but also interacts with other molecules during development. The cerebellum 

and cortex are major organs in central nervous system (CNS) that are involved in 

memory, attention, motor control and other higher functions. In addition, the epithelial 

structure of primordium in these organs serve as an excellent model to study the role of 

Pals1 during the development.  

To this end, Pals1 flox/flox;Emx1-Cre mice have been generated and 

characterized previously with respect to cortical development (Kim et al., 2010). Pals1 

flox/flox;Emx1 Cre exhibit significant reduction of the cortex and near absence of 

neocortex through  precocious differentiation of progenitors into neurons, which are 

removed via apoptotic cell death.  Although previous work demonstrated the importance 

of Pals1 function in progenitor proliferation, it is unclear whether Pals1 functions in 

neurogenesis and its underlying molecular mechanism. To explore Pals1 function in 

neurogenesis and cell division modes of RGPs, asymmetric versus symmetric, we have 

utilized hGFAP-Cre to delete Pals1 in radial progenitors of the dorsal cortex and 

progenitor cells for the majority of cerebellar cells, except early born neurons, such as 

DCN and PCs . Through analyzing this valuable mouse model, my research is to 

investigate the role of Pals during cerebellar development as a cell fate determinant in 

the Chapter 3 and the role of Pals1 in neocotical development as a major mitosis 

regulator in Chapter 4. Based on the results, I will address future directions in Chapter 5.  
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Materials and Methods 

2.1 Mice  

Animals were handled in accordance with protocols approved by the IACUC of Temple 

University School of Medicine.  Pals1f/f and hGFAP-Cre mice (Zhuo et al., 2001) 

(Jackson laboratory) were bred for generation of CKO and genotyped by PCR as 

previously described (Kim et al. 2010). SmoM2 mice were obtained from Jackson 

laboratory, which were bred with Pals1f/f and hGFAP-Cre mice and genotyped by PCR 

described previously (Jeong  et al., 2004).  

 2.2 Histology and immunohistochemistry  

Embryos at various developmental stages were decapitated and fixed in 4% 

paraformaldehyde (PFA) in PBS. For postnatal animals, brains were dissected out and 

fixed in 4% PFA in PBS. Fixed tissues were embedded in paraffin to prepare 7µm 

parasagittal sections.  Hematoxylin and eosin (H & E) staining of tissue sections was 

performed as previously described. Tissue sections were deparaffinized and rehydrated 

through an ethanol series and distilled H2O for immunofluorescence and 

immunohistochemistry. After 30 minutes of antigen retrieval with boiling citrate buffer, 

sections were stained with the following antibodies: mouse α-BrdU (1:50; Becton 

Dickinson Immunocytometry Systems), rabbit α-phospho-histone H3 (PH3) (1:250; 

Millipore), rabbit α-Pals1 (1:250, Upstate), mouse α-PKCλ (1:250; BD Biosciences), 

mouse α-Reelin (G10, 1:250; Millipore), rabbit α-BLBP (1:250; Millipore), Dab1 (gift from 

Dr. Howell), rabbit α-S100β (Novus Biologicals), rabbit α-Pax2 (1:250; Covance), mouse 

α-p27 (1:250; BD Biosciences), rabbit α-Pax6 (1:250; Covance), mouse α-Pax6 (1:250; 

Developmental Studies Hybridoma Bank), mouse α-Calbindin (1:250; Sigma), rabbit α-
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GFAP (1:250; Thermo Scientific), rabbit α-Par3 (1:250; Millipore), mouse α-Zo1 (1:250;  

BD Biosciences), mouse α-Lim1+2 (1:250; Developmental Studies Hybridoma Bank,, 

rabbit α-Cleaved Notch1 (1:250; Cell Signaling), mouse α-N-Cadherin (1:250; BD 

Biosciences), rabbit α-Cleaved Caspase-3 (1:250; Cell Signaling), and rabbit α-Crumbs 

(1:250; gift from Dr. Malicki ). rabbit α-Tuj1 (1:250; Millipore), rabbit α-pS6 (1:250; Cell 

signaling) mouse α-phospho-vimentin (4A4) (1:250; MBL), rabbit α-Ki67 (1:1000, Leica 

biosystem), rabbit α-parvalbumin (1:250; Millipore), mouse α-NeuN (1:250; Millipore), 

rabbit α-Cux1 (1:250; Santa Cruz), rabbit α-rabbit α-Foxp1 (1:250; Abcam), rabbit α-

Ctip2 (1:250; Abcam), chicken α-GFP (1:250; Aves labs), mouse α-Yap (1:250; Abcam), 

rabbit α-CyclinD1 (1:250; Santa Cruz), rabbit α-Aurora B (1:250; Abcam), and rabbit α- 

Hes1 (1:250; from Nardin Brown). 

.  Species-specific Alexa Fluor 488 (1:500, Invitrogen) and Cy3 (1:500, Jackson 

Immunochemical) secondary antibodies were used for fluorescence detection, and 

nuclear DNA was counterstained with Hoechst 22358 (1:1000, Invitrogen). Alternatively, 

after incubation with the primary antibody, biotinylated anti-mouse or anti-rabbit 

secondary antibody was applied and incubated with peroxidase-conjugated avidin. 

Staining was visualized with a DAB (Diaminobenzidine) Substrate System (Sigma). 

2.3 Western blot  

Whole cerebellums were dissected at postnatal day 0 to prepare protein lysates, and 

meninges were removed from the tissue. Protein lysates were homogenized in an ice-

chilled cell lysis buffer (20mM Tris-HCL (pH 7.5), 150mM NaCl, 1mM Na2EDTA, 1mM 

EGTA, 1% Triton, 2.5 mM sodium pyrophosphate, 1mM beta-glycerophosphate, 1mM 

Na3VO4, and 1g/ml leupeptin) containing 5% Protease Inhibitor Cocktail P8340 
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(Sigma). Using an SDS-PAGE gel, protein lysates were separated and transferred to a 

polyvinylidene difluoride membrane. The membrane was blocked with 5% nonfat dry 

milk, and primary antibodies were applied on the membranes at 4°C overnight. The 

primary antibodies included mouse α-Reelin (1:500; Millipore), rabbit α-Dab1 (1:500; 

Cell Signaling), rabbit α-phospho-Dab1 (1:500; Cell Signaling), mouse α-Yap (1:250; 

Abcam), mouse α-Pttg1 (1:1000; Cell Signaling),  rabbit α-Tbr2 (1:1000; Millipore), 

mouse α-Tuj1 (1:1000; Millipore), rabbit α-Tbr1 (1:1000; Millipore) and α-GAPDH (1:500; 

Cell Signaling). Expression signals were detected by chemiluminescence (ECL Kit; GE 

Healthcare). 

2.4 In situ mRNA hybridization  

Fixed whole brains were washed with PBS and immersed in 30% sucrose for 

cryoprotection and embedded in an OCT compound (Tissue-Tek). Frozen samples 

were sectioned at 20µm thickness. Paraffin samples were deparaffinized, rehydrated 

and dried at room temperature for 15 to 20 minutes. In situ hybridization was performed 

using antisense digoxigenin-labeled riboprobes by the in vitro transcription of cDNAs: 

Pals1, Gli1, Gli2, N-myc, Pttg1, Notch1, Hes1, and Hes5. In situ hybridization was 

carried out as previously described (Hui and Joyner, 1993). 

2.5 Bromodeoxyuridine (BrdU) administration and cell number quantification   

BrdU (Sigma, St. Louis, MO) dissolved in PBS was administered for 30 minutes before 

sacrifice at 50g/g body weight through intraperitoneal (IP) injection.  For the analysis 

of the proliferation of EGL and VZ progenitors, the total number of BrdU+ cells in the 

EGL or VZ, respectively in the image was counted manually using Photoshop and 

ImageJ at 3 midsagital levels of each animal  (n=3), after the acquisition of the images 
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with an Axiophot microscope (Zeiss, Germany). The same method was applied to count 

Pax2, Sox9 and Olig2 positive cells.  

2.6 Brain size analysis  

To measure the size of the cerebellum, we analyzed at least 3 animals per genotype. 

Images of fixed brains were taken at the same magnification using Axiophot (Zeiss, 

Germany) to measure the width and length of the cerebellum.  The images were 

analyzed and quantified in Photoshop or ImageJ, and statistical analysis was performed. 

For the circumference, three histological pictures of midsagittal sections (vermis) were 

used for each animal to measure in the imageJ.  Three to five animals for each 

genotype were used for measurement of the width, length and circumference.   

2.7 Real time PCR experiments 

For Real-time PCR analyses, Applied Biosystems StepOne™ and StepOnePlus™ Real-

Time PCR system with LuminoCt® SYBR® Green qPCR ReadyMix™ (Sigma-Aldrich) 

were used. Reaction mixtures included 10 l of 2X SYBR Green qPCR Ready Mix, 

300nM of each primer, and 1 l of previously reverse-transcribed cDNA template. The 

cDNA template was synthesized after a reverse transcription reaction when total RNA 

was isolated from E17.5 cerebellum (N=3 for WT and CKO). The thermocycler 

parameters were 95℃ for 10 min, followed by 40 cycles of 95℃ for 15 s and 60℃ for 1 

min. All reactions were performed in triplicate. We used Gli1(5’-

GGAAGTCCTATTCACGCCTTGA-3’, 5’-CAACCTTCTTGCTCACACATGTAAG-3’) Gli2 

(5’-TACCTCAACCCTGTGGATGC-3’, 5’-CTACCAGCGAGTTGGGAGAG-3’) N-Myc (5’-

AGGAAGCACTCCCCCATATT-3’, 5’-GTCATCTTCGTCCGGGTAGA-3’) Cyclin D1 (5’- 

TTGACTGCCGAGAAGTTGTG-3’, 5’-CCACTTGAGCTTGTTCACCA-3’)Pals1 (5’-



49 

 

CTTCGCACACAGTCCTTGAA-3’, 5’- CTAACAACGCCCGAAGTCTC-3’) Acin  5’-

CTGAACCCTAAGGCCAACC-3’, 5’-CCTGGATGGCTACGTACATG-3’) primers. 

2.8 Statistical analysis  

The f-test was performed to determine if the values were of equal or unequal variance 

before the t-test. The statistical significance was determined by a student’s t-test for 

brain size analysis, cell counting of Tbr1+, Cux1+, BrdU+, Pax6+, BrdU+/Pax6+, Ki67-

BrdU+, and Pax2+ cells and proportion of p27+ cells. p<0.05 was determined to be 

statistically significant. 

2.9 Plasmids and In utero electroporation  

For pCAG:Pals1-GFP construct, pCAG-GFP empty vector was digested with Xba1 and 

XhoI. Full length Pals1 sequences were obtained from PCR using pCAG-Pals1 as a 

backbone DNA and ligated into digested pCAG-GFP. pCAG:H2B-GFP, pCAG:Cre-GFP, 

pCAG-GFP constructs were obtained from Addgene, and pCAG-Yap construct was 

gifted from Raehee Park. Pttg1 gene is synthesized by Genewiz and subcloned into 

pCAG vector. Timed pregnant mice were anesthetized and their uterine horns were 

exposed. Plasmid DNA (1-2µg/µl) was injected into the lateral ventricles of embryos 

using pulled micropipettes. For electroporation, 5 pulses separated by 900ms were 

applied using a BTX ECM830 pulse generator at 45V for E13.5 embryos. After the 

surgery, embryos were allowed to develop in utero until the indicated time for the 

analysis.  

2.10 Cell culture and immunohistochemistry   
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Before spreading cells, 12-mm circle coverslips (Carolina Biological) were prepared by 

washing with 70% ethanol overnight at room temperature. Next day, coverslips were 

coated with 200 µg/ml poly D-lysine (Sigma) and washed three time with distilled water 

after 5 hours incubation. Each coverslip was placed on each well in 24-well cell culture 

dish (Nest Biotech). All cells were grown in a humidified 37°C incubator with 5% 

CO2.  All cells were maintained in the conditions with 10% FBS and 1% antibiotics 

mixed in Dulbecco's Modified Eagle Medium: Nutrient Mixture F-12 (DMEM/F-12) 

media until the date for the experiment. Media has been replaced once per two days. 

For immunohistochemical analysis, the specimens were washed three time in 15 min 

intervals, followed by fixation for 15 minutes with 4% paraformaldehyde in PBS. The 

specimens were stained with the following antibodies: rabbit α-Pals1 (1:250, Upstate), 

rabbit α-CyclinD1 (1:250; Santa Cruz), and  α-Aurora B (1:250; Abcam). Species-

specific Alexa Fluor 488 (1:500, Invitrogen) and Cy3 (1:500, Jackson Immunochemical) 

secondary antibodies were used for fluorescence detection, and nuclear DNA was 

counterstained with Hoechst 22358 (1:1000, Invitrogen). 

2.11 Organotypic cortical slice culture and Time-lapse confocal  imaging 

 Timed pregnant mice were electroporated with pCAG:H2B-GFP construct and harvest 

after 24 hours. After screening under a fluorescent dissecting stereo microscope (Leica 

M205C), only GFP expressing embryos were selected for the dissection. The cortex of 

embryos was dissected and flipped over appearing that apical size of VZ is upside. 

Dissected tissues were mounted on a 35 mm petri dish (Fisher Scientific) and attached 

with gelatin for 30 minutes at 37 ºC. Cultures were maintained in a humidified incubator 

with distilled water at 37 ºC for the scanning, and consistent CO2 was supplied. Time-
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lapse images of GFP-expressing cells were acquired every 30 minutes for 14 hours. 

GFP fluorescence in the specimens was imaged using a Leica SP5 confocal laser 

scanning microscope.  

