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A typical human exome harbors dozens of loss-of-function (LOF) variants predicted to 

severely disrupt or abolish gene function.  These variants are enriched at the extremely rare end 

of the allele frequency spectrum (< 0.1%), suggesting purifying selection against these sites. 

However, most previous population-based sequencing studies have not included analysis of 

genotype-phenotype relationships with LOF variants.  Thus, the contribution of LOF variation 

to health and disease within the general population remains largely uncharacterized.  

Using whole exome sequence from 8,554 participants in the Atherosclerosis Risk in 

Communities (ARIC) study, we explored the impact of LOF variation on a broad spectrum of 

human phenotypes.  First, we selected 20 common chronic disease risk factor phenotypes and 

performed gene-based association tests.  Analysis of this sample verified two relationships in 

well-studied genes (PCSK9 and APOC3) and identified eight new loci.  Novel relationships 

included elevated fasting glucose in heterozygous carriers of LOF variation in TXNDC5, which 

encodes a biomarker for type 1 diabetes progression, and apparent recessive effects of 

C1QTNF8 on serum magnesium levels.  Next, we explored the effect of LOF variation on 308 

small molecular metabolites, observing 8 significant genotype-phenotype associations.  We 

highlight the relationship between serum histidine and HAL, a gene essential to histidine 
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catabolism, demonstrating the biologically interpretability of associations with molecular 

metabolite targets.  Finally, we explore the impact of LOF variation on a rare birth defect by 

comparing sequence from 342 unrelated left ventricular outflow tract obstruction (LVOTO) 

cases to ARIC sequence, identifying genes harboring case-exclusive LOF mutations.  

Comparison to an a priori list of cardiac candidate genes revealed 28 genes potentially related to 

LVOTO, including 22 not previously associated with a human disorder.  Genotype validation in 

these samples revealed diverse inheritance patterns, including 9 confirmed de novo variants 

(ACVR1, JARID2, KMT2D, NF1, NR2F2, PLRG1, SMURF1, TBX20, and ZEB2).  

The analytical strategy presented here highlights the role of biologically-informed 

annotation on large-scale human genetic studies.  The genes identified by these methods may 

have applications in disease prediction and drug development, and future genome studies will 

continue to refine our understanding of the scope of genetic variation affecting human health 

and disease.  
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Chapter 1: Introduction 
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Genetics, health and disease 

Genomic information is emerging as a valuable addition to traditional health care and an 

essential component of the National Institutes of Health’s precision medicine initiative1.   

Knowing and understanding the content of an individual’s genome can inform a personalized 

disease risk evaluation, since one’s DNA sequence is generally stable throughout a lifetime, 

with the exception of somatic mutation and epigenetic modifications.  For example, the content 

of a genome may serve as biomarkers for late-onset conditions such as Alzheimer’s disease2, 

common chronic conditions such as coronary artery disease3, or sensitivity to the anticoagulant 

warfarin4.  The genetic profile of an individual can be used to develop individualized 

management strategies, such as informing clinicians which drugs may be most effective for 

patients5.  At the rare end of the disease spectrum, gene sequencing has also been used to 

identify specific individuals having increased risk to develop clinical disease, especially when 

informed by family history for a Mendelian disorder6.   

Genetic studies may also point to attractive drug targets, especially when associated with 

a beneficial health effect.  For example, six pharmaceutical companies are actively developing 

PCSK9 inhibitors7, two of which have entered phase III clinical trials, showing  great promise 

for lowering lipids and preventing major cardiovascular events8,9.  The common paradigm of 

these drugs is to downregulate levels of single gene product within a patient.  Recent studies 

have suggested that other genes, such as APOC310, may also make suitable targets for similar 

drugs which act via a downregulation pathways to achieve a protective cardiovascular effect. 

It is therefore of great interest to both clinicians and pharmaceutical companies to 

understand the major genes that contribute to human health.  This demand drives researchers to 

discover novel associations and understand the contribution of these individual genes to human 
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phenotypes.  Next generation sequencing technology, especially whole-exome sequencing, has 

emerged as a powerful and efficient tool to capture gene sequence which is a crucial step in this 

discovery process.  

Sequencing platforms for gene discovery 

Whole exome sequencing (WES) has emerged as a cost-effective platform suitable for 

both clinical diagnoses and research discovery.  Over a dozen companies offer commercial 

whole exome sequencing services (https://www.scienceexchange.com/services/whole-exome-

seq) with costs ranging from$445 to $1,535 per sample.  Per-sample costs within high-

throughput sequencing centers may be even lower.  Another advantage of WES is the ability to 

capture sequence variation from across the allelic frequency spectrum, from common to rare or 

even private sites.  This contrasts with less expensive chip-based genotyping for gene discovery, 

which may only provide information in a limited allele frequency spectrum or a slice of the 

human genome (eg, loci previously characterized such as those ascertained by GWAS).  These 

chip-based platforms also target known variant sites and thus cannot be used for novel variant 

discovery, an important aspect as we focus more on ethnically-diverse or isolated populations.  

Additionally, the near-comprehensive gene coverage provided by WES is an advantage over 

targeted sequencing methods, since these methods rely on a priori selection of gene candidates 

which limits the potential for novel discovery.  Finally, while whole genome sequencing 

provides both comprehensive coverage and high-resolution detection of mutations, this platform 

also has disadvantages compared to WES.  For many applications whole genome sequence data 

remains cost-prohibitive to generate and store.  In addition, the interpretation of intergenic 

genomic regions remains a challenge in the context of human disease studies, whereas the 

sequence of exons is more readily interpretable 
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Within limits, exonic variants can be interpreted in the context of established molecular 

biology paradigms.  WES reliably ascertains and genotypes both single-nucleotide substitutions 

and small insertions/deletions (up to 50bp) within the protein-encoding regions of genes.  Since 

these variants are in the exons of genes, the functional effects on mRNA splicing and protein 

translation are predictable. A number of tools exist to predict the effect of protein-altering 

nucleotide substitutions (e.g. Polyphen211, SIFT12), incorporating information from sequence 

conservation, local amino acid context, and predicted protein structures that arise from these 

sequence changes.  However, there is no single consensus on which method performs best at 

predicting pathogenicity, and there is poor correlation between the results of these tools13.    

Given the difficulties of predicting the pathogenicity of protein-altering variation, we decided to 

prioritize other functional classes of human variation.  

Loss-of-function mechanism 

Loss-of-function (LOF) variants are sequence changes that are predicted to severely disrupt 

or even completely prevent the formation of protein from gene templates.  True LOF variants 

should be contrasted to predicted hypomorphs, which may influence function by changes in 

amino acid context rather than overall gene levels. Several functional categories of LOF 

variation exist: premature stop, splice, and frameshift indel.  These diverse functional categories 

of mutation converge on their potential to introduce premature stop (nonsense) signals into 

mRNA transcripts, which are targeted for degradation by highly conserved molecular 

pathways14.   

The various types of LOF variants can all trigger specific reactions from eukaryotic mRNA 

surveillance mechanisms, specifically the nonsense-mediated mRNA decay pathway (NMD).  

This pathway monitors gene expression and identifies transcripts containing premature 
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termination codons.  During normal transcription in the nucleus of cells, introns are spliced out 

and adjacent exons are joined into a single contiguous mRNA transcript.  Exon-junction 

complex (EJC) factors contribute to this process and remain bound to the mature mRNA 

transcript as it is exported into the cytoplasm, marking the junction where two exons have been 

joined15 (Figure 1.1a).  Since a transcript is expected to only contain one stop codon to indicate 

the end of protein translation, no EJC factors should be bound to the transcript downstream of 

this termination signal.  The mammalian NMD pathway consists of core machinery which 

interacts with EJC factors16.  When DNA mutations alter gene sequence to encode for premature 

stop codons in the non-terminal gene exon, mRNA-bound EJC factors will be detected 

downstream of these termination signals.  The presence of these aberrant EJC complexes factors 

act as a “second signal” (ie, extra stop codon) when mRNA is proofread during translation 

which destabilize the transcript and elicit NMD17 (Figure 1.1b).      

LOF variants predicted to trigger NMD can be detected and annotated within WES data.  

Single nucleotide substitutions giving rise to premature stop codons can be directly annotated, 

and are likely to trigger NMD if they are not in the terminal exon18.  Similarly, frameshift indels 

disrupting the 3-bp reading frame of all downstream codons often lead to low levels of gene 

transcript19.  Mutations disrupting essential splice motifs also trigger NMD, as errors in RNA 

splicing often trigger NMD20.   However, certain protein-coding genes may resist NMD, and 

these must be taken into account during variant annotation.  As expected, intronless genes are 

resistant to EJC-mediated NMD21,22.  Human beta-globin genes may escape NMD if a  

 

 



 

Figure 1.1: Loss-of-Function mechanism. Figure depicts the role of the EJC in a form of NMD 

surveillance by which mRNA transcripts with premature stop codons are targets for degradation 

by the cell.  (A) Normal mRNA transcript which will be translated into protein, 

stop signal in the terminal exon.  (B) Mutant mRNA transcript with LOF mutation (exon 2 and 

exon 3), whereby the premature stop signal redirects this transcript to be degraded before 

protein translation can occur.  Image adapted from 

 

 

 

 

 

 

 

 

 

 

Function mechanism. Figure depicts the role of the EJC in a form of NMD 

surveillance by which mRNA transcripts with premature stop codons are targets for degradation 

by the cell.  (A) Normal mRNA transcript which will be translated into protein, 

stop signal in the terminal exon.  (B) Mutant mRNA transcript with LOF mutation (exon 2 and 

exon 3), whereby the premature stop signal redirects this transcript to be degraded before 

protein translation can occur.  Image adapted from eLife 2014;3:e04300. 

6 

Function mechanism. Figure depicts the role of the EJC in a form of NMD 

surveillance by which mRNA transcripts with premature stop codons are targets for degradation 

by the cell.  (A) Normal mRNA transcript which will be translated into protein, with a single 

stop signal in the terminal exon.  (B) Mutant mRNA transcript with LOF mutation (exon 2 and 

exon 3), whereby the premature stop signal redirects this transcript to be degraded before 
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premature stop signal arises very early in the transcript (within exon 1) and sequences allowing 

re-initiation of translation reside at a downstream alternate start codon23.  

Loss of Function variation in health and disease 

The prevalence of LOF variation in general human populations has been described24.  A 

normal, healthy individual carries approximately 100 genes with variants predicted to have an 

LOF effect (20 homozygous), with varying rates between ancestry groups (Figure 1.2).  

Interestingly, these variants are enriched at the rare end of the population allele frequency 

spectrum, suggesting selection against these sites24.  The relative frequency of these sites across 

genes can also provide insights into genetic architecture of human traits.  For example, at the 

population level, these sites are observed less frequently in genes known to cause autosomal 

dominant Mendelian disorders25. 

LOF mutations have also been implicated in human disease.  In studies of rare Mendelian 

disorders, disease pathology is generally attributed to a single rare (often unique) mutation 

within a patient.  Human mutation databases such as the Human Gene Mutation Database 

(HGMD, http://www.hgmd.cf.ac.uk/) and ClinVar (http://www.ncbi.nlm.nih.gov/clinvar/) 

curate and catalog the specific mutations reported to cause rare disease.  HGMD (2015.1) 

describes 17,562 premature stop variants and 34,466 frameshift indels classified as disease-

causing mutations.  Similarly, the NCBI ClinVar database includes description of 10,222 

pathogenic LOF variants (4,892 premature stop, 1,767 splice, and 3,561 frameshift indel).  

The role of LOF variation in common disease has been less extensively studied, but early 

results have been encouraging.  African American individuals with variation introducing 

premature stop codons in PCSK9 present lower serum LDL cholesterol and decreased risk for 

coronary heart disease than non-LOF individuals26.  These results have sparked an interest in  



 

Figure 1.2: Prevalence of Loss

the average number of function variation per sample, representing three different ancestry 

groups from the 1000 genomes project.  Image adapted from the 1000 genomes project

 

 

 

 

 

 

 

 

 

 

 

Loss-of-Function variation in human populations.  This figure depicts 

the average number of function variation per sample, representing three different ancestry 

groups from the 1000 genomes project.  Image adapted from the 1000 genomes project

8 

in human populations.  This figure depicts 

the average number of function variation per sample, representing three different ancestry 

groups from the 1000 genomes project.  Image adapted from the 1000 genomes project24
. 
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PCSK9 as a drug target to lower cholesterol, with multiple drugs targeting this gene in 

development.  Similarly, individuals with LOF variation in APOC3, including splice and 

premature stop, present lower serum triglycerides a reduced risk for coronary heart disease 

compared to others individuals without similar variation in this gene10.  

Despite these encouraging results in population-based studies and the ubiquitous frequency 

of these variants within human populations, the effect of LOF variation on human phenotypes in 

the general population remains poorly characterized.  In addition, novel LOF variants that 

contribute to rare disease are an important tool for novel gene discovery.  Therefore, we set out 

to characterize the effect of LOF variation on broad spectrum of human phenotypes including 

common complex disease biomarkers, small molecule metabolite levels, and cohorts of patients 

with rare Mendelian disorders.  
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Chapter 2: Common chronic disease biomarkers 

This chapter is based on: Li, A. H., Morrison, A. C., Kovar, C., Cupples, L. A., Brody, J. a, 

Polfus, L. M., Yu, B., Metcalf, G., Muzny, D., Veerereghavan, N., Liu, X., Lumley, T., Mosley, 

T. H., Gibbs, R. A., Boerwinkle, E. (2015). Analysis of loss-of-function variants and 20 risk 

factor phenotypes in 8,554 individuals identifies loci influencing chronic disease. Nature 

genetics, 47(6), 640–642. doi:10.1038/ng.3270.   

