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Preeclampsia (PE) is a disease of late pregnancy characterized by maternal hypertension 

and proteinuria. It is associated with preterm delivery and significant perinatal morbidity and 

mortality. Despite affecting ~7% of first pregnancies, there is no effective screening method to 

identify women at risk, nor is there a definitive treatment other than delivery of the baby and 

placenta. Though the pathogenesis of PE remains unclear, an imbalance in the renin-

angiotensin and immune systems are thought to be major contributors. Bridging these two 

concepts, it has recently been shown that women with PE harbor specific autoantibodies: the 

angiotensin II type 1 receptor activating autoantibody (AT1-AA). These autoantibodies act as 

angiotensin II and stimulate the ubiquitous AT1 receptor.  

To elucidate the role of AT1-AA in the pathophysiology of PE, a model of adoptive 

transfer was generated wherein AT1-AA isolated from human sera are injected into pregnant 

mice. This autoantibody incites the key features of the disease in pregnant mice: increased 

blood pressure, proteinuria, renal and placental abnormalities and increases in the anti-

angiogenic factors soluble fms-like tyrosine kinase (sFlt-1) and soluble endoglin (sEng). These 
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experiments were also carried out in non-pregnant animals who did not share the same 

symptoms. This suggests that pregnancy is a requirement for the full spectrum of preeclamptic 

features. In addition, the placentas and fetuses of AT1-AA-injected mice are reduced in size. 

The pups demonstrated intrauterine growth restriction (IUGR) and organ immaturity, especially 

in their kidneys and livers. To elucidate the mechanism by which these preeclamptic symptoms 

arise in the mouse model, the effects of increased inflammation were investigated. A multi-

analyte screen indicated that the autoantibody induced inflammatory cytokines. TNF-alpha, a 

potent pro-apoptotic cytokine, known to be increased in both the sera and placentas of 

preeclamptic women, was most elevated, and was therefore the focus of further research. When 

incubated with AT1-AA, human placental explants greatly increased their production of TNF-

alpha. In addition, TNF-alpha-mediated apoptosis was increased due to AT1-receptor activation 

in both the mouse placenta and human villous explants. Autoantibody-induced apoptosis and 

TNF-alpha production could be specifically reduced by co-treatment of AT1-AA with an anti-

TNF-alpha antibody, losartan (an AT1 receptor blocker) or an antibody-neutralizing peptide, 7-

aa. In order to test the pathophysiologic relationship between AT1-AA and TNF-alpha in vivo, 

the established adoptive transfer mouse model was employed. Co-injection of AT1-AA and an 

anti-TNF-alpha antibody reduced the features of PE in pregnant mice, implying an important 

pathogenic role for this cytokine.  

Overall, when injected into pregnant mice, AT1-AA induces the clinical features of PE 

and results in increased TNF-alpha production, placental apoptosis and fetal anomalies. 

Blockade of these features can be partially diminished by anti-TNF-alpha treatment, an AT1 

receptor blocking drug, or a peptide which specifically neutralizes autoantibody action. 

Significantly, these findings could lead to a screening tool for preeclampsia as well as a 

potential therapeutic strategy for this life-threatening disease of mother and child. 
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GENERAL INTRODUCTION 

 

The classic circulating RAS pathway 

Classically described in the kidney, the renin-angiotensin system, herein RAS, is a 

hormone signaling cascade which regulates blood pressure and systemic electrolyte and fluid 

balance. In response to decreased blood pressure and low circulating sodium chloride, 

angiotensinogen, an alpha-2-globulin protein produced constitutively by the liver, is cleaved by 

the enzyme renin, which is synthesized and released by juxtaglomerular cells of the afferent 

renal arterioles (Fig. 1). Renin is rapidly produced and released by the macula densa [1]. The 

cleavage of the 452 amino acid angiotensinogen by renin yields the ten amino acid long 

peptide, angiotensin I (ANG I), and is the rate limiting step of the cascade. The biologically 

inactive ANG I is then cleaved by angiotensin-converting enzyme (ACE), made primarily in 

lung endothelium, to the biologically functional angiotensin II (ANG II), the eight amino acid 

long effector molecule of the RAS. 

ANG II exerts its effects through two major angiotensin receptors: AT1 and AT2. These 

highly conserved seven transmembrane G-protein-coupled receptors share a thirty-four percent 

sequence identity and have comparable affinities for ANG II [2]. The AT1 receptor is the 

predominant angiotensin receptor and is responsible for the majority of ANG II signaling. Its 

expression is fairly ubiquitous, and it is found abundantly in the adult kidney and on the surface 

of many cell types including vascular smooth muscle cells, adrenal glands and 

syncytiotrophoblasts [3-5]. It is coupled to a Gq protein, whose stimulation results in increased 

intracellular calcium resulting in vasoconstriction, increased sympathetic activity and sodium 

and water retention. The minor angiotensin receptor, AT2, is not highly expressed in the adult 
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but predominates during fetal development, with its expression decreasing throughout the 

neonatal period [6]. AT1 is more abundant than AT2 in the adult kidney [2]. Stimulation of the 

AT2 receptor inhibits cell growth, increases apoptosis, causes vasodilation and regulates fetal 

tissue development [7]. 

In addition to the classic circulating RAS, there is extensive evidence indicating that 

local renin-angiotensin systems are present in many organs, such as the heart, ovary, and 

placenta [8, 9]. Though these local systems may contribute to RAS functions, they are not the 

focus of this thesis, which will concentrate on the overall systemic effects of the RAS during 

pregnancy. 

 

Figure 1.  The renin-angiotensin system (RAS) cascade and PE.  Though its end-effects are increased, ANG 

II, the key effector molecule of the RAS, is not upregulated in PE. The autoantibody, AT1-AA, through AT1 

receptor activation, may lead to the maternal features, such as vasoconstriction and increased blood pressure, 

observed in the disease. ADH, antidiuretic hormone; PAI-1, plasminogen activator inhibitor-1; sEng, soluble 

endoglin; sFlt-1, soluble fms-like tyrosine kinase. 
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Uncomplicated pregnancies require strict regulation of the RAS 

During an uncomplicated pregnancy, the RAS undergoes specific changes. The 

upregulation of renin is the first change to occur, mainly due to the extra-renal release locally 

by the ovaries and maternal deciduas [10]. As it grows, the placenta produces estrogen, a 

steroid hormone vital to sustain pregnancy. Estrogen also increases angiotensinogen synthesis 

by the liver, leading to increased serum ANG II [11]. The only RAS component that is reported 

to decrease during normal pregnancy is ACE [12-14]. Table 1 compares serum RAS 

component levels between non-pregnant women and pregnant women with no complications. 

Many physiologic changes occur in the cardiac and renal systems during gestation to 

meet the expanding needs of blood supply and nutrients. Interestingly, during normal 

pregnancy, maternal blood pressure is often slightly decreased in the second trimester and 

returns to baseline by delivery [15]. This phenomenon is puzzling, as ANG II levels are 

elevated throughout gestation [16]. The historic study by Assali et al. revealed that healthy 

pregnant women are refractory to the vasopressor effects of ANG II [17]. In fact, pregnant 

women require twice as much ANG II by intravenous infusion as compared to their non-

pregnant counterparts in order to achieve similar vasomotor responses [17, 18]. Some believe 

that this decreased ANG II sensitivity is explained by the presence of increased progesterone 

and prostacyclins during pregnancy which act a vasodilators [19]. In addition, AT1 receptors 

are in a heterodimeric state in ANG II sensitive conditions, whereas during an uncomplicated 

pregnancy, they are monomeric and can be inactivated by reactive oxygen species (ROS) [20]. 

Taken together, these studies explain why a normotensive pregnant woman may be insensitive 

to ANG II stimulation.  
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A healthy placenta is a dynamic organ which undergoes many changes throughout 

gestation that are essential to maintain a normal pregnancy. Placental trophoblasts are AT1 

receptor-rich, making them responsive to changes in the RAS [4]. Several recent studies 

demonstrate that AT1 receptor signaling regulates several genes responsible for normal 

trophoblast invasion (e.g., plasminogen activator inhibitor-1, PAI-1) [21-23] and angiogenesis 

(soluble fms-like tyrosine receptor-1, sFlt-1; soluble endoglin, sEng) [24-26]. In addition, AT1 

receptor stimulation also results in NF-kappa B (NFκB) and NADPH-oxidase synthesis by 

trophoblasts [27]. These RAS-related changes in the placenta are necessary in maintaining an 

uncomplicated pregnancy. Through the evidence provided in human studies, it is clear that the 

systemic and placenta-specific RAS undergo specific and necessary changes in order to sustain 

a healthy pregnancy.  

 

Dysregulation of the RAS in preeclamptic women 

Preeclampsia (PE) is a disorder of pregnancy characterized by new-onset maternal 

hypertension and proteinuria. This life-threatening condition affects approximately 7% of 

pregnancies and results in substantial maternal and neonatal morbidity and mortality [28]. In its 

severe form, the clinical symptoms of PE may include cerebral edema, renal failure and the 

HELLP (Hemolysis, Elevated Liver enzymes and Low Platelets) syndrome. It can be fatal and 

is the cause for approximately 18% of all pregnancy-related maternal deaths in the US each 

year [29-31]. This disturbing percentage of maternal mortality is due to the fact that treatment 

for PE is hampered by a paucity of screening or diagnostic tests. For centuries, the only cure for  
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Serum RAS Component Normotensive Pregnancy Preeclamptic Pregnancy References 

Renin ++ + Hsueh [10] , Langer [16] 

Angiotensin I ++ + Merrill [12], Langer [16] 

ACE - - Merrill [12], Oats [13, 14], Langer [16] 

Aldosterone ++ + Brown [32], Langer [16] 

ANG-(1-7) ++ - Merrill [12] 

Angiotensin II ++ + Langer [16] 

Angiotensin II sensitivity Refractory  Sensitive Gant [19], Abdul-Karim [18] 

AT1-AA presence < 30% > 90% Wallukat [33], Siddiqui [34] 

AT1-AA bioactivity Low High Siddiqui [34]  

AT1 receptor +, homodimer ++, heterodimer Herse [35], AbdAlla [20] 

    

Molecules under     

partial AT1r regulation    

sFlt-1 ++ +++ Maynard [36], Levine [37], Zhou [25, 38] 

sEng ++ +++ Venkatesha [39], Zhou [26, 38] 

PAI-1 + ++ Estelles [40], Shaarawy [41], Bobst [21] 

Tissue Factor + ++ Estelles [40], Dechend [42] 

NADPH oxidase, ROS + ++ Hubel [43], Dechend [27] 

    

Legend:  ++  Greatly increased over non-pregnant   

+  Slightly increased over non-pregnant   

-    Decreased compared to non-pregnant   

 

Table 1: Comparison of circulating molecules in normotensive and preeclamptic pregnancies versus non-pregnant women. In general, circulating 
RAS molecules are increased in normal pregnancies versus the non-pregnant state. Though in most serum RAS components, there is a slight increase in 
preeclamptic women over the non-pregnant state, they are decreased as compared to normotensive pregnant women. Many of the other molecules known 
to be increased in PE are regulated by the AT1 receptor. PAI-1, plasminogen activator inhibitor-1; ROS, reactive oxygen species; sEng, soluble endoglin; 

sFlt-1, soluble fms-like tyrosine kinase. 
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the disorder is delivery of the infant and placenta. The underlying pathogenic mechanisms of 

PE remain largely undetermined, however uteroplacental ischemia and the subsequent release 

of soluble factors, such as sFlt-1, from the placenta into the maternal circulation are thought to 

contribute to the systemic syndrome [44].   

The regulation of the RAS in PE differs from that in healthy pregnancies. It is generally 

accepted that circulating RAS components increase in an uncomplicated pregnancy. Though 

elevated over the non-pregnant condition, preeclamptic women have lower circulating levels of 

RAS components than do their normotensive pregnant counterparts [16, 32, 45] (Table 1). Two 

exceptions to these decreases should be noted. First, ACE is reportedly lower in pregnant 

woman as compared to non-pregnant women, and Merrill et al. demonstrated that ACE levels 

are approximately equal in normotensive and preeclamptic women [12, 13]. Secondly, ANG-

(1-7), a vasodilator produced by several tissues such as kidney, heart, hypothalamus and ovary, 

is significantly decreased in PE [12]. Its exact role in the RAS and the regulation of a healthy 

pregnancy remains undefined. Though it may act through its own receptor, ANG-(1-7) interacts 

primarily with AT1 and AT2 receptors [46, 47]. Furthermore, women experiencing an 

uncomplicated pregnancy demonstrate a relative vascular insensitivity to ANG II. Preeclamptic 

women, however, exhibit increased ANG II sensitivity in their adrenal cortex and vascular 

system [19, 48]. This can be explained by the heterodimerization of the AT1 receptor in PE, 

whereas in healthy pregnancies, the receptors are monomeric and can be inactivated by ROS 

leading resulting in ANG II insensitivity [20]. In PE, the AT1 receptor forms a heterodimer 

with the bradykinin receptor (B2) [20, 49] and the ROS-inactivation resistant AT1/B2 

heterodimers are hyperresponsive to ANG II [20, 50, 51]. Future investigation into the 

heterodimeric receptors as the symptoms of PE subside postpartum is necessary. Overall, these 



8 

 

findings indicate that the profile of RAS components in a preeclamptic woman differs greatly 

from that of a healthy pregnant woman. 

 

A source of excess AT1 receptor activation: the Angiotensin II type I receptor Agonistic 

Autoantibody (AT1-AA) 

Though the dysregulation of the RAS in PE is largely accepted, the causative factors 

leading to this imbalance remain unidentified. Though ANG II levels are reportedly decreased 

in preeclamptic women as compared to normotensive pregnant women (Table 1) [19, 48], these 

patients exhibit symptoms which could be attributed to excess AT1 receptor activation, such as 

hypertension and renal dysfunction. The exact cause of this excess activation is unknown. One 

explanation to this puzzling feature is the recent discovery by Wallukat et al. that preeclamptic 

women harbor an autoantibody which stimulates the AT1 receptor [33]. Through excess AT1 

receptor activation, the angiotensin II type I receptor agonistic autoantibody (AT1-AA) could 

interfere with the normal function of the RAS in the pregnant woman and lead to preeclamptic 

symptoms. If true, this would suggest an important role of AT1-AA in the pathogenesis of PE. 

Many recent studies have shown that by activating AT1 receptors on a variety of cell types, 

these autoantibodies could increase certain factors which lead to preeclamptic pathophsyiology 

such as endothelial cell dysfunction and vascular damage [44, 52, 53]. Examples of the possible 

contributions of AT1-AA in the pathogenesis of PE are reviewed in the subsequent section and 

summarized in Figure 2.  
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In vitro studies linking AT1-AA to the maternal syndrome of PE 

A growing body of evidence indicates that the autoantibody, through the upregulation 

of AT1 receptor signaling, may contribute to the maternal symptoms of PE in a variety of ways. 

Wallukat et al. have shown that AT1-AA can stimulate rat cardiomyocyte contraction rate [33]. 

In addition, several in vitro studies suggest that AT1-AA may regulate the following molecules:  

sFlt-1, sEng, PAI-1, ROS, NADPH oxidase, intracellular calcium and tissue factor (TF).  

Figure 2.  Possible roles of the autoantibody in the maternal and fetal features of PE.  The autoantibody, 
AT1-AA, through excess AT1 receptor activation, may contribute to the maternal and fetal features observed in 
PE. AT1–AA, angiotensin-II type I receptor agonistic autoantibody; IUGR, intrauterine growth restriction; PAI-1, 

plasminogen activator inhibitor-1; sEng, soluble endoglin; sFlt-1, soluble fms-like tyrosine; TF, tissue factor.  
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a) Excess sFlt-1 secretion and impaired angiogenesis is induced by AT1-AA. 

Soluble fms-like tyrosine kinase-1 (sFlt-1) has recently been brought to the forefront of 

factors contributing to preeclamptic features [37, 54]. sFlt-1 is a splice variant of VEGFR-1 and 

is a secreted soluble form of the receptor which lacks the transmembrane and cytoplasmic 

domains. It binds to free vascular endothelial growth factor (VEGF) and placental growth 

factor (PlGF) thereby inhibiting their angiogenic actions [55-57]. This soluble factor may 

contribute to the maternal symptoms of PE by impairing angiogenesis, leading to placental and 

renal dysfunction.  

The soluble factor sFlt-1 is increased in both the circulaton and the placentas of 

preeclamptic women [36, 52, 58-60]. Circulating sFlt-1 is elevated in preeclamptic women as 

compared to normotensive pregnant women [37, 61], and is thought to be liberated primarily by 

the placenta. In the placenta itself, Roberts et al. report that sFlt-1 secretion is increased two- to 

five-fold in preeclamptic women over placentas from normotensive pregnancies [36, 58, 59]. 

The ratio of sFlt-1, VEGF and PlGF are important in the angiogenic balance of the placenta. 

Nagamatsu et al. have shown that placental hypoxia specifically induces sFlt-1, and not VEGF 

[62]. Khaliq et al. state that hypoxic BeWo choriocarcinoma cells have decreased PlGF 

expression [63]. Another study reports a diametric expression of VEGF and PlGF during 

normal gestation, and others demonstrate a cytotrophoblastic increase in VEGF and decrease in 

PlGF in PE [64, 65]. Total VEGF expression may increase during normal pregnancy, but when 

high sFlt-1 levels are apparent, the free VEGF decreases, which results in diminished 

angiogenic capability [66]. Therefore, excess placental sFlt-1 production leads to decreased 

free VEGF on a background of low PlGF. This results in an anti-angiogenic state overall in the 

placenta which could contribute to the small, hypoxic organs described in preeclamptic women.   
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The autoantibody, AT1-AA, could contribute to the excess sFlt-1 in PE. The placenta 

produces sFlt-1 through AT1 receptor stimulation of trophoblast cells via the calcineurin-NFAT 

pathway even during a normal gestation [25]. Therefore through the additional stimulation of 

the AT1 receptor by the autoantibody, excessive sFlt-1 production may occur. Zhou et al. report 

that sFlt-1 secretion can be induced by autoantibodies derived from preeclamptic patient sera in 

human placental explants and a human trophoblast cell line [24, 25]. This suggests that AT1-

AA can additively contribute to the excess sFlt-1 secretion reported in preeclamptic patients. 

Excess sFlt-1 may not only cause placental damage, but may also lead to kidney abnormalities. 

Maynard et al. report that pregnant rats infused with sFlt-1 induces a preeclamptic-like state. 

These rats demonstrate increased blood pressure, proteinuria and renal histopathologic changes 

similar to those observed humans, such as glomerular endotheliosis [36]. Thus, through its 

induction of sFlt-1, AT1-AA may contribute to the kidney dysfunction observed in PE. Taken 

together, these findings suggest that the autoantibody, through AT1 receptor activation, can 

additively contribute to the excess sFlt-1 secretion reported in preeclamptic patients. 

b) Soluble endoglin is induced by AT1-AA 

Endoglin (Eng, or CD-105) is a cell-surface co-receptor for transforming growth factor 

(TGF)-β1 and TGF-β3 which is highly expressed in endothelial cells and syncytiotrophoblasts 

[67, 68]. Soluble endoglin (sEng), a soluble form of the TGF-β receptor, is the second major 

anti-angiogenic factor recently implicated in the maternal syndrome of PE [69]. The balance of 

this TGF-β antagonist becomes undone in PE as sEng is secreted in excess by the placentas of 

preeclamptic women [61, 70, 71]. By impairing the ability of TGF-β1 to bind its receptors, 

downstream signaling, including the activation of eNOS and vasodilation, do not occur [39, 

72]. In this way, sEng contributes to the disease features by dysregulating TGF-β signaling 
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pathways in the vasculature. Venkatesha et al. have definitively shown that sEng works 

additively with sFlt-1 to contribute to severe preeclamptic features in pregnant rats [39]. 

Moreover, Zhou et al. have recently shown that sEng can be induced by AT1-AA in human 

villous explants [73]. Since this molecule has been proven to contribute to disease features in 

other experimental models, and some through AT1 receptor activation, the autoantibody may 

induce this factor in vivo and lead to the symptoms of PE.  

c) AT1-AA induces excess PAI-1 secretion  

Plasminogen activator inhibitor-1 (PAI-1) is another factor related to the pathogenesis 

of PE [40, 74]. PAI-1 is a serine protease which inhibits urokinase-like plasminogen activator 

(uPA) and decreases the conversion of plasminogen to plasmin resulting in decreased 

fibrinolysis and increased fibrosis. It also indirectly inhibits extracellular matrix breakdown via 

matrix metalloproteinases [75]. In the placenta, by decreasing fibrinolysis and extracellular 

matrix digestion, PAI-1 could lead to shallow trophoblast invasion, a hallmark of preeclamptic 

placentas. Studies have shown that by activating trophoblastic AT1 receptors, AT1-AA elevates 

PAI-1 levels [21, 76] and decreases trophoblast invasion in vitro [21, 22]. In the kidney, ANG 

II partially controls mesangial cell PAI-1 production [77, 78]. A series of in vitro experiments 

by Bobst et al. revealed that AT1-AA, through AT1 receptor activation on cultured human 

mesangial cells, increase PAI-1 secretion [21]. The accumulation of PAI-1 could result in 

decreased extracellular matrix degradation and subendothelial and subepithelial fibrin deposits, 

thereby contributing to the kidney damage observed in PE [79, 80]. Excess glomerular fibrin 

deposition decreases the kidney’s filtration capability which contributes to proteinuria [81, 82]. 

Therefore, by overstimulating the RAS, AT1-AA increase PAI-1 in both the placenta and 

kidney and lead to decreased fibrinolysis and extracellular matrix breakdown which could 

contribute to the organ damage and symptoms associated with the disorder.  
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d) ROS production is increased by AT1-AA  

Reactive oxygen species (ROS) are a physiologic by-product of aerobic respiration and 

regulate cellular functions through redox reactions [83]. When ROS aberrantly accumulate, the 

cell becomes burdened by an overload of non-specific damage to DNA, proteins and lipids. 

During pregnancy, this process of oxidative stress could directly lead directly to organ damage. 

In addition, ROS can act as teratogens and could harm the developing fetus, especially during 

organogenesis [84, 85]. In PE, the generation of ROS is increased and may contribute to end-

organ damage [43]. Excess AT1 receptor activation leads to increased NADPH oxidase thereby 

inducing intracellular ROS. Dechend et al. confirmed that NADPH oxidases are elevated in 

preeclamptic placentas and that the autoantibody increases ROS through this mechanism in 

vascular smooth muscle cells and placental trophoblasts [27]. In addition, this group 

demonstrated that AT1-AA upregulated NFκB and confirmed elevated ROS production both in 

and around placental blood vessels. Therefore, the autoantibody, by activating NADPH 

oxidase, could lead to the increased ROS production observed in PE.  

e) Intracellular calcium release is induced by AT1-AA 

Increased intracellular calcium levels are reported in the erythrocytes, lymphocytes and 

platelets of preeclamptic women [86-88]. Basal free intracellular calcium was shown by Haller 

et al. to be elevated in the platelets of PE women. The cation was also elevated in the both the 

lymphocytes and erythrocytes of these patients in comparison to normotensive pregnant women 

[87, 89]. Thway et al. investigated the possible role of AT1-AA in the elevation of free 

intracellular Ca2+ [90]. This group found that IgG isolated from preeclamptic patients was 

capable of activating AT1 receptors and consequently increasing intracellular calcium, whereas 

IgG derived from normotensive pregnant women could not. The increased intracellular Ca2+ 
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resulted in the activation of the NFAT transcription factor [90]. These studies suggest that the 

autoantibody may contribute to increased calcium in the cell, and could regulate the 

downstream signaling pathways activated in PE. 

f) AT1-AA may contribute to hypercoaguability 

Tissue factor (TF), the initiating protein of the extrinsic path of coagulation, is elevated 

in PE [40, 74]. The overexpression of this transmembrane protein may induce vascular damage 

and could result in the state of hypercoaguability, and rarely disseminated intravascular 

coagulation (DIC) in some severely preeclamptic patients. AT1 receptor activation, via AT1-AA 

has been shown to increase TF expression in vascular smooth muscle cells [42] and monocytes 

[91]. In this way, AT1-AA may play a role in the hypercoaguability associated with PE by 

upregulating TF expression in vascular smooth muscle cells and monocytes. 