2.12 Electron microscope scanning  

The E13.5 brains were fixed in 3% glutaraldehyde and stored with Millonig’s buffer for 5 

minutes. The buffer was replaced with 2% % OsO4 and stored for 1 h at 4°C. Tissues 

were washed with distilled  H2O for 5 minutes and dehydrated by a serial standard 

ethanol wash, followed by the incubation with 50% LX-112, propylene oxide, and 100% 

LX-112. For polymerization, tissues were embedded in a flat mold at 70°C overnight. 

Using a Leica Ultracut-R microtome and a glass knife, tissues were cut at 500 nm and 

heat-fixed to glass slides and stained with Toluidine Blue. Thin sections (120 nm) were 

cut with diamond knife (Daitome, Hatfield, PA, USA) using same microtome and placed 

on a 150 mesh copper grid (EMS, Hatfield, PA, USA), followed by staining with 2% 

uranyl acetate for 15 minutes and rinsed with distilled H2O. Tissues were stained with 

Reynold’s lead citrate for 5 minutes, rinsed and dried at 70°C. Images were taken from 

the JOEL 1200 Transmission Electron Microscope at 60 kV and captured with the 1 k × 

1 k Gatan Digital Imaging System (Electron Microscopy Laboratory, Department of 

Pathology, UTHSC, Houston, TX, USA). 
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Chapter Three: 

The roles of Pals1 in cerebellar development  
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3.1 INTRODUCTION 

A mature cerebellum comprises four major cell types: Purkinje cells (PC), 

cerebellar granule neurons (CGNs), interneurons and glial cells. The majority of 

cerebellar cells originate in two germinal zones: the ventricular zone (VZ), the lining of 

the apical cerebellar neuroepithelium; and the upper rhombic lip (URL), the 

neuroepithelium located between the cerebellar plates and the choroid plexus of the 

fourth ventricle (Millen and Gleeson, 2008; Zervas et al., 2005). GABAergic cerebellar 

deep nuclei (cn) neurons, PCs, interneurons and most of the glia cells develop from the 

VZ, either directly or via intermediate progenitors in the white matter.  URL and its 

descendants generate glutamatergic cn neurons, unipolar brush border cells and 

granule neuron precursors (CGNPs) (Leto and Rossi, 2012). Cerebellar cells are 

organized into distinct layers including the molecular layer, PC layer and granule cell 

layer through intricate directional movements from their germinal zones (Roussel and 

Hatten, 2011). 

Unlike other neurogenic areas in the developing brain, CGNPs in the external 

granule cell layer (EGL) remains proliferative throughout early postnatal ages, 

producing CGNs that migrate inwardly to form the internal granule cell layer (IGL). It has 

been shown that CGNPs expand progenitor pools through mainly symmetric cell 

division, and clonally related progenitors exit the cell cycle during a relatively short 

period of time (Espinosa & Luo; 2008). The PC plate beneath the EGL layer serves as a 

major source of the mitogenic signal Sonic Hedgehog (Shh), which drives CGNP 

proliferation during late embryogenesis and early postnatal stages (Sillitoe & Joyner; 

2007). While migrating through the Shh-rich EGL toward PCs, CGNPs exit the cell cycle 
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and differentiate, demonstrating the exquisite balance between proliferation and 

differentiation that is required to coordinate granule neuron generation and clonal 

expansion of CGNP during development. Too much proliferation causes hyperplasia or 

cancer, while too little results in an underdeveloped and poorly functioning organ. If Shh 

signaling is deregulated in CGNP, the devastating result is medulloblastoma, which is 

the most common malignant brain tumor in children. Recent transcriptional profiling that 

identified Shh as one of the four medulloblastoma molecular subgroups (Taylor et al., 

2011) has spurred research to develop novel therapeutics targeting this signaling 

pathway, as approximately 25-30% of medulloblastomas arise due to mutations that 

activate the Shh signaling pathway (Roussel and Robinson, 2013).  Therefore, it is 

critical to investigate the cellular/molecular mechanisms involved in the decision to 

initiate a differentiation program rather than proliferation in the presence or activation of 

mitotic/morphogenetic signals such as Shh during granule cell  development to further 

understand pathologic conditions. 

 Cell polarity, which includes both molecular and cytoarchitectural asymmetry 

within the cell, is crucial for various cellular processes, including proliferation, 

differentiation and directed growth and migration. Polarity complex proteins include 

evolutionarily conserved apical complex proteins, such as the Crb complex 

(Crbs/Pals1/Patj) and the Par complex (Par3/Par6/aPKC), and basal complex proteins, 

such as the Scribbles complex (Scribbles/Lgl/Dlg) (Assemat et al., 2008; Pieczynski and 

Margolis, 2011; Tepass, 2012). These proteins play an indispensable role in the 

establishment and maintenance of cell polarity required for proper development of many 

tissues. For example, recent studies have demonstrated that apical complex proteins 
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are necessary for the self-renewal of neural progenitor cells (Costa 2008; Kim et al., 

2010, Budje et al., 2009), axon determination (Shi et al., 2003; Chen et al., 2013), 

dendrite development (Tanabe et al, 2010), tissue polarity (Cho et al., 2012) and neuron 

survival (Kim et al., 2010). Furthermore, regulation of ubiquitination of the apical 

complex protein Pard3A at the germinal zone is necessary for newly born CGN to 

execute a cell adhesion-dependent exit from the EGL (Famulski et al., 2010). However, 

there is little information about the function of the apical complex proteins in the 

regulation of CGNP proliferation and differentiation as well as cerebellar organogenesis.   

 Here, we genetically ablate the central component of the apical complex, Pals1, 

in progenitor cells during cerebellar development and provide evidence of the critical 

necessity of Pals1 function in cerebellar cell generation and organization. Furthermore, 

Pals1 deficiency causes profound premature differentiation of progenitors including 

CGNPs in the EGL and more importantly, it completely abrogates uncontrolled 

proliferation by activated Shh signaling. This suggests an essential Pals1 function in 

cellular fitness for proliferation in both health and disease conditions.  Together, these 

newly described functions identify Pals1 as a critical intrinsic factor for regulating CGNP 

proliferation in addition to confirming its known role in the proper generation of neurons 

from the ventricular zone.   
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3.2 RESULTS 

3.2.1 Pals1 is expressed in progenitors during cerebellar development 

To study the function of Pals1 in cerebellum development, its expression pattern 

and subcellular localization were examined during embryogenesis and postnatal stages. 

Previous studies have demonstrated that apical complex proteins are highly 

concentrated at the apical junction and are essential for self-renewal of cerebral cortex 

progenitors (Bultje et al., 2009; Costa et al., 2008) (Kim et al., 2010). We examined 

Pals1 expression at embryonic day 15.5 (E15.5) in germinal zones of the developing 

cerebellum, depicted in Fig. 7A. Pals1 is evidently expressed in these proliferating 

zones (Fig. 7B), but Pals1 transcripts are substantially diminished at E15.5 in Pals1 

CKO mice (Fig.7C). Prominent expression remained in the choroid plexus (CP) where 

Cre expression was absent (Fig. 7C’, red arrow), confirming the cerebellum-specific 

ablation of and the specificity of the Pals1 probe we used for in situ hybridization. In 

accordance with known patterns in other types of neuroepithelium, Pals1 proteins 

localize to the apical surface in the VZ and URL of wild type mice at E15.5, but are 

markedly reduced in the Pals1 mutant (Fig. 7D, E, F, G).  The External Granular Layer 

(EGL) also expresses Pals1 broadly and weakly in wildtype (WT) cell bodies at E18.5, 

but is largely absent in the CKO.  

Pals1 expression in the ventricular apical lining cells continues during early 

postnatal stages, such as postnatal day (P) 0 (Fig. 7J’), although proliferating cells are 

nearly absent from the VZ at this stage. At P0, Pals1 expression was consistently 

observed in the proliferating EGL and expression in the PC layer began (Fig. 7J’’). At P6, 

Pals1 expression in the PC layer and EGL cell layer were detected at both the transcript 
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and protein level (Fig.7K-M’). However, Pals1 protein is only detected when the signal is 

amplified with DAB immunohistochemistry, resulting in concentrated spots of Pals1 

staining (Fig. 7M’, arrow).  

 To provide evidence that this immunostaining indeed detects Pals1, we 

compared WT and Pals1 CKO animals. In the Pals1 CKO, immunopositive signals are 

substantially reduced in general but remained in PCs (Fig. 7N’, arrow). Pals1 

expression in PCs of the CKO would be unaffected because Cre is not expressed in the 

early progenitors which generate them. Importantly, focally dense Pals1 staining in the 

CGNP is almost completely diminished in the Pals1 CKO, supporting true Pals1 

expression in CGNPs.  Together, these observations of Pals1 expression suggest that 

Pals1 may serve a critical function in the proliferation of CGNPs in the EGL in addition 

to progenitors in germinal zones with epithelial characteristics such as the URL and VZ. 
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 Figure 7. Pals1 is expressed dynamically during development of the cerebellum. (A) Schematic 

drawing of VZ, URL, and EGL in the developing cerebellum. (B, C) Pals1 mRNA expression in URL, EGL, 

VZ and CP in WT (B, B’, B’,) and Pals1 CKO (C, C’, C’’) mice at E15.5. Red arrow indicates Pals1 

expression in CP in both WT and CKO. (D, E) Pals1 protein is highly expressed at the apical ventricular 

surface of URL, VZ of WT animals (D, F), but diminished in Pals1 CKO at E15.5 (E, G). (H, I) Continued 

expression of Pals1 protein in URL, EGL, VZ at E17.5 in the WT (H) but it is markedly reduced in Pals1 

CKO (I).  (J, J’, J’’) At P0, Pals1 transcripts are found in VZ (J’) EGL and PCL (J’’). (K-L’) Prominent 

concentrated Pals1 transcripts are found in the EGL and weak expression seen in white matter and PCL 

at P6 (M, N’); Pals1 proteins are detected in the EGL and PCL layer including PC cells in the WT whereas 

concentrated punctate staining of Pals1 seen in the WT (arrow, M’) is no longer remained in EGL of CKO 

but staining in the cell body were maintained (arrow head, N’). 
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3.2.2 Pals1 is required for cerebellar histogenesis and foliation 

Orderly generation of neurons and glia is essential in establishing the cytoarchitecture 

and functional circuitry necessary for cerebellar functions (Sudarov et al., 2011).  Since 

Pals1 is expressed in the progenitor population and possibly other cerebellar cells and 

because it is known to play a critical role in cerebral cortex development, we studied the 

function of Pals1 in cerebellum development through genetic ablation. We used hGFAP 

Cre mice to delete Pals1 from most cerebellar neurons and glia. However, progenitors 

for early born neurons such as PCs, DCN (Deep cerebellar nuclei) do not express Cre 

since hGFAP Cre is expressed in proliferating progenitors in the EGL, URL and VZ, 

starting at E13.5 (Zhuo et al., 2001).  

Pals1 deletion causes the cerebellum to be dramatically undersized at P0 and 

onward (Fig. 8A-F). To characterize the cerebellar phenotype, size differences between 

wild type (WT) and CKO littermates were compared by measuring the length, width and 

circumference of the cerebellum at P0, P5 and P21 (Fig. 8A-J). Except for cerebellar 

width at P0, the measurements were considerably lower in the CKO mice, indicating the 

essential function of Pals1 in cerebellum development. To determine the defects in layer 

formation and foliation, we conducted serial histological analyses at embryonic and 

postnatal stages (Fig. 8L-S). Cerebellar cells form distinct layers, including a cell-sparse 

molecular layer (ML), a PC layer and IGL, which are organized into a foliated structure 

with ten lobes in the adult mouse. Our histological analysis first revealed a phenotypic 

difference in the Pals1 mutant at E17.5, despite the absence of gross anatomical 

changes at that stage. The length and thickness of the URL was noticeably smaller than 

in WT controls, and the dorsal surface of the cerebellar anlage, where CGNPs reside, 
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was hypocellular (Fig. 8L, L’ M, and M’). In addition, cells in the apical lining of the 

developing cerebellum formed a less populated and thinner VZ in the Pals1 mutant than 

in WT littermates (Fig. 8L, L’’, M and M’’).  

The cerebellum develops five cardinal lobes during late embryogenesis (around E18) 

(Sudarov and Joyner, 2007). About six to seven lobes have formed at the vermis in the 

WT by P0 (Fig. 8N). Folia formation was significantly delayed in the Pals1 CKO at P0 

(Fig. 8O), and small indentations began to form in the cerebellum’s surface a few days 

later, indicative of future fissures (data not shown). At P8, deformed lobes that were 

smaller and more disorganized than normal were detectable in most Pals1 CKO 

animals (Fig. 8P, Q). In adults, the Pals1 mutant cerebellum demonstrated fused lobes 

with severely disorganized layers characterized by a poorly defined molecular layer and 

dispersed CGNs (Fig. 8S).  In addition to a global size difference and incomplete 

elaboration of the folia, there was an apparent striking reduction in granule cell number 

(Fig. 8R, S), the most abundant neuronal population in mammalian brain. Together, the 

results of our histological study with the Pals1 CKO revealed the essential function of 

Pals1 in cerebellar histogenesis and organization.  
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Figure 8. The function of Pals1in cerebellar histogenesis 

(A-K), The Pals1 CKO cerebellum was smaller than that of WT littermates at P0 and later. Cerebellar 

width, length and circumference were measured at P0 (A, B), P5 (C, D), and P21 (E-F) and compared 

with WT (I-K). (L-S), Histological analysis using H&E staining. E17.5 Pals1 CKO mice show a diminished 

URL and a decreased URL-derived CGNP population in the EGL (M’) compared to WT (L’). VZ is less 

dense in the Pals1 CKO (M’’) than in WT (L’’). At P0, cerebellar lobes have not formed in the Pals1 CKO 

(O), while the WT cerebellum shows 7 distinctive lobes (N).  Deformed foliation is detected in Pals1 CKO 

at P8 (P, Q). Undersized cerebellum with fused lobes and a disorganized layer structure is found in Pals1 

CKO mice compared to WT at P21 (R, S).  
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3.2.3 Pals1 is required for cerebellar layer organization  

Pals1 expression in the PC is not affected by Cre recombination since early progenitors 

do not express hGFAP-Cre. However, we sought to identify PC developmental defects, 

as PC migration and dendritic development rely highly on other cerebellar cells, radial 

glia progenitors, CGN and BG. To examine any non-cell-autonomous effect of Pals1 on 

PC positioning and dendrite development, we studied PC development during 

embryogenesis and postnatal stages. In the Pals1 mutant, a normal number of PCs 

appeared to be generated, but the localization was severely disrupted, shown by the 

broad distribution of PCs in the white matter compared to the WT at P0 (Fig. 9A and B). 