Since 2003, ownership of copyright in in original research articles remains with the Authors, 

and provided that, when reproducing the Contribution or extracts from it, the Authors 

acknowledge first and reference publication in the Journal, the Authors retain the following non-

exclusive rights: 

a. To reproduce the Contribution in whole or in part in any printed volume (book or thesis) 

of which they are the author(s). 

b. They and any academic institution where they work at the time may reproduce the 

Contribution for the purpose of course teaching. 

c. To reuse figures or tables created by them and contained in the Contribution in other 

works created by them. 

d. To post a copy of the Contribution as accepted for publication after peer review (in 

Word or Tex format) on the Author's own web site, or the Author's institutional 

repository, or the Author's funding body's archive, six months after publication of the 

printed or online edition of the Journal, provided that they also link to the Journal article 

on NPG's web site (eg through the DOI). 
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Introduction 

Investigations of genotype-phenotype associations leading to novel gene discovery have 

traditionally been facilitated by focusing on the most severe or earliest age of onset cases4.  An 

alternative approach would be to identify variants with the most severe functional effects in a 

sample of deeply-phenotyped individuals, and then investigate the role of these variants in 

health and disease. To test this approach, we sequenced the exomes of 8,554 individuals who 

have been measured for many phenotypes related to common chronic diseases, such as diabetes 

and coronary heart disease. We annotated predicted loss-of-function (LOF) variants in these 

individuals and investigated their impact on 20 chronic disease risk factor phenotypes. Gene-

based analyses identified and replicated 10 genetic loci associated with these measured traits. 

These results demonstrate the importance of detailed biological annotation to inform large-scale 

sequencing studies, and the utility of deeply-phenotyped cohort studies to further elucidate the 

genetic architecture of human health and disease. 

Whole exome sequencing was performed on 2,836 African-American and 5,718 European-

American individuals from the Atherosclerosis Risk in Communities (ARIC) study (Table 2.1).  

Ninety percent of target sites were covered at 20x or greater (mean depth 110.1 per sample), 

revealing 1,911,892 total single nucleotide variants (SNV) with an average Ti/Tv of 3.3 per 

sample, and 38,219 small insertions and deletions (indels).  Indel sizes ranged from -51 base 

pairs (bp) to +27 bp, with a mode of -1 bp.  We defined LOF variation as sequence changes 

predicted to abolish protein formation from all RefSeq isoforms for a given gene and identified 

a total of 36,561 candidate LOF sites (13,783 frameshift indels, 8,772 splice, 14,006 premature 

stop, Table 2.2) in 11,260 protein-coding genes.  Not surprisingly7, LOF variants were enriched  
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Table 2.1:  Overview of individuals included in this study. Baseline characteristics of African 

American (AA) and European American (EA) participants from the ARIC cohort are shown, 

including the total number of individuals undergoing whole exome sequence, age at enrollment, 

gender distribution and body mass index (BMI).   

 

 
Discovery  Replication 

Characteristic AA EA  AA EA 

Individuals 1,418 2,859  1,418 2,859 

Age 53.06 + 5.75 54.29 + 5.68  53.3 + 5.81 54.47 + 5.65 

Males (%) 505 (35.61%) 1,378 (48.19%)  520 (36.67%) 1,338 (46.79%) 

BMI 29.87 + 6.28 26.89 + 4.71  29.71 + 6.31 26.88 + 4.74 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



13 

 

Table 2.2: Number of LOF sites in the study sample and per individual.  This table describes 

the total number of LOF sites observed, and the average number of heterozygous (homozygous 

in parentheses) LOF sites per individual. 

 

 LOF sites  Average per individual  

 AA EA Combined  AA EA 

Stop 5,837 9,312 14,006  27.3 (2.1) 21.1 (2.2) 

Splice 3,789 5,731 8,772  16.7 (1.9) 9.6 (1.8) 

Frameshift 6,575 8,264 13,783  36.1 (4.4) 22.6 (3.1) 

Total LOF 16,201 23,307 36,561  80.1(8.4) 53.3 (7.1) 
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in the very rare range of the site frequency spectrum (MAF < 0.1%) compared to other 

functional categories (Figure 2.1).  

LOF OP ratio 

We next characterized the prevalence of LOF variation by gene.  Because mutations may 

arise more frequently in larger genes and codon usage influences the chance of premature stops, 

we exhaustively simulated every single nucleotide substitution within each gene transcript to 

determine the maximum number of potential LOF substitution sites within that gene, which we 

then compared to the observed number of LOF sites within our sample (observed 

number/potential number = OP ratio)11,7.  Almost half the genes in our capture regions presented 

no LOF alleles (n = 7,115, OP ratio = 0). The OP ratios of the remaining genes form a 

distribution with a peak near 0.003 with a skewed right tail (Figure 2.2a), underscoring the role 

of purifying selection against these sites. Genes known to influence human phenotypes in a 

dominant manner8 present smaller average OP ratios (Figure 2.2b), while known recessive 

disease genes7 have larger OP ratios (Figure 2.2c). The relationship between the OP ratio and 

the effects of LOF variants on the 20 risk factor phenotypes analyzed here is complex. Clearly, 

genes lacking LOF variants (i.e. OP ratio = 0) are not contributing to the analysis. Conversely, 

genes that tolerate a large number of LOF variants and have a high OP ratio (e.g. OP ratio > 0.1) 

did not significantly contribute to phenotypic variation. Genes contributing to the genetic 

architecture of health and disease in the population are likely to be important, by virtue of 

having an above average OP ratio, but not so critical such that LOF variants lead to debilitating 

disease or are inconsistent with life. To this point, we observed that homologs of essential 

mouse genes9 (lethal phenotypes) have smaller average OP ratios compared to non-essential 

phenotype-changing genes (p < 10-6, Wilcoxon), and the latter have smaller OP ratios compared  



 

Figure 2.1:  Site frequency spectrum of four 

The relative proportion of these functional categories is shown binned by allele frequency.  LCP 

= low-confidence or partial LOF criteria are described in the Methods Summary; Non

nonsynonymous; Syn = synonymous.

 

Site frequency spectrum of four categories of exome variation. 

The relative proportion of these functional categories is shown binned by allele frequency.  LCP 

confidence or partial LOF criteria are described in the Methods Summary; Non

nonsynonymous; Syn = synonymous. 
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The relative proportion of these functional categories is shown binned by allele frequency.  LCP 

confidence or partial LOF criteria are described in the Methods Summary; Non-syn = 

 



 

Figure 2.2: OP ratio trends across gene groups. (A) histogram of OP ratio for each gene; (B) 

lower OP ratio in genes causing dominant disorders (n = 248) vs other genes (n = 16,435), (C) 

higher OP ratio in genes causing recessive disorders(n = 652) vs other (

OP ratio in human paralogs of essential mouse genes (Essential = embryonic lethal phenotype, n 

= 2,356; Nonessential = non-

10,807).  Panels for B, C and D are boxplots d

75th percentile, and whiskers extending to 1.5x inter

: OP ratio trends across gene groups. (A) histogram of OP ratio for each gene; (B) 

lower OP ratio in genes causing dominant disorders (n = 248) vs other genes (n = 16,435), (C) 

higher OP ratio in genes causing recessive disorders(n = 652) vs other (n = 16,031), (D) lower 

OP ratio in human paralogs of essential mouse genes (Essential = embryonic lethal phenotype, n 

-lethal phenotype, n = 3,520; Other = no phenotype reported, n = 

10,807).  Panels for B, C and D are boxplots denoting the median value, hinges at the 25th and 

75th percentile, and whiskers extending to 1.5x inter-quartile range.   
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to all other genes (p < 10-6, Wilcoxon) (Figure 2.2d).  Genes with smaller OP ratios also tend to 

be stably expressed in more tissues and interact with more proteins (Figure 2.3).  

 

Phenotype associations 

To detect associations between LOF variation and common chronic disease phenotypes, we 

divided our sample into two non-overlapping discovery and replication groups each containing 

4,277 individuals (Table 2.1, Table 2.3).  Since LOF annotation enriches for variation with a 

similar predicted functional effect, namely the reduction or abolishment of protein formation, 

we grouped LOF variants by gene and performed a burden test for sites with MAF < 5% (T5 

test)10.  A summary of the most significant replicating results is shown in Table 2.4.  As 

expected, LOF variants in PCSK9 were associated with lower total cholesterol levels11, and LOF 

variation in APOC3 were associated with lower triglyceride levels12.  We observed 8 novel 

relationships with compelling statistical evidence that replicated between the two samples 

(Table 2.4).  Except for PCSK9 and APOC3, the effects were in the direction thought to be 

increasing risk of disease.   

Highlighting two examples, nine individuals with LOF variation in Thioredoxin Domain 

Containing 5 (TXNDC5) had elevated fasting blood glucose levels compared to non-LOF 

individuals (Figure 2.4a), and this gene has recently been suggested as a candidate for type 1 

diabetes(T1D) risk3.  In follow-up analyses, we observed a weak association between TXNDC5 

variation and fasting insulin levels within the ARIC study cohort (p = 0.047) (data not shown). 

In addition, five European-American study participants had a LOF mutation in SEPT10 and 

these individuals had significantly reduced lung function (ratio of forced expiratory volume to  



 

Figure 2.3:  OP ratio trends across additional gene groups.   (A) 

genes from the egenetics database expressed in the most tissues, denoted as “Universally

expressed” (n=834) which we compared to all other genes (n=15,849).

5% of genes from the ConsensusPathDB database with the most protein interactions (n=834) 

which we compared to all other genes (n=15,849).

 

 

 

 

 

 

 

 

:  OP ratio trends across additional gene groups.   (A) We selected the top 5% of 

genes from the egenetics database expressed in the most tissues, denoted as “Universally

expressed” (n=834) which we compared to all other genes (n=15,849).  (B) We selected 

5% of genes from the ConsensusPathDB database with the most protein interactions (n=834) 

which we compared to all other genes (n=15,849). 
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genes from the egenetics database expressed in the most tissues, denoted as “Universally-

We selected the top 

5% of genes from the ConsensusPathDB database with the most protein interactions (n=834) 

 



 

Figure 2.4: Distribution of phenotypes in LOF carriers.  (A) Elevated fasting glucose in 

TXNDC5 LOF heterozygotes (n = 9) compared to individuals with no LOF variation in this 

gene (n = 8,545); (B) Elevated serum magnesium in C1QTNF8 homozygous individuals (n = 4) 

compared to LOF heterozygotes (n = 62) and non

boxplots denoting the median value, hinges at the 25th and 75th percentile, and whiskers 

extending to 1.5x inter-quartile range.  

 

 

 

 

 

 

 

 

 

 

: Distribution of phenotypes in LOF carriers.  (A) Elevated fasting glucose in 

TXNDC5 LOF heterozygotes (n = 9) compared to individuals with no LOF variation in this 

gene (n = 8,545); (B) Elevated serum magnesium in C1QTNF8 homozygous individuals (n = 4) 

ompared to LOF heterozygotes (n = 62) and non-LOF samples (n = 8,488).   Both panels are 

boxplots denoting the median value, hinges at the 25th and 75th percentile, and whiskers 

quartile range.   
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: Distribution of phenotypes in LOF carriers.  (A) Elevated fasting glucose in 

TXNDC5 LOF heterozygotes (n = 9) compared to individuals with no LOF variation in this 

gene (n = 8,545); (B) Elevated serum magnesium in C1QTNF8 homozygous individuals (n = 4) 

LOF samples (n = 8,488).   Both panels are 

boxplots denoting the median value, hinges at the 25th and 75th percentile, and whiskers 
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Table 2.3: List of phenotypes analyzed. This table describes with number of individuals (AA = 

African American; EA = European American) who were measured for each trait within the 

discovery and replication strata 

   Discovery  Replication 

Category Trait Symbol EA AA  EA AA 

Electrolytes Serum magnesium Mg 2,858 1,369  2,859 1,377 

 Serum phosphorus P 2,858 1,369  2,859 1,377 

 Serum calcium Ca 2,858 1,369  2,859 1,377 

 Serum potassium K 2,858 1,369  2,859 1,377 

 Serum sodium Na 2,858 1,369  2,859 1,377 

Liver enzymes Aspartate transaminase AST 2,315 934  2,306 926 

 Alanine aminotransferase ALT 1,411 807  1,327 797 

 Gamma-glutamyl 

transpeptidase 

GGT 1,413 807  1,329 797 

Blood Pressure Diastolic blood pressure DBP 2,857 1,417  2,859 1,418 

 Systolic blood pressure SBP 2,858 1,417  2,859 1,418 

Lung function Forced vital capacity FVC 2,850 1,397  2,855 1,397 

 Forced expiratory volume/ FEV1FVC 2,850 1,397  2,852 1,396 

Fatty acids Serum triglycerides TRG 2,854 1,337  2,856 1,359 

 Total cholesterol TCH 2,853 1,337  2,855 1,359 

Diabetes Fasting insulin FI 2,784 1,273  2,804 1,284 

 Fasting glucose FG 2,784 1,273  2,804 1,283 

Kidney Creatinine CRE 2,330 948  2,314 935 

 Uric acid UA 2,858 1,369  2,859 1,377 

Other White blood cell count WBC 1,411 811  1,326 801 

 Lactate LAC 2,855 1,351  2,848 1,364 
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Table 2.4: Top gene-based phenotype associations which replicated.  This table describes 10 

significant associations which replicated and > 3 individuals contributed to the genotype-

phenotype association.  “Genotype” denotes the heterozygous (“Het”) or homozygous (“Hom”) 

state of LOF individuals.  “LOF sites” (snv, indel) describes the number of variants included for 

the T5 analyses.  T5 betas were standardized (“Std Beta”) by calculating the ratio of beta over 

the standard error. AA = African American; EA = European American; Disc = Discovery strata; 

Rep = Replication strata; Total = Discovery + Replication pooled. 

Genotype Trait Gene 
LOF 

sites 

Ethnicity  T5 p-value Std. 

