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Abstract 

Synthetic biology aims to build biological devices to understand living systems 

and explore new applications. Synthetic gene circuits such as genetic switches, 

oscillators and logic gates are at the core of many synthetic biology applications. 

These gene circuits often include a sensor/regulator protein capable to detect small 

molecules and then transduce them into a regulatory signal to generate measurable 

output. Similar signal transduction networks are also abundant in nature. However, in 

many natural and engineered scenarios, the output also affects the regulator/sensor 

protein.  How such interactions between the regulator/sensor and the output affect 

synthetic gene circuit function has not been investigated. In order to address this 

question, I took advantage of Saccharomyces cerevisiae synthetic gene circuits built 

previously in our laboratory: Negative Regulation (NR), Negative Feedback (NF) and 

Positive Feedback (PF). Previous research had characterized the behavior of these 

gene circuits at various inducer (anhydrotetracycline, ATc) concentrations when they 

controlled the bifunctional Zeocin Resistance gene (ZeoR) fused to the reporter 

yEGFP. In these gene circuits, yGFP::ZeoR was a passive target, which did not 

interact with its upstream transcriptional regulator. In order to study the effect of an 

http://openwetware.org/wiki/Balazsi_Lab
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active target on gene network dynamics, I replaced yEGFP::ZeoR with PDR5::GFP to 

create three new gene circuits, NRpump, NFpump and PFpump. The PDR5 gene 

produces a multidrug resistance pump that belongs to the ATP-binding cassette 

protein family. Once Pdr5 is expressed, it pumps out various small molecule 

chemicals including the inducer, altering the activity of its upstream transcr iptional 

regulators, and thereby creating a feedback loop. Therefore, these reconfigured gene 

circuits enabled the investigation of the question: how the protein pump alters the 

characteristics of the original NR, NF and PF gene circuits.  

In this dissertation, I show that the dose response behavior of the NRpump, 

NFpump and PFpump gene circuits differs from their non-pump counterparts. 

Studying gene circuits controlling non-functional PDR5 mutants indicated that the 

efflux pumping activity of Pdr5 caused loss of linearity in NFpump compared to NF 

dose-response. However, the dose-response behavior of NRpump and NFpump with 

the PDR5 mutant still differed from the behavior of the original NR and NF gene 

circuits. With the help of stochastic models developed by my collaborator, I 

hypothesized and then proved experimentally that lower expression level of the 

regulator, TetR, in all NRpump and NFpump strains (both with functional and non-

functional Pdr5) compared to NR and NF, should be responsible for the remaining 

dose response differences. Similar to the other pump-controlling gene circuits, the 

PFpump gene circuit had a more sensitive dose-response compared to the original 

PF. Although both gene circuits produced bimodal distributions, the finesses and 

cellular transition rates between the two subpopulations were different.  

Finally, I tested the evolution of non-induced NRpump, NFpump and PFpump 

strains in a fluconazole-containing environment. While PFpump cells maintained 

fluconazole sensitivity, NRpump and NFpump cells started to develop fluconazole 

resistance after 48 hours. Expression of Pdr5 was the cause of resistance. The 



viii 
 

elevated Pdr5 expression level remained the same after fluconazole removal, 

suggesting mutational breakdown of these gene circuits. However, bimodal 

expression patterns evolved in some NRpump and NFpump cell cultures after 256 

hours in fluconazole environment suggesting that other mutations might have 

occurred besides those causing gene circuits’ breakdown.  
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Chapter 1 Introduction 

 

1.1 Introduction and background 

1.1.1 Synthetic biology  

Synthetic biology is an interdisciplinary subject which combines biology, physics, 

engineering and computer science. It emerged as an independent field marked by the 

development of the genetic toggle switch 1 and genetic oscillator 2 in the year 2000. The field 

has been developing so rapidly that no clear definition is widely accepted for now. The one used 

by the Synthetic Biology Community (www.syntheticbiology.org) is ‘the design of new biological 

parts, devices and systems, and the re-design of existing, natural biological systems for useful 

purposes’. By this definition, synthetic biology creates and modifies existing biological systems. 

In order to do that, synthetic biologists employ a variety of tools in existing subjects, for 

example, concepts and technologies developed in molecular biology, systems biology, 

bioengineering, evolutionary biology and biophysics.  

Although synthetic biology is still a very young subject, the idea of building biological 

parts and systems dates back to the mid-70s in the 20th century: the discovery and utilization of 

restriction enzymes and the subsequent emergence of DNA recombination technology. 

Restriction enzymes were discovered by Werner Arber, Daniel Nathans, and Hamilton O. Smith, 

whose work won the Nobel Prize in Physiology and Medicine in 1978 3-9. This significant 

discovery immediately led scientists to be able to map DNA and manipulate nucleotide 

sequence. The advances in DNA recombination technology in the following years then led to a 

series of breakthrough achievements in science and medicine, for example, the modern 

molecular cloning technology and the production of protein drugs.  Inspired by these technology 

http://www.syntheticbiology.org/
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advancements while being aware of their limitations in complexity, scientists hoped to build 

novel biological systems or even artificial organisms to further advance understanding of biology 

and expanding its application. Synthetic biology emerged to study the engineering of biological 

systems. With the aim to engineer biology, synthetic biologists use four major approaches. The 

most common one is building standardized biological parts, including DNA, RNA and protein 

sequence. A variety of existing biological elements have been used, for example, promoter, 

terminator, activator and repressor sequence on the transcriptional regulation level, and UTR, 

splicing sequence and ribosome binding site (RBS) on the translational level 10-19. Several 

existing inventories for standardized DNA elements are also available online, such as BioBricks, 

which has been used widely internationally. Besides standardizing existing biological parts, 

another widely used approach for synthetic biologists is DNA synthesis. Nowadays with the 

rapid advancement of DNA synthesis technology, we are able to synthetize DNA sequence up 

to 5 kb in length, which has significantly improved the plasmid construction efficiency and 

accuracy. It also allows scientists to design DNA sequence with certain mutations, or special 

sequences that do not exist naturally. The third approach that advanced synthetic biology is 

DNA sequencing technology. Because synthetic biology requires high accuracy, advanced DNA 

sequencing technology works faster, cheaper and with higher accuracy rate that will definitely 

benefit synthetic biology. The last but not least used approach is mathematical modeling. 

Because synthetic biologists use standardized elements to engineer biology, computational 

simulation that is able to predict possible outcomes can provide useful insight on how the 

engineered system will behave, and save time and cost for experimental construction.  

Although synthetic biology appeared as an independent subject only 15 years ago, 

numerous achievements have been made. Biomaterial production is among the biggest one. 

Thanks to synthetic biology technology, greener energy sources such as biofuel for jets and 

vehicles is being produced by microorganisms. Cosmetics and food ingredients, vaccine and 
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pharmaceuticals are also being produced by synthetic biology means in biotech and 

pharmaceutical industries. Besides facilitating drugs production, synthetic biology also 

accelerated the discovery of drug targets and facilitated drug delivery. Synthetic systems built 

with controllable biological elements can assist the discovery of disease mechanisms and 

identification of drug target 20; synthetic gene circuits built to work as oscillators can deliver a 

drug periodically as desired 2, 21. In addition, biosensor design is another active research area in 

synthetic biology, which generated influential applications. A series of biosensors were 

developed for both basic scientific research and industrial applications. For example, synthetic 

de-greening biosensors in plants were used to detect explosive molecules in the air 22; metal 

detection biosensors were able to detect certain chemicals underground and were used in a 

mining startup. More fancy research and applications have been created with synthetic biology 

tools. For example, in May 2010, Craig Venter's group announced that they had been able to 

assemble a complete genome composed of millions of deoxyribonucleic acid base pairs. When 

it was used to replace the original genome in a cell, the cell was able to replicate 23, which was 

the first artificial life built in the laboratory. Scientists also use DNA sequence for information 

storage. George Church’s group encoded one of his books on synthetic biology into DNA 24.   

Behind most of these advanced technologies developed by synthetic biologists are 

synthetic gene circuits. ‘Gene circuit’ is a term borrowed from electronic engineering, and it 

reflects the idea that synthetic biologists are treating gene elements as electronic elements, 

aiming to completely control the outcome signal. Under the influence of this concept, toggle 

switches 1, oscillators 2 and digital logic gates 25 were built as first-generation systems. These 

systems successfully integrated regulatory DNA elements into microbial genomes and were 

able to program the behavior of those microorganisms. By doing so, they also discovered the 

switches, oscillators and logic gates in natural biological systems 26. The exciting news of 

programmable cells and natural regulators attracted a number of scientists to work in this field. 

https://en.wikipedia.org/wiki/Craig_Venter
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Initially, they engineered natural promoter sequences to be inducible in order to utilize natural 

transcription factors such as Gal4, TetR and LacI. While the intracellular level of TetR and LacI 

can be regulated by tetracycline family molecules and IPTG respectively 27, 28, synthetic gene 

circuits based on these systems are subsequently under control of these inducers to a range of 

expression. Later on, more complicated gene circuits involving negative feedback loops and 

positive feedback loops were built, and their behaviors were studied 29. With the growth of 

synthetic biology research, the regulation of gene circuits evolved from the transcriptional level 

to include translational and post-translational level regulation. The clustered regularly 

interspaced short palindromic repeat (CRISPR)/Cas9 system was initially discovered as part of 

a bacterial immune system, but now it is used for gene editing and RNA driven gene 

modification 30.   

Despite numerous advances in the study of gene circuits and gene networks, obstacles 

and challenges exist. Living cells are more complicated than electronics; simply applying the 

concepts from electronic engineering is insufficient to engineer biological systems. With 

mutation and evolution playing a critical role in biology, variability of genetic elements created 

big problems. Besides, although our knowledge and information in biology and medicine 

increased exponentially, the unknown expanded to in a greater degree. Therefore, it is very 

difficult to standardize and modularize elements in biology as experts did in the field of 

electronic engineering. Great effort is still needed in order to overcome these challenges in the 

future.   

 

1.1.2 Gene expression noise 

Gene expression is a stochastic process. The variation generated during the gene 

expression process is called gene expression noise. Genomically identical cells growing in the 



5 
 

same environment have different expression levels for a gene of particular interest.  For 

example, considering a population of cells with identical genomes cultured in the same medium, 

any particular gene of interest can express different amounts of RNA from cell to cell and over 

time in a single cell. The reason for this difference is random factors, for example, unpredictable 

thermodynamic movement of transcription factors and promoters in the cell, random partition of 

molecules during cell division, response to unpredictable environmental stimuli, etc. This 

phenomena was first observed in experiment by Novick and Weiner that the production of β-

galactosidase was different in each bacterial cell 31.  A few decades later, another group 

confirmed their discovery and further showed that the difference in terms of β-galactosidase in 

individual cells was enlarged by increased induction level 32. However, the effort to study 

stochasticity of gene expression was not done until 2000 when Elowitz et al designed a 

synthetic gene circuit that produced oscillations, which were triggered by stochastic gene 

expression 2. Two years later, the same group designed two gene circuits that have identical 

promoters, but different reporters. Then these two gene circuits were inserted in the symmetrical 

position on the genome of E.coli. Two observations were obtained; first, the expression of two 

reporters showed the same level across the entire experiment; second, two reporters showed 

different expression level 25. These results led to the discovery of two types of gene expression 

noise, extrinsic noise and intrinsic noise. Intrinsic noise refers to gene specific variation that 

comes from the stochasticity of biochemical reactions in the cell such as transcription and 

translation, and it is specific for the particular gene of interest. Intrinsic noise leads to cell-to-cell 

variation in terms of expression level of a particular gene in a cell population. There are many 

factors that contribute to intrinsic noise such as promoter sequence and structure and location 

on the chromosome 33. Extrinsic noise is caused by global factors that indirectly linked to the 

gene of interest in biochemical reaction processes such as transcription, translation and 

biomolecule degradation. For example, the amount of RNA pol II, ribosome and proteasome 

available in the cells contribute to the extrinsic noise in the expression of target genes. Other 



6 
 

factors such as variable molecule partitioning during cell division and asynchronous timings of 

their cell cycle also result in extrinsic noise. Extrinsic noise can be categorized into two types 

based on the origin: pathway specific and global. Pathway specific noise can be caused by the 

availability of specific transcription factors, while global noise usually comes from chromatin 

remodeling or ribosome abundance 33.  Elowitz et al also discovered that promoter strength was 

related to both intrinsic and extrinsic noise 25. Their conclusion was later confirmed by the 

discovery that transcription and translation occurred in bursts in bacteria 34-37.  

After these discoveries in bacteria, research on gene expression noise in eukaryotes 

attracted more attention. Although transcriptional busts have been confirmed as one of the 

sources for gene expression noise in yeast cells, research in budding yeast has discovered that 

gene expression noise in eukaryotes is different from bacteria 38-41. The most important 

difference is chromatin remodeling. In eukaryotic cells, DNA is packed with nucleosome to form 

a compact structure, the chromosome. When transcription begins, chromatin structure switches 

into open and acetylated state from a condensed structure, where transcription is blocked. 

Studies also identified that essential genes tend to cluster together while non-essential gene 

cluster together on the genome, and established the correlation between the location of gene 

clusters and gene expression noise. They found that essential gene expression is much less 

noisy than non-essential genes and this was because of their location on the chromosome 42. 

The location where essential genes cluster showed open chromatin structure, while location 

where non-essential genes cluster had more condensed structure on the genome 43. Locations 

of transcription factors were also found to be influential over gene expression noise 44. 

Additional studies indicated that the gene expression noise in yeast cells is mostly from extrinsic 

origins, which was confirmed by the fact that different genes showed the same noisy expression 

pattern 38, 45-47. Cell size and chromatin remodeling were considered the major contributors 46-48. 
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However, the theoretical studies of extrinsic noise are still lacking because of lack of robust 

mathematical models 49.  

With technical advancement and increasing knowledge of gene expression noise in 

budding yeast, more interest has been attracted to study that in mammalian cells. In the 

beginning, gene expression noise was expected to be much lower in mammalian cells, because 

of their low protein numbers the lower number of molecules, the higher randomness it becomes 

50. However, more and more research has found the opposite. Measurement of mRNA 

expression in single cell observed burst of transcription 51-54, which showed similar pattern as it 

was observed in bacterial cells, but lasting longer and less frequent. Similarly,  protein 

expression was also observed to happen in bursts in mammalian cells, which resulted in cell-

cell variation 43.  

The discovery that essential genes tend to cluster together on chromatin open locations 

suggested that noisy expression of essential genes may have lethal consequences. However, 

the relatively more noisy expression of nonessential genes triggered the idea that noise can be 

beneficial to certain cells or in certain circumstances. One major outcome of noisy gene 

expression is to create diversity of phenotypes. One example is the expression of odorant 

receptors in sensory neurons in mice. Over a thousand odorant receptors have been found in 

different sensory neurons, their expression was random and mutually exclusive 55, 56. Our 

traditional view of stem cell diffraction and development is deterministic. However, stochastic 

gene expression has been shown to play a major role. Researchers found that genomically 

identical individual cells with expression of certain stem cell markers correlate with their further 

fate of differentiation 57. Not only was an advantage of gene expression noise was found in 

mammalian cells, it was also discovered in unicellular organisms. Genes encoding metabolic 

pathways are stochastically switched between on and off states. For example, gene products 

that utilize lactose as energy source in E. coli 58, 59 and the GAL3 gene in yeast 60. Some 
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attempts have been made to explain the causes of these phenomena. Some researchers 

claimed that stochastic switching between two states maximize the growth rate of cells 

population when environment change frequently 35, 61.  Bacterial cells use expression noise of 

drug resistance gene as a protective strategy against adverse environment 62. When adverse 

environment comes, cells with high expression of drug resistance genes are more likely to 

survive. Another example involves the competence in B. subtilis. Two survival states exist in B. 

subtilis, competence and vegetative states. In competence state, comK expression was 

activated and its expression amplified by a positive feedback loop, while vegetative state 

showed only basal level of comK expression. The two states resulted in bimodal expression of 

comK in a cell population, and they transit between each other 63. In summary, gene expression 

noise is random, and can be both good and bad depending on the situations. To really answer 

these questions, we ought to ask, can noise be regulated? The answer is yes, synthetic 

biologists are already using different regulatory network to regulate gene expression noise.  

 

1.1.3 Synthetic gene circuits for noise control 

Based on the studies to understand and characterize gene expression noise in both 

natural and synthetic systems, researchers also attempted to control noise by building synthetic 

gene circuits. The first attempt was to control a downstream reporter by upstream regulatory 

elements to study its gene expression noise 36, 64, 65. They found that the variation in the 

upstream regulatory parts can affect expression noise in the downstream genes, and the effect 

was heritable. Later on, more research has been done to investigate more complex synthetic 

gene circuits. I am going to talk about the basic gene circuits in the following context. 

 

Auto regulation  
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Auto regulation is the simplest regulatory cascade in the transcriptional level. Basically, it 

needs a transcription factor that binds to its own promoter and regulates its own expression. 

Auto regulation can happen in either self-inhibition or self-activation forms. Research has found 

that the auto regulation on gene circuit was able to reduce noise by decreasing the size of 

transcriptional bursts, which caused the reduction of time to reach steady states 66-70.  Besides, 

auto regulation is also involved in oscillation induction and reduces the metabolic cost by 

reducing mRNA usage 2, 71, 72.  On the contrary, positive auto regulation has been found to 

increase gene expression noise and take longer time to reach steady states 67.  

 

Negative feedback (NF) gene circuit 

Negative feedback gene circuit involves more complex regulatory components. On the 

transcriptional level, usually there is a repressor that represses the transcription of both the 

transcription factor and downstream target gene. It has been found that negative feedback loop 

was able to reduce gene expression noise (for both transcription factor and the downstream 

target gene) and speed up the response time 66, 73, 74. Because only one steady state has been 

demonstrated to exist, any fluctuations deviating from the mean would be pushed back 35, 74-77.  

It was also able to generate linear response to inducer up to saturation 29. By modifying the 

number of repressor binding sites on the target promoter region, the authors were able to 

change the linearity of the dose response curve, which indicated the correlation between 

promoter sequence and the noise expression in synthetic gene circuits 29.  

 

Positive feedback (PF) gene circuit 
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Positive feedback regulatory network is usually composed of a transcription factor that 

regulates a downstream target gene. An activator is able to activate the transcription of both 

itself and its downstream target gene. Positive gene circuits have been found to amplify noise. 

Therefore, a low activator expression is able to activate further expression of it and the target 

gene, which usually led to the two stable steady states, one with maximum level of expression, 

and one with basal level. It has also been found that cells in these two states were able to 

switch between states 1, 77-80. Further studies discovered that the switching rates between the 

two states were different, and the existence of stable bimodal expression states were a result of 

different cellular growth rate memory in the two states 81. Cellular memory refers to the time an 

individual cell staying in one stable steady state 60.  
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Figure 1.1 Scheme of auto regulation and feedback regulation. 

A. Auto regulation (Inhibitor). B. Auto regulation (Activator). C. Negative feedback regulation. D. 

Positive feedback regulation  
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1.1.4 Tetracycline controlled transcription 

Tetracycline controlled transcription is a system that was developed from the tetracycline 

resistance operon in E.coli 28. The natural operon functions to protect bacterial cells from 

antibiotics such as tetracycline. It is composed of a Tet repressor, TetR, which inhibits the 

transcription of the tetracycline resistance protein, TetA. The TetR binding sites on the promoter 

are called TetO sites. It’s been reported that the binding of tetracycline or its derivatives 

(doxycycline, etc) are able to reduce the affinity between TetR and TetO by 9 orders of 

magnitude, which leads to the release of TetR from the promoter and therefore activation of 

target gene transcription. Researchers started to use this natural system to study the gene of 

interest by placing it under the control of a natural tetracycline resistance promoter. This is 

called the T-REx system. Later on, Tet-on and Tet-off were distinguished; since then, more 

research has been done to modify and improve the system 82-86. Placing the TetO sequence on 

other natural promoters in other bacteria, yeast and mammalian cells revealed that the modified 

Tet systems were able to induce transcription of target gene of interest again as well. Further 

modifications also led to the construction of Tet-On system. This system is composed of an 

activator instead of the repressor in the T-REx system, and the TetO sequence in the promoter 

region. The activator activates the transcription of the target gene in two ways, induced by 

tetracycline or not. Other modification has also been done to increase the activator’s sensitivity 

and specificity to doxycycline, which works better than tetracycline in terms of its lower light 

sensitivity 83. The activator in Tet-on system, tTA, was originally created by fusing TetR with the 

acidic domain of HSV VP16, which is a transcriptional transactivation domain in eukaryotic cells. 

As a result, binding of tetracycline family molecules leads to the release of rTA from the 

promoter and inhibits transcription of target genes. Another activator that has been used widely 

is rtTA, which was modified on the basis of tTA by introducing a few mutations on TetR, which 

transferred the function of transactivator to bind DNA in the presence of inducer. rtTA requires 

binding of tetracycline to activate the transcription of target genes. Recently, a more advanced 
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Tet-on system was created, Tet-Oh 3G, which showed reduced basal expression and higher 

sensitivity to inducers. This new system was constructed by using human optimized codons 84.  

 

1.1.5 ATP-Binding Cassette (ABC) family 

The ATP-binding cassette (ABC) superfamily was first discovered in bacteria 87. Early 

biochemists studying molecules across cell membranes discovered that the transporter in 

charge of the process was also responsible for regulatory and other functions. Researchers 

later discovered that some of the transportation processes were coupled with ATP hydrolysis, 

which led to the identification of a group of closely related proteins in several bacterial species 

88-90. These proteins are both functionally and structurally related, as they are all involved in cell 

division, and substrate transport across the membrane and ATP hydrolysis. Later on, ABC 

family proteins were discovered in eukaryotes, including yeasts and humans, and their 

importance rose significantly after the discovery of their role in multidrug resistance in a variety 

of diseases. Increased expression of ABC family proteins was associated with resistance to 

chemotherapy in cancer and fungal infections, which usually led to the failure of medical 

treatment. Since then ABC family proteins received considerable attention. The structure of 

ABC transporters is highly conserved, including a phosphate binding domain and the consensus 

sequence ‘LSGGQ’. It has been reported that 1% to 3% of the genome in microbes encodes 

ABC transporters 91. 48 ABC transporters have been identified in human so far 92, 93.  