By P6, PCs are remained as clusters at the border of the white matter and fail to form 

multiple layered PC plate to single layer shown in WT (Fig. 9C, C’, D and D’). Because  

of the striking depletion of CGNP and the subsequent reduction of CGN generation in 

the EGL, a prime source of Reelin, Reelin-Dab1 signaling, which is the critical signal for 

PC migration, have been compromised in the Pals1 mutant (data not shown).  The 

reduced number of radial glia progenitors may also contributed to impaired migration of 

PCs since radial glia scaffold supports the PC migration.  

Interestingly, Pals1-deficient glia cells were not only decreased in number, but were 

also remarkably dispersed throughout the cerebellar plate and even found on the pial 

surface (Fig. 9F, arrows) at P0 and thereafter. In the wild type, however, BG were 

mainly located underneath the EGL and formed a distinct single layer within the PC 

layer by P6 (Fig. 9E and I). Cerebellar BG cells are unique glial cells characterized by 

unipolar radial glial processes and found from late embryogenesis to adulthood. The BG 

cells play a pivotal role in granule cell migration, PC dendritogenesis and synaptic 
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regulation. Because of the severe defects in BG location and profound reduced CGN of 

which axon provides synaptic inputs to PC, the development of PC dendrites in the 

Pals1 mutant appear to be randomly directed and less elaborated (Fig. 9J, K). Thus, the 

failure to develop PC layer comprising compact PC and BG in the Pals1 mutant 

because of abnormal positioning and/or defective functioning of BGs.  In the Pals1 

mutant at P21, most PCs were dispersed in the cortical area and failed to form a PC 

layer consisting of BG and PC. Immunostaining of the Pals1 mutant with markers for 

both PC and BG and astrocytes (Calbindin and S100, respectively) revealed a lack of 

close contact between the cell bodies (Fig. 9J and K insets).. Pals1 loss does not 

appear to affect the mobility of these cells, as BGs were capable of migrating out of the 

VZ. BGs in the Pals1 mutant also demonstrate defects in radial fiber morphology at P21, 

their processes were stunted or bended, and they failed to attach to the pial surface (Fig 

9K-N’).  These BG defects are likely contributed to the disruption of inward radial 

migration of CGN at later stages (Fig. 9P, R).  Together, layer organization of 

cerebellum is severely affected by Pals1 loss with reduced number of neurons and glia 

as well as dispersed distribution of  cerebellar cells.  
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Figure 9. Pals1 deficiency causes lamination defects  

(A, D’). At P0 and P6, the localization of PCs is severely disrupted in the CKO as a significant portion fail 

to reach the PC layer; some remain in the white matter (B, D, D’), whereas PCs form few cell layers by P6 

in the WT (C, C’). (At P21, most PCs are dispersed in the cortical area and fail to form the PC layer. (L, L’ 

M, M’) mTORC1 signaling activation, measured by pS6 staining, is decreased in the Pals1 mutant at P21 

(M, M’), whereas there is strong pS6 expression in the PC cell body and dendrites of the WT (L, L’). (A-F) 

BLBP positive cells (A, A’ B, B’), almost none are detected at P0 (C, D).  At P0, fewer BLBP+ cells are in 

the cerebellum compared to WT (E, F), and some are detected even underneath the pia (F, arrow). (G, H) 

Comparable numbers of Olig2+ oligodendrocyte progenitors are present in the CKO and WT at P0. (I, J) 

At P6, many BG cells labeled by S100β form a layer within the PC layer in the WT, whereas BG cells in 

the CKO fail to form a layer. (K-L’) At P21, smaller numbers of BG cells are present in the mutant than 

WT, the cells are dispersed throughout the cerebellum, and radial processes are not generated. High 

resolution images are shown in K’ and L’.  (M, M’, N, N’) GFAP immunostaining also demonstrates 

disorganized and randomly directed BG processes.  
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3.2.4 Pals1 deletion disrupts the localization of apical complex proteins in the 

cerebellar neuroepithelium   

To understand the cellular changes leading to the severe reduction of neuronal and glial 

production, we examined the tissue integrity mediated by cellular junction proteins. First, 

we examined histological changes at E15.5, when the Pals1 protein had largely 

disappeared from the apical junction (Fig. 7C, G), and found tissue integrity was 

undisrupted in the mutant (Fig. 10A, B). Next, we examined changes in junctional 

components by marker analyses. The apical junction, which includes tight junction 

proteins such as Zo1, is located apically to the adherens junction (AJ).  We found that 

Pals1 deletion in progenitors had some effect on the localization of the AJ components 

-catenin and N-cadherin (Data not shown, Fig. 10C, D) as the reduction of their 

distribution at the junction is consistently observed.  However, profound defects in 

maintaining and/or establishing the tight junction protein, Zo1, at the apical junction 

were detected by E15.5 (Fig. 10E-H).   

Pals1 functions as a scaffold to recruit other apical polarity complex proteins via 

its protein–protein interaction domains such as PDZ, SH3, and L27 to assemble and 

maintain a macromolecular network at the apical junction. In order to analyze Pals1’s 

scaffolding role in the VZ of the developing cerebellum, we first studied the localization 

of Crumbs (Crb) proteins, known to interact with Pals1, using pan-Crb antibody, which 

detects all three homologs of Crbs. In the absence of the Pals1 protein, Crb proteins 

were no longer localized at the apical junction (Fig. 10K-N).  The other apical complex 

that interacts with Pals1 is the Par complex; this physical interaction is mediated by 

Pals1 and Par6 (Hurd et al., 2003) and by Crb and Par6 (Morais-de-Sa et al., 2010). 
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Similar to previous observations in the cortical neuroepithelium, the Par complex 

proteins Par3 and aPKC are not maintained at the apical surface in the Pals1-deficient 

cerebellum (Fig. 10I, J, M, N, O and P).  Comparable defects were observed in the URL, 

another neuroepithelial germinal zone (Data not shown), but defects in the localization 

of apical polarity complex proteins in the EGL are difficult to address because, unlike in 

the neuroepithelium, they are not distinctly labeled. Together, these results show that, 

despite the absence of visible differences in histology and in the population of dividing 

cells, the molecular composition and distribution (or localization) at the apical junction is 

already considerably changed at E15.5. These defects can critically disrupt self-renewal 

of epithelium-derived progenitors, as seen for cerebral cortex progenitors (Kim et al., 

2010).  
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Figure 10.  Pals1 is required for localization of apical junction proteins 

(A, B) Histological analysis at E15.5 does not reveal any abnormalities in tissue integrity in the Pals1 

mutant, which is identical to the WT control. (C- H)  Although the AJ protein N-cadherin remains, the Zo-1 

protein is strikingly reduced at the apical junction in the Pals1 mutant (D, F, H) compared to the WT (C, E, 

G). (I-N) Apical complex proteins, such as Crb (red) and aPKC (green), are no longer detectable at the 

apical junction in the Pals1 mutant.  (O, P) Par3 proteins are not well maintained at the apical junction. 
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3.2.5 Loss of Pals1 reduces ventricular progenitors, interneurons and glia cells  

Since our histological analysis clearly demonstrated hypocellularity in the apical 

lining of VZ starting at E17.5, we compared numbers of dividing cells at the VZ after 

acute BrdU labeling at E15.5, E17.5 and P0 (Fig. 11A – F). BrdU positive proliferating 

cells were not significantly reduced in the Pals1 mutant at E15.5 compared to wild type, 

but reductions were statistically significant at E17.5 (P=0.016). At P0, few BrdU positive 

cells are found in the apical lining of both WT and CKO, as VZ is no longer mitotically 

active after birth (Fig. 11G). We also labeled proliferating VZ cells by Hes1 and 5 in situ 

hybridization and NICD (Notch intracellular domain) immunostaining and saw a 

consistently reduced number of cells expressing the Notch signaling component in 

Pals1 mutants at E17.5 (data not shown). A previous study demonstrated that 

committed cerebellar interneurons can be marked by transient Pax2 expression in the 

white matter (Marichich and Herrup, 1999). We reasoned that reduced numbers of 

Pals1-deficient VZ progenitors likely leads to a decrease in Pax2 positive interneurons.  

As expected, we saw a striking decline of Pax2 positive cells in the white matter during 

the late embryonic stage and especially at P0 and P6 (Fig. 11I-P).  Interestingly, at 

E17.5, Pax2 positive cells were shifted to the ventral side and could be found in the 

ventricular apical surface (Fig. 10L, arrows), indicating the possibility of premature 

differentiation of VZ cells to Pax2 positive interneurons or migration defects.  It is 

noteworthy that the interneuron population at P21 was prominently decreased, as 

determined by a paucity of smaller Parvalbumin positive cells but a less prominent 

alteration in the number of larger Parvalbumin-expressing PCs (data not shown). 

Collectively, these results show that Pals1 is required for the proliferation of VZ 
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progenitor cells, analogous to its function in other neuroepithelial germinal zones. The 

cerebellar VZ also produces glial and their progenitor cells during mid to late 

embryogenesis (Sudarov et al., 2011). A recent GIFM (genetic inducible fate mapping) 

study with Ascl1-CreERT2 mice showed that the birth date of a subset of BG is around 

E14.5 (Sudarov et al., 2011). The reduction of radial glia cells in the VZ became visible 

at E17.5 by BLBP immunostaining but not prior to that (Fig. 11 Q, R).  Furthermore, 

because Pals1 proteins started to disappear at the VZ surface around E15.5 in the 

Pals1 CKO with hGFAP Cre (Fig. 7C and E), it is plausible that the production of this 

early cohort of VZ-derived BGs and other glia cells was not affected in the Pals1 mutant. 

However, the reduction of glia cells was obvious at P0 and thereafter, indicating that the 

severe depletion of VZ progenitors impacted glia production.  Because gliogenesis 

progresses in the white matter after birth, we determined whether Sox9 expressing glia 

cells and progenitor cells in the white matter was reduced. Sox9 positive glia progenitor 

and glia cells were strikingly reduced by about 70% in Pals1 CKO as compared to WT 

(Fig. 11S, T, W). Additionally, Olig-2 positive oligodendrocyte progenitors were also 

significantly reduced at P0 (Fig. 11U, V, X), although oligodendrocyte progenitors may 

be derived from outside the cerebellar germinal zone (Grimaldi et al., 2009). Collectively, 

Pals1 loss induces the reduction of proliferating cells in the ventricular zone and 

consequently affects the production of ventricular derived progenitors or neurons and 

glia cells.  
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Figure 11. Pals1 depletion reduces proliferating VZ progenitors, interneurons and glia cells and 

their progenitors  (A-F) Proliferative progenitors in the VZ were monitored with transient BrdU 

incorporation at E15.5, E17.5 and P0. (G) BrdU + cells are reduced at E15.5 and E17.5 in the Pals1 CKO, 

but the reduction is not statistically significant compared to WT only at E17.5 (p = 0.11). (H-P) GABAergic 

interneuron detected by Pax2 immunostaining in CKO are reduced but enriched at the apical side at 

E17.5 (arrows), and there is a significant decrease in Pax2 positive cells at P0 (P= 0.000074) (H).  (Q, R) 

BLBP
+
 cells are reduced in the VZ at E17.5 in the Pals1 CKO compared to WT. Insets are enlarged 

images of VZ. (S, T) Sox 9
+
 cells are significantly reduced in the Pals1 CKO as compared to WT at P0. (U, 

V) Olig2
+
 cells are also reduced at P0.   (W, X) Quantitative analysis of CKO and WT Sox 9 (p=0.0015) 

and Olig2 (p=0.0020) + cells performed by counting immunopositive cells at the midsagital section (n=3 

for each genotype).    
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3.2.6 Pals1 is required for CGNP production and maintaining progenitor cells in 

EGL 

To determine the cause of the significantly reduced CGN number in the Pals1 

mutant cerebellum, we examined the production of CGNPs.  The initial CGNP 

population is generated from the URL and migrates tangentially to the dorsal surface of 

the cerebellar plate underneath the pia from E13.5 to E18.5 (Wingate and Hatten, 1999). 

A second phase of massive amplification of CGNP through active proliferation occurs 

within the EGL during the early postnatal stage (peak at P6) (Roussel and Hatten, 2011).  

We first examined the production of CGNP during embryogenesis by labeling S-phase 

cells with BrdU.  In brief, BrdU was injected into timed pregnant females or postnatal 

pups and 30 min later, cerebella of embryos or pups were harvested for 

immunohistochemistry staining (Fig. 12A – F). While indistinguishable at E15.5, a 

statistically significant diminution of BrdU positive cells in the EGL layer of the Pals1 

mutant was observed at E17.5, the stage when URL shortening became apparent (Fig. 