 

Overriding hypothesis 

Taken together, these series of experiments lead to the overriding hypothesis of this 

dissertation: the autoantibody, AT1-AA, contributes to the pathogenesis of the PE through 

excess AT1 receptor activation. In order to prove this theory, in this thesis I will explore how 

biologically active autoantibodies from preeclamptic women can be purified and upon injection 

into pregnant mice, incite the maternal, placental and fetal features of this disease. Using both 

in vitro and in vivo systems, it will be illustrated how AT1-AA induce several detrimental 

factors associated with PE, including increased inflammation. It will be shown how blockade of 

AT1 receptor activation, specific autoantibody neutralization or blockade of TNF-α prevents 

disease features in adoptively transferred mice, human placental explants in culture and a 
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cultured human trophoblast cell line. Overall, these findings could have tremendous diagnostic 

and therapeutic impact in the management of PE. 
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EXPERIMENTAL PROCEDURES 

 

Patient consent and collection of samples 

The human medical data and materials used in these experiments were acquired from 

patients admitted to Memorial Hermann Hospital which were identified by the Obstetrics and 

Gynecology faculty of the University of Texas Medical School at Houston. Based on the 

criteria defined by the National High Blood Pressure Education Program Working Group 

Report [92], some pregnant patients were diagnosed with severe PE. Table 2 reports the 

clinical characteristics of study participants. One of the two inclusion criteria was blood 

pressure readings of ≥160 mm Hg systolic or ≥110 mm Hg diastolic in a pregnant woman after 

20 weeks gestation age (WGA). Qualifying blood pressure measurements must have been 

taken on two separate occasions, ≥6 hours apart. The second requirement for diagnosis was an 

absolute level of proteinuria measuring ≥300 mg protein in a urine specimen collected over 24 

hours or ≥30 mg/dL (≥1+ reading on dipstick) in a random urine determination in the absence 

of a urinary tract infection. The preeclamptic women used in this work had no previous history 

of hypertension. The control patients used were normotensive pregnant women undergoing 

uncomplicated pregnancies and normal term deliveries or elective caesarean sections. Patients 

were approached for consent in the pre-partum or early intrapartum period. Blood samples 

were drawn from all participants before parturition, allowed to clot and then centrifuged at 

18,000g at 4ºC for 20 minutes. The sera were collected, aliquoted and then stored at -80ºC. In 

some cases, cord blood was also collected from participants at the time of delivery and was 

handled in the same manner as the maternal blood. The research protocol, including the written 

informed consent form, was approved by the University of Texas Health Science Center at 

Houston Committee for the Protection of Human Subjects (CPHS), in Houston, Texas, USA. 
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 NT PE 

n 49 54 

Age (y) 27.7 ± 7.7 30.6 ± 6.2 

Race (%) Black 33 36 

 White 19 14 

 Hispanic 47 46 

 Other 1 4 

Gravity 2.1 ± 0.9 1.9 ± 1.1 

BMI 31.2 ± 3.4 37.1 ± 6.7 

Weeks gestational age 38.1 ± 2.4 31.3 ± 5.0 

Systolic BP (mmHg) 121 ± 4 173 ±  16* 

Diastolic BP (mmHg) 74 ± 7 103 ± 13* 

Proteinuria (mg/24h) <300 4572 ± 1326* 

Mean AT1-AA bioactivity����  
(fold induction over basal) 

0.14 ± 0.04 5.17 ± 1.07* 

Median  AT1-AA bioactivity����  

(fold induction over basal) 
0.05 1.95* 

AT1-AA bioactivity range����  

(low, high; fold induction over basal)   
0, 0.5 0.5, 11.9 

Mean serum TNF-α���� (pg/ml) 16.1 ± 2.9 48.0 ± 2.9* 

Median serum TNF-α���� (pg/ml)  23.6 44.2* 

Serum  TNF-α range���� (low, high; pg/ml)   0, 25.9 32.8, 76.8 

 

 

Table 2: Patient clinical characteristics. This table illustrates that the blood pressure, proteinuria 

and TNF-α levels are elevated in preeclamptic (PE) women, as compared to the normotensive (NT) 

pregnant women used as controls. The bioassay indicating AT1 receptor activation due to the 

autoantibody (as measured by luciferase activity) is also increased in preeclamptic women. The 

category mean or median is indicated (± SEM, where applicable). * P<0.01 versus normotensive 

pregnant women. ���� For these variables: NT, n=16; PE, n=20. 
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Reagents 

  RPMI 1640 cell culture medium plus L-glutamine, antibiotics (penicillin-streptomycin 

100X and geneticin G418, 50 mg/ml), bovine serum albumin (BSA), fetal bovine serum (FBS) 

were purchased from Invitrogen Life Technologies. Human angiotensin II (ANG II) was 

acquired from Sigma. Merck & Co., Inc. generously provided losartan (Cozaar). The seven 

amino acid peptide (7-aa) which corresponds to the second extracellular loop of the human 

AT1 receptor (AFHYESQ) was purchased from Baylor College of Medicine Protein Chemistry 

Core Laboratory.   

 

Purification of total immunoglobulin G from patient sera 

   Total IgG fractions were purified from pregnant patient sera as previously described 

[34, 38]. Briefly, 200µl GammaBind G Sepharose matrix beads (Amersham Biosciences) were 

loaded into a PolyPrep chromatography column (BioRad). Before applying any sera, the 

column was washed repeatedly with wash buffer (50mM tris-HCl, 0.02% NaN3, ph 7.4) until 

the column flow-through was neutral. Then, 200µl of human sera was applied to the column, 

and after an incubation of 30 minutes, eluted using 600µl of eluent buffer (100mM glycine-

HCl, pH 2.7) in accordance to the manufacturer’s recommended protocol. The isolated total 

IgG was mixed with 40µl of neutralization buffer (1M tris-HCl, pH 9.0) to establish a neutral 

pH and was stored at -80ºC. Each fraction was then assessed for the presence of the 

autoantibody using a luciferase reporter assay described below. In the experiments reported 

here, IgG fractions from individual patients were used separately and were not pooled. 
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Affinity purification of AT1-AA using total human IgG 

Some experiments described here utilize AT1-AA affinity-purified from total human 

IgG. 7-aa, the epitope peptide corresponding to a segment on the second extracellular loop of 

the AT1 receptor, can block autoantibody-induced receptor activation [33] and therefore 

suggests a physical association between these autoantibodies and AT1 receptors. This 

presumed physical association was the basis of an affinity purification strategy used in 

obtaining highly enriched preparations of AT1-AA. A GST fusion protein containing a 27-aa 

peptide (GST-27mer) which encodes the entire second extracellular loop of the AT1 receptor 

(accession code: NM_009585.2) was generated. The construction, expression and use of the 

GST-27mer:AT1-receptor fusion protein in the affinity purification of AT1-AA was carried out 

as previously described [38]. Briefly, BL21 DE3 E. coli cells (Stratagene) were transformed 

with the pGEX-4T-1 GST expression vector (Promega) containing the GST-27mer:AT1-

receptor fusion protein. After induction, the cells were collected and the GST-27mer-AT1 

receptor fusion protein was isolated using glutathione beads (Amersham Biosciences). The 

expression of the fusion protein was confirmed using western blot. The isolated GST-

27mer:AT1-receptor fusion protein was then linked according to the manufacturer’s protocol to 

agarose beads using the microlink protein coupling kit (Pierce) which were then used in 

affinity chromatography columns. Total IgG was isolated from patient sera (as described 

above) and was loaded onto affinity chromatography columns. The total IgG incubated on the 

columns for 3h at room temperature.  The IgG bound to the columns (AT1-AA) was eluted by 

centrifugation after collection of the flow-through fraction. To confirm the presence of AT1-

AA, the eluted and flow-through fractions were tested for their ability to bind to the AT1 

receptor. Only the eluted fraction (the affinity-purified AT1-AA) was capable of binding to 

AT1 receptors transferred onto nitrocellulose membranes, whereas the flow-through fraction 
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could not bind to the AT1 receptor and was not detectable by western blot. Furthermore, to 

confirm that the eluted fraction retained biologic activity, the fractions were tested for their 

ability to activate luciferase using an established bioactivity assay described below. Only the 

eluted fraction from total IgG from preeclamptic patients (containing AT1-AA) could stimulate 

luciferase activity and the other fractions were unable to do so. This fraction, containing AT1-

AA, was used in subsequent experimentation. 

 

Luciferase bioactivity assay for the presence of AT1-AA 

To assess for the presence and bioactivity of the autoantibody in an IgG fraction, an in-

house luciferase bioassay was employed as previously described [34, 38]. Chinese hamster 

ovary cells which were stably transfected with the rat ANG II receptor type 1A (CHO.AT1A) 

were generously provided by Dr. Terry S. Elton of The Ohio State University in Columbus, 

OH. Cells were maintained and cultured in RPMI 1640 medium containing 5% FBS, 1% 

antibiotics, 8.75 g L-proline and 100 µg/ml gentamycin at 37oC and 5% CO2. Cells were then 

stably transfected with a nuclear factor of activated T cells (NFAT)-luciferase-hygromycin 

phosphotransferase construct containing 4X-NFAT binding elements driving the expression of 

the luciferase reporter gene. Stable transformants were maintained in the media described 

above enriched with 100 µg/ml hygromycin. 1x105 CHO.AT1A cells stably integrated with 

copies of the rat AT1 receptor:4X-NFAT-driven luciferase construct were evenly plated on 24-

well plates overnight. The next morning the media was changed to serum-free media and the 

cells were treated with IgG (1:10 dilution). After 24 hours, the treated cells were lysed using 

100µl of passive lysis buffer (Promega) for 30 minutes, shaking in the dark at room 

temperature. Luciferase activity was measured using a Luminometer (Pharmingen) as relative 
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light units (RLU) after mixing 20µl of lysate and 100µl of the Dual Luciferase system 

(Promega). The data is represented as either an increased or decreased ratio of change of RLU 

from the baseline (background luciferase activity of untreated cells). 

 

Adoptive transfer: introduction of human IgG into mice  

The adoptive transfer of AT1-AA or purified IgG derived from normotensive pregnant 

women into mice was carried out as previously described [38]. Briefly, C57Bl/6J non-pregnant 

or pregnant mice (18-22 g; aged <8 weeks, Harlan) were used all mouse experiments. Mice 

anesthetized with sodium pentobarbital (50 mg/kg i.p.) were injected with 20µg affinity 

purified IgG or 100µl total IgG via retro-orbital sinus injection. Volumes less than 200µl 

represent less than 10% of mouse total blood volume and should not alter hemodynamics. If 

the experiment required injection into pregnant mice, this was done so on embryonic day (E) 

13 and then again on E14. E13 was selected as this developmental stage in mouse pregnancy is 

comparable to the timeframe at which preeclamptic symptoms may occur in humans, and E13 

is the earliest point at which mouse pregnancy is reliably confirmed. Also, when autoantibody 

injections were performed on E8-10, high rates of embryonic resorption were encountered. 

Some neutralization experiments required the simultaneous co-injection of the autoantibody 

with either losartan (8 mg/kg i.v.), or 7-aa, the epitope peptide, (50 mg/kg i.v.). Some dams 

were co-injected with purified human IgG and a goat polyclonal antibody raised against TNF-α 

(Abcam). They received 0.6µg/g body weight intraperitoneal shots of the anti-TNF-α antibody 

daily. This dosage was adapted from experiments previously described [93-96]. As controls, 

one group of mice was injected with the anti-TNF-α antibody (Abcam, 0.6µg/g body weight 

i.p. daily) alone, but with no accompanying purified human IgG and another was co-injected 
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with a goat IgG isotype (Abcam, 0.6µg/g body weight i.p. daily) and PE-IgG as described 

above in this section.  

 

Blood pressure and proteinuria measurement in mice and fetal organ collection 

The systolic blood pressure of all mice was measured at the same time daily (+/- 1h) by 

an automated carotid catheter-calibrated tail-cuff system (Kent Scientific).  The mice were not 

anesthesized and once placed in the restrainer, were given a period of about fifteen minutes to 

acclimatize. Using a warming pad, their temperatures were monitored and controlled to be 

stable between 30-35oC (Kent Scientific). Twenty blood pressure cycles were measured daily 

using the automated system and then averaged. Proteinuria was determined by the ratio of 

urinary albumin to creatinine. Urine from each mouse was collected for analysis using 

metabolic cages (Nalgene) for 24h prior to sacrifice. Urinary albumin was quantified using an 

ELISA and creatinine was assessed using a picric acid colormetric kit (Exocell). If pregnant, 

the dams were sacrificed on E18, or if non-pregnant, they were sacrificed five days post the 

initial injection. At the time of sacrifice, the sera and organs of the female mice were collected. 

If pregnant, the placentas and fetal mouse organs including blood were also collected. Fetal 

blood was pooled from the all littermates, as the extractable blood volume is minimal. Pups 

born in litters of six to eight were analyzed in the fetal mouse experiments. The animal studies 

were approved of by the Animal Welfare Committee of the University of Texas Health Science 

Center at Houston, in Houston, Texas, USA. 
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ELISAs 

For the screening of inflammatory markers, mouse serum was diluted 1:25 for use in the 

qualitative Multi-Analyte ELISArray Kit (SABiosciences). Human and mouse serum TNF-α, 

sFlt-1 and sEng were quantified using species-specific ELISA kits which are commercially 

available (R&D Systems). These ELISA procedures were carried out according to the 

manufacturers’ protocol and the optical density was determined at 450 nm and corrected at 570 

nm. All assays were performed in duplicate at minimum and the protein concentrations were 

derived from a standard curve generated from known amounts of the recombinant protein. 

Human IgG concentration was determined in maternal and fetal mouse circulation, by diluting 

sera 300-fold and quantified by a commercial ELISA kit (Pierce Biotechnology Inc.). For the 

standard curve experiment, either 0.0 (control), 0.5 or 5.0 µg/ml of anti-TNF-α (Abcam) was 

added to known concentrations of recombinant mouse TNF-α and the mixtures were assessed 

by ELISA for its ability to detect either bound or free cytokine (R&D Systems).  

 

Protein extraction and quantification 

Proteins for analysis by western blot were collected from cultured cells and from frozen 

tissues in the following manner. Cells were grown to ~80% confluence in 24-well plates (see 

below), media was removed and then cells were washed once with cold PBS. While the plate 

was on ice, 200µl of lysis buffer (Millipore) was added to the each well. After 2 minutes, the 

cells were scraped off the base of the wells using a plastic well scraper. The resultant mixture 

of cell lysate, fragments and buffer were collected into eppendorf tubes and placed on ice for 

30 minutes. For frozen tissues, 500µl of lysis buffer (Millipore) and 3µl of a protease inhibitor 

cocktail (Sigma) was added to the tissue tubes upon removal from the liquid nitrogen storage 
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tank. While on ice, the tissues were sonicated for ~20 seconds at 20% amplitude. Once a 

homogenous mixture was obtained from either cell or tissue lysates, it was centrifuged for at 

least 15 minutes at 4oC at 15,000 rpm. The pellet was discarded and the supernatant containing 

the protein was transferred to a new tube and stored at -80oC. Before use, the protein 

concentration was checked by mixing 10µl of sample with 200µl of a protein assay reading 

solution (Bio-Rad) in duplicate in a 96-well plate. The mixture was allowed to sit at room 

temperature for 5 minutes and then the absorbance was read at 595 nm using a 

spectrophotometer. Protein concentrations were calculated using BSA standards of 0.1, 0.2, 0.4 

and 0.5 mg/ml and generating a standard curve. 

 

Western blot analysis 

Western blot analysis was used to determine the presence of AT1-AA in human sera as 

previously described [38]. Briefly, protein extracted from CHO.AT1A cells (CHO-NFAT cells 

which were stably transfected with the rat AT1 receptor gene) was run on a 10% SDS-PAGE 

gel (30µg/well) and then transferred onto a nitrocellulose membrane. After the transfer, the 

membrane was cut to strips, blocked with 5% non-fat milk and then probed with purified 

human total IgG (1:10 dilution) and mouse anti-human IgG:horse peroxidase (HRP) (1:5000 

dilution; Jackson ImmunoResearch Laboratories, Inc.), to determine if the isolated IgG had the 

capability of binding the AT1 receptors transferred onto the nitrocellulose strips. As a positive 

control, one strip was probed with an anti-AT1 receptor antibody (1:1000 dilution; Santa Cruz 

Biotechnology) and goat anti-rabbit IgG:HRP (1:5000 dilution; Jackson ImmunoReseach 

Laboratories, Inc.). Fetal mouse sera were also analyzed for circulating human IgG in a similar 

manner. Fetal mouse serum (12µl) was run on a 10% SDS-PAGE gel and transferred to a 
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nitrocellulose membrane which was then probed with a mouse anti-human IgG:HRP antibody, 

as above. Apoptotic markers were assessed by western blot analysis in mouse and human 

placentas. Rabbit anti-human or anti-mouse primary antibodies against Bax, a pro-apoptotic 

protein (23 kDa), and Bcl-2, an anti-apoptotic protein (26 kDa), were both used in a 1:200 

dilution (Santa Cruz Biotechnology). β-actin, a housekeeping gene (43 kDa), was run as a 

loading control (Santa Cruz Biotechnology). All western blot signals were detected by ECL kit 

(Amersham Biosciences). The relative densiometry was assessed by the Storm 840 

Phosphorimager and the associated ImageQuant TL analysis software (GE Healthcare).  

 

Human placental explant culture 

 Placentas were obtained from normotensive pregnant women who experienced an 

uncomplicated pregnancy and underwent either an elective term cesarean section, or a normal 

term birth at Memorial Hermann Hospital in Houston, Texas. The culture system described 

here was adapted from Ahmad, et al. [97]. Upon delivery, the placentas were placed in a sterile 

container on ice and transferred to the laboratory where they were immediately submerged in 

and flushed with phenol red-free DMEM containing 0.2% BSA and 1% antibiotics. Villous 

explant fragments (~5-10mm3) were dissected and transferred into 24-well culture plates for 

overnight equilibration at 37˚C and 5% carbon dioxide. All of the manipulations on the first 

day were performed within thirty minutes of delivery. The next morning, the dissected explants 

were incubated with either saline, ANG II (100nM) or IgG purified from preeclamptic or 

normotensive pregnant women (1:10 dilution). Some explants were co-incubated with human 

IgG and either losartan (5µM) or 7-aa (1µM). After 24h, the culture media was siphoned from 

the wells and stored at -80˚C. At this time, the placental explants were either lysed and their 
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protein was collected for western blot analysis or fixed for further histologic or 

immunohistochemical analysis.  

 

Human trophoblast cell culture 

An immortalized human trophoblast cell line, HTR-8/SVneo cells [98], were grown to 

70-80% confluence using RPMI 1640 cell culture media with antibiotics, counted and then 

plated in Lab-Tek 8-well chamber slides (Nunc Inc) at 2x104 cells per well overnight. The 

following day, serum-free media was added and cells were incubated with either ANG II 

(100nM) or IgG derived from either normotensive pregnant or preeclamptic women (1:10 

dilution) and cultured for an additional 24 hours. Some experiments required the cells to be 

cultured with human IgG as well as either losartan (5µM) or the 7-aa, the seven amino acid 

epitope peptide (1µM).  After the overnight incubation, cells were lysed and their lysates were 

collected for analysis of Caspase 3 activity or permanently fixed to the slide for TUNEL or 

routine immunohistochemistry staining.  

 

Histologic analysis 

The kidneys, livers and placentas of sacrificed pregnant mice, and the kidneys and 

livers of their pups were harvested, fixed and processed as previously described [38, 99]. 

Briefly, the fresh tissues were fixed in either a 4% formaldehyde solution (Fisher Scientific) or 

a zinc solution fixative solution (BD Biosciences) for 36-48h at room temperature. The fixed 

samples were then washed twice with PBS for 30 minutes, dehydrated, infiltrated and 

embedded in paraffin using standard techniques. Four micron serial sections were cut from 
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paraffin blocks and stained with Hematoxylin and Eosin (H&E), Periodic acid-Schiff (PAS) for 

glycogen, or Masson’s Trichrome for collagen, all by standard techniques, or left unstained for 

further analysis.  

The number of glomeruli or megakaryocytes in fetal mouse kidneys or liver, 

respectively, was assessed by blindly counting the number of glomeruli or megakaryocytes in 

10 random high power microscopic fields per section and then averaging this number for the 

respective pup. For immunohistochemical detection of complement cascade factor C3 in both 

mouse kidneys and placentas, a primary rat anti-mouse C3 monoclonal antibody was used in a 

1:50 dilution (Lifespan Biosciences) after antigen retrieval, using the BD Retriveagen A 

solution (BD Biosciences). The anti-C3 monoclonal antibody detects C3, C3b, C3d and iC3b. 

An anti-rat IgG horseradish peroxidase kit was used with DAB detection (BD Biosciences). 

CD-31 staining in mouse tissue was achieved using a rat anti-mouse CD-31 antibody (BD 

Pharmingen). Dissected tissues were incubated with a zinc fixative (BD Pharmingen) overnight 

at room temperature and then subsequently sectioned and prepared on slides. A 1:50 dilution of 

the primary antibody was used and an anti-rat IgG horseradish peroxidase kit was employed for 

detection (BD Pharmingen). The counterstain used was methyl green by standard techniques. 

Immunofluorescence for the presence of human IgG was assessed using rabbit anti-human 

IgG:FITC (1:30; Dako), visualized as green when excited at 515-565 nm. The sections were 

counterstained with five drops of a nuclear stain, 4’,6-diamidino-2-phenylindole (DAPI) which 

is visualized as blue when excited at 360 nm (Abbott Molecular). Quantification of the 

immunohistochemical staining was achieved using the Image-Pro Plus 6.3 software (Media 

Cybernetics). The density of brown stain (positive CD-31) was measured. The average 

densities of 10 areas per placenta were averaged and the SEM was calculated. Four placentas 

were selected from each mouse and eight mice were used for each variable. 
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Terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) 

Four micron sections were cut from paraffin-embedded HTR-8/SVneo cells, mouse or 

human placental tissue collected and treated as described above. Using standard techniques, the 

sections were permanently fixed onto a glass slide, deparaffinized and re-hydrated through an 

alcohol gradient. To visualize apoptosis, tissues were permeabilized using cold, fresh 0.1% 

Triton X-100 in 0.1% sodium citrate and stained using a commercial kit by terminal 

deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) according to the recommended 

manufacturer’s protocol (Roche Diagnostics). TUNEL-positive cells were identified by green 

staining under 515-565 nm fluorescent light and confirmed using cellular morphology (cell 

shrinkage, nuclear fragmentation, membrane blebbing). Negative controls were performed in 

parallel, where the terminal deoxynucleotidyl transferase enzyme was omitted from the 

protocol. Upon completion of TUNEL staining, 4’,6-diamidino-2-phenylindole (DAPI) nuclear 

stain was added to identify cells with normal nuclear morphology. DAPI is visualized as blue 

when under 360 nm fluorescent light (Vector Laboratories). An apoptotic index was generated 

by the quantifying the number of apoptotic nuclei (TUNEL-positive cells) per total nuclei 

(DAPI-positive) x 100. These numbers were counted blindly for each sample in 10 random 

microscopic fields using Image Pro Plus 6.3 software (Media Cybernetics). 

 

Transmission electron microscopy (TEM) of mouse kidneys 

Upon sacrifice of the mice, their kidneys were immediately removed. Kidney tissue 

samples were dissected into 1mm3 cubes and fixed overnight in 3% glutaraldehyde. The 

fragments were then rinsed, exposed to 1% osmium tetroxide and then dehydrated and 

embedded in an araldite-epon mixture. Semi-thin (0.6mm) tissue sections were prepared and 
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stained with uranyl acetate and lead citrate. The prepared mouse renal tissue samples were then 

examined with a JEOL 1210 transmission electron microscope (JEOL Corporation). 

 

Caspase 3 activity 

Caspase 3 activity was measured using a sensitive commercial assay (Millipore). HTR-

8/SVneo cells were cultured (as described above), counted and then 0.5x106 cells were pelleted 

and lysed to obtain the cytosolic extract, upon which the Caspase 3 activity assay was 

performed according to the recommended manufacturer’s protocol. The absorbance was 

measured at a wavelength of 405 nm using a spectrophotometer. The relative absorbance 

correlates to the Caspase 3 activity level. 

 

Statistical analysis 

All results are expressed as mean ± SEM, however, the median may also be reported 

and was indicated as such where applicable. The data were subjected to statistical analysis 

using GraphPad Prism 4 software (GraphPad Software). Student’s t tests (paired or unpaired as 

appropriate) were applied in two-group analysis. Differences between means of multiple groups 

were analyzed by one-way analysis of variance (ANOVA) followed by a post-hoc Tukey’s 

multiple comparisons test. To determine a statistical correlation between AT1-AA bioactivity 

and serum TNF-α, Spearman’s rank correlation was applied and an “r” coefficient value was 

obtained using the same software. A value of P<0.05 was considered significant and the 

threshold for rejection of the null hypothesis. 
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AUTOANTIBODIES PURIFIED FROM PREECLAMPTIC WOMEN 

INDUCE DISEASE FEATURES IN PREGNANT MICE 
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BACKGROUND 

  

Hypertensive diseases of pregnancy and their sequelae have troubled society since their 

recognition centuries ago. Since then, scientists have sought to understand the mechanisms 

which bring about maternal symptoms. Derangement of the renin-angiotensin system (RAS) 

has been implicated in the development of PE in pregnant women. As described earlier, many 

in vitro studies implicate that increased ANG II can provoke the many of the biologic responses 

pertinent to the disease via excessive AT1 receptor activation. However, in order to fully 

understand the cellular interplay of this vascular disease and pathophysiologic consequences of 

RAS signaling, in vivo models must be employed. Animal systems can be used for this purpose, 

because the RAS of rodents and humans are remarkably similar. The mouse has two 

pharmacologically identical isotypes of the AT1 receptor, AT1a and AT1b [100, 101]. Humans 

have a single AT1 receptor isotype. In general, both humans and rodents demonstrate an 

upregulation of RAS components in an uncomplicated pregnancy [102]. There are no reports of 

the spontaneous development of PE in animals. Nevertheless, through genetic and experimental 

manipulation, animal models with altered RAS have been developed and proven useful in 

delineating its role in both normal and abnormal pregnancies. Examples of these models are 

reviewed here in brief. 

 

In vivo studies of the RAS and hypertensive disorders of pregnancy 

Both mouse and rat models have been employed to investigate the changes in the RAS 

during pregnancy. When transgenic female mice expressing human angiotensinogen were 
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mated with male transgenics expressing the human renin gene, Takimoto et al. observed 

transient hypertension in the dams [103]. The hypertension was maximal in late pregnancy and 

resolved post-partum. These females also demonstrated other preeclamptic features, such as 

glomerular damage, proteinuria and placental abnormalities. The same group investigated the 

role of angiotensin receptors in mice during pregnancy. Female AT1a receptor knockout mice 

expressing the human angiotensinogen gene were mated with male mice expressing the human 

renin gene. The dams remained at their baseline blood pressure throughout pregnancy, and 

demonstrated no preeclamptic-like symptoms, despite having intact AT1b receptors [104]. 

These findings suggest the regulation of the RAS is imperative to a healthy pregnancy, and in 

the mouse, AT1a receptors are important for the development of hypertension and other 

preeclamptic features during pregnancy in the setting of a dysregulated RAS. This group also 

used their transgenic mouse model to determine the timing of renin release in pregnancy [103]. 

They found that human renin expression increased late in gestation and was detectable both in 

chorionic trophoblasts and the maternal circulation of the pregnant transgenic mice. Several 

other mouse models [105-109] draw similar conclusions as they explore the effects AT1 

receptor signaling in the development of hypertension and end-organ damage in the heart, 

vasculature and kidney. Our group has also investigated the timing of renin gene expression 

during pregnancy using two different mouse strains, ICR and C57Bl/6. ICR mice exhibited 

high levels of renin expression at the maternal-fetal interface [102]. In C57Bl/6 pregnant mice, 

little placental expression of renin was observed, however the gene was upregulated in kidneys. 