In Saccharomyces cerevisiae, 31 ABC transporters have been discovered, and they 

have been divided into 5 subfamilies based on their phylogenetic features 94.  Among them, the 

Pleiotropic drug resistance (PDR) proteins are mainly responsible for multidrug resistance by 

exporting toxic molecules across cell membrane. There are 9 full sized proteins in the PDR 
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subfamily, PDR5, PDR10, PDR11, PDR12, PDR15, PDR18, SNQ2, AUS1 and YOL075c 95. 

Pdr5 plays the most important role in transporting molecules across cell membrane.  

 

1.1.6 PDR5 

PDR5 gene was discovered in 1990 when Leppert G et al. cloned a DNA fragment that 

was able to confer resistance to cycloheximide and sulfometuron methyl treatment by 

overexpression in yeast cells 96, while mutants with disruptive mutation on PDR5 showed 

hypersensitivity to these drugs. Then PDR5 was identified to be regulated by the transcription 

factor, PDR1 in S. cerevisiae. Four years later, the complete sequence of PDR5 was published 

and then this 160-kDa protein was officially considered as a member of ABC family. Further 

studies by Leonard et al and Kolaczowski et al indicated that the non-functional PDR5 mutant 

led to reduced R6G (a fluorescent dye) and drug efflux, and demonstrated that PDR5 deficient 

cells were more sensitive to anti-cancer drugs 97, 98.   

The Pdr5 protein is composed of two transmembrane domains (TMDs) and two 

cytoplasmic domains (NBDs). TMDs include 12 alpha helices on transmembrane segments 

(TMSs) and several of them associate with each other compromising the substrate binding sites 

99, 100. Site-directed mutagenesis studies revealed that individual TMSs sequences 

predominantly determined substrate specificity. Function and position of several TMSs have 

been identified. TMS 2 locates at the binding pocket of Pdr5, and TMDs10 is on the opposite 

position. TMS1 and TMS7 are responsible for membrane localization of the entire TMDs 101. 

Although effort and progress regarding the structure and function of TMDs have been made, no 

exact structure of TMDs have been discovered so far, Rutledge et al proposed computational 

simulation of Pdr5 structure based on its amino acid sequence 102, 103, which might give insight 

for further study on TMDs structure. NBDs are located at the cytoplasmic side of Pdr5 protein 
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and are mainly responsible for ATP hydrolysis, which provide energy for the conformational 

change on TMDs.  Unlike TMDs, which have rare sequence homology across different ABC 

transporters, NBDs are relatively well conserved. Certain sequences are highly conserved on 

NBDs and play very important functions. These sequences include the Walker A motif, Walker B 

motif and ABC signature. Research discovered that the association between Walker A motif and 

the β- and γ-phosphates of ribonucleotide is essential for ATP hydrolysis 101.       

ABC family proteins have an enormous variety of substrates. Generally, the two trans 

membrane domains (TMDs) are responsible for substrate recognition and binding while the two 

nuclear binding domains (NMDs) provide the energy source and facilitate the conformational 

change 100. The TMDs can switch between two structures, the inward facing substrate binding 

structure, and outward facing substrate release structure 89. It has been discovered that TMDs 

with these two conformations have different affinities towards the substrates, which might 

explain one way efflux pumping function of Pdr5. Based on previous research and discoveries, 

a simple model of substrate efflux pumping has been proposed. The process starts with TMDs 

in the inward facing conformation, while their substrate binding sites are active. Once TMDs 

recognize their substrates and bind to them, NBDs bind to ATP and start to hydrolyze it into 

ADP, which provides the energy for the conformational change on TMDs. Then TMDs change 

from inward facing position to outward facing position, substrates are transferred from the 

cytoplasm to the outer site of cell membrane. Because TMDs’ affinity for the substrates is 

significantly reduced in outward facing conformation, substrates are released to the outside 

environment. Recent research found that this decreased affinity for substrates in outward 

position might be due to the position change of active binding sites on TMDs. After the 

substrates release, TMDs switch back to inward facing conformation, and ADP is converted into 

ATP and released from NBDs. This model explained the efflux pumping function of Pdr5 well, 

but some detailed mechanism are still unclear and the order of steps in the model is in debate. 
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Robert et al discovered that the two NBDs on Pdr5 do not function equivalently. Site directed 

mutation assays indicated that the ATP hydrolysis at NBD2 active sites is important to initiate 

TMD conformational change, while the ATP hydrolysis site at NBD1 is negligible. Higgins & 

Linton proposed that the ATP hydrolysis only occurred after substrates release from TMDs in 

the outward facing conformation. However, 3 years later a contradictory conclusion was made 

by Oldham et al that the cross talk between TMDs and NBDs are essential mechanism to 

prevent ATP hydrolysis and NBDs dimerization without binding to substrates.  
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Figure 1.2 Structure of Pdr5. 

Pdr5 has four domains, two transmembrane domains (TMDs) and two nuclear binding domains 

(NBDs). NBDs were initially associate with ATP, once TMDs bind to the substrates, ATP was 

hydrolyzed into ADP, which then changed the conformation of TMD, and the substrates were 

pumped out.  
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Another intriguing question that has been studied for years was the extremely diverse 

substrates of Pdr5. In order to study this, researchers replied on the experience from studies of 

other ABC family transporters. The Pdr5 homologous protein in human cells, p-glycoprotein was 

discovered in 1971, almost 20 years before the first identification of Pdr5. Its importance drew 

much attention since its involvement was found in resistance to anticancer drugs. Although rare 

similarities had been found on their sequence, their functions and substrate recognition were 

similar, Marcin Kolaczkowski et al discovered that the two proteins share 22 substrates and their 

efflux pumping function were both inhibited by the same inhibitors 104-106. A series of random and 

site directed mutagenesis assays revealed that the transponder inhibitor and some of the 

mutants with impaired efflux pumping function depend on the same structural feature.  Further 

studies using different types of substrates found that Pdr5 might have two or three substrate 

binding sites. However, even though multiple substrate binding sites have been identified, the 

mechanism of selection of various types of substrate is still unclear. In 2003, Golin et al reported 

that Pdr5’s recognition of substrates is site-dependent; the optimum size of Pdr5 substrates is 

around 200 to 225 Angstron 107. In 2007, the same group published another discovery that 

hydrogen bonds formed between TMD and the substrates also contribute to the substrate 

selection 108-110. However, debate in this field is still ongoing. In 2009, R. Ernst proposed the 

kinetic substrate selection model, namely that the substrate selection of Pdr5 was determined 

by the kinetics of transporter-substrates and transporter-nucleotide 111. In the model, the authors 

argued that more substrates being transported out of the cytoplasm did not necessarily equal 

higher substrate affinity. For example, given the same affinities of fast and slow substrate 

kinetics, the one with fast kinetics is transported more efficiently, which resulted in more 

substrates transported out by Pdr5.  
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1.1.7 Biofuels and their production 

Industrialization improved the quality of human lives significantly, but on the other hand, 

it aggravated the environment we all depend on. According to United States Environmental 

Protection Agency, the emission of greenhouse gases has been increasing dramatically since 

1950, when the consumption of fossil fuels was 1/7 of the amount used in 2008, and it along 

accounted for 57% of the total greenhouse gas emission globally. The use of fossil fuels has 

changed our climate irreversibly and caused global warming, it also resulted in the production of 

acid rain, smog and harmful particles in the atmosphere. This adverse effect endangered 

hundreds of living organisms and is threatening our own lives as well. Therefore, the demand 

for clean energy sources now has become stronger than ever. The mainstream alternative 

energy sources are wind, solar, nuclear and bioenergy. Bioenergy refers to the energy sources 

generated from living organisms or organic products.  The huge benefit of bioenergy and the 

leading potential of bio-economy therefore attracted attention from the scientific community. 

Research in the field of biofuel production has been intense and numerous improvements had 

been made. The first generation biofuels were mostly bioethanol, biodiesel and biogas made 

from sugar, starch, vegetable oils or animal fat. They are able to blend with current petroleum 

based fuels, fit the internal combustion engines and distribute through existing infrastructure. 

Therefore, it has been widely used in transportation today 112. However, the first generation 

biofuels also caused concerns. They were produced from food sources, and naturally competed 

with food consumption 113. With a strong will to produce economically advantageous biofuel in 

the scientific community, second generation biofuels appeared. This novel biofuel type 

produced from plant biomass, which mainly refers to the lignocellulosic feedstock. Those 

lingocellulosic materials are abundant and cheap. Most importantly, it is not food source, and on 

the contrary, it is mostly waste and need to be degraded. However, the cost of production of 

second generation biofuel turned to be much higher than fossil fuel. The major obstacle now is 

the biofuel productivity and yield. A number of microorganism hosts have been studied to 
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produce biofuel, such as Escherichia coli, Saccharomyces cerevisiae, Zymomonas mobilis, 

and Clostridium acetobutylicum. These microbes’ metabolic pathways were modified to 

maximize the production of biofuel.  The genome of Escherichia coli was engineered to do both 

plant biomass digestion and hydrocarbon production at the same time 114.  The metabolism of 

fatty acid production were rewired in the DNA level in E. coli to overproduce fatty acyl-CoA, 

which is a general substrate for the production of esters and alcohols 115, 116. Hydrogen 

production pathways were modified in algae and cyanobacteria to enhance photosynthesis and 

sugar storage 117, 118. Non-essential metabolic pathways were also eliminated 119. In order to 

maximize the production of biofuels, scientists not only work on the genome level, even RNA 

and proteins were engineered as scaffolds for metabolic pathway optimization 120. 

Although tremendous effort has been put on the research to improve biofuel production, 

one major challenge still remained. Too many biofuel molecules are toxic to the microbe hosts, 

which will decrease their growth rate and therefore, further biofuel production. Over production 

of biofuel molecules in those microbes cause direct damage to proteins or other large molecules 

that are essential for the cells to maintain growth rate, and therefore cause stress response 121-

124. Other damage that biofuel molecules may cause is cell membrane permeability. Biofuels are 

easily attached to the cell membrane because of the high carbon and fatty acid in both 

complexes, and therefore, unbalance the chemical and electronic gradients across the cell 

membrane. One solution is to select microbe strains that are highly tolerated with high 

intracellular biofuel concentration. The other one is to use efflux pumps to exclude biofuel and 

keep the microbes growing at an optimized rate.   
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1.2 Significance of the study 

Synthetic biology aims to build biological devices for predefined purposes 26, 125-128. One 

important goal for synthetic biologists is to construct synthetic gene circuits 129, 130 that function 

as switches, oscillators, logic gates, precise dimmers, or counters 1, 2, 29, 71, 131-135. Small molecule 

inducers that bind to the protein components of such gene circuits are often used to control their 

function externally. The hope is that by placing specific genes under the control of such 

inducible synthetic gene circuits, users can deliver precise stimuli to cell populations. For 

example, the use of synthetic gene circuits can improve the controlled secretion of drugs or 

biofuel compounds for clinical or industrial purposes 123, 136. Secreting drugs and biofuels 

requires protein pumps that actively move them across the cell membrane. ATP-binding 

cassette (ABC) family multidrug resistance pumps are prime candidates to fulfill this function. 

Highly conserved across bacteria, fungi, and mammals, ABC family pumps cause microbial 

resistance to antibiotic treatment and chemo resistance to tumors by pumping out a wide range 

of compounds into the extracellular medium 137. However, protein pumps controlled by synthetic 

gene networks that respond to inducers can secrete the intracellular inducer and thereby lower 

its concentration (in addition to the molecule species they are intended to secrete). This 

introduces a feedback 138 that may alter the function of synthetic gene networks, and may be 

important to understand if protein pumps are to be used as parts of synthetic gene circuits. Yet, 

the effect of protein pumps on synthetic gene circuit function has not been thoroughly 

investigated.  

The major goal of this dissertation was to study the interaction between a protein pump 

and three gene circuits that regulate it. To answer this question, I modified three previously 

characterized, TetR-based synthetic gene circuits inducible by tetracycline analogs, called the 

negative regulation (NR), negative feedback (NF), and positive feedback (PF) gene circuits. My 

lab members have characterized previous versions of these gene circuits that control a passive 
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target gene (yEGFP::zeoR), which does not affect its upstream transcriptional regulators 29, 81. 

Here, I replaced this passive target gene with the yeast pleiotropic drug resistance pump-

fluorescent reporter fusion gene PDR5::GFP. Once PDR5::GFP is expressed, it pumps out the 

inducer, altering the activity of its upstream transcriptional regulators, and creating a negative 

feedback loop. I showed by experiment how this feedback loop altered the dose-response of the 

original three gene circuits. Moreover, I also identified mechanisms underlying an additional, 

unexpected change from introducing the gene that encoded the protein pump that applied to NR 

and NF gene circuits. Additional changes for PF gene circuit caused by PDR5 was discovered 

as well in terms of growth rate and cellular memory.  

Another question this dissertation addressed was the evolution of gene circuits. One 

goal of synthetic gene circuits was to study regulatory networks that commonly exist in natural 

systems. Study of the evolutionary course of synthetic gene circuits was able to provide clues 

on the evolution and natural selection of natural regulatory networks, such as the positive loops 

in the transcriptional regulation of natural PDR5 gene. Here I evolved these three gene circuits 

controlling PDR5::GFP fused gene in constant fluconazole environment. The results were 

unexpected, and potential evolutionary mechanisms were identified. The results uncovered the 

interaction between PDR5 and its upstream regulatory elements during evolution course in 

fluconazole containing environment.  
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Chapter 2 Materials and methods 

 

2.1 Experiments 

2.1.1 Construction of synthetic gene circuits 

Each synthetic gene circuit we used consisted of two parts originating from separate 

plasmids: a bifunctional reporter and the regulator (Figure 1). We obtained the PDR5::GFP 

fusion by PCR amplification from whole-genome extraction of the GFP-tagged yeast library 139 

and cloned it into the pRS4D1 integrative yeast plasmid, which was used to build the NRpump, 

and NFpump gene circuits 39, 40, chromosomally integrated into the GAL1-GAL10 locus as 

previously described 29, 140. In each NRpump558/312 NFpump558/312 version, a single 

nucleotide mutation was introduced on PDR5 gene before following the same procedure for 

yeast genome integration. In the S558Y mutant, the C was changed to A at position 1673 in the 

PDR5 gene. In the G312A mutant, the G was changed to C at position 935 in the PDR5 gene. 

For the construction of two color gene circuits, TetR gene in the regulator plasmid was replaced 

with TetR::mCherry fusion gene. Other construction procedures were the same.  

Primers used for the construction and verification of gene circuits: 

PDR5::GFP fusion primers: 

PDR5-BamHI-f:               5’-gcgcggatcctattaaaATGCCCGAGGCCAAGCTTAAC-3’ 

neGFP-XhoI-r:                 5’-gcgcctcgagCTATTTGTATAGTTCATCCATGC-3’ 

Primers for sequencing PDR5::GFP fusion: 

PG-Seq1 –f:                     5’-ACAGAACCGTATCAAGGGTGTC-3’ 

PG-Seq2 –f:                     5’-TTCTTCTCTGTTAGAAATCTTTTCG-3’ 

PG-Seq3 –f:                     5’-TATTTCACTGGAGAAACCTTTGTTACG-3’ 

PG-Seq4 –f:                     5’-GAAAGGTTCGATAACTGCAGCTG-3’ 
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PG-Seq5 –f:                     5’-TCTACGTTTATGTTGGTTCTATGG-3’ 

PG-Seq6 –f:                     5’-GGAAACATTCTTGGACACAAATTGG-3’ 

PG-Seq7 –r:                     5’-CATCTCTCACTGTAGAAAGAATTG-3’ 

PG-Seq8 –r:                     5’-TCAGCTGCAGTTATCGAACCTTTC-3’ 

PG-Seq9 –r:                     5’-CTTCGTAACAAAGGTTTCTCCAGTG-3’ 

PG-SeqA –r:                     5’-AAAAGATTTCTAACAGAGAAGAAAATGC-3’ 

PG-SeqB –r:                     5’-CTATCGACACCCTTGATACGGTTCTG-3’ 

PG-SeqC –f:                     5’-ACTCATGGTTTTGATCTTGGTGCAGATAC-3’ 

PG-SeqD –f:                     5’-TGTACTAACTGAAAAGAATGCAAATGACC-3’ 

PG-SeqE –f:                     5’-ATGGTGCTCATAAATGCCCTGCTGACG-3’ 

Orientation of the insert after inserting into pRS403 (his marker) plasmid: 

Insert-f:                            5’-AATTGGAGCGACCTCATGCTATACCTG-3’ 

Backbone-r:                     5’-CGCGTTGGCCGATTCATTAATGC-3’ 

 

2.1.2 Strains and Media 

The haploid S. cerevisiae strain YPH500 (α, ura3-52, lys2-801, ade2-101, 

trp1Δ63, his3Δ200, and leu2Δ1) (Stratagene) was used as a parental strain. The reporter 

plasmid was integrated into the native Gal1-Gal10 locus first. Then the regulator plasmid was 

integrated into the AmpR gene in the reporter plasmid by homologous recombination. The 

transformation procedure was described before 141. Strains with single integration were selected 

by PCR and flow cytometry. All cell cultures were grown in synthetic drop-out (SD) medium with 

appropriate selection markers and 2% galactose.  

Primers used for strains verification: 

Before2TRP-r:                 5’-CACATATATTACGATGCTGTTCTATTAAATGCTTCC-3’ 

TetREnd-f:                        5’-ATGCGGATTAGAAAAACAACTTAAATGTGAAAGTGG-3’ 
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HIS-f:                                5’-ATGACAGAGCAGAAAGCCCTAGTAAAGC-3’ 

HIS-r:                                5’-CTACATAAGAACACCTTTGGTGGAGGG-3’ 

TRPSeq-f:                         5’-GGTGAAAACCTCTGACACATGCAGCTCC-3’ 

HIS-Begin-r:                     5’-ACGCTTTACTAGGGCTTTCTGCTCTGTC-3’ 

TetR-BamHI-f:                 5’-GCGCGGATCCTATTAAAATGTCTAGATTAGATAAAAG-3’ 

TetR-XhoI-r:                     5’-GCGCCTCGAGTTAAGACCCACTTTCACATTTAAG-3’ 

            

2.1.3 Endogenous Pdr5 knockout 

KanMX4 cassette was used for Pdr5 knockout. This cassette confers resistance to 

geneticin (G418), and was used as selection marker for successful knockout. First of all, a dose 

killing curve was done to optimize geneticin concentration for selection. A series of geneticin 

solution were made with different concentration and used to treat target strains, a positive 

control was used as reference. 200mg/ml geneticin was selected for my target strains. KanMX4 

cassette was amplified to include upstream 45 nucleotides and downstream 45 nucleotides of 

native PDR5 gene. Then the PDR5 specific KanMX4 cassette was transformed into target 

strains to replace endogenous PDR5 gene through homologous recombination. Transformation 

was done with the method describe by R Daniel Gietz’s methods 142. 0.3 µg KanMX4 cassette 

was use for transformation. Deletion of endogenous PDR5 gene was confirmed by PCR.  

Primers used for PDR5 knockout: 

PDR5-deletion-UP45:     

5’-TTAAGTTTTCGTATCCGCTCGTCGAAAGACTTTAGACAAAAATG-3’ 

PDR5-deletion-DN45:      

5’-CATCTTGGTAAGTTTCTTTTCTTAACCAAATTCAAAATTCTATTA-3’ 

PDR5-deletion A:              5’-TTGAACGTAATCTGAGCAATACAAA-3’ 
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PDR5-deletion B:              5’-TACCTAAAACGACTAGCAATTCA-3’ 

PDR5-deletion C:              5’-GCCTCTTTGTTGTTTACAATGTC-3’ 

PDR5-deletion D:              5’-TCACACTAAATGCTGATGCCTAT-3’ 

Kan B:                                 5’-CTGCAGCGAGGAGCCGTAAT-3’ 

Kan C:                                 5’-TGATTTTGATGACGAGCGTAAT-3’ 

 

2.1.4 Site directed mutagenesis 

Reporter plasmid (pDN-G1PGlbh) containing PDR5::GFP fusion gene was modified with 

site directed mutagenesis in order to create non-functional Pdr5 protein. In the first mutant, No. 

4734 nucleotide, cytosine, on the plasmid pDN-G1PGlbh was converted to thymine. In the 

second mutant, the nucleotide No.3997, guanine, on the plasmid pDN-G1PGlbh was converted 

to adenine. This procedure was done with QuikChange II XL Site-Directed Mutagenesis Kit. 

Desired mutation was introduced on one pair of primers, which were used to amplify the entire 

plasmid pDN-G1PGlbh. Then the PCR product was digested with Dpn1 restriction enzyme, 

which recognized parental plasmid (PCR template) and digested it. Then the digested PDR 

product was transferred to XL10-Gold ultracompetent cells which connected the two ends of the 

PCR product and repaired the nick, new plasmid with desired site mutation was created.   