12C - D and G, Fig. 8L, M). Immunostaining for M-phase cells with Phospho-Histone H3 

(PH3) and Phospho-Vimentin (4A4), and cycling cells with the pan-progenitor marker, 

Ki67, corroborates the findings with BrdU labeling (Fig. 12C, D). The reduced CGNP 

population was even more pronounced at later stages (Fig. 12E-G and data not shown).    

To further understand the substantial reduction of CGNPs in the EGL, we 

examined cell death during late embryogenesis and at P0. At odds with the evidence of 

massive cell death observed in Pals1 CKO cerebral cortex (Kim et. al., 2010) no 

significant increase of dying cells was observed in the developing cerebellum (data not 

shown). Next, because the stunted URL is one of the most consistent and striking 



72 

 

features of the Pals1 mutant cerebellum, we sought to determine whether premature 

differentiation contributes to the reduced URL size by examining p27Kip1 (p27) and 

Tuj1 expression. Immunostaining for p27, which prevents cell cycle re-entry, allows us 

to determine precocious differentiation by labeling cells that have exited the cell cycle. 

Close examination revealed predominant p27 expression in the stunted URL of Pals1-

deficient mice (Fig. 12I’), while, in the wild type, intense p27 expression was limited to 

the mid-zone (Fig. 12H’, arrow). We also found that over 75% of total cells in the CKO 

are p27-expressing cells while only 35% express p27 in the wild type URL (Fig. 12H’, I’ 

boxed area, 12J).  Thus, premature depletion of URL progenitor cells may contribute to 

the reduced CGNP population in the EGL by reducing the supply of URL-derived 

CGNPs.  

We next examined the expression of the neural marker, Tuj1, at E17.5, to 

investigate whether excessive neuronal differentiation reduces the CGNP population.  In 

wild type, the outer domain of EGL was occupied by proliferating CGNPs and Tuj1-

expressing neurons were absent, whereas in the Pals1 mutant, Tuj1-expressing cells 

almost completely occupied the EGL (Fig. 12K and L). Intense Tuj1 positive cells at the 

outer domain of CKO EGL may indicate excessive CGNP differentiation at the EGL. 

Furthermore, comparison of the distribution of Pax6 positive cells in the CKO to WT 

revealed that many Pax6 positive cells are no longer maintained in the EGL, indicating 

their cell cycle exit and leave proliferating zone.  Although the total number of Pax6 + 

cells at E17.5 was 30% lower in the CKO than in the WT, there was a threefold increase 

in the number of Pax6 + cells of CKO found in deeper layers compared to WT (Fig. 

12O). In the WT, 80% of Pax6 + cells were found in the EGL, however, only 20% of 
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Pax6+ cells remained in the EGL of CKO (Fig. 12P, Q), demonstrating a Pals1 function 

in maintaining CGNP pool in the EGL. We consistently observed similar phenotypes 

one day later (data not shown).  

To further investigate the population of cells exiting the cell cycle in the absence 

of Pals1 in the EGL, BrdU was administered at E16.5 and 24 hours later, embryos were 

harvested. First, we examined the BrdU+ cells among the Pax6+ cells that were not in 

the EGL and counted these as the population of cells that had exited the cell cycle (Fig. 

12R, S). We found more than a threefold increase of cells exiting the cell cycle in the 

CKO than in WT (Fig. 12V). Next, we compared the number of BrdU+ cells that 

remained in the EGL but were postmitotic, as determined by the absence of Ki67 

immunostaining (Fig. 12T, U). Again we consistently found that more BrdU+ cells are 

Ki67- in CKO than in WT (Fig. 12W).  Next, to determine whether Pals1 deficiency 

induces changes in cell cycle length, we examined the proportion of cycling cells that 

were in S-phase by counting the BrdU + cells among Ki67 + cells after 30 minute pulse 

labeling. We failed to obtain statistically significant changes in the fraction of cells in the 

S-phase despite a significantly reduced number of proliferating cells in the CKO (Fig. 

12X, Y, Z).  This suggests that cell cycle length is not obviously altered by the loss of 

Pals1.  Together, the failure of CGNPs to re-enter the cell cycle, which leads to 

premature differentiation, is a main contributor to the reduced CGNP in the EGL. 
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Figure 12. Loss of Pals1 reduces the proliferation of CGNP cells in the EGL  

(A-G). Proliferative progenitors were labeled by BrdU incorporation at E15.5, E17.5, and P0 and stained 

for BrdU and with PH3 antibody. Although there was no statistically significant difference between WT 

and CKO at E15.5 (A, B), BrdU positive CGNP cells in the EGL were significantly reduced at E17.5 (C, D) 

and P0 (E, F) in Pals1 CKO as compared to WT (G). ** P= 0.000098, P<0.001.  (H, H’, I, I’) Strongly p27 

positive cells are lined up at the mid zone of the WT URL (arrow), but in the CKO, p27 positive cells are 

dispersed in a short and stunted URL. (J) More than 75% of CKO URL cells express p27; only 35% of WT 

express p27.  (K-L’), Tuj1 positive cells (green) extend  beneath the pia in the CKO, but are not in the 

outer EGL of WT. (M-Q) More Pax6 + cells dispersed in the outside of EGL in the CKO as compared to 

WT (M, N).  Fewer Pax6 + cells are found in the CKO (O) but the distribution of Pax6 + cells is greatly 

shifted to outside of EGL in the CKO compared to WT (P, Q). (R, S, V) The fraction of BrdU labeled 

Pax6+ cells 24 hours before harvesting in the outside of EGL among total Pax6 + is significantly 

increased in the CKO. (T, U, W) Likewise, the proportion of Brdu+ Ki67- cells out of total BrdU+ cells in 

the EGL is increased in the CKO compared to WT. (X, Y, Z) The portion of S-phase cells marked by 30 

minute BrdU labeling out of total progenitor cells (Ki67+) is slightly increased in the CKO but not 

statistically significant.  
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3.2.7 The expression of downstream effectors of Shh signaling is not obviously 

altered 

To understand the mechanism for the loss of in Pals1-deficient CGNP in the EGL, 

we examined whether compromised mitogenic activity mediated by Shh contributes to 

the progenitor depletion.  We therefore observed the expression of Shh downstream 

effectors, Gli1, Gli2, N-Myc, Cyclin D1 in the CGNP at E17.5, P0 and P6 (Fig.13).  At 

E17.5, because of relative weak expression of those genes in both WT and CKO, we 

have utilized the real time PCR to compare the level of their expression.  In contrast to 

obvious apparent reduction of Pals1 expression, the level of expression of Gli1 and 2, 

N-myc, Cyclin D1 is not distinctively decreased at E17.5. We collected and processed 

data from 3 mutants and 3 WT through normalizing the value to actin expression and 

calculated the relative proportion to the WT. Although variability among animals is 

apparent, there is no clear evidence of reduced level of their gene expression in the 

CKO as compared to WT (Fig. 13A).  Furthermore, in situ hybridization analyses of Gli1, 

Gli2 and N-Myc expression show relatively intact their expression in the CGNP during 

the course of development in later stages (P0 and P6), suggesting that Pals1-deficient 

EGL cells possess unimpaired Shh signaling activation (Fig. 13B-M’). Together, our 

results suggest that Pals1 plays an important role in promoting the proliferation of EGL 

cells, which is distinct from activation of Shh signaling.  
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Figure 13. The expression of downstream effectors of Shh signaling are not obviously affected by 

Pals1 loss 

(A) At E17.5, the level of Gli1, Gli2. Pals1, N-Myc and Cyclin D1 is analyzed by real time PCR. Except 

Pals1, there are no significant changes in gene expression caused by Pals1 deletion  (B-G) N-Myc and 

Gli2 expression in the  EGL cells at P0 examined by pairing Pax6 immunostaining (B, C) and N-Myc and 

Gli2 in situ hybridization (D, E, F, G) of similar sections.  (H-M’) Similarly, at P6, the intensity of Gli2 and 

N-Myc mRNA expression in the EGL of the Pals1 CKO (K, K’, M, M’) is not apparently changed from WT. 

(J, J’, L, L’).   
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3.2.8 Pals1 deficiency abrogates Shh signaling  

To further explore the relationship between Shh signaling and Pals1 in CGNP 

proliferation, we have utilized the SmoM2 allele to achieve constitutively active Shh 

signaling in Pals1 deficient cells (Lau et al 2011). The SmoM2 allele carries a mutation 

(W535L) found in medulloblastoma patients, which causes activation of Shh signaling 

without ligand.  As expected, highly activated Shh signaling in the SmoM2 with hGFAP 

cre mice results in hypertrophic cerebellum with overly abundant Pax6+ CGNP and 

CGN, and Pax2+ interneurons at P0 (Fig 14A, B, E, F).   Unexpectedly, the SmoM2 

allele crossing into the Pals1 CKO does not increase the number of Pax6+ and Pax2+ 

cells at P0 and double mutants are indistinguishable from Pals1 CKO in terms of 

general size and morphology (Fig. 14 A-Q). However, at a later stage, small regions of 

tissue containing a cluster of abnormal cells (Fig. 14 arrow) are apparent on the surface 

of the double mutant cerebellum, which lacked normal foliation, suggesting potential 

tumorigenic activity in the double mutant. Thus, although typical medulloblastoma cells, 

represented as small and round with a high nuclear to cytoplasmic ratio, are not obvious 

in the double mutants at P21, it is possible that tumors develop at later stages. However, 

severe hydrocephalus in the double mutant, similar to the single SmoM2 mutant, 

compromises viability beyond P21 and occludes us from testing the possibility. Further 

exploration of this small cell cluster revealed that these cells are mitotically active as 

they were labeled by Ki67.  Furthermore, these cells can be marked by glia cell markers 

such as S100 and GFAP (Fig. 14Q, data not shown), suggesting glial characteristics.  

Collectively, Pals1 deficiency can block medulloblastoma formation in spite of a 
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tumorigenic mutation, providing evidence for the essential requirement of Pals1 function 

in uncontrolled proliferation of CGNP in Shh-mediated tumorigenesis.  
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Figure 14. Pals1 deficiency blocks activated Smo-mediated tumorigenesis  

(A, B, C, D, I) SmoM2 allele induces over production of Pax6+ cells and expanded EGL compared to WT 

(A, B), which is no longer observed in the double mutant with Pals1 CKO (D), similar to that of Pals1 CKO 

(C). (E, F, G, H, I) Pax2+ interneuron cells are also increased in the SmoM2 mutant, but this effect is 

abolished by Pals1 deletion at P0. (K, L, M) At P21, medulloblastoma is apparent in the SmoM2 mutant 

shown by expanded dark and high-nuclear tissue. Many tumor cells are Ki67+ (L) and S100 expressing 

cells do not appear to overlap with Ki67 expressing regions (M).  (O, P, Q) In the double mutant, 

eosinophillic small clusters of cells are found on the surface of the cerebellum, which are Ki67+ (P) and 

S100+ (Q).  
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3.3 DISCUSSION 

Our study demonstrated that asymmetrically distributed polarity complex proteins, 

specifically the apical complex protein Pals1, are required for maintaining the 

proliferative capability of progenitors in both cerebellar germinal zones by preventing 

premature differentiation. Remarkably, our genetic study revealed that Pals1 deficiency 

can completely overcome deregulated Shh signaling by activated Smo mutation, 

suggesting its potential function in mediating mitogenic signals or cellular adhesion 

required to maintain cycling cells in germinal zones. 

 

3.3.1 EGL, URL and VZ progenitors require Pals1 function to remain in cycling 

pool  

Owing to its well-defined mitogenic/morphogenetic signals for distinct germinal 

zones and its relatively lengthy developmental process, the cerebellum provides a 

unique opportunity to explore the contribution of epithelial polarity to neural 

development. The majority of cerebellar cells are generated from neuroepithelium-

derived progenitors that are lineage restricted by specific basic helix-loop-helix 

transcription factors such as Atoh1 in the URL and Ptf1a in the VZ (Hashimoto and Hibi, 

2012). Our study recognizes cell polarity as an intrinsic property that is important for 

maintaining all germinal zones including URL, VZ and EGL.  It has been shown that 

certain subtypes of progenitors with distinct molecular signatures may regulate their 

proliferation capability by initiating either symmetric cell division (producing two 

progenitors) or asymmetric cell division (one progenitor and one intermediate progenitor 

or terminally differentiated cell) (Franco and Muller, 2013).  For example, in the early 



81 

 

cortical neuroepithelium, early born neurons are generated through asymmetric cell 

division of Cux2 negative progenitors while Cux2 positive progenitors of late born 

neurons undergo self-renewing symmetric cell division (Franco et al., 2012). 

Furthermore, Lis1 deletion in cells undergoing symmetric cell division causes more 

profound defects than in later progenitors that divide asymmetrically (Pawlisz et al., 

2008).  Because our specific deletion of Pals1 occurs in the early cortical 

neuroepithelium, when symmetric cell division is prevalent, and causes near absence of 

cortical structure, we expect that Pals1 function is more critical for progenitor expansion 

than asymmetric division.  Consistently, the cell division mode of CGNPs has been 

shown to be symmetric and clonally expanded progenitor cells exit the cell cycle after a 

few divisions and depart to IGL. The severe defects arising from CGNP depletion may 

support the idea that faithful symmetric cell division relies more on Pals1 function than 

does asymmetric cell division.  

 

3.3.2 Pals1 loss forces cell cycle exit and blocks tumorigenesis 

Our results demonstrated the striking effect of Pals1 deficiency on promoting a 

differentiation program even when mitogenic signaling was constitutively active.  

