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ACTIVITIES IN THE HEART 
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 The mammalian target of rapamycin complex 1 (mTORC1) activity is paramount 

in the regulation of electrical activities in the brain and the heart.  In the brain, the tumor 

suppressor gene TSC2 encodes the protein product tuberin that interacts with hamartin to 

form a heterodimer Tuberous Sclerosis Complex (TSC) that regulates mTORC1.  When 

TSC2 is disrupted, mTORC1 activity becomes dysregulated resulting in abnormal 

electrical activities in the brain manifesting in the form of epileptic seizures.  In the heart, 

mTORC1 activity is triggered by a sustained increase in hemodynamic pressure causing 

the heart to electrically remodel.  A likely candidate serving as the mediator between 

mTORC1-dependent electrical remodeling in the brain and heart is the adaptor protein 

ankyrin.  In the heart, ankyrin-B targets and maintains the membrane expression of ion 

channels and transporters that are critical for maintaining calcium ion homeostasis, 

which underlies normal excitation-contraction coupling.  Sustained mTORC1 activity in 

the heart decreases the expression of ankyrin-B and alters the electrical conductance 

between the atria and ventricles.  These effects are reversed with the administration of 
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the mTORC1 inhibitor rapamycin.  In addition, we identified and characterized two 

functionally and spatially distinct full-length ankyrin-B isoforms – AnkB-188 and 

AnkB-212.  AnkB-188 selectively interacts with the sodium-calcium exchanger (NCX1) 

increasing its membrane expression, overall current, and targeting to the sarcoplasmic 

reticulum/transverse-tubule of neonatal cardiomyocytes.  Whereas AnkB-212 does not 

increase NCX1 membrane expression or current, but uniquely localizes to the 

sarcomeric M-line.  Knockdown of either isoform results in abnormal contraction 

rhythms in vitro, but only the M-line population appears to be regulated by mTORC1.  

Collectively, the data support the hypothesis that mTORC1 regulates electrical 

remodeling of the stressed heart by decreasing the expression of the ankyrin-B 

population at the M-line. 
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1.1 Scope of the Dissertation 

 This thesis addresses molecular mechanisms of heart failure and arrhythmia.  The 

topic is important because of the two following reasons: 

First, heart failure is a leading cause of death and disability in the United States 

[10].  Over the past several decades, advances in pharmaceutical therapies and acute 

interventions have decreased the incidence of coronary artery disease and myocardial 

infarction, yet the prevalence of heart failure has steadily risen.  Currently, around 5 

million Americans suffer from heart failure, over a million patients are hospitalized 

because of it, and 300,000 die from consequences of heart failure, with fatal cardiac 

arrhythmias being a major consequence [11-13].  To put the numbers in perspective, 

death from heart failure exceeds deaths from all forms of cancer combined [14], and that 

number is expected to double in the next decade [10]. 

 Second, despite many advances in different areas of cardiovascular medicine and 

heart disease management shifts from an acute to a chronic setting, symptomatic 

treatment via inotropic and neurohumoral axis interventions remain the only modalities 

to face such clinical challenge and the onset of fatal arrhythmias remain unpredictable 

[15].  With the rising prevalence, there has been a dearth of novel treatment strategies for 

heart failure and the prevention of the subsequent arrhythmia.  This suggests that a 

different focus in the study of heart failure pathogenesis is necessary for the 

development of novel therapies. 

 The development of heart failure is often preceded by cardiac growth manifested 

as an increase in cardiac mass, or cardiomyocyte hypertrophy.  This structural 
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remodeling temporarily allows for the preservation of cardiac function in response to 

hypertension, valvular heart disease, or anemia.  Over time, the hypertrophied heart no 

longer compensates against the stressors and the heart progresses into decompensated 

systolic heart failure, characterized by a loss of functional heart muscle.  It is during this 

stage of the pathology that hearts typically begin to lose their sinus rhythm and progress 

to arrhythmias.  However, the molecular mechanisms that drive the stressed heart to 

initially hypertrophy and ultimately lose its function and the coordinated contraction 

remain incompletely understood. 

 Prior to the progression into heart failure, the stressed heart undergoes a series of 

characteristic changes.  Structurally, hearts hypertrophy and are capable of nearly 

doubling the mass through hypertrophic remodeling [16].  Modulation of the structural 

remodeling process therefore is recognized as a potentially novel therapeutic approach 

for the prevention and treatment of heart failure. 

