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Abstract 

COMPUTATIONAL MODELING OF RNA-
SMALL MOLECULE AND RNA-PROTEIN 

INTERACTIONS 
By Lu Chen, B.S. 

Advisor: Shuxing Zhang, Ph.D. 

 

The past decade has witnessed an era of RNA biology; despite the considerable discoveries 

nowadays, challenges still remain when one aims to screen RNA-interacting small molecule 

or RNA-interacting protein. These challenges imply an immediate need for cost-efficient 

while predictive computational tools capable of generating insightful hypotheses to discover 

novel RNA-interacting small molecule or RNA-interacting protein. Thus, we implemented 

novel computational models in this dissertation to predict RNA-ligand interactions (Chapter 

1) and RNA-protein interactions (Chapter 2). 

 

Targeting RNA has not garnered comparable interest as protein, and is restricted by lack of 

computational tools for structure-based drug design. To test the potential of translating 

molecular docking tools designed for protein to RNA-ligand docking and virtual screening, 

we benchmarked 5 docking software and 11 scoring functions to assess their performances in 

pose reproduction, pose ranking, score-RMSD correlation and virtual screening. From this 

benchmark, we proposed a three-step docking pipelines optimized for virtual screening 

against RNAs with different flexibility properties. Using this pipeline, we have successfully 
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identified a selective compound binding to GA:UU motif. Both NMR and the subsequent MD 

simulation proved its selective binding to GA:UU motif flanked by two tandem flexible base 

pairs next to GA. Consistent to the 3D model, SAR analysis revealed that any R-group 

substitution would abolish the binding. 

 

Current computational methods for RNA-protein interaction prediction (sequence-based or 

structure-based) are either short of interpretability or robustness. Aware of these pitfalls, we 

implemented RNA-Protein interaction prediction through Interface Threading (RPIT), which 

identifies and references a known RNA-protein interface as the template to infer the region 

where the interaction occurs and predict the interacting propensity based on the interface 

profiles. To estimate the propensity more accurately, we implemented five statistical scoring 

functions based our unique collection of non-redundant protein-RNA interaction database. 

Our benchmark using leave-protein-out cross validation and two external validation sets 

resulted in overall 70%-80% accuracy of RPIT. Compared with other methods, RPIT offers an 

inexpensive but robust method for in silico prediction of RNA-protein interaction networks, 

and for prioritizing putative RNA-protein pairs using virtual screening. 
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Chapter 1: Introduction 

1.1 Targeting RNA with small molecules 

1.1.1 RNA as therapeutic target 

Recent advancements in RNA biology refresh our understandings of life and potentiate the 

strategy of targeting RNA for a large multitude of diseases. DNAs and proteins have received 

much attention as therapeutic targets of small molecules, but RNAs have not garnered 

comparable interest for a variety of reasons including relatively few and ill-defined structures, 

the intrinsic dynamics of RNAs, and sometimes less appreciated link between RNA 

molecules and biological functions. Historically, targeting RNA for therapeutic development 

has been envisaged by many to be a cost-expensive strategy. However, several pioneer studies 

have provided proof-of-principles that targeting RNA is a feasible strategy for treatment 

infectious diseases and cancers. Targets that are mostly investigated includes prokaryotic 

rRNA A-site [1-3], HIV-1 TAR RNA [4-6] and riboswitches [7-9]. Furthermore, researchers 

are exploring new-generation, drug-like compounds for disease-related RNAs including 

CUG- or CCUG-repeated mRNA [10-12], miRNA [13, 14] and internal ribosome entry site 

(IRES) [15, 16]. All these efforts represent a paradigm-shift strategy to target a more 

upstream biomolecule, that is, hub RNA, which regulates multiple disease-related proteins.  

 

1.1.2 Hit identification via molecular docking 

A number of strategies have been used for lead identification targeting RNA, including high-

throughput screening, rational design by NMR or computational modeling. Conventional 

high-throughput small molecule screening methods are well-suited to catalysis-based assays, 
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but are limited in screening compounds for RNA binding by detection assays that generally 

rely on binding-coupled conformational changes which compete with intrinsic RNA 

dynamics. Therefore, virtual high-throughput screening (vHTS) using molecular docking has 

become one of the core lead discovery technologies in the pharmaceutical industry [17], 

which provides a practical route to identify more selective RNA-binding compounds in a 

more efficient fashion.   

 

Molecular docking is one of the key strategies for computational structure-based drug design 

[18]. The goal of molecular docking is to predict the favored binding mode of a small 

molecule (ligand) in a macromolecule pocket (e.g., protein or nucleic acid) with respect to the 

3D structure [19]. Docking has become a popular structure-based approach to prioritize active 

compounds from a large chemical database prior to expensive and time-consuming 

experimental validation. In general, molecular docking procedure can be divided into two 

steps: conformational sampling and scoring. During the conformational sampling phase, a 

large amount of ligand conformations and coordinates will be numerated and submit a few to 

the second phase based upon a fast, but less accurate scoring function which roughly 

evaluates the fitness of binding. In the second phase, a more accurate but more complicated 

scoring function will be applied to differentiate the “good” (energetically-favored) poses 

against the “bad” (energetically-prohibited) poses. Although ranking compounds according to 

relative binding affinity still remain challenging, docking-based virtual screening has been 

employed for lead identification and optimization for a number of protein targets, which has 

been reviewed by Chen et al. [18]. 
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1.1.3 Current in silico methods of targeting RNA 

Like protein, RNA can fold into well-defined tertiary structures (such as helix, hairpin, bulge 

and pseudoknot), providing the structural basis for structure-based rational design. There have 

been several studies which aim to translate the docking/scoring functions that have led to 

great successes for protein targets, but are parameterized exclusively using protein-ligand 

complex, to RNA target. For example, GOLD and Glide [20] and AutoDock4 [21, 22] have 

been benchmarked for their usage in docking small molecules to RNA receptor. Others were 

seeking to implement RNA-specific scoring functions, e.g., force field-based scoring 

functions based implicit solvent models [23], empirical scoring function [2, 24, 25] and 

knowledge-based scoring function [26]. The tools that model a flexible RNA receptor, such as 

MORDOR (molecular recognition with a driven dynamics optimizer) [27], may give more 

accurate predictions, yet not feasible to screen a large chemical database. None of these 

computational tools have been benchmarked using publicly available dataset, and thus the 

predictive capability of these models still remains ambiguous. Actually, we have found that 

the docking parameters widely used in proteins may not be well translated to RNA systems. 

For instance, electrostatic attraction between RNA backbone and positively charge group 

(such as piperazine) can be overestimated [23, 28, 29], and desolvation term need 

improvement [21]. Hence, we believe that a mature structure-based modeling technique 

designed specifically for RNAs, e.g., docking-based virtual screening, is still lacking, despite 

the efforts mentioned above. 
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1.2 Discovering novel RNA-protein interaction 

1.2.1 Emerging RNA-protein interactions (RPI) 

The past decade has witnessed an era of RNA biology: new RNA, new functionalities, and 

new interactions. RNA-protein interaction (RPI) takes a major proportion in these exciting 

discoveries, owing to its critical roles in cellular processes, such as transcription, translation 

and regulation [30]. Ribosome and spliceosome are the two well-known examples of large 

bio-machineries involving complex RPI. Various non-coding RNAs, such as microRNA 

(miRNA), long non-coding RNA (lncRNA) and Piwi-interacting RNA (piRNA), interplay 

with a large number of proteins via indirect mechanism or direct binding [31]. For example, a 

vast majority of lncRNA reported in the literature is able to form machinery with multiple 

proteins. lncRNA that folds into complex tertiary structure has been shown to modulates the 

transcriptional factors that regulate the gene-specific transcription, basal transcription 

machinery, splicing and translation [32]. Recent discoveries of new functionalities of miRNA, 

e.g., direct binding to hnRNP-E2 [33], ELAVL1 [34], or being the native ligand of Toll-like 

receptors (TLR) [35, 36], have updated the dogmatic understanding of microRNA. On the 

other hand, more studies focused on the biogenesis of miRNAs, which is regulated at 

posttranscriptional level via various RNA-binding proteins (e.g., hnRNPA1 [37-39], PTBP1 

[39], KSRP [40-42], Lin28 [43]). piRNA is another representative protein-binding non-coding 

RNA that form RNA-protein complexes through interacting with piwi proteins [44]. This RPI 

mediates the epigenetic and posttranscriptional gene regulations, especially in germline cells 

[45]. 
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1.2.2 RNA-protein interface 

Current understandings of RNA-protein binding interface primarily come from the analysis of 

high resolution structures. For example, several analyses based upon small datasets from PDB 

(81 complexes [46], 54 crystal structures [47], 77 complexes [48], 41 complexes [49], 89 

complexes [50], 152 complexes [51]) have provided insightful knowledge of the 

physicochemical patterns that are essential to form a RPI. Despite the trivial differences 

between studies, most of them did reach a consensus. From a structural perspective, Huang et 

al. summarized four features of RPI interfaces that are significantly different from PPI 

interface: (1) The atomic packing of RPI interfaces is looser than that of PPI interfaces; (2) 

There is a strong residue preference at RPI interface-positively charged residues are 

significantly favored (Arg and Lys) whereas negatively charged residues (Asp and Glu) are 

disfavored; (3) Stacking interaction plays a more critical role in RPI than PPI, especially the 

π-π stacking between aromatic amino acids (His, Tyr and Trp) and nucleotide base; (4) 

Secondary structure states of amino acids and nucleotides are important at RPI interface [52]. 

All these RPI-specific features should be considered when one designs statistical scoring 

functions to assess the fitness of RNA-protein binding. These signatures, however, bring both 

insights and challenges. With respect to feature (1), macromolecular docking, which 

determine the fitness of binding based on structural complementarity between RNA and 

protein, is historically optimized to result a compact interface. As to feature (2), despite the 

preference of positively-charged protein residue at the interface, the contributions of such 

electrostatic attraction to RNA-protein binding affinity can be easily overestimated, compared 

with other more sequence-specific type of interaction. Regarding feature (3), to the best of our 
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knowledge, there is no grounded mathematical model to quantitatively evaluate the 

propensity of stacking. Finally, unlike secondary structure states of protein residues, which 

have 3 major clusters (helix, sheet and coil), the base pairing states of nucleic acid is more 

complicated. Other than well-defined Watson-Crick and G-U wobble base pairing, there are 

still hundreds of noncanonical base pair types, triplex or quadruplex [53]. Other than the 

challenges from the modeling perspective, the statistical significance of these conclusions still 

remain elusive due to the paucity of 3D structure of protein-RNA complexes. Thus, it is 

crucial to perform more comprehensive structural analyses using a larger dataset to achieve 

greater statistical power and make more accurate inferences on the protein-RNA binding 

patterns when designing scoring functions in RPI prediction. 

 

1.2.3 Current in silico methods of predicting RPI 

In sharp contrast of advancements in RNA biology, there are only 1,585 protein-RNA 

complex structures deposited in PDB as of April 2014, which only represents a tiny island 

(<1.5%) compared with all macromolecular structure repository in PDB. Due to the technical 

issue in solving crystal/NMR structure of protein-RNA complex, high-throughput 

experiments to identify RPI are being developed to provide better understanding of the 

complex RPI networks, but they are usually expensive and time-consuming. As a 

consequence, there are immediate needs of developing computational tools for RPI prediction 

that help generate valuable hypotheses and prioritize insightful RPIs for experimental 

validation.  
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From the best of our knowledge, current computational methods of predicting RPI fall into 

two categories: sequence-based and structure-based methods. RPISeq [54] and catRAPID [55] 

are sequence-based methods. RPISeq utilizes machine learning classifiers to predict protein-

RNA interaction propensity purely from sequence information, whereas catRAPID calculates 

the protein-RNA interaction propensity through combining various physiochemical 

properties, such as H-bond, vdW, secondary structure. Structure-based methods take 

advantage of 3D structures of protein and RNA, and employ molecular docking strategy to 

evaluate the structural complementarity based on RNA-protein statistical scoring function. 

For example, Péres-Cano et al. developed a new protein-RNA docking scheme in which 

FTDock was used to generate rigid-body binding modes and rescored by an in-house derived 

statistical amino acid-nucleotide potential [56]. Similarly, 3dRPC applied a novel protocol 

including two modules, RPDock and DECK-RP [52]. RPDock is a new docking procedure 

that discretizes molecules and charges, and considers geometric and electrostatic 

complementarities as well as stacking interactions. DECK-RP is a coarse-grained, 

knowledge-based statistical potential to evaluate the predicted RNA-protein complex, which 

takes into account the secondary structure and interface preferences of protein/RNA residues 

[52]. Other efforts on the development of protein-RNA statistical potentials, such as DARS-

RNP, QUASI-RNP[57] and Li et al.[58], have resulted in comparable performances 

according to their benchmarks. However, either sequence-based or structure-based methods 

have its merits and pitfalls. Sequence-based method is based on simple assumption and 

thereby more robust, for example, using conjoint triad descriptors [59]; however, it could be 

sensitive to noise as it fails to discriminate the interface with other part of the molecule. 
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Structure-based method, on the other hand, restricts its application only for the protein / RNA 

targets that have 3D structure. Therefore, a method that balances the robustness and accuracy 

of RPI prediction is urgently needed.    
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Chapter 2: Computational modeling of RNA-small molecule 

interaction 

 

Chapter 2.1-2.5 is based upon and reprinted with permission from Chen L, Calin GA, Zhang 

S. Novel insights of structure-based modeling for RNA-targeted drug discovery. J Chem Inf 

Model. Oct 22 2012;52(10):2741-2753. Copyright© 2012 American Chemical Society. 

 

2.1 Introduction 

Due to the challenges we have described in Chapter 1.1, we think there is an immediate need 

of exploring current computational tools and implementing new ones to model RNA-ligand 

interaction more accurately, and prioritize compounds via virtual screening more effectively. 

Herein, we have benchmarked 5 popular docking programs, including GOLD 5.0.1 [60], 

Glide 5.6 [61], Surflex 2.415 [62], AutoDock 4.1 [63, 64] and rDock 2006.2 [24], and 11 

scoring functions to explore their capability in RNA-small molecule docking. Fig. 2.1 shows 

an overview of structure-based virtual screening pipeline. A typical structure-based virtual 

high-throughput screening (vHTS) can be divided in to three steps: sample ligand 

conformations (step 1), score and rank the poses for each molecule based on a scoring 

function (step 2), score and rank the molecules and estimate the relative binding affinity for 

the optimal pose provided by step 2 based on a second scoring function (step 3). The 

rescoring scheme is believed to improve the results when two scoring functions have 

complementary strengths: one is better at ranking poses and the other ranking actives [65]. 

Based on this “complementary” hypothesis, we comprehensively evaluated the docking 



10 
 

performances at these three levels, and explored exhaustively for the best docking-scoring-

rescoring strategies using various statistical metrics. As a result, we proposed a rational 

workflow for structure-based modeling for RNA-targeted drug discovery for RNA, which has 

demonstrated a significant improvement of virtual screening enrichment in two independent 

benchmarks [66]. 

 

In a follow-up case study, we validated the effectiveness of our pipeline in which we have 

successfully identified small-molecule inhibitor that binds selectively to RNAs containing 

GA:UU internal loop motif. NMR validated the binding site specificity and the essential 

context adjacent to the motif. This tandem mismatch internal loop, 
5 ' 3'
3' 5 '

GUGA
CUAU

 (or called 

GA:UU RNA), is a highly conserved motif in prokaryotic large ribosomal subunit (LSU) as a 

part of a conserved 58-nt fragment. It is the binding domain of ribosomal protein L11, and 

this thermodynamically destabilizing internal loop is crucial for binding of L11 [67]. The 

discovery of small-molecule binder targeting this rRNA motif has the potential to destabilize 

the L11 binding. From the druggability perspective, selective small molecule inhibitor 

targeting prokaryotic rRNA internal loop, such as A-site, has been proved an effective 

strategy of designing antibiotic drugs. However, the most thoroughly studied RNA-binding 

antibiotics, notably aminoglycosides, have very low bioavailability. Development of non-

aminoglycoside antibiotics targeting bacteria rRNA will improve the pharmacokinetics 

profiles and provide possible solution to overcome drug resistance. 
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Here we hypothesize that RNA-small molecule docking composed of three independent steps, 

each of which needs a fine-tuned docking/scoring combination to maximize the predictive 

ability in a virtual screening scenario.  In order to validate our hypothesis, we proposed 

several specific aims: 

1. Benchmark open-source and commercially available docking/scoring method to 

identify best strategy for pose reproduction, pose ranking and active ranking. 

2. Knowing the challenge in active ranking, optimize the scoring function so that the 

docking score has a better representation of the experimentally determined binding 

affinity for RNA-small molecule interaction. 

3. Apply the derived structure-based drug discovery pipeline to a real-world problem: to 

identify novel inhibitors that bind selectively to GA:UU RNA motif.  

 

2.2 Materials and Methods: Benchmarking, Development and Application 

2.2.1 Benchmark datasets 

Most of the currently published datasets are either too small or lack target diversity [20, 21, 

23, 24, 26, 27]. Based on these datasets, we compiled our own dataset of high-resolution 

RNA-ligand complex structures by removing those low-resolution, redundant structures as 

well as those structures with critical structural defects. This resulted in a unique collection of 

56 RNA-ligand complex structures with 36 high-resolution (<3.0Å) crystal and 20 NMR 

structures. Another issue of the published datasets was that over 65% of the ligands were 

aminoglycosides or low-affinity binders (e.g. spermine) [20]. To avoid the potential problems 

of overweighting any type of RNA ligand, we reduced the number of aminoglycosides and 



12 
 

low-affinity binders, but increased the number of high-affinity small molecules. Our curation 

encompassed a large variety of RNA targets including: RNA aptamers, prokaryotic and 

eukaryotic rRNA A-sites, ribozymes, riboswitches, and viral RNAs (TAR RNA, HCV IRES 

domain, etc.). These RNA-small molecule complexes are listed in Table 2.1.  