Although in vivo mechanisms that stimulate cell cycle exit of CGNPs during 

development are not yet fully established, factors like FGF, PKA, and Wnt are known to 

drive differentiation in vitro or in tumor cells. Previously, it has been shown that FGF 

signaling has a slight mitogenic effect on CGNPs (Wechsler-Reya and Scott, 1999), but  

when CGNPs are proliferating in the presence of Shh or deregulated Shh, FGF exerts 

an opposing effect and leads to differentiation (Fogarty et al. 2006; Emmenegger et al., 
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2013).  None of the identified factors, however, have been found to be required for 

CGNP differentiation in vivo, suggestion the existence of a more prominent factor or the 

cooperation of several factors.  Remarkably, Pals1 deficiency enhances cell cycle exit 

during normal development and potentially in malignant cells, suggesting a fundamental 

requirement of Pals1 in proliferation.  Since molecularly distinct mechanisms may 

regulate proliferation in embryonic versus malignant tumor cells in later stages, it will be 

important to determine the effect of removing Pals1 in mice with preexisting 

medulloblastoma.  For this purpose, an inducible Pals1 conditional knockout in the 

Patched heterozygote mouse model , of which approximately 20%  spontaneously 

develop medulloblastoma in later stages (Lau et al., 2012), can be used to determine 

whether Pals1 loss forces the differentiation of Shh-driven tumor cells.  Interestingly, a 

recent study suggests that tumor-initiating cells in medulloblastoma are  distinct Nestin 

positive progenitors in the EGL (Li et al., 2013). Those cells have reduced expression 

levels of DNA repair genes and are prone to develop genomic instability.  It is possible 

this newly identified Nestin positive progenitor population may be depleted by Pals1 loss 

during development in the SmoM2 mice.  In any case, it is extremely exciting that Pals1 

loss can completely shut down uncontrolled proliferation elicited by aberrant Shh 

signaling. This may provide a new direction for understanding granule cell development 

and medulloblastoma treatment.  

Our preliminary observation of cilia in Pals1 mutant EGL cells did not reveal a 

striking loss or malformation of cilia phenotype (data not shown). Furthermore, Gli1 and 

2 expression levels were still relatively intact in the Pals1 mutants (Figure 7) unlike the 

Kif3a mutant in which ciliogenesis is evidently disrupted, accompanied by strikingly 
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reduced Gli2 expression (Spasky, developmental biology).  Similar to Pals1 deficiency, 

Kif3a deletion with hGFAP Cre completely blocks the SmoM2 mediated hyper-

proliferation of EGL cells and medulloblastoma. However, Pals1 deletion-mediated 

arrest of SmoM2-induced deregulated proliferation appears to be distinct from primary 

cilia function. Interestingly, the presence of a small cluster of faint cells (eosinophillic) 

with Ki67+ above the molecular layer of the Pals1 and SmoM2 double mutant is distinct 

from the dense medulloblastoma cells. These cells may belong to Type II tumor cells 

observed in transgenic mice with excess Gli2 activation in which medulloblastoma is not 

formed unless cilia is removed.  Since it is likely that Gli3 processing remained intact in 

the cilia, Gli3 repressor may prevent the medulloblastoma formation in spite of Gli2 

hyper activation. Thus, one potential mechanism by which Pals1 deficiency inhibits 

SmoM2 mediated Shh signaling activation could be through promoting Gli3 processing 

to its repressor form. Together, future studies concerning cilia, Pals1 function, and Gli3 

processing may reveal a new regulatory pathway that inhibits Shh signaling.  

 

3.3.3 A distinct survival mechanism may exist in cerebellar cells. 

VZ progenitors in the entire neuroepithelia were affected in the Numb/Numblike 

double mutant with Nestin Cre (Petersen et al., 2002), suggesting a general 

requirement of polarity complex proteins in maintaining progenitor pools. Consistent 

with this notion, we have shown their necessity for maintaining progenitor pools in the 

cerebral cortex (Kim et al., 2010) and, from this study, the cerebellum.  Although the 

cortex and cerebellum progenitors show phenotype similarity, such as the depletion of 

progenitors due to defects in self-renewal in both germinal zones, the remarkable 
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difference is that dying cells are not noticeably increased in the cerebellum of the Pals1 

mutant (Kim et al., 2010). In the cerebral cortex, prematurely generated neurons 

underwent rapid apoptotic cell death associated with impaired mTORC1 activity within a 

few days after cre recombination (Kim et al., 2010). In the Pals1-deficient retina, a 

moderate number of dying cells were found throughout developmental and adult stages 

(Cho et al., 2012). The late-onset retinal degenerative disease, Retinitis Pigmentosa 

(RP) 12, is caused by a mutation of the Crb1 gene in humans (Richard et al., 2006; van 

de Pavert et al., 2004). Crb1 mutation can also cause an earlier onset disease, the most 

severe form of retinal degeneration, Leber Congenital Amaurosis (LCA) 8 (Aleman et al., 

2011). Our studies of Pals1 deletion in retinal progenitors have provided a model of 

LCA8 that reproduces its early degeneration and retinal lamination defects.  In contrast, 

despite an extensive examination of embryonic and early postnatal stages (Fig. S2), we 

did not detect up-regulation of cell death in any cell type in the cerebellum. It is possible 

that the extremely slow kinetics of cerebellar cell death prevented us from observing an 

unambiguous and statistically significant increase in the earlier stages. A unique 

survival mechanism in cerebellar cells and their progenitors, however, may prevent an 

increase in cell death.  

 

3.3.4 The role of Pals1 is to maintain apical junctions in the cerebellum. 

Although we cannot rule out the possibility of Pals1 function in unknown signaling 

pathways, our current study suggests that Pals1-mediated maintenance of cell junction 

and cell polarity are the most consistent phenotypes observed in various neuroepithelia.  

In the developing and mature retinas of Pals1 mutants, apical junctions and tissue 
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polarity are severely disrupted. Furthermore, defects in the junction between Müller glia 

and photoreceptors are recognized as one of the initial steps in the pathogenesis of 

Crb1 mouse mutants. A previous study has also demonstrated that Pard3 serves a 

critical function in CGN migration by promoting cell adhesion through an interaction with 

the Junctional Adhesion Molecule (JAM)-C (Famulski et al., 2010). Defects in the 

localization of tight junction associated proteins such as Zo1 and apical complex 

proteins are therefore closely and constantly associated with the abnormal migration 

and the disorganization of lamina structure in various developmental contexts. The loss 

of adhesion between CGNPs causes them to prematurely detach from the germinal 

zone, which may serve as a potential mechanism for loss of proliferative capability. In 

Drosophila ovary, germline stem cells are lost if they fail to maintain attachment to their 

niche due to diminished junction proteins such as E-Cadherin (Song et al., 2002, 

science).  Furthermore, Cdc42 deficiency causes adherens junction defects and leads 

to a marked increase of intermediate neurogenic progenitors by inducing detachment of 

apical progenitors in the developing cortex (Cappellio et al., 2006).  In our study, upon 

loss of Pals1, a large portion of Pax6 positive cells were no longer maintained in the 

EGL and migrated out of the EGL, possibly due to the adhesion defects mediated by 

Pals1. Recent studies have shown that the homophilic interaction between extracellular 

domains of Crb proteins provide cell adhesion in the Drosophila wing (JCS 2014). It is 

possible that the Pals1-Crb adhesion system may play a critical role in CGNP 

attachment to the EGL layer by enabling interactions between CGNPs or between 

CGNP and pia meningeal cells until clonal expansion is completed.  
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Chapter Four: 

The roles of Pals1 in cortical development and mitosis 
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4.1 Introduction 

The cerebral cortex is the largest structure in the brain and is essential for cognition 

and higher mental capability. Abnormal development of the cerebral cortex causes 

neurodevelopmental disorders such as epilepsy, developmental delay and autism 

(Mochida & Walsh, 2001). Proper proliferation and differentiation of cortical progenitors, 

which depend on tightly regulated cellular and molecular events, is essential for normal 

cortical development. In addition, the balance between early and late born neuron 

generations, which is maintained through regulating progenitor cell division (symmetric 

versus asymmetric), is critical to maintain normal cortical development (Caviness et al., 

1995). During neurogenesis, intrinsic cell mechanisms, such as polarity proteins and 

timing transcription factor expression, function as cell fate determinants for the transition 

from multipotent progenitors to layer specific neurons in the cortex (Alsio et al., 2013). In 

a fixed temporal order, multipotent progenitor cells produce different types of neurons in 

the developing cerebral cortex (Livesey & Sepko, 2001), and all pyramidal neurons are 

generated and formed in an inside out matter to develop the six cortical layers: layer 6 

and the subplate neurons are generated first, followed by layers 5,4, and 2/3 in 

sequential order.  

Although the role of Pals1 has been intensively studied in Drosophila, zebrafish and 

mammalian cells, the first study on the role of Pals1 in neocortical development was 

only recently reported with the generation of Pals1 CKO mice with Emx1-Cre. This 

study shows that the deletion of Pals1 in the cortex disrupts cell-cell adhesion and 

maintenance of polarity in NECs.  This leads to the premature neurogenesis from early 
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neuroepithelial progenitors followed by apoptotic cell death, resulting in significantly 

undersized cortex at the adult stages. (Kim et al., 2010).  

The major issues in our lab over the recent years has been characterizing the roles 

of Pals1 in another progenitor, radial glial progenitor (RGP)s, and proving if the reduced 

cortical size is due to the cell autonomous or non-autonomous defects by the ablation of 

Pals1 in RGPs. Furthermore, Pals1 function in mitotic progression and how Pals1 is 

differentially inherited or changes its subcellular localization during mitosis are important 

questions to identify the mechanism underlying Pals1 function in cortical development. 

Although polarity complex proteins are known for regulating the asymmetric localization 

of cell fate determinants and in turn determine cell fate, Pals1 localization studies 

through immunostaining was limited to only apical junction.  Thus, it is critical to 

determine its subcellular distribution, how it affects the cell fate of progenitor cells and 

identify any downstream effectors.   

Pttg1 gene is an oncogene discovered in rat pituitary tumor cells, and is the 

mammalian homolog of Xenopus securin that inhibits sister chromatid separation (Zou 

et al., 1999). This gene is highly expressed during M phase, and overexpressed in a 

variety of tumors, including pituitary, breast, thyroid, ovarian, uterine, colon, and lung 

(Kakar 1999; Zhang et al., 1999; Heaney et al. 2000; Shibata et al., 2002; Solbach et al. 

2004; Chamaon et al., 2005, Tsai et al., 2005). Pttg1 null mice show testicular and 

splenic hypoplasia, aberrant cell cycle progression, and premature centromere 

segregation. Embryo fibroblasts lacking Pttg1 exhibited G2-M phase extension, showing 

aberrant cell cycle, multiple nuclei and increased aneuploidy (Wang et al., 2003).  
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Furthermore, enhanced Pttg1 levels are associated with tumor cell characterization, 

such as higher tumor grade, invasiveness and tumor vascularity (Heaney et al., 2000; 

Hlubek et al., 2006). In addition, the involvement of Pttg1 is also demonstrated in tumor 

transforming activity. Pttg1 is involved in the induction of chromosome instability binding 

to Separase to regulate sister chromosome separation (Waizenegger et al., 2002). It 

has also been known that Pttg1 interferes the formation of Ku heterodimer, inducing 

genetic instability through the inhibition of DNA damage repair (Kim et al., 2007). Pttg1 

can function as a transcription factor to regulate several genes’ expression, leading to 

the regulation of tumorigenesis and cancer development. Several mechanisms and 

interacting partners are shown in Figure 15 for the function of Pttg1. 
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Figure 15. Schematic diagram for the role of Pttg1 in cell cycle and its interacting 

partners. Pttg1regulates sister chromatid separation and the transition from metaphase to 

anaphase by inhibition of Separase. Pttg1 is able to bind c-Myc promoter directly and regulate 

cell cycle per se or via Cyclin D.  Interacting partners are CDK inhibitor p21, transcription factor 

SP1 and p53.  
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The study of the relationship between Pals1 and Pttg1 has not been elucidated 

yet. Intriguingly, gene expression profiling study of the light induced degeneration in the 

Crb1 mutant revealed that Pttg1 is the most consistently and profoundly affected gene 

upon light mediated damage. Furthermore, microarray analysis of Pals1 Emx1-Cre 

mutant mice noted that the Pttg1 gene is significantly downregulated, suggesting that 

Pttg1 may be functional as a critical downstream factor in Pals1 CKO. Our studies 

analyzing Pals1 deletion in RGPs establish the crucial function of Pals1in mitotic 

progression and faithful chromosome segregation by regulating Pttg1 expression 

potentially through Yap interaction.  
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4.2 Results 

4.2.1 Pals1 is essential for histogenesis and RGP maintenance during cortical 

development. 