 Much effort has been put forth toward the understanding of the structural 

remodeling process.  Studies using microarrary gene expression profiling have identified 

expression changes in calcium handling proteins, sarcomeric proteins, mitochondrial, 

apoptotic, inflammatory, and extracellular matrix gene clusters [17, 18].  Unfortunately, 

treatment strategies aimed at normalizing inflammatory reactions and preventing 

extracellular matrix modifications have not been found to be beneficial [19, 20].  

Therefore, a better understanding of the remodeling processes involved in heart failure 

are necessary to develop a novel targeted approach to reduce the morbidity and mortality 

associated with heart failure. 
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  The structural remodeling process, specifically hypertrophy of the myocardium, 

in response to stress dramatically increases the pro-arrhythmic potential.  In fact, an 

important cause of the high mortality and sudden death in heart failure is the insidious 

onset of potentially fatal cardiac arrhythmias [13].  Therefore, a direct focus on the 

mechanisms governing the electrical remodeling process is mandatory.  Thus, we set out 

to investigate the molecular and cellular events that regulate the electrical properties of 

the heart accompanying cardiac hypertrophy and whether there is a point of intervention.  

Furthermore, we also explored the mechanism by which the prolonged hypertrophic 

response to stress affects the expression and function of ions handling proteins that 

establish normal sinus rhythm. 

 This dissertation provides the evidence in support of the hypothesis that changes 

in cardiac cellular signaling are required for structural and functional changes in the 

stressed heart, and sustained pathologic hypertrophic response alters normal rhythm of 

the heart.  The rationale is based on the established and highly conserved pathway – the 

mammalian target of rapamycin (mTOR) – that integrates the environmental signals 

such as oxygen availability, energy status of the cell, and nutrient metabolism with 

cellular growth [21, 22] and its sustained activity promotes the development of abnormal 

heart rhythms [23, 24].  Specifically, I identified dysregulation of the adaptor protein 

ankyrin-B – a key protein in proper subcellular targeting and retention of ion channels, 

transporters, and receptors that regulate the ionic movement – as a novel molecular 

target under mTOR regulation, and that sustained mTOR activity downregulates 

expression of ankyrins causing altered expression of ion handling channels and 
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transporters.  The study presents downregulation of ankyrin by mTOR activity as the key 

linking the chronically stressed myocardium and arrhythmogenesis. 

 

1.2 Hemodynamic Load-Induced Structural and Functional Remodeling 

 Cardiac hypertrophy is a response to a wide variety of external stimuli.  In 

general there are two types of cardiac hypertrophy: physiologic and pathologic.  

Physiologic cardiac hypertrophy (i.e. normal growth without structural or functional 

compromise) occurs in the postnatal period, during pregnancy, or with exercise [25, 26].  

On the other hand, pathologic cardiac hypertrophy occurs in response to hypertension, 

neurohumoral stimulation, or myocardial infarction (Figure 1.1) [16]. 
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Figure 1.1.  Conditions leading to physiologic versus pathologic cardiac growth.  
Depending on the stimulus, cardiac structural remodeling can be physiologic or 
pathologic.  Physiologic remodeling can be beneficial while pathologic remodeling is 
associated with decompensated heart failure, ventricular dilation, and electrophysiologic 
changes leading to malignant arrhythmias.  Reproduced with permission from Hill, J.A. 
and E.N. Olson, Cardiac plasticity. N Engl J Med, 2008. 358(13): p. 1370-80, Copyright 
Massachusetts Medical Society [16]. 

 

The process of pathologic cardiac hypertrophy was first identified as a step 

toward the development of heart failure in the earlier part of the last century [27].  Later, 

it was recognized that the initial hypertrophy in response to pathologic stressors was first 

adaptive, but led to systolic dysfunction when the compensation became “inadequate” 
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[28-30].  The initial adaptive state was in line with Laplace’s law which dictated that 

[wall tension =  pressure x radius / (2 x wall thickness)] [26] such that load-induced 

increases in systolic wall stress was offset by increase in wall thickness [20, 31].  In 

contrast, the Framingham Heart Study established that left ventricular hypertrophy alone 

was an independent risk factor for adverse cardiovascular outcomes such as heart failure 

and arrhythmias.  This finding from The Framingham Heart Study suggested the 

maladaptive role of cardiac hypertrophy that was vastly different from the adaptive 

nature as suggested by Laplace’s law [32, 33].  This begs the question whether cardiac 

growth is necessary to compensate for the increased cardiac work. 