Primers used for site directed mutagenesis: 

PDR5-S558Y-f:          

5’-CTATTTCCGTGGTTATGCTATGTTTTTTGCAATTCTATTCAATGC-3’ 

PDR5-S558Y-r:          5’-CATAGCATAACCACGGAAATAGAATGTAGAAGTATCACC-3’ 

PDR5-G312A-f:         

5’-GTTTCCGGTGCTGAAAGGAAGCGTGTCTCCATTGCTGAAGTCTCC-3’ 

PDR5-G312A-r:         



27 
 

5’-CGCTTCCTTTCAGCACCGGAAACACCTCTGACGATGTCGTTACC-3’ 

 

2.1.5 Identification of optimal resuspension period for cell culture 

In order to maintain stable cellular growth condition for the experiments, cells need to be 

kept growing in exponential phase. In order to optimize culturing time and cell density to 

maintain them growing in exponential phase, growth curve was measured. This measurement 

was to determine the starting cell density and the time for each strain to reach saturation in no 

drug and no inducer environment. Cells were streaked on plate with corresponding selection 

marker and 2% glucose, and were grown in 30 °C for 2 days. Single colony was inoculated in 

liquid medium with corresponding selection marker and 2 % glucose, and was grown in 30 °C 

over night. Start new cell culture with cell density at 5*105 cells/ml liquid medium with 

corresponding selection marker and 2% galactose. Cell density was measured by Nexcelum cell 

counter every 2 hours until 24th hour. Growth curve was plotted. Cells kept growing in 

exponential phase up to 16 hours, and then reached saturation. Based on the data, cell culture 

was resuspened every 12 hours to maintain their growth in exponential phase.  

 

2.1.6 Measurement of growth rate  

Cellular growth rate was measured for each strain. Cells were streaked on selection 

plate with 2% glucose, and were cultured in 30 °C for 2 days. Single colony was inoculated in 

liquid medium with corresponding selection marker and 2% glucose in 30 °C overnight. The next 

day, fresh cell culture with cell density at 5*105 cells/ml was started in liquid medium with the 

same selection marker, but 2% galactose. Cell density was measured every 12 hours, and then 

cell cultures were resuspended in fresh medium with starting cell density 5*105 cells/ml. 

Measurement of cell density was done during the entire dose-response experiment. In PFpump 

strain, the growth rate of the two subpopulations was measured as well after cell sorting.  
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2.1.7 Characterization of synthetic gene circuits behavior  

All the cells used for dose response characterization were kept growing in exponential 

phase. Based on the results from growth curve measurement that cells with starting density 

5*105 cells/ml would reach saturation after 16 hours growth, each cell culture was started with 

the same cell density and re-suspended every 12 hours. At each re-suspension, cell number of 

each culture was counted by Nexcelom cellometer and then the cell density was calculated. In 

each re-suspension, new cell culture was started with density 5*105 cells/ml again. In the cases 

that cells were treated with doxycycline or fluconazole, the degradation of both drugs in 30 

degree for 12 hours were both considered when re-suspending cells into new cell culture. A re-

suspension formula was developed to calculate the volume of cells from old cell culture, fresh 

medium, doxycycline or fluconazole at different concentration. In order to avoid system error of 

Nexcelom cellometer cell counter, cell density in culture was diluted to the range of 5*106 

cells/ml to 1.5*107 cells/ml.  

 

2.1.8 Flow cytometry 

Flow cytometry was done every 24 hours for normal dose-response characterization. For 

strains with only GFP fluorescence, FACSCan (Becton Dikinson) was used, while FACSAria II 

(Becton Dikinson) was used for 2 color strains dose-response and Calcein-AM red dye 

experiment to test Pdr5 functionality. Flow cytometry data was used to monitor the expression of 

target gene in the cell population, once the target gene expression became stable, flow 

cytometry data was used to analyze dose-response behavior.  
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2.1.9 Pdr5 function test by Calcein-AM red 

NRpump and NFpump strains were streaked on plate with corresponding selection 

marker and 2% glucose, and were grown in 30 °C for 2 days. Single colony was inoculated in 

liquid medium with corresponding selection marker and 2 % glucose, and was grown in 30 °C 

overnight. Inoculate 10 µl of overnight culture to new synthetic medium with the same selection 

marker and 2% galactose. Cells were induced with the same set of concentrations of 

doxycycline for 3 days. Cells were suspended in fresh medium and inducer every 12 hours. 

Flow cytometry was used to check expression of Pdr5 every 24 hours. When Pdr5 expression 

became stable, cells were collected and washed with pre-cold PBS twice. Then cells were 

suspended in synthetic medium with cell density at 5*105 cells/ml. Then a set of Calcein-AM red 

was added in the cell culture (0 µg/ml, 1 µg/ml, 2µg/ml, 3µg/ml, 4µg/ml and 5µg/ml). Cells were 

cultured for 3 hours and the Calcein-AM red fluorescence intensity was measured every hour. 

YPH500 strain was used as negative control, RFpump strain was used as positive control.  

 

2.1.10 Measurement of cellular memory in PFpump strain 

In order to measure the cellular memory of each subpopulation in PFpump strain, 

PFpump cells were first induced with the doxycycline concentration that gave almost identical 

number of cells in of the two subpopulations. Cell culture was resuspend every 12 hours, and 

Pdr5 expression was monitored by flow cytometry. When the expression became stable, cells 

were sorted into two subpopulations based on a threshold of 500 a.u. The growth rate and 

distribution of Pdr5 expression in the two subpopulations and a non-sorted control was 

measured by counting cell number and flow cytometry every 2 hours in the first 12 hours, and 

then every 12 hours until both of the subpopulations reached the same Pdr5 expression as the 

non-sorted control did.  
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2.2 Data analysis 

2.2.1 FACScan data analysis 

FACScan data was read by matlab code, the value of three parameters, FSC, SSC and 

FL1 (green fluorescence intensity), was extracted. A 10*10 gate based on FSC and SSC was 

applied to the area with highest cell density in each sample in order to exclude extrinsic noise. 

Then fluorescence data was read and processed in the gated area. Frist, the arithmetic mean 

and standard deviation were calculated and any data that was outside 3 times standard 

deviation was considered outliners and therefore excluded from the dataset. Fluorescence 

intensity of YPH500 strain cultured in complete synthetic medium was used as background, and 

then its value was subtracted from the fluorescence intensity of each experimental sample. The 

mean of each sample was then normalized to the sample in its corresponding strain that was 

induced at the highest doxycycline concentration. Finally the mean and CV was calculated and 

plotted against doxycycline concentration that was used for the induction of each strain 

separately.  

 

2.2.2 FACSAria II data analysis 

FACSAria II data was read by matlab code as well. Four parameters, FSC, SSC, FL1 

(green fluorescence intensity) and FL3 (red fluorescence intensity), were extracted. The 

following processing steps were the same as FACScan data processing, except that the mean 

and CV was calculated for both green and red fluorescence intensity, and them plotted vs 

doxycycline concentrations used for each 2 color strain. 

 

2.2.3 Deterministic simulation of GFP expression 

This simulation was based on previous published differential equations 29. 
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   ( )     

Where x, y and z represent TetR, intracellular doxycycline and GFP, b is the binding 

coefficient between TetR and doxycycline, d and f represent degradation coefficient. 

F(x) is inhibitory hill function.  

 ( )  
  

     
 

Where Ɵ is the induction threshold and n is the hill coefficient. The parameters are a 

= 50 nMh-1, b = 3.6 nM-1 h-1, C = 0.6 [doxycycline] h -1, f = 1.2 h-1, Ɵ = 0.44, n = 4, F = 

1.5. 

Here, in order to simulate different fluorescence intensity, I used two GFP 

degradation rate d in the equation above. d = 0.12 h -1 was used in NR 1, d = 1.2 h -1 

was used in NR 2 
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Chapter 3 Effect of protein pump on Negative Regulation (NR) and 

Negative Feedback (NF) gene circuits 

 

3.1 Introduction 

Protein pumps function to exclude intracellular toxins. This property fits the scenario in 

the production of clinical and industrial molecules, over production of which is usually toxic to 

the host organisms, and therefore they need to be excluded to keep the host cells growing at 

the fittest condition. Efforts have been made to select protein pumps in E. coli for the optimal 

production of biofuel molecules 123. However, the work has not been done in eukaryotes to 

control and optimize the exclusion of toxic molecules with a protein pump under the control of 

different regulatory networks. My goal here was to study the interaction between the protein 

pump and the networks that regulate it. Recently this question was addressed computationally 

for a natural gene regulatory network involving positive feedback [20]. To answer this question 

experimentally for additional networks in eukaryotes, I modified two previously characterized, 

TetR-based synthetic gene circuits inducible by tetracycline analogs, called the negative 

regulation (NR), and negative feedback (NF) gene circuits. I first characterized the original 

versions of these gene circuits that control a passive target gene, which does not affect its 

upstream transcriptional regulators. Here, I replaced this passive target gene with the yeast 

pleiotropic drug resistance pump-fluorescent reporter fusion gene PDR5::GFP. Once 

PDR5::GFP is expressed, it pumps out the inducer, altering the activity of its upstream 

transcriptional regulators, creating a feedback loop. We show by experiment and mathematical 

modeling how this feedback loop alters the dose response of synthetic gene circuits. Moreover, 

we identify mechanisms underlying an additional, unexpected difference between the dose-

response curves. 
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3.2 NR and NRpump gene circuit design and dose response in doxycycline  

3.2.1 NR and NRpump gene circuits composition (regulatory network) 

The NR gene circuit is composed of two parts: the reporter and the regulator. The 

reporter consists of the yEGFP and ZeoR fusion gene, yEGFP::ZeoR. This fusion gene is under 

the control of a modified GAL1 promoter, which bears 2 TetR binding sites, TetO, and therefore 

becomes inducible by tetracycline family molecules, such as doxycycline. The regulator 

contains the TetR gene under the control of the natural Gal1 promoter, which is constitutively 

active in the presence of galactose. TetR is a bacterial repressor whose binding with TetO sites 

blocks the transcription. However, TetR will dissociate from TetO sites in the presence of 

doxycycline which is able to bind to TetR competitively, leading to transcription of the 

downstream gene, yEGPF::ZepR (Figure 3.1 A). The NRpump gene circuit has the same 

regulator as the NR gene circuit, which is the TetR gene under the control of the natural GAL1 

promoter. However, the yEGFP::ZeoR fusion gene on the reporter of NR gene circuit was 

replaced by PDR5::GFP fusion gene, while the promoter remained the same modified Gal1 

promoter, which is inducible by doxycycline. Since Pdr5 is able to pump out intracellular 

doxycycline, it introduces another negative feedback loop into the NRpump gene circuit (Figure 

3.1 B).  
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 Figure 3.1 Regulation scheme for synthetic gene circuits 

 (A) Negative Regulation (NR) gene circuit. (B) Negative Regulation pump (NRpump) gene 

circuit.  (C) Negative Feedback (NF) gene circuit. (D) Negative Feedback pump (NFpump) gene 

circuit. 
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3.2.2 NR dose-response 

Although the dose-response of NR has been characterized before 29, it was induced by 

ATc, which is light sensitive and prone to degradation. Here I used doxycycline to induce the 

transcription of the yEGFP::ZeoR gene in the NR gene circuit to see how the yEGFP::ZeoR 

expression in this circuit responds to different doxycycline concentrations. This is called the 

dose-response. Here I used 10 concentrations of doxycycline to induce the expression of 

yEGFP::ZeoR gene in the NR gene circuit. Then the expression level of yEGPF::ZeoR in each 

individual cell was measured and quantified by flow cytometry. At zero and low doxycycline 

concentrations, the expression level of yEGFP::ZeoR was low in each individual cell in the 

whole population. With the increase of doxycycline concentration, a small portion of cells started 

to express a higher level of yEGFP::ZeoR, and the number of high expressing cells and their 

yEGFP::ZeoR expression level kept increasing with further increase of doxycycline 

concentration. When the doxycycline concentration reached intermediate level, some of the high 

expressing cells reached their maximum yEGFP::ZeoR expression level, while a portion of low 

expressing cells remained, and the other cells were in between. With further increase of 

doxycycline concentration, the majority of cells in the population shifted to higher yEGFP::ZeoR 

expression. Where doxycycline concentration was at high level (6 µg/ml), all cells in the 

population became high expressers reaching maximum expression level of yEGFP::ZeoR in 

each individual cell, and the expression remained the same at all the doxycycline concentrations 

above 6 µg/ml. In other words, the NR gene circuit’s expression reached saturation (Figure 3.2).  
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Figure 3.2 Histograms of NR dose-response. 

NR gene circuit was induced at 10 doxycycline concentrations, 0, 2, 4, 4.5, 5, 5.5, 6, 6.5, 7 and 

10 µg/ml; the histograms of yEGFP::ZeoR expression at each doxycycline concentration were 

shown. In each sample, cell culture was started with 0.5 x 106 cells/ml, and every 12 hours, cell 

density was measured by Nexolum, a small amount of cell culture based on calculated was 

inoculated into fresh medium to start new culture with the cell density, 0.5 x 106 cells/ml.  
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The mean of each histogram was calculated and plotted versus the corresponding 

doxycycline concentrations. By looking at the mean dose-response plot, we are able to 

understand the change of the mean expression over the entire dose response course. At zero 

and low doxycycline concentration, the means were very low. The only yEGFP::ZeoR 

expression was from gene circuit leakage. However, the population mean showed a steep 

increase at intermediate doxycycline concentration, and reached saturation immediately after 

further increase of doxycycline concentration (Figure 3.3 A). The NR gene circuit was sensitive 

to doxycycline at a narrow concentration range.  The noise of the population was measured by 

the coefficient of variation (CV). CV is defined as the standard deviation divided by the mean, 

and is used to describe the deviation of a population from its mean. Here the CV was calculated 

for each histogram in Figure 3.2 as well. At zero and low doxycycline concentrations, the CV 

was low because all the cells expressed the same level of yEGFP::ZeoR. The CV began to 

increase with the increase of doxycycline concentration, and reached its peak at intermediate 

doxycycline concentration, which corresponded to the most diverse yEGFP::ZeoR expression 

level in the population shown in the histogram (Figure 3.2 E). With further increase of 

doxycycline concentration, the CV bounced back to a low level as indicated by uniformly high 

expression of yEGFP::ZeoR in the whole cell population (Figure 3.3 B).  
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Figure 3.3 The Mean and CV of NR dose-response. 

Doxycycline at 10 different concentration was used to induce yEGPF::ZeoR expression in the 

NR gene circuit: 0, 2, 4, 4.5, 5, 6, 6.5, 7, 10 µg/ml. Doxycycline at 10 different concentrations 

was used to induce PDR5::GFP expression in the NRpump gene circuit: 0, 2, 4, 5, 6, 7, 8, 9, 10, 

and 15 µg/ml. (A) NR Mean dose-response; (B) NR Coefficient of Variation (CV) dose-response. 

(C) NRpump Mean dose-response; (D) NRpump Coefficient of Variation (CV) dose-response. 

Data shown here was an average of 3 replicates. Error bar refers to the SD of the 3 replicates’ 

mean value.  
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3.2.3 NRpump dose response mean and CV 

After obtaining the dose response for the NR gene circuit, I wanted to know if the pump 

would change the   behavior of the NR gene circuit, and if so, how would it change it. In order to 

have a fair comparison, I followed exactly the same experimental procedures as I did for the NR 

gene circuit to characterize the dose-response for the NRpump gene circuit. Initially, the same 

set of the doxycycline concentrations were used to induce the NRpump gene circuit. However, 

NRpump required higher doxycycline concentration to reach saturation compared to NR. 

Therefore, I increased doxycycline concentrations to induce NRpump, and 10 of them were 

selected to represent the dose response behavior. The selected doxycycline concentrations 

were slightly different from the concentrations used to induce NR gene circuit; because Pdr5 

changed the dose-response curve and higher doxycycline concentration was required to 

achieve saturation. At no and low doxycycline concentrations, the expression level of 

PDR5::GFP in each individual cell was at the basal level, and the expression was uniform 

across the whole cell population. At intermediate doxycycline concentrations, a number of cells 

began to express higher PDR5::GFP, while most of the cells in the population remained low 

expression level. With increase of doxycycline concentration, a higher percentage of cells in the 

population expressed high level of PDR5::GFP. When doxycycline concentration was further 

increased, the majority of cells in the population became high PDR5::GFP expressers. At high 

doxycycline concentrations, all the cells in the population expressed a high level of PDR5::GFP, 

and the histograms would not change with any further increase of doxycycline concentration 

after 10 µg/ml.  
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Figure 3.4 Histograms of NRpump dose-response. 

Cells carrying NRpump gene circuit were induced at 10 doxycycline concentrations, 0, 2, 4, 5, 6, 

7, 8, 9, 10 and 15 µg/ml; the histograms of PDR5::GFP expression at each doxycycline 

concentration were shown. In each sample, cell culture was started with 0.5 x 106 cells/ml, and 

every 12 hours, cell density was measured by Nexolum, a small amount of cell culture based on 

the calculation was inoculated into fresh medium to start new culture with the cell density, 0.5 x 

106 cells/ml.  
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The mean for the NRpump histograms at each doxycycline concentration was calculated 

as for the NR gene circuit. At no and low doxycycline concentrations, the mean was low, then it 

started to increase at doxycycline 4 µg/ml and showed a significant increase from 5 µg/ml to 9 

µg/ml, and then reached saturation  at doxycycline concentration 10 µg/ml (Figure 3.3 C). The 

CV was calculated and plotted versus the doxycycline concentration as well. It was low at zero 

and low doxycycline concentrations, and showed a peak at intermediate doxycycline 

concentration, 4 µg/ml, which corresponded well to the diverse PDR5::GFP expression in the 

cell population at that particular doxycycline concentration, shown on the histogram (Figure 3.4). 

The CV decreased after further increase of doxycycline concentrations and became flat after 6 

µg/ml doxycycline (Figure 3.3 D), which indicated homogenous PDR5::GFP expression. 

 

3.2.4 Dose response comparison between NR and NRpump strains 

Since the mean and CV for NR and NRpump gene circuits were all calculated and 

plotted, I could compare them side by side after normalization. At zero and low doxycycline 

concentrations, both NR and NRpump showed low fluorescence intensity mean (low target gene 

expression). However, at doxycycline concentration 4 µg/ml, NRpump started to respond while 

NR still remained at low expression (Figure 3.5 A). With increasing doxycycline concentration, 

the dose response mean of NR showed a steep increase and reached saturation right after it. 

However, compared to NR, the NRpump dose response mean showed a relatively slower 

increase, and reached saturation at higher doxycycline concentration.  In other words, NRpump 

was more sensitive to doxycycline induction than NR at low doxycycline concentrations, but 

became less sensitive at high doxycycline concentrations. Besides, NRpump has a wider dose 

response range for doxycycline induction, between 4 µg/ml and 10 µg/ml, which was 4.5 µg/ml 

to 7 µg/ml for NR (Figure 3.5 A). Gene expression noise, measured by the CV, peaked at a 

slightly lower intermediate doxycycline concentration and reached a lower maximum for 
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NRpump than for NR (Figure 3.5 B). The lower CV peak for NRpump could be due to weaker 

GFP fluorescence intensity of the PDR5::GFP fused protein than of yEGFP in NR, which 

caused less broad distributions when the basal expression does not change. Another reason for 

the lower CV could be pump-mediated negative feedback (negative feedback, known to reduce 

noise). The broad histograms at intermediate doxycycline concentrations indicated 

heterogeneous reporter expression in individual cells and were consistent with the CV peaks 

(Figures 3.5 C and D). Therefore, the efflux pump, Pdr5, managed to change the dose response 

behavior of the NR gene circuit.  

 

3.2.5 ODE models demonstrating effect of GFP fluorescence intensity   

Since NR and NRpump used different GFP connected to the target protein, the 

two versions of GFP differed in their green fluorescence intensity. In order to 

compare the dose-response of NR and NRpump, I normalized fluorescence intensity 

at each doxycycline concentration to the fluorescence intensity at  highest doxycycline 

concentration used in the experiment for each strain. Here I want to demonstrate that 

the different fluorescence intensity does not affect the dose-response curve after 

normalization. In order to do that, I first used previously establ ished mathematical 

models to simulate two NR dose-responses, NR1 and NR2, then used different 

degradation rate for GFP in the two NR dose-responses, which resulted in different 

GFP fluorescence intensity. As a result, NR1 and NR2 have different GFP 

fluorescence intensity (Figure 3.6 A). However, they show exactly the same dose-

response after normalization (Figure 3.6 B). 
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Figure 3.5 NR and NRpump mean and CV dose-response and histograms. 

Doxycycline at 10 different concentrations were used to induce yEGFP::ZeoR expression in NR 

gene circuit: 0, 2, 4, 5, 6, 7, 8, 9, 10 and 15 µg/ml. (A) NR and NRpump Mean dose-response; 

(B) NR and NRpump Coefficient of Variation (CV) dose-response. (C) Histogram of NR Mean 

dose-response. (D) Histogram of NRpump Mean dose-response. Data shown here was average 

of 3 replicates. Error bar refers to the SD of the 3 replicates’ mean value. 
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Figure 3.6 NR dose-response simulations. 