Previous studies identified the significance of Pals1 for histogenesis of the cortex 

and NEC self-renewal using Emx1-Cre. Emx1-Cre mediated deletion of Pals1 showed 

almost complete ablation of the cortex, lacking all cortical neurons. However, this limits 

the study of the role of Pals1 in other aspects of cortical development since the 

apoptotic deletion of NECs leads to complete loss of medial cortex at postnatal stages 

in Pals1 CKO. We postulated that Pals1 is essential in the maintenance of RGP, which 

undergoes asymmetric cell division and generates the majority of the excitatory neurons 

in the cortex. Therefore we used hGFAP-Cre allele in which Cre expression is initiated 

at E12.5 in the RGP to delete Pals1 from the majority of the RGP pools. The Pals1 CKO; 

hGFAP-Cre mice were born in the expected Mendelian ratio. These mice developed 

severe seizures at around P12-20, and many of them died before weaning age. Similar 

to the  Pals1;Emx1-Cre mice, Pals1;hGFAP-Cre CKO and Het mice showed remarkably 

undersized brain, compared to wild type littermates (Fig 16A). Unlike Pals1;Emx1-Cre 

mice, Pals1;hGFAP-Cre mice maintained general cortical layer structures and 

preserved Marginal Zone (MZ) (Fig 16B). Interestingly, malformed and severely 

undersized hippocampus with only rudimentary structure can be observed at P11, 

suggesting that Pals1 is also essential for the development of the hippocampus (Fig 

16C). Together, the deletion of Pals1 demonstrates its essential role in normal lamina 

composition and layer structure in the cortex and hippocampus.   
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To define Pals1 function in cortical neuronal production and ultimate lamina 

structure, we utilized the layer specific markers to analyze the lamina composition at 

P11. The late born neuronal population (layer 2-4) is labeled by Cux1 immunostaining 

(Fig 16 D,E). The total number of Cux1 positive cells are significantly reduced in Pals1 

CKO as compared to WT (Fig 1F), indicating that the paucity of late born neurons may 

due to the reduced size of the progenitor pool that generate late born neurons. When 

we observed earlier born neurons labeled with Foxp1 (layer 6 marker) (Fig 16G,H’) and 

Ctip2 (layer 5 marker) (Fig 16 I,J’), it showed that the reduced number of earlier born 

neurons was not statistically significant between WT and Pals1 CKO, suggesting that 

earlier progenitor pools are maintained in Pals1 CKO.  Although the number of early 

born neurons are maintained, at P11 these neurons are ectopically localized and 

dispersed by the deletion of Pals1. Some neurons are localized in layer 2-4 where late 

born neurons reside. This may imply that the ablation of Pals1 is required for the 

maintenance of cortical layer structure by regulating neuronal migration in early born 

neurons.  
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Figure 16. Pals1 ablation using hGFAP-Cre causes microcephaly by the reduction of RGP. 

(A) Pals1 deletion in the RGP by crossing with hGFAP-Cre induces small brain. (B,C) Histology 

of the whole brain at P6 and P11 shows reduced cortical size in Pals1 CKO mice, but cortical 

layers are relatively preserved. In the Pals1 CKO, hippocampi is reduced and malformed . (D,E) 

The severe reduction of late born neurons marked by Cux1 is observed at P11 in Pals1 CKO. 

(G,H,I,J) Early born neurons stained by Foxp1 (layer 6) and Ctip2 (layer 5) are not significantly 

reduced in Pals1 CKO. 
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4.2.2 Pals1 regulates RGP maintenance during cortical development. 

To further evaluate the proliferation and maintenance defects leading to the 

paucity of late born neurons at later stages, the changes in the progenitor population 

during neurogenesis were investigated. First, we identified the S-phase cells during cell 

cycle and proliferating RGPs, by performing transient BrdU pulse-labeling and marker 

analysis with Pax6 for RGPs. The number of BrdU positive S-phase cells and RGPs are 

significantly reduced in Pals1 CKO at E14.5, compared to wild type animals (Fig 

17A’,A’’,B’,B’’,E). Likewise, cells undergoing mitosis stained with phospho-histone3 

(pH3), were significantly reduced in Pals1 CKO (Fig 17A’,B’,F).  Taken together, it is 

clear that Pals1 is crucial for progenitor proliferation.  

Since we observed a comparable number of early born neurons at later stages, 

we analyzed the population of early born neurons through staining with early born 

neuronal markers, Tbr1 and Ctip2 at E14.5 (Fig 17H’,H’’,I’,I’’). As shown in the previous 

study on Pals1;Emx1-Cre mice, early born neurons are significantly increased (Fig 17 

J,K), suggesting excessive neurogenesis at the expense of RGP pools. To further 

exploit this, we stained with Tuj1 to mark neuronal cells and p27 and NeuN to mark 

differentiating progenitors that become neurons. As we expected, Tuj1 and p27 positive 

cells are increased in Pals1 CKO at E14.5 (Fig 17L-M’), suggesting that many 

progenitors exit the cell cycle precociously. However, there is no excessive early born 

neurons present in later states, the striking reduction of cortex at postnatal stages 

suggests that the precocious cell cycle exit observed in Pals1 CKO during neurogenesis 

subsequently leads to apoptotic cell death and eventual cortical size reduction. 
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Consistent with our expectation, precociously generated neurons undergo apoptotic cell 

death marked by CC3 staining (Fig2 L-M’). Most of the dying cells are newly generated 

neurons, whereas most progenitors marked with Pax6 do not overlap with CC3 (Fig 17 

N-O’). This implies that the dying cells are not the progenitors but the excessive newly 

born neurons at early embryonic stages.  

Intriguingly, basal progenitors are slightly increased at E14.5 (Fig 17 G,K), 

suggesting that more neurogenesis occurs via intermediate progenitors rather than 

RGP that directly differentiates into neurons through asymmetric cell division. 

Intermediate neurogenic progenitors, BPs, which are generated by symmetric RGP 

division, can undergo one or a few more rounds of cell division to generate neurons. 

Previous studies have illustrated that Par3 knockdown using shRNA inhibits asymmetric 

cell division of RGPs, thereby producing two BPs (Bultje et al., 2009). In addition, the 

deletion of Cdc42, which induces adherens junction defects and loosens the attachment 

of apical progenitors in the VZ, can also generate excessive basal progenitors; although, 

the length of cell cycle and basement membrane contract are normal (Cappello et al., 

2006). Therefore, the increase of the BP population in Pals1 CKO may due to the failure 

to maintain RGP population by more asymmetric cell division of RGPs or loss of 

attachment of apical progenitors in VZ, both of which can generate more BPs.  



 

Figure 17. Loss of Pals1 shows substantially reduced RGP pool and 

by precocious differentiation.

area, but interestingly increased cortical thickness at E14.5. 

Brdu incorporation (A’,B’) and staining with Pax6 (A

reduced in Pals1 CKO (E,F). (C,D)

Excessive neurogenesis was observed in Pals1 CKO analyzed with western blotting (G) and 

immunohistochemistry with Tuj1, Ctip2 and Tbr1 antibody (H

positive cells are significantly increased in Pals1 CKO (J,K). Massive cell death was observed in 

Pals1 CKO by CC3 immunostaining with 

(L-O’) determined by overlapping expression of CC3 anp27 or NeuN
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. Loss of Pals1 shows substantially reduced RGP pool and apoptotic cell death 

by precocious differentiation. (A,B) Histology of Pals1 CKO shows reduced 

d cortical thickness at E14.5. Proliferating RGP

) and staining with Pax6 (A’’,B’’) and pH3 (A’,B’) are

(C,D) Basal progenitors are slightly increased in Pals1 CKO. 

observed in Pals1 CKO analyzed with western blotting (G) and 

immunohistochemistry with Tuj1, Ctip2 and Tbr1 antibody (H-I’’). The number of Tbr1 and Ctip2 

positive cells are significantly increased in Pals1 CKO (J,K). Massive cell death was observed in 

by CC3 immunostaining with most of the dying cells being newly generated neurons 

determined by overlapping expression of CC3 anp27 or NeuN. 

 

apoptotic cell death 

(A,B) Histology of Pals1 CKO shows reduced dorsal surface 

Proliferating RGP pool labelled by 

) are significantly 

Basal progenitors are slightly increased in Pals1 CKO.  

observed in Pals1 CKO analyzed with western blotting (G) and 

). The number of Tbr1 and Ctip2 

positive cells are significantly increased in Pals1 CKO (J,K). Massive cell death was observed in 

newly generated neurons 
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4.2.3 Mitogenic signaling, such as Shh and Notch signaling, are not obviously 

defective in Pals1 CKO 

To investigate the molecular mechanism underlying progenitor loss due to Pals1 

deficiency, we examined alterations in the mitogenic signaling in the Pals1 mutant.  First, 

we examined the Shh signaling as it functions as a strong mitogen for the neural 

progenitors, thereby maintaining proliferation, survival and differentiation during 

development of the neocortex (Komada, 2012). To examine the defect in Shh signaling, 

we performed in situ hybridization using downstream transcription factors: Gli1 and Gli2. 

Surprisingly, we found the expression of mRNA was not significantly different in Pals1 

CKO compared to WT at E14.5  (data not shown).  

Next, we examined Notch signaling, as this is another strong signaling pathway 

involved in many aspects of neocortex development, and therefore an ideal signaling 

pathway to be affected by Pals1 loss. In situ hybridization analyzed Notch1 mRNA 

expression, and similar to our findings with Shh, there was no significant difference 

between WT and Pals1 CKO. Since NICD is cleaved upon binding with Notch ligands to 

activate downstream factors, we also observed NICD protein expression. The intensity 

of NICD expression was not reduced in the Pals1 CKO (Fig18 A). Antibody staining with 

Notch downstream transcription factor, Hes1, and in situ hybridization using Hes5 ribo-

probe also support that there was no significant difference in the protein and mRNA 

expression between WT and Pals1 CKO, respectively (Fig18 B). Taken together, this 

evidence suggests that the Notch signaling pathway is not impaired by the deletion of 

Pals1, leading to the idea that there are other mechanisms affected in Pals1 CKO.   
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Figure 18. Notch signaling is not significantly defective in Pals1 CKO. (A) Notch1 mRNA 

and NICD protein expression is not significantly different between WT and CKO. (B) Hes1 

antibody staining and Hes5 mRNA expression show that Notch downstream factors are not 

obviously changed in WT and CKO.  
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4.2.4 The role of Pals1 in apical complex localization and in the formation of 

cytoarchitecture of RGP 

  To gain insight into the role of Pals1 in the apical localization of the apical 

complex proteins, we observed protein expression at E14.5. In the Pals1 CKO, the 

localization of Pals1 at the apical junction is completely abolished, and other apical 

complex proteins such as Par3, aPKC, and Crb are diminished (Fig. 19 A), suggesting 

that Pals1 is critical component for the maintenance of apical complex proteins. 

Interestingly, Zo1 which is localized in tight junctions is reduced and disrupted in the 

Pals1 CKO (Fig. 19 C), whereas adherens junctions stained with β-catenin and N-

cadherin are maintained (Fig19 B). Although we do not explain exactly how the tight 

junction associated molecule Zo1 is mislocalized, a previous study may provide a hint 

for the answer to this question that Pals1 regulates Zo1 expression. Pals1 is colocalized 

with Zo1 in MDCK cells, and treatment with siRNA delays the formation of tight junction 

without affecting adherens junctions when confluent cells are transferred to low calcium 

medium for dissociation of cell-cell contact (Straight et al., 2004). Another possibility is 

that the ablation of Pals1 may lose interaction with other apical complex proteins, such 

as other components of Crb or Par complex proteins, and ultimately lead to the failure of 

apical protein recruitment to tight junctions for their maintenance. It has been known 

that the disruption of either Crb or Par complex proteins interfere with recruitment of 

other proteins to the tight junction (Muller & Wieschaus, 1996). In addition, Par complex 

proteins themselves are well known to regulate the assembly of tight junctions through 

phosphorylation by aPKC (Yamanaka et al., 2001 ; Suzuki et al., 2002). The deletion of 
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Pals1 may disrupt the interaction between Crb and Par complex proteins, thus weaken 

the assembly and maintenance of tight junctions.  
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Figure 19. The expression of Crb, Par complex and tight junction molecules are defective 

in Pals1 CKO. (A) Crb complex proteins, Crb and Pals1, and Par complex proteins, Par3 and 

aPKCλ , expression is substantially reduced in Pals1 CKO. Furthermore, tight junction molecule, 

Zo1, shows defective expression in the absence of Pals1 (C), whereas adherens junction 

molecules, β-catenin and N-cadherin, are not changed in Pals1 CKO compared to WT(B). 
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Since Pals1 has a critical function in the maintenance of the apical region of the 

VZ, Pals1 deficient progenitors may show structural disruption of cell morphology. The 

EM study at E13.5 shows that the RGPs are less tightly bound to apical areas of the 

developing cortex, and the membrane structure of mitotic progenitors often shows 

abnormalities characterized by smaller membranes (Fig20 A-D). The mitotic cells in the 

apical area of the VZ are stained with Phospho-Vimentin and display irregular cell 

shape (Fig20 E,F), suggesting that Pals1 is involved in the formation of normal 

membrane structure in dividing cells.  

When in utero electroporation was performed at E13.5 with a pCAG-GFP 

construct and analyzed at E14.5, Pals1 deficient RGPs showed disorganized 

localization in VZ. Furthermore, Pals1 deficient RGPs had irregular shapes and 

protruded from apical areas to the ventricle. This supports the idea that Pals1 is 

essential for the formation of normal membrane structure and maintenance of the apical 

region. The disruption of cell polarity is also demonstrated by the mislocalization of Crb 

protein marked by pan-Crb antibody (Fig20 G).  

Taken together, Pals1 is essential for the maintenance of normal membrane 

structure, cell shape, polarity, and localization of RGPs in apical area of VZ.  
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Figure 20. Pals1 is involved in cytoarchitecture of membrane structure of dividing RGPs. 

Membrane structure in apical area of VZ using EM (A-D) at E13.5 and p-Vimentin staining (E, F) 

at E13.5 confirms that Pals1 CKO shows abnormal membrane structure in dividing RGPs. (G) In 

utero electroporation with GFP shows that morphological shape of RGPs in the VZ are severely 

defective in Pas1 CKO.   
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4.2.5 Pals1 is a major regulator in mitosis  

 Pals1 expression, identified using antibody staining, shows that Pals1 is 

intensively localized in the membrane during M-phase, while it is less expressed during 

interphase in neuroblastoma  (N2a) and NIH 3T3 cells (Fig21 A,B,D). The localization of 

Pals1 partially overlaps with Aurora B, marker for a cleavage furrow, in NIH 3T3 cells 

(data not shown) and at the apical surface of the VZ (Fig21 C), suggesting that Pals1 

may be important for membrane partitioning or for anchoring the mitotic cells at the 

apical surface during cytokinesis. To prove this hypothesis, we performed electron 

microscopy and time-lapse imaging analysis. EM images show that a lagging 

chromosome is observed in Pals1 deficient RGPs in the dividing cells undergoing 

cytokinesis (Fig21 E). Furthermore, time-lapse imaging analysis after electroporation at 

E13.5 shows that Pals1 deficient RGPs are clustered and undergoing abnormal division 

when mice were analyzed at E14.5 (Fig22A,B). Many dying cells, shown as small 

particles in the image, are also observed.  