 At the cellular level, the heart responds to an increase in workload by post-

translational modification of proteins.  For example, acute mechanical stress directly 

activates angiotensin II type 1 receptor and G-protein coupled receptors leading to 

phosphorylation changes of downstream growth signaling proteins [34-36].  When 

subjected to an increase in workload chronically, sustained activation of intracellular 

signaling cascades not only activates cellular growth pathways and leads to hypertrophy, 

it also changes gene expression, most notably the reactivation of the fetal gene program 

(e.g. α- to β-myosin heavy chain expression) [16, 37].  In several small animal studies 

where cardiac hypertrophy was attenuated by inhibition of calcineurin-mediated 

intracellular growth pathway with cyclosporine showed preservation of systolic function 

when challenged with hemodynamic stress [38-40].  Similar studies where suppression 

of other intracellular growth pathways such as GSK-3β pathway or calcium/calmodulin 

kinase II have all demonstrated reduced cardiac hypertrophic and preservation of cardiac 

function in response to pressure overload or β-adrenergic stimulation [41-43].  Inhibition 
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of pathologic hypertrophic response therefore presents a potential therapeutic avenue for 

the preservation of cardiac functions. 

 Since left ventricular hypertrophy is established as an independent risk factor for 

development of heart failure and arrhythmias, attenuating cardiac hypertrophic response 

while preserving the contractile performance is a logical approach to prevention and 

treatment of heart failure.  As aforementioned, a number of signaling events take place 

in the stressed heart to regulate cardiac growth.  Thus, a better understanding of how the 

intracellular signaling events as it relates to changes in electric properties of the heart is 

essential.  Of all the signaling events, the mammalian target of rapamycin (mTOR) 

pathway is one of the best well-characterized growth signaling cascade to be active in 

the stressed heart [44-46].  Therefore, a major focus of this thesis is on mTOR activity 

and proteins responsible for maintaining regular rhythm in the heart. 

 

1.3 mTOR Signaling in the Heart 

 The evolutionarily-conserved mTOR pathway is part of the insulin signaling that 

regulate cellular growth and proliferation such as ribosomal biogenesis, protein 

translation, autophagy, and nutrient metabolism. 

mTOR (mammalian target of rapamycin) biology was elucidated through the use 

of the macrolide rapamycin, an antifungal composed of a large macrocyclic lactone ring 

with deoxy sugars attached that was isolated from a yeast strain Streptomyces 

hygroscopius found on Easter Island of Rapa-Nui [47].  Rapamycin inhibits cellular 

growth and proliferation and is now an FDA-approved drug for use as an 
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immunosuppressant for kidney transplant and prevention of post-angioplasty restenosis 

[48-50].  Rapamycin has a high affinity for FK506-binding protein 12 

(FKBP12) that subsequently inactivates the mTORC1 complex [51] or mTORC2 

complex with chronic rapamycin administration [52].  Using rapamycin, mTOR’s 

sensitivity to nutrient availability and ability to mediate protein synthesis was first 

identified in yeast [53, 54].  Studies in which withdrawal of amino acid from Drosophila 

and mammalian cells with rapamycin administration resulted in decreased mTORC1 

activity were demonstrated and the mechanisms by which inhibition occurred were 

elicited [21].  Nutrient availability, specifically branched-chain amino acids, binds to 

Rag-Ragulator complex to recruit and directly stimulate mTOR activity [44-46].  In 

contrast, rapamycin inhibits mTOR activity by complexing with FK506 binding protein 

12 (FKBP12), which in turn binds to mTOR’s FKBP12-rapamycin binding domain to 

inhibit its ability to phosphorylate the downstream effectors [55, 56]. 

mTOR regulates protein translation through phosphorylation of proteins in the 

translational machinery, and the two most well-characterized downstream targets of 

mTOR are ribosomal protein p70 S6 kinase-1 (p70S6K1) and eukaryotic initiation factor 

4E-binding protein (4E-BP1) [57].  p70S6K1 regulates cell size via phosphorylation of 

40S ribosomal protein S6 that is important in translational control of mRNAs containing 

5’-terminal oligopyrimidine tract.  4E-BP1 normally binds and inhibits eukaryotic 

initiation factor 4E (eIF-4E), but the inhibition is relieved with 4E-BP1 phosphorylation 

by mTOR.  eIF-4E then recruits 40S ribosomal subunit to the 5’ end of mRNAs [58].  