Both ICR and C57Bl/6 mice demonstrated an increase in circulating maternal renin during 

gestation, however the sites of renin production differed. These animal models illustrate the 

importance of RAS regulation in order to sustain a healthy pregnancy. Taken together, the 

several animal models exploring RAS regulation in pregnancy suggest that these factors could 
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play an important role in the pathogenesis of gestational hypertensive disorders. While these 

animal models suggest that RAS dysregulation in pregnancy can lead to hypertension, they 

cannot adequately address the specific scenario of PE. In this disorder, while the end effects of 

AT1 receptor signaling, such as vasoconstriction, appear to be increased, the components of the 

RAS, such as renin and ANG II, are not (Table 1). This puzzle implies that another factor must 

be responsible for the excessive AT1 receptor activation observed in women with PE. The 

aforementioned autoantibody, AT1-AA, which is found in the circulation of preeclamptic 

women, may be responsible for this stimulation. Though many in vitro studies imply that AT1-

AA can induce the many biologic responses relevant to PE, such as increased cardiomyocyte 

contractility and sFlt-1 secretion [33, 110], they cannot authoritatively label this autoantibody 

as a major pathogenic player. In order to definitively show this autoantibody is a causative 

agent of PE, an adoptive transfer experiment of AT1-AA in pregnant mice must be performed. 

 

Chapter overview 

This Chapter will report that when AT1-AA purified from preeclamptic women was 

injected into pregnant mice, they recapitulate the key maternal symptoms: hypertension, 

proteinuria and increased circulating sFlt-1 and sEng. Human IgG derived from healthy 

normotensive pregnant women did not induce preeclamptic features when injected into dams. 

In order to demonstrate autoantibody specificity, a short antibody-neutralizing epitope peptide, 

7-aa, was co-injected in dams and decreased autoantibody-mediated effects. Losartan, an AT1 

receptor blocker, also attenuated AT1-AA-induced features. The results of the adoptive transfer 

mouse model reveal that the autoantibody found in preeclamptic women may contribute to the 

pathophysiology of maternal disease features through excessive AT1-receptor activation.  
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RESULTS 

 

Human IgG is detectable in the circulation of pregnant mice.  

To evaluate the pathophysiologic consequences of AT1–AA in vivo, purified total IgG 

from either normotensive (NT) or preeclamptic 

pregnant women was introduced into pregnant mice 

on embryonic day (E) 13 and E14 by retro-orbital 

injection.  Western blot analysis indicated that human 

IgG (hIgG) was readily detected in the injected mice 

five days post-injection (Fig. 3a). To confirm these 

findings, an ELISA was employed to quantify the 

hIgG in mouse circulation. The ELISA results 

indicated that concentrations in injected pregnant 

mice were similar, whether injected with hIgG 

derived from NT pregnant women or preeclamptic 

patients (Fig. 3b). Finally, to determine if the 

injected IgG retained biologic activity, when mice 

were sacrificed on E18, IgG was purified from 

maternal mouse sera, and assayed for the ability to 

activate AT1 receptors in a luciferase reporter cell 

line. These results (Fig. 3c) confirmed that hIgG 

from preeclamptic women retained their ability to 

Figure 3: Human IgG is detectable in 

mouse sera. Human IgG (hIgG) injected into 

mice were detectable in their sera 5 days post-

injection by (a) western blot, ms; mouse sera 

without injection (negative control), hIgG 

(positive control); (b) ELISA *P<0.05 vs 2 

day NT-IgG, **P<0.05 vs 2 day PE-IgG, and 

(c) a luciferase-based bioassay reflecting 

AT1-AA bioactivity on E18. *P<0.01 vs NT-

IgG.  **P<0.05 vs PE-IgG. Data displayed as 

the mean ± SEM, n=3 for each variable. 

©Zhou et al., 2008. Originally published in 

Nat Med. doi: 10.1038/nm.1856. 
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activate AT1 receptors at least five days post-retro-orbital injection into pregnant mice. This is 

contrast to the hIgG isolated from pregnant mice injected with IgG from NT pregnant women, 

which could not stimulate AT1 receptor driven luciferase activity. These results verify that it is 

possible to adoptively transfer physiologically relevant concentrations of hIgG into pregnant 

mice, and that the biologically active injected human antibody persists for many days in the 

maternal mouse circulation. 

 

The adoptive transfer of IgG from preeclamptic women into pregnant mice leads to 

hypertension and proteinuria through AT1 receptor activation. 

Hypertension and proteinuria are the two 

clinical characteristics defining the maternal 

syndrome of PE. To determine if AT1-AA have the 

ability to contribute to gestational hypertension, 

systolic blood pressure of pregnant mice was 

measured daily following the retro-orbital injection 

of IgG purified from pregnant women. The 

introduction of IgG from preeclamptic patients (PE-

IgG) but not IgG from normotensive pregnant 

women (NT-IgG) resulted in a significant increase 

in blood pressure that was evident four days post-

injection (Fig. 2a).  The increased blood pressure 

resulting from injection of PE-IgG was prevented by 

co-injection of losartan, an AT1 receptor antagonist 

Figure 4: PE-IgG induce a preeclamptic-

like state in pregnant mice. Injection of PE-

IgG into pregnant mice increases (a) systolic 

blood pressure and (b) urinary protein. 

*P<0.05 vs NT-IgG, **P<0.05 vs PE-IgG. 

Data displayed as the mean ± SEM. ©Zhou et 

al., 2008. Originally published in Nat Med. 

doi: 10.1038/nm.1856. 
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(Fig. 2a). This suggests that the antibody-induced increase in blood pressure required activation 

of the AT1 receptor.   

The antibody-injected mice were also analyzed for proteinuria. After a 24h urine 

collection using metabolic cages, the ratio of urinary albumin to creatinine on E18 was 

examined.  The results (Fig. 2b) show that a significant increase in urinary protein occurred 

following injection of PE-IgG in contrast to injection of pregnant mice with NT-IgG.  The 

autoantibody-induced proteinuria was prevented by co-injection with losartan, indicating that 

AT1 receptor activation was essential for this process. Overall, these results show, for the first 

time, that IgG from preeclamptic women, in contrast to IgG derived from normotensive 

pregnant women, are capable of inducing hypertension and proteinuria in pregnant mice, and 

that these preeclamptic-like features required AT1 receptor activation. 

 

Autoantibody-induced features of PE are prevented by co-injection of 7-aa. 

AT1-AA interact with a specific seven amino acid sequence (AFHYESQ) present on the 

second extracellular loop of the AT1 receptor [33].  Competition experiments indicated that this 

epitope peptide is sufficient to block autoantibody-induced AT1 receptor activation [33, 111-

115]. In this regard, a short peptide of this sequence was generated (7-aa), to be routinely 

employed as an autoantibody neutralizing agent. This is useful to determine if a particular 

biological response (e.g. hypertension or proteinuria) can be specifically attributed to the 

actions of AT1-AA. Thus, on E13 and E14, mice were co-injected with PE-IgG and 7-aa, and 

then their blood pressure and proteinuria were monitored.  These data (Fig. 2) show that co-

injection with the 7-aa with PE-IgG successfully alleviated autoantibody-induced hypertension 

and proteinuria. These findings imply that the hypertension and proteinuria resulted from IgG 
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derived from preeclamptic women which specifically binds to the second extracellular loop of 

the AT1 receptor. 

 

Affinity-purified AT1-AA and total IgG induce similar features upon injection into 

pregnant mice.  

To directly test the pathophysiological role of the autoantibody in PE, AT1-AA were 

specifically isolated from total IgG derived from preeclamptic patients using an affinity-

purification strategy. The ability of 7-aa to neutralize autoantibody-induced effects across 

multiple cellular systems and previous studies [23, 33, 115, 116] suggests a physical 

association between AT1-AA and the specific sequence, AFHYESQ, on the second 

extracellular loop of AT1 receptor.  Briefly, the strategy employed is as follows: a GST-peptide 

fusion protein was generated containing the in frame insertion of a 27-amino acid DNA 

sequence corresponding to the second extracellular loop of human AT1 receptor, herein named 

GST-27-aa. After overexpression in bacteria and its subsequent isolation using glutathione 

beads, the GST-27-aa was then coupled to affinity chromatography columns which were used 

to specifically isolate AT1-AA from total IgG. The eluted fraction could bind to a 43kDa band 

corresponding to AT1 receptors bound to a membrane by western blot analysis (Fig. 5a). In 

addition, using the previously mentioned luciferase-based bioassay, it was confirmed that the 

affinity-purified AT1-AA were capable of recognizing and activating the AT1 receptor (Fig. 

5b). Only the eluted fraction (affinity-purified AT1-AA) was capable of inducing expression of 

the luciferase reporter gene via AT1 receptor activation. The flow-through component was 

unable to generate luciferase activity or recognize the 43 kDa band upon western blot analysis. 
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These two facts indicate that the IgG fraction eluted from the affinity chromatography columns 

contains IgG which bind to the second extracellular loop of the AT1 receptor. 

Upon the confirmation 

of retained biologic capability, 

the affinity-purified AT1-AA 

were injected into pregnant 

mice. The introduction of the 

affinity-purified AT1-AA 

resulted in a robust increase of 

blood pressure apparent within 

three days post-injection (Fig. 

5c). These dams also developed 

significant proteinuria (Fig. 

5d). Consistent with the 

findings of total IgG derived 

from preeclamptic women, 

hypertensive and proteinuria 

induced by affinity-purified 

AT1-AA were diminished by 

losartan and 7-aa (Fig. 5c-d). 

None of the mice injected with 

control IgG displayed 

preeclamptic-like features. These results provide direct evidence that women with PE harbor 

autoantibodies which have an affinity for the second extracellular loop of the AT1 receptor and 

Figure 5: Affinity-purified AT1-AA induce a preeclamptic-like 

state in pregnant mice. Western blot analysis (a) depicts the ability of 

affinity purified fractions to detect AT1 receptors (AT1 r’) at 43 kDa. 

Cell lysates from AT1 r’-rich cells were bound to a membrane. A 

commericial anti-AT1 r’ antibody (lane 1) detected the 43 kDa band as 

did the eluted fraction (AT1–AA; lane 3). The flow-through fraction 

(lane 2) could not. AT1-AA bioactivity (b) was assessed using a 

luciferase assay. The eluted fraction (AT1-AA) greatly stimulated 

luciferase activity. AT1-AA purified from total PE-IgG injected into 

pregnant mice lead to increased (c) systolic blood pressure and (d) 

urinary protein. *P<0.05 vs NT-IgG, **P<0.05 vs PE-IgG. ©Zhou et 

al., 2008. Originally published in Nat Med. doi: 10.1038/nm.1856. 
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can be specifically isolated. Moreover, upon injection into pregnant mice activation of the AT1 

receptor induces the symptoms of PE. The results of the affinity-purified AT1-AA also indicate 

no statistically significant differences between the hypertension and proteinuria measured when 

total PE-IgG was injected. This suggests that the total IgG houses a quantity of AT1-AA 

sufficient to induce maximal blood pressure and proteinuria in pregnant mice. 

 

Autoantibody-induced alterations in the mouse kidney.  

Proteinuria is not the only renal dysfunction associated with PE. Characteristic 

alterations in renal histology are also commonly observed. To evaluate the potential role of 

AT1-AA in the renal pathophysiology of PE, the kidneys of pregnant mice injected with human 

IgG derived from either NT or preeclamptic women were examined. On E18, five days post-

injection, pregnant mice were sacrificed and their kidneys were isolated, fixed and sectioned. 

Analysis of H&E stained sections from PE-IgG-injected pregnant revealed extensive renal 

damage (Fig. 6a-b). The majority of their glomeruli were small and under high magnification, 

endothelial swelling, narrowing or obliteration and occlusion of the glomerular capillary spaces 

Figure 6: PE-IgG induced 

renal damage in pregnant 

mice. H&E staining (a & b) 

reveals small, contracted and 

consolidated glomeruli in 

PE-IgG injected mice. Scale 

bars (a) 200µm, 40X (b) 50 

µm, 100X. PAS staining 

(panel c) is unremarkable. 

No PAS+ cells appear in the 

glomeruli of any treatments. 

©Zhou et al., 2008. 

Originally published in Nat 

Med. doi: 10.1038/nm.1856.    
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were evident, but showed no evidence of PAS-positive materials in the cytoplasm (Fig. 6c). 

The affected glomeruli demonstrated the characteristic consolidated “bloodless” appearance, in 

contrast to the open glomerular tufts of the pregnant mice injected with NT-IgG (Fig. 6). To 

further confirm the AT1-AA-induced renal damage, mouse kidneys were stained using 

Masson’s Trichrome for excess collagen deposition, as well as for increased complement factor 

C3, by immunohistochemistry (Fig. 7).  Elevated collagen (blue stain) was apparent in the 

tubules of PE-IgG injected dams, but not in NT-IgG injected mice, and greatly diminished in 

dams co-injected with PE-IgG and losartan or 7-aa (Fig 7b). The glomeruli of AT1-AA-injected 

dams demonstrated increased positive complement C3 expression, whereas NT-IgG injected 

pregnant mice did not (Fig. 7). Those mice co-injected with PE-IgG and losartan or 7-aa had 

reduced C3 detected in their renal glomeruli. The increased deposition of collagen and 

complement activation observed in the pregnant mice further illustrates the damage due to 

autoantibody-mediated AT1 receptor activation. 

 

Figure 7: PE-IgG increase 

collagen and C3 deposition 

in pregnant mice. Masson’s 

trichrome staining (a) reveals 

that increased collagen (blue) 

is deposited in the tubules of 

PE-IgG injected pregnant 

mice. Immunohistochemistry 

staining for C3 (a) indicates 

C3 deposition in the 

glomeruli of these mice 

(arrows). Inset is another 

glomeruli with C3 staining. 

Scale bars 50 µm, 100X. 

Quantification of Masson’s 

Trichrome stain for collagen 

(b) indicates an increased 

blue density in the tubules of 

PE-IgG injected pregnant 

mice. *P<0.05 vs NT-IgG, 

**P<0.05 vs PE-IgG. 
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Examination of these kidneys by transmission electron microscopy (TEM) confirmed 

the evidence of glomerular change by light microscopy. The endothelial cells of the affected 

glomeruli demonstrated the loss of the fenestrations and because of their swollen cytoplasm, 

lead to the narrowing or complete obliteration of capillary loop spaces (Fig 8). In addition, 

focal foot process effacement was observed in the podocytes, as were the occasional electron-

dense materials in the mesangial and sub-endothelial areas. This collection of renal 

histopathology is pathognomonic for the type of damage seen in kidneys of preeclamptic 

patients. No significant mesangial cell proliferation or segmental glomerulosclerosis were seen 

on light microscopy or TEM. The pregnant mice injected with NT-IgG were unremarkable and 

did not show any of these histologic changes (Figs. 6-8). The histologic changes seen in the 

kidneys of PE-IgG were partially prevented in mice co-injected with losartan or 7-aa and PE-

IgG (Figs. 6-8). Similar renal damage was consistently observed in pregnant mice injected with 

affinity-purified AT1-AA. Taken together, these data imply that the autoantibody, through AT1 

receptor activation, can induce renal histopathological changes in pregnant mice which may 

lead to their renal impairment.  

Figure 8: Ultrastructure of 

kidneys in PE-IgG injected 

mice. Features of glomerular 

endotheliosis are revealed by 

TEM analysis of PE-IgG 

injected mice. Swollen 

endothelial cells (thick 

arrows) occlude capillary 

spaces (*). Subendothelial 

deposits are evident (thin 

arrows). Capillary spaces 

appear open in NT-IgG 

injected animals. Boxes 

highlight podocytes, which 

remain unremarkable in all 

cases.  1500X. ©Zhou et al., 

2008. Originally published in 

Nat Med. doi: 

10.1038/nm.1856. 
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Autoantibody-mediated increases in placental-derived anti-angiogenic factors, sFlt-1 and 

sEng in pregnant mice. 

Recently, sFlt-1 and sEng have been brought to the forefront in the study of PE. The 

anti-angiogenic factor sFlt-1 is a soluble form of the VEGF receptor that is elevated 

significantly in the circulation of preeclamptic women [37, 117]. During pregnancy, sFlt-1 is 

secreted by the placenta, and is thought to contribute to hypertension and proteinuria by 

interfering with VEGF signaling [118]. Similarly, soluble endoglin (sEng), a soluble form of 

the TGF-β receptor, is also secreted by the placenta and is elevated in preeclamptic women 

[39].  To evaluate the potential contribution of AT1-AA to increased production of these two 

factors in PE, pregnant mice were injected with IgG from NT pregnant women or women with 

PE on E13 and E14, and the circulating levels of sFlt-1 and sEng were determined upon 

sacrifice on E18. The results (Fig. 9) reveal that both sFlt-1 and sEng levels were significantly 

greater in pregnant mice who received injections of PE-IgG in comparison to those who 

received NT-IgG. The autoantibody-mediated inductions of sFlt-1 and sEng in pregnant mice 

were inhibited by the co-injection of losartan or 7-aa. This indicates that the AT1-AA-mediated 

liberation of the anti-angiogenic factors, sFlt-1 and sEng, required AT1 receptor activation.   

Figure 9: Increased 

circulating anti-angiogenic 

factors in PE-IgG injected 

pregnant mice. Both sFlt-1 

and sEng are increased in the 

sera of pregnant mice 

secondary to AT1 receptor 

activation by the 

autoantibody. *P<0.05 vs 

NT-IgG, **P<0.05 vs PE-

IgG.. n=6 for each variable. 
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The effect of AT1-AA in non-pregnant mice.  

 In the previous section, it was demonstrated that human IgG derived from preeclamptic 

patients and not normotensive pregnant women could induce sFlt-1 production upon injection 

into pregnant mice (Fig. 9), which could be specifically blocked by losartan or 7-aa. Thus, the 

autoantibody-induced hypertension and proteinuria observed in pregnant mice could be the 

result of excessive placenta-derived sFlt-1 action. However, it is possible that AT1-AA could 

contribute to these features independent of excessive sFlt-1. To test this hypothesis, NT-IgG or 

PE-IgG were introduced into non-

pregnant mice, and their blood pressure, 

renal function and sFlt-1 levels were 

monitored. In contrast to pregnant mice, 

the concentration of sFlt-1 in non-

pregnant mice injected with NT-IgG 

remained very low, and most importantly, 

was not increased by the injection of IgG 

purified from preeclamptic women (Fig. 

10). Therefore, sFlt-1 cannot be induced 

by IgG purified from preeclamptic 

patients in non-pregnant mice.  

The blood pressure of non-pregnant mice was then monitored. The results (Fig. 11a) 

show that PE-IgG, in contrast to NT-IgG, stimulated an increase in blood pressure. PE-IgG 

were capable of inducing a significant increase in blood pressure four days post-injection. Co-

injection of either losartan or 7-aa specifically inhibited the autoantibody-mediated increase 

 

Figure 10: Non-pregnant mice do not liberate excess 

sFlt-1 when injected with PE-IgG. While sFlt-1 is 

increased in the circulation of pregnant mice due to AT1 

receptor activation, non-pregnant animals do not show 

elevated levels of the anti-angiogenic factor when 

injected with the autoantibody. *P<0.05 vs NT-IgG, 

**P<0.05 vs PE-IgG.n=6 for each variable. ©Zhou et 

al., 2008. Originally published in Nat Med. doi: 

10.1038/nm.1856. 
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(Fig. 11a). Additionally, there was no significant difference in the maximal AT1-AA-induced 

hypertension observed in pregnant mice (Fig. 4) and non-pregnant mice (Fig. 11), suggesting 

that AT1-AA-mediated hypertension is not entirely sFlt-1-dependent.  

 

The urinary protein of antibody-injected non-pregnant mice was then measured. A 

double injection of PE-IgG was required to induce a mild increase in urinary protein in non-

pregnant mice (Fig. 11b). This slight autoantibody-induced proteinuria could be inhibited by 

co-injection of losartan or 7-aa, suggesting that the proteinuria observed in non-pregnant mice 

was mediated by AT1 receptor activation. However, the amount of urinary protein achieved 

following autoantibody injection in pregnant mice was far greater, as compared to that achieved 

in non-pregnant mice. Finally, analysis of H&E stained sections from non-pregnant mice 

revealed only mild renal damage following injection of PE-IgG (Fig. 11c) in comparison to the 

Figure 11: Effects of PE-IgG in non-pregnant 

mice. Blood pressure (a) was increased secondary to 

AT1 receptor activation by the autoantibody in non-

pregnant mice. However, these animals do not show 

extensive renal damage. Only mild proteinuria (b) is 

evident. H&E staining shows only mild glomerular 

contraction (c) which is far less severe than that 

observed in similarly injected pregnant mice. 

*P<0.05 vs NT-IgG, **P<0.05 vs PE-IgG. ©Zhou et 

al., 2008. Originally published in Nat Med. doi: 

10.1038/nm.1856. 
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severe renal damage observed in similarly treated pregnant mice (Fig. 6).  The glomeruli of 

mice injected with NT-IgG displayed no hypercellularity and were normal in size and shape 

(Fig. 11c). In the non-pregnant mice double-injected with IgG from preeclamptic women, 

though the majority of the glomeruli were normal to slightly reduced in size, the endothelial 

swelling evident in pregnant mice was absent. The mild decrease in glomerular size, likely due 

to mesangial cell contraction via AT1 receptor activation, was not as pronounced as that 

observed in the pregnant animals. The glomeruli in the PE-IgG non-pregnant mice were not as 

consolidated as those of their pregnant counterparts and their capillary lumens and glomerular 

tufts appeared wide. Overall, non-pregnant mice injected with PE-IgG showed unsubstantial 

changes in renal histopathology. 

. 
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DISCUSSION 

 

To formally examine the role of AT1-AA in the pathophysiology of PE, an adoptive 

transfer experiment was performed. This autoantibody was injected into pregnant mice, who 

then recapitulated several key features of the disease: hypertension, proteinuria, renal 

morphologic changes, and the increase of the anti-angiogenic factors sFlt-1 and sEng. In each 

case the autoantibody-induced feature of PE could be prevented by the co-injection of losartan, 

an AT1 receptor antagonist, or a 7-aa, autoantibody-neutralizing epitope peptide. Both total IgG 

and affinity-purified AT1-AA induced similar symptoms in pregnant mice. Therefore, the 

human IgG, affinity purification and autoantibody neutralization experiments provide direct 

evidence supporting the claim that the features of PE observed in pregnant mice were induced 

by an autoantibody which binds to and activates the second extracellular loop of the AT1 

receptor. Though hypertension was detectable in non-pregnant animals injected with PE-IgG, 

the other parameters, such as proteinuria, renal histologic changes and sFlt-1 production, did 

not demonstrate clinically relevant increases. This implies that the observed autoantibody-

induced features are pregnancy-dependent. Overall, these findings confirm that AT1-AA 

contributes to the pathophysiology of PE and raise the intriguing possibility that PE is an 

autoimmune disease whose symptoms arise secondary to autoantibody-induced AT1 receptor 

activation. Moreover, these in vivo studies offer direct evidence of the pathophysiological role 

of AT1-AA in PE and provide an animal model to use as an investigative tool in the analysis of 

the underlying pathogenic mechanisms associated with the disorder. 

The two antiangiogenic soluble factors sFlt-1 and sEng are likely contributors to the 

hypertension and maternal endothelial dysfunction associated with PE [37, 61, 69]. sFlt-1 is a 



48 

 

placental-derived soluble form of the VEGF receptor-1 (VEGFR-1) which binds to and forms a 

complex with free VEGF, thereby interfering with its signaling [118]. In the kidney, VEGF acts 

to sustain glomerular fenestrations required for adequate filtration [119]. Therefore, diminished 

VEGF signaling in glomeruli results in impaired renal function characterized by proteinuria and 

often glomerular endotheliosis [117, 118, 120]. sEng is a soluble form of the TGF-β receptor, 

endoglin, which complexes to free TGF-β and interferes with its signaling [39]. Both VEGF 

and TGF-β increase the production of endothelial-derived nitric oxide (NO), a potent 

vasodilator, resulting in vascular smooth muscle relaxation. In this way, sFlt-1 and sEng 

enhance vasoconstriction in the peripheral circulation which manifests in hypertension. These 

two factors are found to be elevated in the circulation of preeclamptic women, and cooperate 

together to produce preeclamptic-like symptoms in pregnant rats [39].  However, the factors 

accounting for increased production of sFlt-1 and sEng in preeclamptic women remain 

undefined. From the data presented here, the autoantibody derived from women with PE may 

be the instigating factor which stimulates sFlt-1 and sEng production through AT1 receptor 

activation, and through this mechanism, may contribute the hypertension and proteinuria 

observed in the disease. 

Both AT1-AA and sFlt-1 can stimulate increased blood pressure. Therefore, it is 

possible that their effects may be additive. However, both non-pregnant (Fig. 11) and pregnant 

(Fig. 4) mice demonstrated similar maximal blood pressure readings of ~140 mmHg upon 

autoantibody injection, despite the latter group harboring a considerably higher concentration 

of circulating sFlt-1. A possible explanation for this is that the amount of AT1-AA injected into 

mice (pregnant or non-pregnant) was sufficient to induce a maximal increase in blood pressure, 

and though present in pregnant animals, the additional sFlt-1 was unable to stimulate an 

additional increase. A similar phenomenon was recorded by Maynard et al. [118]. In 
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experimentally manipulated rats, a low dose (7.3 ng/ml) of sFlt-1 was capable of inducing a 

maximal blood pressure of ~120 mmHg. A 20-fold increase in the dose of sFlt-1 (>200 ng/ml) 

was unable to further increase their systolic pressure [118]. This suggests that the capability of 

sFlt-1 to elevate blood pressure is limited, and a maximal threshold for increase can be easily 

reached. Based on the findings reported here and those of Maynard et al., AT1-AA and sFlt-1 

can independently and additively contribute to the hypertension associated with PE.   