Together, this evidence suggests that Pals1 function is required for normal 

mitotic progression and faithful chromosome segregation, which may be directly 

associated with cell fate changes and precocious cell cycle exit to generate neurons.  
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Figure 21. Pals1 is upregulated in cells undergoing mitosis, and a lagging chromosome 

is identified in Pals1 CKO. (A-D) Pals1 is weakly expressed during interphase (B, D left) but 

upregulated in dividing cells in NIH3T3 (A), VZ (C) and N2A (D middle and right). (E) EM study 

shows that chromosomal segregation is abnormal in RGPs of Pals1 CKO.  
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Figure 22. Time lapse confocal images in explant culture identifies that cell division is 

defective in Pals1 CKO. (A) In WT, dividing cells normally undergo mitosis (red and white 

arrow).. (B) Different size of daughter cells are generated by mitosis (white arrow), and cells are 

clustered and do not undergo mitosis (yellow and red arrow).  
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4.2.6 Pals1 subcellular localization  

To study Pals1 function in cell fate determination and mitosis, the subcellular 

localization of Pals1 is investigated in great detail. A previous study noted that Pals1 is 

localized at the tight junction with other Crumbs complex partners (Roh et al., 2003). 

Through the physical interaction with Ezrin, Pals1 is co-localized to the apical 

membrane of gastric parietal cells (Cao et al., 2005). In our study, Pals1 usually shows 

high expression in Golgi apparatus marked by GM130, and its localization is almost 

identical with Par3 localization in NIH3T3 cells (data not shown). As I illustrated in 

chapter 1, Pals1 has two prospective NLS sequences and one NES sequence. This 

suggests that we cannot rule out the possibility that Pals1 has a function within the 

nucleus. For example, Nagie oko, the Pals1 ortholog in zebrafish, can be translocated 

and accumulated in the nucleus when it loses the predicted nuclear export signal; 

although, it was not identified how Nagie oko plays a role in the nucleus (Bit-Avragim et 

al., 2007). To examine Pals1 subcellular localization, we generated pCAG:Pals1-DsRed 

and pCAG:Pals1-GFP construct. The overexpression Pals1 with Pals1-GFP construct 

shows different results depending on cell types. Pals1 is mainly localized in the 

cytoplasm in HEK293 cells when it is overexpressed (Fig23 A). However, Pals1 is 

observed in the nuclei of MDCK and MCF7 cells, both of which are known for having 

epithelial structure (Fig23 B,C), suggesting that Pals1 nuclear localization may be 

present in epithelial cells. To support Pals1 expression in the nucleus, nuclear 

fractionation was performed with the cortex lysates at E14.5. Similar to the previous 

observation, Pals1 protein is identified in both nucleus and cytoplasm (Fig23 D).   
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A Pals1-GFP construct was electroporated in utero to cortical progenitors at 

E13.5 and harvested after 24 hours.  Recapitulated Pals1 protein expression was 

observed in the cortex and aqueduct, which have epithelial structure, and the GFP 

expression mainly overlapped with Pals1 protein expression (Fig23 E,F). However, we 

failed to observe subcellular localization in vivo. This may be due to rapid protein 

degradation or that Pals1 is only localized to the apical tip of progenitors in vivo.  
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Figure 23. Pals1 subcellular localization in vitro and in vivo. Different cells are transfected 

with Pals1-GFP fusion construct. Pals1 is mainly localized in the cytoplasm in HEK293 (A), 

whereas Pals1 is localized in both the nucleus and cytoplasm of MDCK (B) and MCF7 cells (C). 

(D) Nuclear fractionation shows that Pals1 is also observed in the nucleus. In utero 

electroporation with Pals1-GFP fusion construct completely recapitulates Pals1 expression in 

the VZ of cortex (E) and aqueduct (F), which have epithelial structure, but it failed to observe 

other subcellular localization in the cell besides apical membrane.  
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4.2.7 Cell autonomous vs. non-autonomous defects in the absence of Pals1 

  To identify whether the defects in the cortex shown with the removal of Pals1 in 

RGPs are cell autonomous or non-autonomous defects, we co-electroporated with 

pCAG-Cre-GFP and pCAG-GFP constructs into homozygote floxed  mice and analyzed 

at two different time stages: E15.5 and E17.5. The depletion of Pals by pCAG-Cre-GFP 

constructs not only shows complete loss of Pals1 and Crb proteins in the apical tip but 

also shows apoptotic cell death when mice are analyzed at E15.5 (Fig24 A); although, 

significant morphological changes in VZ are not observed. To further address the 

prolonged effect induced by Cre recombination in RGPs, we extended our analysis for 

two more days. Surprisingly, the electroporated mice at E13.5 recapitulated the severe 

phenotype that was shown in Pals1 CKO when they were analyzed at E17.5 (Fig24 

B,C). The area targeted by Cre-GFP and GFP constructs shows loss of cells in VZ, and 

the apical surface of the VZ is significantly damaged by the deletion of Pals1. As shown 

in mice electroporated at E15.5, Pals1 expression is significantly reduced, and GFP 

positive cells undergoing apoptosis stained with anti-CC3 are also observed in VZ at 

E17.5. Furthermore, Pax6 positive RGPs are substantially reduced in homozygote 

floxed mice. Taken together, the deletion of Pals1 represents cell autonomous defects 

in RGPs.  

 

 

 



 

Figure 24. Pals1 induces cell autonomous defects in RGPs.

pCAG-Cre-GFP and pCAG-GFP constructs in homozygote floxed mice 

E15.5 show that Pals1 deletion not only diminish

apoptotic cell death. (B,C) Four days after co

progenitors, similar to phenotype

diminished in the electroporated area

maintenance of integrity of  apica

cells are identified at E17.5 in the Cre electroporated area
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. Pals1 induces cell autonomous defects in RGPs. (A) Co-electroporation with 

GFP constructs in homozygote floxed mice at E13.5 and analysis at 

show that Pals1 deletion not only diminishes apical complex proteins, but also induces 

(B,C) Four days after co-electroporation results in the depletion of 

progenitors, similar to phenotype shown in Pals1 CKO. (D) Pals1 is almost completely 

in the electroporated area, and RGP pool marked by Pax6 is also 

apical area is markedly compromised. Furthermore, more dying 

in the Cre electroporated area. 

 

electroporation with 

at E13.5 and analysis at 

apical complex proteins, but also induces 

the depletion of 

shown in Pals1 CKO. (D) Pals1 is almost completely 

is also reduced. of the  

. Furthermore, more dying 
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4.2.8 Pttg1 functions as a downstream factor of Pals1  

To identify major downstream factors regulated by the deletion of Pals1 in the 

developing cortex, we have performed microarray analysis with extracted RNA from WT 

and Pals1 CKO cortex. We identified several downstream candidate genes regulated by 

Pals1. Among these genes, Pttg1 was one of the most downregulated genes in Pals1 

CKO. To confirm Pttg1 downregulation in Pals1 CKO, we first checked the protein 

expression of Pttg1 in Pals1 CKO (data not shown). In situ hybridization analysis with 

Pttg1 ribo-probe at E14.5 shows that Pttg1 mRNA expression is significantly reduced in 

Pals1 CKO, and its expression overlaps with Pals1 in the neocortex (Fig25 A-B’).  

To prove the interaction between Pals1 and Pttg1, we hypothesized that Pttg1 

transcription will be regulated by Pals1 if Pttg1 acts as a downstream molecule. To 

answer this question, we co-electroporated with pCAG-Pals1 and pCAG-GFP in the 

cortex at E13.5 and analyzed at E14.5, followed by in situ hybridization with Pals1 and 

Pttg1 ribo-probes. We found that the GFP positive area where Pals1 is overexpressed 

(Fig25 E,E’) shows both Pals1 and Pttg1 transcription level is highly upregulated (Fig25 

F-I), suggesting that Pttg1 transcription is affected by Pals1 overexpression. These 

results provide evidence that Pttg1 is a downstream molecule of Pals1.  



 

Figure 25. Pttg1 transcription 

observed in the progenitors of dorsal and ventral cortex

expression is absent in the dorsal cortex of Pals1 CKO (B,B

(C, D) Pttg1 expression is diminished in the Pals1 CKO(D) as compared to WT (C)

Illustration of GFP expression by in utero electroporation. Upregulated Pals1 and Pttg1 

transcription in observed in the area, where Pals1 is overexpressed (G,

where GFP control plasmid is electroporated (F,H). 
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Pttg1 transcription is regulated by Pals. (A,A’) In WT, Pals1 mRNA expression is 

progenitors of dorsal and ventral cortex germinal zones. However, Pals1 mRNA 

in the dorsal cortex of Pals1 CKO (B,B’), where hGFAP-Cre

(C, D) Pttg1 expression is diminished in the Pals1 CKO(D) as compared to WT (C)

of GFP expression by in utero electroporation. Upregulated Pals1 and Pttg1 

observed in the area, where Pals1 is overexpressed (G, I) compared to the area 

where GFP control plasmid is electroporated (F,H).  

 

Pals1 mRNA expression is 

. However, Pals1 mRNA 

Cre is expressed. 

(C, D) Pttg1 expression is diminished in the Pals1 CKO(D) as compared to WT (C)(E) 

of GFP expression by in utero electroporation. Upregulated Pals1 and Pttg1 

I) compared to the area 
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4.2.9 Overexpression of Pttg1 rescues Pals1 deleted phenotype, and Yap may act 

as a mediator between Pals1 and Pttg1 

Based on the previous finding that Pttg1 is a major downstream factor of Pals1, 

we hypothesized that if Pttg1 is a major downstream factor of Pals1, overexpression of 

Pttg1 may rescue the phenotype of Pal1 CKO. To address this, we introduced Cre-GFP, 

pCAG-Pttg1, and pCAG-GFP plasmids in pregnant Pals1 floxed homozygote females 

using in utero electroporation. Strikingly, overexpression of Pttg1 almost completely 

rescued the phenotype of Pals1 CKO induced by Cre-GFP (Fig26 A), leading to the 

idea that Pttg1 is a major downstream effector of Pals1 function.  

Although we identified that Pttg1 is a major downstream factor of Pals1, we do 

not know the underlying mechanism or molecules that may be involved in the interaction 

between Pals1 and Pttg1.  Yes-associated protein (Yap) has been known as a 

transcription co-activator that plays an essential role in organ size control by the 

regulation of cell proliferation and inhibition of apoptosis. Yap is negatively regulated by 

the angiomotin (AMOT) family of proteins at tight junctions through direct interaction 

(Zhao et al., 2011). In addition, knocking down Crumbs3 or Pals1 in high density cells 

significantly increased nuclear Yap and Taz localization as well as reduced Yap 

phosphorylation (Varelas et al., 2010). These previous studies suggest that Yap 

interplays with polarity complex proteins, leading to the idea that Yap may be involved in 

Pals1-Pttg1 pathway.  To test this idea, we first observed Yap protein expression in WT 

and Pals1 CKOs at E14.5. Surprisingly, Yap, which is mainly localized in the cytoplasm 

in WT, was translocated into the nucleus in Pals1 CKO (Fig26 C), which corresponds to 
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the previous observation that Pals1 knockdown in high density cells increased nuclear 

Yap. In addition, western blot analysis shows that Pttg1 is downregulated when Yap is 

overexpressed in N2a cells (Fig26 B), suggesting that Pttg1 may also be regulated via 

Yap. This leads to the idea that Yap may act as a mediator between Pals1 and Pttg1.  
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Figure 26. Pttg1 overexpression rescues Pals1 phenotype mediated by Cre 

recombination in homozygote floxed mice, and Yap may act as a mediator between Pals1 

and Pttg1. (A) Depletion of the progenitor phenotype induced by Cre recombination in 

homozygote floxed Pals1 mice is rescued by Pttg1 overexpression in vivo. (B) Yap 

overexpression induces Pttg1 downregulation in N2A cells, and (C) Yap translocates to the 

nucleus in the Pals1 mutant.  
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4.3 Discussion 

The primary focus of this chapter was to evaluate the role of Pals1 during 

neocortical development using Pals1 conditional knockout mice. For the first time, we 

showed that Pals1 is essential for cortical lamination and RGP maintenance during 

cortical development. Consistent with the previous study by Kim et al., the Pals1 CKO 

showed reduced cortical size, progenitor pool, and disrupted cell-cell junctions(Kim et 

al., 2010), though layer structures are maintained in Pals1;hGFAP-Cre mice.  