 

We also compiled a second dataset which contains 45 RNA-ligand binding affinity values for 

benchmark currently available scoring functions and to derive RNA-specific docking scoring 

function (Table 2.2). Briefly, dissociation constant (Kd) or binding free energy values were 

carefully collected from literature, and we compared them with PDBBind database 

(http://www.pdbbind-cn.org) [69] and other reports/databases to ensure the consistency. If the 

variance between Kd values is within 10-fold difference, we calculated the average values; 

otherwise, data will be discarded. Notably, we used 2 µM as the Kd of gentamicin C1a-rRNA 

A-site complex (1BYJ) because this is the Kd under room temperature, instead of 0.01µM (Kd 

under 4°C) [70]. In addition, Kd for neomycinB-HIV-1 TAR RNA complex (1QD3) should be 

5.9±4µM. The Kd values used in previous studies were for U24C TAR RNA mutant [21, 24, 

71]. The binding free energy were converted from Kd using ΔG = RTln(Kd) under room 

temperature (300K). 
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Fig. 2.1. An overview of structure-based virtual screening pipeline. A typical virtual 
screening can be divided into three steps: for each candidate molecule, docking program should 
do conformational sampling (step 1) and select an optimal pose based on a scoring function 
(step 2). An additional scoring of the optimal pose for each molecule might be performed after 
pose selection to estimate the relative binding affinity (step 3). Finally, the molecules that have 
good predicted binding affinity will be prioritized for experimental validation. 
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Table 2.1 List of 56 PDBs used in binding mode reproduction study 
 
PDB ID Res (Å) Ligand RNA 
1F1T 2.8 N,N'-tetramethyl-rosamine Malachite green aptamer RNA 
1F27 1.3 Biotin Biotin-binding aptamer RNA 
1J7T 2.5 Paromomycin Bacterial rRNA A-site 
1NTB 2.9 Streptomycin Streptomycin RNA aptamer 
1YRJ 2.7 Apramycin Bacterial rRNA A-site 
2F4T 3 Designed antibiotics Bacterial rRNA A-site 
2FCZ 2.01 Ribostamycin HIV-1 DIS Kissing loop 
2ET8 2.5 Neamine Bacterial rRNA A-site 
2O3V 2.8 Paromamine derivative NB33 Human rRNA A-site 
2OE8 1.8 Apramycin Human rRNA A-site 
1LC4 2.54 Tobramycin Bacterial rRNA A-site 
1MWL 2.4 Geneticin Bacterial rRNA A-site 
1U8D 1.95 Hypoxanthine xpt-pbuX B. subtilis guanine riboswitch 
1Y26 2.1 Adenine Vibrio vulnificus adenosine riboswitch 
2BE0 2.63 Paromomycin Derivative JS5-39 Bacterial rRNA A-site 
1YKV 3.3 DAI Diels-Alder ribozyme 
2G5Q 2.7 Amikacin containing L-haba Bacterial rRNA A-site 
2GDI 2.05 Thiamine Diphosphate Thiamine pyrophosphate-sensing 

riboswitch. 
2GIS 2.9 S-Adenosylmethionine S-adenosylmethionine riboswitch (T. 

tengcongensis) 
3LA5 1.7 Azacytosine Engineered A-riboswitch 
3F2Q 2.95 Flavin mononucleotide Flavin mononucleotide riboswitch 
3DIL 1.9 Lysine Thermotoga maritima Lysine riboswitch 
2Z74 2.2 Alpha-D-glucose-6-phosphate T. tengcongensis glmS ribozyme 
2Z75 1.7 glucosamine 6-phosphate T. tengcongensis glmS ribozyme 
1ZZ5 3 Neomycin Derivative rRNA A-site 
3Q3Z 2.51 C-di-GMP Clostridium acetobutylicum c-di-GMP-

binding riboswitches 
2ESI 3 Kanamycin A Bacterial rRNA A-site 
2FD0 1.8 Lividomycin HIV-1 DIS Kissing loop 
3NPQ 2.18 S-adenosylhomocysteine Ralstonia solanacearum S-adenosyl-(L)-

homocysteine (SAH) riboswitches 
2PWT 1.8 L-HABA containing 

aminoglycoside 
Bacterial rRNA A-site 

3DVV 2 Ribostamycin HIV-1 F DIS extended duplex 
3GX2 2.9 Sinefungin T. tengcongensis SAM-I riboswitch 

(variant) 
1Y27 2.4 Guanine Bacillus subtilis G-riboswitch xpt 
3GX3 2.7 SAH T. tengcongensis SAM-I riboswitch 

(variant) 
3GX5 2.4 SAM T. tengcongensis SAM-I riboswitch 

(variant) 
3GX7 2.95 SAM T. tengcongensis SAM-I riboswitch (double 

mutated variant) 
1FMN NMR Flavin mononucleotide FMN aptamer 
1UUD NMR P14 HIV-1 TAR RNA 
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2KU0 NMR ISI HCV IRES domain IIa RNA 
1AM0 NMR AMP AMP aptamer 
1LVJ NMR PMZ HIV-1 TAR RNA 
1TOB NMR Tobramycin antibiotic-RNA aptamer 
1EHT NMR Theophylline Theophylline-binding RNA 
1BYJ NMR Gentamicin C1 Bacterial rRNA A-site 
1PBR NMR Paromomycin Bacterial rRNA A-site 
1AKX NMR Arginine HIV-2 TAR RNA 
1FYP NMR Paromomycin Human rRNA A-site 
2KGP NMR Novantrone tau pre-mRNA splicing regulatory element 
1EI2 NMR Neomycin RNA major groove in Tau Exon 10 splicing 

regulatory element 
1KOD NMR Citrulline (arginine derivative) Citrulline aptamer 
1QD3 NMR Neomycin B in the minor groove HIV-1 TAR RNA 
1KOC NMR Arginine arginine aptamer 
1NEM NMR Neomycin B in the major groove Neomycin B RNA aptamer 
2TOB NMR Tobramycin tobramycin-RNA aptamer 
2KTZ NMR ISH HCV IRES domain IIa RNA 
1Q8N NMR Malachite green Malachite green aptamer RNA 
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Table 2.2 Experimental binding free energy values used for benchmarking and 
optimizing score functions  
 

PDB ID Type Binding free 
energy (kJ/mol) Dissociation constant  

1F1T 1 Crystal -42.23 KD ≈ 0.04µM 

1F27 1 Crystal -29.8 KD ≈ 6.0µM 

1J7T 2 Crystal -38.47 Kd = 0.2±0.042µM 

1NTB 1,2 Crystal -34.46 Kd ≈ 1µM 

1YRJ 1,2 Crystal -30.91 Kd = 2±0.20µM/6.3µM 

2F4T 1,2 Crystal -32.49 Kd = 2.2±0.1µM 

2FCZ 1,2 Crystal -28.62 Kd = 10.4±1.4µM 

2ET8 1,2 Crystal -27.99 Kd = 7.8µM/19±1µM 

2O3V 1,2 Crystal -30.21 Ka = 1.8±0.1×105 µM-1 

2OE8 1 Crystal -36.19 Kd = 0.5µM 

1LC4 1,2 Crystal -33.06 Kd = 1.5µM/2±0.22µM 

1U8D 1 Crystal -35.24 Kd = 0.732µM 

1YKV 1 Crystal -28.72 Kd ≈ 10µM 

3LA5 1 Crystal -34.46 Kd = 1±0.016µM 

3DIL Crystal -40.2 Kd = 0.10±0.03µM (with K+ and 
Mg2+) 

3Q3Z 1 Crystal -49.72 Kd = 0.0022±0.0002µM 

2ESI Crystal -27.25 Kd = 18µM 

2FD0 2 Crystal -43.04 Kd = 0.032±0.007µM 

3GX3 Crystal -23.83 Kd = 71±2µM 

3GX5 Crystal -39.55 Kd = 0.13±0.01µM 

3GX7 Crystal -25.89 Kd = 31±1µM 

1FMN 1 NMR -35.9   

2KU0 1,2 NMR -32.08 KD = 2.6µM 

1AM0 NMR -28.5   
1LVJ NMR -39.97   
1TOB 2 NMR -52.2   

1EHT 1 NMR -36.5   

1BYJ 1,2 NMR -32.73 Kd = 2.0µM (room temperature) / 
0.01µM (4°C) 

1PBR 1,2 NMR -38.2   

1EI2 1,2 NMR -34.23   

1KOD 1,2 NMR -23.8   

1QD3 NMR -30.03 KD = 5.9±4µM; KD = 0.92µM 
(U24C mutant) 

1KOC 1,2 NMR -24.1   

1NEM 1 NMR -39.9   
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2TOB 2 NMR -51.2   

2KTZ 1,2 NMR -28.98 Kd = 9µM 

1Q8N 1 NMR -35.02 KD = 0.8µM 

3SD1 3 Crystal -27.25 KD,app = 18±1µM 

2YGH 3 Crystal -37.38 Kd = 0.31±0.06µM (G2na 
mutation) 

3SKI 3 Crystal -40.20 KD = 0.1±0.01µM (20mM Mg2+) 

2L94 3 NMR -19.78 Kd,app = 360±26µM 

3GER 3 Crystal -34.75 KD = 0.89±0.06µM 

2G5K 3 Crystal -36.19 Kd = 0.5µM 

2BEE 3 Crystal -40.20 Kd = 0.1µM 

2BE0 3 Crystal -39.55 Kd = 0.13µM 
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2.2.2 Molecular docking and decoy generation  

Throughout Chapter 1, we denoted “A:B” as the method that “docking using A program and 

scoring with B scoring function”. RNA molecules and ligands were prepared using Protein 

Preparation Wizard (Maestro). For NMR structures, we used the average structure and energy 

minimized. All of RNA phosphates were manually deprotonated in case of software errors. 

The ligands were protonated/deprotonated using Epik (Schrödinger) at PH 7.0 [72]. If RNA 

has symmetric binding sites and identical ligands, the region with the lowest B-factors was 

retained. The ligands were minimized, and molecular docking and rescoring were performed 

using the similar approaches as previously described [66]. Briefly, we benchmarked five 

docking programs (GOLD 5.0.1, Glide 5.6, Surflex v2.415, AutoDock 4.1 and rDock 2006.2) 

combined with their native scoring functions to generate 10 poses using the parameters in 

Appendix 1. In order to ensure the high diversity and quality of the conformational decoys, 

we employed GOLD:GOLD Fitness to generate 100 conformational decoys for each RNA-

compound complex using the tuned parameters for genetic algorithm.  

 

2.2.3 Evaluation of pose reproduction 

Both RMSD between experimental structures and predicted docking poses and pose ranking 

were considered. To simplify the expression, we defined C(x, y) as the criterion that “at least 

one pose (RMSD < yÅ) was predicted within the top x poses”. To evaluate the overall ability 

of docking/scoring programs to reproduce experimentally determined binding mode, we 

implemented volume under the surface (VUS) metric to describe overall performance of pose 

reproduction. VUS was calculated as the sum of the volume of all triangular prisms under this 
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surface. Briefly, a series of coordinates were obtained based on their RMSD cutoff (X 

dimension), ranking cutoff (Y dimension), and the number (Z dimension) of successfully 

reproduced structures satisfying C(x, y). RMSD cutoff had interval of 0.5Å, and that for 

ranking was 1. The surface was made by connecting any two adjacent points and then 

partitioned into a series of triangles. Any of these triangles and their projections on the XY 

plane was used to define the triangular prism unit. Detailed calculation of the volume of each 

triangular prism unit and VUS were demonstrated in Appendix 2. The ideal VUS was 

calculated as 10(RMSD cutoff)×9(rank cutoff)×56(number of targets). 

 

2.2.4 Evaluation of pose ranking   

For each RNA-compound complex, we generated 100 decoys to the corresponding RNA as 

we described in 1.2.2. Together with the native pose, we obtained 101 RMSD-docking score 

data points for each RNA-ligand pair. For native pose ranking study, we scored these 101 

poses using different scoring functions as aforementioned. The ranking of native poses for 56 

targets were calculated, and we calculated the recovery curves as the ranking cutoffs (X axis) 

against the cumulative number of targets (Y axis) in which the ranking of native pose was 

smaller than the ranking cutoff. Meanwhile, spearman’s rank correlation coefficient was used 

to evaluate the ranking capability. To make the docking scores positively correlated with 

RMSD (the higher the scores, the higher the RMSD), we used the negative value of GOLD 

Fitness, ChemScore, ASP and Surflex-dock scores. If a pose was assigned a score with the 

absolute value more than 1000 (outliers), this RMSD-score pair will be excluded. The 

Spearman’s rank correlation coefficient (ρ) was computed using 
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, where ,RMSD ir  and ,score ir  are the rankings of 

the RMSD and score for the pose i, and we took the average of the ranks for tied values. 

avg
RMSDr  and avg

scorer  are the average ranks of RMSD and score for 101 poses. We classified the 

resulted 56 ρ values (calculated from 56 RNA-ligand complexes) for each scoring function 

into three groups based on the widely-used criteria: weak correlation: ρ<0.3, moderate 

correlation: 0.3≤ρ<0.5, strong correlation: ρ≥0.5. 

 

2.2.5 Evaluation of virtual screening 

Two different targets were assessed, bacterial 16S rRNA A-site (representing open and 

flexible binding site, PDB ID: 1J7T [73]) and lysine riboswitch (representing closed and rigid 

binding site, PDB ID: 3DIL [74]). We collected 75 known rRNA inhibitors including 34 

drug-like small molecules from the Foloppe dataset [2] and 31 aminoglycoside mimetics from 

the Zhou dataset [3]. Additionally, we obtained 11 aminoglycoside inhibitors which have the 

crystal structures in complex with the bacterial rRNA A-site (1J7T, 1YRJ, 2F4T, 2ET8, 

1LC4, 1MWL, 2BE0, 2G5Q, 2ESI, 2PWT and 1BYJ). For virtual screening against lysine 

riboswitch, we collected 14 compounds including 7 known inhibitors and 7 experimentally 

validated inactives [7]. In order to avoid artificial enrichment [75], a focused library 

containing 942 drug-like and positively charged decoys was generated from MayBridge 

database. We assumed this randomly constructed decoy library does not include or include 

very few active compounds as previous studies did. The area under the curve (AUC) for the 

receiver operating characteristic (ROC) curve was used to assess the virtual screening 

enrichment. 
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2.2.6 Evaluation of docking score-binding affinity correlation  

The Pearson correlation coefficients (R2) between these docking scores and their 

corresponding binding affinities were calculated. Three common outliers, 1LVJ, 1TOB and 

2TOB, were excluded during analysis, as they contained many unfavorable steric clashes in 

the NMR structures. 

 

2.2.7 RNA-specific scoring function optimization 

The weak correlation between docking score and binding affinity might be because most of 

the current scoring functions were derived from protein-ligand complexes. To implement 

RNA-specific scoring function, we optimized the energetic coefficients in AutoDock4.1 

scoring function using dataset provided in Table 2.2. This empirical scoring function was 

shown as Equation (2). The parameters (A, B, C, D, S, V) were obtained from default 

AutoDock4 scoring function [64]. We optimized the coefficients, WvdW, Whbond, Welec, Wsol and 

Wtors using multiple linear regression.  
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Besides R2, we calculated leave-one-out (LOO) cross-validation correlation coefficients (Q2) 

and validated against an external test set consisting of eight complexes to evaluate the 

predictive power of our new scoring function. 
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2.2.8 MD simulations of GA:UU RNA-inhibitor complex 

All simulation systems were set up using GROMACS 5.05 [76], using a similar protocol 

published previously [77]. The topology and charges of inhibitors were prepared using 

Gaussian09 at B3LYP/6-311++G(d,p) level of theory on Texas Advanced Computing Center 

(TACC). We used ff99bsc0 force field [78, 79] for RNA and general AMBER force field 

(GAFF) for inhibitor, prepared by ACPYPE [80]. The RNA-inhibitor complex was solvated 

in TIP3P water and neutralized with sodium ions. The simulation boxes were prepared so that 

the no RNA or inhibitor atom was within 14Å away from the edge. The system was 

minimized and equilibrated for 2 ns before production runs. The production simulations were 

performed for 660 ns, with constant pressure maintained by Berendsen barsostat (1 bar), 

constant temperature maintained by Berendsen thermostats (300K), LINCS, smooth particle 

mesh Ewald, 10 Å cutoff for short-range interactions, and 2-fs time step for bonded, van der 

Waals and short-range Coulomb interactions. Snapshots were taken every 20ps for further 

analysis. 

 

2.2.9 Preparation of RNA samples 

A total of five RNA constructs were prepared in order to evaluate the binding specificity 

(canonical base pairs are italic characters):   

RNA1 (wildtype): 5
'GGGCUGUGAUGCUU
3'CCCGACUAUACGGC

� 

RNA2 (miR-328): 5
'GGGUGGUGGAUUUU
3'CCCACUUACUAAGC

� 

RNA3 (mutU5A): 5
'GGGCAGUGAUGCUU
3'CCCGACUAUACGGC

� 
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RNA4 (mutU5A-ΔAU): 5
'GGGCAGUGAGCUU
3'CCCGACUAUCGGC

� 

RNA5 (miR-10b): 5
'GGAUACCCUGUACUU
3'CCUAAGGGG-AUGGC

� 

 

These RNAs were prepared by in vitro transcription with T7 RNA polymerase either 

unlabeled or 13C/15N -labeled 5’-NTPs (nucleoside triphosphates), and purified using the 

standard protocol described previously [81]. The integrity of the RNA molecules was 

evaluated using denaturing PAGE.  

 

2.2.10 Nuclear magnetic resonance (NMR) 

Spectrums of the RNA and the DMSO (solvent) were used as controls. All NMR spectra were 

acquired on Varian Inova 600 and 800 MHz spectrometers equipped with cryogenically 

cooled 1H-[13C, 15N] probes and solvent suppression was achieved using binomial read pulses, 

as previously described [81]. 2D 13C-1H HSQC (Heteronuclear Single Quantum Coherence) 

spectra were collected to identify 13C-1H chemical shifts. NMR spectra were processed and 

analyzed by Felix 2007 (Felix NMR Inc., San Diego, CA). Peaks in the samples with the 

RNA and small molecules were compared to the control spectra to predict RNA-compound 

interactions.  

 

2.3 Results: Benchmarking and optimizing docking method for RNA target 

2.3.1 GOLD:GOLD Fitness and rDock:rDock_solv are the best pose generators 

We first benchmarked the docking and scoring combinations for their ability to reproduce the 

ligand binding pose similar to the experimentally determined binding mode. An ideal RNA 
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docking method should be able to perform a thorough conformational sampling and identify 

at least one near-native pose. Table 2.3 showed that, if we arbitrarily employed C(5, 3.0) (the 

top 5 pose includes at least one near-native pose with RMSD<3.0Å) to define a successful 

docking case, GOLD:GOLD Fitness and rDock:rDock_solv outperformed other methods, 

both with 73.21% success rate. Additionally, GOLD:ChemScore, GOLD:ASP, 

Glide:GlideScore(SP), Glide:Emodel(SP) and rDock:rDock obtained more than 50% docking 

success rate. In contrast, the success rates for Glide:GlideScore(XP), Glide:Emodel(XP), 

Surflex and AutoDock4.1 (default) were low, ranging from 30.36% to 44.64%. All programs, 

especially AutoDock4.1 and Surflex, had weak performance (<60%) on flexible and 

extensively-charged aminoglycosides. When more stringent criteria = C(3, 1.5) was used, the 

accuracy decreased but GOLD:GOLD Fitness and rDock:rDock_solv remained as the best 

methods (>40%). When compared with rDock:rDock_solv, the GOLD:GOLD Fitness 

achieved better performance for the pose reproduction on aminoglycosides-RNA complexes 

such as 1J7T, 2FCZ, 2BE0, 1NEM and 2TOB, whereas rDock:rDock_solv produced more 

accurate binding modes for drug-like ligand such as 2Z74, 2Z75, 1EHT and 1AKX. The 

detailed results (scores, RMSD and statistics) are available from 

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3869234.  

 

To better demonstrate the relationship between the pose reproduction accuracy and RMSD or 

ranking, we illustrated our results with Fig. 2.2A, in which the heavy-atom RMSD and the 

ranking of pose were considered simultaneously. VUS represents the overall ability of 

reproducing near-native binding modes. It showed that GOLD:GOLD Fitness achieved the 

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3869234
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best VUS (78.11%), while rDock:rDock_solv was the second best (Table 2.3 and Fig. 2.2A). 

We proposed to employ the contour of 50% success rate to guide the pose selection in RNA 

docking: if one aims to cover at least one near-native pose (RMSD<3.0Å) with 50% 

probablity, at least top five poses should be kept when using GOLD:GOLD Fitness. In 

contrast, we should keep at least top 20 poses to achieve 50% success for Surflex and 

AutoDock 4.1 (Fig. 2.2B). From these assessments, we suggest that GOLD:GOLD Fitness 

and rDock:rDock_solv be the best methods for pose reproduction in RNA small molecule 

docking. 

 

As expected, we observed that the average docking accuracy on crystal structures was higher 

than that on NMR structures for all of 11 current docking/scoring combinations (58.84% 

versus 42.27%, p = 0.06). Not surprisingly, the pose reproduction performance on small-

molecule RNA ligands was remarkably better than that on flexible aminoglycosides (64.55% 

versus 39.51%, p<0.01). Among the failed cases (defined as two or less docking programs are 

able to satisfy C(5, 3.0)), five are crystal structures (2O3V, 2BE0, 2FD0, 2PWT and 2Z75) 

and seven are NMR structures (1UUD, 1LVJ, 1TOB, 1AKX, 1EI2, 1KOD and 1QD3). We 

found that the current methods were usually less accurate on RNA complexes containing 

large aminoglycosides (e.g. lividomycin, paromomycin, etc.), weak RNA binders (e.g. 

arginine and citrulline), or phosphate-containing hydrophilic ligands (glucosamine 6-

phosphate). As negatively-charged moieties can form specific interactions with RNA 

phosphates in the presence of metal ions acting as the “metal bridge”, such as 2GDI and 

2Z74, we tried docking with consideration of metal ions. As expected, we could significantly 
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improve the pose prediction of the diphosphate tail of thiamine diphosphate in 2GDI when the 

Mg2+ ion was taken into account as part of RNA targets.   
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Table 2.3 Performances of binding mode reproduction. 56 RNA-ligand complexes list in 
Table 2.1 were benchmarked using different docking/scoring combinations. The values in the 
brackets indicated the total number of structure complexes in the category. The values before 
the parentheses were the results satisfying C(5, 3.0), and the values in the parentheses were 
for C(3, 1.5). 
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Fig. 2.2. Analysis of the binding mode reproduction performance (A). The cumulative 
success rate in 3D representation. Only the scoring functions which obtained the highest 
VUS for each docking method were selected for illustration. The contour on the XY 
(RMSD-Rank) plane represented the 50% (Z=28) success rate (the binding mode can be 
reproduced for 50% of RNA-ligand complexes); (B). The 50% success contour (Z=28) for 
all available scoring functions (GlideScore (XP) and Emodel (XP) were not included due to 
the unavailability of VUS values). (C). The cumulative success rate for 56 RNA-ligand 
complexes based on the ranking of X-ray/NMR determined poses against 100 decoys. The 
50% success line and the corresponding rankings to achieve 50% success were shown as 
dots. 
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2.3.2 ASP: best pose selector 

Native pose ranking evaluates the ability to differentiate the experimental pose from the 

decoy poses for different scoring functions. This was assessed by investigating two metrics: 

the ranking of native poses, and the Spearman’s correlation between scores and RMSDs. 