Beta AA EA  Disc. Rep. Total 

Het Creatinine LHCGR 2 (1,1) 0 3  6.71x10–6 0.01 2.71x10–6 4.69 

 
 

PLEKHG1 3 (1,2) 1 2  9.06x10–6 3.0x10–3 8.70x10–8 5.35 

 Fasting glucose GLIPR1 3 (2,1) 1 2  6.14x10–4 2.48x10–6 9.38x10–9 5.74 

 
 

TXNDC5 7 (4,3) 6 3  6.82x10–4 5.75x10–5 5.62x10–7 5.00 

 FEV1/FVC ratio SEPT10 5 (1,4) 0 5  6.26x10–6 1.21x10–4 3.07x10–6 –4.67 

 Lactate WDR62 3 (1,2) 3 0  8.0x10–3 5.52x10–6 1.91x10–6 4.76 

 Tot. cholesterol PCSK9 6 (3,3) 24 2  8.27x10–5 4.44x10–4 5.25x10–8 –5.44 

 Triglycerides APOC3 4 (3,1) 13 24  1.25x10–9 1.38x10–8 7.98x10–17 –8.33 

 
 

TIGIT 2 (1,1) 2 1  2.74x10–4 3.88x10–3 4.11x10–6 4.61 

Homo Magnesium C1QTNF8 1 (1,0) 0 4  0.02 1.31x10–5 5.20x10–5 4.08 
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the forced vital capacity, FEV/FVC, p=3.07 x 10-6). SEPT10 is contained with a known linkage 

peak for nicotine dependence4, and three of the five LOF carriers were self-reported to be 

former smokers. 

 

Considering that LOF alleles may primarily influence phenotype in the homozygous state13, 

we separately analyzed 1,156 homozygous LOF sites representing 921 genes.  Similar gene-

based T5 tests were performed to compare the phenotype levels in LOF homozygotes to other 

individuals within the sample.  We observed one homozygous association which replicated 

(Table 2.4).  Four individuals were homozygous for LOF mutations in C1q and Tumor Necrosis 

Factor Related Protein 8 (C1QTNF8) and these individuals had elevated serum magnesium 

levels (Figure 2.4b).  This diverse family of genes, including adiponectin, is linked to both 

metabolism and inflammatory processes14, although this particular member is not well-

characterized.  

Discussion 

We identified 10 LOF mutation-phenotype relationships that were both significant and 

replicated, but it is important to more broadly consider the concept of replication in the context 

of rare variant studies.  In this study, 101 genotype-phenotype relationships with compelling 

statistical evidence (p < 4.4x10-6) were exclusive to either the discovery or replication group; in 

these cases, LOF mutations were only present in one or the other sample, but not both.  These 

"absent" replications are not directly supported nor discredited, as they represent chance absence 

of the appropriate rare event (Figure 2.5). 

 



 

Figure 2.5:  LOF variants and genes carrying LOF variants with increasing sample size.  For 

each sample size n, we randomly chose n ARIC individuals and observed the number of LOF 

variants and genes harboring t

average numbers of LOF variants and genes carrying LOF variants for sample size n

 

 

 

 

 

 

 

 

:  LOF variants and genes carrying LOF variants with increasing sample size.  For 

each sample size n, we randomly chose n ARIC individuals and observed the number of LOF 

variants and genes harboring them. This process was repeated 1,000 times to calculate the 

average numbers of LOF variants and genes carrying LOF variants for sample size n
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:  LOF variants and genes carrying LOF variants with increasing sample size.  For 

each sample size n, we randomly chose n ARIC individuals and observed the number of LOF 

hem. This process was repeated 1,000 times to calculate the 

average numbers of LOF variants and genes carrying LOF variants for sample size n. 
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Identification of LOF variation influencing chronic disease risk factors represents a new and 

diverse paradigm in genomic medicine.  LOF variation in certain genes, such as TXNDC5, may 

predispose individuals to develop disease.  Further characterization of these risk loci will allow 

 researchers and clinicians to better understand the pathways and mechanisms underlying 

disease risk, and to develop prevention strategies for at-risk patients as DNA sequencing moves 

inevitably towards common clinical practice.  LOF variation can also have a protective, risk-

lowering effect on their carriers. When coupled with knowledge about lack of other adverse 

effects, such LOF mutations may translate into novel drug targets.  For example, LOF variants 

in PCSK9 are associated with reduced LDL-cholesterol levels and incident coronary heart 

disease, fueling a burgeoning and successful effort to identify PCSK9 inhibitors15.   

Discovery of novel gene associations via exome sequencing has many challenges, and 

represents a classic problem related to the signal-to-noise ratio. This study employed three ways 

to increase signal in whole exome sequence analyses. First, by including biochemical measures 

of risk factor levels, we optimize the size of a gene’s effect relative to the corresponding disease 

endpoint.  Second, the data presented here reinforces the need to have ethnic diversity in 

sequence-based gene discovery studies because the sentinel signals may be race-specific.  And 

third, by careful annotation of the sequence motifs and variation, in this case by focusing on 

LOF variation, we increase the likelihood of detecting a functional effect.  As we make the 

transition from whole exome sequencing to whole genome sequencing16 careful annotation of 

variants with functional effect will become even more important and challenging.  

Methods 

Sample Ascertainment 
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Whole exome sequence data was derived from 8,554 individuals (5,718 EA; 2,836 AA) 

sampled from the Atherosclerosis Risk in Communities (ARIC) study cohort. Each ancestry 

group was then randomly divided in half to create two non-overlapping and identically-sized 

groups of 1,418 AA and 2,859 EA individuals for discovery and replication.  EA individuals 

were selected as part of a large cohort random sample or had extreme values for at least one of 

the following phenotypes: age at menopause, electrocardiogram QT interval, fasting blood 

glucose, fibrinogen level, renal function, Stamler-Kannel-like extremes of risk factors selected 

by principal components, and waist-to-hip ratio. ARIC AA samples were randomly selected 

within the ARIC cohort for whole exome sequencing.  A detailed description of the ARIC study 

is provided elsewhere24. 

 

Phenotying 

For these analyses, we selected heart/lung/blood phenotypes related to cardiovascular 

outcomes that were (1) specifically not included in the sampling design to reduce potential bias 

and (2) measured across the entire cohort to maximize sample size.  The full set of phenotypes 

included in these analyses is listed in Table 2.3.  Serum magnesium (Mg) was measured using 

the metallochromic dye, Calmagite. Phosphorus (P), calcium (Ca), and creatinine (CRE) levels 

were measured using methods based on ammonium molybdate, o-cresolphthalein complexone, 

and modified kinetic Jaffe-picric acid, respectively. Serum potassium (K) and sodium (Na) 

levels were measured with a direct electrochemical technique. The liver enzymes, aspartate 

transaminase (AST), alanine aminotransferase (ALT) and gamma-glutamyl transpeptidase 

(GGT) were measured using standard methods.  Blood pressure was measured using a 

standardized Hawskley random-zero mercury column sphygmomanometer with participants in a 
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sitting position after a resting period of 5 minutes. The size of the cuff was chosen according to 

the arm circumference. Three sequential recordings for systolic (SBP) and diastolic blood 

pressure (DBP) were obtained; the mean of the last two measurements was used in this analysis, 

discarding the first reading. Forced vital capacity (FVC) and the ratio of forced expiratory 

volume in one second (FEV1) to FVC were measured using a spirometer and the Pulmo-Screen 

II software. Triglycerides (TRG) and total cholesterol (TCH) were measured after an overnight 

fast using enzymatic methods. Fasting insulin (FI) was measured via radioimmunoassay. 

Glucose (FG) was measured with the hexokinase method on individuals having fasted > 8 hours 

prior to obtain fasting glucose.  Uric acid (UA) was measured by the Uricase method. White 

blood cell (WBC) count was determined by an automated particle counter.  Lactate (LAC) was 

measured using an enzymatic reaction that converts lactate to pyruvate.  

 

Whole exome sequencing 

DNA sequencing was performed on Illumina HiSeq instruments (San Diego, CA) after 

exome capture with VChrome2.1 (NimbleGen, Inc., Madison, WI) using chemistry 

recommended by the manufacturer.  Sequence alignment and variant calling were performed 

using the Mercury pipeline in the DNA Nexus41. 

 

Variant calling and quality control 

Mapping against Genome Reference Consortium Human Build 37 (GRCh37) was done 

using Burrows-Wheeler Alignment (BWA)42 and allele calling and variant call file construction 

was performed with the Atlas2 suite (Atlas-SNP and Atlas-Indel) to produce a variant call file 

(VCF)43.  The VCF includes filters for low-quality sites which were omitted from analyses, 
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including low-quality single nucleotide variants with a SNP posterior probability less than 0.95, 

total depth of coverage less than 10x, an allelic fraction < 0.1, 99% reads in a single direction 

and homozygous reference alleles with < 6x coverage.  Similar, but stricter filters were applied 

to identify low-quality indels with the following differences: (1) minimum total depth < 60, (2) 

allelic fraction < 0.2 for heterozygous variants (< 0.8 for homozygous variants) and (3) variant 

reads < 30.  

 

Validation 

We validated a subset of LOF candidate genotypes using independent platforms with an 

emphasis on indels.  We used targeted sequencing methods (Sequenom and Sanger) and 

observed a validation rate of 97.4% for SNV and 92.5% for LOF indel sites (Table 2.5). 

This study took advantage of two opportunities to validate LOF variants detected by the 

Illumina HiSeq instrument and the Mercury data processing pipeline. First, 2,649 SNV LOF 

sites observed within our sample were also targeted on the Illumina exome chip44.  Within this 

overlap, 98% of genotypes were identical between these two platforms. Second, we selected 263 

LOF genotypes (176 indel, 87 snv) to validate on independent platforms (Table 2.5). These 

variants were a mixture of our top phenotype association results presented in Table 2.4 and 

convenience sample of other sites, with oversampling of indels because of previous experience 

with their validation rates. These genotypes represent 147 unique LOF sites (126 indel, 21 

SNV).  Validation genotypes were re-genotyped via both Sanger sequencing and a targeted 

Sequenom panel.  Twenty-four genotypes failed both assays. Concordant genotypes were 

observed for 225 LOF genotypes (148 indel, 77 snv), and at least one platform was discordant 

for 14 genotypes. Of note, none of the 14 discordant genotypes failed to validate on both  
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Table 2.5: Summary of Sanger/Sequenom validation rate by LOF class.  Validation procedures 

are described in detail in the Methods Summary and Supplement IIb.  “Selected genotypes” = 

number of LOF HiSeq genotypes submitted for validation via Sanger/Sequenom; “Failed 

genotypes” = no results from validation assay; “Remaining genotypes” = Submitted - Failed; 

“Conflicting genotypes” = Sanger/Sequenom genotypes do not match HiSeq; “Validated 

genotypes” = Sanger/Sequenom genotypes match HiSeq; “Validation Rate” = “Validated 

genotypes” / “Remaining genotypes”. 

 

Validation Status SNP INDEL Total 

Selected genotypes 87 176 263 

Failed genotypes 8 16 24 

Remaining genotypes 79 160 239 

Conflicting genotypes 2 12 14 

Validated genotypes 77 148 225 

Validation Rate 0.974 0.925 0.941 
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platforms and represent inconsistencies between the validation platforms. Thus, using 

definitions that are common in the field, the observed validation rate for sites was 100%, and the 

observed validation rate for genotypes was 94.1% (225/(263-24)).  More specifically the 

observed rate for genotypes was 97.4% for SNV and 92.5% for indel sites, and this may be a 

conservative underestimate of the true validation rate of our Illumina HiSeq data.  

 

Annotation 

We defined loss-of-function variation as sequence changes predicted to trigger 

nonsense-mediated decay of mRNA transcripts derived from all isoforms of a given gene.  

Thus, the basic annotation29 categories of variation analyzed were premature stop codons, 

essential splice site disrupting, and indels predicted to disrupting the downstream reading frame.  

We further enriched for variants likely to abolish protein formation by identifying and excluding 

(1) stop-gain mutations occurring in the terminal gene exon, and (2) LOF candidates which did 

not map to chromosomal coordinates used by all gene isoforms for a given gene (“low-

confidence-partial” (LCP)). Finally, we excluded candidate LOF sites with a MAF > 0.5 and 

genes lacking introns or designated non-protein-coding by RefSeq. 

We used resampling methods to determine the relationship between sample size and 

LOF variant ascertainment.  For each sample size n, we randomly chose n samples from the 

total samples and counted both the number of LOF variants observed and the number of genes 

carrying LOF variants. We repeated the process 1,000 times and calculated the average numbers 

of LOF variants and genes carrying LOF variants for sample size n. Table 2.5 shows the 

average numbers of LOF variants and genes carrying LOF variants with increasing sample size.  
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Genotype-phenotype association 

A gene-based burden test (T5)32 was used to evaluate the association between 

aggregated rare LOF variants and phenotypes.  We chose to employ this test due its 

interpretable detection of unidirectional phenotype mean shifts between LOF carriers and non-

carriers.  The following phenotype transformations were performed for T5 analyses: ALT, AST, 

CRE, FI, and LAC underwent natural log transformation; FEV1FVC, GGT and MG underwent 

power transformation; CA was corrected using the following formula: total calcium (mmol/l) + 

([40 - serum albumin (g/dl)] * 0.025).  TCH was adjusted (TCH/0.8) only among statin users; 

measured SBP and DBP were respectively adjusted by +15 mmHg and +10 mmHg for 

individuals taking anti-hypertensive medication; all other traits did not require transformation.  

T5 tests were implemented using the SeqMeta package available in Cran R (http://cran.r-

project.org/web/packages/seqMeta/), and only associations that were 1) independently detected 

in both sample strata, 2) persisted with the inclusion of all samples, and 3) driven by > 3 

individuals are presented in Table 2.4.  Allele frequencies were calculated separately for each 

ancestry group and only variants with an observed MAF < 5% were included in ancestry-

specific analyses.  Based on a Bonferroni correction procedure for the number of genes in our 

sample presenting LOF variation (n = 11,260), a p-value of 4.4x10-6 was considered statistically 

significant.  Similarly, a p-value of 5.42x10-5 was considered significant for associations driven 

by homozygous individuals, adjusting for the number of genes presenting homozygous LOF 

genotypes (n=921).  Quantile-quantile plots of all T5 p-values are provided in Figure 2.6 and 

Figure 2.7. 
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OP Ratio 

We developed the OP ratio (“Observed” /”Potential”) as a gene-based metric to quantify 

LOF variation while accounting for transcript size, and as a useful tool to compare the rate of 

LOF variation in different gene groups. This metric is the ratio of the number of observed LOF  

sites in a gene to the number of possible LOF sites that could arise due to single-nucleotide 

substitutions.  We compared the OP ratio to other measures of gene variability.  We used the 

egenetics database30 to rank all genes by the number of tissues where they are stably expressed, 

calling the top 5% of this list "universally expressed".  On average, we observe a smaller OP 

ratio within stably expressed genes compared to all others (Figure 2.3a). Similarly, we sorted 

the genes according to the number of known protein interactions according to 

ConsensusPathDB31, and categorized the top 5% of these genes as "highly-interacting genes". 