Second, the most important novel finding with this study is that Pals1 is an 

essential molecule for mitotic progression. Several studies show that polarity proteins 

are important for segregation of cell fate determinants, but no study has shown that 

polarity proteins regulate cell cycle in dividing cells. EM and time-lapse image analysis 

support the idea that Pals1 is a major regulator that controls mitotic progression in 

dividing cells. Pals1 deleted cells do not undergo normal mitosis shown in Figure 21 and 

22, and this leads to anaphase lag with sister chromatids are not normally segregated. It 

has been known that the generation of lagging chromosome induces aneuploidy related 

to genetic disorders (Holland & Cleveland, 2009).Our findings with the Pals1 mutant 

may be relevant to genetic disorders with abnormalities in the development of the 

cerebral cortex,  which are often associated with severe mental and physical disabilities 

(Walsh, 1999; Francis, 2006).  Among those, microcephaly is a neurodevelopmental 

disorder characterized by a small cerebral cortex at birth, and the consequences of 

microcephaly is strongly associated with neurological defects such as mental 

retardation and seizure (Mochida, 2001; Wood et al., 2005; Cox et al., 2006).  
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Primary microcephaly is induced by mutations of several centrosomal genes and is 

believed to arise from an enhanced asymmetric cell divisions that reduce neural 

progenitor pool for future brain growth (Lu  & Jan, 2000). The key players identified thus 

far are Abnormal Spindle-like Microcephaly-associated protein (ASPM), Cyclin-

dependent kinase 5 regulatory subunit associated protein 2 (CDKRAP2), Centromere 

protein J (CenPJ), and Microcephalin/MCPH1 (autosomal recessive primary  

microcephaly 1) (Cox et al., 2006; Fish et al., 2006; Paramasivam et al., 2007). These 

genes are highly expressed in neural progenitors during cortical development, and all of 

the proteins encoded by these genes are localized to the mitotic apparatus; some of 

which are known to be essential for the proper cell division of neural progenitors (Fish et 

al, 2006). The direct interaction between polarity proteins and microcephaly genes has 

not been addressed, but previous studies suggest that polarity proteins may interact 

with microcephaly genes via cytoskeleton-related proteins. For instance, Par complex 

interacts with 14.3.3. protein (Chen & Macara, 2006), Ymo1 with Crb complex (Laprise 

et al., 2006) and Myosin II for Scrib complex (Strand et al., 1995). These interactions 

are key to control cell shape and polarity through the modulation of actin cytoskeleton 

dynamic. A recent study has identified that Asp regulates its polarized distribution along 

the apico-basal axis in the cell through the interaction with myosin II. Mislocalized 

myosin II fails to perform proper interkinetic nuclear migration and the formation of 

proper tissue structure in the depletion of Asp. Thus, Asp is essential for the 

maintenance of tissue integrity via myosin II mediation to regulate neuroepithelium 

morphogenesis (Rujano et al., 2013). The known interactions between microcephaly 

genes, polarity genes and cytoskeleton-related genes leads to the idea that these genes 
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may all be inter-related to regulate progenitors, and the failure of regulation may induce 

microcephaly.  

Third, another important novel finding is that Pttg1 acts as a downstream factor of 

Pals1. The loss of Pals1 blocks mammalian target of rapamycin (mTOR) pathway, 

which is essential for cell survival, and the Pals1 deficient phenotype is partially rescued 

by mTORC1 activation (Kim et al., 2010). Partial rescue in the Pals1 CKO proposes the 

possibility that there may be other major downstream molecules or pathways. Pttg1 is 

an important molecule involved in sister chromatid segregation and cell cycle 

progression (Yetemian &  Craft; 2011). A previous study demonstrated that Pttg1 was 

downregulated in Crb1 knockout mice, suggesting the interaction with polarity complex 

proteins (Pavert et al., 2007). Microarray analysis with E11.5 brain tissues shows that 

Pttg1 is the most downregulated gene in Pals1 CKO. Furthermore, western blot analysis 

and in situ hybridization show that Pttg1 protein in E14.5 cortical lysates and mRNA 

expression in VZ were significantly reduced in Pals1 CKO. In addition, overexpression 

with Pals1 in E14.5 by in utero electroporation shows that Pttg1 transcription was 

regulated by Pals1 overexpression (Fig.25). Together, our results strongly suggest 

Pttg1’s direct involvement with Pals1 function in mitotic progression. Our results suggest 

that the normal expression of Pttg1 is critical for the mitotic progression.  

Conversely, overexpression of Pttg1 shows HEK293 and NIH3T3 cells are easily 

transformed to bigger tumors in nude mice and larger colonies in soft agar assay 

(Zhang et al., 1999; Pei & Melmed, 1997). Several mechanisms are proposed to identify 

the function of Pttg1 in cancer development. Pttg1 is able to interact with other 
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transcription factors such as Sp1, p53, and upstream stimulatory factor 1(USF1), 

suggesting that Pttg1 may regulate additional genes in cancer development by 

interacting with other transcription factors (Pei 2001; Bernal et al., 2002); Pttg1 not only 

binds to the c-Myc promoter to regulate transcription in NIH 3T3 cells (Pei 2001) but 

also binds to bFGF in NIH3T3, HEK 293, NT-2, JEG-3, and MCF-7 cells through the 

interaction with Pttg1 binding factor (PBF; Chien & Pei, 2000; McCabe et al., 2002). 

Pttg1 is able to interact with other transcription factors such as Sp1, P53, and upstream 

stimulatory factor 1(USF1), suggesting that Pttg1 may regulate additional genes in 

cancer development interacting with other transcription factors (Pei 2001; Bernal et al., 

2002; Tong et al., 2007) Because Pals1 deletion prevents Shh signaling mediated 

tumorigenesis of CGNP as shown in the previous chapter, it is possible that the 

reduction of Pttg1 may play a role in blocking medulloblastoma. Consistent with this, I 

also observed Pttg1 reduction in Pals1 deficient cerebellum. It will be important to 

further explore the Pttg1 involvement in tumourogenesis of medulloblastoma in the 

future.  

Lastly, we found that Yap might act as a mediator between Pals1 and Pttg1. 

Protein-protein interaction refers to physical contact as a result of biochemical events, 

which are integral in the organism to form macromolecules to be functional as proteins 

are rarely act alone. In our study, Yap translocated to the nucleus in Pals1 CKO, and 

upregulation of Yap induced Pttg1 downregulation in N2a cells. Under this perspective, 

we may cautiously address the interaction between polarity complex proteins and Hippo 

signaling pathway. Recent studies have addressed the interaction between several tight 

junction proteins such as Pals1, Patj, and Lin7C and Yap. These proteins were co-



122 

 

purified with Yap and their interaction was mediated by Amot family proteins (Zhao et al., 

2011). In addition, Merlin, a known tumor suppressor, interacts with Crb complex 

proteins via direct interaction with Angiomotins (Yi et al. 2011). Thus, it stands to reason 

that Merlin may activate the Hippo signaling pathway interacting with junctional complex 

proteins (Yi & Kissil, 2013). In our study, Pals1 has a direct interaction with Yap1 in 

HEK293 cells (Zhao et al., 2011), and Pals1 deletion induces nuclear translocalization 

of Yap, whereas overexpression of Yap induces Pttg1 downregulation. Therefore, Pals1 

may inhibit Yap translocation to nucleus in the cortical progenitors by direct physical 

interaction thereby inhibiting Yap activity in the nucleus. Since Pals1 has two NLS and 

one NES sequence and Yap is a well-known transcription co-factor, it is also possible 

that their physical interaction may also exist in the nucleus and be important for Pttg1 

gene expression. However in this scenario, although excess Yap is translocated to 

nucleus, it cannot induce Pttg1 transcription without Pals1.  Further studies will be 

required to determine how Pals1 interacts with Yap, and how their interaction regulates 

the Pttg1 expression level in cortical development.   
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Summary and Future Directions 
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5. Summary and Future directions 

5.1 Summary 

The goal my thesis is to understand the cellular and molecular mechanisms 

underlying cell fate decision between progenitors or progenitor and neuronal cell, as 

well as identification of unknown molecular partners of Pals1.  

In the first part of my research, I started out introducing the roles of Pals1 during 

cerebellum development, specifically the expression of Pals1 in progenitors, and the 

effects of Pals1 deletion during the developmental process through use of conditionally 

deleted Pals1 mice.  I uncovered that Pals1 is highly expressed in different types of 

progenitors, and Pals1 acts as an essential molecule that regulates progenitor pool by 

the control of cell polarity and mitotic progression. The depletion of Pals1 induces a 

reduction in the  progenitor pool and premature cell cycle exit from the proliferation 

niche, leading to the significantly reduced cerebellum size in the adult. In addition, 

relatively intact Shh and Notch signaling downstream molecules are found in Pals1 

CKO, supporting that Pals1 acts as an independent factor involving cell fate decision 

compared to previously known signaling pathways. Finally, I addressed that the loss of 

Pals1 can block the proliferation of cerebellar granule cell precursors carrying the 

mutation that causes medulloblastoma through uncontrolled Shh signaling activation.  

In the second part of my research, I revealed that Pals1 is essential in proper cell 

division of RGP during neocortical development. The depletion of Pals1 induced the 

disruption of cell-cell adhesion and junction defects in VZ. In addition, premature 
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neurogenesis occurred, and these neurons were removed by apoptosis, leading to the 

significant reduction of late born neurons.  

Third, Pals1 was essential for mitotic progression. The failure of proper chromosome 

segregation induced lagging chromosome in the Pals1 deficient mitotic cells, confirmed 

by EM studies. Furthermore, time lapse image also showed that cells underwent 

aberrant mitosis when they divide in the absence of Pals1.  

Lastly, I found Pttg1 as a major downstream molecule that is affected by Pals1 

deficiency as Pttg1 transcription was significantly downregulated in Pals1 CKO, and its 

transcription was regulated by Pals1. Furthermore, I discovered Yap1 as a potential 

mediator between Pals1 and Pttg1 by demonstrating the translocalization of Yap in 

Pals1 CKO and downregulation of Pttg1 expression in Yap overexpressed N2a cells. 

Although I uncovered several critical novel findings for the role of Pals1 in brain 

development, further functional and molecular studies still needs to be elucidated to 

expand our study.  

5.2 Future directions 

The future directions I foresee fall into several steps below:  

A. Mechanism study of Pals1-induced Pttg1 expression & novel function of Pals1 

in the nucleus 

B. Identification of novel binding partners 

C. Generation of Pttg1 knockin mouse and rescue experiment  
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More details will be addressed below. 

5.2.1 Mechanism study of Pals1-induced Pttg1 expression & novel function of 

Pals1 in the nucleus 

One question still remaining to be elucidated is how Pals1 regulates Pttg1. 

Although my thesis presented the idea that Pals1 can control Pttg1 expression at the 

transcriptional level, it still remains to identify how Pals1 can induce the Pttg1 mRNA 

expression. To explore further on this, a luciferase assay will be a useful method to 

monitor Pals1 effects on Pttg1 gene activation. Previous studies identified that serial 

deletions of the Pttg1 promoter showed that -313bp of the 5’-flanking area, which has 

several transcription factor binding sites, was essential for promoter activity (Wang and 

Melmed, 2000). Luciferase activity by overexpression and knockdown of Pals1 using 

recombinant DNA and shRNA can provide the evidence if Pals1 regulates Pttg1 

transcription or not, although further studies are required if upregulated or 

downregulated Pttg1 promoter activity is directly coming from Pals1 or binding with 

other factors. Furthermore, domain deleted Pals1 constructs can be transfected or 

electroporated along with the Pttg1 promoter to assess Pttg1 gene expression, which 

may provide us information about which domain in Pals1 is critical for the Pttg1 

regulation.  

Although previous studies failed to address the function of Nagie oko in the 

nucleus, this study suggested an important point that Pals1 can be translocated in the 

nucleus. In my thesis, Pals1 was not only identified in the cytoplasm but also highly 

expressed in the nucleus at E14.5 cortex. This may suggest that Pals1 involved in 
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transcriptional regulation as a cofactor or transcription factor. By the generation of Pals1 

mutants in NES sequence or deletion of L27, which is mediating junctional association 

through interacting with Patj, I may obtain the restricted localization of Pals1 in the 

nucleus. Once such constructs are generated, first, I will address the function of Pals1 

in the nucleus by rescuing the Pals1 mutant phenotype. If the nucleus function is 

important in mitotic progression or regulation of Pttg1 expression, the restoration of 

normal mitosis or Pttg1 expression will be obtained. To further explore Pals1 function in 

nucleus as cofactor or transcription factor for transcriptional regulation of Pttg1, 

chromatin immunoprecipitation (ChIP) can be performed with the Pttg1 promoter.  

5.2.2 Identification of novel binding partners 

The previous studies of Pals1 have identified several binding partners such as 

Crb, Patj, Yap, and so on. However, there might be several other novel binding partners 

specifically in the brain. I have generated 1xflag-Pals1 fusion construct and validated 

with western blot in HEK293 cells and brain lysates after coelectroporation with a GFP 

construct to identify targeted region. I will pull down the proteins with flag antibody 

binding (M2) beads (Sigma) after in utero electroporation. Using this eluted proteins, 

mass spectrometry can be performed to identify potential novel binding partners.  

5.2.3 Generation of Pttg1 knockin mouse and rescue experiment 

Although overexpression of Pttg1 in utero by electroporation rescued the 

phenotype of Pals1 CKO induced by Cre-GFP fusion construct, temporal survey within 

a limited timeframe hinders more detailed studies during the lifespan. By designing a 

targeting vector, I will generate a knockin allele to overexpress Pttg1 in mice using Rosa 
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26 locus with CAG promoter. The stop codon with flanking LoxP sequences will be 

inserted in front of Pttg1 coding sequence so that its expression would be Cre or 

CreERT2 dependent. By generating double mutant mice with Pals1 and Pttg1, I will 

study in depth that Pttg1 rescues the phenotype of Pals1 in other aspects. It would be 

interesting to determine whether Pttg1 overexpression can rescue the deformed 

cerebellum where I observed the severe defects in progenitor proliferation in the EGL as 

well as VZ and URL. However, constitutively activated Pttg1 may cause cancer 

development, thus it would be important to regulate Pttg1 expression in the limited 

number of cells /tissue or restricted timing. 
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