Collectively, mTOR activation results in increased cap-dependent protein translation 

[59-61]. 
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 Further studies on mTOR found that mTOR nucleates two major complexes – 

mTOR complex 1 (mTORC1) and mTOR complex 2 (mTORC2) [62].  mTORC1 is 

composed of mTOR, regulatory-associated protein of mTOR (RAPTOR), mammalian 

lethal with Sec13 protein 8 (mLST8), the proline-rich Akt substrate 40 kDa (PRAS40), 

and DEP domain-containing mTOR-interacting protein (DEPTOR).  mTORC2 is 

composed of mTOR, rapamycin-insensitive companion of mTOR (RICTOR), protein 

observed with RICTOR (PROTOR), mLST8, mammalian stress-activated protein 

kinase-interacting protein 1 (mSin1) [63, 64].  The different components of the two 

complexes yield distinctly different downstream functions and upstream regulations.  

mTORC1 activity primarily drives protein translation, cell growth, and cell proliferation 

whereas mTORC2 regulates cytoskeletal organization via actin reorganization [65].  

Another notable difference between the two is that mTORC1 is sensitive to acute 

rapamycin inhibition and does not change with chronic administration, whereas 

mTORC2 is not acutely sensitive to rapamycin but is inhibited with chronic rapamycin 

treatment [66].  The question remains, what roles do the two complexes have in heart 

growth? 

 In the unstressed heart, mTORC1 is normally inhibited by its upstream regulator, 

the tuberous sclerosis complex (TSC) composed of TSC1 (hamartin) and TSC2 (tuberin) 

[67].  In the unstimulated state, N-terminus of tuberin binds hamartin to form a 

heterodimer coiled-coil complex and the C-terminus of tuberin, the GTPase-activating 

protein domain, actively inhibits Ras homolog enriched in brain (Rheb) by hydrolyzing 

Rheb-GTP (active form capable of activating mTORC1) to Rheb-GDP (inactive form) 

[68-70].  Growth factors (e.g. insulin or insulin-like growth factor 1) or mechanical 
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stress activates mTORC1 in the insulin signaling pathway by phosphorylating and 

dissociating the TSC complex in a phosphatidyl inositol-3 kinase (PI3K)-dependent 

manner [71].  Dissociation of tuberin and hamartin suppresses GTPase-activity of 

tuberin and promotes Rheb-GTP that recruits and activates mTORC1 on the lysosomal 

surface [72-74]. 
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 Collectively, given the sensitivity of insulin signaling to environmental cues and 

its role in cell growth and proliferation, mTORC1 activity intimately provides and plays 

a major role in the cardiac hypertrophic response to hemodynamic stress. 

 

1.4 Overactive mTORC1 Underlies Electrical Changes in the Brain 

 Chronically stressed heart with hypertrophic phenotype exhibits changes in 

electrocardiogram (EKG) recording [75].  But prior to changes in the EKG, the 

hypertrophic phase is characterized by numerous signaling pathway changes [76-82].  

Prior to the investigation of mTORC1 pathway regulating the electrical changes in the 

heart, it is prudent to start by exploring the relationship between mTORC1 in the brain, 

another electrically active organ. 

The activation of the mTORC1 pathway in the central nervous system is highly 

associated with the recurrence of seizures [83].  Genetic mutations of the mTOR 

pathway components such as phosphatidyl-inositol-3 kinase (PI3K), phosphatase and 

tensin homologue (PTEN), Akt/PKB, and mTOR all display unprovoked seizures in 

animal models [84-88].  But the involvement of mTORC1 in seizure development goes 

Figure 1.2.  The mTOR signaling network. A, mTOR kinase nucleates both the mTOR 
complex 1 and complex 2.  mTOR complex 1 contains RAPTOR, mLST8, PRAS40, and 
RAGulator complex (not shown in the diagram).  mTORC1 drives cellular growth by 
increasing protein translation and decreasing degradation.  B, When Akt is in active, TSC 
complex inhibits Rheb and PRAS40 inhibits mTORC1.  Upon activation, Akt promotes 
mTORC1 activity by inhibiting the TSC complex and PRAS40.  When TSC complex 
becomes genetically inactivated, strongly elevated Rheb activity greatly increases mTORC1 
activity despite negative feedback inhibition by Akt and PRAS40.  Reproduced with 
permission from Guertin, D.A. and D.M. Sabatini, Defining the role of mTOR in cancer. 
Cancer Cell, 2007. 12(1): p. 9-22 [9].  Permission number: 3673841346160. 
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beyond genetic manipulation of the pathway.  Chemical or electrical stimulation and 

post-traumatic brain injury in rodent models have all elicited recurrent seizures marked 

by increased mTORC1 activity, and treatment with rapamycin either attenuated the 

severity or the frequency of seizure activities [89-93].  Furthermore, early data using 

rapamycin for medically intractable seizures have had promising results leading to 

current larger scale clinical trials [94]. 