 (A) NR1 and NR2 Mean dose-response; (B) Normalized NR1 and NR2 Mean dose-response. 
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3.3 NF and NFpump gene circuits’ design and dose-response in 

doxycycline  

3.3.1 NF and NFpump gene circuit composition 

Same as the NR gene circuit, the NF gene circuit is composed of two parts as well, the 

regulator and the reporter. It shares the same reporter with the NR gene circuit. However, the 

difference between NR and NF gene circuits is that the natural GAL1 promoter driving TetR 

expression in the NR gene circuit was replaced by the modified GAL1 promoter bearing TetO 

sites in the NF gene circuit (Figure 3.1 A and C). Therefore, both yEGFP::ZeoR and TetR genes 

were under the control of the same doxycycline inducible promoter. In this case, TetR is able to 

repress the transcription of both yEGFP::ZeoR and itself. When doxycycline appears, it binds to 

TetR and releases it from the TetO sites, therefore, leading to the transcription of the 

yEGFP::ZeoR gene in the NFpump gene circuit. The NFpump gene circuit was also composed 

of the regulator and the reporter. The regulator shares the same components as the NF gene 

circuit, namely TetR gene under the control of modified GAL1 promoter, (GAL1 promoter with 2 

TetO sites). The GAL1 promoter is able to transcribe the downstream gene in the presence of 

galactose. However, when TetR is present, it binds to the TetO sites and repress the 

transcription. In the report of NFpump gene circuit, PDR5::GFP fusion gene was used to replace 

the yEGFP::ZeoR fusion gene in NF gene circuit, while the promoter remained the same, 

modified Gal1 promoter (Figure 3.1 C and D). When doxycycline appears, it binds to TetR and 

releases its binding with TetO sites on the modified GAL1 promoter, which initiated the 

transcription of downstream PDR5::GFP gene.  
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3.3.2 NF gene circuit dose-response 

The NF gene circuit was induced with 10 doxycycline concentrations. At all doxycycline 

concentrations, the expression level of yEGFP::ZeoR in individual cells was uniform, meaning 

that there was only one peak in the fluorescence intensity histogram. At zero doxycycline 

concentration, yEGFP::ZeoR expression was at the basal level in the whole cell population.  

With gradual increase of doxycycline concentration, the expression level of yEGFP::ZeoR in 

each individual cell shifted to higher fluorescence intensity gradually until it reached saturation 

at doxycycline 4 µg/ml (Figure 3.7). After the saturation point, further increase of doxycycline 

concentration did not change the expression level of yEGFP::ZeoR in the cells anymore.  

Then fluorescence intensity mean and CV for the histograms at each doxycycline 

concentration were calculated and plotted. The mean dose-response of NF was different from 

that of NR. Between doxycycline concentration 0 µg/ml and 4 µg/ml, the mean showed a linear 

dose response, and it reached saturation at 5 µg/ml (Figure 3.8 A). The data shown here was 

from 3 independent replicates, all the 3 replicates showed linear dose response range between 

0 µg/ml and 4 µg/ml, but with slight difference in the slope of the curves, which contributed to 

the error bar (Figure 3.8 A). The CV dose-response was very low at all the doxycycline 

concentration, which corresponded well to the uniformly distributed histograms regarding 

yEGFP::ZeoR expression (Figure 3.8 B).  
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Figure 3.7 Histograms of NF dose-response. 

Cells carrying NFpump gene circuit were induced at 10 doxycycline concentrations, 0, 0.5, 1, 

1.5, 2, 2.5, 3, 4, 5 and 6 µg/ml; the histograms of PDR5::GFP expression at each doxycycline 

concentration were shown. In each sample, cell culture was started with 0.5 x 106 cells/ml, and 

every 12 hours, cell density was measured by Nexolum, a small amount of cell culture based on 

the calculation was inoculated into fresh medium to start new culture with the cell density, 0.5 x 

106 cells/ml.  
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Figure 3.8 NF and NFpump mean and CV dose-responses.  

Doxycycline at 10 different concentration were used to induce yEGFP::ZeoR or PDR5::GFP 

expression in NF and NFpump gene circuits: 0, 0.5, 1, 1.5, 2, 2.5, 3, 4, 5 and 6 µg/ml. (A) NF 

Mean dose-response; (B) NF Coefficient of Variation (CV) dose-response. (C) NFpump Mean 

dose-response; (D) NFpump Coefficient of Variation (CV) dose-response. Data shown here was 

average of 3 replicates. Error bar refers to the SD of the 3 replicates’ mean value. 
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3.3.3 NFpump dose-response 

After obtaining the dose response curve of the NF gene circuit, I asked if Pdr5 would be 

able to alter it as for NR.  I followed the same experimental procedure to characterize the dose 

response behavior for the NFpump gene circuit. Similar to the NF gene circuit, the histograms at 

each of the doxycycline concentrations showed only one peak, meaning that all the cells 

expressed the same level of PDR5::GFP at every doxycycline concentration.  Besides, the 

histogram shifted to higher expression level of PDR5::GFP gradually with gradual increase of 

doxycycline concentration, until it reached saturation at doxycycline concentration 4 µg/ml 

(Figure 3.9).  

The fluorescence intensity mean for NFpump histograms at each doxycycline 

concentration was calculated. The mean increased gradually with the increasing of doxycycline 

concentration, and reached saturation at doxycycline concentration 4 µg/ml. The gene 

expression noise, CV, was calculated and plotted against the doxycycline concentration as well. 

It remained low at all the doxycycline concentrations, which indicated the uniform expression 

level of PDR5::GFP in the cell populations, and corresponded well to the histograms (Figure 3. 

C). The CV remained low during the entire range of doxycycline concentrations (the slightly 

higher CV at no and low doxycycline might due to the system error in FACScan flow cytometer) 

(Figure 3.8 D).  
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Figure 3.9 Histogram of NFpump dose-response. 

Cells carrying NFpump gene circuit were induced at 10 doxycycline concentrations, 0, 0.5, 1, 

1.5, 2, 2.5, 3, 4, 5 and 6 µg/ml; the histograms of PDR5::GFP expression at each doxycycline 

concentration were shown. In each sample, cell culture was started with 0.5 x 106 cells/ml, and 

every 12 hours, cell density was measured by Nexolum, a small amount of cell culture based on 

the calculation was inoculated into fresh medium to start new culture with the cell density, 0.5 x 

106 cells/ml.  
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3.3.4 Dose-response comparison between NF and NFpump strains 

In the prior section, it was shown that Pdr5 was able to change the dose-response 

behavior of the NR gene circuit; I was curious how it could alter the dose-response for the NF 

gene circuit. Since the mean and CV for NF and NFpump gene circuits were all calculated and 

plotted, I could compare them side by side. One obvious difference in the mean dose-response 

mean was that the NF gene circuit showed a linear dose response range between doxycycline 

concentration 0 µg/ml and 4 µg/ml, but the linear range disappeared in the dose response of the 

NFpump gene circuit. The dose response mean of the NFpump gene circuit had a concave 

curve. It had higher slope at low doxycycline concentrations compared to the NF gene circuit, 

which might indicate higher sensitivity to doxycycline or higher intracellular doxycycline 

concentration in the cells bearing NFpump gene circuit.  Both the NF and NFpump gene circuits 

reached saturation at the same concentration of doxycycline (Figure 3.10 A). Gene expression 

noise, measured by the CV, was low at all the doxycycline concentrations for both NF and 

NFpump gene circuits (Figure 3.10 B). The slightly higher CV for NFpump gene circuit might be 

due to weaker GFP fluorescence of the Pdr5::Gfp protein fusion than of yEGFP in NF, causing 

less broad distributions when the basal expression does not change. Another reason for the 

lower CV could be pump-mediated negative feedback (negative feedback, known to reduce 

noise). The broad histograms at intermediate doxycycline concentrations indicated 

heterogeneous reporter expression in individual cells and are consistent with the CV peaks 

(Figures 3.10 C and D). In conclusion, the efflux pump, Pdr5, changed the dose response 

behavior for NF gene circuit as well.  
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Figure 3.10 NF and NFpump mean and CV dose-responses and histograms. 

(A) NF and NFpump Mean dose-responses. (B) NF and NFpump CV dose-responses. (C) NF 

histograms in increasing concentration of doxycycline. (D) NFpump histograms in increasing 

concentrations of doxycycline. Error bar refers to the SD of the 3 replicates’ mean value. 
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3.4 NRpump mutant gene circuits and characterization of their dose-

response 

From the comparison between the original NR and NF gene circuits and their pump 

counterparts, the NRpump and NFpump gene circuits, we saw that Pdr5 changed the dose-

response behavior. In order to find out if the change was because of the efflux pumping activity 

of Pdr5, I decided to create Pdr5 mutant with no efflux pumping function. I found two published 

mutations on Pdr5 that disrupt its efflux pumping activity, S558Y and G312A.  It was reported 

that S558Y locates on the transmembrane helix 2 (TMH2) of PDR5 gene, Pdr5 with this mutant 

has normal ATPase activity and drug binding capability, but has impaired coupling between ATP 

hydrolysis and the conformational changes in the transmembrane domains (TMDs) 143. 

Therefore, it blocked the efflux pumping activity of Pdr5. Another study identified the G312A 

mutation in the signature region of the canonical ATP-binding site disrupted ATPase activity and 

therefore drug transport 144.  Strains with S558Y or G312A mutants showed hypersensitivity to 

drug treatment compared to the strain bearing wild type Pdr5, as the same as the strain with 

Pdr5 null mutant 143, 144. Therefore, I replaced the functional PDR5::GFP fusion gene in the 

NRpump and NFpump gene circuits with the mutated PDR5 gene fused with the GFP gene, 

creating the NRpump mutant and NFpump mutant gene circuits.  In order to ensure that the 

PDR5 mutant::GFP fusion gene has abolished efflux pumping activity, two versions of mutants 

were built for NRpump-mutant, NRpump-S558Y and NRpump-G312A. The same was done for 

NFpump-mutant.  

 

3.4.1 NRpump-mutant gene circuit composition 

Because the two mutations were both confirmed to compromise efflux pumping activity 

of Pdr5, two versions of mutant gene circuits were built with each one bearing one single 

mutation. The NRpump-mutant gene circuits share the same regulator with the NRpump gene 
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circuit. The only difference is in the reporter, the PDR5::GFP fusion gene in NRpump gene 

circuit was replaced by PDR5 mutant::GFP fused gene, PDR5-S558Y::GFP or PDR5-

G312A::GFP. In the presence of galactose, TetR was expressed from the Gal1 promoter, and it 

could bind to the TetO2 sites on the modified GAL1 promoter on the reporter (Figure 3.11 A and 

B). When doxycycline was present, it associated with TetR and therefore, released its binding to 

the TetO sites As a result, the downstream PDR5-mutation::GFP gene was able to be 

transcribed. However, since Pdr5 mutants were not able to pump out doxycycline, the two 

NRpump-mutant gene circuits lose the additional negative feedback that wild type Pdr5 

generated. 

 

3.4.2 NRpump mutant gene circuits dose-response 

It has been discovered that Pdr5 pumps out tetracycline family molecules including 

doxycycline, therefore, I asked if the efflux pumping function of Pdr5 protein was the cause of 

the dose-response behavior change in NRpump. In order to test that, I characterized the dose-

response for NRpump-mutant gene circuits and expected the dose-response behavior would 

maintain that of the NR gene circuit.  

First, both NRpump-312 and NRpump-558 strains were induced with the same series of 

doxycycline concentration as it was used for NRpump. The level of PDR5-G312A::GFP 

expression was measured by Flow Cytometry at each doxycycline concentration. At no and low 

doxycycline concentration, PDR5-G312A::GFP expression was low in the whole cell population. 

At intermediate doxycycline concentration, some cells in the population showed increased level 

of PDR5-G312A::GFP expression, while the majority of cells still remained at low expression 

level. With further increase of doxycycline concentration, more cells shifted to high PDR5-

G312A::GFP expression with only a very small percentage of cells staying at low PDR5-

G312A::GFP expression. At high doxycycline concentration, all the cells in the population had 
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high PDR5-G312A::GFP expression expressers, and fluorescence intensity stayed the same 

with further increase of doxycycline concentration, meaning that the level of PDR5-G312A::GFP 

expression reached maximum in each individual cell (Figure 3.12). 
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Figure 3.11. Regulation scheme for Negative Regulation pump mutant (NRpump-mutant) 

and Negative Feedback pump mutant (NFpump-mutant) gene circuits. 

(A) NRpump-312. (B) NRpump-558. (c) NFpump-312. (D) NFpump-558. 
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Figure 3.12 Histograms of NRpump-312 dose-response. 

Cells carrying NRpump-312 gene circuit were induced at 10 doxycycline concentrations, 0, 2, 4, 

5, 6, 7, 8, 9, 10 and 15 µg/ml; the histograms of PDR5::GFP expression at each doxycycline 

concentration were shown. In each sample, cell culture was started with 0.5 x 106 cells/ml, and 

every 12 hours, cell density was measured by Nexolum, a small amount of cell culture based on 

the calculation was inoculated into fresh medium to start new culture with the cell density, 0.5 x 

106 cells/ml. 
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Figure 3.13 Histograms of NRpump-558 dose-response. 

Cells carrying NRpump-558 gene circuit were induced at 10 doxycycline concentrations, 0, 2, 4, 

5, 6, 7, 8, 9, 10 and 15 µg/ml; the histograms of PDR5::GFP expression at each doxycycline 

concentration were shown. In each sample, cell culture was started with 0.5 x 106 cells/ml, and 

every 12 hours, cell density was measured by Nexolum, a small amount of cell culture based on 

the calculation was inoculated into fresh medium to start new culture with the cell density, 0.5 x 

106 cells/ml. 
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The histograms of NRpump-558 reporter expression were very similar to NRpump -312. 

At no and low doxycycline concentration, all the cells in the population expressed a minimum 

level of PDR5-S558Y::GFP.  At intermediate doxycycline concentration (4 µg/ml), a minority of 

cells started to express a higher level of PDR5-S558Y::GFP while the rest of the cells still 

remained at low PDR5-S558Y::GFP expressers. With increasing of doxycycline concentration (5 

µg/ml), around half of the cells in the population expressed high level of PDR5-S558Y::GFP, 

while the other half expressed at low level. As doxycycline concentration was further increased 

(6 µg/ml), the majority of cells in the population had high PDR5-S558Y::GFP expression, with 

only a small fraction of cells expressing low level of PDR5-S558Y::GFP. At high doxycycline 

concentration, all the cells expressed high level of PDR5-S558Y::GFP, and the level of 

expression would reached its maximum. Further increases of doxycycline concentration would 

not increase fluorescence intensity in individual cells (Figure 3.13).  

 

Then I calculated the mean of each histogram for both NRpump-312 and NRpump-558 

at each doxycycline concentration. At doxycycline concentrations of 0 µg/ml and 2 µg/ml, both 

NRpump-mutant strains showed minimum fluorescence intensity (Figure 3.14 A and C). Both 

mutant gene circuits started to respond to doxycycline at 4 µg/ml, and showed steep rise in 

dose response mean with increase of doxycycline concentration between 4 µg/ml and 7 µg/ml. 

Then the dose response mean kept rising, but with much slower pace until it reached saturation 

at doxycycline concentration 9 µg/ml. The error bar at middle doxycycline concentration range 

indicated relatively high variation, which might be due to individual variability of different 

colonies. The error bar would be narrow down with more dose response data from replicates. 

The dose response CV was also calculated for both mutant gene circuits at each doxycycline 

concentration. Both CVs showed a peak at doxycycline concentration 4 µg/ml, which 

corresponded well with the diverse gene expression shown on the histograms (Figure 3.13). 

The CVs were low at both low and high doxycycline concentration, because the gene 
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expression level in the cell population was uniform at both situations. However, the CVs at low 

doxycycline centration were relatively higher than CVs at high concentration, which might be 

due to the low dose response mean (Figure 3.14 B and D). CV was defined as standard 

deviation divided by the mean, even the standard deviation was the same for the histogram at 

both low and high doxycycline concentration, the CV at low doxycycline concentration would be 

higher than the CV at high concentration.  

 

When I aligned the dose response mean together for both NRpump mutant gene 

circuits, the two curves showed exactly the same pattern and overlapped, which suggested that 

the two mutations, S558Y and G312A, altered Pdr5 function the same way, although different 

underlying mechanisms were proved. The CV of both mutant gene circuits showed the same 

pattern as well. The only difference was that the CV for Nrpump-312 was slightly higher at no 

and low doxycycline concentration, which suggested slightly higher expression noise of the 

target gene.  
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Figure3.14 NRpump mutants mean and CV dose-responses. 

Doxycycline at 10 different concentration were used to induce PDR5::GFP expression in NR 

gene circuit: 0, 2, 4, 5, 6, 7, 8, 9, 10, 15 µg/ml. (A) NRpump-312 and NRpump-558 Mean dose-

response; (B) NRpump-312 and NRpump-558 Coefficient of Variation (CV) dose-response. 

Data shown here was average of 3 replicates. Error bar refers to the SD of the 3 replicates’ 

mean value. 
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3.5.1 NFpump mutant gene circuits composition 

As for the NRpump mutant gene circuits, two versions of NFpump mutant gene circuits 

were built with one bearing S558Y mutation, and the other bearing the G312A mutation on 

PDR5.  The NFpump mutant gene circuits share the same regulator with the NFpump gene 

circuit. The only difference is in the reporter, the PDR5::GFP fusion gene in NRpump gene 

circuit was replaced by the PDR5 mutant::GFP fused gene, PDR5-S558Y::GFP or PDR5-

G312A::GFP. In the presence of galactose, TetR was expressed under the Gal1 promoter, and 

it bound to the TetO2 sites on the modified GAL1 promoter on the reporter. When doxycycline 

came in, it associated with TetR and therefore, released its binding to the TetO2 sites. As a 

result, the downstream PDR5-mutation::GFP gene was able to be transcribed (Figure 3.11 C 

and D).  

 

3.5.2 NFpump mutants dose-response 

The dose-response mean of NF gene circuit was linear from doxycycline concentration 0 

µg/ml to 4 µg/ml. However, the dose-response mean of NFpump gene circuit was no longer 

linear. It was clear that the Pdr5 pump changed the dose-response behavior. Because it was 

known that Pdr5 pumps out the inducer, doxycycline, we assumed that the efflux pumping 

activity of Pdr5 was responsible for this change. The two mutations, S558Y and G312A, were 

proved to abolish the efflux pumping activity, so we expected the mutation would restore 

linearity of the NF gene circuit mean dose-response mean. In other words, the mean dose-

responses of NFpump mutant gene circuits were expected to be linear between doxycycline 

concentration 0 µg/ml and 4 µg/ml.   

Two NFpump mutant strains were induced by the same series of doxycycline 

concentration as it was used for NFpump. At all of the doxycycline concentrations, the 

expression level of PDR5-mutation::GFP in both mutants showed single peaked distribution. At 
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0 µg/ml doxycycline concentration, the cells in both mutant circuits showed minimum expression 

level of Pdr5 mutant. With gradual increase of doxycycline concentration, the expression level of 

Pdr5 mutant in each individual cell increased accordingly, until it reached maximum expression 

level at doxycycline concentration 2.5 µg/ml. Then the Pdr5 mutant expression in each cell in 

both mutant gene circuits remained stable, further increase of doxycycline concentration did not 

increase its level.  (Figure 3.15, Figure 3.16).  
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Figure 3.15 Histograms of NFpump-312 dose-response. 

Cells carrying NFpump-312 gene circuit were induced at 10 doxycycline concentrations, 0, 0.5, 

1, 1.5, 2, 2.5, 3, 4, 5 and 6 µg/ml; the histograms of PDR5::GFP expression at each doxycycline 

concentration were shown. In each sample, cell culture was started with 0.5 x 106 cells/ml, and 

every 12 hours, cell density was measured by Nexolum, a small amount of cell culture based on 

the calculation was inoculated into fresh medium to start new culture with the cell density, 0.5 x 

106 cells/ml. 
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Figure 3.16 Histograms of NFpump-558 dose-response. 

Cells carrying NFpump-558 gene circuit were induced at 10 doxycycline concentrations, 0, 0.5, 

1, 1.5, 2, 2.5, 3, 4, 5 and 6 µg/ml; the histograms of PDR5::GFP expression at each doxycycline 

concentration were shown. In each sample, cell culture was started with 0.5 x 106 cells/ml, and 

every 12 hours, cell density was measured by Nexolum, a small amount of cell culture based on 

the calculationas inoculated into fresh medium to start new culture with the cell density, 0.5 x 

106 cells/ml. 
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Then the mean of each histogram at every doxycycline concentration was calculated for 

both mutant gene circuits. The dose response mean for both gene circuits showed a linear 

range between doxycycline concentrations 0 µg/ml and 1.5 µg/ml, and then they both began to 

curve until they reached saturation at 3 µg/ml. Further increase of doxycycline concentration did 

not increase Pdr5 mutant expression level in each individual cell. The CV for both mutant gene 

circuits was low at all doxycycline concentrations. The slightly increased CV at no and low 

doxycycline concentration was due to lower mean. Next, I compared the dose-responses of the 

two NFpump-mutants, they showed the same dose-response curve in terms of both mean and 

CV (Figure 3.17). 

 

3.6 Dose-response comparison among NR, NRpump and NRpump mutants 

Knowing that the Pdr5 mutants lost efflux pumping function, I measured and compared 

the dose-responses of reporter expression mean and CV of NRpump and NRpump mutants. 

The experimental results indicated that both NRpump mutants had similar mean dose-

responses as NR did at high inducer concentrations; and they were steeper compared to the 

mean dose-response of NRpump. However, both NRpump mutants responded to doxycycline at 

a lower concentration compared to NR, but similar to NRpump (Figure 3.18 A).  The CV dose-

responses were similar for all the 4 strains, with the CV of NR peaked at slightly higher 

doxycycline concentration (Figure 3.18 B). This might be due to high GFP fluorescence intensity 

in NR, and higher inducer sensitivity of NRpump and NRpump mutants. This result confirmed 

that the efflux pumping function of Pdr5 caused the dose-response change in high doxycycline 

concentrations in NRpump, but was not the cause for higher sensitivity at low doxycycline 

concentrations.  
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Figure 3.17 NFpump mutants mean and CV dose-response. 