In addition to its well-recognized role in regulating blood pressure, ANG II also induces 

inflammation, vascular damage and proteinuria, through AT1 receptor activation. Ray et al. 

have shown mesangial cell proliferation through this mechanism [121]. Others have shown 

ANG II stimulates the production of PAI-1 by cultured endothelial cells [122, 123]. AT1 

receptor activation has also been implicated in endothelial cell hypertrophy [124]. Excess ANG 

II can induce renal damage leading to proteinuria in both wild-type rats [124] and transgenic 

rats overexpressing human renin and angiotensinogen genes [125-128]. Since AT1-AA acts in 

the place of ANG II, it could be expected to produce similar consequences. Previously, our 

group has shown that IgG derived from women with PE stimulated mesangial cell production 

of both PAI-1 and IL-6, a pro-inflammatory cytokine [113]. Therefore, AT1-AA may contribute 

to renal histopathology by activating AT1 receptors on glomerular endothelial and mesangial 

cells. It was shown here that introduction of AT1-AA into pregnant and non-pregnant mice 

resulted in severe and mild renal dysfunction, respectively.  

Renal damage was especially obvious in PE-IgG pregnant injected mice. Routine H&E 

staining revealed contracted glomeruli with a consolidated appearance, endothelial cell 

swelling and narrowed capillary lumens (Fig. 6). PAS staining indicated that there were no 

PAS-positive deposits throughout glomerular cytoplasm nor was there increased mesangial 

matrix observed in these mice (Fig. 6). When stained for excess collagen using Masson’s 
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Trichrome, the PE-IgG injected dams showed elevated collagen in their tubules, but not 

glomeruli, whereas NT-IgG injected mice did not demonstrate excess collagenous deposition 

anywhere within their kidneys (Fig. 7). Though the extent of tubular damage in the human 

disease is not well-characterized, there are several varied reports of tubular atrophy, fibrosis, 

and collagen deposition, all of which could contribute to the proteinuria and renal dysfunction 

observed in these women [129-132]. Renal tubules are considered especially responsive to 

hypoxic changes and susceptible to injury, as the medulla has a lower oxygen content in 

comparison to the cortex [133]. Pedrycz et al. observed superimposed PE in an experimental 

model of nephrotic syndrome in rats who demonstrated considerable tubular dysmorphology 

[134]. Moreover, ANG II is capable of stimulating collagen synthesis in vascular smooth 

muscle cells [135] and glomerular mesangial cells [136], among others, which could contrible 

to tubular injury. Since co-injection of the autoantibody with losartan or 7-aa reduced renal 

tubular collagen deposition, AT1 receptor activation by the autoantibody may be responsible for 

these changes in adoptively transferred mice, and could thereby contribute to similar features in 

the human disease.  

Complement, the bridge between innate and acquired immunity, becomes activated to 

combat disease, or to remove immune complexes, ischemic or apoptotic cells [137, 138]. 

Activation of the complement cascade, in particular the converging component, C3, is a well-

recognized contributor to proteinuric renal dysfunction [139-142]. Complement activation is 

reportedly increased in preeclamptic women, however, the factors leading to its induction 

remain unknown [143-146]. Interestingly, Shagdarsuren et al. have recently demonstrated 

using a double transgenic mouse model of RAS overexpression that ANG II mediates 

complement activation and subsequent renal damage [128]. There are other reports to support 

an AT1 receptor-induced mechanism of complement activation [126, 147]. It is therefore 
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possible that the autoantibody, AT1-AA, could induce a similar immunologic response. Here, it 

is shown that the glomeruli of PE-IgG injected pregnant mice demonstrate elevated C3 

expression by immunohistochemistry (Fig. 7), whereas NT-IgG do not. Co-injection of losartan 

or 7-aa with the autoantibody reduced C3 activation. The evidence of complement activation in 

the kidneys of autoantibody injected pregnant mice is yet another clear indication that AT1-AA 

may incite the renal damage associated with PE. The exact consequences of increased tubular 

collagen deposition and glomerular C3 activity in autoantibody-injected mice are the subjects 

of ongoing work in the lab.  

Since non-pregnant animals did not display the same severity of renal damage (Fig. 11) 

as their pregnant counterparts, another factor may additively contribute to this feature: it could 

be that autoantibody-induced sFlt-1 in pregnant mice is the essential factor leading to the severe 

renal damage observed. The injection of exogenous sFlt-1 into a rat results in renal lesions 

similar to those observed in PE [118]. In pregnant mice, AT1-AA can induce sFlt-1 production 

by the placenta, which could, therefore, be responsible for the renal changes recorded in these 

animals. Furthermore, the renal dysfunction and the level of urinary protein achieved in 

pregnant mice is much more severe than in non-pregnant mice, who demonstrate much lower 

levels of sFlt-1. It is likely that in pregnant mice, AT1-AA-induced renal dysfunction may be 

mediated through both the action of sFlt-1 and the direct effects of autoantibody-induced AT1 

receptor activation on glomerular endothelial cells and/or mesangial cells. It could be that these 

effects are independent or additive. Future work will have to delineate whether the renal 

damage and proteinuria observed in the human disease is the result of sFlt-1 or AT1-AA action. 

To test this, PE-IgG-injected pregnant mice could be co-injected with recombinant VEGF121, a 

protein which blocks the anti-angiogenic action of sFlt-1 [148]. Certainly, from the evidence 
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presented here, it appears that both AT1 receptor signaling and sFlt-1 are required to work in 

tandem to produce the severe renal damage in PE-IgG injected mice. 

The results of the adoptive transfer experiments presented here provide strong support 

for the working hypothesis that PE is an autoimmune disease specific to pregnancy in which 

AT1 receptor agonistic autoantibodies contribute to the development of many disease features. 

Losartan, an AT1 receptor blocker, significantly reduces the key autoantibody-induced 

symptoms in PE-IgG injected pregnant mice. This fact implies that the activation of this 

receptor is specifically required as the mechanism of symptom progression. The biologic 

properties of AT1-AA can also be attenuated by an autoantibody-neutralizing 7-aa peptide, 

corresponding to the specific epitope located on the second extracellular loop of the AT1 

receptor. This consistent control suggests a common immunologic origin for these 

autoantibodies in different women, and has substantial therapeutic implications. Currently there 

is no specific cure for PE, and severe cases often require the premature delivery of the infant. If 

maternal circulating AT1-AA contributes to the pathophysiology of PE, as the adoptive transfer 

model suggests, the timely removal or inhibition of these autoantibodies from preeclamptic 

women may provide profound therapeutic benefit. Moreover, recent evidence suggests that 

AT1-AA can be detected as early as 18 weeks, making it an early marker to identify women at 

risk for the disease [149]. If AT1-AA play a significant role in the etiology of PE, as 

hypothesized, it may be possible to block autoantibody-mediated AT1 receptor activation and in 

turn forestall or prevent the onset of the preeclamptic symptoms. 
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CHAPTER 4:  

 

AT1-AA-INDUCED FETAL AND PLACENTAL ABNORMALITIES IN AN 

ADOPTIVE TRANSFER MOUSE MODEL OF PREECLAMPSIA  
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BACKGROUND 

 

Two key features of PE were not discussed in the previous Chapter as they warrant their 

own discussion: placental abnormalities and fetal consequences. Both placental dysfunction 

and subsequent poor fetal outcomes are unfortunate features observed in the more severe cases 

of PE. In this Chapter, I will explore the effect of AT1-AA on placentation and fetal outcome 

using both the aforementioned adoptive transfer mouse model and culture systems of human 

villous explants and a human trophoblast cell line. The data presented here will help broadly 

demonstrate the pathogenic role of the autoantibody in PE, in particular its effects on the 

placenta and fetus, and the essential need for improved therapeutics in the management of this 

disorder affecting both mother and developing child. 

 

Placental function and development during normal pregnancy 

Good placental health is essential for an uncomplicated pregnancy. This complex organ 

is the barrier between maternal and fetal cells, is a site of exchange for nutrients, oxygen and 

waste products and is a producer of hormones [150, 151]. But the placenta has another 

important function: it is an immunologic barrier. IgG may pass through the placenta from 

mother to fetus via transcytosis and confer passive immunity [152-154]. Though there is some 

controversy surrounding the rank of IgG subclasses which are actively transferred across the 

placenta [155-157], most consider the efficiency in the order of IgG1>IgG3>IgG4>IgG2 [157, 

158]. Of note, in a small study, Wallukat et al. report AT1-AA as sublass IgG3 [53]. 
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Fig 12: Schematic of early mouse placental 

structures. By E10, the labyrinth zone is well-

established. 

Humans and mice share similar features of their uteroplacental units. They are both 

discoid chorioallantoic placentas and have hemochorial blood interfaces with three 

corresponding physiologic and anatomically 

distinct regions [159, 160]. In humans, on the 

maternal side, the placental bed is made up of 

the decidua basalis and the underlying 

myometrium. In mice, the corresponding area is 

the decidua basalis only, and does not include 

the myometrium [159]. The basal plate in 

humans and the junctional zone in the mouse 

are equivalent. They both produce hormones 

and cell lineages are primarily cytotrophoblastic [159]. In mice, there are cell types which are 

not found in humans: spongiotrophoblasts (Mash2+), Trophoblast Giant Cells (TGCs; Hand1+, 

Stra1+) and glycogen cells [161]. Closest to the fetus, the human placenta and the murine 

labyrinth zone (LZ) are highly branched areas of maternal:fetal blood interface (Figs. 12-13) 

[162]. There are 3 layers of fetal cells on the chorionic villi which prevent the mixture of 

maternal and fetal 

blood, yet allowing for 

adequate exchange 

[162]. These zones are 

made up of 

syncytiotrophoblasts 

(Gcm-1+) [159, 161]. 

Fig 13: Schematic of human chorionic villous blood interface. In this 
diagram, the “middle section” is equivalent to the murine labyrinth zone. 
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In humans, placental development begins towards the end of weeks gestational age 2 

(WGA 2). By WGA 3, a primordial vascular network is apparent and a histiotropic-type 

nutrition predominates [163, 164]. This source of nutrition for the fetus is derived from the 

uterine glands which secrete nutrients. At this time, gas exchange relies entirely on diffusion 

[165] and is, therefore, considered a time of relative hypoxia [165-167]. In order to establish 

adequate blood-flow, endovascular trophoblasts invade the endothelial layer of the maternal 

spiral arteries, leading to a hemochorial blood interface. The endothelial cells of the maternal 

layer are entirely replaced by endovascular trophoblasts, resulting in the physiologic 

transformation of the high resistance, muscular spiral arteries into low resistance, flaccid, wide 

vessels [168, 169]. They become dilated 4-5 times to allow for increased uterine perfusion 

[168]. Maximal trophoblast invasion occurs between WGA 7-9. By WGA 22, all invasion into 

the placental bed is complete: all of the decidual and 75% of the myometrial spiral arteries are 

now physiologically transformed [170-172].  

In mice, implantation occurs on embryonic day (E) 4.5 [173]. By E8.0 the ectoplacental 

cone is evident and there is abundant trophoblastic cell differentiation [173]. By E10.0, the LZ 

is established as the placenta matures (Fig. 12). After E12.5, it is rare to have further cell 

differentiation, but Gcm-1-mediated branching does occur in the LZ as the placenta increases in 

size [162]. It should be noted that prior to E13, the TGCs are the most invasive cell type, but 

>E13, glycogen cells take over that role [174, 175]. In the human, the analogous invasive cell is 

predominately the invasive interstitial trophoblast cell [176, 177]. 

Whether in mouse or human, correct placentation is required for a healthy pregnancy. 

Aberrant placental development may result in inadequate uteroplacental blood-flow and can 

lead to detrimental sequelae in both mother and fetus, such as in the case of PE. 
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Aberrant placental development in preeclampsia 

As discussed above, the physiologic transformation brought about by the invasion of 

trophoblasts into the endothelial lining of maternal spiral arteries is essential for sufficient 

uterine blood-flow. However, in severe cases PE, placentas are often small, exhibit shallow 

trophoblast invasion into the decidua and inadequate spiral artery remodeling, as well as 

increased placental cell apoptosis [178, 179]. This insufficient placentation results in a 

substantial reduction in uteroplacental blood-flow. In PE, it is has been long hypothesized that 

it is this damaged placenta that liberates molecules, such as sFlt-1, which contribute to maternal 

vascular injury and inflammatory responses [180]. The initiating mechanism for this damage 

occurs has not been determined; though there is a mounting body of evidence implicating AT1-

AA, the autoantibody associated with PE. 

AT1-AA may impair trophoblast invasion in PE through the increase of both sFlt-1 and 

PAI-1. Zhou et al. have shown that AT1-AA induces the secretion of the anti-angiogenic factor 

sFlt-1 in human placenta villous explants and human trophoblast cells [181], not to mention the 

data presented in Chapter 1 which demonstrated that PE-IgG injected pregnant mice also have 

elevated circulating sFlt-1 levels. This suggests that the autoantibody may contribute to the AT1 

receptor-mediated sFlt-1 oversecretion in the placenta, endothelial cell dysregulation and 

overly inhibited angiogenesis, which could result in impaired placentation. AT1-AA may also 

induce the PAI-1-mediated placental damage observed in PE. By inhibiting urokinase-like 

plasminogen activator (uPA), PAI-1 activity results in decreased conversion of plasminogen to 

plasmin [75]. This leads to decreased fibrinolysis and extracellular matrix digestion, and 

shallow trophoblast invasion, the hallmark placental lesion in PE. AT1-AA activates 

trophoblast cells’ AT1 receptors resulting in elevated PAI-1 levels [21, 23]. Excess PAI-1 has 

been shown in vitro to decreases trophoblast invasion using a matrigel assay [21, 22]. Thus, 
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AT1-AA on human trophoblasts may contribute to increased PAI-1 production and lead to the 

placental damage observed in PE. Collectively, AT1-AA-induced sFlt-1 and PAI-1 production 

may additively contribute to the histopathologic changes observed in the placentas of 

preeclamptic patients. 

 

In PE, the changes in placental pathology are not without consequence. As previously 

mentioned, placental health is vital in order to sustain an uncomplicated pregnancy. In the case 

of PE, the small and underperfused placentas are thought to contribute to the poor fetal 

outcomes associated with the disease.   

 

Intrauterine growth restriction (IUGR) 

Intrauterine growth restriction (IUGR) is defined as fetal growth less than the 10th 

percentile for gestational age [182]. This complication of development affects ~15% of 

pregnancies in the US annually [183, 184].  There are, however, more sequelae to IUGR than 

simply being small; growth-restricted fetuses have a higher incidence of morbidity and 

mortality than fetuses of average growth. They are also at increased risk for future development 

of several metabolic disorders such as hypertension, dyslipidemia, coronary heart disease, 

obesity, type 2 diabetes mellitus, impaired glucose tolerance [185-188]. Most cases of IUGR 

are attributed to ischemic placental disease [184, 189].  Though the mechanisms leading to the 

placental distress resulting in IUGR remain largely unknown, they are essential to understand 

in order to prevent this very serious complication of pregnancy. 
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IUGR, PE and the dysregulation of the RAS 

The effects on the fetus are often overlooked in the study of PE. Placental dysfunction 

leading to the premature births of babies who suffer from IGUR is commonly observed in this 

disorder [190, 191]. Exactly how the IUGR in PE occurs is largely undefined; however, the 

RAS regulates many components which could contribute to these problems. In fact, there are 

many examples of how the RAS may affect placentation and fetal development. For example, 

in the placenta, ANG II decreases system A amino acid transporter activity through AT1 

receptor activation. This decrease in amino acid supply is thought to contribute to IUGR [4]. 

Feto-placental gene expression and the changes in circulation which regulate fetal oxygenation, 

maturation and health are also regulated by the RAS [192]. A double AT1 receptor knockout 

mouse model demonstrates that AT1 receptors are essential to attain appropriate somatic growth 

and normal kidney structure [193]. Saito, et al. and Furuya et al. expanded on the work of 

Takimoto, et al. [103], and found that pups born to transgenic mice expressing human 

angiotensinogen who had mated with males expressing human renin suffered from IUGR [104, 

194]. These newborns were small and their thoracic and visceral organs were undersized, 

suggesting that overexpression of RAS components may regulate fetal growth. These many 

examples illustrate how alterations in the RAS may contribute to IUGR in the setting of PE. 

 

A role for AT1-AA in preeclamptic IUGR 

Based on the data presented in Chapter 3, where it was described that the introduction 

of AT1-AA into pregnant mice resulted in the key maternal features of PE [38], I hypothesize 

that the autoantibody may contribute to the placental and fetal features consistent with the 

disease. Since the in vivo studies provided the first direct evidence of the pathophysiology 
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induced by AT1-AA in PE, this animal model was employed to address the exact role of AT1-

AA in IUGR and its underlying mechanisms.  

 

Chapter overiew 

In this Chapter, it will be shown that AT1-AA exist both in the cord blood of 

preeclamptic women and in the fetal circulation of pregnant mice injected with the 

autoantibody. The fetuses borne to autoantibody-injected mice are small and have impaired 

multiple organ development. These findings indicate that AT1-AA enter fetal mouse circulation 

where they may impose a direct detrimental effect on fetal maturation. Additionally, AT1-AA 

impair placental development by increasing apoptosis, resulting in smaller organs. The murine 

results were corroborated with similar findings in human placental explants and in cultured 

HTR-8 cells exposed to AT1-AA. These studies demonstrate that abnormal placentation may be 

a secondary underlying mechanism for autoantibody-induced IUGR. Finally, AT1-AA-

mediated IUGR and placental damage were largely corrected by co-injection with either 

losartan or 7-aa, suggesting that autoantibody-induced AT1 receptor activation was required. 

Overall, this work reveals the possible contribution of AT1-AA to the development of IUGR, as 

well as two underlying mechanisms for this process. These novel findings suggest that 

exposure to AT1-AA in the womb will have negative effects on a developing fetus and 

placenta, and identify these autoantibodies as potential therapeutic targets. 
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RESULTS 

 

AT1–AA can be physically and biologically detected in preeclamptic cord blood. 

The placenta is a vascular organ 

which brings maternal and fetal blood into 

close proximity. This interaction facilitates 

the nutrient and gas exchange essential for 

appropriate fetal development [159].  

Uterine spiral arteries supply maternal 

blood to the placenta and the fetus receives 

oxygenated blood from the umbilical vein 

housed in the umbilical cord. Therefore, 

cord blood represents an easily accessible 

source of fetal blood which can be 

obtained at the time of parturition. To 

determine if AT1-AA cross from the 

maternal circulation into the fetus, 

maternal and cord blood from NT pregnant 

women and women with PE were 

obtained. Total IgG was isolated from 

their sera and examined for the presence of 

AT1-AA. Western blot results (Fig. 14a) 

indicate that total IgG from maternal and 

Figure 14: AT1-AA passes through the human placenta 

and retains biologic activity. Celluar lysate of CHO.AT1 

cells was run on an SDS-PAGE gel then transferred to a 

nitrocellulose membrane. AT1 r’ rich lanes were cut into strips 

and probed with an anti-AT1 r’ control, or IgG purified from 

maternal sera or cord blood of NT (n=6) or PE (n=6) women. 

Only sera or cord blood-derived IgG from PE, but not NT, 

pregnant women can detect the AT1 r’ by western blot (a). The 

eluate fraction of affinity-purified total IgG from the cord 

blood of PE women could also detect the 43kDa band of the 

AT1 r’. The luciferase-based AT1-AA bioassay was employed 

to detect biologic activity (b). IgGs derived from the cord 

blood of PE women and the eluate fraction could stimulate 

AT1 r’ activated luciferase. n=10 in each category. Data are 

expressed as mean ± SEM. *P<0.01 vs NT-IgG. **P<0.01 vs 

PE-IgG. +P<0.01 vs flow-through fraction. ©Irani et al., 

2009. Originally published in J Exp Med. doi: 

10.1084/jem.20090872 
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cord sera of PE women detected a band of 43 kD, which corresponds to the AT1 receptor 

protein derived from cellular lysates enriched with the receptor which were transferred to a 

nitrocellulose membrane. In contrast, IgG from maternal and cord sera of NT pregnant women 

did not cross-react with the protein at this molecular weight (Fig. 14a). To confirm this result, 

an affinity chromatography was employed to specifically isolate AT1-AA from the cord blood 

of fetuses from PE women. Only the eluted fraction (AT1-AA) could detect a band at 43 kDa, 

corresponding to the AT1 receptor, whereas the flow-through fraction did not. These findings 

suggest that specific IgG from PE women which bind to the AT1 receptor cross the placenta 

and enter fetal circulation, where they can be physically detected.  

To determine if the IgG which enter fetal circulation retain the biologic ability to 

activate AT1 receptors, IgG isolated from cord blood were incubated with a reporter cell line in 

which activation of the AT1 receptor results in increased luciferase reporter gene expression. 

The results showed that luciferase activity was increased only when cells were incubated with 

IgG isolated from preeclamptic cord blood (Fig. 14b). This activity was blocked by losartan 

(100nM), an AT1 receptor antagonist, or the 7-aa peptide corresponding to the sequence on the 

second extracellular loop of the AT1 receptor, and is the epitope of AT1-AA. Similarly in using 

the fractions obtained in the affinity-purification experiment, only the fraction of IgG eluted 

from the cord blood of babies born to preeclamptic women increased luciferase activity, 

whereas the flow-through fraction from PE women or eluate from NT pregnant women could 

not. Taken together, these findings suggest that biologically active AT1-AA from maternal 

circulation cross the placenta and enter fetal circulation where are capable of activating AT1 

receptors.  
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Human AT1-AA cross the mouse placenta and enter fetal circulation. 

To determine if human autoantibodies can cross the mouse placenta and enter into their 

fetal circulation, the autoantibody-injected model of PE was used. Briefly, pregnant mice were 

injected with total IgG from NT or PE pregnant women on E13 and E14. Upon sacrifice on 

E18, sera were obtained from the dams and fetuses and examined for the presence of human 

IgG by western blot and ELISA.  The results (Fig. 15a-b) showed that human IgG was 

detectable in similar quantities in the sera of both the antibody-injected pregnant mice and their 

pups. Next, it was essential to determine if the human-derived PE-IgG retained its AT1 receptor 

agonistic activity after crossing the mouse placenta and entering pup circulation. To do so, 

human IgG was isolated from mouse fetal circulation and assayed for its ability to activate AT1 

receptors using the AT1 receptor activated luciferase reporter assay [34, 38]. The results 

indicate that IgG isolated from fetal blood of PE-IgG injected pregnant mice retained AT1 

receptor agonistic activity (Fig. 15c). This is in contrast to the fetuses of dams injected with 

NT-IgG, which harbored IgGs unable to stimulate luciferase activity. These data suggest that 

human AT1-AA from women with PE can cross the mouse placenta, enter fetal mouse 

circulation and retain the biologic ability to activate AT1 receptors.  

Figure 15: Human IgG passes through the mouse placenta and retains biologic activity. PE-IgG or NT-

IgG were injected into pregnant mice. Upon sacrifice, fetal blood was collected. Human IgG was identified 

in pups of dams injected with either NT-IgG or PE-IgG, by (a) western blot, and (b) ELISA. The ELISA 

revealed no statistically significant difference of human IgG concentration between either cohort of animals 

(P=0.6139). IgG derived from the pups from PE-IgG injected dams were the only group which could 

stimulate AT1 r’ activated luciferase a bioassay. n=10 in each category. Data are expressed as mean ± SEM. 

*P<0.01 vs NT-IgG. **P<0.01 vs PE-IgG. hHC; human IgG heavy chain. hLC; human IgG light chain. 

©Irani et al., 2009. Originally published in J Exp Med. doi: 10.1084/jem.20090872. 
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Affinity-purified AT1-AA injected into pregnant mice result in small fetuses with 

impaired organ development. 

During the process of passive immunity, harmful autoantibodies may be conferred from 

mother to her developing child. In the case of autoimmune diseases, a potentially harmful 

autoantibody may enter fetal circulation and have a direct detrimental effect. This may be the 

case in PE, where it was just demonstrated that biologically active AT1-AA cross the placenta 

and enter the fetal bloodstream. To investigate the profile of harm brought to the fetus by the 

autoantibody associated with PE, affinity-purified AT1-AA were injected into pregnant mice on 

E13 and E14. The injected mice were examined on E18 for the clinical signs of PE and their 

fetuses were inspected for abnormalities of gestational growth. The results (Fig. 16) show that 

AT1-AA-injected mice bore fetuses of reduced weight (1.01±0.02 g) compared to dams injected 

with NT-IgG (1.17±0.02 g). Co-injection of AT1-AA with either losartan or 7-aa restored fetal 

weight to 1.119±0.01 g and 1.151±0.04 g, respectively.  

 

In addition to their reduced weight, the fetuses born to AT1-AA-injected mice exhibited 

delayed renal and hepatic maturation. Histologic analysis of fetal kidneys revealed a narrowed 

zone of nephrogenesis and a reduced number of glomeruli in the kidneys of fetuses born to 

Figure 16: AT1-AA reduces fetal 

weight. PE-IgG or NT-IgG were 

injected into pregnant mice. Their 

pups were weighed upon sacrifice. 

Pups of dams injected PE-IgG 

were smaller and weighed less 

than those born to NT-IgG 

injected animals. NT fetusues, 

n=80. PE fetusues, n=89. Data are 

expressed as mean ± SEM. 

*P<0.01 vs NT-IgG. ©Irani et al., 

2009. Originally published in J 

Exp Med. doi: 

10.1084/jem.20090872. 
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affinity-purified AT1-AA-injected mice (Fig. 17a-c). These parameters are used to measure 

renal development [195], and their reductions suggest that of these kidneys was retarded. 