 A notable disease that typifies hyperactive mTORC1 in the brain is tuberous 

sclerosis complex (TSC).  TSC is an autosomal dominant disease caused by germline 

mutations in either of the tumor suppressor genes, TSC1 or TSC2.  As shown in figure 

1.2B, inactivation of either gene leads to the inactivation of the TSC complex and 

hyperactivation of the mTORC1 pathway that promotes the neuropathological changes 

in the central nervous system characterized by the formation of tubers [95-97].  Tuber 

formation is a result of abnormal neuronal migration and cellular hypertrophy [98, 99] 

and has been shown to be the likely origin of recurrent seizures [100, 101], a process 

whereby the brain is functionally altered and generates abnormal electrical signals.  The 

presence and the number of cortical tubers highly correlate to the degree of seizure 

severity and number of occurrences, which are one of the most defining and devastating 

neurologic consequences manifesting in many of the patients afflicted with TSC [102-

105].   

 The mechanism by which overactive mTORC1 remodels electrical properties of 

neurons that cause recurrent seizures remains perplexing.  Much attention has been 

focused on the inappropriate neuronal migration and synaptogenesis in unprovoked 

epilepsy [98, 106-108].  But recently, changes in ion handling proteins secondary to 



14 

 

mTORC1 overactivation are beginning to be identified.  Functional and expression 

changes of ion channels and receptors at the cellular level such as voltage-gated 

potassium channels, glutamate and GABA receptors that result in spontaneous abnormal 

neuronal firing have been characterized [109-111].  Specifically, neurons with 

overactive mTORC1 exhibit decreased expression and currents in two inward-rectifier 

potassium channels (Kir2.1 and Kir6.1) – ATP-sensitive channels that play a role in 

neuronal repolarization – and an increased expression and currents through the 

excitatory GluN2C NMDA receptors [109, 112].  Altogether, the net results are lowered 

threshold for neuronal firing and increased frequency of action potential firing.  The 

expression and current changes are reversible by either inhibiting mTORC1 directly or 

by modulating downstream effectors of mTORC1 in vivo and in vitro.  These same 

neurons also exhibit increased spontaneous firing as a result of decreased repolarizing 

current [109, 112]. 

 The effects of mTORC1 on ion channels, and therefore the electrical properties 

of the neurons, are clear, but the mechanistic regulation of the channels remains elusive. 

 

1.5 Ion Channels and the Adaptor Protein Ankyrin 

Ion channels and transporters require proper interaction with adaptor protein such 

as ankyrin to facilitate their proper membrane localization and functioning.  Ankryins 

are a family of intracellular adaptor proteins that interact, transport, and (implicit in the 

name) anchor membrane proteins at their proper subcellular domains to the underlying 

cytoskeletal structure [8].  Three independent ANK genes (ANK1, ANK2, and ANK3) 
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make up the ankyrin family and each has a unique function and subcellular localization 

to facilitate the proper formation of the cellular architecture and biogenesis of distinct 

membrane domains [113]. 

The ankyrin proteins vary vastly in size, but a canonical ankyrin protein has four 

domains: 1.) membrane-binding domain, 2.) spectrin-binding domain, 3.) death domain, 

and 4.) C-terminal domain (Figure 1.3).  Contrary to the naming scheme, the membrane-

binding domain does not directly bind to the plasma membrane, but instead binds to a 

variety of membrane-bound proteins such as ion channels, transporters, and cell 

adhesion molecules [114-116].  The spectrin-binding domain is where interaction with 

the underlying cytoskeletal structure occurs.  The death domain and the C-terminal 

domain together are thought to comprise the “regulatory domain” because of their 

intramolecular association with the membrane binding domain that likely specifies 

ankyrin’s affinity for different binding partners. 
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 Because of ankyrin’s ability to bind with multiple partners simultaneously, it is 

therefore within the ankyrin’s capability to facilitate the formation of large membrane 

protein complexes to create specialized membrane domains and tether them to the 

underlying cytoskeleton.  An example of the protein complex formed by an ankyrin 

protein is the interactions between neuronal ankyrin-G with voltage-gated ion channels, 

cell adhesion molecules (neurofascin-186 or L1-CAM), and the underlying cytoskeleton 

βIV-spectrin at the axon initial segment (AIS) and nodes of Ranvier [117, 118]. 