Doxycycline at 10 different concentrations were used to induce PDR5::GFP expression in cells 

carrying NFpump mutants gene circuit: 0, 0.5, 1, 1.5, 2, 2.5, 3, 4, 5 and 6 µg/ml. (A) NRpump-

312 and NRpump-558 Mean dose-response; (B) NRpump-312 and NRpump-558 Coefficient of 

Variation (CV) dose-response. Data shown here was average of 3 replicates. Error bar refers to 

the SD of the 3 replicates’ mean value. 
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Figure 3.18 Mean and CV dose-responses comparison among NR, NRpump and 

NRpump-mutants. 

(A) NR, NRpump and NRpump-mutant Mean dose-responses. (B) NR, NRpump and NRpump-

mutant CV dose-responses. Doxycycline at 10 different concentrations were used to induce 

yEGFP::ZeoR expression in cells carrying NR gene circuit: 0, 2, 4, 4.5, 5, 5.5, 6, 6.5, 7 and 10 

µg/ml. Another 10 different doxycycline concentrations were used to induce PDR5::GFP 

expression in cells carrying NRpump and NRpump mutant gene circuits: 0, 2, 4, 5, 6, 7, 8, 9, 10 

and 15 µg/ml. Data shown here was average of 3 replicates for each strain. Error bar refers to 

the SD of the 3 replicates’ mean value. 
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From the above comparison among the four strains in the NR series, the NRpump and 

two NRpump mutants were more inducer-sensitive to doxycycline than NR was at low 

concentration (Figure 3.18). In order to prove that, I applied one-way ANOVA at doxycycline 

concentration 4 µg/ml (Figure 3.19 A) to the data. The mean value of NRpump and the two 

NRpump mutants were all significantly higher than the mean of NR (Table 1). On the contrary, 

NRpump appeared lower mean value compared to the mean of other three strains (Figure 3.19 

A), which was confirmed also by one way ANOVA (Table 2).  
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Figure 3.19 Mean dose-response among NR, NRpump and NRpump-mutant at low and 

high doxycycline concentration. 

(A) Doxycycline concentration at 4 µg/ml. (B) Doxycycline concentration at 7 µg/ml. One-way 

ANOA was performed for all of the four NR related strains at the specified doxycycline 

concentrations.  
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 NR NRpump NRpump-312 NRpump-558 

NR  0.000141 0.000005 0.000029 

NRpump 0.000141  0.004280 0.126933 

NRpump-312 0.000005 0.004280  0.055482 

NRpymp-558 0.000029 0.126933 0.055482  

 

Table 1 ANOVA test for NR, NRpump and NRpump-mutants at doxycycline concentration 

4 µg/ml. 

Numbers showed in the table are p values calculated by ANOVA. P values less than 0.05 

indicates significant difference, which were shown in red. 

 

 

 NR NRpump NRpump-312 NRpump-558 

NR  0.014598 0.199901 0.388194 

NRpump 0.014598  0.126416 0.059865 

NRpump-312 0.199901 0.126416  0.640887 

NRpymp-558 0.388194 0.059865 0.640887  

 

Table 2 ANOVA test for NR, NRpump and NRpump-mutants at doxycycline concentration 

7 µg/ml. 

Numbers showed in the table are p values calculated by ANOVA. P values less than 0.05 

indicates significant difference, which were shown in red. 
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3.7 Dose-response comparison among NF, NFpump and NFpump mutant 

strains 

Compared to NFpump, the mean dose-responses of both NFpump mutant gene circuits 

had a linear range between doxycycline concentrations 0 µg/ml and 1.5 µg/ml, and saturated at 

3 µg/ml (Figure 3.20 A). This result indicated that the deviation from linear dose-response mean 

curve can be attributed to the protein’s efflux pumping function. However, the slopes of the 

linear ranges in both NFpump mutants were larger than that in NF, which suggested that the 

non-functional pump increased somehow the sensitivity of the NF gene circuit to the doxycycline 

concentration, similar to the functional pump. The gene expression noise for both NFpump-

mutants was low as it was for both the NF and NFpump gene circuits, which was consistent with 

the narrow and uniform distributions of reporter expression, observed by single cell-level 

measurements (Figure 3.20 B). However, the dose-response mean curves of NFpump mutants 

did not completely overlap with that of NF as expected. Instead, the NFpump mutants shower 

higher sensitivity to doxycycline at low concentration compared to NF, and their sensitivity was 

at the same level as for NFpump, indicated by the slope of dose-response mean curves at low 

doxycycline concentration (Figure 3.20 A). This data suggested the existence of other factors 

beyond the efflux pumping function of Pdr5 that affected the dose-response change in NFpump 

compared to NF. In summary, functional Pdr5 changed the linearity of dose-response mean by 

efflux pumping activity, but the increased sensitivity to doxycycline was caused by other factors 

instead of the efflux pumping function of Pdr5. 

As validated above, NF has a linear range of mean dose-response, which was lost in 

NFpump, and restored in NFpump mutants, but with a narrower linear range. In order to quantify 

the change of linear range of dose-response mean for NF, NFpump and NFpump-mutant gene 

circuits, I calculated the L1 norm. The idea of L1 norm was to compare the mean dose-response 

of the gene circuits to an ‘ideal’ linear curve that would produce perfectly linear dose-response. 
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Then the experimental data of these 4 gene circuits was compared to the perfect line, and the 

area between the perfect line and each dose-response curve at every doxycycline concentration 

was calculated. The smaller the area was, the more linear the dose-response would be. 

Therefore, zero area would be an indicator for perfectly linear dose-response. As a result, NF 

showed a linear dose-response up to 80% of saturation (Figure 3.21 A), NFpump showed linear 

range up to 40% saturation (Figure 3.21 B), while the linear range for both NFpump-mutants 

ended between 60% and 70% saturation (Figure 3.21 C and D). The results again showed that 

Pdr5 altered the linear dose-response of NF gene circuit, and Pdr5 mutants with compromised 

efflux pumping function restored part of the linear dose-response range, but not all. The four 

strains showed different L1 norm value when they reached 100% saturation. The actual L1 

norm value at 100% saturation reflected the speed for the gene circuits to reach saturation. The 

higher the L1 norm value was, the less doxycycline concentration the gene circuit needs to 

reach saturation. For example, the L1 norm for NF at 100% was around 1, while it was above 

1.5 for NFpump-mutant, meaning that NFpump-mutant reached saturation at less doxycycline 

concentration compared to NF.  
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Figure 3.20 Dose-response comparison among NF, NFpump and NFpump-mutant. 

(A) NF, NFpump and NFpump mutants Mean dose-responses. (B) NF, NFpump and NFpump-

mutant CV dose-responses. Doxycycline at 10 different concentrations were used to induce 

target gene expression in NF, NFpump and NFpump mutants: 0, 0.5, 1, 1.5, 2, 2.5, 3, 4, 5 and 6 

µg/ml. Data shown here was an average of 3 replicates for each strain. Error bar refers to the 

SD of the 3 replicates’ mean value. 
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Figure 3.21 L1 norm for NF, NFpump and NFpump-mutants mean dose-responses. 

(A) NF L1 norm; (B) NFpump L1 norm;  (C) NFpump-312 L1 norm; (D) NFpump-558 L1 norm. 

L1 norm was calculated and plotted in matlab.  
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In order to prove that the mean dose-responses for NF, NFpump and the two NFpump-

mutant gene circuits are different, I used one way ANOVA based on the L1 norm at the lowest 

doxycycline concentration where all four strains reached saturation, 5 µg/ml. The L1 norm for 

NF was the lowest among the four; NFpump-mutants showed the highest L1 norm while 

NFpump was in between (Figure 3.22). The ANOVA test showed that the L1 norm of both NF 

and NFpump were different from the other three, the L1 norms of two NFpump-mutants were 

not different from each other, but they were both different from NF and NFpump.  

 

 

 

 

 

Figure 3.22 L1-norm of NF, NFpump and NFpump-mutant mean dose-responses. 

One way ANOVA test was done at doxycycline concentration 5 µg/ml, where all of the four 

strains reached saturation.  
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 NF NFpump NFpump-312 NFpump-558 

NF  0.000166 0.000166 0.000166 

NFpump 0.014598  0.000166 0.000166 

NFpump-312 0.000166 0.000197  0.99203 

NFpymp-558 0.000166 0.000166 0.99203  

 

Table 3 ANOVA test for the linearity of NF, NFpump and NFpump-mutant mean dose-

responses. 

Numbers showed in the table are p values calculated by ANOVA. P values less than 0.05 

indicates significant difference, which were shown in red. 
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3.8 Investigation on other factors that contribute to the dose-response 

mean in NFpump  

The NF strain showed a linear mean dose-response ranging between 

doxycycline concentrations 0 µg/ml and 4 µg/ml (Figure 3.20 A). On the contrary, 

NFpump lost the linear dose-response; instead, it showed a concave curve of mean 

dose-response, which had higher sensitivity to doxycycline than NF at low 

doxycycline concentration (Figure 3.20 A). NFpump-mutants with compromised efflux 

pumping function of Pdr5 restored linear range for dose-response mean, but the 

linear range covered a narrower range of doxycycline concentrations (0 µg/ml to 2 

µg/ml) compared to NF (0 µg/ml to 4 µg/ml). Moreover, the slope of the linear dose-

response range in NFpump-mutants is higher than the slope of NF (Figure 3.20 A), 

which indicated higher sensitivity to doxycycline at low concentration. Interestingly, 

this sensitivity in NFpump-mutants is the same as NFpump. These results suggested 

the existence of another mechanism that also contributed to the change of dose -

response mean in NFpump compared to NF, besides the efflux pumping function of 

Pdr5.  

My collaborator created stochastic simulations of dose-response for all the NR 

series and NF series strains based on previous research 145, which were able to 

reproduce my experimental results. On the basis of these models, he performed 

sensitivity analysis and tested if TetR concentration was lower in pump and pump-

mutant strains compared to their non-pump counterparts, then he matched the data. 

In order to test the hypothesis that reduced TetR expression contributes to the dose-

response change in pumps trains, I created 2-color gene circuits representing all of 

the 8 gene circuits used before, by fusing TetR with mCherry and replacing the 

original TetR on these gene circuits (Figure 3.23).  
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Figure 3.23 Regulation scheme for 2-color gene circuits. 

 (A) NR. (B) NRpump. (C) NRpump-312. (D) NRpump-558. (E) NF. (F) NFpump. (G) NFpump-

312. (H) NFpump-558 
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3.8.1 Two-color NR and NF gene circuits and their TetR expression 

2-color NR and NF strains were induced by the same concentration of doxycycline used 

for single color NR and NF strains respectively, and their TetR expression was measured by 

flow cytometry. In the NR strain, TetR expression was similar across the entire range of 

doxycycline concentrations, even in the absence of doxycycline (Figure 3.24 A). Because TetR 

was under the control of the wild type GAL1 promoter, it was constitutively expressed in the 

presence of galactose. TetR expression in the NF strain was at the basal level in the absence of 

doxycycline, and it rose with the increase of doxycycline concentration. The increase showed a 

linear dose-response range between doxycycline concentrations 0 µg/ml and 2.5 µg/ml, and 

then the TetR expression reached saturation at doxycycline 3 µg/ml. 
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Figure3.24 TetR::mCherry expression in the NR and NF. 

(A) NR. (B) NF. NR was induced by doxycycline concentration 0, 2, 4, 4.5, 5, 5.5, 6, 6.5, 7 and 

10 µg/ml. NF strain was induced by doxycycline concentration 0, 0.5, 1, 1.5 2, 2.5, 3, 4, 5 and 6 

µg/ml. Data shown here was average of 3 replicates. Error bar refers to the SD of the 3 

replicates’ mean value. 
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3.8.2 Two-color NRpump, NRpump mutant, NFpump and NFpump mutant gene circuits 

and their TetR expression 

In order to monitor TetR expression in pump and pump mutant strains, 2-color pump 

strains were also induced by the same set of doxycycline concentration used for their single 

color counterparts, and their TetR expression was measured by flow cytometry. Same as NR 

strain, NRpump and NRpump-mutant strains all showed similar TetR expression level across 

the entire doxycycline concentrations. However, all the pump strains showed lower TetR 

expression than NR did (Figure 3.25 A). Among the three pump strains, NRpump-312 had 

higher TetR expression than the other two, which had the same TetR expression level (Figure 

3.25 A). As expressed for NF, NFpump and NFpump-mutant strains all showed increased TetR 

expression with increasing doxycycline concentration. However, all the pump strains had lower 

TetR expression compared to NF at every doxycycline concentration above 0.5 µg/ml.  Among 

the four NF series strains, NFpump had the lowest TetR expression; the two NFpump-mutants 

were in the middle, while NF had the highest TetR expression level. These results clearly 

indicated that pump strains had lower TetR expression than non-pump strains in both NR and 

NF, no matter if the pump was functional or not. The error bars indicated clone depended 

variation of TetR expression. According to the mathematical simulation developed by my 

collaborator, the TetR expression in NRpump and NRpump mutant strains were expected to be 

on the same level. Same applied to NF series strains. However, I noticed that although NRpump 

and NRpump-312 showed the same TerR expression level, NRpump-558 had a slightly higher 

level of expression. Besides, NFpump mutant strains both showed higher tetR expression than 

NFpump did. To my knowledge, the difference is highly likely due to clone variability, because 

strong clone dependent variation of TetR expression was observed in all the pump strains (in 

the figure we only showed 3 most representative replicates for each strain) (Figure 3.25 C and 

D). However, regardless of the variability of different clones in terms of TetR expression, all the 

pump clones showed lower TetR expression than the non-pump clones, which confirmed my 



82 
 

hypothesis that reduced TetR expression contributed to the dose-response change in pumps 

strains by reducing TetR repression on PDR5 transcription and therefore increased their 

sensitivity to doxycycline.  
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Figure 3.25 TetR::mCherry expression in all the NR related and NF related strains. 

(A) NR, NRpump and NRpump-mutant. (B) NF, NFpump and NFpump-mutant. (C) mCherry 

expression level in different NR series clones at no doxycycline environment. (D) mCherry 

expression level in different NF series clones at the maximum doxycycline concentration (6 

µg/ml). NR was induced by doxycycline concentration 0, 2, 4, 4.5, 5, 5.5, 6, 6.5, 7 and 10 µg/ml. 

NRpump and NRpump-mutant strains were induced by doxycycline concentration 0, 2, 4, 5, 6, 

7, 8, 9, 10 and 15 µg/ml. NF, NFpump and NFpump-mutant strain was induced by doxycycline 
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concentration 0, 0.5, 1, 1.5 2, 2.5, 3, 4, 5 and 6 µg/ml. Data shown in (A) and (B) was average 

of 3 replicates. Error bar refers to the SD of the 3 replicates’ mean value. 
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3.8.3 Endogenous Pdr5 expression does not affect dose-response results. 

Because endogenous Pdr5 was knocked out in all the pump strains, but not in NR and 

NF strains, I suspected that endogenous Pdr5 would affect the dose-response behavior of NR 

and NF strains by removing intracellular doxycycline. If this happened, the dose-response 

curves for NR and NF were not comparable to their pump counterparts. In order to test this 

hypothesis, I knocked out endogenous Pdr5 in the NR strain and characterized its dose-

response the same way I did for NR strain with endogenous Pdr5. Then the dose-response 

curves for the two NR strains were compared. The results showed that both NR strains 

exhibited sigmoidal dose-response curves, and the two dose-responses were indistinguishable 

(Figure 3.26). CV dose-responses for both NR strains were similar; they were low at both low 

and high doxycycline concentration and peaked at the same intermediate concentration (4.5 

µg/ml). The higher noise in NR (PDR5 KO) strain at low doxycycline concentration was probably 

background noise. Therefore, it is safe to conclude that endogenous Pdr5 expression did not 

affect the shape of dose-response curve for NR strain, which might be due to its extremely low 

level of expression in the cells, and can be neglected. Although the same experiment was not 

performed for NF strain, since endogenous Pdr5 did not change the dose-response curve for 

NR strain, it should not change it in NF strain either.  

 

3.8.4 The two-color NF strain is more sensitive to doxycycline than the single color NF.  

In my experimental data, I also noticed an interesting phenomenon. Although both 2-

color and single color NF strains showed linear dose-response curve in certain doxycycline 

concentration range, the dose-response mean curve of 2-color NF has steeper slope compared 

to that of single color NF, meaning that the 2-color NF was more sensitive to doxycycline than 

NF and reached saturation at lower doxycycline concentration (Figure 3.27 A and B). A related 

observation was made in earlier research 29. This might be due to the fusion of mCherry and 

TetR, which have weakened TetR’s repression of target gene transcription.  
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3.8.5 Correlation between TetR and target gene expression in NF and NFpump strains 

In NF gene circuits, the regulator, TetR, and the target gene, yEGFP::ZeoR, were 

constructed in symmetric positions, which meant that the expression of these two genes will 

correlate with each other. Previous research has shown the correlation 29. Since the expression 

of yEGFP::ZeoR increases with the increase of inducer concentration, in a linear manner, TetR 

expression was expected to show the same dose-response curve. In order to test the 

hypothesis, the 2-color NF strain was induced with the same set of doxycycline concentration 

used for single color NF induction. As a result, TetR and yEGFP::ZeoR expression had the 

exactly the same dose-response curves, which overlapped (Figure 3.28 A). Similarly, NFpump 

was expected to show the same correlation between TetR and PDR5::GFP expression, 

because the replacement of yEGFP::ZeoR by PDR5::GFP in NFpump gene circuit did not 

change its topological structure. In order to test this hypothesis, 2-color NFpump strain was 

induced by the same set of doxycycline concentrations used for single color NFpump strain 

induction. However, the results were not quite as expected. PDR5 expression showed higher 

sensitivity to doxycycline compared to TetR expression (Figure 3.28 B). The results indicated 

the existence of certain factors that changed the topological structure of NF network.  
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Figure 3.26 yEGFP expression in NR and NR (PDR5 knockout) strains. 

(A) Mean does-response. (B) CV dose-response. Both NR strains were induced by doxycycline 

concentration 0, 2, 4, 4.5, 5, 5.5, 6, 6.5, 7 and 10 µg/ml. Data shown here was average of 3 

replicates for each strain. Error bar refers to the SD of the 3 replicates’ mean value. 
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Figure 3.27 yEGFP expression in NF and 2-color NF strains. 

Both NF strains were induced by doxycycline concentration 0, 0.5, 1, 1.5, 2, 2.5, 3, 4, 5 and 6 

µg/ml. Data shown here was average of 3 replicates for each strain. Error bar refers to the SD of 

the 3 replicates’ mean value. 
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Figure 3.28 Correlation between TeR and target gene expression in NF and NFpump 

strains. 

 (A) TetR and yEGFP::ZeoR expression in NF. (B) TetR and PDR5::GFP expression in 

NFpump.  Both NF strains were induced by doxycycline concentration 0, 0.5, 1, 1.5, 2, 2.5, 3, 4, 

5 and 6 µg/ml. Data shown here was average of 3 replicates for each strain. Error bar refers to 

the SD of the 3 replicates’ mean value. 
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3.9 Conclusion and discussion 

Based on previously characterized inducible synthetic gene circuits in Saccharomyces 

cerevasiae 29, NR and NF, I studied the functional effect of introducing a protein pump into these 

networks, by creating two relevant gene circuits, NRpump and NFpump. I found that Pdr5, a 

multidrug resistance pump, when placed under the control of NR and NF changed the inducer 

sensitivity of the two gene circuits. NRpump became more inducer-sensitive than NR at low 

doxycycline concentration, but less sensitive at high concentration (Figure 3.18 A). On the other 

hand, NFpump became more sensitive to doxycycline than NF at all doxycycline concentrations 

before saturation (Figure 3.20 A). These observations were contradictory to my expectation that 

both strains (NRpump and NFpump) should be less inducer-sensitive than their non-pump 

counterparts, considering that Pdr5 can exclude tetracycline family molecules from the cell and 

thereby decrease their intracellular concentration 143, 146, 147. These results implied the existence 

of an opposing force that increases inducer sensitivity in NRpump and NFpump. In order to 

uncover the unknown mechanism, we turned to computational modeling. Addition of the efflux 

pumping term to NR in our stochastic simulations was able to reproduce the mean dose-

response for NRpump at high doxycycline concentration, but failed at low concentration. 

Stochastic simulations were performed by my collaborator, Daniel Charlebois. Based on his 

simulations and parameter sensitivity analysis, I found that when synthesis rate of TetR was 

reduced, the simulations were able to reproduce the entire dose-response shift as I observed in 

the experiment (Figure 3.5 A). The same parameter settings applied to NFpump simulation was 

able to reproduce our experimental result as well (Figure 3.10 A). Therefore, I identified two 

potential mechanisms that contributed in opposite manner to the change of NRpump and 

NFpump dose-responses. In order to confirm the effect of the efflux pumping function of Pdr5 to 

the change of dose-response in pump strains in the experiment, I created NRpump and 

NFpump strains bearing PDR5 mutants with compromised efflux pumping function. The dose-
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responses of such pump mutant strains were intermediates between those of pump strains and 

non-pump strains. For example, the dose-response mean of NRpump mutants were similar to 

NR at high doxycycline concentration, but the same as NRpump at low doxycycline 

concentration (Figure 3.18 A); the mean dose-response of NFpump mutants restored linearity 

as exhibited by NF, but maintained high sensitivity to doxycycline at low to intermediate 

concentration as NFpump did (Figure 3.20 A). These results showed that the efflux pumping 

function of Pdr5 was responsible for the decreased sensitivity to doxycycline for NRpump at 

high doxycycline concentration, decreased sensitivity for NFpump at low and intermediate 

doxycycline concentration, and linearity loss in NFpump. Next, to confirm the computationally 

predicted role of TetR levels, I measured TetR expression in all the NR and NF series strains by 

fusing mCherry to TetR. The experimental measurements showed that TetR had lower 

expression level in all the pump strains (whether or not Pdr5 is functional) compared to NR and 

NF strains respectively, which confirmed my hypothesis. Lower TetR level in pump strains 

reduced the repression of PDR5 transcription, therefore, increased Pdr5 expression.  