This gene group also has a smaller OP ratio on average compared to other genes (Figure 2.3b). 

We compared our OP ratio with the Residual Variation Intolerance Score (RVIS)32 for 

15,053 genes having both OP ratio and RVIS available. RVIS is based on the ratio of common 

non-synonymous and splicing-site SNPs to the total numbers of coding SNPs using the 

ESP6500 dataset. Both the OP ratio and RVIS are designed to measure the gene tolerance of 

damaging amino acid changes, but are different as to the way of measurement and the databases 

they are based on. Both the Pearson’s correlation coefficient (0.204) and the Spearman’s rank 

correlation coefficient (0.229) between the two scores are highly statistically significant (p ~=0), 

although we do not see clear linear relationship between them (Figure 2.8).  
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Figure 2.6: Quantile-quantile plots of p-values from T5 associations with 20 phenotypes.  The 

95% confidence intervals are depicted and each dot represents one gene.  Phenotype symbols 

are defined in Supplementary table 2. 
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Figure 2.7:  Quantile-quantile plots of p-values from T5 homozygous associations with 20 

phenotypes.  The 95% confidence intervals are depicted and each dot represents one gene.  

Phenotype symbols are defined in Supplementary table 2. 

 

 

 



 

Figure 2.8: Relationship between OP ratio and RVIS for 15,053 genes.  The y

OP ratio and the x-axis shows RVIS scores

represents one gene.   

 

 

 

 

 

 

 

Relationship between OP ratio and RVIS for 15,053 genes.  The y

axis shows RVIS scores as described by Petrovski et al48.  Each circle 

 

34 

Relationship between OP ratio and RVIS for 15,053 genes.  The y-axis depicts the 
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Chapter 3: Metabolite intermediate phenotypes 
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Introduction 

 Complex molecular interactions between the products of gene function and external 

environmental influences underlie and culminate in the gross anatomic, metabolic, and 

physiologic traits analyzed in the other chapters of this thesis (e.g., lung function, blood 

pressure, cardiac birth defects, etc).  Many of these molecular interactors are mediated by small 

molecule metabolites, and the totality of these small molecules in a system is referred to as the 

human metabolome. 

 Many features of the metabolome are appealing for genetic association studies.  First, 

metabolites may be directly encoded by genes or may function in close biological proximity to 

gene products.  For example, they can serve as substrates for enzymes that are directly encoded 

by genes49.  This proximity increases the interpretability of associations, and may also reduce 

the possibility for confounding by interaction with networks of other small molecules.  Next, the 

metabolites may serve as biomarkers for disease prediction before the onset of clinically 

recognized symptoms.  For example, amino acid profiles within individuals have recently been 

used to predict coronary artery disease50, myocardial infarction51, and other cardiovascular 

outcomes52.  Finally, metabolites are readily quantifiable.  Recent technological advances allow 

high-throughput quantification of these small molecules comprising the human metabolome.  

Bioanalytical techniques emerging from advances in high-performance liquid-phase 

chromatography (HP-LPC) allow for simultaneous measurement of hundreds of small 

molecules within a single blood sample. 

Metabolites have been studied at the population level through genome wide association 

studies (GWAS). The loci identified in GWAS of the metabolome have presented with large 

effect sizes and provide insight into the biological actions of the associated regions leading to an 
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effect on the trait of interest53,54.  For example, genetic markers may map near genes that encode 

enzymes or transporters with a biological function relevant to the associated small molecule.  

However, the majority of the genetic markers driving these GWAS signals do not directly map 

to protein-encoding genes.  One explanation is that the polymorphisms genotyped in GWAS are 

not causal; rather they may be linked to and in linkage disequilibrium with a deleterious variant 

that is directly driving the observed associations.   

LOF allelic variation has great potential to influence the human metabolome but has not 

yet been studied.  First, this type of variation is predicted to have direct effects on gene action, 

including metabolite levels and the proteins that regulate those levels.  Thus, associations driven 

by LOF variation may be very interpretable, especially if this variation disrupts the function of a 

gene whose action may influence the metabolite of interest.  In addition, this functional class of 

variation is enriched at the rare end of the allele frequency spectrum compared to protein-

altering sequences. Thus, it seems likely that a significant portion of loci associated with 

metabolome phenotypes may harbor rare LOF variation contributing to these associations.  

 

Methods 

Study Population  

The Atherosclerosis Risk in Communities (ARIC) study is a prospective epidemiological 

study designed to investigate the etiology and predictors of cardiovascular disease (CVD).  A 

detailed description of the ARIC study design and methods is published elsewhere40. Basic 

cardiovascular risk factors were measured at each visit, and cardiovascular endpoints, such as 

heart failure were ascertained annually using telephone interviews and hospital medical record 

review.  Detailed demographics are provided in Table 3.1.   
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Table 3.1: Baseline Characteristics of African Americans in ARIC for whole exome sequencing 

analyses (N=1,361).  For continuous variables, mean values ± standard deviations are shown.  

Circulation. Cardiovascular genetics: 8 January 2015 - Volume 8 - Issue 17 - p 351-355. 

American Heart Association, Inc ©. 

 

Characteristic  n (%) or Mean (SD) 

Age, years 52.5 ± 5.6 

Body mass index, kg/m2 29.8 ± 6.2 

Male, n (%) 464 (34.1) 

Hypertension, n (%) 705 (51.8) 

Diabetes, n (%) 190 (14.0) 

Current smoker, n (%) 377 (27.7) 

Prevalent coronary heart disease, n 49 (3.6) 

Systolic blood pressure, mm Hg 126.9 ± 19.0 

Diastolic blood pressure, mm Hg 80.2 ± 11.4 

HDL cholesterol, mg/dL 56.1 ± 17.4 

LDL cholesterol, mg/dL 135.2 ± 38.0 

Triglycerides, mg/dL 106.2 ± 55.9 

Total cholesterol, mg/dL 212.5 ± 40.0 

. 
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Metabolome Measurements 

Metabolite profiling was measured using fasting serum samples collected from the 

baseline visit (1987-1989) of ARIC African-Americans study participants.  A total of 602 

metabolites were detected and quantified by Metabolon Inc. (Durham, USA) using an 

untargeted, gas chromatography-mass spectrometry (GC-MS) and liquid chromatography-mass 

spectrometry (LC-MS)-based metabolomic quantification protocols55,56.  Metabolites were 

excluded if: 1) more than 50% of the samples presented values below the platform detection 

limit; or 2) the chemical structure was unknown.  After filtering based on these criteria, a total 

of 308 named metabolites were included in the present study; 83 amino acids, 16 carbohydrates, 

9 cofactors and vitamins, 7 energies, 136 lipids, 12 nucleotides, 25 peptides and 20 xenobiotics 

(Table 3.2). 

 

Whole Exome Sequencing and Variant Validation 

Whole exome sequence (WES) was performed using Illumina HiSeq 2000 (Illumina, 

San Diego, CA, USA) and VCRome2.1 capture reagents (Roche NimbleGen, Madison, WI, 

USA).  Sequences were aligned to the hg19 reference genome using Burrows–Wheeler 

Aligner42.  Allele calling and variant call file (VCF) construction was performed using the 

Atlas2 suite43 (Atlas-SNP and Atlas-Indel) to produce a VCF file.  Single nucleotide variants 

were excluded if they had a posterior probability less than 0.95, total depth of coverage less than 

6x, allelic fraction < 0.1, 99% of reads in a single direction and homozygous reference alleles 

with < 6x coverage.  Low-quality indels were excluded if they had minimum total depth < 30, 

allelic fraction < 0.2 for heterozygous variants and < 0.8 for homozygous variants and variant 

reads < 10.   
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Table 3.2: List of 308 metabolites included in this study.  This table includes the category, 

number of metabolites (n), and the names of specific metabolites included in these analyses. 

Category n  Metabolites 

Amino acid 83 2-aminobutyrate; 2-hydroxybutyrate (AHB); 2-hydroxyisobutyrate; 2-
methylbutyroylcarnitine; 3-(4-hydroxyphenyl)lactate; 3-hydroxy-2-

ethylpropionate; 3-hydroxyisobutyrate; 3-indoxyl sulfate; 3-methoxytyrosine; 
3-methyl-2-oxovalerate; 3-methylhistidine; 3-phenylpropionate 

(hydrocinnamate); 4-acetamidobutanoate; 4-guanidinobutanoate; 4-methyl-2-
oxopentanoate; 5-oxoproline; alanine; alpha-hydroxyisocaproate; alpha-
hydroxyisovalerate; anthranilate; arginine; asparagine; aspartate; beta-
hydroxyisovalerate; betaine; C-glycosyltryptophan; citrulline; creatine; 

creatinine; cysteine; dimethylarginine (SDMA + ADMA); dimethylglycine; 
glutamate; glutarate (pentanedioate); glutaroyl carnitine; glycine; histidine; 

homocitrulline; homostachydrine; hydroxyisovaleroyl carnitine; indoleacetate; 
indolelactate; indolepropionate; isobutyrylcarnitine; isoleucine; 

isovalerylcarnitine; kynurenine; leucine; lysine; methionine; methionine 
sulfoxide; N6-acetyllysine; N-acetylalanine; N-acetyl-beta-alanine; N-

acetylglycine; N-acetylornithine; N-acetylphenylalanine; N-acetylserine; N-
acetylthreonine; N-methyl proline; o-cresol sulfate; ornithine; p-cresol sulfate; 

phenol sulfate; phenylacetate; phenylacetylglutamine; phenylalanine; 
phenyllactate (PLA); pipecolate; proline; pyroglutamine; serine; serotonin 

(5HT); stachydrine; threonine; tiglyl carnitine; trans-4-hydroxyproline; 
tryptophan; tryptophan betaine; tyrosine; urea; urocanate; valine 

Carbohydrate 
 

16 1,5-anhydroglucitol (1,5-AG); 1,6-anhydroglucose; arabinose; erythronate; 
erythrose; fructose; gluconate; glucose; glucuronate; glycerate; lactate; 

mannitol; mannose; pyruvate; threitol; trehalose 

Cofactors 
and vitamins 

 

9 alpha-tocopherol; arabonate; bilirubin (E,E); bilirubin (Z,Z); biliverdin; 
gamma-tocopherol; pantothenate; pyridoxate; threonate 

Energy 
 

7 acetylphosphate; cis-aconitate; citrate; malate; phosphate; succinate; 
succinylcarnitine 

Lipid 
 

136 1,2 propanediol; 10-heptadecenoate (17:1n7); 10-nonadecenoate (19:1n9); 13-
HODE + 9-HODE; 1-arachidonoylglycerophosphocholine; 1-

arachidonoylglycerophosphoethanolamine; 1-
arachidonoylglycerophosphoinositol; 1-

docosahexaenoylglycerophosphocholine; 1-
docosapentaenoylglycerophosphocholine; 1-

eicosadienoylglycerophosphocholine; 1-eicosatrienoylglycerophosphocholine; 
1-heptadecanoylglycerophosphocholine; 1-linoleoylglycerophosphocholine; 1-
linoleoylglycerophosphoethanolamine; 1-myristoylglycerophosphocholine; 1-

O-hexadecylglycerophosphocholine; 1-oleoylglycerol (1-monoolein); 1-
oleoylglycerophosphocholine; 1-oleoylglycerophosphoethanolamine; 1-

palmitoleoylglycerophosphocholine; 1-palmitoylglycerol (1-monopalmitin); 1-
palmitoylglycerophosphocholine; 1-palmitoylglycerophosphoethanolamine; 1-
palmitoylglycerophosphoinositol; 1-pentadecanoylglycerophosphocholine; 1-

stearoylglycerol (1-monostearin); 1-stearoylglycerophosphocholine; 1-
stearoylglycerophosphoethanolamine; 1-stearoylglycerophosphoinositol; 21-
hydroxypregnenolone disulfate; 2-arachidonoylglycerophosphocholine; 2-

arachidonoylglycerophosphoethanolamine; 2-hydroxyglutarate; 2-
hydroxyoctanoate; 2-hydroxypalmitate; 2-hydroxystearate; 2-

linoleoylglycerophosphocholine; 2-linoleoylglycerophosphoethanolamine; 2-
oleoylglycerophosphocholine; 2-oleoylglycerophosphoethanolamine; 2-

palmitoylglycerophosphocholine; 2-palmitoylglycerophosphoethanolamine; 2-
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stearoylglycerophosphocholine; 3-carboxy-4-methyl-5-propyl-2-
furanpropanoate (CMPF); 3-dehydrocarnitine; 3-hydroxybutyrate (BHBA); 3-

hydroxydecanoate; 4-androsten-3beta,17beta-diol disulfate 1; 4-androsten-
3beta,17beta-diol disulfate 2; 5alpha-androstan-3beta,17beta-diol disulfate; 

5alpha-pregnan-3beta,20alpha-diol disulfate; 5-dodecenoate (12:1n7); 5-HETE; 
7-alpha-hydroxy-3-oxo-4-cholestenoate (7-Hoca); 7-beta-hydroxycholesterol; 

acetylcarnitine; adipate; adrenate (22:4n6); andro steroid monosulfate 2; 
androsterone sulfate; arachidonate (20:4n6); azelate (nonanedioate); caprate 