Since GOLD:GOLD Fitness outperformed other docking programs on the coverage of the 

near-native poses as aforementioned, it was utilized to generate 100 decoys for each complex 

hoping to obtain a decoy set with a smooth transition from near-native binding mode to 

unfavorable one. We investigated whether a given scoring function could obtain the highest 

rankings for experimentally determined poses. Analogous to IC50 (in assessing biological 

activity), we used 50% success rate to evaluate the performance of different docking/scoring 

methods. As demonstrated in Fig. 2.2C, the 50% success rate line (dashed) clustered scoring 

functions into three groups: ASP, ChemScore, AutoDock4.1 Score and Emodel (SP) were the 

first group; the second group included other scoring functions, except rDock which ranked the 

lowest as the 3rd group. Fig. 2.2C indicated that GOLD Fitness has 50% of possibility to rank 

the native ligand conformation within top 10% of the predicted poses, whereas for ASP, 

ChemScore, AutoDock4.1 Score and Emodel (SP), this value reduced to top 5%. The native 

pose ranking performance for different docking/scoring schemes varied with different types 

of RNA structure. For example, most programs performed significantly better for crystal 

structures than NMR structures (69.14% versus 38.89%, p < 0.01) with the top 10 as the 

cutoff to define a successful ranking case. Surprisingly, ASP was remarkably better in crystal 

structure ranking, in which only two targets (2O3V and 3DIL) failed, while AutoDock4.1 

outperformed others on ranking NMR structures. Taken together, these data suggested that 



30 
 

RNA targets with different structural resolutions should be rescored with respective 

appropriate scoring functions (e.g., ASP or AutoDock4.1) after the initial step of docking with 

GOLD:GOLD Fitness or rDock:rDock_solv.  

 

For score-RMSD correlation study, we grouped the performances for 56 cases based on the 

strength of correlation for each scoring function. Consequently, ASP, GlideScore (SP) and 

Emodel (SP) were the best three scoring functions which had most cases with moderate or 

strong correlations (Table 2.4). rDock, rDock_solv and Surflex-dock scores obtained fair 

performance, which could derive weak or strong correlations for more than 1/3 of cases. 

Surprisingly, GOLD Fitness could not achieve satisfactory performance to enrich the near-

native ligand conformations (44 cases obtained the weak correlations) (Table 2.4). Combined 

with the native pose ranking analysis, these results demonstrated that other scoring functions 

such as ASP could enrich the near-native poses when applied to decoy poses generated by 

GOLD:GOLD Fitness. 
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Table 2.4. Score-RMSD Spearman’s rank correlations. The values indicated the number 
of RNA-ligand complexes fit in each correlation category (Weak: ρ<0.3, Moderate: 
0.3≤ρ<0.5, Strong: ρ≥0.5). Top 3 scoring functions are in bold. 

 

 Weak Moderate Strong 
GOLD Fitness 44 5 7 
ChemScore 41 7 8 
ASP 33 15 8 
GlideScore (SP) 31 15 10 
Emodel (SP) 29 14 13 
Surflex-dock Score 38 12 6 
AutoDock4.1 Score 40 5 11 
rDock 35 12 9 
rDock_solv 36 12 8 
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2.3.3 ASP rescoring improves the pose generation 

As we have identified ASP as the most robust scoring function for pose ranking, we validate 

whether rescoring with ASP is able to improve the identification of near-native binding poses 

generated by GOLD:GOLD Fitness or rDock:rDock_solv without artificial parameters 

designed for decoy generation. Fig. 2.3 showed the average RMSD-ranking relationship of 

ASP rescoring based on GOLD:GOLD fitness or rDock:rDock_solv predicted poses. 

Obviously, after ASP rescoring, low-RMSD poses were more likely to appear in top tiers (top 

5) compared with using either GOLD:GOLD fitness or rDock:rDock_solv alone. For 

GOLD:GOLD fitness, the number of complexes satisfying C(5, 3.0) increased from 41 to 44, 

while this number for C(3, 1.5) increased from 24 to 30, compared to original GOLD:GOLD 

Fitness performance. Specifically, we observed that the best RMSD in top 5-scored docking 

conformations of 2GDI, 2Z74, 2PWT and 1ZZ5 was significantly reduced (below 3.0Å) after 

ASP rescoring. In contrast, GOLD:GOLD Fitness alone failed to identified the near-native 

conformation for these complexes (Fig. 2.4). Furthermore, VUS increased from 78.11% to 

79.18%. Compared with the docking accuracy using GOLD:GOLD Fitness alone, the average 

RMSD for the top-scored conformations was further reduced to 2.61±0.38Å (Fig. 2.3 (up)). 

Similarly, ASP rescoring improved VUS from 73.13% to 75.24% and the average RMSD of 

top-scored poses was reduced to 2.92±0.49 Å (Fig. 2.3 (down)). Combined with native pose 

ranking and RMSD-score correlation results, our results confirmed that ASP has the best 

ability for pose ranking, and ASP rescoring can significantly enrich the near-native poses 

generated by GOLD:GOLD Fitness or rDock:rDock_solv for pose reproduction purpose in 

RNA-ligand docking. 
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Fig. 2.3. ASP rescoring improves the ranking of poses (overall statistics). (Up) ASP 
rescoring based on the poses generated by GOLD:GOLD_Fitness (Down) ASP rescoring based 
on the poses generated by rDock:rDock_solv. 
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Fig. 2.4. ASP rescoring improves the ranking of poses (molecular view). Experimental 
structures were in green (RNAs in ribbons, ligands in sticks). Only the docking 
conformation with the lowest RMSD selected from the top five-scored poses were shown. 
GOLD:GOLD Fitness poses were colored red, while ASP rescored poses are colored 
yellow. (A) 2GDI; (B) 2PWT; (C) 2Z74; (D) 1ZZ5. 
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2.3.3 Improved score-binding affinity correlation by iMDLScores 

Here we benchmarked the score-binding affinity correlation to assess the ability of scoring 

function to differentiate the binder against the non-binder. Surprisingly, we found all existing 

scoring functions received poor correlations (R2 < 0.3) (Table 2.3 and Fig. 2.5). To improve 

the correlation with the experimentally measured binding affinity, we developed new scoring 

functions, iMDLScore1 and iMDLScore2, using our RNA-ligand binding free energy datasets 

(Table 2.2). This was done by optimizing AutoDock4.1 scoring terms, Wvdw, Whbond, Welec, 

Wsol, Wtors, using multi-linear regression (MLR). We derived iMDLScore1 using the full 

dataset, in which the contributions of those scoring terms are 0.1460 for vdW, 0.0745 for 

hbond, 0.0559 for electrostatic, and 0.3073 for torsions (Table 2.5). iMDLScore1 achieved a 

significantly better correlation (R2 = 0.70) between the docking scores and binding affinities. 

When iMDLScore1 was further validated against an external test set consisting of eight 

complexes, the R2 = 0.82, and the root-mean-square error (RMSE) of prediction = 4.09kJ/mol 

(Fig. 2.6A). 

 

A known challenge in RNA virtual screening is to enrich the actives from a focused library 

with positively-charged molecules because most RNA binders are potentially positively 

charged. To overcome this problem, we derived a second scoring function, iMDLScore2, with 

a dataset containing 18 complexes with only positively charged ligands. For iMDLScore2, the 

contribution are 0.1634 (vdW), 0.2436 (hbond), 0.2311 (electrostatic), and 0.2212 (torsion) 

(Table 2.5). Interestingly, R2 and Q2 (leave-one-out cross validation R2) for the training set 

reached 0.79 and 0.62, and R2 (test set) = 0.76. RMSE of prediction (4.35kJ/mol) was 
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comparable to that of iMDLScore1 (Fig. 2.6B). Q2, R2 and RMSE of prediction indicated the 

better predictive power of RNA-ligand binding affinities by both iMDLScore1 and 

iMDLScore2, compared with any other existing scoring functions.  
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Fig. 2.5. Binding free energies-score correlation for ASP, GOLD_Fitness, AutoDock4.1 
Score (default). Three outliers, 1TOB, 2TOB and 1LVJ, were highlighted in rectangles. 
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Fig. 2.6. Score-binding affinity correlation for iMDLScores. (A) iMDLScore1. (B) 
iMDLScore2. 
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Table 2.5. Contributions of AutoDock energetic terms and associated performances in 
binding affinity correlation study. 
 

Parameter Default iMDLScore1 iMDLScore2 
vdW 0.1662 0.146 0.1634 
hbond 0.1209 0.07451 0.2436 
electrostatic 0.1406 0.05593 0.2311 
desolvation 0.1322 0 0 
torsion 0.2983 0.3073 0.2212 
No. of complexes as training set NA 25 18 
R2 (training set) 0.22 0.70 0.79 
LOO Q2 (training set) NA 0.44 0.62 
R2 (test set) NA 0.82 0.76 
RMSE of prediction (kJ/mol, test set) NA 4.09 4.35 
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2.3.4 Novel three-step virtual screening scheme improves the enrichment 

Our ultimate goal is to identify an optimal pipeline for vHTS against RNA targets. In our 

benchmark, the ROC AUCs for Foloppe dataset are around 0.6 for both GOLD:GOLD fitness 

and rDock:rDock_solv, whereas the ROC AUCs for lysine riboswitch decoys are 0.82 and 

0.86 for GOLD:GOLD fitness and rDock:rDock_solv, respectively (Table 2.6). As expected, 

three-step virtual screening, namely docking – rescoring (poses) – rescoring (compounds), 

could significantly improve the virtual screening enrichment in both cases. For Foloppe 

dataset, the enrichment was significantly increased by rescoring either rDock:rDock_solv or 

GOLD:GOLD Fitness generated poses using iMDLScore2 (AUC=0.74 and 0.69, compared 

with 0.61 and 0.58 without rescoring) (Fig. 2.7). For lysine riboswitch, however, all 

AutoDock-related could not obtain as good AUC (AUC <0.85) as other rescoring schemes 

(AUC>0.95) (Table 2.6). Additionally, we investigated whether any rescoring scheme could 

improve the differentiation of the seven known lysine riboswitch inhibitors from the seven 

experimentally validated lysine-analog decoys (more challenging due to the chemical 

similarity between actives and inactives). We found that GOLD:GOLD_Fitness combined 

with rDock_solv rescoring achieved the best enrichment (AUC=0.86) (Fig. 2.7) and ranked 

all seven active compounds within top eight.  

 

We are surprised to find that the optimal combination of the methods for these two targets is 

different. We hypothesize that it was due to distinctive flexibility of the binding site. B-

factors analyses of active site of 16S rRNA A-site were statistically higher than other part of 

the RNA (p=0.002) (Fig 1.8A), indicating that rRNA A-site is a flexible target. Furthermore, 
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normal mode analysis using oGNM [82] confirmed this local flexibility (Fig. 2.8B), because 

significant fluctuation of the A-site residues could be observed within five lowest-frequency 

modes (low-frequency motions are expected to have larger contribution to the conformational 

changes [83]). In contrast, based on the crystal structure of lysine riboswitch, the ligand 

(lysine) is completely enveloped in the rigid binding pocket of lysine riboswitch, and only the 

small molecules which can sterically fit the pocket can be accommodated. B-factor analysis 

demonstrated that lysine-binding pocket in this riboswitch was statistically more rigid than 

other residues (Fig. 2.8A). Normal mode analysis further confirmed the rigidity of this pocket 

(Fig. 2.8C).  
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Fig. 2.7. ROC curves of the virtual screening experiments. (A). Virtual screening against the 
16S rRNA A-site using the Foloppe dataset. (B). Virtual screening against the lysine riboswitch 
using 7 known active compounds. (C-D). ROC comparison of the virtual screening performances 
of AutoDock4.1 and iMDLScore1/iMDLScore2 scoring functions with rRNA A-site (C). and 
lysine riboswitch (D). GOLD:GOLD Fitness dockings were in thin lines, while rDock:rDock_solv 
dockings were in thick lines. AutoDock4.1 default scoring function, iMDLScore1 and 
iMDLScore2 were colored red, blue and black, respectively. 
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Table 2.6. ROC AUC for various docking and scoring combinations in virtual screening. 
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Fig. 2.8. Difference between flexible and rigid RNA targets. (A) B-factor distribution. (B) 
Predicted flexibility of 16S rRNA A-site based on normal mode analysis. (C) Predicted 
flexibility profile of lysine riboswitch based on normal model analysis.  
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Fig. 2.9. The suggested workflow for structure-based virtual screening for RNA-targeted 
inhibitor discovery. 
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2.4 Results: Application of three-step docking scheme to identify novel RNA-small 

molecule interaction 

2.4.1 Identify small molecules that binds GA:UU RNA internal loop 

To identify the potential binders for GA:UU internal loop, we performed in silico high-

throughput virtual screening using the protocol we derived in Chapter 1.3. Specifically, we 

screened ChemBridge diverse set (containing 100,000 compounds) and MayBridge 

(containing 14,400 compounds) using “GOLD:GOLD_Fitness-ASP-rDock_solv” pipeline for 

an NMR ensemble containing GA:UU motif provided by Dr. Nikonowicz group. Upon 

clustering analysis and visualization of the molecular interaction, we selected 15 compounds 

for experimental evaluations using 1D and 2D NMR. 1D NMR confirmed that two out of 15 

compounds (compound 423 and 449) are able to affect the chemical shifts for GA:UU motif. 

Compound 423 contains an amino-benzothiazole scaffold, whereas compound 449 contains a 

1,4-dihydroquinoxaline-2,3-dione moiety. The chemical structure of 449 is shown in Fig. 

2.10. 

 

2.4.2 Experimental validation by NMR 

The 1D imino proton resonances reflect the presence or absence of the RNA base pairing. 

Using 1D NH NMR, we identified 2-amino-1,3-benzothiazole-6-carboxamide (compound 

423) as the most potent and selective compound. The imino spectra of U22 and U7, which 

form noncanonical base pair in the unbound structure, exhibit weaker chemical shift and 

selective broadening by the addition of compound 423. Meanwhile, some chemical shifts 

from a G-C base pair (~12.7ppm) and A-U base pair (~13.2ppm) were displaced (Fig. 2.10A-
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B). However, the addition of compound 423 did not perturb the NH spectrum of a control 

RNA (RNA5: pre-miR-10b) that does not contain GA:UU motif (Fig. 2.10D-E). This result 

demonstrates that compound 423 does discriminate bulge / mismatch nucleotide identity. 

Although this does not indicate 423 is specific for the GA:UU motif, these results 

demonstrate this compound does discriminate bulge/mismatch nucleotide identity. In 

comparison, compound 449 shows a weaker effect on the 1D NH spectra (Fig. 2.10C). 

 

According to 2D 13C-1H HSQC spectrum, the addition of compound 423 abolishes the 

chemical shifts from U7H6, G8H1’, A9H8, A9H2, and the chemical shift from G8H8 

becomes weak (Fig. 2.11). Chemical shift from U7H1’ is also altered (Fig. 2.11). The peak 

perturbations in the NH and base spectra indicate that the binding of compound 423 should 

occur in the GA:UU tandem mismatch motif, but most of the effects are caused by the 

binding of G8 and A9. To further explore the binding context, 2D NMR was performed on 3 

variants. The first one has GU wobble base pair at UU side and GC base pair at GA side 

(RNA2: 
5 ' 3'
3' 5 '

GUGG
UUAC

), whereas the 2nd and 3rd variants extends the UU side with a AA:AU 

motif (RNA3: 
5 ' 3'
3' 5 '

AGUGAU
ACUAUA

, RNA4: 
5 ' 3'
3' 5 '

AGUGAG
ACUAUC

). Compared with the original RNA 

molecule (
5 ' 3'
3' 5 '

UGUGAU
ACUAUA

), RNA2 is much less stable at UU side (flanked by GU base pair) 

and more stable at GA side (flanked by GC base pair). RNA3 is less stable at UU side 

(flanked by GC+AA base pair), whereas RNA4 is more stable at GA side (flanked by 

AU+GC base pair). Consequently, we observed changes on RNA3, but not RNA4 and RNA5 

using 13C-1H HSQC spectra (Fig. 2.11B-C). In fact, the effects on NMR spectra demonstrated 
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inverse correlation with the rigidity at GA side (rigidity at GA side: RNA2 >  RNA4 > RNA1 

& RNA3). This suggested that the flexibility adjacent to the GA base pair be another attribute 

that determines the selectivity of 423. 
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Fig. 2.10. 1D NH spectra. of the GA:UU mismatch (A-C) and pre-miR-10b RNA 
hairpins (D,E). (A,D) RNA (0.015 mM) in 5% DMSO, (B,E) with 2-amino-1,3-
benzothiazole-6-carboxamide (1), and (C) 5,7-dimethyl-1,4-dihydro-2,3-
quinoxalinedione (2). Peaks altered by the compounds are labeled (*). 423 interacts with 
GA:UU mismatches but not A-A or bulged G. The interaction of compound 449 is 
weaker. Compound concentrations are 0.1 mM. NH spectrum is unaffected by 5% 
DMSO. 
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Fig. 2.11. 2D 1H-13C spectrum. Base region of 2D 1H-13C spectrum of GA:UU containing 
RNA molecule (black). The spectrum after addition of compound 423 (red) leads to exchange 
broadening of labeled peaks. (A) RNA1(wildtype). (B) RNA3(mutU5A). (C) RNA4 
(mutU5A-ΔAU). 
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2.4.3 Molecular dynamics study 

To further investigate the selective binding mechanisms of 423 to GA:UU RNA internal loop, 

intensive MD simulations (~660 ns) were performed. Fig. 2.12A showed the smoothed 

trajectory of compound 423 over a total of 660 ns simulation in the explicit solvent. 

Intriguingly, we observed a complete binding circle of 423’s associating or dissociating with 

GA:UU motif (Fig. 2.12A-B), indicating that the MD simulation we performed has sampled 

adequate configurational spaces and could be employed as a structural ensemble for further 

analysis. Based on MD simulation, we observed six periods in which compound 423 formed 

stable binding to RNA (Fig. 2.12C). Starting from the docking conformation, the 423 quickly 

associated with the minor groove of GA:UU motif (center of mass (COM) distance between 

GA:UU and 423 = 10Å) and formed specific and stable binding for ~100 ns (molecular 

details will be discussed later).  Then 423 disassociated from GA:UU motif to the bulk 

solvent, and form nonspecific stacking with RNA terminal nucleotides periodically (at 150ns, 

230ns, 300ns respectively). Compound 423 also interacted with the major groove formed by 

GA:UU motif in a nonspecific and transient manner (at ~450ns). Finally, it traveled back to 

the minor groove of GA:UU motif, in which the binding mode is almost identical to that in 

Stage I (COM distance = 8.2Å). After binding specifically to GA:UU for ~80ns, 423 once 

again disassociated from the RNA molecule and began a second binding circle (Fig. 2.12C). 

 

Further examination of the average 3D model from Stage I and VI revealed that compound 

423 primarily bind to the minor groove formed by G8, A9, U20, A21 (Fig. 2.13A) The 

benzothiazole moiety formed aromatic stacking on A21, and the amine group interacted with 
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U20 through intermolecular H-bond (Fig. 2.13A and Fig. 2.13C). Moreover, the sheared GA 

base pair exhibited an out-of-plane conformation (propeller twist) by 40° after the addition of 

423 (Fig. 2.13A). Compared with the unbound structure (Fig. 2.13B and Fig. 2.13D), we 

observed that (1) A9H2 and G8H1’ directly interact with 423 which explains the missing 

chemical shifts seen in the unbound RNA; (2) Due to the conformational changes caused by 

GA base pair propeller-twist, G8H8 and A9H8 changed their chemical environment; (3) The 

chemical shift changes of U7H6 and U7H1’ is likely due to the change of sugar puckering of 

G6 (arrow highlighted in Fig. 2.13C-D). These findings are all consistent to 2D 13C-1H HSQC 

spectra. Moreover, Fig. 2.14 demonstrated that destabilizing the two base pairs next to GA 

side is an essential step before compound 423 binds to GA:UU motif. In comparison, the base 

pair stability at +3 position (Fig. 2.14 (bottom)) does not correlate with the compound 

binding event. Therefore, MD simulation confirms the RNA specificity we observed in 

Chapter 1.4.2 that the flexibility at GA side may enhance the binding affinity.   