 

 

Similarly, the liver of pups born to AT1-AA-injected dams showed developmental 

delay. During normal mouse gestation, the fetal liver is a major site of embryonic blood 

production. With advancing gestational age, the number of megakaryocyte progenitor cells 

begin to decrease, starting at E10 [196]. Our histologic analysis showed that the injection of 

affinity-purified AT1-AA into pregnant mice is associated with an elevation of megakaryocytes 

in the fetal mouse liver (Fig. 17d-e). The persistence of megakaryocytes in the developing liver 

suggests a delay in typical organ maturation. Thus, the autoantibody-injection model of PE has 

provided evidence in vivo that AT1-AA adversely affects fetal growth and organ development.   

Figure 17: AT1-AA impairs fetal 

organ development. The kidneys 

of pups born to PE-IgG injected 

mice display delayed maturation 

(a-c). The zone of nephrogensis 

(double-headed arrow) is 

narrowed (b) and the number of 

glomeruli (arrows) in these zones 

are reduced (c), as comapared to 

pups of NT-IgG injected mice. 

Livers of these pups also show 

developmental delay (d,e) as they 

retain elevated megakaryocytes 

(arrow). Scale bars, 50 µm. n=12 

for each variable. Data are 

expressed as mean ± SEM. 

*P<0.01 vs NT-IgG. **P<0.05 vs 

PE-IgG. ©Irani et al., 2009. 

Originally published in J Exp 

Med. doi: 10.1084/jem.20090872. 
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Notably, both human and murine studies indicate that biologically active AT1-AA pass 

through the placenta and enter fetal circulation. These findings indicate a previously 

unrecognized underlying mechanism of the IUGR observed in PE: that AT1-AA may have 

direct detrimental effects on fetal development. 

 

AT1-AA increases placental damage in mice and human villous explants.  

Placental health is essential for normal fetal development.  To determine if an impaired 

placenta is second potential underlying mechanism for AT1-AA-induced IUGR, the weight and 

morphology of placentas in autoantibody-injected mice were analyzed. The placentas of AT1-

AA-injected pregnant mice were significantly smaller (0.0939±0.008 g) than those of NT-IgG-

injected mice (0.1039±0.014 g), P<0.05. In addition, co-injection of AT1-AA with either 

losartan or 7-aa restored placental weight to 0.0991±0.009 g and 0.1050±0.023 g, respectively.  

To determine whether increased apoptosis is a potential cause of the small placentas 

observed in AT1-AA-injected pregnant mice, histologic analysis and TUNEL staining for 

apoptotic cells were performed. Placental weight reduction was accompanied with increased 

apoptosis evident in the labyrinth zone of placentas from AT1-AA-injected mice (Fig. 18a-b). 

In addition, western blot analysis of mouse placenta protein extracts indicated that Bax, a pro-

apoptotic protein, was increased, and Bcl-2, an anti-apoptotic protein, was decreased (Fig. 18c-

d). Co-injection of AT1-AA with losartan or 7-aa significantly inhibited these features. 

Therefore, increased apoptosis could contribute to the reduction of placental size in AT1-AA-

injected pregnant mice. These findings also suggest that an impaired placenta may indirectly 

contribute to AT1-AA-induced IUGR in this model. 
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Because apoptosis was increased in PE-IgG injected mice, the level of complement 

activity was also assessed. Complement factor C3 could be easily visualized in the placentas of 

PE-IgG injected mice (Fig 19, brown stain), especially in their junctional and labyrinth zones 

and around areas of calcification. This detectable level was qualitatively more evident in the 

Figure 19: Complement activation is elevated in mouse 

placentas via AT1-AA. The placentas of PE-IgG injected 

mice display elevated C3 (brown) staining by 

immunohistochemistry. Co-injection of losartan or 7-aa 

decreases C3+ stain. Box, magnified C3+ stain. 40X. Scale 

bar, 200µm. n=4 placentas examined for each variable. 

Figure 18: AT1 receptor activation results in 

increased apoptosis in mouse placentas. Placentas 

of PE-IgG mice have elevated levels of TUNEL+ 

cells (green) in their LZ (a). DAPI+ cells (blue). 

20X. Scale bar, 500µm. Quantified TUNEL index 

(% TUNEL+/DAPI+ cells) confirms the assay (b). 

n=12 placentas examined for each variable. 

Western blot analysis shows AT1 r’ activation 

results in elevated expression of Bax (c) and Bcl-2 

(d). n=6 placentas examined for each variable. Data 

are expressed as mean ± SEM. *P<0.01 vs NT-IgG. 

**P<0.05 vs PE-IgG. ©Irani et al., 2009. Originally 

published in J Exp Med. doi: 

10.1084/jem.20090872. 
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placentas of PE-IgG injected mice than in NT-IgG injected animals, and was reduced in those 

co-injected with the autoantibody and losartan or 7-aa. Then, to ascertain the level of 

angiogenesis in the placentas of adoptively-transferred dams, CD-31, an endothelial cell 

marker, was stained for by immunohistochemistry. The immunoreactivity of this marker was 

less prominent in the labyrinth zones of PE-IgG injected animals (Fig 20). Quantitative analysis 

of the immunostaining confirmed this observation (Fig. 20b). Co-injection of losartan or 7-aa 

with the autoantibody partially restored the level of detectable endothelial cells to that 

measurable in NT-IgG injected mouse placentas. Together, the histologic evidence suggests 

that AT1-AA is capable of inducing significant placental damage when injected into pregnant 

mice.  

 

Figure 20: Angiogenesis is decreased in the placentas of PE-IgG injected mice. CD-31, an endothelial cell 

marker (brown), is less prominent in the labryinth zone of the placentas of PE-IgG-injected mice in comparison 

to those injected with NT-IgG (a). Counterstain is methyl green. Inset box: Junctional (J) and Labryinth (L) 

zone border. Blood vessels are not apparent in the junctional zone. n=4 placentas for each category. Scale bar: 

50µm. Quantification of CD-31 confirms that the placentas of mice injected with PE-IgG are less densely 

stained than those injected with NT-IgG (b). Co-injection of losartan or 7-aa restores CD-31 positive staining. 

Mean scores are represented ± SEM. n=4 placentas for each category. * P<0.01 vs NT. **P<0.05 vs PE. ©Zhou 

et al., 2000. Originally published in Circulation. doi: 10.1161/CIRCULATIONAHA.109.902890. 
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To evaluate the pathophysiologic significance AT1-AA-induced placental damage in 

humans, human placental villous explants were obtained and cultured with NT-IgG or IgG 

derived from women with PE.  Following incubation, the explants were embedded, sectioned 

and placed on slides in order to perform TUNEL staining.  The results (Fig. 21) demonstrate 

that the presence of PE-IgG increased apoptosis in these explants. This autoantibody-induced 

increase in apoptosis was partially inhibited by co-incubation with losartan or 7-aa. The 

histologic evidence was corroborated with western blot analysis which indicated an increase in 

Bax and decrease in Bcl-2 proteins (Fig. 21c-d). Similarly, co-treatment with losartan or the 

autoantibody-neutralizing peptide partially abolished the PE-IgG-induced alterations in Bax 

and Bcl-2 proteins.  These studies demonstrate that AT1-AA are capable of increasing apoptosis 

in human placental explants through AT1 receptor activation which may potentially contribute 

to IUGR associated with PE. 

Figure 21: AT1 receptor activation 

increased apoptosis in human villous 

explants. Cultured human placental 

explants incubated with PE-IgG 

demonstrate elevated levels of 

TUNEL+ cells (green), indicating 

increased apoptosis (a). DAPI+ cells 

(blue). 20X. Scale bar, 500µm. 

Quantification of a TUNEL index (% 

TUNEL+/DAPI+ cells) confirm the 

assay results (b). Western blot analysis 

reveals that AT1 r’ activation results in 

elevated expression of Bax (c) and Bcl-

2 (d) in placental proteins. Co-

incubation with losartan or 7-aa restores 

programmed cell death to a level similar 

to that observed in explants incubated 

with NT-IgG. Explants from 4 different 

patients were cultured, and each 

variable was examined 6 times per 

placenta, n=24. Data are expressed as 

mean ± SEM. *P<0.01 vs NT-IgG. 

**P<0.05 vs PE-IgG. ©Irani et al., 

2009. ©Irani et al., 2009. Originally 

published in J Exp Med. doi: 

10.1084/jem.20090872. 
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Apoptosis is induced in human trophoblasts via AT1 receptor activation. 

Human trophoblast cells maintain the full machinery for cell death by apoptosis [197-

199] and they possess AT1 receptors [3, 200]. To elucidate the mechanism of cell death which 

occurs in the placentas of preeclamptic women, the levels of programmed cell death in 

trophoblasts exposed to either PE or NT-IgG were monitored. IgG purified from preeclamptic 

patients induced apoptosis in an immortalized human trophoblast line, HTR-8/SVneo (Fig. 22). 

This is in contrast to NT-IgG, which was incapable of raising the level of apoptosis assessed by 

a TUNEL assay and an apoptotic index. These results suggest that excess AT1 receptor 

activation can lead to cell death by apoptosis in human trophoblast cells. Consistent with the 

findings in the mouse placenta and in human placental villous explants, AT1-AA-mediated 

increase in apoptosis in HTR-8/SVneo cells was inhibited by co-incubation with losartan or 7-

aa.  

To corroborate the TUNEL assay results the activity of Caspase 3 was measured in 

cultured trophoblast cells exposed to AT1-AA. Caspase 3 is a rapidly activated cysteine 

protease and an essential component of the apoptotic pathway. HTR-8/SVneo cells incubated 

with PE-IgG exhibited a higher Caspase 3 activity level over those incubated with NT-IgG 

Figure 22: AT1-AA induces trophoblast 

cell apoptosis. HTR-8/SVneo cells, 

cultured with PE-IgG demonstrate higher 

levels of TUNEL+ cells (green), 

indicating increased apoptosis (a-b) than 

do HTR-8 cells incubated with NT-IgG. 

DAPI+ cells (blue). 20X. Scale bar, 

500µm. Caspase 3 activity is increased (c) 

in the PE-IgG treated cells. Co-incubation 

with losartan or 7-aa decreases 

programmed cell death and Caspase 3 

activity to a level similar to that observed 

in cells exposed to NT-IgG. n=12 for 

each variable. Data are expressed as mean 

± SEM. *P<0.01 vs NT-IgG. **P<0.05 

vs PE-IgG. ©Irani et al., 2009. Originally 

published in J Exp Med. doi: 

10.1084/jem.20090872. 
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(Fig. 22c). Cultured trophoblast cells co-incubated with AT1-AA and losartan or 7-aa 

significantly reduced Caspase 3 activity. This data supports the results obtained from the 

human placental explants experiments which demonstrated increased apoptosis upon exposure 

to the autoantibody. Overall, these findings provide strong in vitro evidence that the 

autoantibodies purified from the sera of preeclamptic women are capable inducing the 

programmed cell death of human trophoblast cells via excess AT1 receptor activation.  

 

Neutralization of AT1-AA-mediated actions by losartan and 7-aa.  

Lastly, to determine if AT1-AA have a direct pathogenic role in the upregulation of the 

AT1 receptor in PE-associated IUGR, losartan, a specific AT1 receptor antagonist, was co-

injected with purified AT1-AA into pregnant mice on E13 and E14. Upon co-injection with the 

autoantibody, losartan was capable of attenuating the reduction in placental size and the AT1-

AA-induced placental apoptosis, as well as the increased expression of Bax and decreased 

expression of Bcl-2 (Fig. 18). This strategy to reduce AT1 receptor activation by the 

autoantibody also ameliorated the reduction in fetal weight and poor maturation of the fetal 

kidneys and liver (Fig. 16). Taken together, these observations imply that the impaired fetal 

growth and increased placental apoptosis in this model were mediated by AT1 receptor 

activation. Because the neutralizing peptide, 7-aa, blocked the apoptosis induced by AT1-AA in 

cultured human placental explants (Fig. 21), this peptide could also be effective in blocking the 

placental apoptosis and IUGR observed in AT1-AA-injected pregnant mice. Therefore, 

experiments were conducted in which pregnant mice were co-injected with AT1-AA and excess 

7-aa on E13 and E14, which would block the ability of the autoantibody to activate AT1 

receptors. On E18, the dams were sacrificed and their placentas and pups were collected. 7-aa 
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decreased placental apoptosis and the alterations of apoptotic proteins, and improved the 

reduced fetal weights and impaired organ development (Figs. 16-20). The specific neutralizing 

effects of both losartan and 7-aa indicate that the autoantibody, through AT1 receptor 

activation, contribute to the placental damage and IUGR associated with PE.   
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DISCUSSION 

 

In this Chapter, I examine the capability of AT1-AA to induce the placental damage and 

IUGR observed in PE. First, it was demonstrated that biologically active autoantibodies of 

preeclamptic women can cross the human placenta and enter into fetal circulation. Then, to 

examine the role of AT1-AA in the fetal features of the disorder, the adoptive transfer mouse 

model of PE was employed. The fetuses of AT1-AA-injected dams were small in size and 

showed delayed organ maturation, as compared to pups born to mice injected with IgG purified 

from normotensive pregnant women. The placentas of these mice were of reduced weight and 

demonstrated significant histopathologic changes, including apoptotic damage. Therefore, upon 

injection into pregnant mice, AT1-AA may contribute to fetal growth restriction through two 

previously unrecognized mechanisms: (i) directly, via crossing the mouse placenta and entering 

fetal mouse circulation, and (ii) indirectly, via AT1-AA-induced placental damage. 

Furthermore, autoantibody-induced fetal growth restriction and abnormal placentation were 

largely prevented by either losartan or an antibody-neutralizing epitope peptide, indicating that 

autoantibody-induced AT1 receptor activation was required. These studies thereby reveal the 

detrimental role of AT1-AA in PE-associated IUGR, offer two underlying mechanisms for this 

condition and suggest a novel preventative strategy. Though the significance of these findings 

must still be explored, this discovery highlights the important role of AT1 receptor signaling in 

fetal development. 

Antibodies generated by the mother can cross the placenta and enter into fetal 

circulation during the third trimester of pregnancy. The transfer of IgG from mother to her 

developing fetus is called passive immunity, and is a naturally occurring process. While usually 
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of great benefit, passive immunity can put the growing fetus at risk if the mother harbors 

autoantibodies which are harmful. A well-recognized example of this is in Graves’ disease. In 

this autoimmune disorder, maternal autoantibodies activate the thyroid stimulating hormone 

receptor and pass through the placenta and enter fetal circulation, resulting in hyperthyroidism 

of the fetus and newborn [201]. Other autoimmune diseases, such as antiphospholipid 

syndrome (APS), systemic lupus erythematosus (SLE) and Sjogren’s disease are also 

associated with passively transferred pathogenic autoantibodies which can result in major 

complications of pregnancy, like severe IUGR and fetal loss [202-205]. Because PE is also 

associated with deleterious maternal autoantibodies, it is possible that they may be transferred 

to the growing fetus and cause harm. Using the adoptive transfer model of PE, it is shown here 

that AT1-AA are transported from maternal to fetal circulation where they can be physically 

and biologically detected. This implies that once the autoantibody reaches fetal circulation, it is 

free to bind directly with fetal cells possessing AT1 receptors. In fact, the presence of the 

autoantibodies in fetal mouse circulation results in excess AT1 receptor activation leading to 

smaller sized animals who suffer from renal and hepatic abnormalities. Thus, AT1-AA may 

also have detrimental effects on the fetuses born to women suffering from PE.  

An impaired placenta may be another underlying mechanism responsible for AT1-AA-

mediated IUGR in PE. When the autoantibody is injected into pregnant mice, their placentas 

are significantly smaller than normal and demonstrate vascular disorganization and 

calcifications, a sign of placental distress. Moreover, AT1-AA induce apoptosis in a cultured 

human trophoblast cell line (HTR-8), cultured human villous explants, and the placentas of 

AT1-AA-injected pregnant mice. Since AT1 receptor stimulation by ANG II is capable of 

increasing cell death via pro-apoptotic pathways in both cardiac and renal systems [206, 207], 

and trophoblasts house AT1 receptor as well as all apoptotic machinery [198, 208], it is not an 
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unexpected finding that AT1-AA can induce placental cell death by excessive AT1 receptor 

activation. Poor placental development is associated with a pro-apoptotic placental 

environment that includes the increased production of Bax and decreased production of Bcl-2 

[209], features also observed in the placentas of AT1-AA-injected pregnant mice. Taken 

together, these results indicate that this autoantibody can lead to significant placental damage. 

As previously mentioned, complement activation is increased in preeclamptic women 

but the factors responsible for this induction remain unknown [143, 144]. Many groups have 

reported that ANG II-mediated AT1 receptor stimulation leads to the activation of complement 

and organ damage [126, 128, 147]. In the placenta, highly active C3 is associated with the 

secretion of sFlt-1 and sEng, as well as the serious consequence of APS-induced fetal loss [203, 

210]. Here, it is shown that the placentas of PE-IgG injected dams demonstrate elevated 

apoptotic activity, and therefore, it is not unreasonable that complement activity is also 

increased. Indeed, the placentas of these mice have elevated C3 activity in their junctional and 

labyrinth zones (Fig 19). NT-IgG injected mice did not demonstrate such an immunologic 

response in their placentas, and those mice injected with losartan or 7-aa displayed diminished 

C3 deposition. These facts indicate that AT1 receptor activation by the autoantibody may 

contribute to placental damage through increased complement activity, in a similar manner to 

how it does in the kidney (see Chapter 3). The exact outcome of increased complement activity 

in the placentas of PE-IgG injected dams is the subject of ongoing work in the lab. It is, 

however, clear that the autoantibody induces heightened complement activation in the mouse 

placenta, implying that its blockade may prove beneficial in repairing AT1-AA-induced 

placental damage. Furthermore, autoantibody-induced AT1 receptor activation could contribute 

to placental damage through several other means, via decreased angiogenesis [24] and 

trophoblast invasion [76], or increased ROS production [211, 212] and thrombosis [21, 41]. To 
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determine if angiogenesis was decreased in the placentas of PE-IgG injected dams, CD-31, an 

endothelial cell marker, was stained for by immunohistochemistry. In these dams, the amount 

of CD-31 staining, representing the amount of placental endothelial cells, was reduced (Fig 20, 

brown stain). Dams co-injected with PE-IgG and losartan or 7-aa had CD-31 levels partially 

restored to that of the NT-IgG injected pregnant mice, suggesting the decrease in angiogenesis 

was mediated by AT1-AA. Taken together, the autoantibody-induced increased cellular 

disorganization, calcification, apoptosis and complement activity, as well as decreased 

angiogenesis evident in the placentas of adoptively transferred mice indicate that AT1-AA may 

contribute to similar features observed in the placentas of preeclamptic women.    

These in vitro and in vivo studies support the findings of Takimoto et al. and Saito et al. 

who discovered that the placentas of transgenic female mice expressing human 

angiotensinogen which mated with males expressing human renin, are highly apoptotic and 

their pups suffer from severe IUGR [103, 104]. These dams have increased circulating ANG II 

and their placentas have increased renin levels. While these findings are significant, and have 

been paralleled to PE, the human disease is not associated with greatly increased ANG II levels 

[16] as in this double transgenic mouse model. However, human PE is associated with the 

presence of autoantibodies, AT1-AA, which mimic the physiologic action of ANG II [33] and 

could explain this observation. Therefore, the added stimulation of the AT1 receptor by the 

autoantibody may contribute to impaired placental development and the IUGR associated with 

PE. This hypothesis is supported by the work reported here and suggests that AT1 receptor 

activation by the autoantibody is an underlying mechanism for the placental damage and the 

IUGR observed.   

It is a widely recognized that the maternal features of PE are secondary to placental 

abnormalities, especially those stemming from placental ischemia [179, 213]. To investigate 
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this concept, Granger et al. developed a rat model of PE wherein placental ischemia is 

experimentally induced as a result of a surgical manipulation called reduced uterine perfusion 

pressure (RUPP) [214-216]. This group examined the placentas and factors in the maternal 

circulation of RUPP-treated rats with and found that sFlt-1 and inflammatory markers were 

elevated [217]. The RUPP-manipulated pregnant rats also developed preeclamptic-like 

syndrome including hypertension and proteinuria. Remarkably, these rats generated AT1-AA 

[218], the same autoantibody found in the circulation of preeclamptic women. Consistent with 

the presence of AT1-AA, when endothelial cells were cultured with the sera of RUPP-

manipulated pregnant rats, endothelin-1 synthesis was increased by AT1  receptor activation 

[216]. Endothelin-1 is a potent vasoconstrictor produced by endothelium which, in excess, can 

contribute to hypertension [219]. In that regard, Granger and colleagues treated RUPP-induced 

hypertension in two ways: using an antagonist to the AT1 receptor [217], or to the ETA 

endothelin receptor [220]. Both of these strategies attenuated the hypertension in the surgically 

manipulated pregnant rats, suggesting that RUPP-induced hypertension relies on AT1-AA-

mediated endothelin-1 synthesis. Collectively, these results indicate that autoantibody-induced 

factors liberated by an ischemic placenta play an important role in the maternal symptoms of 

PE [218].   

The fetal abnormalities associated with PE most commonly occur in the severe early-

onset form of the disease [221].  The placentas of these women are characteristically small and 

possess histopathologic evidence of ischemic change stemming from shallow trophoblast 

invasion and inadequate remodeling of the spiral arteries [169, 189].  A possible mechanism for 

the incomplete trophoblast invasion observed in PE is that a trophoblast population fails to 

migrate to the spiral arteries due to excessive programmed cell death [222, 223]. I illustrate 

here that autoantibodies present in the maternal circulation of women with PE can incite 



78 

 

apoptotic damage in mouse placentas, human villous explants and HTR-8 cells. Together, these 

results implicate a role for the autoantibody in the placental pathology associated with PE. This 

hypothesis is supported by the work of Walther et al., who also suggest that these pathogenic 

autoantibodies may contribute to the damage in the placentas of preeclamptic women when 

they occur in early pregnancy [149]. These investigators found that AT1-AA were present by 

18-22 weeks of gestation in women with impaired placental development as measured by 

abnormalities on Doppler ultrasound [224].  When followed to term, approximately 20% of 

these women developed PE, 20% developed IUGR without PE and 60% had an otherwise 

unremarkable pregnancy. AT1-AA were not observed in women with a normal Doppler 

ultrasound. Therefore, AT1-AA track with abnormal placental development, appear weeks 

before maternal symptoms appear, and could serve to identify women at risk for IUGR and/or 

PE.  The authors of this study suggested, as our group had done earlier [23], that AT1-AA may 

be responsible for the reduced trophoblast invasion and subsequent inadequate remodeling and 

dilation of spiral arteries resulting in impaired placental vascular development.  This lack of 

vessel dilation could result in the hypoxic-ischemic damage detected in the placentas of 

preeclamptic women, which may contribute to the IUGR observed in their fetuses.  

AT1 receptor activation also regulates amino acid transport, whose reduction is another 

mechanism associated with the small placentas and IUGR of severe PE. Amino acids supply 

20-40% of the energy needed for fetal growth [225]. If amino acid transportation in the 

placenta is impaired, the developing fetus may become nutritionally starved and at risk for 

growth defects. Many amino acid transport systems are Na+-dependent and couple the 

movement of Na+ into the cell with the uptake of amino acids.  The Na+-K+-ATPase is an 

amino acid transporter which is highly abundant in most cell types, including the 

syncytiotrophoblasts of the placenta [226]. A syncytiotrophoblast maintains a low intracellular 
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Na+ concentration by transporting the cation outside the cell. This creates a Na+ gradient, which 

is the driving force for Na+-dependent amino acid transport systems. Recent studies have 

shown that the Na+-K+-ATPase is downregulated in IUGR [227], and the inhibitory effect on 

Na+-dependent amino acid transport systems is through AT1 receptor activation.  Another study 

by Shibata et al. reports that ANG II, through AT1 receptor signaling, inhibits system A amino 

acid transporter activity in human placental villous fragments [4]. The system A amino acid 

transporter is a Na+-dependent amino acid transporter which controls the movement of small 

neutral amino acids (alanine, serine, glutamine and glycine) in syncytiotrophoblasts. This work 

confirms that ANG II, via AT1 receptor signaling, decreases system A activity by suppressing 

Na+-K+-ATPase activity in human placental villi. It is possible that other Na+-dependent amino 

acid transport systems could also be inhibited by increased AT1 receptor activation. Shibata et 

al. believe that their findings may account for the adverse affects of elevated AT1 receptor 

activation on fetal growth. They specifically propose that one possible source of excess AT1 

receptor activation in IUGR associated with PE is the presence of maternal AT1-AA. The work 

reported here adds support to their theory. 

Other examples of IUGR involve the harmful effects of autoantibodies at the maternal-

fetal interface, which often results in fetal loss. A well-characterized example of this is the 

antiphospholipid syndrome (APS). APS is a devastating disorder of pregnancy characterized by 

maternal thrombosis and recurrent fetal loss [228].  Recurrent fetal loss occurs in ~1% of 

pregnancies and ~20% of these women harbor anti-phospholipid antibodies (aPL) [229]. By 

injecting aPL into pregnant mice, Girardi et al. created a model of recurrent fetal demise. They 

show that these autoantibodies target the decidua at the maternal-fetal interface and instigate 

severe damage. Once bound to their epitope, aPL lead to the recruitment of neutrophils, 

complement activation and the enhanced production of TNF-α, several anti-angiogenic factors, 
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tissue factor, and ROS; all of which contribute to destruction of the decidua and fetal demise 

[230].  It is important to note that these same features can be induced by AT1-AA in a variety of 

systems [24, 211, 212]. Thus, these two models of autoantibody adoptive transfer (AT1-AA and 

aPL) induce IUGR accompanied by severe placental damage. They both demonstrate that 

immunologic factors, including those from innate and adaptive immunity, contribute to 

pregnancy loss and IUGR. In both scenarios, the sequence of events resulting in fetal 

complications is initiated by a deleterious maternal autoantibody. Together, AT1-AA and aPL 

could additively account for one-third of IUGR and pregnancy loss cases [203]. In light of 

these findings, the role of autoantibodies in other cases of IUGR, impaired placental 

development and/or fetal loss warrants further investigation.  