The divergence of the regulatory domain within the same and between different 

ankyrin products confers different functions of ankyrins by specifying their subcellular 

localizations and interactions with different binding partners [119, 120].  The 

functionally distinct and different spatially-localized ankyrins are central in the 

establishment of neuronal polarity and ion channel clustering at the axon initial segments, 

Figure 1.3.  Organization of domains of a prototypical ankyrin.  24 ANK repeats 
comprise the membrane-binding domain that is responsible for interactions with other 
proteins.  Each ANK repeat is composed of an α-helix-β-hairpin loop-α-helix and the 
exposed tip of β-hairpin loop is where protein binding takes place.  The spectrin-binding 
domain is where ankyrin binds to the underlying cytoskeleton spectrin, thereby 
“anchoring” the interacting membrane protein.  The regulatory domain modulates 
ankyrin’s intramolecular association and targets ankyrin to specific subcellular domains.  
Reproduced with permission from Cunha, S.R. and P.J. Mohler, Cardiac ankyrins: 

Essential components for development and maintenance of excitable membrane domains 

in heart. Cardiovasc Res, 2006. 71(1): p. 22-9 [8].  Permission number: 3673851380495. 
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nodes of Ranvier, and paranodes that work in concert to establish membrane excitability 

and saltatory conduction [121-123]. 

Neuronal excitability begins at the axon initial segment (AIS), a site of 

integration from many dendritic signals that result in the initiation of action potentials.  

Action potentials are generated by clusters of voltage-gated sodium channels and 

repolarized by voltage-gated potassium channels that are concentrated at the AIS and 

nodes of Ranvier [118, 124].  Studies have attributed the clustering of the voltage-gated 

ion channels at the AIS to their interactions with ankyrin-G.  Furthermore, in an ankyrin-

G null murine model, not only is the clustering of voltage-gated sodium channels at the 

AIS is disturbed, deficits in action potential initiation and rate of firing are observed [117, 

118, 125-127].  Although these studies showed decreased action potential generation and 

frequency when the binding sites are disrupted by knockdown or point mutations, a 

recent report showed that lithium-pilocarpine-induced epilepsy in a murine model 

caused ankyrin-G-dependent changes in the expression of voltage-gated sodium 

channels [128].  The role ankyrin plays in modulating neuronal excitability by way of 

their interactions with the ion channels is evident. 

Likewise, in the context of the recurrent seizures and decreased voltage-gated 

potassium channels and currents observed in animal models of TSC, the potential 

changes in ankyrin expression or localization secondary to dysregulated mTORC1 

activity may underlie the molecular pathway leading to increased excitability in the 

central nervous system of Tsc2-hGFAP described in chapter 2 (Figure 1.4). 
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1.6 Ankyrin and the Heart 

 Like the neurons, cardiomyocytes are intrinsically electrically active.  Whereas 

neuronal activity is measured by generation and firing frequencies of action potentials, 

cardiomyocyte performance is measured by the generation of action potentials, 

contraction strength and rhythm.  These properties of the cardiomyocytes are related as 

every beat of the heart begins with the generation of an action potential that travels down 

the sarcoplasmic reticulum/transverse-tubule (SR/T-tubule) to depolarize the voltage-

gated calcium channels (or dihydropyridine receptor) causing a calcium-induced calcium 

release via the ryanodine receptor [129].  This calcium release in turn causes a 

mechanical contraction by the cardiomyocyte, and, by cell-to-cell electrical coupling at 

intercalated discs, leads to the contraction of the entire myocardium.  Collectively, this is 

Figure 1.4.  Proposed model of mTORC1 regulation of neuronal excitability.  Action potential is 
generated at the axon initial segment (intersection between the soma and the axon) and propagated 
through the nodes of Raniver (denoted by the areas in between the myelin sheaths) by the voltage-
gated sodium channels (Nav1.6).  Repolarization of the action potential is mediated by the voltage-
gated potassium channels (Kv7.2/7.3).  Maintenance of Nav1.6 and Kv7.2/7.3 at their proper 
subcellular domains is mediated by the adaptor protein ankyrin-G and its expression is likely 
regulated by mTORC1.  Rectangular boxes along the axon represent the myelin sheaths. 
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termed “excitation-contraction coupling” and links the electrical stimulus to a 

mechanical response [130, 131]. 