 

2.4.4 Structure-activity relationship (SAR) analysis 

Based on this 3D structural model, we further validated our hypothesis using rational 

designed structure-activity relationship (SAR) study. SAR demonstrated that any substitution 

on the R1, R2 or R3 group failed to show any changes in the NMR spectra at concentration as 

high as 0.2mM (Table 2.7). This SAR result was consistent to the 3D model predicted by MD 

simulation, in which the amine group forms H-bond with U20, and the R3-carboxamide forms 

polar contacts with G8 ribose ring such that any hydrophobic substitution is likely to abolish 

the binding. NMR proved that moving R3-carboxamide to R2 position is also detrimental, as 
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indicated by the 3D model that R2 is exposed to the solvent and has minimal contribution to 

the binding (Fig. 2.13A). 
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Fig. 2.12. MD simulations of compound 423 binding to GA:UU motif. (A) Smoothed 
trajectory of GA:UU RNA and compound 423 over 660ns simulation. The color ranges from 
red to blue, denoting the time-dependent evolution of the complex structure from 0ns to 
660ns. (B) Representative structures of through MD simulation. (C) Center of mass distance 
between GA:UU and compound 423. Each stable state is assigned an ID, whose 3D structure 
has been illustrated in (B). 
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Fig. 2.13. 3D model of compound 423 binding to UU:GA motif. Compound 423 are 
shown in red sticks, and the atoms altered by addition of 423 are shown in sphere. The 
changes of sugar puckering are highlighted with arrows. (A) Minor groove view of 423-
bound structure. (B) Minor groove view of unbound structure. (C) Major groove view of 
423-bound structure. (D) Major groove view of unbound structure.  
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Fig. 2.14. Base pair flexibility of the context of GA:UU motif. Time-dependent 
distance between A9N1-U20N3, U10N3-A19N1, and G9N1-C18N3, which denote the 
three base pair from the GA base pair. The arrows highlighted the time point that 423 
start to associate with GA:UU motif. 
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Table 2.7. Structure-activity relationship of 423 series compounds. 

 

  

R1 R2 R3 Activity 
-H -H -CONH2 active 
-H -H -NHCOCH3 inactive 
-H -H -CH(CH3)CH2-423 inactive 
-H -CONHNH2 -H inactive 
-NH2 -H -CONHNH2 inactive 
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2.5 Discussion 

RNA represents a historically important, but less systematically investigated therapeutic 

target. The discovery of various aminoglycosides inhibitors target prokaryotic 16S rRNA is a 

proof-of-principle that RNA can be specifically targeted by small molecules. On the other 

hand, rational design of small-molecule inhibitor targeting specific RNA motif less 

appreciated due to lack of reliable in silico tools for structure-based drug design. To address 

this issue, we have benchmarked and identified an optimal docking / scoring pipeline for 

RNA-ligand modeling and virtual screening through a comprehensive evaluation in three 

different aspects. First, we have identified GOLD:GOLD Fitness and rDock:rDock_solv as 

the best pose predictors and are most appropriate for the initial binding modes generation. 

Nevertheless, we proved that rescoring of the predicted binding modes is a necessary step to 

enhance the enrichment of true positives in virtual screening exercises. To this end, we 

discovered that ASP, rather than GOLD Fitness or rDock_solv scoring function, achieved the 

best performance in pose ranking evaluation. Second, scoring functions can be generally 

classified as soft-core potentials (e.g. AutoDock scores and iMDLScores) and hard-core 

potentials (rDock_solv and ASP). Based on the structural resolution and flexibility of the 

binding sites, hard- or soft-core potentials may behave distinctively, as we summarized in 

Fig. 2.9. Hard-core scoring functions, for example, usually result in better ROC AUC than the 

soft-core ones when the target is an RNA ensemble. Third, implementation of RNA-specific 

scoring function (e.g. iMDLScore2) improved the virtual screening enrichment as well as the 

accuracy of RNA-ligand binding affinity prediction.  
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In agreement with previous docking benchmarks [84], we report that the docking/scoring 

combination that is specialized in binding mode reproduction does not correlate its 

corresponding performance in virtual screening. Hence, we exhaustively explored the best 

strategy independently for pose generation, pose ranking and hit ranking, so called three-step 

RNA virtual screening. Consistent to our hypothesis, some scoring function such as 

iMDLScore2 which is good at hit identification (the final step) performs poorly in initial pose 

generation (the first step). We found that if iMDLScore2 was biased to the electrostatic 

interactions with RNA backbone if it was selected for pose generation (Fig. 2.15). Indeed, we 

concluded that so far no existing docking/scoring combination can have satisfactory 

performances on all three steps. Our three-step pipeline circumvented the pitfalls of 

traditional one-step docking-scoring by separating the conformation-wise pose 

generation/selection and ligand-wise hit selection, and it outperformed other methods in our 

virtual screening benchmarks (Fig. 2.7).  
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Fig. 2.15. Comparisons of AutoDock4.1:iMDLScore2 predicted binding modes 
with experimental structures. 1NTB, 2ESI and 3DIL were used as the examples to 
demonstrate the overestimation of polar interactions with RNA phosphate for initial 
pose generation purpose. RNA receptors were shown in green lines, while 
experimentally determined binding modes are shown in cyan sticks. AutoDock4.1 
generated pose with the best RMSD were in orange sticks. The interactions between 
basic guanidinium/amine groups with RNA atoms were labeled with magenta dashes. 
We could observe that these basic groups were predicted dominantly to form 
interaction with the backbone phosphates; actually, the H-bonds with RNA base 
atoms and cation-π interactions were more favorable. 
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Compared with one-step docking process, one of the limitations of our three-step pipeline is 

that current implementation cannot derive a statistical model of determining how many 

candidates we should retain for the next step. Here we conceptualized a successful virtual 

screening exercise as a process not only to cover the near-native ligand conformation, but also 

to enrich the true positive from these predicted conformations. Hence, the hit rate is a net 

effect of pose selection and compound selection, and we observed that forwarding too many 

poses for each ligand to hit selection stage may harm the virtual screening performance. Fig. 

2.16 showed that keeping top three poses in GOLD:GOLD Fitness phase achieved the best 

ROC AUC in iMDLScore2 rescoring phase. ROC AUC is declining when no. retained poses 

is increasing. Similar trend is also found when rDock:rDock_solv is used as the first phase, 

but the maximum performance occurs only when we retains top 6 poses. Our data suggest that 

even though arbitrarily keeping top 10 poses can only compromise <3% ROC AUC, the 

number of poses that can achieve the best performance is still hard to estimate a priori. Thus, 

we will continue to develop statistical model to predict the a priori no. of poses based on the 

features of target and screening library. 
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Fig. 2.16. ROC AUC against number of candidate poses selected for iMDLScore2 
rescoring for 16S rRNA A-site. The downward-pointing triangle (▼) represents the 
number of picked poses corresponding to the best ROC AUC (turning point). 
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Chapter 3: Computational modeling of novel RNA-protein interaction 

3.1 Introduction 

All aforementioned pitfalls described in Chapter 1.2 motivated the implementation of 

interface threading for RPI prediction. The idea of interface threading is inspired by iWRAP 

[85] which predicts protein-protein interaction (PPI) by referencing to template PPI(s). Our 

implementation, RPI prediction through Interface Threading (or RPIT), identifies and 

references an RNA-protein interface as a template to estimate the interface region where the 

interaction occurs. To estimate the interaction propensity between different types of amino 

acids and nucleotides more precisely, we have implemented a set of statistical scoring 

functions based on our unique collection of non-redundant protein-RNA interaction database. 

Compared with sequence-based methods, interface threading model not only predicts 

accurately the probability of the RNA-protein direct binding, but also infers the sequence 

elements that are most attributable to binding.  This is significantly appealing when the size of 

RNA (or protein) is huge so that trivial mutagenesis study is prohibitive when validating the 

computational model. Compared with structure-based method, RPIT offers an inexpensive but 

robust method for in silico prediction of RNA-protein interaction networks, and for 

prioritizing putative RNA-protein pairs for experimental validation.  

 

Here we hypothesized that the interaction propensity between protein and RNA is dominated 

by interface regions, and mutations on a distal region contribute less than those close to the 

interface. In order to validate this hypothesis, there are four specific aims (Fig. 3.1): 

1. Develop an interface template database to which query protein-pair can thread.  
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2. Develop statistical scoring functions to evaluate the threading performance.  

3. Design novel alignment (threading) paradigms to incorporate 2nd structural and 

interface importance information.  

4. Implement classifier to predict the probability of interaction based on alignment 

and scoring functions.  
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Fig. 3.1. An overview of protein-RNA interface threading pipeline. There are four 
milestones of protein-RNA interface threading. 1. Develop an interface template database. 2. 
Develop statistical scoring functions. 3. Design alignment (threading) algorithms. 4. 
Implement functions to predict the probability of interaction based on alignment and scoring.  
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3.2 Materials and Methods: Development, Validation and Application 

3.3.1 Non-redundant protein-RNA interfaces database (nrPR) 

As of April 26th 2014, there are totally 1,585 protein-RNA complex structures deposited in 

PDB. From this collection, we have curated 20,111 protein-RNA interaction pairs (termed as 

totPR dataset), each of which contains at least five residue-based intermolecular interactions. 

We further removed the redundants from totPR (using 0.8 similarity cutoff for protein and 0.6 

for RNA, considering sequence, secondary structure and types of interaction simultaneously), 

ultimately resulting in 5,471 non-redundant interaction pair (termed as nrPR database). This 

nrPR database will be used as the threading templates as well as the training set to derive 

statistical scoring functions. Notably, we keep the non-standard amino acids and nucleotide 

intact in the 3D structure, but may ignore them when deriving statistical scoring functions. 

For NMR structures, we select the best representative model according to ‘selection_criteria’ 

tag in the mmCIF file. The diversity of the protein or RNA sequences in nrPR is analyzed by 

principle component analysis (PCA) using conjoint triad descriptors [59]. There are 343 

features for protein sequence and 256 features for RNA sequence. In this chapter, we may use 

“query” and “target” interchangeably. 

 

3.3.2 Statistical Scoring Functions 

We designed five knowledge-based statistical scoring functions to determine the fitness of 

interface threading. Generally, PInter (or RInter) estimates the interaction propensity that 

evaluates how favorable an interfacial protein (or RNA) residue to form a specific interaction. 

PDist (or RDist) estimates the distance propensity that evaluates how favorable a protein (or 
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RNA) residue is found on/close to the interface. Here we defined 12 types of RPI which 

empirically summarize the fundamental amino acid-nucleotide contacts at atomic level 

(Table 3.1). Fig. 3.2 illustrates the schematic view of these 12 types of interaction. 

 

The secondary structure of protein residues were analyzed by Stride [86]. As Stride predicts 7 

types of protein secondary structures (H=α-helix, G=310-helix, I=π-helix, E=extended 

conformation, B(or b)=isolated bridge, T=turn), we clustered these 7 secondary structure 

codes into helix, sheet and coil as following: {H, , }helix G I∈ , { , ( )}sheet E B b∈ , 

{ , }coil T C∈ . RNA secondary structures were analyzed using DSSR v1.0.2, a new 

component of 3DNA suite of software programs [87]. We define a paired state to be Watson-

Crick base pairing (19-XIX or 20-XX) or G-U wobble base pairing (28-XXVIII), and an 

unpaired state to be any other noncanonical base pair or unpaired bulge. vdW interaction 

denotes any atom pair with distance shorter than 4.0Å. Salt bridge (or electrostatic attraction) 

denotes the interaction involving a phosphate atom of nucleotide and an atom of basic amino 

acid whose distance is shorter than 4.5Å. All H-bonds, aromatic stacking, cation-π 

interactions, and electrostatic attractions were computed by Molecular Operating 

Environment (MOE). Then we confirmed the MOE assignments and assign aromatic-like 

stacking and hydrophobic stacking using the criteria described in Table 3.1, based on the 

number of atomic contacts.   
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Table 3.1 Summary of 12 types of RPI 
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Fig. 3.2. Schematic view of 7 major categories of RPI types. 
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3.3.2.1 PInter and PDist: RNA-binding ability for amino acids  

PInter scoring function quantifies the probability of a given amino acid (i) holding the 

secondary structure (ssk) to form a specific interaction (tm) to any nucleotide. i∈20 standard 

amino acids, { , , }k helix sheet coil∈ , m∈12 interaction types. The statistical potential of 

PInter is written as following: 
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( , )kss
obs i mN p t  is the observed number of interaction of a protein residue, kss

ip , with any 

nucleotide using interaction type, mt , whereas exp ( , )kss
i mN p t  is the expected number of 

interaction of a protein residue, kss
ip , with any nucleotide using interaction type, mt . The 

expected value is calculated in a similar manner as in χ2-test. Here, we estimates the unbiased 

fraction of residue kss
ip ( , ki ssX ) and type mt ( 

mt
X ) from all observed interactions (

.
. .( , )ss

obsN p t ), in which dot ‘.’ denotes any residue, secondary structure or interaction type. 

To take zero observation ( , )kss
obs i mN p t  into consideration, a pseudocount cB  is added to 

both denominator and numerator. cB  is calculated as the square root of all observations 

.
. .( , )ss

obsN p t . Of note, when computing the unbiased fraction of protein residue , ki ssX , 

interaction propensity of some interaction type  (e.g., aromatic or aromatic-like stacking, 
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cation-π) can be inflated, due to the physicochemical nature of different amino acid. For 

example, Ala, Val, Leu and Ile by nature are incapable of forming H-bond with its sidechain, 

and thus hbp_2 and hbp_1 are not applicable to these residues. Therefore, we apply an 

“interaction type correction” when computing the denominator for , ki ssX . .
.( )ss

obs mN p T∈  

denotes the number of observed amino acid in which the interaction category that mt  is 

belonged to is applicable. For instance, when calculating interaction propensity of (Phe, α-

helix, aromatic stacking (arom)), .
.( )ss

obs mN p T∈  will only counts the residues that are able 

to form aromatic stacking, aromatic-like stacking, hydrophobic stacking or cation-π 

interaction. This can significantly reduce the bias toward amino acid-specific interaction type. 

 

PDist scoring function quantifies the probability of a given amino acid (i) holding the 

secondary structure (ssk) to reside at most dθ Å from any interfacial amino acid. i∈20 

standard amino acids, { , , }k helix sheet coil∈ , {0 20}θ ∈ 2 . When the given amino acid 

forms direct interaction with RNA (interfacial residue), the distance is zero. The statistical 

potential of PDist is written as following: 
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Basically, ( , )kss
obs iN p d dθ≤  is the number of observed cases for a specific protein residue 

kss
ip  to be found at a distance equal or less than dθ . exp ( , )kss

iN p d dθ≤  is the number of 

expected cases for a specific protein residue kss
ip  to be found at a distance equal or less than 

dθ .To calculate the expected value, we estimate the unbiased fraction as we did in PInter. 

exp ( , )kss
iN p d dθ≤  is computed as the multiplication of unbiased fraction of kss

ip ( , ki ssX ), 

unbiased fraction of all residues with maximal distance to interfacial atom d dθ≤  ( dX
θ

) and 

total number of observations for any residue at any distance ( .
. .( , )ss

obsN p d ). Different from 

interaction propensity, no pseudocount was applied here, as theoretically the occurrence of 

protein residue at some distance is assumed to be random enough to prohibit zero observation. 

 

3.3.2.2 RInter and RDist: Protein-binding ability for nucleotides  

RInter scoring function quantifies the probability of a given nucleotide (j) holding the 

secondary structure (ssl) to form a specific interaction (tm) to any amino acid. i∈4 standard 

nucleotide, { / , }k WC GU others∈ , m∈12 interaction types. The statistical potential of 

RInter is derived as following: 
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Here all parameters used in RInter scoring function are similar to those in PInter, except that 

1) the pseudocount are divided by 8, because there are only 8 combinations of nucleotide type 

and 2 secondary structure type for RNA; 2) there is no interaction type correction when 

computing unbiased fraction of nucleotide, , lj ssX , because all 12 interaction types are 

applicable to all nucleotides (A, U, G, C). 

 

Similar to protein, we define RDist as following, in which , lj ssX  and dX
θ

 are the unbiased 

fractions for RNA nucleotide ( lss
jr ) and the maximal distance from any interface nucleotide (

d dθ≤ ), respectively: 
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3.3.2.3 Protein-RNA interface fitness: PRInter 

PRInter scoring function quantifies the probability of a given amino acid (i) holding the 

secondary structure (ssk) to form a specific interaction (tm) to a given nucleotide (j) holding 

the secondary structure (ssl). The definitions of i, j, ssk, ssl, tm have been described above. The 

statistical potential of PRInter is given as following: 
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Similar to other interaction propensity scoring functions, it is computed from the logarithm of 

observed cases ( ( , , )k lss ss
obs i j mN p r t ) over expected cases ( exp ( , , )k lss ss

i j mN p r t ). PRInter 

applied three unbiased fractions  , ki ssX , , lj ssX , 
mt

X  and the pseudocount will be divided by 

480 as there are in total 480 combinations (20 amino acids, 3 amino acid secondary structure 

states, 4 nucleotides, 2 nucleotides secondary structure states). As we discussed in PInter, 

Interaction type correction term is applied to PRInter as we have discussed in PInter. 

 

3.3.3 Develop protein-RNA threading and scoring scheme 

3.3.3.1 Protein threading and scoring 

RaptorX, the best template-based modeling method in Critical Assessment of Protein 

Structure Prediction 9 (CASP9), is used for protein interface threading problem. RaptorX is 

equipped an integer linear programming (ILP) scheme so that when searching and aligning to 

template(s), RaptorX optimizes the objective function which involves sequence profile 

similarity, statistical potential-based sequence similarity, secondary structure profile 
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similarity, solvent accessibility, contact capacity, environment fitness, sequence identity, 

alignment length and gaps simultaneously 77,78. Therefore, this tool is ideal for fold 

recognition using low-homology template(s). Here, non-redundant protein structures in nrPR 

database will be treated as the templates to thread the target protein sequence. Based on the 

alignment provided by RaptorX, we calculated the interface threading score as following: 
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The secondary structure of the target protein will be predicted by RaptorX internally using 

PSIPRED method [88]. The probability of each residue being α-helix, β-sheet or loop, namely

kssp , will be incorporated into the function. The overscript (e.g., 
t
X  or 

q
X ) indicates whether 

the profile (X) is retrieved from template or query. To compare the protein interface threading 

scores for proteins with different length, we normalize the final score (calculated from query 

threading scores minus template threading scores) by “effective length”, in which greater 

weight will be placed on the region that is closer to interface, we transform the distance (
t

dθ ) 

using a sigmoid function (ψ ): 

 

1

1
t

t

A d s
d

e
θ

θψ
 

− − 
 

  = 
 
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Then effective length is the summation of 
t

dθψ  
 
 

 for all the positions in template sequence. 

Here constant c  defines the minimum weight after transformation, A  controls the overall 

steepness of sigmoid curve and s affects descending rate for small 
t

dθ  values. We use, s=8.0, 

A= -0.8 for maximum performance. Considering the nature of RPI, we take into account two 

nonspecific interaction schemes in protein threading scoring or protein-RNA interface 

threading scoring (Fig. 3.3). First, salt bridge (electrostatic attraction) is considered as 

sequence-independent interaction. If a query alignment position (q) fails to form salt bridge 

interaction with RNA (as indicated by the template), we search the surrounding q ±3 positions 

for Arg or Lys, and use the best score when calculating the contribution of this position to

q
pInterE (Fig. 3.3 left). Second, base stacking interaction is considered as type-independent 

interaction. In this exception, if a query alignment position (q) is unable to form a specific 
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stacking interaction (tm) (as indicated by the template), we calculate the interaction propensity 

using other t’m s which are classified in the same category of tm
 (Fig. 3.3 right). The gap 

penalty coefficient α is -2 when there presents a gap in the query sequence.  

  



78 
 

 
 

  

Fig. 3.3. Scheme of the nonspecific interactions in PRInter scoring. (A) salt 
bridge (electrostatic attraction) is considered as sequence-independent interaction. 
(B) base stacking interaction is considered as type-independent interaction.  
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3.3.3.2 RNA threading and scoring 

LocARNA utilizes dynamic programming (DP) for RNA alignment with dedicate 

consideration of secondary structure of nucleotides [89, 90]. The secondary structure and the 

base pair probability of the query RNA is predicted by CentroidFold [91], one of the most 

robust RNA secondary structure prediction tools benchmarked by CompaRNA [92]. The base 

pairing probabilities for each nucleotide in the query sequence are predicted using 

CentroidFold, and will be used as inputs for LocARNA. Similar to that for protein threading, 

we have RNA threading score as following: 
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Besides RInter and RDist, no nonspecific threading term (e.g., salt or base stacking terms) are 

applied. Since it is infeasible to estimate the importance of RNA secondary structure a priori, 

we perform greedy searches for the optimal values of “structweight” parameter at an interval 

of 50, and “indel” and “indel-opening” at an interval of 0.5, and the RNA alignment that 

obtains the best score will be retained. Other parameters are identical to those in protein 

threading.  