 

Autoantibody targeted therapies 

In the work presented here, losartan and the 7-aa epitope peptide were used to assess the 

specificity of AT1-AA-induced effects. Co-injection of the autoantibody with losartan, an AT1 

receptor blocker, resulted in diminished placental damage and fetal abnormalities. Consistent 

with the in vivo studies, apoptosis was reduced in human villous explants and trophoblast cell 

culture systems incubated with losartan and AT1-AA. These results indicate that the observed 

effects were mediated via AT1 receptor activation. Losartan is, however, contraindicated during 

the first trimester of pregnancy because of its fetotoxic effects [231, 232]. In lieu of using this 

AT1 receptor blocker, drugs aimed at the specific neutralization of AT1-AA would not be 

expected to cause harm to the developing fetus. When AT1-AA was co-injected with the 

autoantibody neutralizaing epitope peptide, 7-aa, improvements in placental and fetal health 

were observed. This indicates that AT1-AA is specifically responsible for the induction of the 
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AT1 receptor. Taken together, the ability of losartan and 7-aa to reduce the harmful effects of 

AT1-AA provides additional evidence that this autoantibody contributes to the IUGR and 

placental damage associated with PE.  More importantly, the ability of 7-aa to neutralize AT1-

AA represents a potential preventative approach wherein blockade of autoantibody-mediated 

AT1 receptor activation could reduce the incidence of IUGR associated with PE.   

 

Impact and therapeutic implications 

This study has great impact not only on the field of neonatology, but has far reaching 

implications to many other fields of medicine and science. Together, IUGR and SGA affect 

approximately 3% of all newborns and ~10% of those infants do not catch up in growth post-

natally [233]. In general, those infants are at increased risk for future development of many 

metabolic disorders such as hypertension, dyslipidemia, Syndrome X, coronary heart disease, 

obesity, diabetes mellitus type II, impaired glucose tolerance [185-188, 234]. In the case of PE, 

many long-term follow-up studies report that the infants born to women suffering from the 

disease are at increased risk later in life for cardiovascular disease [235-237]. Therefore, this 

autoantibody-injected animal model with be very useful in pre-clinical trials to address neonatal 

issues, as well as the long-term study of the affected offspring. By identifying AT1-AA a 

possible agent of IUGR and fetal maldevelopment, a wide range of therapeutic targets could be 

developed to improve fetal growth and possibly stave off future medical repercussions. By 

neutralizing the effects of the autoantibody-induced AT1-receptor activation early on in the 

course of PE, physicians could not only improve the maternal symptoms, but also the 

detrimental effects on the fetus.  
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Conclusions 

In conclusion, this study demonstrates that AT1-AA may contribute to IUGR in two 

ways: directly, by activating AT1 receptors on multiple fetal organs, and indirectly, by inducing 

placental damage (Fig. 23).  Future work will have to delineate between the exact contributions 

of each mechanism. However, this study clearly identifies AT1-AA as a detrimental factor 

which plays a role in IUGR. Furthermore, the blockade of excessive autoantibody-induced AT1 

receptor stimulation by losartan or 7-aa not only reduced the placental damaged observed in 

both mice and humans, but also the fetal abnormalities seen in AT1-AA-injected mice. Thus, 

Figure 23: Working model of AT1 receptor-mediated fetal and placental sequelae. AT1-AA, found 

in maternal circulation, act (1) on the placenta to increase apoptosis and incite damage and (2) in the 

fetus itself, causing direct harm. ©Irani et al., 2009. Originally published in J Exp Med. doi: 

10.1084/jem.20090872.  



83 

 

this work identifies a detrimental role of AT1-AA in PE-associated IUGR and reveals the 

underlying mechanisms for this process. Selective neutralization of the autoantibody would 

enhance physicians’ ability to forestall IUGR and minimize fetotoxicity. Therefore, targeting 

AT1-AA is a potentially important therapeutic strategy for the treatment of PE and its 

devastating fetal complications. 
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CHAPTER 5: 

 

THE ESSENTIAL ROLE OF AT1-AA-INDUCED TNF-α  

IN A MOUSE MODEL OF PREECLAMPSIA 
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BACKGROUND 

 

An increased maternal inflammatory response is associated with PE and has been 

speculated to contribute to the disease [238, 239].  A growing body of evidence supports the 

claims that there is an increase in pro-inflammatory cytokines and chemokines in the 

circulation of preeclamptic women [240, 241]. Some hypothesize that the activation of 

leukocytes and upregulation of certain cytokines propagate a state of chronic inflammation in 

some pregnant women which manifests in preeclamptic features [242, 243]. Increases in 

circulating tumor necrosis factor-α (TNF-α), interferon-γ (IFNγ) and interleukin-2 (IL-2) in 

preeclamptic women are well established [244-246]. In contrast, anti-inflammatory molecules, 

such as IL-10 and IL-4 are reportedly decreased in these patients [247, 248].  This kind of pro-

inflammatory cytokine profile could contribute to the maternal features of PE in a variety of 

ways, such as inducing vascular and renal damage. However, what factors instigate this 

heightened inflammatory response in PE are unknown and the exact contribution of pro-

inflammatory cytokines to symptom development remains undefined.   

Of all the inflammatory cytokines, TNF-α has been widely implicated in the 

pathogenesis of PE. It is a potent cytokine with pleiotropic systemic effects [249] and is highly 

conserved between mice and humans [250]. It predominately binds to the constitutively 

expressed TNF-R1 in cells throughout the body in both species [251, 252]. In preeclamptic 

women TNF-α is increased in the circulation [253, 254] and placental tissues [40, 245, 255]. 

Schipper et al. have shown that TNF-α drastically elevated in PE with fetal involvement. These 

authors suggest that this increased production is related to impaired placentation [256]. 

Notably, when injected with low-dose exogenous TNF-α, pregnant rats develop the clinical 
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symptoms of PE, such as hypertension and proteinuria. This experiment implies a central role 

of this cytokine in the disease [217].  

AT1 receptor activation has been implicated in the increase of TNF-α and other 

inflammatory cytokines leading to organ damage in both cardiac and renal systems [206, 257-

259]. Therefore, it is possible that through this mechanism, the autoantibody associated with 

PE, AT1-AA, may contribute to the increased inflammation which characterizes the disease and 

instigate the vascular damage and systemic symptoms of preeclamptic women.  

 

Chapter overview 

Here, I explore if autoantibody-induced excess AT1 receptor activation is the 

mechanism responsible for the increase in inflammation observed in preeclamptic women. I 

employ the AT1-AA-injection pregnant mouse model, cultured human trophoblast cells and 

human villous explants to investigate the contributory role of the increased inflammatory 

response, specifically TNF-α, to disease symptoms and in the pathogenesis of PE. Moreover, I 

identify a potential therapeutic strategy to decrease maternal symptoms by the blockade of 

TNF-α action. 
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RESULTS 

 

An increased inflammatory state is induced in AT1-AA-injected pregnant mice. 

A heightened inflammatory response is associated with PE and is hypothesized to 

contribute to disease pathophysiology [238, 260].  To determine the role of AT1-AA in the 

increased inflammatory response seen in PE, IgG purified from normotensive (NT-IgG) or 

preeclamptic (PE-IgG) pregnant women was injected into pregnant mice at E13 and E14 as 

previously described [38].  Upon sacrifice on E18, the sera of antibody-injected pregnant mice 

were screened for the relative changes of a variety of cytokines using a sensitive multi-analyte 

inflammatory cytokine ELISA (Fig. 24a). Injection of PE-IgG, in contrast to that derived from 

normotensive pregnant women, resulted in a relative increase in pro-inflammatory cytokines 

(such as TNF-α, IFN-γ and IL-6) and a decrease in anti-inflammatory cytokines (such IL-10), 

which are similar to those changes reported in preeclamptic women [238, 241, 245, 261].   

 

Circulating TNF-α is increased by AT1 receptor activation in autoantibody-injected 

pregnant mice but not non-pregnant mice. 

Among all the inflammatory molecules measured, TNF-α was the most elevated, and 

was therefore the cytokine pursued (Fig. 24a, box). The observed relative increase of TNF-α in 

autoantibody-injected pregnant mice was confirmed by quantifying its level using a 

commercially available ELISA (Fig. 24b). PE-IgG increased serum TNF-α in pregnant mice, as 

compared to NT-IgG (24.1±2.6 and 12.1±1.7 pg/ml, respectively). When PE-IgG was co-

injected into pregnant mice with losartan, an AT1 receptor blocker, or 7-aa, an autoantibody-

neutralizing epitope peptide, the autoantibody-mediated induction of TNF-α was specifically 
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Figure 24:  TNF-α regulaties the overall increased inflammatory response of AT1-AA-injected pregnant mice. 
Pregnant mice were injected with PE-IgG or NT-IgG on E13 and E14. Upon sacrifice on E18, their serum was 
screened for various cytokines using a sensitive assay. While NT-IgG injected mice have a predominantly anti-
inflammatory profile, PE-IgG injected mice have a pro-inflammatory response (a). TNF-α was the most elevated of all 
the assayed molecules (box). Mice co-injected with AT1-AA and a TNF-α neutralizing antibody demonstrated 
reductions in most pro-inflammatory cytokines. Further quantification (b) of serum TNF-α in these mice confirmed 
that the cytokine was elevated in PE-IgG injected pregnant mice and not in NT-IgG injected pregnant mice. Co-
injection of losartan or 7-aa resulted in decreased serum TNF-α levels in PE-IgG injected pregnant mice. Non-pregnant 
animals injected with similarly purified human IgG fractions (white bars) did not demonstrate increased cytokine 
levels. n=9 for each variable. Using the ELISA employed to quantify mouse serum TNF-α, a standard curve was 
generated in the absence (control) or in the presence of two different doses of anti-TNF-α antibody (c). Using ANOVA 
and Tukey’s post-hoc testing, there is no significant difference between the curves. *P< 0.05 vs NT. **P<0.05 vs PE. 
Part b: ©Irani et al., 2010. Originally published in Hypertension. doi: 10.1161/HYPERTENSIONAHA.110.150540. 
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inhibited. These results indicate AT1-AA, through activation of the AT1 receptor, could be 

responsible for the upregulation of TNF-α in pregnant mice. 

To determine whether TNF-α induction by AT1-AA in vivo is dependent upon 

pregnancy, PE-IgG or NT-IgG were injected into non-pregnant mice (Fig. 24b). Autoantibody-

injected non-pregnant mice had lower levels of TNF-α than autoantibody-injected pregnant 

mice (11.3±2.4 and 24.1±2.6 pg/ml, respectively), and the level of TNF-α was not significantly 

higher in non-pregnant animals mice injected with either PE-IgG or NT-IgG (11.3±2.4 and 

9.4±3.2 pg/ml, respectively). Thus, in contrast to what was observed in pregnant mice, 

circulating TNF-α did not increase in autoantibody-injected non-pregnant mice.  

 

TNF-α blockade in autoantibody-injected pregnant mice reduces overall inflammatory 

response 

To elucidate the critical role of TNF-α in the pathogenesis of PE, pregnant mice were 

co-injected with IgG derived from preeclamptic women and a TNF-α neutralizing antibody. At 

E18 the mice were sacrificed and their sera were collected for analysis using the multi-analyte 

ELISA array. This array revealed an unexpected finding: that the neutralization of TNF-α 

resulted in an increase in anti-inflammatory cytokines, such as IL-10, and a significant decrease 

of inflammatory cytokines including IL-6, IFN-γ and TNF-α itself in the autoantibody-injected 

pregnant mice (Fig. 24a).  These results imply that TNF-α action is central to the recruitment of 

other inflammatory cytokines and that neutralization of its actions reduces this effect. Then, 

using a commercially available ELISA kit, it was quantitatively confirmed that the TNF-α 

neutralizing antibody attenuated the induction of the cytokine in the serum of autoantibody-

injected pregnant mice (Fig. 24b).  
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Furthermore, to determine if the ELISA kit used measured only free, unbound TNF-α, 

or if it was capable of detecting the TNF-α bound to the anti-TNF-α antibody, a standard curve 

for the cytokine was generated in the absence or presence of varying amounts of the TNF-α 

blocker (0.0, 0.5 and 5.0 ng/ml) (Fig. 24c). The resultant curves showed no statistically 

significant differences. This finding suggests that any reductions of TNF-α observed using this 

ELISA are physiologic, and not due to interference of the neutralizing antibody.  

 

Hypertension and proteinuria are reduced in AT1-AA-injected pregnant mice due to 

TNF-α blockade 

Because TNF-α is a key pro-inflammatory cytokine controlling the network of 

inflammatory cytokines in autoantibody-injected pregnant mice, it is possible that neutralizing 

TNF-α may also attenuate other maternal symptoms of PE observed in this model. The key 

diagnostic features, hypertension and proteinuria, were both partially attenuated in animals co-

injected with PE-IgG and a TNF-α blocker as compared to pregnant mice injected with PE-IgG 

alone (Fig. 24). By E18, neutralization of TNF-α reduced hypertension from 132±4 to 110±4 

mmHg and urinary protein 212±25 to 155±23 albumin (µg)/creatinine (mg) (both P<0.05). 

Pregnant mice injected with NT-IgG retained their baseline blood pressure and normal renal 

function, as did mice who were injected with the anti-TNF-α antibody alone. As a control, an 

isotype IgG was co-injected into pregnant mice along with PE-IgG. The isotype IgG was 

incapable of reducing the autoantibody-induced elevation in TNF-α. These findings provide 

direct evidence of the essential role of TNF-α in maternal key features of PE seen in 

autoantibody-injected pregnant mice. 
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Increased TNF-α contributes to sFlt-1 and sEng induction in autoantibody-injected 

pregnant mice. 

Two soluble factors, sFlt-1 and sEng, are elevated in preeclamptic women and are 

believed to contribute to hypertension and proteinuria [54, 61].  In Chapter 3, it was discussed 

how sFlt-1 is elevated in the autoantibody-injection model of PE in the pregnant mouse [38]. 

To determine if TNF-α contributes to autoantibody-induced sFlt-1 and sEng, the circulating 

concentration of both factors were assessed in antibody-injected animals. Injection of PE-IgG 

increased the serum levels of sFlt-1 and sEng, and co-injection of with an anti-TNF-α antibody 

significantly reduced the levels of sFlt-1 and sEng to values closer to those observed in mice 

injected with NT-IgG (Figs. 25c-d). An isotype IgG to the TNF-α blocker was incapable of 

achieving similar reductions, and when the anti-TNF-α antibody was injected into pregnant 

mice alone the serum concentrations of these two factors remain unaltered. Therefore, AT1–

Figure 25.  TNF-α blockade 

reduces AT1-AA induced 

preeclamptic-like features. To 

assess the pathophysiologic role 

of TNF-α in autoantibody-induced 

PE, hypertension and proteinuria 

were monitored in pregnant mice 

injected with PE-IgG, NT-IgG or 

were co-injected with PE-IgG and 

an anti-TNF-α antibody. The key 

features of PE, hypertension (a) 

and proteinuria (b), observed in 

the PE-IgG-injected pregnant 

mice were reduced with co-

injection of the TNF-α blocker. In 

addition, sFlt-1 (c) and sEng (d) 

were also reduced by the TNF-α 

blocker. As a control, an isotype 

IgG to the TNF-α blocker was co-

injected with PE-IgG and resulted 

in none of the changes observed.   

n=9 for each variable, except PE + 

Isotype, n=6. * P<0.05 vs NT 

**P<0.05 vs PE. 
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AA-induced TNF-α may contribute to the increased production of anti-angiogenic factors in 

this mouse model of PE, and that this induction may be attenuated by the presence of TNF-α 

blocking antibodies. 

 

Autoantibody-induced TNF-α contributes to the renal abnormalities associated with PE. 

Renal abnormalities are commonly associated with PE in the human disease [262-264] 

and these features are also seen in the antibody-injection model of PE in pregnant mice [38]. As 

such, I used the animal model to investigate the contribution of TNF-α to these kidney defects.  

Histologic evidence indicates that the glomeruli of PE-IgG-injected pregnant mice are smaller 

and hypercellular as compared to those of mice injected with IgG from normotensive women, 

whose glomeruli are open and easily distinguished (Fig. 26a). When AT1-AA was co-injected 

with an antibody against TNF-α, the renal morphology was partially restored to normal. The 

Figure 26.  Autoantibody-induced renal damage is reduced by TNF-α blockade. Pregnant mice injected on E13 
and E14 with NT-IgG, PE-IgG, or co-injected with PE-IgG and an anti-TNF-α antibody were sacrificed on E18. Their 
kidneys were harvested and fixed for either routine H&E staining (a) or transmission electron microscopy (TEM) (b). 
H&E staining demonstrates that the condensed, hypercellular glomeruli of the PE-IgG injected pregnant mouse are 
partially restored in when co-injected with the autoantibody and the TNF-α blocker. 100X. TEM demonstrates that the 
glomerular endotheliosis observed in the PE-IgG injected mice is reduced in the co-injected group. The kidneys of NT-
IgG injected mice or mice injected with the TNF-α blocker alone are unremarkable. 1500X, scale bar=10 µm. n=6 for 
each variable. Box, intact podocytes. (*) capillary space. Thick arrow, endothelial cell nucleus. ©Irani et al., 2010. 
Originally published in Hypertension. doi: 10.1161/HYPERTENSIONAHA.110.150540. 
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glomeruli of mice injected with NT-Ig did not display any renal morphologic changes. The 

light microscopy data was informative; however the hallmark renal lesion of PE, glomerular 

endotheliosis, can only be confirmed by transmission electron microscopy (TEM). TEM 

analysis indicates that this feature is present in autoantibody-injected mice (Fig. 26b). The 

glomeruli of these mice show endothelial swelling resulting in the occlusion of capillary loop 

spaces. Co-injection of autoantibody with an anti-TNF-α antibody partly restores the kidney 

phenotype resulting in capillary spaces which are partially opened as compared to the glomeruli 

of mice injected with NT-IgG, whose capillary spaces are wide and show no swelling or 

obstruction.  

To confirm that the histologic changes in the kidneys of the autoantibody-injected mice 

were not secondary to the deposition of a human IgG complex, an immunofluorescence study 

using an antibody against human IgG was performed (Fig. 27). Renal sections from human 

kidney tissue involved by lupus nephritis, which are known to demonstrate IgG immune 

complex deposition [265], were used as positive controls. The glomeruli of these patients show 

granular staining for IgG in the glomerular basement membrane and the mesangium. Pregnant 

mice injected with IgG purified either from NT or PE pregnant women did not demonstrate 

staining consistent with immune complex deposition. This implies that the histologic changes 

observed in the autoantibody-injected mice were not due to antibody-antigen complex 

deposition in the kidney. Taken together, these findings illustrate that TNF-α is a downstream 

signaling molecule of the AT1 receptor contributing to renal abnormalities associated with PE 

and that TNF-α blockade may decrease the maternal renal symptoms associated with AT1-AA-

induced PE.  
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AT1-AA-induced placental abnormalities in pregnant mice are reduced by TNF-α 

blockade. 

Placental abnormalities are also associated with PE [266-268]. These features are also 

observed in autoantibody-injected pregnant mice [38], and so it is therefore a convenient model 

to evaluate the contribution of AT1-AA-induced TNF-α on the placental abnormalities 

associated with PE. Pregnant mice were injected with PE-IgG or NT-IgG on E13 and E14 and 

the injected mice were sacrificed five days later, at which time their placentas were isolated and 

characterized. Routine H&E staining (Fig. 28a) demonstrated that the labyrinth zones of the 

placentas of mice injected with IgG derived from preeclamptic women had placental 

calcifications, a hallmark of placental distress, and centers of fibrinoid necrosis similar to that 

of acute atherosis, a feature observed in human placentas from women with PE [269, 270]. The 

Figure 27: Injection of human IgG 

into pregnant mice does not result 

in renal immune complex 

deposition. Immunofluoresence 

using an anti-human IgG antibody 

shows no immune complex 

deposition (FITC, green) in the 

kidneys of pregnant mice injected 

with human antibody derived from 

either NT or PE pregnant women. 

Co-injection of human IgG with a 

TNF-α blocker, or the TNF-α 

blocker alone also demonstrated no 

deposits. A renal sections from 

human lupus patients known to have 

immune complex deposition were 

used positive controls, n=2. All 

other variables, n=4. 
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placentas of mice injected with IgG from normotensive pregnant women had undamaged 

placentas free from calcifications and fibrinous centers. Notably, co-injection of pregnant mice 

with PE-IgG and an anti-TNF-α antibody reduced the histopathologic changes observed in the 

placentas of PE-IgG injected animals. These results indicate that AT1 receptor activation can 

induce placental damage and that these changes can be reduced by blocking TNF-α action. 

Figure 28.  Autoantibody-induced placental damage can be reduced by TNF-α blockade. Pregnant mice were 
injected with NT-IgG, PE-IgG, or co-injected with PE-IgG and a TNF-α blocking antibody. Their placentas were 
assessed by H&E staining, 40X (a). PE-IgG injected mice had evidence of damaged placentas: calcifications (thin 
arrow) and fibrotic areas (thick arrow). Their labyrinth zones appear heterogeneous and have abnormal pools of 
blood (inset box). NT-IgG injected mice have unremarkable labyrinth zones and animals co-injected with PE-IgG 
and the TNF-α blocker have reduced placental damage. Placental apoptosis was assessed by TUNEL staining (b). 
10X. Scale bar, 1mm. PE-IgG injected mice had increased apoptosis in their labyrinth zones as compared to NT-
IgG injected animals. Quantification of the TUNEL assay (c) indicates a reduction in the TUNEL+ cells in 
pregnant mice injected with co-injected with PE-IgG and a TNF-α blocker as compared to the PE-IgG alone. Mice 
injected with the anti-TNF-α antibody alone had unremarkable placentas.  n = 9 for each variable. Green; TUNEL+ 
cells. Blue; DAPI+ nuclei. Western blot densiometric analysis of placental protein extracts confirm the TUNEL 
findings. Bax (d) was increased and Bcl-2 (e) was decreased in PE-IgG injected mice and partially restored in those 
animals co-injected with the TNF-α blocker. n=6 for each variable. *P<0.05 vs NT. **P<0.05 vs PE. ©Irani et al., 

2010. Originally published in Hypertension. doi: 10.1161/HYPERTENSIONAHA.110.150540. 
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Small placentas and fetuses are often associated with PE [169, 182, 189, 190]. 

Therefore, we assessed both of these parameters. Placental weights of AT1-AA-injected 

pregnant mice were smaller (0.0921±0.017 g) than placentas from mice injected with NT-IgG 

(0.1143±0.022 g). Co-injection of an anti-TNF-α antibody restored the autoantibody-induced 

placental weight reductions to 0.0991 ± 0.042 g. In addition, the weight of fetuses born in litters 

of 6-8 was analyzed. Autoantibody-injected mice bore fetuses of less weight (1.06±0.19 g) as 

compared to dams injected with NT-IgG (1.24±0.06 g). Co-injecting AT1-AA with a TNF-α 

blocker restored fetal size to 1.11±0.43 g. As compared to the NT-IgG-injected animals, 

injection of the anti-TNF-α antibody alone had no statistically significant effect on placental or 

fetal weight (0.1157±0.048 g and 1.27±0.10 g, respectively). Fetal and placental pairs: PE, 

n=46; NT, n=53; PE + Anti-TNF-α, n=37; Anti-TNF-α alone, n=34. Overall, the autoantibody 

induced reductions in placental and fetal weights were restored by co-injection of a TNF-α 

blocker, implying an important role for this cytokine in the regulation of these effects. 

Because TNF-α is a potent pro-apoptotic factor and increased placental apoptosis is 

associated with PE [245, 253, 271], I investigated the level of apoptosis in the placenta of 

autoantibody-injected pregnant mice.  An increase in programmed cell death was observed in 

the labyrinth zone of placentas from AT1-AA-injected mice as seen by quantified TUNEL 

staining (Figs. 28b-c).  This was further confirmed western blot analysis of Bax and Bcl-2, two 

apoptotic regulatory proteins. An increase in Bax, a pro-apoptotic protein, and a decrease in 

Bcl-2, an anti-apoptotic protein, were observed (Figs. 28d-e).  The degree of apoptosis was 

reduced in the placentas of mice co-injected with PE-IgG and the anti-TNF-α antibody. Mice 

injected with IgG from normotensive pregnant women, did not show increased apoptosis. This 

evidence confirms the fact that AT1 receptor activation can increase mouse placental damage 

and TNF-α blockade can reduce these detrimental effects.  
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A cohort of preeclamptic patients has increased TNF-α levels correlating to AT1-AA 

bioactivity. 

From the mouse work presented here, it has been established that AT1-AA contributes 

to the induction of TNF-α in pregnant mice. To determine if a relationship exists between the 

autoantibody and TNF-α in humans, serum levels of TNF-α was compared to AT1–AA 

bioactivity in normotensive pregnant women (n=16) and women with PE (n=20).  First, it was 

confirmed that the preeclamptic population had increased serum TNF-α. Similar to other 

reports [238, 241, 245, 253, 272], the results (Fig. 29a, Table 2) reflected that circulating TNF-

α is increased in preeclamptic patients, and its mean concentration was higher than that found 

of normotensive pregnant women (48±3 and 16±3 pg/ml, respectively, P<0.001). Five of the 

sixteen normotensive pregnant patients and none of the twenty preeclamptic women had 

undetectable levels of the cytokine, which is also consistent with other studies [245, 272]. 

These findings confirm that serum TNF-α is increased in the cohort of preeclamptic women 

studied here.  