(10:0); caproate (6:0); caprylate (8:0); carnitine; cholate; cholesterol; choline; 
cis-vaccenate (18:1n7); cortisol; cortisone; decanoylcarnitine; 

dehydroisoandrosterone sulfate (DHEA-S); deoxycarnitine; deoxycholate; 
dihomo-linoleate (20:2n6); dihomo-linolenate (20:3n3 or n6); 

docosahexaenoate (DHA; 22:6n3); docosapentaenoate (n3 DPA; 22:5n3); 
docosapentaenoate (n6 DPA; 22:5n6); dodecanedioate; eicosapentaenoate 

(EPA; 20:5n3); eicosenoate (20:1n9 or 11); epiandrosterone sulfate; glycerol; 
glycerol 3-phosphate (G3P); glycerophosphorylcholine (GPC); 
glycochenodeoxycholate; glycocholate; glycocholenate sulfate; 
glycodeoxycholate; glycolithocholate sulfate; heptanoate (7:0); 

hexadecanedioate; hexanoylcarnitine; hyodeoxycholate; inositol 1-phosphate 
(I1P); isovalerate; laurate (12:0); laurylcarnitine; linoleate (18:2n6); 

linolenate[alpha or gamma; (18:3n3 or 6)]; margarate (17:0); methyl palmitate; 
myo-inositol; myristate (14:0); myristoleate (14:1n5); nonadecanoate (19:0); 

octadecanedioate; octanoylcarnitine; oleate (18:1n9); oleoylcarnitine; palmitate 
(16:0); palmitoleate (16:1n7); palmitoyl sphingomyelin; palmitoylcarnitine; 

pelargonate (9:0); pregn steroid monosulfate; pregnen-diol disulfate; 
propionylcarnitine; scyllo-inositol; sebacate (decanedioate); stearate (18:0); 
stearidonate (18:4n3); stearoyl sphingomyelin; stearoylcarnitine; suberate 

(octanedioate); taurochenodeoxycholate; taurocholate; taurocholenate sulfate; 
taurolithocholate 3-sulfate; tetradecanedioate; undecanedioate; undecanoate 

(11:0); valerate 

Nucleotide 
 

12 5-methyluridine (ribothymidine); 7-methylguanine; adenosine; allantoin; 
guanosine; hypoxanthine; inosine; N1-methyladenosine; pseudouridine; urate; 

uridine; xanthine 

Peptide 
 

25 [H]HWESASLLR[OH]; alanylleucine; alpha-glutamylglutamate; 
aspartylphenylalanine; bradykinin, des-arg(9); DSGEGDFXAEGGGVR; 

gamma-glutamylalanine; gamma-glutamylglutamate; gamma-
glutamylisoleucine; gamma-glutamylleucine; gamma-glutamylphenylalanine; 
gamma-glutamylthreonine; gamma-glutamyltyrosine; gamma-glutamylvaline; 

glycylleucine; glycylphenylalanine; glycyltyrosine; glycylvaline; HWESASXX; 
HXGXA; leucylleucine; leucylphenylalanine; pro-hydroxy-pro; 

pyroglutamylglycine; threonylphenylalanine 

Xenobiotics 
 

20 1,7-dimethylurate; 1-methylurate; 2-hydroxyhippurate (salicylurate); 3-
ethylphenylsulfate; 4-ethylphenylsulfate; 4-hydroxyhippurate; 4-vinylphenol 
sulfate; 5-acetylamino-6-amino-3-methyluracil; benzoate; caffeine; catechol 
sulfate; erythritol; glycerol 2-phosphate; hippurate; paraxanthine; piperine; 

salicylate; theobromine; theophylline; thymol sulfate 
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Following statistical analysis, all significantly associated variants were validated using 

an orthogonal laboratory technology (i.e. Array-based genotyping44, Sequenom genotyping, or 

Sanger sequencing).  All reported genotypes driving associations were successfully validated. 

 

Statistical Analyses 

LOF variants included in this study were defined as premature stop codons occurring in 

the non-terminal gene exon, essential splice site disrupting (+ 2bp), and indels predicted to 

disrupt downstream reading frame.  T5 tests32
  were performed to evaluate the joint effects of 

rare alleles (MAF<5%) in a gene, and were conducted on each metabolite after adjusting for 

age, gender, estimate glomerular filtration rate calibrated (eGFR)57
 and population structure. 

Statistical significance was defined as a p-value < 1.3 × 10-7 for T5 tests (Bonferroni correction 

of 395,780 tests: 1,285 genes × 308 metabolites).  Metabolite levels were natural log-

transformed prior to the analysis.  All the analyses were performed using R (www.r-project.org). 

 

Results 

Metabolite associations 

WES of the 1,361 African-American ARIC participants also measured for these 

metabolites revealed 12,522 polymorphic LOF variants (5,060 stopgains, 2,599 splice and 4,863 

frameshift indels) representing 7,038 genes.  Each sample contained an average of 111.7 

heterozygous and 14.5 homozygous LOF variants.  

The effect of LOF variation on 308 metabolites was analyzed by gene-based aggregation 

of these variant sites.  Eight genes harboring 17 LoF variants (7 stopgains, 3 splice and 7 

frameshift indels) were identified to be significantly associated with eight metabolites levels (p 
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< 1.3 × 10-7, Table 3.3), and these variants were related to 19-50% change of the geometric 

mean for metabolite levels depending on the particular metabolite.  As expected26, we observed 

that LOF variants in PCSK9 had lower cholesterol levels compared to the non-carriers (p = 

5.4×10-9).  However, we also highlight several novel associations with compelling underlying 

biology.   

We observed 3 LOF variants in the gene Histidine Ammonia Lyase (HAL) that were 

strongly associated with decreased levels of Histidine (published, 2015)58.  Histidine is an 

antioxidant and anti-inflammatory factor (Figure 3.1a).  In addition to these features, HAL 

plays an essential role in the catabolism of Histidine (Figure 3.2b).  The 24 carriers of LOF 

variation in this gene collectively presented a 29.7% increase in histidine’s geometric mean and 

explained 4.8% of its variance (Figure 3.1c), and the direction of this effect (increase) is 

consistent with the expectation given the role of HAL in Histidine biology.  The association 

between R322X was replicated in an independent samples of 718 ARIC study participants with 

both exome chip data and serum histidine levels (p=1.2x10-4)58.  

We also observed a LOF splice variant in SLCO1B1 which was associated with high 

levels of hexadecanedioate (p = 2.2×10-9), a C16 dicarboxylic acid (manuscript submitted).  

SLCO1B1 is an organic ion transporter expressed at high levels in the liver59, and follow-up 

studies showed this variant has pleiotropic effects on tetradecanedioate, a C14 dicarboxylic acid 

(p = 9.0×10-5).  

Considering that LOF may act recessively, we also observed samples with homozygous 

stop mutations in two genes (LRRC69, SLCO1B1) who also presented extreme values for 

metabolites. The presentation of hexadecanedioate within SLCO1B1 heterozygotes is described 

above, but the single homozygous sample presented levels of this metabolite in the tail of this  
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Table 3.3. Eight significant gene-metabolite associations identified among African Americans 

in ARIC.  SE = standard error; cMAC = cumulative minor allele count. 

Metabolite Pathway Gene P Beta (SE) cMAC 

Histidine Amino acid HAL 2.3×10-13 0.23 (0.03) 26 

Methionine sulfoxide Amino acid C6orf25 1.3×10-8 -0.45 (0.08) 9 

Mannose Carbohydrate TEX15 7.9×10-9 -0.70 (0.12) 10 

Cholesterol Lipid PCSK9 5.4×10-9 -0.21 (0.04) 30 

Deoxycarnitine Lipid LRRC69 8.5×10-16 -0.42 (0.05) 17 

Hexadecanedioate Lipid SLCO1B1 2.2×10-9 0.38 (0.06) 67 

5-HETE Lipid FAM198B 4.5×10-9 -0.38 (0.07) 14 

Urate Nucleotide LRRC46 1.1×10-7 -0.44 (0.08) 10 

. 
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Figure 3.1:  HAL LOF alleles and their association with histidine levels.  (A) Three LOF 

variants in HAL among African Americans in ARIC; (B) Flow chart of HAL gene function; (C) 

Histidine levels in HAL LOF carriers and noncarriers, the error bard indicate standard deviation.  

Image via: Circulation. Cardiovascular genetics: 8 January 2015 - Volume 8 - Issue 17 - p 351-

355. American Heart Association, Inc ©. 
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distribution (Figure 3.2b).  Similarly, we observe extremely low levels of deoxycarnitine in a 

single sample with homozygous LOF variation in LRRC69 (Figure 3.2a).  

Discussion 

Using high-throughput metabolomic and genomic sequence technologies, we carried out 

extensive analysis to evaluate the effect of predicted LOF mutations on the human serum 

metabolome. This study identified nine genes that were associated with ten metabolite levels 

among African-Americans, and seven out of the nine genes represent novel findings (Table 

3.3).  Our results provide new insights into the genetic architecture of the human metabolome 

among African-Americans, including the possible identification of LOF variation as a 

biomarker for a protective effect against coronary heart disease58. 

Inborn errors formed the earliest understanding of genetic architecture on human 

metabolism60.  Over a hundred genes with multiple variants were reported to be associated with 

multiple metabolites by GWASs of the metabolome53,61, but only in a few cases has the 

underlying functional variant(s) been identified that are responsible for the observed association. 

Thus far, hundreds of causal genes for severe inherited disorders of metabolism have been 

discovered, and the majority of the causal variants identified have been shown to be rare. 

Sequencing large numbers of samples and annotating clear functional categories of the detected 

variations provides one path leading toward identifying novel genes and variants contributing to 

complex phenotypes.  Here, we report here that LOF mutations observed in the general 

population are related to human metabolome, and this approach provides a strategy for 

identifying novel disease genes.  

Histidine is an essential amino acid in humans and other mammals, and a precursor for 

histamine and carnosine biosynthesis.  The enzyme encoded by HAL catalyzes the first reaction  



 

Figure 3.2. Distribution of metabolite levels among LoF mutation carriers
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in Histidine catabolism, and missense mutations in this gene cause autosomal recessive  

histidinemia (MIM:609457).    Histidine levels in the blood exceeding 6 mg/dL are one marker 

for the diagnosis of this disorder.  In this study, 24 study participants with LOF variation in HAL 

present elevated serum histidine (mean 1.5 mg/dL; Figure 3.1; Figure 3.3), suggesting a milder 

subclinical form may be present in these carriers.  Histidine has anti-inflammatory properties62 

and low levels are associated with inflammatory diseases such as chronic kidney disease63 and 

rheumatoid arthritis64.   Inflammatory cytokines are also related to the early stages of 

atherosclerosis and coronary heart disease (CHD)65.  Follow-up analyses within ARIC and other 

cohorts revealed an association between high levels of histidine and a reduced risk for CHD58.  

These results suggest that HAL and other members of the nuclear factor-κB pathway66 may 

represent therapeutic targets for CHD and other inflammatory disorders.   

Common non-functional variants tagging SLCO1B1 have been reported in GWAS to be 

associated with fatty acids levels, including tetradecanedioate and hexadecanedioate53.  

SLCO1B1 encodes a protein that mediates the cellular uptake of numerous endogenous 

compounds and is involved in clearing many drug compounds, including the statin drug class 

which lowers cholesterol67.  In this study, we observed associations between LOF variation in 

SLCO1B1 with tetradecanedioate and hexadecanedioate. Little is known about these two 

medium chain fatty acids, except a recent study showed that their levels are increased in the 

lung tissue of patients with pulmonary arterial hypertension (PAH)68.  Follow up analyses reveal 

that LOF alleles in SLCO1B1 are associated with high risk of heart failure in an extended 

sample of ARIC participants (data not shown). The findings indicate a possible causal effect of 

SLCO1B1 on HF via altered fatty acids metabolism and uptake. 

 



 

Figure 3.3: Quantile-quantile plots of T5 

Circulation. Image adapted from: 

17 - p 351-355. American Heart Association, Inc 

 

 

 

 

 

 

 

 

 

 

 

quantile plots of T5 test on histidine levels in ARIC African Americans.  

Image adapted from: Cardiovascular genetics: 8 January 2015 - 
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The mechanisms potentially underlying other associations we detected are less clear.  As 

the collection of data (genetic and phenotypic) becomes increasingly larger, granular, and higher 

quality, interpretation of findings rather than data collection become rate limiting.  Cross-

referencing analytical results with large public databases cataloguing metabolite function, such 

as the Human Metabolome Database (HMDB, http://www.hmdb.ca/) is a one approach to 

interpret associations with the greatest potential to impact healthcare.  This data-driven approach 

does not preclude the collaboration between genetic analysts, clinicians, and phenotype 

specialists; rather it serves as additional tool for facilitating discovery.  In addition, model 

organisms remain an essential tool for the study of specific mutational activity in vivo, although 

they are not high-throughput and rely on the a priori detection of strong analytical candidates.   

In summary, we report here the first whole exome LOF study of the untargeted 

metabolome in African-Americans.  Our findings illuminate the value of utilizing deep 

phenotype collection methods (“-omic”) studies in cohort studies to provide new insights and 

generate new hypotheses into gene function and disease etiology.  We identify LOF variation in  

eight genes which may make promising drug targets, especially HAL which regulates histidine 

and is linked to lowered risk of coronary heart diseae58.  While the analysis of large “-omic” 

data sets may seems like an insurmountable challenge for researchers, these findings reveal that 

functional and biological paradigms (such as LOF variation) can be used to inform association 

studies and make significant and clinically interpretable findings.  
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Chapter 4: Rare Congenital Cardiovascular Malformation 
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Introduction 

Severe congenital cardiovascular malformations (CVMs) occur in 5-8/1000 live births 

and have a high mortality rate compared to other birth defects69,70.  Left Ventricular Outflow 

Tract Obstructions (LVOTO) comprise 15-20% of severe CVMs71,72 , and include Hypoplastic 

Left Heart Syndrome (HLHS), Aortic Valve Stenosis (AS), Coarctation of the Aorta (CoA),  

Interrupted Aortic Arch Type A (IAAA), Mitral Stenosis and Shone Complex (Figure 4.1).  