 

3.3.3.3 Protein-RNA interface threading and scoring 

Based on the protein alignment provided by RaptorX and RNA alignment provided by 

LocARNA, we are able to predict the query interface and align to the template interface. Here 

we hypothesized that 1) the interaction type of each residue/nucleotide at interface can be 

inferred from its homologous interface; 2) the missing residues, namely gaps, at interface 

alignment are detrimental to the binding. The performance of protein-RNA interface 

threading is scored by norm
prThreadE , as following: 

 

( ) ( )
penalty

q q t
prThread prInter prGap InterE E E E= + −  

/ p r
norm
prThread prThread t t

E E N
⊗

=  

Where: 
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Similar to the calculation for protein threading score, we applied the salt and stacking 

corrections for nonspecific interaction schemes in interface threading. Here p rt t⊗  denotes 

the interface element in the template or the corresponding query interface, where a template 

protein residue in the template ( pt ) interacts with a template nucleotide ( rt ). Therefore, 

p rt t
N

⊗
 denotes the number of direct contacts in the template, which will be used as a 

normalization factor when computing norm
prThreadE . As the secondary structure states of amino 

acids and nucleotides are all from predictions, the interaction propensity are computed as the 

sum of dot product of the residues with all secondary structure states (for amino acids: H, E, 

C and for nucleotides: WC, nP). 
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3.3.4 Develop Random Forest classification models 

3.3.4.1 Collect interface profiles to train classification models 

Unlike protein-protein interaction, the publicly available resources for protein-RNA 

interaction are greatly limited. Furthermore, it is generally more dangerous to scramble the 

positive dataset to derive the non-interacting negative controls for protein-RNA interaction, as 

RNA only contains four types of residue (variables), where the probability of chance binding 

is significantly higher than that of protein when data shuffling is performed. Here we train the 

machine learning classifier with three resources: NPInter [93], RBPDB [94] and NNBP [95]. 

Briefly, we have collected 14,623 protein-RNA positive pairs from NPInter, and 3,649 

negative pairs from RBPDB using PSSM motif scanning searching for RNAs in NPInter that 

are less likely to bind (<5%). In addition, for each protein in NNBP that is confirmed not to 

interact with any nucleosides, we randomly selected 50 RNAs from NPInter, and formed 

12,500 negative pairs.  

 

Two independent datasets were collected for external validation. First dataset contains 11,709 

protein-mRNA interaction pairs from Saccharomyces genome database (SGD) [96]. The 

4,706 negative pairs generated by random shuffling were obtained from RPIseq validation set, 

which was retrieved from [54]. This independent dataset was used in the previous method 

benchmarks, such as RPISeq [54] and Pancaldi and Bähler et al. [97]. The second dataset was 

compiled from 42 most recent discoveries of miRNA-protein interactions (Table 3.2), and we 

will compare the performances of interface threading method with those by RPISeq using 

these two validation sets.  
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Table 3.2. External validation dataset (II). In the binding column, 0-no binding detected, 1-
binding is observed. CoIP: coimmunoprecipitation.  MS: mass spectrum. WB: western blot. 
RIP: RNA immunoprecipitation. 

Gene Uniprot ID miRNA Experiment PubMed_ID Bind? 
HNRNPA1 P09651 pre-mir-18a CoIP 17558416 1 
HNRNPA1 P09651 pre-let-7a-1 CoIP 20639884 1 
HNRNPA1 P09651 pre-mir-101-1 RNA chromatography 

MS; WB 
18995836 1 

HNRNPL P14866 pre-let-7a-1 RNA chromatography 
MS; WB 

18995836 1 

PCBP2 Q15366 mir-181b-5p RIP 20211135 0 
PCBP2 Q15366 mir-330-5p UV crosslinking; RIP 20211135 0 
PCBP2 Q15366 mir-328 UV crosslinking; RIP; 

EMSA 
20211135 1 

PTBP1 P26599 pre-mir-101-1 RNA chromatography 
MS; WB 

18995836 1 

HNRNPK P61978 mir-328 Preliminary data 20211135 1 
ELAVL1 Q15717  mir-29b-3p(mut) CoIP 23901138 0 
ELAVL1 Q15717  mir-29b-3p CoIP 23901138 1 
KHSRP Q92945 pre-mir-21 CoIP; NMR; UV 

crosslinking 
19458619 1 

KHSRP Q92945 pre-mir-1-2 crosslinking; CoIP 23221640 1 
KHSRP Q92945 pre-let-7a-1 CoIP; NMR; UV 

crosslinking 
20639884; 
19458619 

1 

HNRNPD Q14103 pre-mir-155 Preliminary data 19423639 0 
KHSRP Q92945 pre-mir-23b CoIP 19423639 0 
ZFP36 P26651 pre-mir-155 CoIP 19423639 0 
KHSRP Q92945 pre-mir-155 CoIP 19423639 1 
LIN28b Q6ZN17 pre-let-7f1 Crystalized 22078496 1 
LIN28b Q6ZN17 pre-let-7d Crystalized 22078496 1 
LIN28b Q6ZN17 pre-let-7g Crystalized 22078496 1 
TLR7 Q9NYK1 let-7b-5p Indirect assay with 

exogenous miRNA 
22610069 1 

TLR7 Q9NYK1 let-7a-5p Indirect assay with 
exogenous miRNA 

22610069 1 

TLR7 Q9NYK1 let-7c Indirect assay with 
exogenous miRNA 

22610069 1 

TLR7 Q9NYK1 let-7g-5p Indirect assay with 
exogenous miRNA 

22610069 1 

TLR7 Q9NYK1 mir-599 Indirect assay with 
exogenous miRNA 

22610069 1 

TLR7 Q9NYK1 mir-124-3p Indirect assay with 
exogenous miRNA 

22610069 0 

TLR8 Q9NR97 mir-21-5p CoIP; Colocalization 22753494 1 
TLR8 Q9NR97 mir-29a-3p CoIP; Colocalization 22753494 1 
TLR8 Q9NR97 mir-16-5p CoIP 22753494 0 
TLR8 Q9NR97 mir-147a Indirect assay with 

exogenous miRNA 
22753494 1 
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QKI6 Q9QYS9 mir-20a-3p CoIP 22751500 1 
QKI6 Q9QYS9 pre-mir-20a CoIP 22751500 0 
QKI6 Q9QYS9 mir-18a-5p CoIP 22751500 0 
QKI6 Q9QYS9 mir-20a-5p CoIP 22751500 0 
QKI6 Q9QYS9 pre-mir-7-1 CoIP 23319046 1 
SND1 Q7KZF4 pre-miR-92a-2 RIP 23770094 1 
SND1 Q7KZF4 mir-17-5p RIP 23770094 1 
SND1 Q7KZF4 mir-18a-5p RIP 23770094 1 
SND1 Q7KZF4 mir-19a-5p RIP 23770094 1 
SND1 Q7KZF4 mir-20a-5p RIP 23770094 1 
SND1 Q7KZF4 mir-92a-5p RIP 23770094 1 
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3.3.4.2 RPIT-RF model 

The ultimate goal is to determine whether the query protein interacts with the query RNA 

based on the interface score profiles computed previously. Since only a few protein-RNA 

pairs interact in vivo, the main challenge is to discriminate the true interactions from the false 

ones. Here, we extract a vector of interface profile, InterfaceX , and feed this profile to various 

classifiers, which compute the probability of interacting: 
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tP and tR are the length of template protein or RNA. qP and qR are the length of query 

protein (or RNA). Pε and Rε are the effective length of the protein (or RNA), which are 

employed to normalize the interaction score. iP and iR are the sequence identity between the 

template and query protein (or RNA). , ,score pval NEFFrap rap rap are the threading score, p-

value, and NEFF value calculated by RaptorX. , ,score ssweight gaploc loc loc are the best threading 

score, secondary structure weight, and gap penalty score from LocARNA. Feature importance 

showed that features other than , ,score pval NEFFrap rap rap , , norm
pThread pThreadE E , , norm

rThread rThreadE E
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, norm
prThread prThreadE E  are less informative (data not shown). Thus, the final classifier will only 

have the above nine features as the attributes.  

 

3.3.4.3 Metrics for model quality assessment 

We evaluated the predictive ability of classifiers by sensitivity, specificity, positive predictive 

value (PPV), negative predictive value (NPV), F1 measurement, Matthews correlation 

coefficient (MCC), overall accuracy, and ROC AUC. These metrics are calculated as 

following, in which TP = true positive, FP = false positive, TN = true negative, FN = false 

negative: 

Sensitivity = TP / (TP + FN) 

Specificity = TN / (TN + FP) 

PPV = TP / (TP + FP) 

NPV = TN / (TN + FN) 

F1 = 2 / ( )sensitivity PPV sensitivity PPV× × +  

MCC = ( )( )( )) / ) ((TP FP TP FN TNTP TN FP FN FP TN FN× − + + + +×   

Accuracy = (TP + TN) / (TP + TN + FP + FN) 

 

The F-measurement is a harmonic mean of precision and recall. F-measurement, e.g., F1 

value, ranges from 0 to 1, and value close to 1 indicates perfect classifier. MCC value, often 

known as φ-coefficient, is essentially a correlation coefficient between the observed and 

predicted classification. Its value ranges from -1 to 1 where 1 indicates prefect classification, 

0 means random, and -1 indicates a total disagreement. The ROC AUC evaluates the 
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performance of binary classifier with varied discrimination threshold. Its value ranges from 0 

to 1 and AUC = 1 indicates a perfect classifier and AUC = 0.5 indicates random classifier. 

 

3.3 Results: Interface threading approach to predict RNA-protein binding 

3.3.1 nrPR database 

The quality and diversity of nrPR template database may directly affect the accuracy and 

applicability of interface threading implementation. nrPR database consists of 5,471 non-

redundant protein-RNA pairs, including 69% crystal structures, 2% NMR structures and 29% 

electron microscopy structures (Fig. 3.4A). A majority of crystal structures (76.5%) acquire 

acceptable resolutions (resolution < 3.5Å), with most around 3.0Å (Fig. 3.4B). The median 

resolution is 3.1Å. Although the quality of 3D structures are not ideal compared with other 

collections, we think it is acceptable if considering the tradeoff between database coverage 

and quality. Indeed, the statistical scoring functions in this implementation can tolerate the 

trivial errors in structural models, because they only consider a binary response (interface or 

non-interface residue) for interaction propensity calculation and the distance range (d<cutoff) 

for distance propensity calculation.  

 

Analysis of the lengths of interacting protein and RNA pairs has shown three major clusters in 

nrPR (Fig. 3.4C). First cluster involves small to large size protein (75-500 aa) interacting 

with small RNA (<500 nt). Second and third clusters include medium size protein (100-250 

aa) interacting with medium (1000-2000 nt) or large size RNA (2500-3500 nt), respectively.  

Regardless the wide variation in macromolecular lengths, the number of interfacial amino 
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acids and nucleotides show a clear correlation (R2 = 0.84) (Fig. 3.4D), in which amino acid 

on average interacts with 0.68 nucleotide at interface region (amino acid to nucleotide ratio 

(ANR) = 1.48 ± 0.99). This ANR is in contrast to that of protein-DNA interface, whose ANR 

is about 2 (24 ± 6 aa vs. 12 ± 3 nt [98] and 52 ± 25 aa vs. 23 ± 9 nt [51]). Our data is also 

distinct from any previous statistical analyses using small dataset (< 200 samples), which 

usually reported ANR > 2.5 [51]. We observed a considerable variation of ANR values 

(ranging from 0.33 to 12.5), which indicates that diverse protein/RNA families have been 

collected. Interesting, we find length of protein (or RNA) non-informative to predict of 

number of interface residue, as there are no correlations between length of protein (RNA) and 

number of interfacial residues (nucleotides) (Fig. 3.4E-F). PCA using triad conjoint 

descriptors demonstrates that the nrPR database is absent of significant clusters (Fig. 3.5A), 

in which first two principle components (PCs) only accounts for <10% variance amongst all 

protein sequences. Pairwise-sequence/secondary structure/interaction similarity distribution 

could be fitted to a normal distribution, 𝑝~𝒩(𝑚𝑚𝑚𝑚 = 42.15%,𝜎2 = 66.77) with low 

RMSE = 3.02 (Fig. 3.5B). All these data suggest that nrPR database represents an unbiased 

collection of RNA-protein interfaces, and the diversity in sequence/structure/interaction 

should be sufficient to achieve statistical power for scoring functions implementations. 
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Fig. 3.4. Statistics of nrPR database.  (A) composition of 3D structures. (B) Distribution of 
resolution for all cystal structures. (C) Distribution of the length of protein vs. length of RNA 
for protein-RNA interacting pairs in nrPR. (D) Distribution of number of interfacial amino 
acid and interfacial nucleotides for the interfaces in nrPR. (E) Distribution of the number of 
interfaical residues vs. length of protein. (F) Distribution of the number of interfaical 
nucleotides vs. length of RNA. 
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Fig. 3.5. Sequence and structural diversity of nrPR database. (A) Scatter plot of 
first two principle components of nrPR database using conjoint triad descriptors. (B) 
Distribution of pairwise-RNA-protein pair similarity in nrPR database. The blue line 
indicates the normal distribution of the pairwise similarity.  
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3.3.2 Statistical scoring functions 

Table 3.3 and Table 3.4 summarized some basic statistics for amino acid or nucleotide at 

protein-RNA interface. We find that amino acids in coil state are statistically more favorable 

at protein-RNA interface than other secondary structure states (p < 0.01) (Fig. 3.6). This 

agrees with previous finding that protein-RNA interfaces are packed less tightly than those of 

protein-DNA and protein-protein interface.  

 

Fig. 3.7A shows the heat map for PInter scoring function. Consistent to the amino acid 

preference [52] and secondary structure preference we have observed, general vdW 

interaction potentials exhibit significant variances (p = 5.15e-15 for amino acid factor and p = 

1e-11 for secondary structure factor, two-way ANOVA). Coiled amino acid and positively 

charged residues are more favorable to protein-RNA interface. Other type-specific potentials, 

such as arom, arom_l, cpi, hy and salt, hbp_1, hbp_2 obtain expected preferences to specific 

amino acids. T, S, R, K, H, Q, N are more likely to be recognized by RNA nucleotides by 

forming more than two H-bonds with their sidechain atoms (p < 1e-5). Intriguingly, negatively 

charged residue (D, E) as well as these seven residues (T, S, R, K, H, Q, N) are more likely to 

recognize specific nucleotide judged by high hbr_2 propensities (p < 1e-5). Later we will show 

in Fig. 3.8 that even if D and E are generally disfavored on protein-RNA interface, they 

preferably form H-bonds with specific nucleotides if they happen to be on the interface. 

 

In contrast, the potential of RNA nucleotides to interaction with protein depend more on 

secondary structure states (Fig. 3.7B). Arom, arom_l, cpi, hbr_2, and hy interactions have 
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greater propensity to occur on unpaired/noncanonical base paired nucleotides than Watson-

Crick/G-U wobble base paired ones. In terms of sequence-specific interaction, guanine and 

cytosine are most likely to be “recognized” by forming more than two H-bonds with protein 

residues. However, nucleotide type and secondary structure states cannot determine the 

interaction propensity to form backbone recognition (pbb_p, ss = 0.61, pbb_p, na = 0.94, pbb_r, ss = 

0.08, pbb_r, na = 0.42), protein sequence recognition (hbp_1, hbp_2), salt and vdW interactions 

according to two-way ANOVA test.  

 

Fig. 3.8 summarizes the interaction propensities between interfacial protein residues and 

RNA nucleotides. The nonspecific interactions (arom, arom_l, bb_p, bb_r, cpi, hy, salt and 

vdw) show similar patterns with those of PInter. With respect to hbr_2 and hbp_2 

propensities, some favorable amino acid-nucleotide specific interactions have been detected 

(superscripts indicate the secondary structure state): 

 

1. AnP is favorably recognized by VE / T / S / Q / NE / KE / IE / HE / DE / CC / AE, whereas 

AnP : T, AnP : S, AnP : NE, AnP : KE shows more specific bilateral recognition judged 

by both high hbp_2 and hbr_2 propensities, and other interactions are unilateral 

recognition only to nucleotide. Compared to the bilateral recognitions involved with 

other nucleotidesnP, there is a statistically significant weaker propensities for AnP : R 

(p = 3.5e-5). Fig. 3.9A-C shows some typical interactions found for nucleotidenP : R. 

2. CnP is preferably recognized by T / S / R / MC / K, in which CnP : T, CnP : S, CnP : R 

and CnP : S are bilateral recognitions, whereas CnP : MC is unilateral to nucleotide. 
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Compared to the bilateral recognitions involved with other nucleotidesnP, there is a 

statistically significant weaker propensities for CnP : Q (p = 0.0007).  

3. GnP is preferably recognized by T / S / R / Q / NH / NC / MC / K / E / D. All except CnP : 

MC recognize both amino acid and nucleotide types bilaterally. GnP : D and GnP : E 

interactions are uniquely enriched for GnP (p = 0.015 for GnP : D and p = 0.0006 for 

GnP : E). Fig. 3.9D-E illustrates typical sequence-specific interactions of GnP : D and 

GnP : E. 

4. UnP is preferably recognized by T / S / R / Q / N / MC / K / E / D. All except CnP : MC 

recognize both amino acid and nucleotide types bilaterally. UnP : N, in particular, is 

enriched compared with other nucleotide-Gln sequence-specific interactions (p = 

0.028). Fig. 3.9F demonstrates a representative interaction pattern of UnP : N.  

5. Surprisingly, GWC is the only paired nucleotideWC that have significantly greater 

propensity to be recognized by T, S, R, Q, N, K (p < 10-5). Examples of GWC-

recognition interaction are showed in Fig. 3.9G-H. 

 

Amino acids demonstrate distinctive propensities to be on or close to protein-RNA interface 

(Fig. 3.10). We can classify 20 amino acids into several groups based on their respective 

distance propensity profile.  (1) Non-aromatic, hydrophobic residues (Ala, Ile, Leu, Val), 

especially in helix or sheet forms, are strongly unfavorable to protein-RNA interface until 5Å. 

(2) Negatively charged residues (Asp and Glu) are unfavorable in any secondary structure 

state, even at 10Å. (3) Sulfur-containing residues (Cys and Met) slightly prefer the interface 

regions when they are in coil state, but disfavor when in helix or sheet state. (4) Hydrophobic 
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residues with carbon-only ring (Phe, Pro) have neutral preference to the interface when in coil 

state and slightly unfavorable in other states. (5) Gly has neutral preference at all states. (6) 

Neutral hydrophilic residues (Asn, Gln, Ser, Thr) in coil form slightly favor the interface, but 

neutral when in other forms. (7) Aromatic residues whose sidechains can be H-bond 

donor/acceptor (Tyr, Trp) strongly favor the interface when in coil state, but neutral in other 

states. (8) Positively-charged residues (His, Lys and Arg) significantly favor the protein-RNA 

interface in any states. In comparison, the distance potential for RNA nucleotides fail to show 

any significant difference between A, U, G, C and the potentials are always neutral at any 

distance (Fig. 3.11), indicating that the distance propensity for RNA nucleotides might be 

non-informative for RPI prediction.   
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Table 3.3. Statistics of protein amino acids in nrPR database. Secondary structure states 
were considered: H=helix, E=sheet, C=coil. The vdw interaction statistics for each residue 
type were not shown as it equals to the total number of interfacial residue. 
 