Now we are able to explain the dose-response differences between pump strains and their non-

pump counterparts with the two opposing forces.  

The mechanism for reduced TetR expression in pump strains is still unclear and needs 

further investigation. Although TetR expression was reduced in all the pump strains, it was not 

caused by Pdr5 protein properties by the fact that TetR level remained the same during the 

entire dose-response in NR series strains. It is highly possible that the integration of the PDR5 

gene upstream of the TetR promoter impaired TetR transcription. This occurred in the pump 

stains but not non-pump strains because the PDR5 gene is over 5 kb while the ZeoR gene (in 

NR and NF) is around 1 kb. Another possibility is that the epigenetic modification (for example, 

methylation) of PDR5 affected the downstream transcription factor binding to TetR’s promoter. 

The assumption of impaired TetR transcription is supported by the unbalanced expression of 

TetR and PDR5-mutant in NFpump mutant strains (Figure 3.28 B).  
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I have proven that Pdr5 protein did not affect TetR expression. However, the expression 

of endogenous Pdr5 in NR and NF strains was still a concern for its influence on their dose-

response curve, because Pdr5 was knocked out in all the pump strains (including single color 

and 2-color), but not in NR and NF strains. In order to test that, Pdr5 was knocked out in NR 

strain, and we found that the Pdr5 knockout NR strain showed the same dose-response curve 

as normal NR strain did (Figure 3.27).  

Although reduced TetR expression affected the dose-response of all the pump strains, 

by comparing the dose-response difference between functional and non-functional pump 

strains, we can still see the changes caused by the efflux pumping function of Pdr5, which 

decreased the sensitivity to inducer.  

In my experimental data, I also noticed an interesting phenomenon. The dose-response 

mean curve of 2-color NF had steeper slope compared to single color NF, meaning that the 2-

color NF was more sensitive to doxycycline than NF and reached saturation at lower 

doxycycline concentration (Figure 3.28 A and B). Similar observations were made earlier 29. 

This might be due to the fusion of mCherry to TetR, which might have weakened TetR’s 

inhibition function.  
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Chapter 4 Effect of protein pump on Positive Feedback (PF) gene 

circuit and dose-respone memory change 

 

4.1 Introduction 

Multidrug resistance is a universal phenomenon that has been observed from 

the simplest microorganisms to the most advanced cell types. A number of 

mechanisms of multidrug resistance have been discovered, such as active exclusion 

of toxic molecules, which plays the most important role in protecting cells from 

adverse environment. In Saccharomyces cerevisiae, a complex regulatory network 

has evolved, in which Pdr5p plays a major role of pumping out toxic molecules. The 

PDR5 gene is naturally regulated by PDR1 and PDR3, both of which are transcription 

factors. Toxic substrates activate PDR1 expression, which then binds to the promoter 

of both PDR3 and PDR5 and starts their transcription. Pdr3 is also able to bind to its 

own promoter and the promoter of PDR5 and help transcribe the efflux pump protein. 

Therefore, PDR5 is regulated by a positive feedback network in the natural system. 

So, why did a positive feedback regulatory network evolve? Does the positive 

feedback regulatory network confer advantage for yeast cells to survive compared to 

other regulatory systems? If this is true, in what environment does positive feedback 

network give this advantage? In order to answer these questions, it will be worth 

trying to use the negative regulation (NR), negative feedback (NF), and positive 

feedback (PF) synthetic gene circuits to regulate the PDR5 gene, and compare the 

growth rate of cells carrying these gene circuits in different environments. For that 

purpose, the dose-response of PF controlling PDR5 gene needs to be studied. 
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In the previous chapter, PDR5 introduced into NR and NF gene circuits was 

discovered to change their dose response behavior by both efflux pumping activity 

and its influence on intracellular TetR concentration. Besides NR and NF, another 

gene circuit, Positive Feedback (PF) was also constructed and studied in our 

laboratory before. The PF gene circuit had a different dose-response pattern than 

either NR or NF gene circuits, showing bimodality. Since Pdr5 had been proved to 

pump out the intracellular inducer, doxycycline, it introduced negative feedback loops 

into the NR and NF regulatory networks. Therefore, I wanted to find out if Pdr5 

introduced into the PF gene circuit would change its behavior and if so, how it would 

change it. Inconstant to NR and NF, there are two stable steady states in PF cells, 

giving rise to two subpopulations and cells that switch from one to another. Previous 

research has identified the growth rate and cellular memory of these two 

subpopulations. The introduction of PDR5 will be highly likely to change these, and it 

will be interesting to find out now. 

 

4.2 PF gene circuit and characterization of its dose response 

Similar to the NR and NF gene circuits, the positive feedback (PF) gene circuit 

has two parts, the target gene (reporter) and the regulator. The target gene was the 

gene fusion ZeoR::yEGFP under the control of a modified CYC1 promoter, which 

bears two TetO sites. The reporter was the rtTA gene under the control of the same 

modified CYC1 promoter. rtTA is a transactivator that is able to bind to TetO sites 

only when bound by tetracycline compounds, such as doxycycline and ATc. In the 

presence of galactose and tetracycline, rtTA expressed at basal level could bind to 

tetracycyline, and this complex bound to TetO sites on the promoters driving both the 

reporter and the regulator, could activate the transcription of both yEGFP::ZeoR and 
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rtTA forming a positive feedback loop. The PFpump gene circuit shared most parts 

with PF, the only difference being that the yEGFP::ZeoR fusion in PF was replaced 

by PDR5::GFP gene in PFpump (Figure 4.1).  
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Figure 4.1 Regulation scheme for Positive Feedback (PF) and Positive Feedback pump 

(PFpump mutant) gene circuits. 

 (A) PF. (B) PFpump.  
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Figure 4.2 Histograms of PF dose-response. 

The PF gene circuit was induced at 12 doxycycline concentrations, 0, 0.02, 0.04, 0.05, 0.06, 

0.08, 0.1, 0.15, 0.25, 0.5, 0.75 and 1 µg/ml; the histograms of yEGFP::ZeoR expression at each 

doxycycline concentration are shown. In each sample, cell culture was started with 0.5 x 106 

cells/ml, and every 12 hours, cell density was measured by Nexcelom, and a small amount of 

cell culture was inoculated into fresh medium aiming to start new culture with the cell density of 

0.5 x 106 cells/ml. 
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First, PF cells were induced with 12 different doxycycline concentrations, and flow 

cytometry was used to measure yEGFP::ZeoR expression in individual cells. At doxycycline 

concentrations 0 and 0.02 µg/ml, cells in the whole population showed minimal level of 

yEGFP::ZeoR expression. Starting at a doxycycline concentration of 0.04 µg/ml, a group of high 

yEGFP::ZeoR expressers appeared, making the fluorescence intensity histogram bimodal. With 

increased doxycycline concentration, the high peak grew while the low peak shrank. At a 

doxycycline concentration of 0.08 µg/ml, the majority of cells in the population already 

expressed a high level of yEGFP::ZeoR. When doxycycline concentration reached 0.5 µg/ml, 

the low peak almost disappeared and the histogram remained the same with further increase of 

doxycycline concentration until it reached 1 µg/ml (Figure 4.2).  

Then the mean for the cell population at each doxycycline concentration was calculated, 

and plotted against doxycycline concentration. It had a sharp rise starting from doxycycline 

concentration 0.04 µg/ml until doxycycline reached 0.1 µg/ml, after which the increase of the 

mean slowed down compared to the beginning. The mean reached saturation when doxycycline 

concentration reached 0.5 µg/ml, which agreed well with the histogram (Figure 4.3 A). Next, the 

CV was calculated. It started low, and showed a very sharp increase starting at doxycycline 

concentration 0.04 µg/ml and reached a high peak at doxycycline concentration 0.08 µg/ml, 

where the bimodal distribution had two peaks of similar height. After reaching the peak, the CV 

showed a sharp decrease until doxycycline concentration reached 0.25 µg/ml, and then it 

flattened down at doxycycline concentration of 1 µg/ml.  
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Figure 4.3 PF mean and CV dose-responses. 

 (A) Mean dose-response. (B) CV dose-response. Cells carrying PF gene circuit was induced 

by 12 doxycycline concentrations: 0, 0.02, 0.04, 0.05, 0.06, 0.08, 0.1, 0.15, 0.25, 0.5, 0.75 and 1 

µg/ml. The plots show the average of 3 replicates. Error bars indicate the SD of the 3 replicates’ 

mean value. 
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4.3 PFpump gene circuit and characterization of its dose-response 

After obtaining the dose-response for the PF gene circuit, I wondered how the PDR5 

gene would change its dose-response. Therefore, the dose-response for the PFpump gene 

circuit was characterized with the same experimental procedure as for the PF gene circuit. In no 

doxycycline environment, all the cells in the population expressed uniformly low level of 

PDR5::GFP. When doxycycline concentration was increased to 0.02 µg/ml, a high PDR5::GFP 

expresser peak appeared, although the low expressers were the majority of the population. 

When doxycycline concentration reached 0.04 µg/ml, low expressers and high expressers 

showed almost equal peaks, meaning that the number of low expressers roughly equaled the 

number of high expressers. With further increase of doxycycline concentration, more cells 

switched to the high PDR5::GFP expression level from the low level, until it reached the 

concentration of 0.25 µg/ml, where all cells in the population became high expressers, and the 

histogram did not change with further increase of doxycycline (Figure 4.4).  

Next, the mean and CV were calculated at each doxycycline concentration. From 

doxycycline 0.02 µg/ml to 0.1 µg/ml, the dose-response curve showed a steep rise, and then it 

slowed down with further increase of doxycycline concentration. The curve reached saturation 

around a doxycycline concentration of 0.25 µg/ml (Figure 4.5 A). The PDR5::GFP expression 

noise or CV peaked at doxycycline concentration 0.04 µg/ml, which corresponded well to the 

almost equal peaks in the reporter expression histogram with bimodal distribution.  The CV was 

low at low and high doxycycline concentrations because all or majority of cells expressed either 

low or high PDR5::GFP in either case (Figure 4.5 B). 
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Figure 4.4 Histograms of PFpump dose-response. 

The PF gene circuit was induced at 10 doxycycline concentrations, 0, 0.02, 0.04, 0.05, 0.06, 

0.08, 0.1, 0.15, 0.25 and 0.5 µg/ml; the histograms of PDR5::GFP expression at each 

doxycycline concentration were shown. In each sample, cell culture was started with 0.5 x 106 

cells/ml, and every 12 hours, cell density was measured by Nexcelom, a small amount of cell 

culture was inoculated into fresh medium aiming to start new culture with the cell density of 0.5 

x 106 cells/ml. 
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Figure 4.5 PFpump mean and CV dose-response. 

 (A) Mean dose-response. (B) CV dose-response. Cells carrying PFpump gene circuit were 

induced by 10 doxycycline concentrations: 0, 0.02, 0.04, 0.05, 0.06, 0.08, 0.1, 0.15, 0.25 and 

0.5  µg/ml. The plots show the average of 3 replicates. The plots show the average of 3 

replicates. Error bars indicate the SD of the 3 replicates’ mean value. 
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Figure 4.6 PF and PFpump mean and CV dose-response. 

 (A) Mean dose-responses. (B) CV dose-responses. The plots show the average of 3 replicates 

for each strain. Error bar indicate the SD of the 3 replicates’ mean value. 
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Although the dose-response behaviors of PF and PFpump were similar, they had 

differences as well. The mean dose-response of PFpump was more sensitive to doxycycline 

compared to PF (Figure 4.6 A), which was consistent with the results from NR-NRpump and 

NF-NFpump comparison. The CV peak of PFpump appeared earlier than for PF, which might be 

due to the higher sensitivity of PFpump to doxycycline (Figure 4.6 B). The CV peak of PF was 

much higher than that of PFpump, probably because the GFP fluorescence intensity was higher 

in PF (Figure 4.6 B), or because PFpump incorporated negative feedback that lowers noise.  

Comparing the histograms of PF and PFpump, I found that PF and PFpump differ at 

identical doxycycline concentration (Figure 4.7). For example, at doxycycline concentration 0.05 

µg/ml, PFpump had higher percentage of high expressers compared to PF. First, I thought that 

the pump actively excludes doxycycline from the cells, so it would take higher doxycycline 

concentration for PFpump to reach the same percentage of high expressers as PF does (Figure 

4.7). However, the experimental observation was quite contradictory. In order to explain the 

discrepancy, we decided to measure the growth rate and cellular memory of both low and high 

expressers in PFpump. Cellular memory was defined by the average time for each individual 

cell to stay in one gene expression state. Previous work showed that PF cells switch between 

the two subpopulations in the histogram. The cell growth rate and cellular memory was 

calculated for each subpopulation, and differed 81. Since PFpump had bimodal expression as 

well, I wanted to determine its growth rate and cellular memory.  
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Figure 4.7 Histograms of target gene expression in PF and PFpump. 

(A) PF cells induced in doxycycline. (B) PFpump cells induced in doxycycline. PF cells were 

induced by doxycycline concentrations 0, 0.02, 0.04, 0.05, 0.06, 0.08, 0.1, 0.15, 0.25, 0.5, 0.75 

and 1 µg/ml. PFpump cells were induced by 10 doxycycline concentrations: 0, 0.02, 0.04, 0.05, 

0.06, 0.08, 0.1, 0.15, 0.25 and 0.5 µg/ml. 
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4.4 Measurement of PFpump growth rate 

First of all, I measured the growth rate for the two PFpump subpopulations. In order to 

do so, I induced the PFpump strain in SD medium with a doxycycline concentration of 0.05 

µg/ml until gene expression became stable. Then the cell culture was sorted into high 

expressers and low expressers, the threshold used for the separation was the valley point on 

the histogram (Figure 4.4 C). Cell densities were measured every 2 hours for 24 hours and then 

every 12 hours for 96 hours for each of the subpopulations. The growth rate of PFpump cells 

induced at the same doxycycline concentration without cell sorting (mixed population) was 

measured as well. At the same time, PDR::GFP expression in each subpopulation was 

measured every 12 hours. Because the two subpopulations switch to each other, they should 

return to the original histogram before cell sorting. That was where the experiment ended. Data 

gathered through the experiments was used for computational estimation of growth rate. The 

growth rate for the two subpopulations and the mixed population were all decreasing with 

increasing doxycycline concentrations. However, the growth rate of high expressers decreased 

the most, while the growth rate of low expressers only showed slight decrease. The growth rate 

of the mixed population was intermediate, closer to the low expresser growth rate in low 

doxycycline concentration, but closer to high expresser growth rate once doxycycline 

concentration reached 0.05 µg/ml and beyond (Figure 4.8).  
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Figure 4.8 Growth rate properties of PFpump. 

Computational estimation of the growth rate for low and high subpopulations. Parameters were 

obtained from experiments. Low and high subpopulations were separated by cell sorting, and 

grown in separate tubes containing SD mediums. Growth rate of cells in each tube and the 

whole cell population were measured every 2 hours until the reporter expression histogram 

recovered to the same as before sorting. The growth rate of the whole cell population was 

shown here, the growth rate for sorted cells were used to estimate the low and high expressors’ 

growth rate.   
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Figure 4.9 Cellular memories of the two subpopulations of PFpump and PF. 

(A) PFpump cellular memory. (B) PF cellular memory 81. The black dotted line in both figures 

indicated where the high expresser and low expresser plots were equal in the histogram.  
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4.5 Comparison of memory between PF and PFpump strains 

Next, I investigated the cellular memory of PFpump. Computational estimation showed 

that the memory for the low expressers was 10.9 hours at doxycycline concentration 0.05 µg/ml, 

while that for the high expresser was 6.9 hours (figure 4.9). The memory of the low expressers 

remained relatively constant over the entire doxycycline concentration range, but the memory of 

high expressers increased from doxycycline concentration 0 to 0.1 µg/ml an remained constant 

afterwards (Figure 4.9). After obtaining the cellular memory of PFpump, we decided to compare 

it with PF and see if the efflux pump, Pdr5, would cause memory change. With data from 

previous work, I found that the cellular memory of low expressers was 16 hours at ATc 

concentration 10 ng/ml, at which the two subpopulations showed almost equal number of cells. 

However, the memory for high expressers was extremely high, 283 hours, at the same ATc 

concentration. Therefore, although low expressers and high expressers were in the same 

amount of cells in the population, the difference between their memories differed tremendously 

in PF and PFpump.  

 

4.6 Conclusion and discussion 

Here, I characterized the dose-response for PFpump for the first time. Although the 

dose-response of PF had been measured, it was induced by ATc. Since ATc is sensitive to light, 

and is not as stable as doxycycline, I re-characterized the PF dose response with doxycycline 

as inducer.  Both PF and PFpump showed bimodal distribution at intermediate doxycycline 

concentrations, which suggested that the negative feedback loop introduced by Pdr5 did not 

interfere with a key fracture from positive feedback loop, bimodality. It is interesting to note that 

although negative feedback was shown to reduce the variability of steady states, PFpump still 

showed bimodality. Compared to the dose-response curves of NR and NF gene circuits, the 



108 
 

doxycycline concentrations used for PF and PFpump were much lower, indicating higher 

sensitivity of PF gene circuits. The PF and PFpump mean and CV dose-responses were similar. 

The mean dose-response increased sharply between low and intermediate doxycycline 

concentration, and then slowed down until the curves reached saturation at high doxycycline 

concentration, which was 0.25 µg/ml. Both CVs both had a single peak at intermediate 

doxycycline concentration, indicating diverse expression of target genes in individual cells in the 

population. However, PFpump cells were more sensitive to doxycycline than PF cells, proved by 

the fact that PFpump had higher mean than PF at the same doxycycline concentration (Figure 

4.6).  When I looked at the histograms for both strains, I found that higher percentage of 

PFpump cells became high expresser than PF cells at the same doxycycline concentration 

(Figure 4.7). This result was completely opposite to my expectation, because Pdr5 was an efflux 

pump, and it has been shown to pump out doxycycline 143, 146, 147. Therefore, Pdr5 was expected 

to reduce intracellular doxycycline concentration and, as a result, PFpump cells were expected 

to have less high expresser than PF at the same doxycycline concentration. This contradictory 

discovery led us to think about previous work published in our lab about growth rate and cellular 

memory of the two subpopulations in PF strain. Growth rate referred to the cell growth rate, 

cellular memory was the average time an individual cell stayed in one stable steady state. The 

research showed that the two subpopulations grew at different rates, and their cellular memory 

differed tremendously. Therefore, I wondered if Pdr5 changed either the growth rate or cellular 

memory of the two subpopulations, or both. In order to answer this question, I measured the 

growth rate and cellular memory of the two subpopulations and mixed populations in PFpump. 

All of the three populations growth rate decreased with increasing of doxycycline concentration, 

which suggested that doxycycline caused the reduction of growth rate of PFpump cells. Low 

expressers only showed a slightly decrease of growth rate with increasing doxycycline 

concentration, which was the lowest reduction among the three populations. On the contrary, 

high expressers showed the highest reduction, which suggested that the expression of 
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PDR5::GFP reduced the cells’ growth rate. Since the growth rate of PF cells had been 

characterized in our lab before, I wondered if Pdr5 changed the growth rate of cells bearing PF 

gene circuits. In order to test that, I compared my data from PFpump growth rate with previous 

data of PF growth rate. Because previous work on PF growth rate was done with ATc as 

inducer, here I needed to find the corresponding doxycycline concentration for ATc 

concentration used in previous work. In order to do that, I compared the histogram of PF 

induced by both ATc and doxycycline. When the PF cells were induced to show two equal 

peaks on the histogram, 10 ng/ml ATc or 0.08 µg/ml doxycycline was required (Figure 4.6 C and 

D). Therefore, we considered 10 ng/ml ATc and 0.08 µg/ml doxycycline to be equivalent. At an 

ATC concentration of 10 ng/ml, the overall growth rate of PF cells was reduced to 80% of the 

maximum growth rate, meaning the growth rate of cells without any inducer. More dramatically, 

the growth rate of high expressers was reduced to 70% of the maximum growth rate. 

Comparably, at doxycycline 0.08 µg/ml, the overall growth rate was above 90% of the maximum 

growth rate, while the growth rate for high expressers showed slightly slower than the overall 

growth rate (Figure 4.10 A and B). In summary, introduction of Pdr5 partially recovered the 

growth rate in PF high expressers. There are several possible explanations. According to 

previous research, the growth rate of PF cells was 0.22 division per hour in no induction 

condition, while the growth rate of PFpump was 0.32 division per hour in my study, and the 

absolute value of growth rate reduction to ATC 10 ng/ml or doxycycline 0.08 µg/ml for the two 

strains were both 0.015 division per hour. Therefore, it is possible that the reduction of growth 

rate was not relevant to what gene was expressing, meaning that the protein expression itself 

would reduce growth rate because it took more resources and utilize more energy in the cells.  

Second possibility was relevant to the efflux pumping activity of Pdr5. It has been discovered 

that yeast cells with endogenous Pdr5 knockout showed decreased growth rate compared to 

cells with normal native Pdr5 expression. The reason was that yeast cells generated metabolic 

wastes during their growth, and Pdr5 was able to pump out those toxic molecules. Thus, it was 
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possible that the expression of Pdr5 in PFpump cells reduced intracellular toxic molecules and 

gave PFpump cells an advantage for growth.  