This diverse family of cardiac conditions share underlying mechanisms driven by altered or 

obstructed blood through the left side of the heart during development73.   

Genetic contributions to the development of LVOTO are complex and include single 

nucleotide substitutions, chromosome abnormalities74,  genomic disorders75 and oligogenic 

inheritance76.  Over 30 genes have been previously implicated in human syndromes including 

LVOTO-type malformations. These loci include HLHS ( ZIC3, TBX5, CREBBP, ACVR2B, 

LEFTY2, DTNA, DHCR7, EVC1-2, FOXF1-FOXC2-FOXL1, and PEX genes), AS (NOTCH1, 

FOXC1, FGD1), CoA (JAG1, NOTCH2, NF1, PTPN11, KRAS, SOS1, RAF1, NRAS, BRAF, 

SHOC2, CBL, ZIC3, CREBBP, MLL2, FGD1, DHCR7, NSDHL, KCNJ2, MKS1) (Table 4.1). 

Familial clustering of cases77 and an increased risk of LVOTO in first-degree relatives78 are 

consistent with single gene or oligogenic inheritance.  However, the fact that many cases are 

sporadic also suggests a role for de novo mutations and other rare chance events.  Zaidi et al79 

report the occurrence of de novo mutations in a cohort of congenital heart defect cases, albeit 

without respect to a specific CVM type.   

To gain a deeper understanding of the spectrum of genetic variation associated with 

LVOTO, we performed whole-exome sequencing of a cohort of 342 LVOTO patients without 

extra-cardiac features.  Variant frequencies were compared to multiple population data  



 

Figure 4.1.  Representation of Hypoplastic Left Heart Syndrome features.  This figure depicts 

the spectrum of cardiovascular malformation associated 

Other LVOTO features include aortic valves stenosis (AS), coarctation of the aorta (CoA),  

interrupted aortic arch type A (IAAA), mitral stenosis and Shone Complex (Supravalvular 

mitral membrane, parachute mitral valve, suba

 

 

 

 

 

 

 

 

Representation of Hypoplastic Left Heart Syndrome features.  This figure depicts 

the spectrum of cardiovascular malformation associated with HLHS, a feature of LVOTO.  

Other LVOTO features include aortic valves stenosis (AS), coarctation of the aorta (CoA),  

interrupted aortic arch type A (IAAA), mitral stenosis and Shone Complex (Supravalvular 

mitral membrane, parachute mitral valve, subaortic stenosis, & CoA).   
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Table 4.1: List of genes causing human phenotypes overlapping LVOTO.  HLHS = hypoplastic 

left heart syndrome ; AS = aortic stenosis; CoA = Coarctation of the aorta. Shone complex 

includes supravalvular mitral membrane, parachute mitral value, subaortic stenosis and CoA. 

Gene HLHS AS CoA IAA Shone complex 

ACVR2B ✓ . . . . 

BRAF . . ✓ . . 

CBL . . ✓ . . 

CHD7 . . . ✓ . 

CREBBP ✓ . ✓ . . 

DHCR7 ✓ . ✓ . . 

DTNA ✓ . . . . 

EVC,EVC2 ✓ . . . . 

FGD1 . ✓ ✓ . . 

FOXC1 . ✓ . . . 

FOXF1-FOXC2-FOXL1 deletion ✓ . . . . 

JAG1 . . ✓ . . 

KCNJ2 . . ✓ . . 

KRAS . . ✓ . . 

LEFTY2 ✓ . . . 

MKS1 . . ✓ . . 

MLL2 . . ✓ . . 

NF1 . . ✓ . . 

NOTCH2 . . ✓ . . 

NRAS . . ✓ . 

NSDHL . . ✓ . ✓ 

PEX genes ✓ . . . 

PTPN11 . . ✓ . . 

RAF1 . . ✓ . . 

SHOC2 . . ✓ . . 

SOS1 . . ✓ . . 

TBX1 . . . ✓ . 

TBX5 ✓ . . . . 

ZIC3 ✓ . ✓ . . 
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resources (1000 genomes, ESP, ExAC) and 5,492 individuals from the ARIC study without 

severe cardiac malformation sequenced on the same platform.  We first constructed a list of a 

priori candidate cardiac malformation genes which includes those implicated in similar human 

disorders, overlapping phenotypes in model organism knockouts, and expression in the 

developing heart tissue.  The intersection of this candidate gene filter with rare loss-of-function 

(LOF) variation within cases identified implicating mutations in 9% of LVOTO cases, including 

nine de novo point mutations and three genes with recessive or hemizygous inheritance.  

These results highlight the complex genetics contributing to LVOTO, and the utility of 

exome sequencing in a large informative sample set to identify novel genes or gene mutations 

for a rare disease.  The general analysis framework we present may also apply to similar 

sequence-based analyses of rare disease cohorts of unrelated individuals (Figure 4.2).   

Methods  

Sample Selection 

This study included 342 unrelated LVOTO cases without known extracardiac 

malformations or unexplained developmental delay ascertained from the Texas Medical Center 

in Houston, TX (Table 4.2).  Parents and affected family members (if any) of LVOTO cases 

were also recruited as study participants.  Our analyses also included 5,492 European American 

(EA) individuals from the population-based Atherosclerosis Risk in Communities (ARIC) 

study40 as a comparison group for variant filtering and statistical analyses.  ARIC samples with 

any of the following criteria were excluded from these analyses: prevalent heart failure, major 

Q-wave, or LVH by the Cornell definition.  In addition, as a validation/replication set we 

examined 4,750 independent cases referred for clinical exome sequencing at the Baylor Miraca  

 



 

Figure 4.2.  Discovery strategy for LVOTO cohort.

independently, of disease gene candidates over exome

in rare disease cohorts.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Discovery strategy for LVOTO cohort.  Imposing a candidate list, constructed 

independently, of disease gene candidates over exome-wide analyses facilitates genes discovery 
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Table 4.2. Overview of LVOTO cases.  This table summarizes basic demographical and clinical 

information of 342 LVOTO probands.  

 
Sex 

 
Ethnicity Female Male Total 

African 0 1 1 
Caucasian 83 163 246 

Hispanic 25 70 95 

Total 108 233 342 
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Genetics Laboratory (http://www.bmgl.com) for rare LOF variants in a subset of genes given 

priority after analysis of the initial research discovery set of 342 cases. 

 

Whole-exome sequencing 

Whole exome sequencing (WES) was performed on cases and comparison samples with 

the Illumina HiSeq platform using the Mercury pipeline41.  ARIC samples were captured using 

VCRome 2.1 (42Mb) reagents with an average coverage of 88x, LVOTO cases were captured 

using HGSC core (52Mb), and all analyses were restricted to exonic regions shared between 

these two reagents.  Read mapping to Genome Reference Consortium Human Build 37 

(GRCh37) was performed with Burrows-Wheeler alignment42, and allele calling was performed 

with the Atlas2 suite (Atlas-SNP, Atlas-Indel)43.  The Variant Call File (VCF) contained flags 

for  low-quality variants which were excluded from all analyses, including SNPs with poster 

probability lower than 0.95, total depth of coverage less than 10x, fewer than 3 variant reads, 

allelic fraction less than 10%, 99% reads in a single directions, and homozygous reference 

alleles with < 6x coverage.  In addition, we removed low-quality indels with a total depth less 

than 30x and allelic fraction below 30%.  Individuals presenting extremely high or low numbers 

of heterozygous variant sites (6 standard deviations) were flagged and excluded from the burden 

analyses.   

 

A priori gene prioritization 

To facilitate novel gene and variant discovery, we compiled a priori evidence from 

public resources to identify potential novel LVOTO genes.  We compiled a list of 1,712 human 

genes with a putative role in the development of cardiovascular malformation from a variety of 
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public resources.  Genes related to overlapping human disorders including CVM were 

ascertained from NCBI and literature searches. Relevancy to biological pathways and 

interactions (Hedgehog, NOTCH, TGFB, PITX2) was determined using the Kyoto Encyclopedia 

of Genes and Genomes (KEGG) database8081. Two model organism databases (ZFIN82, MGI83) 

were also used to ascertain additional genes with a potential role in cardiovascular development.   

ZFIN was queried for genes expressed in the zebrafish heart, and MGI was queried for genes 

causing abnormal cardiac morphology in mouse models (MP:0000266).  Additional quantitative 

measures used to prioritize genes included (a) measures of observed LOF prevalence (OP 

ratio25), (b) tolerance to functional variation (RVIS48) and (c) the probability of de novo 

mutation84.  Gene expression in the heart was gathered from the literature79 and Tissue-specific 

Gene Expression and Regulation (TiGER) database (http://bioinfo.wilmer.jhu.edu/tiger/). 

 

Variant annotation 

Variants were annotated to Refseq gene definitions using ANNOVAR85.  Conservative 

loss-of-function (LOF) annotation was performed by selecting premature stopgains in the non-

terminal exon, variants disrupting essential splice sites used by all gene isoforms, and frameshift 

indels similarly mapping to all isoforms.  Damaging nonsynonymous (DNS) variation was 

defined as protein-altering substitutions predicted to be damaging by a consensus of at least 3 

out of 6 prediction scores downloaded via dbNSFP29 (SIFT, Polyphen2 HDIV, LRT, Mutation 

Taster, Mutation Assessor, FATHMM).  A PHRED-like scaled C-score (CADD86)  was also 

used to assess pathogenicity of variants (LOF and DNS), but was not used to exclude candidate 

sites.  
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Analytical methods 

Initially, we focused on the most damaging class of variation (extremely rare LOF) and 

considered multiple modes of Mendelian inheritance.  We first identified all LOF sites exclusive 

to cases which included heterozygous (dominant), homozygous (recessive), hemizygous (X-

linked males) or multiple compound-heterozygous genotypes in a given gene (recessive).  

Fisher’s exact test was used to compare allele frequencies in LVOTO cases to ARIC study 

participants.  Within the set of genes presenting case-exclusive LOF variation, we next 

performed “functional expansion” to include similarly-segregating DNS sites, which were 

analyzed by the same methods (Figure 4.3).   

Firth logistic regression87 was used to assess more complex genetic models by grouping 

rare DNS variation (observed MAF <1%).  Using case-control status as an outcome, the total 

number of heterozygous sites per individual was included in the model as a covariate to address 

platform differences between sequencing batches.   We defined a p-value of 2.86 x10-6 as 

statistically significant for burden analyses by performing a Bonferroni correction for the 

number of genes harboring DNS (n=17,487).   

After these exome-wide analyses, we further enriched for genes likely to contribute to 

LVOTO in two ways. First, for each gene the sum of all observed LOF alleles in ARIC was 

calculated (gene-wise observed LOF) and compared to all potential simulated LOF sites to 

calculate the ratio of observed to potential LOF alleles (OP ratio25).  Only genes with a very low 

OP ratio (zero, or lowest 30th percentile) were considered strong candidates for disease.  In 

addition, we filtered for the set of cardiac genes compiled a priori (Figure 4.1) to identify those 

with supporting evidence for a role in LVOTO.   

 



 

Figure 4.3:  Detailed analytical framework to assess in rare disease cohorts.  This figure depicts 

a 2-stage analysis strategy used to assess whole

variation and follow-up using DNS

quality sites are identified, annotated for functional effect and population frequency.  Rare LOF 

variation is analyzed by three inheritance models (orange) to identify case

Next, gene prioritization (green) 

gene candidate with both genetic and 

probands and parents when available to detect de novo inheritance.  Finally, functional 

expansion into DNS alleles is then performed within the set of genes identified by LOF.  

 

Detailed analytical framework to assess in rare disease cohorts.  This figure depicts 

stage analysis strategy used to assess whole-exome sequence (WES), with emphasis on LOF 

up using DNS variation.  In the variant selection stage (yellow), high 

quality sites are identified, annotated for functional effect and population frequency.  Rare LOF 

variation is analyzed by three inheritance models (orange) to identify case-exclusive LOF sites.  

Next, gene prioritization (green) compares an a priori list of gene candidates

gene candidate with both genetic and biological support.  Variants are then validated (blue) in 

probands and parents when available to detect de novo inheritance.  Finally, functional 

NS alleles is then performed within the set of genes identified by LOF.  
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Detailed analytical framework to assess in rare disease cohorts.  This figure depicts 

exome sequence (WES), with emphasis on LOF 

(yellow), high 

quality sites are identified, annotated for functional effect and population frequency.  Rare LOF 

exclusive LOF sites.  

list of gene candidates to identify the best 

support.  Variants are then validated (blue) in 

probands and parents when available to detect de novo inheritance.  Finally, functional 

NS alleles is then performed within the set of genes identified by LOF.   
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All variants identified to be potentially related to the development of LVOTO were 

validated via Sanger sequencing. Only those variants sites that did validate are reported here. 

Results  

Exome sequence variation 

 WES of LVOTO cases initially revealed 243,609 variants within the VCRome capture 

regions (239,726 single nucleotide substitutions, and 3,883 small indels ranging from -51 to +26 

nucleotides in length).  On average, each case presented with 14,669 heterozygous and 8,321 

homozygous non-reference genotypes (Table 4.3). Thirty samples presented extremely high or 

low heterozygosity (4 cases, 26 controls; beyond 6 standard deviations from sample mean) and 

were excluded from burden analyses.   

Annotation of exonic sites to multiple population data resources (ESP, 1000 Genomes, 

ExAC) revealed that 132,182 of the total LVOTO variants sites (129,329 SNV, 2,853 indel) 

were either novel or extremely rare (MAF 0.5%) in the comparison groups. Functional 

annotation revealed 4,161 rare predicted LOF variants (1,469 premature stop, 602 splice, and 

2,090 frameshift) in 1,660 genes, and 34,100 DNS variants in 11,822 genes.  The mean number 

of these rare variants per LVOTO patient was 54.4 LOF and 118.8 DNS (range LOF = 35-74; 

range DNS = 88-158, Figure 4.4).   