AA-ss Interface / total % Interface Mean dist. arom arom_l hy cpi hbr_2 hbr_1 hbp_2 hbp_1 bb_p bb_r salt 

A        9989 / 73833 13.53% 6.04 ± 5.48            
A-H      2873 / 31334 9.17% 6.42 ± 5.49 0 0 117 0 0 42 0 0 326 284 0 
A-E      812 / 9203 8.82% 5.97 ± 5.11 0 0 26 0 5 30 0 0 87 62 0 
A-C      6304 / 33296 18.93% 5.72 ± 5.55 0 0 343 0 7 214 0 0 1151 986 0 
                   

 
                                                                         

C        779 / 6927 11.25% 5.99 ± 5.43                                                                          
C-H      144 / 1892 7.61% 7.30 ± 5.41 0 0 0 0 0 13 1 15 11 13 0 
C-E      117 / 1682 6.96% 6.19 ± 5.23 0 0 0 0 0 3 0 14 6 17 0 
C-C      518 / 3353 15.45% 5.17 ± 5.40 0 0 0 0 4 32 11 91 44 110 0 
                   

 
                                                                         

D        4353 / 38901 11.19% 7.06 ± 5.69                                                                          
D-H      890 / 10020 8.88% 7.59 ± 5.67 0 10 0 0 7 40 23 203 36 210 0 
D-E      615 / 4918 12.51% 6.68 ± 5.39 0 0 0 0 10 81 9 177 20 115 0 
D-C      2848 / 23963 11.88% 6.92 ± 5.75 0 45 0 0 27 233 59 491 271 558 0 
               
E        5454 / 58839 9.27% 7.39 ± 5.65                                                                          
E-H      1670 / 23926 6.98% 7.78 ± 5.63 0 13 0 0 78 116 84 274 91 241 0 
E-E      889 / 8339 10.66% 6.94 ± 5.41 0 17 0 0 31 80 40 214 88 225 0 
E-C      2895 / 26574 10.89% 7.21 ± 5.73 0 23 0 0 21 160 48 420 288 561 0 
                   

 
                                                                         

F        4421 / 28797 15.35% 6.17 ± 5.47                                                                          
F-H      716 / 8617 8.31% 6.92 ± 5.48 102 0 0 0 0 5 0 0 27 22 0 
F-E      1147 / 7380 15.54% 5.90 ± 5.30 155 0 0 0 8 9 0 0 91 75 0 
F-C      2558 / 12800 19.98% 5.84 ± 5.52 210 0 0 0 8 24 0 0 165 133 0 
                   

 
                                                                         

G        13582 / 63588 21.36% 5.63 ± 5.73                                                                          
G-H      1438 / 7849 18.32% 5.88 ± 5.82 0 0 0 0 0 55 0 0 281 228 0 
G-E      1006 / 6958 14.46% 6.06 ± 5.50 0 0 0 0 2 8 0 0 139 129 0 
G-C      11138 / 48781 22.83% 5.53 ± 5.74 0 0 0 0 9 465 0 0 2554 2147 0 
                   

 
                                                                         

H        6454 / 18531 34.83% 4.59 ± 5.60                                                                          
H-H      1427 / 4884 29.22% 5.38 ± 5.89 82 0 0 0 0 43 5 357 49 356 0 
H-E      1125 / 3670 30.65% 4.82 ± 5.46 45 0 0 0 4 23 4 225 35 220 0 
H-C      3902 / 9977 39.11% 4.12 ± 5.45 240 0 0 0 2 192 27 807 337 934 0 
                   

 
                                                                         

I        5946 / 51161 11.62% 6.15 ± 5.40                                                                          
I-H      1415 / 15768 8.97% 6.47 ± 5.54 0 0 273 0 0 33 0 0 54 21 0 
I-E      1560 / 16466 9.47% 6.14 ± 5.23 0 0 215 0 12 37 0 0 145 111 0 
I-C      2971 / 18927 15.70% 5.91 ± 5.41 0 0 456 0 3 58 0 0 265 213 0 
                   

 
                                                                         

K        25285 / 73269 34.51% 4.86 ± 5.73                                                                          
K-H      5910 / 22622 26.13% 5.61 ± 5.89 0 0 0 29 107 558 672 2986 367 3188 2859 
K-E      3728 / 10347 36.03% 4.72 ± 5.45 0 0 0 17 43 296 340 1872 223 1962 1802 
K-C      15647 / 40300 38.83% 4.50 ± 5.68 0 0 0 67 111 1128 1665 7112 1484 8068 6966 
                   

 
                                                                         

L        7856 / 73356 10.71% 6.25 ± 5.36                                                                          
L-H      1963 / 30793 6.37% 6.68 ± 5.37 0 0 180 0 0 21 0 0 146 125 0 
L-E      1295 / 14028 9.23% 6.26 ± 5.10 0 0 203 0 4 12 0 0 83 67 0 
L-C      4598 / 28535 16.11% 5.81 ± 5.43 0 0 615 0 5 62 0 0 401 336 0 
                   

 
                                                                         

M        3110 / 17551 17.72% 6.10 ± 5.64                                                                          
M-H      737 / 6807 10.83% 6.82 ± 5.69 0 0 136 0 0 35 0 94 76 128 0 
M-E      380 / 2874 13.22% 5.90 ± 5.17 0 0 53 0 0 2 0 22 35 54 0 
M-C      1993 / 7870 25.32% 5.57 ± 5.70 0 0 478 0 24 172 0 204 436 480 0 
                   

 
                                                                         

N        7356 / 30214 24.35% 5.88 ± 5.89                                                                          
N-H      1860 / 8224 22.62% 6.06 ± 5.83 0 28 0 0 53 149 129 616 52 609 0 
N-E      643 / 3307 19.44% 6.48 ± 5.94 0 9 0 0 8 59 27 225 34 207 0 
N-C      4853 / 18683 25.98% 5.70 ± 5.90 0 64 0 0 33 344 191 1404 482 1586 0 
                   

 
                                                                         

P        6565 / 36190 18.14% 6.28 ± 5.82                                                                          
P-H      656 / 5018 13.07% 7.14 ± 5.86 0 0 59 0 0 3 0 0 30 27 0 
P-E      524 / 3728 14.06% 6.22 ± 5.30 0 0 144 0 0 5 0 0 82 77 0 
P-C      5385 / 27444 19.62% 6.14 ± 5.87 0 0 663 0 3 71 0 0 417 352 0 
                   

 
                                                                         

Q        6814 / 29162 23.37% 5.64 ± 5.70                                                                          
Q-H      1897 / 11007 17.23% 6.32 ± 5.71 0 15 0 0 45 253 135 693 84 662 0 
Q-E      1054 / 4282 24.61% 5.52 ± 5.52 0 16 0 0 41 108 87 302 67 335 0 
Q-C      3863 / 13873 27.85% 5.17 ± 5.70 0 91 0 0 36 277 175 1112 454 1314 0 
                   

 
                                                                         

R        30332 / 72257 41.98% 4.16 ± 5.58                                                                          
R-H      8508 / 23446 36.29% 4.74 ± 5.81 0 241 0 267 119 334 1554 3508 357 4345 4741 
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R-E      4678 / 11723 39.90% 4.09 ± 5.29 0 95 0 91 53 206 743 1713 231 2164 2293 
R-C      17146 / 37088 46.23% 3.83 ± 5.50 0 821 0 613 225 1013 2842 6502 1615 8271 8625 
                   

 
                                                                         

S        9482 / 40149 23.62% 5.94 ± 6.00                                                                          
S-H      1948 / 10576 18.42% 6.71 ± 6.08 0 0 0 0 21 217 136 826 229 837 0 
S-E      1053 / 5872 17.93% 6.36 ± 5.73 0 0 0 0 19 113 67 424 50 403 0 
S-C      6481 / 23701 27.34% 5.51 ± 5.99 0 0 0 0 142 676 443 2436 1032 2633 0 
                   

 
                                                                         

T        9265 / 41581 22.28% 5.65 ± 5.69                                                                          
T-H      1356 / 8832 15.35% 6.65 ± 5.88 0 0 0 0 6 115 64 558 146 566 0 
T-E      1993 / 10204 19.53% 5.62 ± 5.35 0 0 0 0 61 114 114 573 240 691 0 
T-C      5916 / 22545 26.24% 5.30 ± 5.73 0 0 0 0 89 478 349 2019 802 2268 0 
                   

 
                                                                         

V        7860 / 70838 11.10% 5.99 ± 5.22                                                                          
V-H      1179 / 16774 7.03% 6.42 ± 5.34 0 0 133 0 0 12 0 0 69 57 0 
V-E      2053 / 25822 7.95% 5.99 ± 4.93 0 0 109 0 13 26 0 0 168 131 0 
V-C      4628 / 28242 16.39% 5.74 ± 5.40 0 0 492 0 2 37 0 0 474 440 0 
                   

 
                                                                         

W        1602 / 6505 24.63% 5.54 ± 5.61                                                                          
W-H      362 / 2282 15.86% 6.41 ± 5.74 54 0 0 0 0 5 3 46 12 51 0 
W-E      277 / 1417 19.55% 5.88 ± 5.49 26 0 0 0 0 13 5 57 11 62 0 
W-C      963 / 2806 34.32% 4.71 ± 5.45 141 0 0 0 0 15 2 134 136 231 0 
                   

 
                                                                         

Y        6220 / 24749 25.13% 5.44 ± 5.70                                                                          
Y-H      1305 / 7706 16.93% 6.55 ± 5.87 134 0 0 0 2 50 36 444 35 470 0 
Y-E      1590 / 6648 23.92% 5.45 ± 5.49 159 0 0 0 4 105 69 557 57 599 0 
Y-C      3325 / 10395 31.99% 4.67 ± 5.58 242 0 0 0 3 110 86 890 175 988 0 
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Table 3.4. Statistics of RNA nucleotides in nrPR database. Secondary structure states were 
considered: WC=Watson-Crick or GU wobble base pair, nP=other noncanonical base pair or 
no base pair. The vdw interaction statistics for each residue type were not shown as it equals 
to the total number of interfacial residue. 
 
NA-ss Interface / total % Interface Mean dist. arom arom_l hy cpi hbr_2 hbr_1 hbp_2 hbp_1 bb_p bb_r salt 

A       38140 / 2070177 1.84% 9.27 ±6.54            
A-WC    8437 / 442783 1.91% 9.05 ±6.54 14 33 131 26 7 320 536 2270 933 3157 1752 
A-nP    29703 / 1627394 1.83% 9.32 ±6.54 694 485 1603 414 183 1362 1755 7185 2828 9452 5911 
                                                                                                    
U       27533 / 1570531 1.75% 9.16 ±6.50                                                                                 
U-WC    11438 / 678220 1.69% 9.14 ±6.51 11 51 78 46 12 479 751 3187 1356 4407 2663 
U-nP    16095 / 892311 1.80% 9.18 ±6.50 308 262 936 181 169 1437 1020 4655 1840 5480 3435 
                                                                                                    
G       48756 / 2810137 1.74% 9.11 ±6.47                                                                                 
G-WC    30060 / 1744408 1.72% 9.07 ±6.45 94 138 496 49 311 2034 1975 8429 3661 10876 6643 
G-nP    18696 / 1065729 1.75% 9.19 ±6.50 326 392 919 258 538 1861 1548 5534 1808 6201 4194 
                                                                                                    
C       36535 / 2082378 1.75% 9.12 ±6.46                                                                                 
C-WC    25852 / 1509379 1.71% 9.13 ±6.49 33 69 175 37 6 673 1786 7624 2674 10315 6659 
C-nP    10683 / 572999 1.86% 9.08 ±6.40 217 124 620 97 272 1000 909 3184 1204 3724 2356 
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Fig. 3.6. Percentage of interfacial protein residue with different secondary structure 
states. The boxplot was generated by ggplot2 library in R statistical package. 
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Fig. 3.7. Heat map of interaction potentials for protein or RNA residues. (A) amino acids in 
different secondary structure states. (B) nucleotides in different secondary structure states. 
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Fig. 3.8. Heat map of interaction potentials between protein-RNA residues.  
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Fig. 3.9. Representative bilateral sequence-recognition interaction on protein-
RNA interface. Intermolecular H-bonds are displayed as yellow dashes. 
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Fig. 3.10. Distance potentials for protein residues. The amino acids are sorted in a rough 
ascending order according to overall preferences to protein-RNA interface (most disfavored 
to most favored). 
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Fig. 3.11. Distance potentials for RNA nucleotides. Unlike those for amino acids, 
nucleotides are not sorted due to insignificant difference among groups. 
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3.3.3 Performance evaluation of RPIT 

The conventional way of evaluating the robustness of a classifier is through leave-one-out or 

leave-group-out cross validation. However, due to the sparseness of protein profile in the 

training set (protein profile is heavily clustered due to the lack of mutagenesis data), these 

cross validation strategies could be unreasonably biased. Actually, we found that the 

classification metrics (e.g., sensitivity, specificity, PPV, NPV, ROC AUC, etc.) were way 

above 95% if 10-fold or 20-fold stratified cross validation was performed, even using 

different classifiers (data not shown). Instead, we assessed the robustness of model by leave-

protein-out cross-validation (LPOCV). As a result, the random forest classifier (RPIT-RF) and 

quadratic discriminant analysis classifier (RPIT-QDA) outperformed other methods in terms 

of their outstanding ROC AUCs (AUCRPIT-RF = 0.93, AUCRPIT-QDA = 0.93) (Table 3.5 and Fig. 

3.12A). In particular, LPOCV of RPIT-RF resulted in outstanding predictive metrics 

(sensitivity = 0.89, specificity = 0.84, MCC = 0.69). Removal of any attributes from RPIT-RF 

(either protein, RNA or interface term) compromised the LPOCV performance (Fig. 3.12B), 

indicating that the interface threading score carry relevant information to make reasonable 

RPI predictions. Furthermore, random forest classifier using only protein and RNA sequence 

identity information predict significantly worse than the RPIT-RF (Fig. 3.12B), indicating 

that the naïve assumption that interfaces with similar protein/RNA sequences have similar 

binding response is not applicable here. Y-randomization abolished the predictive ability, 

which implied that the model was not generated by chance (Fig. 3.12B). Similar trends could 

also be observed for RPIT-QDA in LPOCV (Fig. 3.12C). 
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Then we validated our RPIT-RF and RPIT-QDA classifiers with an independent external test 

set, comprising of 11709 known yeast mRNA-protein interaction pairs and 4709 negative 

pairs generated with data shuffling. Similar to LPOCV results, PRIT-RF achieved the best 

performance with respect to ROC AUC (AUC = 0.71) (Table 3.5). In comparison, other 

method, except AdaBoost (another ensemble classifier), received ROC AUC close to 0.5 (Fig. 

3.13A and Table 3.5), which indicates the low predictive capabilities for QDA, LDA, KNN 

and Naïve Bayes. Notably, we observed that most classifiers, including RPIT-RF, obtained 

much better performances in sensitivity than specificity. This is probably due to the fact that 

the negative set we used for external validation is originated from data shuffling, and the 

probability of have false negative pair can be significant. In addition, removal of any 

attributes (protein/RNA/interface) or using only sequence identity information as features 

could dramatically compromise ROC AUCs (AUCΔProtein = 0.45, AUCΔRNA = 0.51, 

AUCΔInterface = 0.59), as shown in Fig. 3.13B. Consistent to the observation from LPOCV, 

random forest classifier fed with protein and RNA sequence identity information predicted 

RPI no better than Y-randomization in this validation (AUCSeqIden = 0.51) (Fig. 3.13B). 

 

To further validate our model in a more unbiased manner, we evaluated RPIT-RF on 42 most 

recent discoveries of miRNA-protein interactions (Table 3.2). Here the ROC AUC metric 

may not achieve enough statistical power due to the small size of this dataset. We herein only 

reported the overall accuracy. The predictive accuracy of RPIT-RF is 71.5%, which is 

superior to that of RPISeq-RF (accuracy = 56.1%) and RPISeq-SVM (accuracy = 63.4%). 

Although more aggressive validation is indeed needed, this validation set showed a proof-of-
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principle that RPIT-RF can be used for prioritizing novel miRNA-protein interaction by 

virtual screening. 
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Table 3.5 Performance of different classifiers in protein-RNA interface threading.  The 
training set was validated by leave-protein-out cross-validation, and we validated classifiers 
based on an external test set. 
 

 

 

 

 

 RF QDA AdaBoost LDA kNN NaïveBayes 

Tr
ai

ni
ng

 S
et

 

Sensitivity 0.89 0.89 0.77 0.68 0.68 0.91 
Specificity 0.84 0.67 0.86 0.86 0.86 0.64 
PPV 0.72 0.56 0.72 0.70 0.69 0.54 
NPV 0.94 0.93 0.89 0.85 0.85 0.94 
F1 0.79 0.69 0.74 0.69 0.68 0.67 
MCC 0.69 0.52 0.62 0.55 0.54 0.51 
Accuracy 0.86 0.74 0.83 0.81 0.80 0.72 
ROC AUC 0.93 0.86 0.89 0.85 0.83 0.83 

 

Te
st

 S
et

 

Sensitivity 0.79 0.82 0.75 0.33 0.41 0.84 
Specificity 0.49 0.18 0.35 0.61 0.53 0.14 
PPV 0.79 0.71 0.74 0.68 0.68 0.71 
NPV 0.48 0.29 0.36 0.27 0.27 0.26 
F1 0.79 0.76 0.75 0.45 0.51 0.77 
MCC 0.28 0.00 0.10 -0.05 -0.05 -0.03 
Accuracy 0.70 0.63 0.64 0.41 0.44 0.64 
ROC AUC 0.71 0.48 0.61 0.47 0.46 0.49 
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Fig. 3.12. ROCs in LPOCV. (A) Comparison of different classifiers. The grey dashed 
lines indicates the random prediction. (B) Comparison of random forest classifiers 
with/without critical interface threading attributes (protein/RNA/interface), using only 
sequence identities, and Y-randomization. (C) Comparison of QDA classifiers 
with/without critical interface threading attributes (protein/RNA/interface), using only 
sequence identities, and from Y-randomization. 
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Fig. 3.13. ROCs in external validation. (A) Comparison of different classifiers. The grey 
dashed lines indicates the random prediction. (B) Comparison of random forest classifiers 
with/without critical interface threading attributes (protein/RNA/interface), using only 
sequence identities, and from Y-randomization.  
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3.5 Discussion 

Computational modeling of RPI primarily concentrated on the identification of interface 

residue (or nucleotide) that is likely to bind nucleotide (or protein residue) (see [99] for 

complete review). In contrast, the “interaction pair prediction problem” is largely overlooked. 

Despite the recent advancement of experimental high-throughput screening technology (e.g., 

PAR-CLIP [100], RIP-Chip [101], RNAcompete [102], HITS-CLIP [103]) which shed new 

light on RPI network, computational method that predict RPI network is still in the “budding 

stage”. As we have discussed in the introduction, either sequence-based or structure-based 

method has its respective advantages and limitations. Taking the challenge to balance the 

model robustness (drawback of structure-based method) and noise tolerance capacity 

(drawback of sequence-based method), in this chapter we implemented an interface threading 

pipeline, called RPIT, for in silico prediction of RNA-protein interactions (RPI) using a 

reference RNA-protein interface as template and in-house developed statistical scoring 

functions. Compared with template-free, sequence-based method, interface threading restrains 

the alignment and scoring to only those residues which are most likely to be involved in the 

RPI. Compared with structure-based method, RPIT is independent of the 3D structure 

information and is more robust when the sequence homology is so low that hampers the 

prediction of tertiary structure. On the whole, our results showed encouraging accuracy (70%-

80%), which is comparable to that of RPISeq (78% for RPISeq-RF and 65% for RPISeq-SVM) 

and Pancaldi and Bähler et al.’s, accuracy = 70%. Furthermore, RPIT-RF is more robust due 

to a significantly reduction of features (9-feature vector) compared to RPISeq which used 599 

conjoint triad features, and Pancaldi and Bähler et al.’s which utilized 100 different features 
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(including mRNA half-life, predicted secondary structure, GO annotation, amino acid 

composition, codon bias, etc.) which is often unavailable in many cases. Third, two 

independent validations have suggested that RPIT-RF is valuable for predicting and analyzing 

regulatory RPI networks.  
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Chapter 4: Summary and future directions 

4.1 Summary of three-step virtual screening and its application 

In Chapter 2.3, we have benchmarked and compared the possibility of translating 5 docking 

software and 11 scoring functions to RNA-ligand docking and virtual screening using the 

largest-ever RNA-ligand complex structure dataset and RNA-ligand binding affinity dataset. 

Comprehensive statistical analyses have been applied to assess the performance in various 

aspects: pose reproduction, pose ranking, score-RMSD correlation, and virtual screening 

enrichment. From this benchmark, we have successfully identified the best combinations for 

RNA virtual screening: rDock:rDock_solv – ASP rescoring – iMDLScore2 second rescoring 

for flat, open and flexible binding sites of RNAs, while GOLD:GOLD Fitness – ASP 

rescoring – rDock_solv second rescoring could be more appropriate for solvent inaccessible 

and rigid RNA targets, as demonstrated by Fig. 2.9. 

 

GA:UU tandem mismatch is a conserved RNA motif frequently found in bacteria rRNA. 

Using the three-step docking/scoring scheme for structure-based drug design that we have 

developed in Chapter 2.3, we have successfully identified compound 423 that demonstrates 

specific binding to RNAs at GA:UU internal loop. Both 1D and 2D NMR spectra proved that 

compound 423 interacts with G-A sheared base pair meanwhile disrupts the hydrogen 

bonding between U-U. As expected, the base pairs flexibility, especially from the GA side, 

contributes to the binding specificity. Ultimately, SAR analysis shows that any R-group 

substitution will abolish its binding to GA:UU motif.   
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4.2 Summary of RPIT implementation 

In Chapter 3, we have implemented an interface threading scheme, called RPIT, for accurate 

prediction of RNA-protein interaction partner using sequences as input. Interface threading 

circumvents the pitfalls of pure sequence-based or structure-based methods, but identifies and 

references a known RNA-protein interface as template to make inferences on the region 

where the interaction occurs, and predict the interacting propensity based on the interface 

profiles. Briefly, we generated the template database and five statistical scoring functions 

from our unique collection of 5,471 non-redundant protein-RNA pairs (nrPR) from PDB 

database. The statistical scoring functions evaluate the protein-binding propensity, RNA-

binding propensity and RNA-protein binding complementarity as a function of residue type or 

distance to interface. The interface threading algorithm takes into consideration the residue 

types, secondary structure state, distance to interface residue, interaction types, and statistical 

correction for nonspecific interaction while performing alignment. Upon evaluation, RPIT 

random forest classifier (RPIT-RF) achieved the best performance in leave-protein-out cross-

validation (AUCRPIT-RF = 0.93, MCC = 0.69) and independent external validation using RPI 

from yeast (AUCRPIT-RF = 0.71, MCC = 0.28). These predictions were significantly better than 

that baseline model generated with Y-randomization or sequence identity attributes. The 

attributes of the classifier (protein, RNA or interface profile), moreover, showed reasonable 

contributions and removal any of them significantly impair the predictive ability. Compared 

with RPISeq method, RPIT-RF achieved comparable accuracy in yeast validation set (~70% 

accuracy) and superior accuracy in miRNA-protein interaction validation set (71% accuracy).  
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4.3 Future directions in modeling RNA-small molecule interactions 

Accurate scoring remains a great challenge in vHTS, even for protein target. When 

optimizing RNA-ligand scoring function, we observed that distal mutation may significantly 

affect the binding affinity in RNA system. For instance, the mutations on three distal base 

pairs on SAM-I riboswitch (PDB ID: 3GX7) decrease the binding affinity by 300 fold but 

cause minimal changes in the binding modes of SAM (RMSD < 0.5Å). Current scoring 

functions are incapable of estimating free energy due to the thermodynamic changes of RNA 

structure. Therefore, future works are still needed to derive RNA-specific atom typing [24], 

intermolecular potential [104, 105] and nucleotide rotamer library for flexible docking. 