After obtaining the growth rate for the two subpopulations of PFpump cells, cellular 

memory of the two subpopulations were also calculated, because growth rate and cellular 

memory were the two factors that contributed to the bimodal histograms of PF and PFpump 

cells. Previous research had identified the cellular memory for the two subpopulations of PF 

cells. Here I measured the cellular memory of PFpump cells and discovered that the memory for 

low expressers was close to that of PF cells. However, the memory for high expressers in 

PFpump cells was much shorter compared to their counterparts in PF cells. One possible 

explanation was the efflux pumping activity of Pdr5. Since Pdr5 was able to pump out 

doxycycline, which was supposed to lower intracellular doxycycline concentration and therefore 

facilitated the back switch of high expressers to low expressers. Second explanation might be 

that Pdr5 affected the concentration of rtTA. In Chapter 3, I discovered the correlation that the 

presence of Pdr5 lowered tetR concentration. rtTA used here in PF and PFpump cells was a 

fusion protein composed of tetR and VP16 transactivation domain, so it is possible that Pdr5 still 

affects the concentration rtTA.   

 

4.7 Future direction 

First of all, since Pdr5 was shown to lower TetR concentration in NR-NRpump and NF-

NFpump dose-response comparison, it will be interesting to know if Pdr5 also affected rtTA 

concentration in PFpump cells, because rtTA is tetR protein fused with the transactivation 

domain of VP16. Construction of PF and PFpump strains with fluorescence labeled rtTA will be 

necessary for the investigation. If Pdr5 was proved to affect rtTA concentration, immune-
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precipitation assay will be done to detect if there is direct interaction between Pdr5 and rtTA. 

Second, stochastic simulation will be done to reproduce experimental dose-response data.  
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Figure 4.10 Growth rate comparisons between PF and PFpump. 

(A) Growth rate of PF strain. Fitness overall refers to the PF population without cell sorting, 

mixture of low and high expressers. Fitness low refers to the growth rate of low expressers. (C) 

Fluorescence intensity histograms of PF induced by ATc. (D) Fluorescence intensity histograms 

of PF induced by doxycycline.  

PF histogram 
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Chapter 5 Molecular evolution of NRpump, NFpump and PFpump 

strains 

 

5.1 Introduction  

PDR5 encodes a multidrug resistance protein, which functions as an efflux pump on the 

cell membrane in Saccharomyces cerevisiae. The natural PDR5 gene transcription is under the 

control of Pdr1 and Pdr3 proteins. PDR1 gene encodes a transcription factor that binds to the 

promoter of both PDR3 and PDR5 genes, and initiates their transcription after the binding. 

PDR3 also encodes a transcription factor which is able to activate the transcription of itself and 

PDR5 gene. Thus, Pdr3 forms a positive feedback loop to regulate PDR5 transcription in the 

natural system. The presence of toxic molecules or drugs activates the expression of PDR1, 

which consequently leads to the transcription of both PDR3 and PDR5; more PDR3 expression 

will amplify the expression level of itself and PDR5, which form a positive feedback network. 

Once toxic molecules are pumped out by the Pdr5 protein, PDR1 returns to the normal level and 

as a consequence reduces Pdr3 and Pdr5 in the cells. Since the dose-response of the three 

gene circuits controlling PDR5, NRpump, NFpump and PFpump have been characterized, and 

were very different (shown in the previous chapters), I wondered if the three gene circuits would 

have different protection for the cell population in adverse environment. The result might be able 

to explain the evolution and natural selection of positive feedback loop in the regulation of PDR5 

transcription.  

 

5.2 Pdr5 confers cells protection from fluconazole treatment 

It has been shown that Pdr5 can pump out fluconazole and confer protection to the cells 

by the fact that the ∆pdr5 strain was hypersensitive to fluconazole treatment 94. Here I wanted to 



114 
 

confirm that the PDR5::GFP fused protein expressed in the gene circuits used in my study was 

able to confer resistance to fluconazole treatment as well.  YPH500 and RFpump strains 

(Reference strain) were used for the test. YPH500 was the parental strain, on which all of the 

other strains were constructed based, by inserting specific synthetic gene circuits into its HIS3 

locus on the genome. Similarly, the RFpump strain was constructed by the integration of the 

RFpump gene circuit into the genome of the YPH500 strain. Similar to other pump gene circuits, 

the RFpump gene circuit also contains 2 parts, the regulator and the reporter. The regulator has 

a TetR gene under the control of wild type GAL1 promoter, while the reporter has PDR5::GFP 

fused gene under control of the same wild type GAL1 promoter (Figure 5.1). Therefore, no TetR 

binding sites were introduced in any of the promoter regions in RFpump gene circuit. As a 

result, PDR5::GFP will be expressed at a constant rate in the presence of galactose.  

Next, survival of YPH500 and RFpump strains in fluconazole environment was tested. 

Six different fluconazole concentrations were used (0 µg/ml, 2 µg/ml, 4 µg/ml, 6 µg/ml, 8 µg/ml 

and 10 µg/ml) to treat both strains, while no fluconazole cultures were used as negative control. 

All of the cell cultures were resuspended every 12 hours to maintain their growth in exponential 

phase. When the YPH500 strain was cultured in 0 µg/ml fluconazole environment, its growth 

curve remained linear on semi log scale, because the cells kept growing in exponential phase 

during the entire experiment (Figure 5.2 A). However, in the presence of fluconazole, the 

YPH500 strain grew at a rate slightly slower than in no fluconazole environment in the first 12 

hours, then the growth curve became flat, indicating a complete growth arrest (Figure 5.2 A). In 

contrast, the RFpump strain showed the same growth rate in all fluconazole concentrations and 

the negative control, indicated by the linear growth curves in all of the 6 conditions (Figure 5.2 

B). In conclusion, PDR5::GFP was able to confer cells complete resistance to fluconazole 

concentration up to 10 µg/ml.  
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Figure 5.1 Composition of RFpump gene circuit. 

In the PFpump gene circuit, both the TetR and the PDR5::GFP fusion gene were under control 

of the wild type Gal1 promoter, which was expressed constitutively in the presence of galactose. 

Therefore, RFpump expression was not doxycycline dependent. 

 

 

 

 

 

 

 

 

 

 

 

 

 



116 
 

A B 

  

 

Figure 5.2 YPH500 and RFpump growth rate in the fluconazole concentrations of 0 – 10 

µg/ml. 

(A)YPH500 strain. (B) RFpump strain. Both strains were treated with 6 fluconazole 

concentrations: 0, 2, 4, 6, 8 and 10 µg/ml. In each sample, cell culture was started with 0.5 x 106 

cells/ml, and every 12 hours, cell density was measured by Nexcelom, a small amount of cell 

culture based on the calculation was inoculated into fresh medium to start new culture with the 

cell density, 0.5 x 106 cells/ml. Cell count was plotted with the natural log as base.  
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5.3 NRpump and NFpump gene circuits evolved resistance to fluconazole 

treatment without induction 

PDR5::GFP expression in the RFpump gene circuit was able to protect cells from 

fluconazole treatment in the previous experiment. Next I asked if Pdr5 under the control of NR, 

NF and PF gene circuits would give cells different survival advantages in the fluconazole 

environment. I have shown that NRpump, NFpump and PFpump gene circuits showed different 

distribution of Pdr5 expression under induction as discovered in the prior two chapters. 

However, the first step was to know how each synthetic gene circuit survives in the fluconazole 

environment without induction. Therefore, NRpump, NFpump and PFpump strains were treated 

with the same set of fluconazole concentrations as it was used for YPH500 and RFpump 

strains, but no doxycycline was added into the cell culture, meaning that only basal level Pdr5 in 

the gene circuits was expressed. The results of the three strains were all similar to YPH500 

strain in the first 12 hours of fluconazole presence: the growth rate was slightly slowed down 

compared to no fluconazole cell culture (Figure 5.3). It has been found that fluconazole entered 

into the cells by diffusion, and it took at least 8 hours for the cells to respond (Data not shown). 

After the first 12 hours, the three strains showed different response patterns to fluconazole. 

Moreover, the three strains had different growth rates after 36 hours in fluconazole environment. 

The growth rate of NRpump first slowed down and became flat, suggesting the growth was 

completely ceased. Then the growth rate of the NRpump strain started to recover, and gradually 

went back to a level comparable to the cell culture in no fluconazole environment. This 

conclusion was supported by the fact that the growth rate curves of the 6 cell cultures became 

parallel after 48 hours (Figure 5.3 A). The curve of NFpump growth rate was similar to NRpump 

in that it first slowed down to flat after 24 hours culturing in fluconazole environment, and then 

recovered back to normal after 48 hours presence in fluconazole (including the no fluconazole 

control). Similar to NRpump cells, the growth rate of NFpump also recovered after a period of 
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fluconazole presence. However, differences remain.  Unlike NRpump cells that had the same 

growth rate curve at different fluconazole concentration, NFpump cells responded differently. 

NFpump responded to lower fluconazole concentration (2 µg/ml) slower than NRpump did, 

indicated by the data that the growth rate of NFpump cells went flat after 24 hour in the 

fluconazole treatment, while it only took NRpump cells 12 hours to stop growing (Figure 5.3 A 

and B). No significant difference was observed for the response to fluconazole concentration 

higher than 2 µg/ml between NFpump cells and NRpump cells. On the contrary, the growth rate 

of PFpump cells became flat after 12 hours in all fluconazole concentrations (except 0 µg/ml), 

and the growth rate remained extremely low during the entire time with treatment. 

Since the growth rates of NRpump and NFpump went back to normal after 48 hours 

presence in the fluconazole environment, I wondered if the recovery was caused by Pdr5 

expression from the synthetic gene circuits. In order to test that, I measured PDR::GFP 

expression in the NRpump and NFpump cells by flow cytometry. The histograms showed that 

48 hours after fluconazole treatment, Pdr5 was expressed at high level in every cell in the 

NRpump population at all the fluconazole concentrations, compared to basal expression of Pdr5 

in the no fluconazole treatment control group (Figure 5.4 A). The histograms for NFpump 

showed similar pattern. The only difference was that at a fluconazole concentration of 2 µg/ml, 

NFpump showed bimodal distribution in the histogram with most of the cells in the population 

expressing high level of Pdr5 while only a small fraction remained Pdr5 low expressers (Figure 

5.4 B). Since negative feedback loop has been proved to reduce gene expression noise, the 

bimodal distribution was highly likely due to two distinct subpopulations. This result suggested 

three possibilities for the fluconazole resistant cells. 1) The bimodal distribution was due to 

stochastic switching of cells. Even in the NF strains, there is a very small amount cells 

expressing high level of Pdr5, which could have taken over the whole cell population in the 

fluconazole treatment. 2) A single mutation might have occurred that made cells switch back 
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and forth in two Pdr5 expression states as PF and PFpump cells do. A mutation that weakened 

TetR function will lead to this stochastic switching. 3) The existence of a fluconazole resistant 

NFpump subpopulation without Pdr5 expression, which suggested the involvement of other 

factors in fluconazole resistance appeared in NFpump strains. 
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Figure 5.3 NRpump, NFpump and PFpump growth rate in the fluconazole concentrations 

of 0 – 10 µg/ml. 

(A) NRpump strain. (B) NFpump strain. (C) PFpump strain. All the three strains were treated 

with 6 fluconazole concentration: 0, 2, 4, 6, 8 and 10 µg/ml. In each sample, cell culture was 

started with 0.5 x 106 cells/ml, and every 12 hours, cell density was measured by Nexcelom, a 

small amount of cell culture based on the calculation was inoculated into fresh medium to start 

new culture with the cell density, 0.5 x 106 cells/ml. Cell growth rate was then calculated and 

plotted. Cell count was plotted with the natural log as base.  
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Figure 5.4 PDR5 expression histograms of NRpump and NFpump at 48th hour in the 

fluconazole concentrations of 0 – 10 µg/ml. 

(A) NRpump strain. (B) NFpump strain. Both strains were treated with 6 fluconazole 

concentration: 0, 2, 4, 6, 8 and 10 µg/ml. In each sample, cell culture was started with 0.5 x 106 

cells/ml, and every 12 hours, cell density was measured by Nexcelom, a small amount of cell 

culture based on the calculation was inoculated into fresh medium to start new culture with the 

cell density, 0.5 x 106 cells/ml. PDR5::GFP expression was measured by flow cytometry every 

24 hours. 
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Figure 5.5 PDR5 expression histograms of NRpump and NFpump after the fluconazole 

removal. 

(A) NRpump strain. (B) NFpump strain.  Both strains were first cultured in SD medium with a 

fluconazole concentration of 10 µg/ml until PDR5::GFP expression was confirmed from the gene 

circuits by flow cytometry. Then the NRpump and NFpump cells cultured in SD medium without 

fluconazole for 72 hours. In each sample, cell culture was started with 0.5 x 106 cells/ml, and 

every 12 hours, cell density was measured by Nexcelom, a small amount of cell culture based 

on the calculation was inoculated into fresh medium to start new culture with the cell density, 0.5 

x 106 cells/ml. PDR5::GFP expression was measured by flow cytometry every 24 hours. 
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It was unexpected to discover that PDR5::GFP from NRpump and NFpump gene circuits 

was expressed in the fluconazole environment in the absence of any tetracycline family inducer. 

Two possibilities existed. First,  could cause cells to switch from low Pdr5 expression status to 

high Pdr5 expression status without changing their genomes. The bimodal distribution of 

NFpump in a fluconazole concentration of 2 µg/ml confirmed existence of two sub-populations, 

so I wondered if these two subpopulations would switch to each other as PF and PFpump 

strains showed in the last chapter. Second possibility for Pdr5 expression from the NRpump and 

NFpump gene circuits was the breakdown of the two gene circuits. PDR5 was under the control 

of modified a GAL1 promoter in both NRpump and NFpump gene circuits, so that PDR5 

transcription was repressed by TetR unless tetracycline family molecules were present. If TetR 

lost its repression capacity by genetic mutation or the modified GAL1 promoter changed the 

sequence of TetO sites, which TetR protein binds, the transcription of PDR5::GFP would have 

no repression, and as a consequence, Pdr5 would be expressed in the absence of doxycycline. 

In order to test these two possibilities, both NRpump and NFpump strains were first treated with 

10 µg/ml fluconazole for 48 hours, and then they were switched to the no fluconazole 

environment and cultured in the same condition for 84 hours. As expected, the histograms of 

NRpump showed high PDR5::GFP expression after 48 hours (data not shown). Moreover, the 

histograms remained the same at every time point after fluconazole removal until the 84th hour 

(Figure 5.5 A). Similarly, the histograms of NFpump did not show significant change either after 

fluconazole removal. They only showed a small peak that was slightly lower than the original 

high Pdr5 expression peak. The new peak grew higher over time, but it was still a small fraction 

compared to the majority of the cells that expressed higher Pdr5 than the basal levl (Figure 5.5 

B). These results suggested that the expression of PDR5::GFP form NRpump and NFpump 

gene circuits were possibly due to the gene circuits’ breakdown. DNA sequence data is still 

needed for confirmation.  



124 
 

After identification of fluconazole response curves for NRpump and NFpump, I noticed 

that even cells treated with the lowest fluconazole concentration, 2 µg/ml, showed full 

resistance, which made me to wonder if lower fluconazole concentration would induce a 

different response, such as NFpump cells in a fluconazole concentration of 2 µg/ml (Figure 5.4). 

Therefore, a new set of fluconazole concentrations were used to treat NRpump and NFpump 

strains. For NRpump strain, fluconazole concentrations below 0.6 µg/ml did not cause 

distinguishable difference on its growth rate compared to cells growing in no fluconazole 

environment. NRpump cells treated with a fluconazole concentration of 0.8 µg/ml showed a 

reduced growth rate starting at the 48th hour after fluconazole presence, but their growth rates 

recovered back to normal level after 120 hours in the fluconazole treatment. The growth rate of 

NRpump cells growing in fluconazole concentrations of 1.0 µg/ml and 1.5 µg/ml both slowed 

down after 24 hours treatment, cells in the fluconazole concentration of 1.0 µg/ml recovered 

their growth rate after 60 hours in the treatment, while it took cells in the fluconazole 

concentration of 1.5 µg/ml additional 12 hours to recover its growth rate back to the normal level 

(Figure 5.6 A). The growth rate of NFpump cells did not show distinguishable difference up to 

fluconazole concentration 1.0 µg/ml. Cells in a fluconazole concentration of 1.5 µg/ml showed 

decreased growth rate after 60 hours in the fluconazole environment, which was similar to 

NRpump in a fluconazole concentration of 0.8 µg/ml. The reduced growth rate recovered back 

to normal after 84 hours in the treatment (Figure 5.6 B). The comparison between NRpump and 

NFpump suggested that NRpump cells had higher sensitivity to fluconazole than NFpump cells 

did, which might relate to their different basal expression. Because it has been shown that NF 

has higher basal reporter expression than NR does in the previous research in our lab, and this 

higher expression was able to confer significant difference in cells’ resistance to drug treatment.   

Besides measuring the growth rate of NRpump and NFpump cells in the new set of 

fluconazole concentrations (0 µg/ml to 1.5 µg/ml), I also measured their PDR5::GFP expression 
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at each fluconazole concentration from 48 hours to 120 hours in the fluconazole treatment. 

From the fluconazole concentrations 0 µg/ml to 0.6 µg/ml, all the NRpump cells in the 

population expressed at basal level Pdr5 at all the time points. However, from fluconazole 

concentrations 0.8 µg/ml to 1.5 µg/ml, the histograms showed bimodal distribution, indicating a 

fraction of cells in the population became Pdr5 high expressers. The fraction of high expressers 

increased with the increase of fluconazole concentrations (Figure 5.7). By contrast, cells treated 

with a fluconazole concentration of 1.5 µg/ml showed an increased fraction of low expressers in 

the histograms with time passing by (Figure 5.7.  This result suggested other resistance 

mechanism to fluconazole existed along with increased Pdr5 expression from the gene circuit in 

NRpump cells. 
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Figure 5.6 NRpump and NFpump Growth rate in the fluconazole concentrations of 0 – 1.5 

µg/ml. 

(A) NRpump strain. (B) NFpump strain.  Both strains were cultured in 7 different fluconazole 

concentrations: 0, 0.2, 0.4, 0.6, 0.8, 1 and 1.5 µg/ml. In each sample, cell culture was started 

with 0.5 x 106 cells/ml, and every 12 hours, cell density was measured by Nexcelom, a small 

amount of cell culture based on calculated was inoculated into fresh medium to start new culture 

with the cell density, 0.5 x 106 cells/ml. Cell growth rate was then calculated and plotted. 

PDR5::GFP expression was measured by flow cytometry every 24 hours. Cell count was plotted 

with the natural log as base.  
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Figure 5.7 NRpump histograms in fluconazole concentrations of 0 – 1.5 µg/ml. 

(A) 48 hours after the fluconazole treatment. (B) 72 hours after the fluconazole treatment. (C) 96 

hours after the fluconazole treatment. (D) 120 hours after the fluconazole treatment. NRpump 

cells were cultured in 7 different fluconazole concentrations: 0, 0.2, 0.4, 0.6, 0.8, 1 and 1.5 

µg/ml. In each sample, cell culture was started with 0.5 x 106 cells/ml, and every 12 hours, cell 

density was measured by Nexolum, a small amount of cell culture based on the calculation was 

inoculated into fresh medium to start new culture with the same cell density, 0.5 x 106 cells/ml. 

Cell growth rate was then calculated and plotted. PDR5::GFP expression was measured by flow 

cytometry every 24 hours. 
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PDR5:GFP expression was also measured in the new set of fluconazole concentration 

treatment in NFpump cells. From fluconazole concentrations 0 µg/ml to 0.8 µg/ml, the 

histograms only showed one peak composed of low Pdr5 expressers, indicating only basal Pdr5 

expression in the whole population. At a fluconazole concentration of 1 µg/ml, a small peak 

showed up in the high fluorescence intensity zone, indicating small fraction of cells expressing 

high level of Pdr5. When fluconazole concentration reached 1.5 µg/ml, the vast majority of cells 

became high Pdr5 expressers with only a very small percentage of cells remaining as low 

expressers. When the fluconazole dose-responses of NRpump and NFpump were compared, 

differences were revealed. For example, from fluconazole concentrations 1.0 µg/ml to 1.5 µg/ml, 

the gradually increased fraction of low expressers in NRpump cells did not show up in NFpump 

cells. Instead, NFpump cells jumped to entirely high Pdr5 expressers from the distribution with 

majority of low Pdr5 expressers. The results suggested a gap between fluconazole 

concentrations 1.0 µg/ml and 1.5 µg/ml that might be able to induce bimodal distribution in 

NFpump cells.  

 

 

 

 

 

 

 

 



129 
 

A B 

  

C D 

  

Figure 5.8 NFpump histograms in the fluconazole concentrations of 0 – 1.5 µg/ml.  