 

LOF variation in LVOTO cases reveals known and novel cardiac genes 

Twenty nine genes from our a priori cardiac gene candidate list harbored case-exclusive 

LOF alleles (Table 4.4).  Sanger sequencing of these alleles in parents revealed nine to have 

arisen de novo, all in different genes (ACVR1, JARID2, KMT2D, NF1, NR2F2, PLRG1, 

SMURF1, TBX20, and ZEB2). Mutations in NF1 (MIM 162200), NR2F2 (MIM 615779), TBX20  
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Table 4.3: Summary of non-reference genotypes in exome sequence samples.  This table 

describes the average value per individual, with standard deviation in parenthesis.   

 

  ARIC LVOTO 

Het 14,493.97 (587.73) 14,669.61 (986.81) 

Homo 8,204.09 (301.99) 8,321.78 (534.60) 

Ti 22,895.69 (744.71) 23,084.29 (1,442.65) 

Tv 7,582.58 (264.27) 7,669.32 (485.89) 
TiTv 3.02 (0.03) 3.01 (0.031) 
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Figure 4.4:  Distribution of rare sites within LVOTO cases.  These histograms depict the 

number of rare (a) DNS and (b) LOF sites per sample. 

 

 

 

 

 

 

 

 

 



65 

 

Table 4.4: Discovery genes presenting case-exclusive LOF sites and evidence for a role in 

LVOTO.  This table highlights 29 genes with rare LOF sites in LVOTO cases and supporting 

evidence for a role in cardiac malformation.  The number of samples in the Baylor Miraca lab 

presenting CVM and LOF alleles, distinct from LVOTO cases, is provided. One LVOTO case 

presenting mutation in multiple candidates is denoted (ǂ).  Unknown inheritance indicates only 

parent was available for validation that did not carry the mutation.   Gene support symbols are 

defined as follows: CVM = known role in human cardiovascular malformation, MGI = 

overlapping phenotype in mouse, HE = human heart expressed ; PITX2 = related to PITX2 

transcription; ZFIN = overlapping phenotype in zebrafish; TGFB = TGFB pathway.   

LVOTO 

mode 
Gene Chrom. 

LVOTO 

cases 

BCM Miraca 

CVM 
Gene support 

LOF 

OP 

(%ile) 

de novo ACVR1 2 1 0 MGI,HE,TGFB 0.201 

 
JARID2 6 1 1 MGI,PITX2 0 

 
KMT2D 12 1 7 CVM 0 

 
NF1 17 1 1 CVM,MGI,HE 0.166 

 
NR2F2 15 1 0 MGI 0 

  PLRG1 4 1 0 MGI 0 

 
SMURF1 7 1 1 TGFB 0 

 
TBX20 7 1 0 CVM,MGI,HE 0 

 
ZEB2 2 1 6 ZFIN, CVM 0 

Inherited ARHGEF11 1 1 2 ZFIN 0.156 

 
CCDC91 12 1 1 PITX2 0 

 
CDH2 18 1 0 MGI,HE,PITX2 0.077 

 
E2F6 2 1 0 PITX2 0 

 
FGF19 11 1 0 MGI 0 

 
GJC1 17 1 0 MGI,ZFIN 0 

 
GLRX3 10 1 0 MGI,HE 0 

 
LATS2 13 1 2 MGI 0.119 

 
LTBP1 2 1 1 MGI,TGFB 0 

 
PCDHGA2 5 1 0 HE 0 

 
PCSK6 15 1 3 MGI 0 

 
RAC1 7 1 1 MGI,HE 0 

X-linked OFD1 X 1 1 CVM,MGI,ZFIN 0 

Recessive DNAH5 5 1 0 CVM,MGI,HE,PCD 0.299 

 
MNDA 1 1 0 CHD candidate 0.265 

Unknown JMJD6 17 1ǂ 0 MGI 0 

 
BMP1 8 1 0 MGI 0 

 
KMT2D 12 1 7 CVM 0 

 
ROCK1 18 1ǂ 0 MGI,TGFB,PITX2 0 
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(MIM 611363) and ZEB2 (MIM 235730) are known to cause human genetic disorders, and 

cardiac malformations in these syndromes occur in 3% to 50% of patients.  SMURF1 is 

involved in the TGFB pathway, JARID2 is regulated by the PITX2 transcription factor that has 

been associated with cardiac malformation, and mutant alleles in PLRG1 cause malformation of 

the left ventricle in mouse model systems88.  We expanded our evaluation of these genes to 

include DNS variants that were absent in controls or in public data resources. In this analysis, 

we identified three additional de novo variants (KMT2D, TBX20, ZEB2), providing further 

evidence for their role as primary LVOTO genes (Table 4.5).  

Transmitted LOF variants were present in the heterozygous state, with the exception of 

DNAH5, MNDA, and OFD1.  One LVOTO case presented a homozygous LOF variant in 

DNAH5, which is reported to cause ciliary dyskinesia, primary, 3, with or without situs inversus 

(MIM 608644), a known autosomal recessive condition.  Two frameshift mutations were 

observed within in another case located in MNDA (Sanger validated, trans-inherited), a gene 

which has been previously suggested as an LVO candidate79.  Mutations in OFD1 (X-linked) 

cause Joubert syndrome, which can include congenital heart malformation within its phenotypic 

spectrum89. These observations support recessive and sex-linked forms of LVOTO, highlighting 

the complex genetics underlying this disease.   

 

Aggregation of DNS variation 

Expanding the scope of inheritance models, we next grouped rare variation by genes and 

pathways to detect enrichment of deleterious alleles in the sample of LVOTO cases.  

Aggregating DNS variation by gene revealed significant enrichment of rare alleles in 19 genes 

(MAF<1%, p < 2.86 x10-6), including one gene (DDX11) present in the list of a priori  
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Table 4.5 .  List of all Sanger-validated sites in LVOTO cases.  Variant fields (“:” delimited) 

are chromosome, hg19 position, reference allele, alternative allele; CADD v1.2 PHRED-like 

scales scores obtained online (http://cadd.gs.washington.edu/score); RVIS downloaded from 

Petrovski et al48; OP ARIC ratio calculated from ARIC EA samples; OP ExAC from v0.3, total 

AC field.  “NA” in OP ratio field indicates zero LOF alleles observed in this gene by our custom 

stringent annotation methods.   

Inheritance Gene Variant 
Variant 

Type 
n CADD 

RVIS 

(%ile) 

OP 

ARIC 

(%ile) 

OP 

ExAC 

(%ile) 

inherited NOTCH2 1:120458122:A:T DNS 1 19.38 2.15 0.011 0.978 

inherited 
ARHGEF1

1 
1:156905835:A:AG frameshift 1 35 2.5 0.156 0.131 

inherited MNDA 1:158812053:CA:C frameshift 1 19.18 67.3 0.265 0.869 

inherited MNDA 
1:158812100:GAAA

A:G 
frameshift 1 23.3 67.3 0.265 0.869 

unknown ROR1 1:64644454:C:G stopgain 1 37 3.05 NA 0.107 

inherited GLRX3 10:131959078:C:T stopgain 1 19.57 48.35 NA 0.176 

inherited LGR4 
11:27390487:TTAG

GATGCCAG:T 
frameshift 1 37 34.88 0.128 0.51 

inherited FGF19 11:69514190:TGA:T frameshift 1 35 NA NA 0.12 

inherited CCDC91 12:28459810:C:T stopgain 1 38 91.26 NA 0.337 

de novo KMT2D 12:49416115:G:A stopgain 1 22.7 NA NA NA 

de novo KMT2D 12:49420607:G:A DNS 1 24.7 NA NA NA 

unknown KMT2D 12:49445202:C:CG frameshift 1 23.1 NA NA NA 

inherited LATS2 
13:21557671:TTGT

C:T 
frameshift 1 37 74.71 0.119 0.155 

inherited SGCG 13:23808789:C:T DNS 1 34 43.77 NA 0.493 

inherited PCSK6 15:101866685:C:T splicing 1 19.11 NA NA 0.161 

de novo NR2F2 15:96875777:G:T splicing 1 22.2 26.23 NA NA 

de novo NF1 17:29562641:C:T stopgain 1 41 0.47 0.166 0.916 

inherited NF1 17:29670054:C:T DNS 1 22.3 0.47 0.166 0.916 

inherited NF1 17:29677234:G:A DNS 1 22.3 0.47 0.166 0.916 

inherited GJC1 17:42882475:AC:A frameshift 1 35 44.89 NA NA 
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inherited JMJD6 17:74714943:C:A frameshift 1 27.2 18.44 NA 0.269 

unknown ROCK1 
18:18629813:ATC:

A 
frameshift 1 35 18.9 NA 0.222 

inherited CDH2 18:25564963:C:T splicing 1 33 7.52 0.077 0.257 

de novo SMAD7 18:46474796:G:T DNS 1 18.05 NA NA 0.907 

unknown GATAD2A 19:19576173:C:T stopgain 1 36 9.27 NA 0.109 

inherited E2F6 2:11587812:CTT:C frameshift 1 23.2 56.64 NA 0.234 

de novo ZEB2 2:145153979:C:A stopgain 1 48 10.03 NA 0.011 

de novo ZEB2 2:145187539:T:C DNS 1 22.3 10.03 NA 0.011 

de novo ACVR1 2:158637081:G:T stopgain 1 35 21.41 0.201 0.205 

inherited LTBP1 2:33526713:T:G splicing 1 25.5 24.47 NA 0.12 

de novo PLRG1 4:155460345:G:A stopgain 1 22.3 33.2 NA 0.856 

inherited DNAH5 5:13868103:TA:T frameshift 1 0.781 40.16 0.299 0.969 

inherited PCDHGA2 
5:140720879:AGCC

AG:A 
frameshift 1 35 70.78 NA NA 

inherited JARID2 6:15374390:C:T DNS 1 21.6 2.42 NA 0.448 

inherited JARID2 6:15487603:G:C DNS 1 22.5 2.42 NA 0.448 

inherited JARID2 6:15496604:A:G DNS 1 24.5 2.42 NA 0.448 

unknown JARID2 6:15496768:C:T DNS 1 35 2.42 NA 0.448 

de novo JARID2 6:15508596:TG:T frameshift 1 38 2.42 NA 0.448 

de novo TBX20 7:35244085:G:A stopgain 1 39 12.77 NA 0.177 

inherited TBX20 7:35244154:G:A DNS 1 34 12.77 NA 0.177 

de novo TBX20 7:35289584:A:G DNS 1 19.24 12.77 NA 0.177 

inherited RAC1 7:6438350:G:A splicing 1 27.8 41.25 NA NA 

de novo SMURF1 7:98649018:CTG:C frameshift 1 36 4.39 NA 0.292 

inherited SMURF1 7:98649062:G:C DNS 1 22 4.39 NA 0.292 

unknown BMP1 8:22058684:C:T stopgain 1 19.09 1.84 NA 0.126 

inherited OFD1 X:13785314:C:T stopgain 1 a 40.56 NA 0.884 

inherited TAZ X:153649060:G:A DNS 1 22.6 59.76 NA NA 

 

 

 



69 

 

Table 4.6: Overview of candidate LVOTO genes detected by gene-based aggregation.  This 

table highlights 19 genes where cases present excess rare (MAF<1%) DNS alleles compared to 

ARIC.  Of note, DDX11 is implicated in human cardiovascular malformation and similar mouse 

phenotypes, while the potential biological role for the remaining genes remains unclear.   Sites = 

number of DNS sites in this gene; p = T05 Burden test p-value; MAC = minor allele count; 

CVM = cardiovascular malformation; MGI = mouse genome informatics. 

Gene p beta se DNS sites 
MAC  MAC  

Evidence 
case control 

ZNF845 6.70E-60 4.76 0.29 3 63 16 unknown 

ABCD1 4.86E-57 3.14 0.2 18 61 79 unknown 

MAGEC1 1.09E-55 4.27 0.27 8 56 21 unknown 

KMT2C 8.78E-49 1.96 0.13 149 93 346 unknown 

OR4B1 5.00E-33 3.48 0.29 11 32 23 unknown 

GPX1 2.11E-30 5.02 0.44 5 39 6 unknown 

DHRS4L1 2.90E-27 2.44 0.23 9 33 70 unknown 

FMN2 3.20E-26 2.22 0.21 26 36 97 unknown 

CHIT1 9.55E-24 2.83 0.28 18 24 33 unknown 

UMODL1 7.01E-19 2.23 0.25 26 26 53 unknown 

AQP7 5.95E-18 2.34 0.27 21 21 48 unknown 

ABCB1 2.87E-12 1.8 0.26 39 20 66 unknown 

OR2T4 9.74E-12 3.76 0.55 6 15 5 unknown 

DDX11 1.36E-10 1.32 0.21 50 29 188 CVM,MGI 

NDUFV2 2.68E-08 3.05 0.55 9 6 8 unknown 

ZAN 8.20E-08 1.28 0.24 43 19 110 unknown 

FRG1B 4.03E-07 1.1 0.22 19 23 157 unknown 

KIAA1377 8.15E-07 2.85 0.58 7 5 8 unknown 

IL25 4.97E-06 2.48 0.54 4 5 11 unknown 
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congenital heart defect candidate genes (Table 4.6).  DDX11 encodes a DNA helicase which is 

a cause of Warsaw breakage syndrome (MIM #613398), a human disorder which includes 

ventral septal defects within its phenotypic spectrum.  Additionally, mutation of this gene in 

mouse models leads to developmental defects including abnormal heart looping90.   

 

Clinical database supports novel LVOTO candidate genes 

To identify additional CVM cases with similar underlying etiology, we surveyed an 

additional 4,750 patients referred for clinical diagnostic testing for LOF variation in the LVOTO 

discovery genes.  Thirty individuals with LOF variation in LVOTO discovery genes also present 

cardiovascular malformation, including severe left ventricular dysfunction (GRIP1) hypoplastic 

left heart (KMT2D), heterotaxy syndrome (ARHGEF11) and more (Table 4.7).  The overlapping 

gene set also includes four genes ascertained by de novo mutations (JARID2, KMT2D, NF1, 

SMURF1, ZEB2), bolstering support for these genes as contributors to congenital heart defects.  