Docking small molecule to flexible RNA, in particular, is considered more challenging due to 

the lack of rotamer libraries. Current docking methods model the flexible RNA by soft 

potentials [106], structural ensembles [6], or doing post-docking local optimization [27]. The 

generation of RNA ensemble has led to a great success in developing specific inhibitor target 

HIV-1 TAR RNA; however, the performance of RNA ensemble docking varies on targets, 

scoring functions and other factors, and virtual screening performance may not be improved 

when flexibility is introduced [107]. Thus, exploration of flexible RNA docking and scoring 

will be one of the future directions of our research, which may be realized by incorporating 

NMR RDC restraints into the scoring function. 

 

In this thesis, three-step virtual screening pipeline has been successfully applied to a disease-

related RNA motif, GA:UU tandem mismatch. To this end, we have identified a small-

molecule 423 that specifically recognizes GA:UU motif, validated by 1D and 2D NMR 
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spectra. According to NMR structures we determined, the unbound-GA:UU motif flanked by 

GC and AU base pairs shows sheared GA noncanonical base pair and UU is paired thru two 

internucleotide H-bonds. In another NMR model (PDB ID: 2JSE [67]), however, the H-bonds 

between UU are absent if GA:UU motif is flanked by two GC Watson-Crick base pairs. This 

indicates that the GA:UU motif is intrinsically thermodynamically unstable, and can be easily 

perturbed by surrounding nucleotides, as well as small molecules. Based on 1D and 2D NMR 

spectra, compound 423 is able to perturb the UU base pair and but binds primarily to U7 and 

G8 region. Surprisingly enough, the base pair stability of UU or next to UU side failed to 

infer any variation of binding, but the base pair stability at GA side inversely correlates the 

binding (tandem AU base pair > AU+GC > GC+AU). This specificity of RNA context fits the 

3D model generated by MD simulation, in which the benzothiazole ring stacks on A21 and 

the amine group form interaction with the AU base pair adjacent to G8:A21 base pair, not UU 

base pair. However, this model failed to provide direct evidence to explain the destabilizing 

of UU base pair. We speculated that the weaker peak from UU base pair is because of the 

enhancement of the exchange rate of uridine imino hydrogen atom with the solvent since GA 

base pair is propelled. As the mechanism of 423 being selective to GA:UA:AU context still 

remains unclear, lead optimization and more SAR studies are currently undergoing and more 

2D and 3D structural information are being collected to determine more molecular 

mechanisms of its specificity. Meanwhile, we are designing more RNA vairants (e.g., GA:CC 

motif) to further investigate binding motif more thoroughly. If necessary, compound 423 or 

its derivatives can be designed as a molecular probe to quantify the GA:UU RNA expression 
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in a cellular system, or to study the thermodynamic stability of a new RNA motif tagged with 

GA:UU motif. 

 

4.4 Future directions in modeling RNA-protein interactions 

As a prototyping implementation, one of the central assumptions is that the interface and the 

interaction type are generally inheritable from its homologous template. This has inevitably 

simplified the interface threading problem because (i) RPI interface can be assembled by 

discontinued fragments such that they might have different order in the target and the 

template; (2) the confidence of interface threading can be greatly compromised if no 

threading template could be identified; (3) homologous interfaces may not have the identical 

interaction profile. 

 

The limitation (1) could be partially mitigated by using the across-family templates, which 

flattens the scoring function by only considering the convergently evolved interface motifs, as 

did by iWARP [85]. As RPIT by nature is a template-based method, the limitation (2) is so far 

infeasible to address without a consensus strategy, that is, to combine the template-free, de 

novo scoring scheme or classifiers for consensus prediction. In fact, the conventional 

definition of “template” (<30% sequence identity) need expansion under this circumstance. 

RPIT has employed the best algorithms to date that greatly overcome the “twilight zone” of 

sequence identities in template-based homology modeling (30%). Based on our evaluation, 

the sequence identity demonstrated minimal contribution to RPI prediction compared with 

random guessing (Fig. 3.13 and Fig. 3.14), which further indicates that sequence homology 
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may be less informative than fold homology. In fact, if we could segment the entire RPI 

interface into modular motifs or networks (as we proposed when discussing limitation (1)), 

the common issue of “lack of homologous template” in template-based modeling may be 

significantly mitigated. Finally, we may address the 3rd limitation by across-family interaction 

network analysis, which aims to derive a feasible probabilistic model to make inferences on 

preferable interaction types and interactive residues in that sub-chemical environment. 

 

The second pitfall of RPIT is that, as we discussed in the Chapter 4.3, current implementation 

is unable to account for the thermodynamic changes by distal mutations. Actually, the 

underlying assumption of interface threading is that distal residue is generally less 

informative than the residue that is closer to the interface when one predicts the binding. 

Making such assumption simplifies the model, however, sacrificed the situation that the 

mutations that destabilize the integrity of macromolecule (especially protein) may 

significantly affect the binding affinity. More specifically, in the current RPIT implementation, 

solvent accessible surface area (SASA) is not yet considered due to lack of biophysical model 

to estimate the SASA of target interface, and when gap is presented. Based on the previous 

study of RNA-protein interface, SASA is indeed a unique characteristic in RNA-protein 

interface compared with that for protein-protein interface or protein-DNA interface [51]. 

More theoretical models which confers the template SASA to RNA-protein interface whose 

SASA information is absent is aggressively needed for further optimization. Another aspect 

of future work is to account for the thermodynamic contributions, which may involve the 

incorporation of pre-calculated residue flexibility profile or NMR restraints. 
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As a subsequent validation, we would like to examine the effectiveness of RPIT-RF for 

discovery of novel miRNA-protein interaction. We are interested in discovering novel RPI 

from human kinome and miRNAome. The hypothesis underlying this discovery-oriented 

study is based on the finding of an RNA aptamer in complex with Bos taurus G protein-

coupled receptor kinase 2 (GRK2) [108], and we speculated that the precursor miRNAs is 

likely to function as endogenous inhibitor of protein kinase. To benchmark the speed of RPIT, 

we have prioritized several promising miRNA-kinase interaction from randomly generated 

825,600 pairs within 48 hours, and the follow-up experimental validation is ongoing. We are 

hoping to identify paradigm-shift function of miRNA for better understanding of disease 

related miRNA regulatory network in the near future. 
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Appendix 

Appendix 1-2 is based upon and reprinted with permission from Chen L, Calin GA, Zhang S. 

Novel insights of structure-based modeling for RNA-targeted drug discovery. J Chem Inf 

Model. Oct 22 2012;52(10):2741-2753. Copyright© 2012 American Chemical Society. 

 

1. Docking parameters 

GOLD 5.0.1 (CCDC): For docking and virtual screening, default parameters were set for 

GOLD Fitness, ChemScore and ASP scores. "Allow early termination" and soft potentials 

were turned off, and 200% search efficiency was employed to allow maximal exploration of 

ligand conformation. We used 20 genetic algorithm (GA) runs with internal energy offset. For 

pose reproduction analysis, the radius of the binding pocket was set as the maximal atomic 

distance from the geometrical center of the ligand plus 3Å. The top 10 ranked docking poses 

were retained for the 3D cumulative success rate analysis, cross-docking, and virtual 

screening studies. To perform the native pose ranking and RMSD-score correlation study, we 

found that the GOLD:GOLD Fitness combination with 100 population and 1000 maxops 

could help us obtain high diversity and quality of the conformational decoys. Therefore, 

GOLD:GOLD Fitness was employed to generate 100 conformational decoys for each target. 

Rescoring was conducted with the GOLD rescore option, in which poses would be optimized 

by the program. 

 

Glide 5.6 (Schrödinger): Default parameters were employed for both Glide standard precision 

(SP) and extra precision (XP) docking. Both GlideScore and Emodel score were evaluated. 
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Multiple starting conformations were prepared with LigPrep2.0. The binding site was defined 

as a box centered on the geometrical center of the bound ligand with each length equivalent to 

the maximal atomic distance from the center of the ligand plus 3Å. Flexible hydroxyl groups 

involved in the ligand binding were selected. The ligand internal energy offset option was 

turned on. The top 10 ranked poses were minimized and retained. Rescoring was performed 

by choosing "Refine (do not dock)" option. The decoys with no valid poses after 

minimization were excluded in RMSD-score correlation analysis, but included in other 

evaluations as bad poses (GlideScore or Emodel=10000).  

 

Surflex 2.415 (Tripos): The binding pockets were defined by the area around the 

experimentally determined ligand structure. The protomol_bloat=5 was set for pocket 

identification. We used 4 additional starting poses and explored the best spin density 

parameter using 3, 5 and 10. Self_scoring option was turned on. We kept 10 final poses for 

analysis, and rescoring was performed by "-opt" flag. 

 

rDock 2006.2: Radius of binding pocket was maximal atomic distance from the geometrical 

center of the ligand plus 3Å, and site searching scoring function was RbtCavityGridSF. 

Default parameters from “dock.prm” (standard scoring function) and “dock_solv.prm” 

(scoring function with solvation term) were used for scoring. We performed 200 separate runs 

for each docking exercise in order to cover enough conformational space. Top 10 ranked 

poses were retained. Rescoring was performed using the parameter in “minimise.prm” and 

“minimize_solv.prm” for rescoring with and without the solvation term, respectively.  
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AutoDock 4.1: The definition of grid box was the same as that of Glide with 0.2Å grid 

spacing. Lamarckian Genetic Algorithm (LGA) was used to perform 100 GA runs. Other 

parameters, such as 200 individuals in populations, 500,000 maximum energy evaluations, 

and 30,000 maximum generations were employed for LGA. The top 10 clusters were retained 

for analysis. Rescoring was performed using AutoDockTools4 using optimized parameters. 

 

2. Volume under the surface (VUS) calculation 

VUS were estimated as the sum of the volume of all triangular prism units under the surface, 

therefore 

_( )triangular prismVUS V=∑   

The volume of each triangular prism unit (Vtriangular prism) was calculated by the following 

equation. Each triangular prism unit was broken down into a tetrahedron (V1) and a tetragonal 

pyramid (V2), as illustrated below. Z1, Z2 and Z3 were the Z coordinates of triangle vertices on 

the 3D cumulative success rate surface, and we assume Z1 ≤ Z2 ≤ Z3. Thus,  

_ 1 2

2 3
1

1 2 3

1 1( 1 0.5 ) ( 1 0.5)
6 3 2
1 ( )

12

triangular prismV V V
Z ZZ

Z Z Z

= +

+
= × × × + × × ×

= + +

  



122 
 

 
  



123 
 

Bibliography 

[1] Q. Chen, R.H. Shafer, I.D. Kuntz, Structure-based discovery of ligands targeted to the 

RNA double helix, Biochemistry, 36 (1997) 11402-11407. 

[2] N. Foloppe, I.J. Chen, B. Davis, A. Hold, D. Morley, R. Howes, A structure-based 

strategy to identify new molecular scaffolds targeting the bacterial ribosomal A-site, Bioorg 

Med Chem, 12 (2004) 935-947. 

[3] Y. Zhou, V.E. Gregor, B.K. Ayida, G.C. Winters, Z. Sun, D. Murphy, G. Haley, D. 

Bailey, J.M. Froelich, S. Fish, S.E. Webber, T. Hermann, D. Wall, Synthesis and SAR of 3,5-

diamino-piperidine derivatives: novel antibacterial translation inhibitors as aminoglycoside 

mimetics, Bioorg Med Chem Lett, 17 (2007) 1206-1210. 

[4] Z. Du, K.E. Lind, T.L. James, Structure of TAR RNA complexed with a Tat-TAR 

interaction nanomolar inhibitor that was identified by computational screening, Chem Biol, 9 

(2002) 707-712. 

[5] A.V. Filikov, V. Mohan, T.A. Vickers, R.H. Griffey, P.D. Cook, R.A. Abagyan, T.L. 

James, Identification of ligands for RNA targets via structure-based virtual screening: HIV-1 

TAR, J Comput Aided Mol Des, 14 (2000) 593-610. 

[6] A.C. Stelzer, A.T. Frank, J.D. Kratz, M.D. Swanson, M.J. Gonzalez-Hernandez, J. Lee, I. 

Andricioaei, D.M. Markovitz, H.M. Al-Hashimi, Discovery of selective bioactive small 

molecules by targeting an RNA dynamic ensemble, Nat Chem Biol, 7 (2011) 553-559. 

[7] K.F. Blount, J.X. Wang, J. Lim, N. Sudarsan, R.R. Breaker, Antibacterial lysine analogs 

that target lysine riboswitches, Nat Chem Biol, 3 (2007) 44-49. 



124 
 

[8] P. Daldrop, F.E. Reyes, D.A. Robinson, C.M. Hammond, D.M. Lilley, R.T. Batey, R. 

Brenk, Novel ligands for a purine riboswitch discovered by RNA-ligand docking, Chem Biol, 

18 (2011) 324-335. 

[9] J. Mulhbacher, E. Brouillette, M. Allard, L.C. Fortier, F. Malouin, D.A. Lafontaine, Novel 

riboswitch ligand analogs as selective inhibitors of guanine-related metabolic pathways, PLoS 

Pathog, 6 (2010) e1000865. 

[10] A. Pushechnikov, M.M. Lee, J.L. Childs-Disney, K. Sobczak, J.M. French, C.A. 

Thornton, M.D. Disney, Rational design of ligands targeting triplet repeating transcripts that 

cause RNA dominant disease: application to myotonic muscular dystrophy type 1 and 

spinocerebellar ataxia type 3, J Am Chem Soc, 131 (2009) 9767-9779. 

[11] J.F. Arambula, S.R. Ramisetty, A.M. Baranger, S.C. Zimmerman, A simple ligand that 

selectively targets CUG trinucleotide repeats and inhibits MBNL protein binding, Proc Natl 

Acad Sci U S A, 106 (2009) 16068-16073. 

[12] C.H. Wong, Y. Fu, S.R. Ramisetty, A.M. Baranger, S.C. Zimmerman, Selective 

inhibition of MBNL1-CCUG interaction by small molecules toward potential therapeutic 

agents for myotonic dystrophy type 2 (DM2), Nucleic Acids Res, 39 (2011) 8881-8890. 

[13] D.D. Young, C.M. Connelly, C. Grohmann, A. Deiters, Small molecule modifiers of 

microRNA miR-122 function for the treatment of hepatitis C virus infection and 

hepatocellular carcinoma, J Am Chem Soc, 132 (2010) 7976-7981. 

[14] K. Gumireddy, D.D. Young, X. Xiong, J.B. Hogenesch, Q. Huang, A. Deiters, Small-

molecule inhibitors of microrna miR-21 function, Angew Chem Int Ed Engl, 47 (2008) 7482-

7484. 



125 
 

[15] J. Parsons, M.P. Castaldi, S. Dutta, S.M. Dibrov, D.L. Wyles, T. Hermann, 

Conformational inhibition of the hepatitis C virus internal ribosome entry site RNA, Nat 

Chem Biol, 5 (2009) 823-825. 

[16] P.P. Seth, A. Miyaji, E.A. Jefferson, K.A. Sannes-Lowery, S.A. Osgood, S.S. Propp, R. 

Ranken, C. Massire, R. Sampath, D.J. Ecker, E.E. Swayze, R.H. Griffey, SAR by MS: 

discovery of a new class of RNA-binding small molecules for the hepatitis C virus: internal 

ribosome entry site IIA subdomain, J Med Chem, 48 (2005) 7099-7102. 

[17] A.C. Good, S.R. Krystek, J.S. Mason, High-throughput and virtual screening: core lead 

discovery technologies move towards integration, Drug discovery today, 5 (2000) 61-69. 

[18] L. Chen, J.K. Morrow, H.T. Tran, S.S. Phatak, L. Du-Cuny, S. Zhang, From laptop to 

benchtop to bedside: structure-based drug design on protein targets, Current pharmaceutical 

design, 18 (2012) 1217-1239. 

[19] G.M. Morris, M. Lim-Wilby, Molecular docking, Methods in molecular biology, 443 

(2008) 365-382. 

[20] Y. Li, J. Shen, X. Sun, W. Li, G. Liu, Y. Tang, Accuracy assessment of protein-based 

docking programs against RNA targets, J Chem Inf Model, 50 (2010) 1134-1146. 

[21] C. Detering, G. Varani, Validation of automated docking programs for docking and 

database screening against RNA drug targets, Journal of medicinal chemistry, 47 (2004) 

4188-4201. 

[22] N. Moitessier, E. Westhof, S. Hanessian, Docking of aminoglycosides to hydrated and 

flexible RNA, Journal of medicinal chemistry, 49 (2006) 1023-1033. 



126 
 

[23] P.T. Lang, S.R. Brozell, S. Mukherjee, E.F. Pettersen, E.C. Meng, V. Thomas, R.C. 

Rizzo, D.A. Case, T.L. James, I.D. Kuntz, DOCK 6: combining techniques to model RNA-

small molecule complexes, Rna, 15 (2009) 1219-1230. 

[24] S.D. Morley, M. Afshar, Validation of an empirical RNA-ligand scoring function for fast 

flexible docking using Ribodock, Journal of computer-aided molecular design, 18 (2004) 189-

208. 

[25] I.G. Pinto, C. Guilbert, N.B. Ulyanov, J. Stearns, T.L. James, Discovery of ligands for a 

novel target, the human telomerase RNA, based on flexible-target virtual screening and NMR, 

J Med Chem, 51 (2008) 7205-7215. 

[26] P. Pfeffer, H. Gohlke, DrugScoreRNA--knowledge-based scoring function to predict 

RNA-ligand interactions, J Chem Inf Model, 47 (2007) 1868-1876. 

[27] C. Guilbert, T.L. James, Docking to RNA via root-mean-square-deviation-driven energy 

minimization with flexible ligands and flexible targets, J Chem Inf Model, 48 (2008) 1257-

1268. 

[28] K.E. Lind, Z. Du, K. Fujinaga, B.M. Peterlin, T.L. James, Structure-based computational 

database screening, in vitro assay, and NMR assessment of compounds that target TAR RNA, 

Chem Biol, 9 (2002) 185-193. 

[29] N. Foloppe, N. Matassova, F. Aboul-Ela, Towards the discovery of drug-like RNA 

ligands?, Drug discovery today, 11 (2006) 1019-1027. 

[30] T. Glisovic, J.L. Bachorik, J. Yong, G. Dreyfuss, RNA-binding proteins and post-

transcriptional gene regulation, FEBS Lett, 582 (2008) 1977-1986. 



127 
 

[31] J.T. Kung, D. Colognori, J.T. Lee, Long noncoding RNAs: past, present, and future, 

Genetics, 193 (2013) 651-669. 

[32] J.E. Wilusz, H. Sunwoo, D.L. Spector, Long noncoding RNAs: functional surprises from 

the RNA world, Genes & development, 23 (2009) 1494-1504. 

[33] A.M. Eiring, J.G. Harb, P. Neviani, C. Garton, J.J. Oaks, R. Spizzo, S. Liu, S. Schwind, 

R. Santhanam, C.J. Hickey, H. Becker, J.C. Chandler, R. Andino, J. Cortes, P. Hokland, C.S. 

Huettner, R. Bhatia, D.C. Roy, S.A. Liebhaber, M.A. Caligiuri, G. Marcucci, R. Garzon, C.M. 

Croce, G.A. Calin, D. Perrotti, miR-328 functions as an RNA decoy to modulate hnRNP E2 

regulation of mRNA translation in leukemic blasts, Cell, 140 (2010) 652-665. 