(A) 48 hours after the fluconazole treatment. (B) 72 hours after the fluconazole treatment. (C) 96 

hours after the fluconazole treatment. (D) 120 hours after the fluconazole treatment. NFpump 

cells were cultured in 7 different fluconazole concentrations: 0, 0.2, 0.4, 0.6, 0.8, 1 and 1.5 

µg/ml. In each sample, cell culture was started with 0.5 x 106 cells/ml, and every 12 hours, cell 

density was measured by Nexcelom, a small amount of cell culture based on the calculation 

was inoculated into fresh medium to start new culture with the same cell density, 0.5 x 106 

cells/ml. Cell growth rate was then calculated and plotted. PDR5::GFP expression was 

measured by flow cytometry every 24 hours. 
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So far, I identified the range of fluconazole concentrations to induce Pdr5 expression in 

NRpump and NFpump, but there was a gap in the histogram between fluconazole 1 µg/ml and 

1.5 µg/ml, especially in NFpump cells. I wanted to further narrow down the concentrations to 

characterize the fluconazole dose-response change by fluconazole. Therefore, another set of 

fluconazole concentrations (0, 0.8, 1.0, 1.1, 1.2, 1.3, 1.4, 1.5, 1.7 and 2.0 µg/ml) was used to 

treat NRpump and NFpump cells. In the first 12 hours after treatment, NRpump cells in all the 

fluconazole concentrations expressed low level of Pdr5 and the expression was uniform, 

indicated by single peak in the histogram. Starting at 24 hours after treatment, NRpump cells in 

the fluconazole concentrations of 1 µg/ml and above showed slightly higher Pdr5 expression, 

and the cell number decreased compared to cells in the fluconazole concentrations of 0 and 0.8 

µg/ml, indicating decreased growth rate. With longer fluconazole treatment, more cells at the 

fluconazole concentrations of 1 µg/ml and above turned into high Pdr5 expressers. During this 

transition, cells showed bimodal expression of Pdr5. NRpump cells treated with a fluconazole 

concentration of 0.8 µg/ml showed low Pdr5 expression level at the beginning of this 

experiment, but a portion of cells started to turn into high Pdr5 expressers after 60 hours in the 

treatment, the process lasted until 324 hours after fluconazole addition. This result showed that 

a fluconazole concentration of 1 µg/ml was also able to elicit Pdr5 expression from NRpump 

gene circuit, but at a much slower pace compared to cells treated with higher fluconazole 

concentrations.  In this experiment, I noticed one very interesting phenomenon; cells treated 

with a fluconazole concentration of 1.1 µg/ml first turned from low expressers to high 

expressers, then they switched back to low expressers after 156 hours in the treatment. Then at 

252th hour after treatment, the low expressers started to switch to high expressers again until 

the whole population became completely high expresser at 348th hour in the treatment, then the 

cells stayed as high expressers until the end of experiment, which was 396 hours in the 

fluconazole environment.  
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Figure 5.9 NRpump histograms in the fluconazole concentrations of 0 – 2 µg/ml. 

(A) to (V) 12 hours after the fluconazole treatment to 396 hours after the treatment. Fluconazole 

concentrations used here were:  0, 0.8, 1, 1.1, 1.2, 1.3, 1.4, 1.5, 1.7 and 2 µg/ml. In each 

sample, cell culture was started with 0.5 x 106 cells/ml, and every 12 hours, cell density was 

measured by Nexolum, a small amount of cell culture based on the calculation was inoculated 

into fresh medium to start new culture with the same cell density, 0.5 x 106 cells/ml. Cell growth 

rate was then calculated and plotted. PDR5::GFP expression was measured by flow cytometry 

every 24 hours. 
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Next, I wanted to see if NFpump cells would show the same pattern in the new set of 

fluconazole treatment as NR did. The data showed that it took longer for NFpump cells to 

reposed to fluconazole compared to NRpump (Figure 5.10), and this result matched well with 

previous fluconazole treatment result, in which NFpump was more resistant to fluconazole than 

NRpump naturally (Figure 5.3). With longer fluconazole treatment, NFpump cells showed the 

same pattern as NRpump did: NFpump cells treated with fluconazole concentration 1 µg/ml and 

above gradually became high Pdr5 expressers from low expressers. However, cells treated with 

a fluconazole concentration of 0.8 µg/ml only began to show high Pdr5 expressers by 396 hours 

after the treatment, this took much longer compared to NRpump cells, which confirmed that 

NFpump was naturally more resistant to fluconazole than NRpump cells because of its high 

basal expression. Similar to NRpump cells, I also noticed that NFpump cells cultured in certain 

fluconazole concentration also switch forth and back and NRpump cells did, but the fluconazole 

concentration that induced this switch was different from NRpump. NFpump cells treated with 

1.2 µg/ml switched from low Pdr5 expressers to high expressers with longer fluconazole 

treatment. Then the high expressers started to turn back to low expressers after 252 hours after 

the treatment, and the low expressers switched to high expressers again at 396th hour during 

fluconazole treatment. For NRpump and NFpump strains evolved in all these experiments 

above, frozen stocks were saved. 
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Figure 5.10 NFpump histograms in the fluconazole concentrations of 0 – 2 µg/ml. 

(A) to (V) 12 hours after treatment to 396 hours after treatment. 10 Fluconazole concentrations 

were used:  0, 0.8, 1, 1.1, 1.2, 1.3, 1.4, 1.5, 1.7 and 2 µg/ml. In each sample, cell culture was 

started with 0.5 x 106 cells/ml, and every 12 hours, cell density was measured by Nexcelom, a 

small amount of cell culture based on the calculation was inoculated into fresh medium to start 

new culture with the same cell density, 0.5 x 106 cells/ml. Cell growth rate was then calculated 

and plotted. PDR5::GFP expression was measured by flow cytometry every 24 hours. 
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5.4 Conclusion and Discussion 

In this project, I have shown that Pdr5 was able to protect Saccharomyces cerevisiae 

cells from the fluconazole treatment up to a concentration of 10 µg/ml. Non-tetracycline family 

molecule induced NRpump, NFpump and PFpump treated with fluconazole all showed dramatic 

reduction of growth rate in the first 12 hours. However, NRpump and NFpump cells fully 

recovered their growth rate to the normal level after 48 to 60 hours in the presence 

offluconazole, while the growth rate of PFpump cells remained extremely low during the entire 

fluconazole treatment. This discovery suggested a possibility that NRpump and NFpump gene 

circuits were broken in the presence of fluconazole, so that TetR was not able to repress PDR5 

transcription even in the absence of tetracycline family inducers, which led to the expression of 

Pdr5 from the two synthetic gene circuits. In order to test this hypothesis, flow cytometry was 

used to monitor PDR5::GFP expression after fluconazole treatment. The result confirmed the 

correlation between growth rate and PDR5::GFP expression level. The reduced growth rate in 

the initial fluconazole treatment was associated with basal PDR5::GFP expression, while the 

increased PDR5::GFP expression was associated with the recovery of growth rate in NRpump 

and NFpump cells. The histograms of PDR5::GFP expression remained the same even after the 

fluconazole removal, supporting the hypothesis of gene circuits’ being broken in both NRpump 

and NFpump cases. These results suggested that the recovered growth rate was due to 

expression of Pdr5 from the gene circuits. Genetic mutations causing this most likely might 

contributed to the appearance of resistant cells. This needs further investigation by whole 

genome sequencing.  

During the process of growth rate slow-down and recovery, NRpump and NFpump cells 

treated with six different fluconazole concentrations behaved similarly. The results suggested 

that the fluconazole concentrations between 2 µg/ml and 10 µg/ml were not able to differentiate 

NRpump and NFpump. Therefore, the question arose whether fluconazole was able to elicit 
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different distribution of Pdr5 expression. In order to answer this question, lower sets of 

fluconazole concentrations were used to treat NRpump and NFpump cells. The results indicated 

that the fluconazole concentration of 0.8 µg/ml was the threshold for generating resistance by 

increased expression in both NRpump and NFpump cells. It’s also been noticed that the lower 

the fluconazole concentration was, the longer it took to elicit resistance in NRpump and 

NFpump cells; and the appearance of resistance was again confirmed to involve Pdr5 

expression from the gene circuits. However, at intermediate fluconazole concentration, Pdr5 

expression showed bimodality, which was not normal, because negative feedback loop has 

been proved to reduce gene expression noise, and NFpump showed unimodal distribution of 

Pdr5 expression when induced by doxycycline, no matter what concentration was used (Data 

shown in Chapter 3). This data suggested the existence of another subpopulation, which was 

resistance to fluconazole without Pdr5 expression from the gene circuit, or stochastic switching 

in a genetically homogenous population. 

In order to further confirm the bimodality of Pdr5 expression in both NRpump and 

NFpump cells, more fluconazole concentrations in between 1 µg/ml and 1.5 µg/ml were used to 

elicit NRpump and NFpump cells, and the experiment lasted much longer to observe the 

dynamics of Pdr5 expression in the fluconazole environment. In the experiment, both NRpump 

and NFpump cells were induced at 10 fluconazole concentrations ranging from 0 µg/ml to 2 

µg/ml for 396 hours. In the initial treatment, the growth rate of NRpump and PFpump cells 

slowed down with all the cells expressed low level of Pdr5 as expected. After 48 hours, both 

NRpump and NFpump cells started to recover their growth rate. During this process, a portion of 

cells became Pdr5 high expressers while others remained as low expressers. With longer 

treatment, an increasing percentage of cells became high expressers, until all the cells 

expressed a high level of Pdr5, and that was the time that NRpump and NFpump cells fully 

recovered their growth rate. However, at certain fluconazole concentration (1.1 µg/ml for 
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NRpump and 1.2 µg/ml for NFpump), a backward switch of Pdr5 expression showed up in both 

NRpump and NFpump cells. In other words, when all the cells became Pdr5 high expressers, a 

fraction of low Pdr5 expressers started to show up and increase, on the contrary, the 

percentage of high expressers shrank. This process lasted for around 100 hours and the low 

expressers eventually disappeared, then all of the cells became high expressers again. The 

sudden disappearance of low Pdr5 expressers at 396th hour after fluconazole treatment was 

suspicious, because the peak of low expressers had been increasing until the last time point 

before 396th hour. Unknown mechanisms must have occurred during this 12 hours time period. 

These results suggested several possibilities. First of all, there was no genetic mutation 

occurred during the entire fluconazole treatment, but two genetically identical subpopulations 

with different Pdr5 expression level existed, which contributed to the bimodality. The 

appearance of high expressers and recurrence of low expressers were due to stochastic 

switching. This is only possible when fluconazole induces the gene circuits’ expression. Second 

possibility was genetic mutations on the synthetic gene circuits. The appearance of high 

expressers was due to the breakdown of NRpump and NFpump gene circuits, meaning that 

TetR was not able to repress Pdr5 expression any more, which might be due to two potential 

mechanisms: the TetR sequence mutated so that it could not bind to the promoter of 

PDR5::GFP, and the mutation of TetO sequence, which was the binding sites of TetR. As a 

result, the expression of Pdr5 conferred cells resistance to fluconazole and had the higher 

growth rate than cells without gene circuit breakdown, which explained the show-up of high 

expressers. The recurrence of low expressers was probably due to other genetic mutations 

occurred that conferred cells resistance to fluconazole. Overall, the results were more likely due 

to the combination of the last two possibilities, genetic mutation on both gene circuits and other 

places on the genome occurred during fluconazole treatment.  
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5.5 Future direction 

Fluconazole was discovered to induce resistance in NRpump and NFpump cells in no 

tetracycline family molecule environment. Three major hypotheses were proposed to explain 

this result, stochastic switching, genetic mutation on the gene circuits and genetic mutation of 

other genes involved in cell membrane synthesis, which was the target of fluconazole 

resistance. The next step will be to test these hypotheses. First of all, stochastic switching 

theory will be tested. NRpump and NFpump cells treated with fluconazole concentrations that 

induced different distribution of Pdr5 expression will be used to culture in no fluconazole 

environment. If the histogram of Pdr5 expression remained the same after fluconazole removal, 

it proved that the emergence of Pdr5 high expressers was not a result of stochastic switching. 

However, if the percentage of high expressers decreased with the increase low expressers and 

eventually low expressers take over the population, then two possibilities exist. 1) stochastic 

switching; 2) low expressers took over the population because of their higher fitness compared 

to high expressers. Therefore, the next step will be to test if NRpump and NFpump gene circuits 

were broken. Expression of PDR5::GFP suggested the loss of function of TetR repression. Two 

possible events will contribute to this, mutation of TetR or mutation of TetO sites on the modified 

GAL1 promoter. Thus, TetR and modified GAL1 promoter on NRpump and NFpump gene 

circuits will be amplified by PCR and sequenced. The appearance of mutation on the 

sequencing results will suggest the breakdown of gene circuits, but confirmation experiments 

still need to be done. For example, replacing the wild type TetR or TetO sites with mutated ones 

to see if they are inducible by tetracycline family molecules. However, it is possible that no 

mutation will show up in the entire cell population or some cells in the population, for example, 

the NFpump low expresser subpopulation emerged after 276 hours in 1.2 µg/ml fluconazole. In 

that case, genes that will confer resistance to fluconazole will be tested. ERG2, ERG3, ERG4, 

ERG6 and ERG11, which are involved in the alteration of sterol biosynthesis will be tested 
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because fluconazole blocks the natural synthesis of ergosterol which is an important component 

in cell membrane. Expression of other ABC family members will be tested as well. Although the 

endogenous Pdr5 has been knocked out in NRpump and NFpump cells, mutations of other 

multidrug resistance pumps, such as PDR10, PDR11, etc., might be able to compensate for its 

function.  

Besides testing fluconazole resistance mechanisms in non-doxycycline induced 

NRpump and NFpump cells, the evolution dynamics of NRpump, NFpump and PFpump gene 

circuits in fluconazole was interesting and worth investigation as well. Study of their evaluation 

dynamics will help us better understand their natural selection process, and discover the 

evolution process of drug resistance, which might provide insight on our treatment of drug 

resistance. In order to better mimic natural systems and environment, fluctuating fluconazole 

concentrations will be used to treat these three gene circuits, because natural environment 

always keeps changing, a constant lasting environment rarely exists in nature. However, the 

evolution mechanisms discovered when the three gene circuits in constant fluconazole 

environment will lay the foundation for further study of evolution in fluctuating environment. 
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Chapter 6 Discussion and perspectives 

 

In this dissertation research, I studied the interaction between a protein pump, Pdr5, and 

three synthetic gene circuits that regulate it. I compared the dose-response behavior of 

NRpump, NFpump and PFpump gene circuits with that of their non-pump counterparts, NR, NF 

and PF. The results indicated that Pdr5 changed the dose-response behavior of the original 

gene circuits. The change came from two resource. One was the efflux pumping function of 

Pdr5, and the other was reduced TetR expression in the pump strains. The additional change 

that Pdr5 caused in PF gene circuit was largely reduced cellular memories in the two 

subpopulations. Then I studied the molecular evolution of the three pump gene circuits in 

constant fluconazole containing environment, the resulted suggested the breakdown of 

NRpump and NFpump supported by the fact that PDR5::GFP was expressed from these two 

gene circuits. However, PFpump did not show any sign of change of growth rate and dose-

response in 120 hours. 

This study was the first one to characterize the behavior of NR, NF and PF gene circuits 

controlling an active target gene that affects the upstream regulatory elements experimentally in 

Saccharomyces cerevasiae, although mathematical models simulated the dose-response of 

another pump under the control of interlinked negative feedback and positive feedback loops in 

E. coli before 123. The results of this study established the connection between experimental 

data and mathematical models, as my data was used to tune the stochastic simulations of pump 

gene circuits dose-response developed by my collaborator (Data not shown). The models he 

simulated matched well with experimental results, and it also provided insight to advance my 

research in the search of factors contributing to the change of dose-response in pump strains.  

In this search, I discovered that the tetR expression was reduced in all the pump strains, 

which contributed to the dose-response change by decreasing its repression on the transcription 
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of PDR5::GFP. As a result, reduced tetR expression increase pump strains’ sensitivity to the 

inducer, doxycycline. This increased sensitivity was not related to the efflux pumping function of 

Pdr5, supported by the evidence that pump strains with non-functional Pdr5 still showed the 

same level of sensitivity to doxycycline. In the search for potential causes of reduced TetR in 

pump strains, I narrowed them down to transcriptional level regulation, and the result was likely 

due to gene circuit’s construction for the pump strains. Because PDR5 was over 5kb nucleic 

acids long and was right preceding the promoter region of TetR, it is highly possible that the 

large PDR5 gene sequence negatively affected the downstream transcription of TetR. Although 

other possibilities still exist, such as epigenetic modification of PDR5, researchers studying 

PDR5 should pay more attention to the gene circuits’ construction to avoid potential problems.  

Another factor that contributed to the change of dose-response in the pump strains was 

the efflux pumping function of Pdr5. Besides, I also showed the exact difference it caused, such 

as the loss of linearity in NF. These results laid the foundation for further study on PDR5 under 

other genetic circuits and even the behaviors of other active target genes (other protein pumps) 

in different regulatory networks. For example, genetic toggle switches might need higher inducer 

concentration to complete the switch when they are controlling PDR5, the concave dose-

response curve might become less concave, or even linear. This might create a gradual switch, 

which can be used to fine tune desired output. Oscillator involves PDR5 might lose oscillation 

since the key for oscillator requires delayed negative feedback 71, the addition of another PDR5 

induce negative feedback might destroy oscillation. However, oscillation might appear when 

PDR5 is under control of a positive feedback loop and worth trying in the future since this 

potential genetic oscillator is simpler than other existing ones.  

Besides insight to other gene circuits, this study has numerous applications as well. 

Since PDR5 is involved in a number of biological processes, and has a variety of substrates, we 

are able to deliver precise control over them using our system. Although Pdr5 changed the 

linearity in NF, but the noise reduction nature of negative feedback still makes NFpump more 
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precise than NRpump in controlling target gene expression, and the subsequent exclusion of 

target gene substrates. Recent research discovered that protein pump helped to increase 

production of biofuel in E. coli by exporting biofuel molecules outside the bacteria to reduce 

toxicity and increase growth rate of host microorganisms 123. We can do better by using our 

system to regulate the intracellular biofuel molecules precisely so that the cells growth rate and 

productivity will stay at the optimal level. Even more, we can combine our system with a 

biosensor system to detect certain molecules and respond automatically. For example, a 

recently engineered biosensor in yeast cells is able to detect steroids hormones 147, we can 

build an automatic system for production of steroids by adding biosensor to our system to 

deliver multilevel regulation. Different concentration of intracellular steroids will automatically 

results in different Pdr5 expression to maintain the production at the optimal level. Besides 

regulation of biomaterial production, our PDR5 system can be used to advance basic research 

as well. A group of Pdr proteins in Saccharomyces cerevasiae have been shown to play a major 

role in the aging 148, our NFpump gene circuit can be used to study the dynamics and effect of 

ageing process more precisely. Besides, our system can facilitate research on multidrug 

resistance (MDR) pump mediated drug resistance. Earlier studies discovered that transcriptional 

noise led to phenotypic consequences 25, 34, 39, 40, 46, one cause for drug resistance is MDR gene 

expression noise. Since NF gene circuit reduces transcriptional noise, using NF controlling MDR 

pump is able to study drug resistance appearance and treatment more specifically.   

This research also identified the change of growth rate and cellular memory caused by 

Pdr5 in PF strain. Although exceptions exist, positive feedback loop is considered to produce 

bimodal distribution 1, 79, 149-152, which means the existence of two stable steady states in terms 

of expression, ‘ON’ and ‘OFF’. In order to describe the transition between the two stable states, 

cellular memory was used, which was defined as the average time of an individual cell stays in 

one stable steady state. The results showed that Pdr5 reduced the cellular memory of high 

expresser significantly. Although it still needs further confirmation, the reduction was highly likely 
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due to the efflux pumping function of Pdr5. This data suggested a possibility to change cellular 

memory by introducing negative feedback loops. By doing so, another interesting question rose, 

if the strength of negative feedback loop affects the cellular memory as well. It’s been know that 

positive feedback coupled with delayed negative feedback produces oscillator 1, 2, 21, 71, 131, it will 

be interesting to see the correlation between the strength of negative feedback and the 

frequency of the oscillator.  

Finally, this dissertation also studied the evolution of synthetic gene circuits, and 

discovered that the gene circuits involving TetR repression was likely to break down in 

fluconazole environment. Besides the insight it provided to study of evolutionary course of 

regulatory networks in biological systems, it also showed the weakness of TetR based 

regulatory systems when facing adverse environment containing drugs. Further improvement of 

drug resistant TetR systems should be done, concerning the wide usage of Tet systems in the 

study of drug resistance in biomedical sciences. 

Although the chances are low, there are a few things in the projects that might lead to 

alternative conclusions. First of all, the original NR and NF gene circuits used yEGFP as 

reporter, while all the pump stains used GFP. The fluorescence intensity of GFP is one tenth of 

that of yEGFP. Therefore, all the data has to be normalized for comparison of dose-responses 

between non-pump and pump strains. In this case, we can not compare the actual fluorescence 

intensity value, which indicates the actual expression level of ZeoR and Pdr5. It is possible that 

the expression of these two target genes is different. However, the normalization works for my 

study because here we only compare the difference between non-pump and pump strains.  

The second experiment that might need improvement is the dose-response experiment 

for NR strain. NRpump and NRpump mutant strains were all induced by doxycycline 

concentration up to 15 μg/ml, but NR was induced up to 10 μg/ml. The reason I only used up to 

10 μg/ml was that NR dose-response experiment was done first, and I found that the histograms 

of NR did not change after doxycycline concentration reached 7 μg/ml, indicating that the 
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expression of target gene reached saturation in the cell population. However, when I did the 

dose-response experiment for NRpump, I found that they saturated at higher doxycycline 

concentration compared to NR. Therefore, I used higher doxycycline concentration for NRpump. 

However, this might have introduced an uncertainty that affects the conclusion of my study. 

Because all the data was normalized to the fluorescence intensity value at the highest 

doxycycline concentrations for all the strains, and the fluorescence intensity values are different 

at doxycycline concentration 10 μg/ml and 15 μg/ml for NRpump. Therefore, if the data is 

normalized to the fluorescence intensity value at doxycycline concentration 10 μg/ml as it was 

done for NR, it might cause the increase of the fluorescence intensity mean at all the 

doxycycline concentrations. This might result in a closer gap between NR and NRpump mean 

dose-response at doxycycline concentration 7 μg/ml. Right now, the ANOVA test confirmed 

significant difference between NR and NRpump mean at doxycycline concentration 7 μg/ml. 

However, the difference is not guaranteed to be significant if the data is normalized to 

fluorescence intensity value at doxycycline concentration at 10 μg/ml.  Therefore, in order to 

prove that, higher doxycycline concentration should be used to induce target gene expression 

until no more increase of fluorescence intensity is observed from doxycycline concentration 

increase.  
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