Discussion 

Performing whole exome sequencing and analysis of a cohort of 342 unrelated LVOTO 

cases, we detected 29 LOF variants among 28 genes with strong potential for involvement in 

cardiac development.  Our discovery gene set included six Mendelian genes previously 

implicated in congenital heart malformation (DNAH5, KMT2D, OFD1, NF1, TBX20, ZEB2) and 

16 genes associated with overlapping cardiac phenotypes in mammalian models (ACVR1, 

BMP1, CDH2, FGF19, GJC1, GLRX3, JARID2, JMJD6, LATS2, LTBP1, NR2F2, OFD, 

PCSK6, PLRG1, RAC1, and ROCK1) (Table 4.3).  Among these are nine de novo mutations 

which were verified through targeted parental sequencing.   
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Table 4.7: Samples referred for clinical exome sequencing with cardiovascular malformation.  

30 patients suspected of having a rare disorder (not necessarily including cardiovascular 

symptoms) referred to the BCM/Miraca lab for clinical exome sequencing also presented 

congenital heart disease and LOF mutations in our set of 28 discovery genes.  TOF = Tetralogy 

of Fallot; PDA = patent ductus arteriosis; ASD = atrial septal defects; VSD = ventral septal 

defects; PFO = Patent foramen ovale. 

Gene Posn Nucleotide AminoAcid Zyg. SexAge CHD 

ARHGEF11 1:156918388 c.29delA p.E10fs Het F 4y 
Nonsyndromic cardiomyopathy 
leading to heart transplantation 

ARHGEF11 1:156909357 c.3958delT p.Y1320fs Het F 0m 
Heterotaxy syndrome, right-sided and 

dilated ascending aorta, TOF 

CCDC91 12:28605463 c.978delA p.R326fs Het F 2y PDA 

ERRFI1 1:8075667 NM_018948 
 

Het F 2y 

Moderate secundum ASD, VSD, 
moderate tricuspid valve 

insufficiency, hypoplastic tricuspid 
valve, bicuspid aortic valve, 
moderately hypoplastic right 

ventricle, peripheral pulmonary artery 
stenosis 

GRIP1 12:66747201 c.2999T>A p.L1000X Het M 10m Severe left ventricular dysfunction 

JARID2 6:15520368 c.3628_3629del p.1210_1210del Het M 9m Aortic & pulmonic stenosis 

KMT2D 12:49438290 c.4964-1_4978del N/A Het F 1y 
Mildly hypoplastic aortic arch, VSD, 

pulmonary hypertension 

KMT2D 12:49427675 c.10813C>T p.Q3605X Het F 14y VSD, resolved 

KMT2D 12:49426760 c.11728C>T p.Q3910X Het M 0m Hypoplastic left heart 

KMT2D 12:49425821 c.12667C>T p.Q4223X Het M 1m Coarctation of the aorta 

KMT2D 12:49425644 c.12844C>T p.R4282X Het F 0m 
Shone's complex with small left sided 

structures, mild coarctation, large 
VSD 

KMT2D 12:49420607 c.15142C>T p.R5048C Het M 9y 
Shone syndrome, VSD, mitral valve 

stenosis, aortic arch hypoplasia 

KMT2D 12:49416416 c.16295G>A p.R5432Q Het M 2y Bicuspid aortic valve 

LATS2 13:21565531 c.355C>T p.R119X Het M 54y Myocardial cyst 

LATS2 13:21563131 c.786_787del p.262_263del Het M 3y Aortic root dilation 

LGR4 11:27493693 c.156delC p.P52fs Het F 7m Distal abdominal aorta narrowing 

LTBP1 2:33172449 c.59delC p.S20fs Het F 7m Distal abdominal aorta narrowing 

NF1 17:29496923 c.499_502del p.C167fs Het M 10y TOF 

OFD1 X:13785314 c.2668C>T p.R890X Hem M 1m Situs inversus, possible VSD 

PCSK6 15:101905203c.1903_1904insAG p.V635fs Het F 12y PDA, PFO, cardiomegaly 
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PCSK6 15:101853668 c.2569_2570del p.857_857del Het M 39y 
Cardiac arrest, ventricular fibrillation; 

maternal history of sudden cardiac 
death 

RAC1 7:6438350 c.282+1G>A N/A Het M 8y 
Dilated aortic root & abnormal aortic 

valve 

SMAD7 18:46468987 c.41delA p.K14fs Het F 10m Dysplastic pulmonary valve 

SMURF1 7:98647229 c.988C>T p.R330X Het M 2y Dextrocardia 

ZEB2 2:145161630 c.643_659del17 p.Y215fs Het F 3y 

Dysplastic pulmonic valve, small 
ASD, small anterior muscular VSD, 

trivial mitral regurgitation, trivial 
distal right PTAS 

ZEB2 2:145157824 c.928_931delins8 p.Y310fs Het M 9m 
ASD, VSD, narrow aortic arch, leaky 

tricuspid valve 

ZEB2 2:145156682 c.2072G>A p.W691X Het M 4y VSD, pulmonic valve stenosis 

ZEB2 2:145156671 c.2083C>T p.R695X Het M 17y Aortic stenosis 

ZEB2 2:145154138 c.2908C>T p.Q970X Het M 1y Pulmonary valve stenosis 

ZEB2 2:145154011 c.3034delA p.S1012fs Het M 1y 
Large flow PDA, secundum ASD, 
muscular VSD, pulmonic stenosis 

with dysplastic valve 
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By focusing on case-exclusive LOF variation which intersected an a priori candidate 

gene list, we identified contributing, if not causative, diagnosis for 7.9% (27/342) of our starting 

cohort.  Refining candidate gene selection may increase the number of discoveries within large  

sample sets.  Large-scale model organism knockout projects with deep phenotypes, such as the 

Knockout Mouse Phenotyping Program (KOMP2), have great potential to facilitate the 

identification of putative human disease genes.   Similarly, functional expansion of variation to 

include DNS variation facilitates disease gene discovery.  This value is demonstrated by the 

detection of excess DNS burden in DDX11, which identified risk alleles in an additional 26 

(7.6%) LVOTO cases. 

The results presented here offer insights into the complexity of the inheritance of 

abnormal cardiac development.  De novo mutations have been previously reported in CVM 

cases79, and the role of this non-Mendelian-inherited variation  is also supported by 9 genes in 

the data reported here.   In addition, it is well-established that up to 30% of parents of LVOTO 

probands will have a similar, often more subtle, left-sided lesion, of the type that is only 

apparent with imaging of the heart.  Review of echocardiogram data for available parents of 

affected probands showed that some of the transmitted damaging variants were inherited from 

parents with milder LVOTO phenotypes (e.g. mild left sided lesions), whereas some were 

inherited from parents without any evidence of current cardiac involvement.  

This study implicates rare LOF and DNS along a broad spectrum of known and 

postulated cardiac genes in the complex pathogenesis of LVOTO.  These mutations may arise 

de novo or be inherited from parents with milder but overlapping forms of CVM as well as in 

apparently unaffected parents (perhaps reflecting incomplete penetrance)?.  Our approach 

illustrates the value of integrating an appropriately matched control group with model organism 
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bioinformatics, which compliments a traditional family-based approach to assess inheritance 

with the goal of identifying genes implicated in rare human disorders. 
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Chapter 5: Synthesis and Discussion 
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Genes and LOF trends 

 The previous chapters have described the analytical approaches and results of our studies 

on the contribution on LOF variation to a broad spectrum of human traits, including common 

chronic disease biomarkers, levels of small molecular metabolites, and rare congenital 

cardiovascular malformation.  Whole exome sequencing coupled with detailed annotation has 

proved useful for discovery of novel gene candidates contributing to a broad phenotype 

spectrum.  

The function of certain genes during human development may be extremely sensitive to or 

intolerant of gene dosage variation during viable human development, and large-scale 

sequencing projects provide data to help identify these genes.  Despite sequencing 8,554 ARIC 

study participants, we did not observe any LOF variation in 11,380 genes (Figure 2.5).  

Currently, the largest collection of publicly available exome sequence data (ExAC r0.3; 

n~65000 individuals) describes at least one LOF allele in ~83% of human genes (17,005 out of 

20,319 protein-coding Ensembl genes), suggesting that most human genes may tolerate some 

level of LOF variation.   As expected, many of the genes not tolerant to this variation represent 

essential pathways to cellular function, such as ribosome formation, ubiquitination, and splicing 

(Table 5.1).  The prevalence of LOF variation will continue to be refined and characterized in 

ongoing sequencing projects, and provide valuable insights into the robustness of the genome to 

these mutations. 

Metrics for gene tolerance to LOF variation will also be refined and informed by ongoing 

studies, especially those informed by empirical LOF frequency in populations.  The OP ratio 

metric we developed in chapter 2 has already demonstrated potential for application towards 

prioritizing novel gene contributing to human health.  In chapter 2 we described a lower OP  
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Table 5.1:  Classification of genes intolerant to LOF variation.  This table presents the top 8 

KEGG pathways enriched for genes presenting no LOF alleles in ExAC.  We identified 3,314 

gene presenting no LOF alleles in the ExAC v0.3 database, and father selected 656 of these 

which (1) encode for a known protein product and (2) have at least two exons, making them 

eligible LOF candidates by our definition.  This list of 656 genes was uploaded to the NIH 

DAVID (http://david.abcc.ncifcrf.gov/) online bioinformatic resource for annotation and 

pathway enrichment analysis.    

 

KEGG pathway Genes 

Count % 

Ribosome 32 5.9 

Ubiquitin mediated proteolysis 13 2.4 

Proteasome 7 1.3 

TGF-beta signaling pathway 8 1.5 

Chemokine signaling pathway 13 2.4 

Spliceosome 10 1.8 

Neurotrophin signaling pathway 9 1.7 

Thyroid cancer 4 0.7 
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ratio in human paralogs of mouse embryonic lethal genes, and in chapter 4 we used this metric 

to prioritize novel candidate genes for rare monogenic disease.  Moving forward, the utility of 

such a metric can be bolstered with refined LOF annotation methods.     

 

Refining and expanding LOF annotation  

 Our annotation strategy was designed to enrich for exonic variation predicted to induce 

EJC-mediated NMD degradation of mRNA transcripts.  However, mRNA regulation is complex 

and other mechanisms that influence gene dosage were not included in this study.  For example, 

the degradation of aberrant mRNA transcripts may be suppressed by miRNA silencing of 

essential EJC-mediated NMD factors91.   In addition, EJC-independent NMD of transcripts has 

been reported, likely related to length of 3’ UTR92, which we did not consider in our analysis.  

Expanding the genetic scope beyond protein-coding regions may capture additional 

classes of LOF variation.  For example, whole genome sequencing can be used to detect large 

structural variants including large deletions that can span a significant portion of a reading 

frame (especially the first exon) and may prevent protein formation24.  In addition, certain 

intergenic motifs are known to influence transcriptional efficiency.  Mutations within gene 

enhancer or silencer regions may influence gene expression levels93.  Many of these loci are 

described in the ENCODE project and these data are available to genome studies94.  These 

additional categories of variation affecting gene function may bolster the study of rare LOF 

variation and human phenotypes, just as the inclusion of small frameshift indels in our analyses 

complimented single nucleotide substitutions with a predicted LOF effect.   

In addition to adding new classes, there are also potential to refine the selection and 

annotation of more familiar categories of LOF variation.  Recent mRNA sequencing studies 
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provide opportunities to study the effect of genetic variation on mRNA transcripts.  The Gene-

Tissue Expression pilot project has performed RNAseq data on 43 tissue types from 175 

individuals95, giving valuable insights into which transcript isoforms are expected in a given 

tissue.  The approach in these chapters was conservative, selecting predicted LOF variation 

mapping to genomic regions used by all known isoforms for a given gene.  However, an 

alternative approach would be to restrict to variants mapping to isoforms expressed in tissues 

known to influence the studied phenotype (ie, pancreas and insulin levels).  It is important to 

note that while a target-tissue approach may prevent the over-filtering of LOF sites from 

analyses, it may limit the potential for discovery and the relevant tissue for a given phenotype 

may not be known a priori.   

 In addition, recent studies suggest that LOF sites may be capable of allele-specific 

expression (ASE) at a higher rate than non-LOF sites in coding regions96.  At these loci, the 

observed ratio of diploid transcript levels is not equal, with expression from one chromosome 

dominating the other.  These loci may confound the study of gene dosage, especially 

heterozygous LOF variation, as these loci may effectively “escape” degradation of the 

prematurely truncated transcript by upregulating the more functional transcript.  Conservatively, 

LOF variants mapping to these loci could be omitted from analyses, or a more quantitative 

weight could be assigned based on the extent of allelic imbalance for a particular locus. 

 

Applications & Future directions 

Genes that influence human heath via dosage mutations have great potential to improve 

healthcare.   Specific applications may vary for each gene, especially whether LOF variation is 
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associated with a protective or deleterious health effect, although some applications may apply 

in either case. 

Family history is already an important clinical component of assessing the risk for an 

individual to develop certain diseases, and incorporating genetic variation is simply a refinement 

of this predictive approach.  Common population polymorphisms conveying modest risk are 

already available to consumers through commercial genetic services, such as 23andMe 

(www.23andme.com).  In the clinic, rare mutations causing Mendelian disorders may be used to 

assess risk within families with a history of disease, and can distinguish the individuals most 

likely to develop disease97, but these sites may not be observed outside a few families.  LOF 

variation bridges the gap between these two extremes, in that the variation may be ascertained 

more frequently than Mendelian mutations and the effects are larger than commonly applied 

GWAS SNPs.  

The potential for drug discovery with large deeply-phenotyped cohorts is enormous.  LOF 

studies identify genes in which the total transcript levels, rather than gene composition (amino 

acid sequence) contribute to health.  As such, the drugs which are developed as a result of 

association studies may seek to influence overall gene levels, rather than mimic a specific amino 

acid substitution as many synthetic forms of insulin act98.  This presents opportunities for 

multiple avenues (monoclonal antibodies, miRNA) of therapy.   These drugs represent a 

transition into a genomic era of medicine, where treatment options move beyond symptom 

alleviation towards preventing the causes of disease before their onset.   
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