[34] M.Y. Balkhi, O.H. Iwenofu, N. Bakkar, K.J. Ladner, D.S. Chandler, P.J. Houghton, C.A. 

London, W. Kraybill, D. Perrotti, C.M. Croce, C. Keller, D.C. Guttridge, miR-29 acts as a 

decoy in sarcomas to protect the tumor suppressor A20 mRNA from degradation by HuR, 

Science signaling, 6 (2013) ra63. 

[35] X. Chen, H. Liang, J. Zhang, K. Zen, C.Y. Zhang, microRNAs are ligands of Toll-like 

receptors, Rna, 19 (2013) 737-739. 

[36] M. Fabbri, A. Paone, F. Calore, R. Galli, C.M. Croce, A new role for microRNAs, as 

ligands of Toll-like receptors, RNA biology, 10 (2013) 169-174. 

[37] S. Guil, J.F. Caceres, The multifunctional RNA-binding protein hnRNP A1 is required 

for processing of miR-18a, Nat Struct Mol Biol, 14 (2007) 591-596. 

[38] G. Michlewski, J.F. Caceres, Antagonistic role of hnRNP A1 and KSRP in the regulation 

of let-7a biogenesis, Nat Struct Mol Biol, 17 (2010) 1011-1018. 



128 
 

[39] G. Michlewski, S. Guil, C.A. Semple, J.F. Caceres, Posttranscriptional regulation of 

miRNAs harboring conserved terminal loops, Mol Cell, 32 (2008) 383-393. 

[40] H. Towbin, P. Wenter, B. Guennewig, J. Imig, J.A. Zagalak, A.P. Gerber, J. Hall, 

Systematic screens of proteins binding to synthetic microRNA precursors, Nucleic Acids Res, 

41 (2013) e47. 

[41] M. Trabucchi, P. Briata, M. Garcia-Mayoral, A.D. Haase, W. Filipowicz, A. Ramos, R. 

Gherzi, M.G. Rosenfeld, The RNA-binding protein KSRP promotes the biogenesis of a subset 

of microRNAs, Nature, 459 (2009) 1010-1014. 

[42] T. Ruggiero, M. Trabucchi, F. De Santa, S. Zupo, B.D. Harfe, M.T. McManus, M.G. 

Rosenfeld, P. Briata, R. Gherzi, LPS induces KH-type splicing regulatory protein-dependent 

processing of microRNA-155 precursors in macrophages, FASEB journal : official 

publication of the Federation of American Societies for Experimental Biology, 23 (2009) 

2898-2908. 

[43] Y. Nam, C. Chen, R.I. Gregory, J.J. Chou, P. Sliz, Molecular basis for interaction of let-7 

microRNAs with Lin28, Cell, 147 (2011) 1080-1091. 

[44] A.G. Seto, R.E. Kingston, N.C. Lau, The coming of age for Piwi proteins, Molecular 

Cell, 26 (2007) 603-609. 

[45] M.C. Siomi, K. Sato, D. Pezic, A.A. Aravin, PIWI-interacting small RNAs: the vanguard 

of genome defence, Nat Rev Mol Cell Bio, 12 (2011) 246-258. 

[46] R.P. Bahadur, M. Zacharias, J. Janin, Dissecting protein-RNA recognition sites, Nucleic 

Acids Res, 36 (2008) 2705-2716. 



129 
 

[47] M. Treger, E. Westhof, Statistical analysis of atomic contacts at RNA–protein interfaces, 

Journal of Molecular Recognition, 14 (2001) 199-214. 

[48] A. Gupta, M. Gribskov, The role of RNA sequence and structure in RNA--protein 

interactions, Journal of molecular biology, 409 (2011) 574-587. 

[49] N. Morozova, J. Allers, J. Myers, Y. Shamoo, Protein-RNA interactions: exploring 

binding patterns with a three-dimensional superposition analysis of high resolution structures, 

Bioinformatics, 22 (2006) 2746-2752. 

[50] J.J. Ellis, M. Broom, S. Jones, Protein-RNA interactions: structural analysis and 

functional classes, Proteins, 66 (2007) 903-911. 

[51] A. Barik, N. C, S.P. Pilla, R.P. Bahadur, Molecular architecture of protein-RNA 

recognition sites, Journal of biomolecular structure & dynamics, (2015) 1-14. 

[52] Y. Huang, S. Liu, D. Guo, L. Li, Y. Xiao, A novel protocol for three-dimensional 

structure prediction of RNA-protein complexes, Scientific reports, 3 (2013) 1887. 

[53] U. Nagaswamy, N. Voss, Z. Zhang, G.E. Fox, Database of non-canonical base pairs 

found in known RNA structures, Nucleic Acids Res, 28 (2000) 375-376. 

[54] U. Muppirala, V. Honavar, D. Dobbs, Predicting RNA-Protein Interactions Using Only 

Sequence Information, BMC bioinformatics, 12 (2011) 489. 

[55] M. Bellucci, F. Agostini, M. Masin, G.G. Tartaglia, Predicting protein associations with 

long noncoding RNAs, Nature methods, 8 (2011) 444-445. 

[56] L. Perez-Cano, A. Solernou, C. Pons, J. Fernandez-Recio, Structural prediction of 

protein-RNA interaction by computational docking with propensity-based statistical 



130 
 

potentials, Pacific Symposium on Biocomputing. Pacific Symposium on Biocomputing, 

(2010) 293-301. 

[57] I. Tuszynska, J.M. Bujnicki, DARS-RNP and QUASI-RNP: new statistical potentials for 

protein-RNA docking, BMC bioinformatics, 12 (2011) 348. 

[58] C.H. Li, L.B. Cao, J.G. Su, Y.X. Yang, C.X. Wang, A new residue-nucleotide propensity 

potential with structural information considered for discriminating protein-RNA docking 

decoys, Proteins, 80 (2012) 14-24. 

[59] J. Shen, J. Zhang, X. Luo, W. Zhu, K. Yu, K. Chen, Y. Li, H. Jiang, Predicting protein-

protein interactions based only on sequences information, Proc Natl Acad Sci U S A, 104 

(2007) 4337-4341. 

[60] M.L. Verdonk, J.C. Cole, M.J. Hartshorn, C.W. Murray, R.D. Taylor, Improved protein–

ligand docking using GOLD, Proteins: Structure, Function, and Bioinformatics, 52 (2003) 

609-623. 

[61] R.A. Friesner, J.L. Banks, R.B. Murphy, T.A. Halgren, J.J. Klicic, D.T. Mainz, M.P. 

Repasky, E.H. Knoll, M. Shelley, J.K. Perry, D.E. Shaw, P. Francis, P.S. Shenkin, Glide: a 

new approach for rapid, accurate docking and scoring. 1. Method and assessment of docking 

accuracy, J Med Chem, 47 (2004) 1739-1749. 

[62] A.N. Jain, Surflex-Dock 2.1: robust performance from ligand energetic modeling, ring 

flexibility, and knowledge-based search, J Comput Aided Mol Des, 21 (2007) 281-306. 

[63] G.M. Morris, D.S. Goodsell, R.S. Halliday, R. Huey, W.E. Hart, R.K. Belew, A.J. Olson, 

Automated docking using a Lamarckian genetic algorithm and an empirical binding free 

energy function, Journal of Computational Chemistry, 19 (1998) 1639-1662. 



131 
 

[64] R. Huey, G.M. Morris, A.J. Olson, D.S. Goodsell, A semiempirical free energy force 

field with charge-based desolvation, J Comput Chem, 28 (2007) 1145-1152. 

[65] N.M. O'Boyle, J.W. Liebeschuetz, J.C. Cole, Testing assumptions and hypotheses for 

rescoring success in protein-ligand docking, J Chem Inf Model, 49 (2009) 1871-1878. 

[66] L. Chen, G.A. Calin, S. Zhang, Novel insights of structure-based modeling for RNA-

targeted drug discovery, J Chem Inf Model, 52 (2012) 2741-2753. 

[67] N. Shankar, T. Xia, S.D. Kennedy, T.R. Krugh, D.H. Mathews, D.H. Turner, NMR 

reveals the absence of hydrogen bonding in adjacent UU and AG mismatches in an isolated 

internal loop from ribosomal RNA, Biochemistry, 46 (2007) 12665-12678. 

[68] M. Davlieva, J. Donarski, J. Wang, Y. Shamoo, E.P. Nikonowicz, Structure analysis of 

free and bound states of an RNA aptamer against ribosomal protein S8 from Bacillus 

anthracis, Nucleic Acids Res, 42 (2014) 10795-10808. 

[69] Z. Liu, Y. Li, L. Han, J. Li, J. Liu, Z. Zhao, W. Nie, Y. Liu, R. Wang, PDB-wide 

collection of binding data: current status of the PDBbind database, Bioinformatics, 31 (2015) 

405-412. 

[70] S. Yoshizawa, D. Fourmy, J.D. Puglisi, Structural origins of gentamicin antibiotic action, 

EMBO J, 17 (1998) 6437-6448. 

[71] F. Barbault, L. Zhang, L. Zhang, B.T. Fan, Parametrization of a specific free energy 

function for automated docking against RNA targets using neural networks, Chemometrics 

and Intelligent Laboratory Systems, 82 (2006) 269-275. 



132 
 

[72] J.C. Shelley, A. Cholleti, L.L. Frye, J.R. Greenwood, M.R. Timlin, M. Uchimaya, Epik: 

a software program for pK( a ) prediction and protonation state generation for drug-like 

molecules, J Comput Aided Mol Des, 21 (2007) 681-691. 

[73] Q. Vicens, E. Westhof, Crystal structure of paromomycin docked into the eubacterial 

ribosomal decoding A site, Structure, 9 (2001) 647-658. 

[74] A. Serganov, L. Huang, D.J. Patel, Structural insights into amino acid binding and gene 

control by a lysine riboswitch, Nature, 455 (2008) 1263-1267. 

[75] M.L. Verdonk, V. Berdini, M.J. Hartshorn, W.T. Mooij, C.W. Murray, R.D. Taylor, P. 

Watson, Virtual screening using protein-ligand docking: avoiding artificial enrichment, J 

Chem Inf Comput Sci, 44 (2004) 793-806. 

[76] D. Van Der Spoel, E. Lindahl, B. Hess, G. Groenhof, A.E. Mark, H.J. Berendsen, 

GROMACS: fast, flexible, and free, Journal of computational chemistry, 26 (2005) 1701-

1718. 

[77] L. Chen, L. Du-Cuny, S. Moses, S. Dumas, Z. Song, A.H. Rezaeian, H.K. Lin, E.J. 

Meuillet, S. Zhang, Novel inhibitors induce large conformational changes of GAB1 pleckstrin 

homology domain and kill breast cancer cells, PLoS computational biology, 11 (2015) 

e1004021. 

[78] A. Perez, I. Marchan, D. Svozil, J. Sponer, T.E. Cheatham, 3rd, C.A. Laughton, M. 

Orozco, Refinement of the AMBER force field for nucleic acids: improving the description of 

alpha/gamma conformers, Biophysical journal, 92 (2007) 3817-3829. 



133 
 

[79] D. Svozil, J.E. Sponer, I. Marchan, A. Perez, T.E. Cheatham, 3rd, F. Forti, F.J. Luque, 

M. Orozco, J. Sponer, Geometrical and electronic structure variability of the sugar-phosphate 

backbone in nucleic acids, The journal of physical chemistry. B, 112 (2008) 8188-8197. 

[80] A.W. Sousa da Silva, W.F. Vranken, ACPYPE - AnteChamber PYthon Parser interfacE, 

BMC research notes, 5 (2012) 367. 

[81] A.T. Chang, E.P. Nikonowicz, Solution NMR determination of hydrogen bonding and 

base pairing between the glyQS T box riboswitch Specifier domain and the anticodon loop of 

tRNA(Gly), FEBS Lett, 587 (2013) 3495-3499. 

[82] L.W. Yang, A.J. Rader, X. Liu, C.J. Jursa, S.C. Chen, H.A. Karimi, I. Bahar, oGNM: 

online computation of structural dynamics using the Gaussian Network Model, Nucleic acids 

research, 34 (2006) W24-31. 

[83] S.E. Dobbins, V.I. Lesk, M.J. Sternberg, Insights into protein flexibility: The relationship 

between normal modes and conformational change upon protein-protein docking, 

Proceedings of the National Academy of Sciences of the United States of America, 105 

(2008) 10390-10395. 

[84] G.L. Warren, C.W. Andrews, A.M. Capelli, B. Clarke, J. LaLonde, M.H. Lambert, M. 

Lindvall, N. Nevins, S.F. Semus, S. Senger, G. Tedesco, I.D. Wall, J.M. Woolven, C.E. 

Peishoff, M.S. Head, A critical assessment of docking programs and scoring functions, J Med 

Chem, 49 (2006) 5912-5931. 

[85] R. Hosur, J. Xu, J. Bienkowska, B. Berger, iWRAP: An interface threading approach 

with application to prediction of cancer-related protein-protein interactions, Journal of 

molecular biology, 405 (2011) 1295-1310. 



134 
 

[86] D. Frishman, P. Argos, Knowledge-based protein secondary structure assignment, 

Proteins, 23 (1995) 566-579. 

[87] X.J. Lu, W.K. Olson, H.J. Bussemaker, The RNA backbone plays a crucial role in 

mediating the intrinsic stability of the GpU dinucleotide platform and the GpUpA/GpA 

miniduplex, Nucleic Acids Res, 38 (2010) 4868-4876. 

[88] L.J. McGuffin, K. Bryson, D.T. Jones, The PSIPRED protein structure prediction server, 

Bioinformatics, 16 (2000) 404-405. 

[89] S. Will, T. Joshi, I.L. Hofacker, P.F. Stadler, R. Backofen, LocARNA-P: accurate 

boundary prediction and improved detection of structural RNAs, Rna, 18 (2012) 900-914. 

[90] C. Smith, S. Heyne, A.S. Richter, S. Will, R. Backofen, Freiburg RNA Tools: a web 

server integrating INTARNA, EXPARNA and LOCARNA, Nucleic Acids Res, 38 (2010) 

W373-377. 

[91] K. Sato, M. Hamada, K. Asai, T. Mituyama, CENTROIDFOLD: a web server for RNA 

secondary structure prediction, Nucleic Acids Res, 37 (2009) W277-280. 

[92] T. Puton, L.P. Kozlowski, K.M. Rother, J.M. Bujnicki, CompaRNA: a server for 

continuous benchmarking of automated methods for RNA secondary structure prediction, 

Nucleic Acids Res, 42 (2014) 5403-5406. 

[93] J. Yuan, W. Wu, C. Xie, G. Zhao, Y. Zhao, R. Chen, NPInter v2.0: an updated database 

of ncRNA interactions, Nucleic Acids Res, 42 (2014) D104-108. 

[94] K.B. Cook, H. Kazan, K. Zuberi, Q. Morris, T.R. Hughes, RBPDB: a database of RNA-

binding specificities, Nucleic Acids Res, 39 (2011) D301-308. 



135 
 

[95] E.W. Stawiski, L.M. Gregoret, Y. Mandel-Gutfreund, Annotating nucleic acid-binding 

function based on protein structure, Journal of molecular biology, 326 (2003) 1065-1079. 

[96] K.R. Christie, S. Weng, R. Balakrishnan, M.C. Costanzo, K. Dolinski, S.S. Dwight, S.R. 

Engel, B. Feierbach, D.G. Fisk, J.E. Hirschman, E.L. Hong, L. Issel-Tarver, R. Nash, A. 

Sethuraman, B. Starr, C.L. Theesfeld, R. Andrada, G. Binkley, Q. Dong, C. Lane, M. 

Schroeder, D. Botstein, J.M. Cherry, Saccharomyces Genome Database (SGD) provides tools 

to identify and analyze sequences from Saccharomyces cerevisiae and related sequences from 

other organisms, Nucleic Acids Res, 32 (2004) D311-314. 

[97] V. Pancaldi, J. Bahler, In silico characterization and prediction of global protein-mRNA 

interactions in yeast, Nucleic Acids Res, 39 (2011) 5826-5836. 

[98] K. Nadassy, S.J. Wodak, J. Janin, Structural features of protein-nucleic acid recognition 

sites, Biochemistry, 38 (1999) 1999-2017. 

[99] D. Cirillo, F. Agostini, G.G. Tartaglia, Predictions of protein–RNA interactions, Wiley 

Interdisciplinary Reviews: Computational Molecular Science, 3 (2013) 161-175. 

[100] M. Hafner, M. Landthaler, L. Burger, M. Khorshid, J. Hausser, P. Berninger, A. 

Rothballer, M. Ascano, Jr., A.C. Jungkamp, M. Munschauer, A. Ulrich, G.S. Wardle, S. 

Dewell, M. Zavolan, T. Tuschl, Transcriptome-wide identification of RNA-binding protein 

and microRNA target sites by PAR-CLIP, Cell, 141 (2010) 129-141. 

[101] J.D. Keene, J.M. Komisarow, M.B. Friedersdorf, RIP-Chip: the isolation and 

identification of mRNAs, microRNAs and protein components of ribonucleoprotein 

complexes from cell extracts, Nature protocols, 1 (2006) 302-307. 



136 
 

[102] D. Ray, H. Kazan, E.T. Chan, L. Pena Castillo, S. Chaudhry, S. Talukder, B.J. 

Blencowe, Q. Morris, T.R. Hughes, Rapid and systematic analysis of the RNA recognition 

specificities of RNA-binding proteins, Nature biotechnology, 27 (2009) 667-670. 

[103] D.D. Licatalosi, A. Mele, J.J. Fak, J. Ule, M. Kayikci, S.W. Chi, T.A. Clark, A.C. 

Schweitzer, J.E. Blume, X. Wang, J.C. Darnell, R.B. Darnell, HITS-CLIP yields genome-

wide insights into brain alternative RNA processing, Nature, 456 (2008) 464-469. 

[104] J. Wang, W. Wang, S. Huo, M. Lee, P.A. Kollman, Solvation Model Based on 

Weighted Solvent Accessible Surface Area, The Journal of Physical Chemistry B, 105 (2001) 

5055-5067. 

[105] L. Wesson, D. Eisenberg, Atomic solvation parameters applied to molecular dynamics 

of proteins in solution, Protein Sci, 1 (1992) 227-235. 

[106] D.M. Krüger, J. Bergs, S. Kazemi, H. Gohlke, Target Flexibility in RNA−Ligand 

Docking Modeled by Elastic Potential Grids, ACS Medicinal Chemistry Letters, 2 (2011) 

489-493. 

[107] O. Korb, T.S. Olsson, S.J. Bowden, R.J. Hall, M.L. Verdonk, J.W. Liebeschuetz, J.C. 

Cole, Potential and limitations of ensemble docking, J Chem Inf Model, 52 (2012) 1262-

1274. 

[108] V.M. Tesmer, S. Lennarz, G. Mayer, J.J. Tesmer, Molecular mechanism for inhibition 

of g protein-coupled receptor kinase 2 by a selective RNA aptamer, Structure, 20 (2012) 

1300-1309. 

 

 



137 
 

  



138 
 

Vita 

Lu Chen was born in Shanghai, China on December 20, 1987, the son of Guoyun Zhang and 

Jianjun Chen. After completing his work at Shanghai Experimental School, Shanghai, China 

in 2005, he entered Fudan University in Shanghai, China. He received the degree of Bachelor 

of Sciences with a major in biological science from Fudan University in June, 2009. In 

September of 2009, he entered The University of Texas Graduate School of Biomedical 

Sciences at Houston.  

 

Publications 

Chen L, Moses S, Du-Cuny L, Dumas S, et al. Novel inhibitors induce large conformational 

changes of GAB1 pleckstrin homology domain and kill breast cancer cells. PLoS Comput 

Biol. 2015; 11(1): e1004021. 

Chen L, Calin GA, Zhang S. Novel insights of structure-based modeling for RNA-targeted 

drug discovery. J Chem Inf Model. 2012; 52(10):2741-53. 

Chen L, Morrow JK, Tran HT, Phatak SS, Du-Cuny L, Zhang S. From laptop to benchtop to 

bedside: Structure-based drug design on protein targets. Curr Pharm Des. 2012; 18(9):1217-

39. 

Du-Cuny L*, Chen L*, Zhang S. A critical assessment of combined ligand-based and 

structure-based approaches to hERG channel blocker modeling. J Chem Inf Model. 2011; 

51(11):2948-60. (*Co-first author) 

 

Permanent address: 



139 
 

 

No.1, Lane 58, De Ping Road, 

Room 803 

Shanghai, 200136 China 


	Texas Medical Center Library
	DigitalCommons@The Texas Medical Center
	8-2015

	COMPUTATIONAL MODELING OF RNA-SMALL MOLECULE AND RNA-PROTEIN INTERACTIONS
	Lu Chen
	Recommended Citation


	Thesis Scanned copy of approval sheet -Lu Chen