Figure 29:  Circulating TNF-α 

positively correlates to AT1-AA 

bioactivity in preeclamptic 

women. Preeclamptic patients 
(n=20) used in the study 
demonstrated an elevated level of 
serum TNF-α (a). Normotensive 
(NT) patients (n=16) did not 
demonstrate elevated cytokine 
levels, and 5 of 16 patients did not 
have detectable levels. Solid line 
indicates the median concentration. 
The dotted line indicates the lowest 
detectable threshold of the assay. A 
positive correlation (b) between 
AT1-AA bioactivity, as assessed by 
an in vitro cell culture luciferase 
reporter assay, and serum TNF-α 
level in preeclamptic women was 
identified (r=0.85, n=20, P<0.001). 
©Irani et al., 2010. Originally 
published in Hypertension. doi: 
10.1161/HYPERTENSIONAHA.1
10.150540. 
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Next, the bioactivity level of AT1-AA in the sera of women with PE and NT pregnant 

women were determined by testing sera-derived purified IgGs for the ability to activate AT1 

receptors using an established luciferase reporter gene system [38]. The purified IgGs isolated 

from patient sera were incubated with a reporter cell line in which AT1 receptor activation 

results in the stimulation of luciferase activity. Intriguingly, there was a positive correlation 

between AT1-AA bioactivity and circulating TNF-α level in preeclamptic women (Fig. 29b, 

r=0.85, n=20, P<0.001). These data confirm earlier reports that preeclamptic patients harbor 

increased levels of AT1-AA and show for the first time that AT1-AA bioactivity is correlated to 

serum TNF-α in preeclamptic women. Thus, it is possible that AT1-AA-mediated induction of 

TNF-α may significantly contribute to the pathophysiology of the disorder in humans. 

 

AT1 receptor-mediated TNF-α induction contributes to placental apoptosis and sFlt-1 and 

sEng secretion in human villous explants. 

Because no elevation of the cytokine was observed in non-pregnant animals injected 

with the autoantibody, it is likely that the placenta contributes to the production of 

autoantibody-induced TNF-α. As such, human placental villous explants were used to assess 

the direct role of AT1-AA in TNF-α production in human. Placental explants incubated with 

PE-IgG showed an increase in secreted TNF-α, whereas the cytokine was not induced in 

explants incubated with NT-IgG (913.1±62.3 and 250.6±21.6 pg/ml, respectively) (Fig. 30a). 

AT1 receptor activation was required for TNF-α secretion, as co-incubation of PE-IgG with 

either losartan, an AT1 receptor blocker, or a 7-aa epitope peptide which neutralizes 

autoantibody action, attenuated the induction of TNF-α levels (214.4±24.1 and 506.4±163.8 
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pg/ml, respectively). Thus, IgG purified from women with PE is capable of inducing TNF-α 

secretion via AT1 receptor activation from human placental villous explants.  

To elucidate the pathophysiologic consequences of AT1-AA-induced TNF-α production 

by the placenta, human placental explants and the explant culture medium were examined for 

Figure 30:  TNF-α blockade reduces AT1 receptor-mediated placental damage in human villous explants. 
Culturing PE-IgG with human villous explants resulted in TNF-α secretion via AT1 receptor activation (a). Co-
culturing the explants with PE-IgG and losartan (5µM) or 7-aa (1µM) reduced the cytokine level, specifically 
indicating that autoantibody-induced AT1-receptor activation was required. Incubation of the explants with NT-IgG 
did not increase TNF-α secretion. Apoptosis was increased in explants incubated with AT1-AA and was partially 
diminished by blocking TNF-α activity (b, c). Explants cultured with NT-IgG demonstrated decreased cell death. 
TUNEL stained cultured human villous explants (b). Green; TUNEL+. Blue; DAPI+. 10X. Quantification of 
TUNEL staining (c) indicates that co-incubation with PE-IgG and an anti-TNF-α agent (5µg/ml) reduces the 
amount of apoptosis. Western blot densiometric analysis of explant proteins reflects an increase in Bax (d) and a 
decrease in Bcl-2 (e). In addition, sFlt-1 (f) and sEng (g) secretion were reduced by co-incubation of PE-IgG with 
an anti-TNF-α antibody. 6 different placentas were collected, and from each n=4, total n=24 for every variable. 
*P<0.05 vs NT. ** P<0.05 vs PE. ©Irani et al., 2010. Originally published in Hypertension. doi: 
10.1161/HYPERTENSIONAHA.110.150540. 
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pathological changes associated with PE. Placental explants were incubated with IgG purified 

from normotensive pregnant women and preeclamptic women in the presence or absence of a 

TNF-α neutralizing antibody. The level of apoptosis was determined by a TUNEL assay 

conducted on thin sections of fixed placental tissue. The results (Figs. 30b-c) show that 

explants exposed to PE-IgG demonstrated an increase in placental apoptosis which was blocked 

by the presence of a TNF-α blocking antibody. Placental fragments incubated with NT-IgG did 

not show significant apoptosis. This evidence was corroborated with western blot analysis 

indicating an increase in Bax and decrease in Bcl-2 proteins, resulting in a pro-apoptotic state 

in these explants (Figs. 30d-e). These results suggest that autoantibody-induced placental cell 

apoptosis is mediated through the action of TNF-α. Experiments were also conducted to 

determine the role of TNF-α in autoantibody-mediated induction of the placental derived anti-

angiogenic factors, sFlt-1 and sEng. The results (Figs. 30f-g) show that the autoantibody-

mediated increases in sFlt-1 and sEng were reduced by TNF-α blockade. These findings are 

consistent with those observed in the mouse model and suggest that AT1-AA-induced TNF-α 

mediates sFlt-1 and sEng production. 
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DISCUSSION 

 

In this study, it was identified for the first time that an elevated TNF-α level is 

correlated to AT1-AA bioactivity in preeclamptic women and provided both in vitro human 

studies and in vivo mouse evidence that AT1-AA is a novel candidate directly inducing TNF-α 

production via AT1 receptor activation. Neutralizing AT1-AA-mediated TNF-α induction 

attenuates the increased placenta apoptosis and sFlt-1 and sEng secretion by cultured human 

villous explants. Moreover, TNF-α blockade ameliorates all of the key features associated with 

PE seen in autoantibody-injected pregnant mice in vivo. Both the mouse and human studies 

reported here provide strong evidence that AT1 receptor activation by the autoantibody induces 

TNF-α, and that the increased TNF-α production is an underlying mechanism contributing to 

pathogenesis of the disease. Overall, these studies have identified the essential role of AT1-AA-

induced TNF-α production in PE and demonstrated the importance of this cytokine in the 

pathogenesis of the disorder. These findings suggest a novel therapeutic option for the 

complicated management of this serious condition. 

The increased maternal inflammatory response associated with PE is speculated to 

contribute to the pathogenesis in the disease [247, 273]. However, the direct cause of the 

increased inflammatory cytokine production is unknown and the pathogenic role of these 

inflammatory cytokines is undetermined. Multiple in vitro studies demonstrate that increased 

inflammatory cytokine production may lead to endothelial dysfunction, increased placenta 

apoptosis, decreased angiogenesis and kidney abnormalities that are relevant to the 

pathophysiology of the disease [242, 274, 275]. Because PE is a multisystem disorder, using 

animal models to understand the cellular interplay is an essential step towards deciphering the 
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specific signaling pathways involved. However, there are few animal models of PE available 

and none of them have delineated the cause of the increased inflammatory response and its 

pathogenic functions.  Here, using a novel autoantibody-induced model of PE in pregnant mice, 

it was shown that autoantibody-mediated AT1 receptor activation induces TNF-α, among other 

inflammatory cytokines, and that its production through this mechanism is pregnancy-

dependent. The results of this screen imply that the autoantibodies from preeclamptic women 

are capable of inducing a pro-inflammatory response in pregnant mice. Since IgG purified from 

normotensive pregnant women did not elicit the same cytokine profile, the effect can be 

attributed to the autoantibody itself and not a non-specific immunologic response.  

Next, it was demonstrated that TNF-α blockade attenuates autoantibody-induced 

preeclamptic features in AT1-AA-injected pregnant mice, including hypertension and 

proteinuria as well as reducing circulating TNF-α itself. Using an antibody competition 

strategy, the evidence provided shows that the anti-TNF-α neutralizing antibody does not 

interfere with the measurement of TNF-α concentration by the ELISA used in the study. Thus, 

this finding indicates that anti-TNF-α antibody treatment decreases TNF-α induction in 

autoantibody-injected pregnant mice. Using a multi-analyte inflammatory cytokine ELISA, 

additional evidence shows that anti-TNF-α antibody treatment decreases other pro-

inflammatory molecules observed in AT1-AA-injected mice. So, without interference, TNF-α-

induced cell damage and inflammation create a detrimental cycle, facilitating further cell 

damage and inflammation. However, in the presence of an anti-TNF-α antibody which 

neutralizes TNF-α effects, this damage is decreased, slowing the malicious cycle and results in 

blocking the heightened inflammatory network. Thus, it was revealed for the first time that 

AT1-AA is a key mediator in inducing the inflammatory cascade in PE and that TNF-α 

blockade can attenuate this response.  
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The direct role of TNF-α in disease mechanism 

Although a potential role of TNF-α induction in hypertension and proteinuria seen in PE 

has been suggested, the pathogenic mechanisms underlying these effects have not been clearly 

identified. Earlier studies have shown that the pro-inflammatory TNF-α, a 51 kDa 

homotrimeric protein in its soluble form, is associated with both vascular damage and 

hypertension [276]. Jovinge et al. have shown that mice deficient in TNF-α have reduced 

atherosclerotic lesions, suggesting that the cytokine plays a key role in vascular injury [277]. 

Similarly, in salt-sensitive rats, TNF-α blockade has been successful in alleviating both the 

hypertension and renal damage observed in this model [278]. In pregnant rats, TNF-α enhances 

contraction and inhibits endothelial nitric oxide-cGMP-mediated relaxation in systemic vessels, 

which could contribute to hypertension [279]. Chronic infusion of TNF-α into pregnant rats to 

achieve a two-fold increase in concentration is sufficient to induce hypertension and increase 

endothelin production, which the authors believe contributes to the vascular damage associated 

with the maternal symptoms of PE [220]. These examples illustrate that the inflammatory 

properties of TNF-α contribute to vascular damage and high blood pressure and could therefore 

do the same in the situation of PE.  

In addition, Muller et al. report a double transgenic rat model that has increased levels 

of circulating ANG II which exhibits hypertension, renal dysfunction as well as increased TNF-

α [126]. In this model, the authors believe that increased TNF-α contributes to kidney injury via 

complement activation and that excess ANG II sensitizes the vasculature to the effects of the 

cytokine. The induction of TNF-α in the autoantibody-injection model of PE is accompanied 

with an autoantibody-mediated increases in sFlt-1 and sEng. Others have also shown that sFlt-1 

and sEng are induced by TNF-α [97, 280]. Thus, in view of the known hypertensive and renal 

effects of sFlt-1 and sEng, it is possible that the hypertensive and renal effects of TNF-α are 
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mediated through the increase of these soluble factors. The results of the animal model studies 

reported here provide evidence to support the novel concept that autoantibody-mediated AT1 

receptor activation induces TNF-α production which results in the maternal features of PE 

including hypertension and proteinuria. 

Besides the direct detrimental effects of TNF-α on maternal features, TNF-α has long 

been implicated in the placental damage associated with PE [208, 209]. Though the nature of 

placental damage is well-established in PE, the exact role and specific source of TNF-α remain 

undefined. In this study, it was confirmed that TNF-α is increased in the serum of the 

preeclamptic patient cohort studied, but also revealed that these elevated levels of TNF-α are 

correlated to the AT1-AA bioactivity in these preeclamptic individuals.  Using non-pregnant 

mice it was demonstrated that AT1-AA-mediated TNF-α induction is pregnancy-dependent, 

which implies that the placenta is a major source for increased TNF-α seen in circulation.  

Supporting this mouse study, it was shown here that AT1-AA are also capable of inducing 

TNF-α in cultured human villous explants. More importantly, both mouse and human studies 

reveal the novel role of AT1-AA-mediated TNF-α induction in placental abnormalities seen in 

PE including increased apoptosis, as well as sFlt-1 and sEng secretion. These findings are 

supported by earlier studies showing that TNF-α is not only increased in the serum of 

preeclamptic women, but also locally in the placenta where villous cytotrophoblasts express 

TNF-receptor 1 (TNF-R1) and house all the machinery necessary to carry out programmed cell 

death [198, 281].  Reister, et al. demonstrate that increased TNF-α generated by macrophages 

found in the placentas of preeclamptic women leads to apoptosis in extravillous trophoblasts 

[282]. More importantly, recent studies demonstrate that TNF-α directly induces the 

detrimental anti-angiogenic factors, sFlt-1 and sEng, in cultured human villous explants [97, 

280]. Overall, these studies are in agreement with the current findings and suggest an essential 
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role of AT1-AA-induced TNF-α in both the maternal symptoms and placental features observed 

in PE.   

 

The indirect role of TNF-α in disease mechanisms 

In other disease models it is unclear whether TNF-α has only a direct pathogenic role or 

whether it contributes to disease features indirectly via the induction of other mediators. For 

example, in rheumatoid arthritis, TNF-α induces the expression of other pro-inflammatory 

cytokines, such as IL-1 which initiates a potent inflammatory cascade [283, 284]. Therefore, in 

this situation, the blockade of TNF-α action decreases production of downstream mediators and 

arthritic features are indirectly abrogated. As demonstrated by the inflammatory cytokine array 

(Fig, 24), this may also be the case in PE. 

It is clear through the evidence presented here that reducing TNF-α action significantly 

attenuates the key preeclamptic symptoms initiated by AT1-AA in pregnant mice, indicating an 

essential role for this cytokine in PE, be it directly or indirectly. In the placenta, decreasing 

TNF-α production may directly reduce the amount of trophoblast apoptosis and result in a 

healthier organ (Figs. 28, 30). By limiting placental damage, reductions in TNF-α may also 

decrease the release of key anti-angiogenic factors, sFlt-1 and sEng (Fig. 30). With little 

increase in these factors, the subsequent maternal vascular and renal damage may be reduced 

thereby alleviating maternal symptoms. As described earlier, by decreasing circulating TNF-α, 

other inflammatory mediators, such as IFN-γ, are also reduced. This leads to less TNF-α-driven 

vascular injury via the initiation of inflammatory cascades. Should these pathways not be 

instigated, then the endothelial damage associated with PE may not be as severe, and the 

symptoms may be lessened. Together, these scenarios indicate that TNF-α may be directly or 
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indirectly contributing to preeclamptic features and regardless, its blockade can reduce their 

severity.  

It should not be overlooked that AT1-AA alone may contribute directly to certain 

features of PE which are independent of TNF-α. For example, the autoantibody can directly 

stimulate the AT1 receptors of vascular smooth muscle cells and induce vasoconstriction [285, 

286]. Likewise, the autoantibody could activate AT1 receptors on endothelial cells resulting in 

the synthesis of endothelin-1, a powerful vasoconstrictive agent [219, 287]. The autoantibody 

may also directly bind to AT1 receptors on renal mesangial cells to induce PAI-1 secretion [21]. 

Therefore, it is not surprising that TNF-α blockade only partially relieves autoantibody-induced 

features of PE, including the partial attenuation of hypertension and proteinuria observed in the 

pregnant mice co-injected with AT1-AA and the anti-TNF-α antibody (Fig. 25). 

 

TNF-α and hypertension 

In general, increased inflammation has been implicated in the pathogenesis of 

cardiovascular injury and the development of hypertension. Immunosuppressed HIV+ patients 

display hypertension upon aggressive anti-retroviral therapy which restores their depleted 

cytokine-inducing CD4 T cell count [288]. Cancer patients infused with alloactivated T cells 

which mount an inflammatory response also develop hypertension [289]. Reduced systemic 

inflammation via thymectomy or pharmologic interventions decrease blood pressure in 

genetically modified hypertensive rats [290-292]. More specifically, elevations in the pro-

inflammatory cytokine TNF-α have been reported in patients with severe atherosclerosis [293], 

congestive heart failure [294] and other forms of hypertension [295]. It has been proposed that 

this pro-inflammatory cytokine plays a role in both the initiation and amplification of 
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inflammatory cascades [296, 297]. The work reported here supports these claims, as it was 

shown that TNF-α blockade can significantly reduce the circulating levels of other 

inflammatory cytokines in PE-IgG pregnant mice (Fig. 24). There are many proposed 

mechanisms by which TNF-α brings about vascular injury: by induction of other cytokines, 

such as IL-6 [298], IL-1 [284]; increasing endothelin-1 [299, 300]; causing aberrant 

angiogenesis [301] and the inhibition of endothelial-dependent release of nitric oxide and 

vasodilation [302, 303]. All of these mechanisms reportedly contribute to systemic 

inflammation and the subsequent hypertension observed in patients. Interestingly, many of 

these same vascular injuries are observed in PE as well as other autoimmune diseases such as 

rheumatoid arthritis, as well as through AT1 receptor activation [73, 304-307]. The mechanistic 

relationship between hypertension, autoimmunity and inflammation is a topic of great interest 

and will surely be the subject of exciting future work. 

Several small-scale clinical trials have been performed to investigate the capability of 

TNF-α blockade in the treatment of cardiovascular disease. Hurlimann et al. have demonstrated 

that patients with rheumatoid arthritis receiving a TNF-α blocker have improved vascular 

function and decreased progression towards atherosclerotic disease and hypertension over those 

patients not receiving this drug [308]. Others have shown that anti-TNF-α treatment in 

rheumatoid patients improves various cardiovascular outcomes, whereas untreated groups 

suffer from a 5-fold increase in cardiovascular mortality [309, 310]. Fichtlscherer et al. 

observed improved cardiovascular functional status in patients suffering from chronic heart 

failure administered with a TNF-α blocker [311]. In addition, cardiovascular disease including 

the incidence of PE is elevated in the case of SLE and rheumatoid arthritis [312, 313], implying 

that autoimmune processes may play a role in the manifestations of disease symptoms. 
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Together, these reports suggest that TNF-α plays a pivotal role in the inflammation associated 

with hypertension, and reduction in its function may forestall symptom development. 

 

Anti-TNF-α agents: a novel therapy for PE?    

The current therapy for PE is extremely limited. There is no absolute cure for the 

disorder. While physicians use anti-seizure medications to stave off severe ecclamptic 

symptoms, delivery of the baby and placenta is the only way to abate progressing symptoms. 

There is a dire need to improve the current therapy of this hypertensive complication which is 

the indication for 15% of all preterm deliveries and 18% of all pregnancy-related deaths in the 

US per year [29, 30, 178]. 

Based on the findings reported here, TNF-α blockade may be a possible therapy to 

alleviate preeclamptic symptoms (Fig. 31).  Similar to the effects of the anti-TNF-α antibody 

employed in our AT1-AA-injected pregnant mice, a soluble TNF-α receptor also attenuates 

hypertension seen in pregnant rats generated by a reduced uterine placental perfusion (RUPP) 

[314].  Thus, both of these animal studies provide strong preclinical evidence to support the 

novel therapeutic possibility of targeting this deleterious cytokine which is associated with PE. 

Notably, both soluble TNF-α receptors and anti-TNF-α antibody therapies are used in many 

autoimmune diseases, such as rheumatoid arthritis, psoriatic arthritis, ankylosing spondylitis 

and inflammatory bowel disease [96, 315, 316]. Great success has been achieved by blocking 

TNF-α activity in these diseases and is the mainstay of their treatment. Though there are 

associated risks of infection with the available injectable proteins, the development of oral 

small-molecule inhibitors is on the pharmacological horizon [283]. Thus, these soluble TNF-α 
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receptor agents may prove to be safer, cheaper and require fewer doses, making them ideal for 

use in the developing world where PE is extremely prevalent and deadly.  

 

Therapeutic side effects 

The reported side effects and known teratogenicity of a drug are extremely important 

when considering its use in a pregnant woman. The US FDA currently classifies anti-TNF-α 

agents as having no documented human fetal toxicity (Category B) [283]. Animal studies, such 

as those of Giroir et al., have shown no evidence of teratogenicity in the pups born to mice 

injected with an anti-TNF-α protein [317]. In addition, there is precedence for use of anti-TNF-

α agents in pregnant women. Roux et al. in their comprehensive review report several studies 

where women being treated with anti-TNFα agents for various rheumatologic disorders have 

successful normal gestations and births [318, 319]. This evidence of drug safety supports the 

need for future work in employing anti-TNFα blockers in the management of PE. 

While this dissertation did not follow the pups born to mice co-injected with AT1-AA 

and the anti-TNF-α antibody, there were no adverse effects reported in the dams. Moreover, in 

the pregnant mice injected with the anti-TNF-α antibody alone, there were no obvious harmful 

consequences observed and these mice have blood pressure, renal function and placental 

morphology similar to that of control mice injected with IgG derived from normotensive 

pregnant women (Fig. 25). Based on these findings, the anti-TNF-α agent used do not cause 

harm to the pregnant mice used in the adoptive transfer model. However, future studies will 

have to be performed to ascertain any detrimental effects on the fetus. 
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Taken together, these studies identified AT1-AA as a novel candidate responsible for 

the increased inflammatory response associated with PE by directly inducing TNF-α production 

via AT1-receptor activation (Fig. 31). Both human and mouse studies demonstrate that this 

inflammatory cytokine plays an important role in the pathogenesis of this hypertensive 

condition. Of significant importance, its blockade reduces the maternal features of the disease 

in an adoptive transfer mouse model of PE. In addition, AT1-AA-induced placental damage can 

be alleviated by preventing TNF-α action in human villous explants. These findings indicate a 

central role of TNF-α in placental damage and subsequent disease symptom development. The 

work reported here could be the foundation leading to future human trials and a possible 

therapy for PE, a life-threatening disorder of pregnancy for which the current treatment is 

extremely limited. 

Figure 31:  Schematic depicting the possible role of TNF-α in AT1-AA-induced preeclamptic features. 

Autoantibody-mediated TNF-α signaling could generate the maternal symptoms associated with PE. This 

implies that blockade of both TNF-α and AT1 receptor signaling may be potential therapeutic strategies in the 

management of this serious disorder of pregnancy. 
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GENERAL CONCLUSIONS & SIGNIFICANCE 

 

Overall conclusions 

 Taken together, the body of work presented here makes a strong case that the 

autoantibody, AT1-AA, plays a major role in the pathogenesis of PE. Many groups, including 

our own, have shown that women with PE harbor increased levels of this autoantibody [33, 34]. 

In this dissertation, it was illustrated how biologically active AT1-AA can be purified from the 

serum from preeclamptic patients and injected into pregnant mice. Upon injection with the 

autoantibody, these dams recapitulate preeclamptic disease features: hypertension, proteinuria 

and the liberation of detrimental anti-angiogenic factors [38]. Fetal and placental features were 

also examined. It was established that autoantibody-mediated AT1 receptor activation 

contributes to IUGR and placental abnormalities [99]. All of the disease traits observed, both 

maternal and fetal, could be specifically reduced by the co-injection of an AT1 receptor blocker, 

losartan, or an autoantibody-neutralizing peptide, 7-aa. Moreover, when human villous explants 

were cultured in the presence of AT1-AA, increased liberation of sFlt-1, sEng and TNF-α were 

recorded, as was elevated placental explant apoptosis. For most of the studies described, 

parallel experiments were performed in non-pregnant mice in order to define the role of AT1-

AA independent of pregnancy. In general, the manifestation of autoantibody-mediated 

preeclamptic symptoms required the state of pregnancy. These experiments demonstrate that 

excess AT1 receptor activation by the autoantibody results in a preeclamptic-like state in the 

pregnant mouse, and alongside the villous explant data, they demonstrate the pathogenic role of 

AT1-AA in PE (Fig. 32). 
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To further examine the mechanism by which the autoantibody may cause these 

symptoms, the sera of PE-IgG-injected mice were examined for inflammatory cytokines. 

Excess AT1 receptor activation resulted in the induction of several pro-inflammatory 

molecules, most notably, TNF-α, a factor known to be increased in PE. Therefore, I employed 

the adoptive transfer model to address the concept of TNF-α blockade in the disorder. Co-

injection of AT1-AA and an anti-TNF-α antibody was capable of reducing disease features in 

pregnant mice, including a heightened inflammatory response, and the liberation of detrimental 

factors in cultured human villous explants. Therefore, these results indicate that AT1-AA-

mediated induction of excess TNF-α may contribute to preeclamptic symptoms.  

Figure 32: The role of AT1-AA in preeclampsia. Excess AT1 receptor activation may contribute to both  

the maternal and fetal features associated with PE. 
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Through the work presented here, it can be concluded that the autoantibody, AT1-AA, 

plays a pathogenic role in the hypertensive disease of pregnancy, preeclampsia. Both in vitro 

and in vivo studies confirm that selective blockade of this autoantibody or its downstream 

targets, such as TNF-α, alleviates the features associated with the disease. These facts have 

immediate therapeutic implications which could improve upon the inadequate screening, 

diagnostic markers, and treatments available for this prevalent and deadly disorder of mother 

and child. 

 

Other animal models elucidating the role of AT1-AA and the maternal features of PE  

Our group is not the only to investigate the role of AT1-AA in the development of 

gestational hypertension. To explore this concept, Dechend et al. mated female rats expressing 

the human angiotensinogen gene with male transgenics expressing the human renin gene [320]. 

Towards the end of their pregnancy, these dams experienced hypertension and proteinuria 

which resolved post-partum. These females developed other preeclamptic-like features, such as 

glomerular fibrin deposition and placental vascular defects. Importantly, the same autoantibody 

circulating in preeclamptic women, AT1-AA, was detectable in the serum of these pregnant 

transgenic rats [320]. The remarkable finding of AT1-AA production in the setting of RAS 

dysregulation implies that these features have a close relationship in the pathophysiology of PE. 

Another group used a model of placental ischemia to elucidate the etiologic factors responsible 

for the maternal syndrome. Granger et al. performed a surgical manipulation called reduction 

uterine perfusion pressure (RUPP) in rats in order to determine if this reduced placental blood-

flow could result in preeclamptic symptom manifestation [321]. Indeed, the RUPP-treated rats 

experienced preeclamptic-like features: hypertension, proteinuria, and increased sFlt-1, TNF-α, 
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endothelin production and endothelial dysfunction. Remarkably, AT1-AA could be isolated 

from the manipulated rats, whereas un-manipulated pregnant rats did not produce the 

autoantibody [218]. The same group investigated the effect of TNF-α infusion during 

pregnancy. Again, hypertension developed and AT1-AA was detectable in the circulation of 

pregnant rats infused with low-dose TNF-α throughout pregnancy [218]. Non-pregnant animals 

did not share similar features, implying that adequate balance of inflammatory molecules and 

placental perfusion are necessary for a healthy pregnancy, and that decreased perfusion may 

lead to an inflammatory response triggering autoantibody production. The development of AT1-

AA in genetically and surgically manipulated rats as well as those infused with low-dose TNF-

α reveals the important relationship between RAS regulation and maternal health during 

gestation. The consistent development of AT1-AA in these experimental animal models also 

suggests a common antigenic origin, which provides evidence for the concept that PE is an 

autoimmune disorder of pregnancy.   

 

AT1-AA: prevalence, persistence and the push forward 

The exact etiology of self-recognizing antibodies in autoimmune diseases is difficult to 

discern. Many factors have been proposed which may lead to autoantibody production in 

general, including genetic predispositions, maladaptive immune responses and environmental 

triggers [322-324]. All of these mechanisms could contribute to the generation of the 

autoantibody associated with PE. It is currently unknown what triggers the production of AT1-

AA and when the autoantibody first arises in pregnancy. In their original paper, Wallukat et al. 

used affinity purification and peptide competition experiments to illustrate that the 

autoantibodies found circulating in preeclamptic women have a common epitope: a seven 

amino acid sequence on the second extracellular loop of the AT1 receptor (AFHYESQ) [33]. In 
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another human study, we have shown >95% of 37 preeclamptic women harbored AT1-AA and 

that the bioactivity of the autoantibody correlated significantly to disease severity, in particular 

proteinuria [34]. Normotensive pregnant women were also assessed for the presence of AT1-

AA. Less than 30% of these women had any detectable autoantibody levels, which were five-

fold less than those observed in the preeclamptic group. The consistencies of these studies 

suggest a common immunologic origin of AT1-AA in preeclamptic women, an area of exciting 

future work. 

In the short term, preeclamptic symptoms usually abate within 48 hours postpartum and 

normal blood pressure is restored approximately 12 weeks after delivery. However, a definitive 

timeline of AT1-AA persistence in preeclamptic women is currently unknown. In a small study, 

Hubel, et al. reported that 17.2% of 29 women with a previous history of PE harbored AT1-AA 

18±9 months post-partum, versus 2.9% of 35 women without a previous history of the disorder 

[325]. Future work will have to build upon this study to determine exactly when autoantibody 

titers decrease post-partum in preeclamptic women. 

The long-term cardiovascular and renal consequences of PE are areas of recent interest. 

Many groups have reported that having a previous history of PE puts a woman at increased risk 

for overall cardiovascular risk [326], stroke and chronic hypertension later in life [235, 327], 

ischemic heart disease [328] and death due to cardiovascular complications [329], as compared 

to women who have not suffered from the disorder. Renal complications may also persist in 

preeclamptic women. Glomerular endothlelial cell swelling with fibrin deposition [330], 

microalbuminuria and endothelial cell dysfunction [331, 332] have all been documented in 

preeclamptic women several months post-partum. It will be of particular interest to determine if 

AT1-AA are present in the women with a history of PE who go on to suffer from cardiovascular 

and renal complications later in life. 
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Taken together, the common immunologic features and long-term sequelae in these 

human studies provide mounting evidence that PE may in fact be an autoimmune disorder of 

pregnancy. Should this be the case, autoantibody-targeted therapies may be beneficial not only 

in the immediate treatment of this devastating disease, but also to abate future health risks. 

Further investigation into the natural history of these autoantibodies in preeclamptic women is 

necessary. 

 

Molecular mimicry: Human parvovirus B19 and the AT1 receptor  

There are many theories as to how the process of autoimmunity occurs. Though none 

have proven unequivocally true in all cases, there is one prevailing theory which may apply to 

the generation of the autoantibody associated with PE: molecular mimicry. Molecular mimicry 

involves an infection-induced activation of self-reactive lymphocytes. The generation of 

autoreactive T and B cells results from sequence similarities between foreign peptides found on 

bacteria or viruses and self-peptides found naturally throughout the body. There are many 

examples of infectious agents causing autoimmune-induced pathology: β-hemolytic 

streptococci and cardiomyocyte antigen similarities resulting in rheumatic fever; 

coxsackieviruses leading to myocarditis; Trypanosoma cruzi infection followed by Chagas’ 

disease; Borrelia burgdorferi infection and Lyme disease arthritis [333, 334]. Importantly in 

many cases, adoptive transfer experiments using animal models provide direct evidence that 

infection with a particular pathogen results in its associated autoimmune disease [335].  

As discussed earlier, AT1-AA, the autoantibody associated with PE, can be effectively 

neutralized by a peptide corresponding to a short sequence on the second extracellular loop of 

the AT1 receptor, AFHYESQ. This consistent association implies that this sequence may be the 
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antigenic epitope to which the autoantibody is raised against. This fact begs the question, why 

would a sequence found on a receptor located on virtually every cell type in the body be 

autoreactive? 

BLASTing AFHYESQ in the publically available protein sequence NCBI database 

reveals a striking homology between this 7-aa sequence and the two capsid proteins, VP1 and 

VP2, of the human parvovirus B19 (HPV B19). HPV B19 is a single-stranded DNA virus 

commonly associated with hydrops fetalis, fetal anemia and childhood erythema infectiosum 

[336]. 50-70% of adults are reportedly HPV B19 seropositive [337] and the persistence of 

myocardial HPV B19 is associated with cardiomyopathies and endothelial cell dysfunction 

[338, 339]. When comparing the sequences, there is 100% homology between that found in the 

human AT1 receptor (accession number: EAW78905) and the VP1/VP2 capsid proteins of HPV 

B19 (accession number: ABX89697). The conservation between the epitope of AT1-AA and 

HPV B19 capsid proteins raises the possibility that molecular mimicry may underlie the 

autoimmune mechanism associated with PE. 

This finding has been observed by others who have performed small retroactive studies 

regarding remote HPV B19 infection, the autoantibody and the prevalence of PE. After the 

examination of normotensive pregnant and preeclamptic women for the presence of anti-HPV 

B19 antibodies and AT1-AA, Stephan et al. found that there was no strict correlation between 

the factors [340]. Therefore, the authors propose that the generation of AT1-AA was 

independent of epitope mimicry of HPV B19. This finding could be due to the confounding 

high seroprevalence in the population, and the requirement of a yet unidentified agent. 

The fact remains that HPV B19 is a very common infection in most adults and only 8% 

of pregnancies are afflicted with the complication of PE [178]. It is possible that only a portion 
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of HPV B19 seropositive women develop autoantibodies against the conserved region on the 

AT1 receptor; therefore implying that HPV B19 infection cannot be the only parameter 

resulting in this disease of pregnancy. Environment and a particular genetic background may 

also contribute to the generation of the autoantibody and preeclamptic pathophysiology. 

Immunization of mice with the VP1/VP2 capsid proteins may provide more direct evidence 

supporting (or disproving) this provocative hypothesis. Indeed, this intriguing scenario raises 

the possibility that the immunologic origin of AT1-AA could be secondary to a parvovirus B19 

infection: an exciting area requiring further investigation. 

 

Autoantibody-targeted therapeutics 

In the work presented here, 7-aa successfully attenuated the autoantibody-induced 

symptoms of PE in pregnant mice. Although these findings have tremendous implications, the 

evaluation of the therapeutic potential of autoantibody-neutralizing peptides was not a focus of 

this body of work. In the present study, the neutralization of AT1-AA by the 7-aa epitope 

peptide primarily served as a control to identify that is was, in fact, this autoantibody which 

was responsible for the pathophysiology observed. Because the AT1-AA derived from many 

different patients consistently interacted with the same epitope present on the second 

extracellular loop of the AT1 receptor, it suggests a common immunologic origin of these 

autoantibodies. 7-aa was highly effective in reducing the actions of the injected AT1-AA. It can 

therefore be inferred that they share a strong interaction and bind well to one another. 

Unfortunately, it is unlikely that this short peptide would remain stable in the circulation of 

humans or mice if it were not bound in complex with the autoantibody. Freely circulating 

peptidases would likely destroy it rapidly. Should 7-aa be used in preclinical studies and 
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potential clinical trials, the synthesis of stable derivatives will be necessary. Further 

investigation is warranted to fully exploit the therapeutic potential suggested by the results of 

these autoantibody-neutralization experiments. In a similar regard, the use of anti-idiotype 

antibodies directed at different antigen-binding regions of AT1-AA could be employed 

therapeutically. However, it must be recognized that AT1-AA stimulate the production of other 

detrimental molecules (e.g. sFlt-1, TNF-α, sEng, PAI-1, tissue factor, endothelin-1, ROS, 

NADPH oxidase), which can all contribute to the symptoms of PE. Blocking the autoantibody 

at the time of symptom-onset may not be sufficient to immediately lead to their abatement 

[149, 224].  Similar limitations would presumably apply to the potential use of plasmaphoresis, 

a strategy successfully employed in other autoimmune diseases, such as multiple sclerosis, 

which removes the harmful autoantibodies from circulation [341]. In the case of PE, once 

symptoms have arisen, many of the aforementioned factors would already be greatly elevated, 

and not be filtered from the blood during the process of plasmaphoresis. As they would remain 

in circulation, these factors would continue to incite damage and provoke preeclamptic 

features. Since the autoantibody likely appears several weeks prior to symptom development, it 

will be necessary to generate a screening method to detect it as early as possible. In this way, 

AT1-AA-mediated inductions of other factors may be blocked before they are fully elevated 

and maximum therapeutic benefit could be achieved.   

 

Autoimmune disease: a new classification of PE? 

It would be remiss to avoid commenting on the fact that it is currently not the consensus 

of the field at-large that PE as an autoimmune disease specific to pregnancy; despite the 

growing body of work implicating the role of AT1-AA.  
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Indeed, the as the in vitro and in vivo evidence mounts to support the case of AT1-AA in 

the pathogenesis of PE, other human diseases have been linked to autoantibodies capable of 

activating G-protein-coupled receptors. As previously mentioned, Graves' disease, is an 

autoimmune condition wherein autoantibodies target thyroid cells and activate the thyroid 

stimulating hormone receptor, resulting in excessive production and secretion of thyroid 

hormones resulting in hyperthyroidism [201]. Some forms of hypoglycemia are associated with 

autoantibodies which agonize the insulin receptor [342]. Patients with dilated cardiomyopathy 

harbor autoantibodies directed against cardiac β1-adrenergic receptors, resulting in a positive 

chronotropic effect in cultured cardiomyocytes [343]. Using a rat model, Jahns et al. provided 

direct evidence for autoimmune-induced β1-adrenergic receptor activation as a cause of 

idiopathic dilated cardiomyopathy [344]. This group later showed that patients who possess 

these autoantibodies are at increased risk for future cardiovascular disease and mortality [345]. 

Autoantibodies which increase α1-adrenergic receptor activity are also associated with several 

forms of hypertension [346, 347].  Finally, autoantibodies which activate the muscarinic M2 

receptor are also found in some patients with idiopathic dilated cardiomyopathy [33]. Thus 

agonistic autoantibodies which target and agonize G-protein-coupled receptors are commonly 

observed in many human conditions and considered a pathogenic factor leading to symptom 

development. AT1-AA, which agonizes the Gq-coupled AT1 receptor, may soon be recognized 

in that category. The findings presented here raise the intriguing possibility that PE may be an 

autoimmune disease associated with AT1-AA.  

Whether one believes PE is an autoimmune disease or not, it cannot disputed that AT1-

AA are found in the serum of preeclamptic patients and that they potentially contribute to the 

systemic symptoms. What initiates and perpetuates the generation of these autoantibodies are 

still areas of speculation which require further investigation. We believe that in the near future 
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PE will be considered a pregnancy-induced autoimmune condition, which could provide the 

field of immunology insight into how other conditions of autoimmunity arise and flourish.  

 

Significance 

Preeclampsia is encountered in 7% of pregnancies, responsible for 15% of all preterm 

births and 18% of all pregnancy-related maternal deaths in the US every year [29, 30, 178]. 

These are not merely statistics, but represent hundreds of thousands of families which are 

affected by this devastating disorder of pregnancy and billions of dollars spent in PE-related 

healthcare costs. Right now, delivery of the baby and placenta is our only option to “cure” PE. 

These deliveries, often premature, pose considerable immediate risk to both mom and baby, not 

to mention their increased risk for long-term health sequelae. Improvement upon the screening, 

diagnosis and treatment of this disorder are clearly required and essential to advancing the care 

not only in the US, but also in developing countries, where the prevalence of PE can be twice 

as high and the rate of death several fold higher as compared to developed nations [31, 348].  

The research presented here expands our understanding of PE and the role that AT1-AA 

may play in the manifestation of the disorder. Any insight into the disease mechanism and the 

identification of pathogenic players could improve upon the limited screening and therapeutic 

strategies available in its clinical management. It was shown that this autoantibody can induce 

preeclamptic-like symptoms in mice and that losartan, 7-aa and anti-TNF-α treatments can 

specifically reduce them. These facts have significant therapeutic implications: specific 

neutralization of the autoantibody in preeclamptic women could alleviate their symptoms. 

Moreover, should we develop an improved method of identifying the autoantibody, physicians 
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would be able to screen for AT1-AA early in pregnancy and then block autoantibody-mediated 

AT1 receptor activation or downstream molecules’ actions. This blockade could forestall or 

prevent preeclamptic symptom, thereby reducing the short- and long-term risks to preeclamptic 

mothers and their unborn children. 
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FUTURE DIRECTIONS 

 

Though the recent work reported by Dr. Xia’s lab clearly establishes the 

pathophysiologic role of AT1-AA in PE, there are still many mechanistic aspects to explore. In 

the near future, this group will attempt to: establish a timeline of autoantibody generation in 

pregnant women; determine the role of LIGHT, an emerging TNF-α superfamily member 

which contributes to apoptosis and inflammation, in AT1-AA-mediated PE; and finally, to 

elucidate the relationship between the autoantibody and syncytiotrophoblastic microparticles 

(STBMs) and their role in preeclamptic symptom development.   

 

Detection of AT1-AA in CPEP clinical trial samples  

The two most common, and arguably the most important, questions asked to our group 

and the other investigators studying AT1-AA are: (i) when does the autoantibody appear during 

gestation, and (ii) does the generation of AT1-AA precede preeclamptic symptom development. 

In order to answer these questions, one must have a collection of well-defined preeclamptic and 

control serum samples which span the course of gestation. In recent months, we have acquired 

just that. Based on our recent publication using the luciferase-based bioassay to detect AT1-AA 

in pregnant women [34], we have begun what will surely be a fruitful collaboration with Dr. 

Richard Levine of the NIH. 

To answer these two important clinical questions, we will employ the luciferase-based 

bioassay to detect AT1-AA in the serum samples collected for the large-scale, nationwide 

Calcium for Preeclampsia Prevention (CPEP) Trial. These are the same valuable samples used 

in two landmark publications which clearly established the relationship between sFlt-1 and 
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sEng levels and the onset of PE [37, 61]. Our hypothesis is that the detection of AT1-AA may 

precede overt preeclamptic symptoms in these patient samples. 

In total, we will obtain at least 3 serum samples from various time-points throughout the 

pregnancies of: 120 normotensive women, 120 women who were normotensive and delivered 

SGA infants, 120 women with gestational hypertension, 72 women with preterm PE and 120 

women with term PE. First, we will use our sensitive bioassay to detect AT1-AA and correlate 

its presence with onset of PE symptoms, in particular, the induction of the two anti-angiogenic 

factors, sFlt-1 and sEng. Secondly, by establishing a timeline of autoantibody generation in this 

large bank of well-characterized samples, we hope to generate a means to identify women at 

risk for PE – a tool lacking in the clinical management of this disorder.  

 

Preliminary data: AT1-AA-CPEP Pilot Study 

Recently, we conducted a pilot study to determine if our assay was capable of detecting 

the biologic activity of AT1-AA isolated from these samples. Dr. Levine and his team randomly 

blinded us to 24 CPEP serum samples, and we ran them in our standard manner [34]. For each 

sample, we completed 4 luciferase readings and the average value of was computed to calculate 

a raw delta value and a fold-induction ratio for each sample by dividing the average value of 

the background controls in each batch (Fig. 33).  

Though we received 24 samples, upon completion of the pilot study, we were informed 

that in fact there were only 12 patients in this pool, and that duplicates had been provided. 

Repeated measure analysis for ANOVA was applied to evaluate the within treatment effect 

(duplicate measurements for each patient) and between treatment effect (PE vs. NT). No 

significant difference was detected between the two duplicates in either raw delta or ratio 

values, P=0.3937. However, the PE group showed significantly higher deltas and ratios 
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compared to NT. Paired t-test and non-parametric Wilcoxon test were also used for additional 

testing on within and between treatment effects. The results were consistent with the repeated 

measure analysis. 

 

 

The consistency of the bioassay between duplicates and statistically significant 

differences achieved between the two groups of interest in the AT1-AA-CPEP Pilot Study 

results are highly encouraging. We are excited to proceed generating similar data in the near 

future with the remaining ~950 samples. Determining a clear and early biomarker for PE may 

provide a therapeutic window which could allow for the neutralization or removal of AT1-AA, 

providing significant preventative measures to forestall the devastating symptoms of PE and 

subsequent fetal IUGR. 

Figure 33: AT1-AA 

bioactivity was successfully 

detected in CPEP serum 

samples. A total of 12 
samples from the CPEP trial 
were randomized and 

measured in blinded duplicate 
by an NFAT-luciferase 
bioassay. Normotensive (NT), 
n=6; Preeclampsia (PE), n=6. 
There is a significant 
difference between NT and PE 
groups (P<0.0015), but no 
significant difference between 

duplicates. 
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AT1-AA and syncytiotrophoblastic microparticles 

One feature of preeclamptic women which has puzzled investigators is the presence of 

increased syncytiotrophoblast microparticles (STBMs). STBMs are membrane-bound placental 

cell fragments produced by apoptotic activity or by vesicle secretion [349, 350]. In normal 

pregnancy, minimal STBMs are shed from the placenta into maternal circulation, in contrast to 

PE, where there is excessive shedding and increased circulating STBMs [351]. The cause for 

this excess shedding is undetermined. It may be due to the poor placental perfusion leading to 

hypoxic injury and/or excessive trophoblast apoptosis characteristic of preeclamptic placentas 

[352, 353]. Additionally, it is unknown what pathophysiology, if any, results secondary to these 

circulating microparticles. Redman et al., believe that this STBM overload could be a stimulus 

for the maternal inflammatory response and the systemic endothelial cell damage observed in 

the disorder [354]. Others believe that since STBMs contain trophoblasts of fetal origin, which 

could be interpreted by maternal immune cells as foreign, a maternal immune response may be 

mounted [266]. Therefore, we will set out to answer a classic ‘chicken or the egg’ mystery, and 

will determine if STBMs represent a rich source of antigenic stimulation for the mother, 

resulting in the generation of AT1-AA and the maternal syndrome of PE; or if the autoantibody 

precedes and is a driving force for the liberation of STBMs themselves.   

In order to investigate the pathophysiologic consequences of STBMs, we must generate 

them. This can be achieved using several techniques: HTR-8 cells, mouse and human villous 

explants will be cultured under normoxic and hypoxic conditions as well as being treated with 

the apoptotic-inducing agents TNF-α and rotenone [355, 356]. STBM production will be 

quantified using flow cytometry using the trophoblastic marker, HLA-G, in a method similar to 

Orozco, et al. [357]. Then, STBMs will be analyzed by western blot for the presence of the AT1 

receptor, a possible antigenic source for AT1-AA generation. Furthermore, the cultured STBMs 
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could be injected into pregnant mice which will be monitored for preeclamptic features and the 

generation of the autoantibody. We expect that STBM production will be increased under 

hypoxic conditions, and that TNF-α and rotenone will induce their production via increased 

apoptosis. Pregnant mice injected with excess STBMs may demonstrate a preeclamptic-like 

syndrome and if injected early enough, may also generate AT1-AA. 

Alternative to the timeline studies are those characterizing the cell-surface receptor 

profiles of STBMs throughout both uncomplicated and preeclamptic pregnancies. Appropriate 

integrin subunit switching is essential for a healthy pregnancy as it enables trophoblasts to fully 

infiltrate maternal decidual and endothelial linings [358, 359]. Cytotrophoblasts in the villous 

express epithelial-like integrins (α6β4). As they migrate towards the decidual endothelium, 

their integrins transform to a vascular-type (α1β3 or α5β3) [359]. This switching is aberrant in 

PE and results in shallow trophoblast invasion and inadequate endothelial cell infiltration [360]. 

Notably, this type of integrin switching is mediated by AT1-receptor activation in other systems 

[361]. We plan to isolate STBMs from these two pregnant groups using established methods 

[351] and characterize their epithelial or endothelial-like cell surface markers using flow 

cytometry analysis. Since STBMs take on the composition of the cells from which they 

originate, we expect there to be a defined expression pattern of cell surface markers in PE 

versus NT STBMs (epithelial versus vascular) [169].   

Overall, a woman’s STBM marker profile could provide a novel screening tool as 

certain cell surface markers could indicate a risk factor for PE (e.g. integrin α6β4). 

Additionally, if STBMs prove to induce AT1-AA production, these women would be at even 

higher risk for developing a hypertensive pregnancy. Any additional tools, such as an STBM 

cell surface marker profile, used for the screening of PE will be beneficial, as they allow for 

closer monitoring of high risk women and create a window for early intervention. 
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See the LIGHT and its role in PE 

LIGHT [homologous to Lymphotoxin, exhibits Inducible expression, competes with 

HSV Glycoprotein D for Herpes virus entry mediator (HVEM), a receptor expressed by T 

lymphocytes] is a recently identified (and rather lengthily-named) type II transmembrane 

glycoprotein of the TNF ligand superfamily [362]. It has been recognized as a major 

contributor to the inflammation and increased apoptosis observed in several human diseases. 

By binding to HVEM, LIGHT co-stimulates T cells to accelerate their proliferation and 

cytokine production. In several tumor cell lines, LIGHT induces apoptosis and recent studies 

have suggested a potential role of LIGHT in inflammatory diseases including: atherosclerosis, 

arthritis, IgA nephropathy, hepatitis and inflammatory bowel disease [363-366]. Soluble 

LIGHT has been detected in these many in vitro system studies, however its presence and 

function in inflammatory diseases have not been explored in vivo. Moreover, the role of this 

inflammatory mediator has not been investigated at all in the field of PE. After reviewing the 

literature by which LIGHT produces pathology in other disorders, we decided that it may be a 

potential pathogenic player in PE, and will further investigate this novel target. 

Before determining if the autoantibody and LIGHT share a pathophysiologic 

relationship, we must first establish if LIGHT is increased in the circulation of preeclamptic 

women. For a pilot study, we collected plasma samples from both PE and NT pregnant women. 

Once our patient samples were acquired, we ran an ELISA for LIGHT (R&D Systems) to 

determine its level in circulation. The data for this initial study is provided here (Fig. 34). 
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Preliminary data: Circulating LIGHT is increased in preeclamptic women 

The circulating LIGHT measured in patient 

plasma indicates preeclamptic women have a 

significantly increased level over their NT 

counterparts (Fig. 34). None of the NT patient 

samples had markedly increased serum levels of 

LIGHT. Of the PE patient samples, 9 of 34, or ~26% 

showed a significant increase in the circulating level 

of the glycoprotein. The means for NT and PE 

plasma LIGHT levels were 0.99 and 26.45 pg/ml 

respectively, P=0.0066. Though not every PE patient 

demonstrated increased LIGHT, a value of ~26% of 

patients with increased levels is considered clinically 

worthwhile to pursue. This percentage could also be 

explained if the ELISA is not an adequately sensitive 

detection method for this molecule. Certainly, further 

confirmation of elevated LIGHT in preeclamptic 

women is necessary. Therefore, the next step will be 

to collect the placentas from affected women with 

PE and measure both the transcript and protein level of LIGHT (by RT-PCR and western, 

respectively). Then, should the levels be increased and we are satisfied that this inflammatory 

agent is consistently increased in PE, we will move forward into in vitro and in vivo studies. 

We will culture human villous explants with ANG II or PE-IgG, and after a period of 

incubation, measure the amount of LIGHT liberated into the supernatant by the explants. At 

Figure 34: Circulating LIGHT is elevated in 

preeclamptic women. ELISA measurement 

of circulating LIGHT in preeclamptic (PE; 

n=34) and normotensive (NT; n=33) pregnant 

women reveals a significant increase in PE 

patients. Dotted line; lowest detectable level of 

assay. 
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this moment, there is no literature which delineates the mechanisms by which LIGHT is 

increased. Since many other TNF-related inflammatory molecules are increased by AT1 

receptor stimulation [206, 257, 259, 367], it is plausible that LIGHT may also be. Should this 

inflammatory mediator be increased by PE-IgG not by NT-IgG, then perhaps AT1-AA induces 

LIGHT, which may play a causative role in the manifestation of PE. We could then pursue in 

vivo studies by injecting recombinant LIGHT into pregnant mice and then monitor them for 

disease symptoms, such as hypertension and renal dysfunction. We could also ascertain if AT1-

AA injected mice generate excess LIGHT and if so, whether co-injection of the autoantibody 

and losartan or 7-aa reduces this value. All of these exciting projects will help establish LIGHT 

as a novel inflammatory mediator in the pathogenesis of PE, and may potentially create a 

therapeutic opportunity in the years to come.   

 

Overall goals of future work 

The future work presented here seeks to further characterize AT1-AA in the 

pathophysiology of PE. Currently, this prevalent disorder is not considered an autoimmune 

process; however, the growing body of work implicating AT1-AA in its pathogenesis could 

lead to a paradigm shift in its screening, diagnosis and treatment. The results from the CPEP 

study could yield more defined dates for early screening of the autoantibody and STBM 

profiles prior to onset of preeclamptic symptoms. This could improve upon the limited clinical 

management available. In addition, if autoantibody-induced features could be specifically 

blocked by a drug or peptide targeting a novel molecule, such as LIGHT, perhaps the 

progression of this disease could be abated and the morbidity and mortality associated with this 

hypertensive disorder could be reduced. 
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