 Normal excitation-contraction coupling, similar to neuronal depolarization and 

repolarization, requires the precise targeting and maintenance of integral membrane 

proteins at specialized membrane domains.  While adaptor proteins such as ankyrin help 

establish important subcellular domains for action potential generation and propagation 

in neurons, ankyrin coordinates and establishes identity and functions of SR/T-tubule 

junction and intercalated discs - important subcellular domains of cardiomyocytes – for 

the proper conversion of electrical signal to mechanical force.  Specifically, ankyrin-B in 

the heart functions at the SR/T-tubule by targeting and retaining the sodium-calcium 

exchanger (NCX) and sodium potassium ATPase (NKA) [2, 4].  Loss-of-function 

ankyrin-B mutations at the cellular level that disrupt interactions with its binding 

partners lead to decreased NCX and NKA membrane expression and reduced half-life, 

elevated sarcoplasmic reticulum calcium content, and increased duration of calcium 

sparks [2, 4, 5, 132, 133].  At the clinical level, the missense mutations have been linked 

to various arrhythmias – or abnormal rhythms of contraction - that include but not 

limited to bradycardia, atrial fibrillation, idiopathic ventricular fibrillation, 

catecholminergic polymorphic ventricular tachycardia, prolonged ventricular 

repolarization (type IV long QT syndrome), and sudden cardiac death [3-5, 134, 135].  

QT interval is the time it takes for the heart to depolarize then subsequently repolarize 

fully and correlates directly with the increase in the duration of calcium transients 

observed at the cellular level. 
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 Interestingly, ankyrin-B populations are observed at two distinctly different 

functional subcellular domains of the cardiomyocyte: one at the SR/T-tubule and the 

other at the M-line.  While many studies have focused on the function of ankyrin-B at 

the SR/T-tubule, very little is known about the function of ankyrin-B population at the 

M-line, a site where myosin heavy chain is organized [136].  However, the existence of 

two ankyrin-B populations at two functionally divergent subcellular domains cannot be 

attributed to a single isoform despite the multivalent properties of ankyrin proteins.  Also, 

the majority of the studies dealing with ankyrin-B are focused on its binding partners 

exclusively localized at the SR/T-tubule (e.g. NCX, NKA, and IP3R) that are completely 

absent at the M-line.  Given that ankyrin-B is expressed at the SR/T-tubule and the M-

line, we speculate that there exists more than one ankyrin-B isoform in cardiomyocytes 

that contribute to the maintenance of the excitation-contraction integrity. 

 Cardiac expression of multiple ankyrin-B isoforms is a likely hypothesis since 

alternative-splicing of ankyrin genes has been well-documented.  For example, multiple 

isoforms of ankyrin-G has been identified in the brain [137, 138], muscles [139-141], 

and heart [142-144].  Multiple isoforms of ankyrin-B have also already been identified 

in the brain that play a role in neurite outgrowth and control growth cone navigation 

[145-149].  Yet neurologic clinical manifestation of loss-of-function ankyrin-B remains 

unreported at this time. 

Multiple mutations in ankyrin-B have been associated with cardiac arrhythmias.  

Interestingly, individual mutations have been linked to diverse groups of arrhythmias.  

Previous studies examining the molecular basis of ankyrin-B dysfunction have been 

unable to account for how a single mutation could manifest as atrial fibrillation, 
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bradycardia, and idiopathic ventricular fibrillation.  Findings from these studies were 

interpreted with the false assumption that the heart expresses one isoform of ankyrin-B.  

Our hypothesis that the heart expresses multiple ankyrin-B isoforms provides a more 

fitting explanation for the diversity of arrhythmias resulting from ankyrin-B dysfunction.  

In Chapter 4, I describe the identification and functional characterization of two novel 

ankyrin-B isoforms in mammalian heart.  This work provides the foundation for future 

experiments to re-evaluate arrhythmia-associated mutations in the context of 

endogenously expressed ankyrin-B isoforms. 

Different sets of arrhythmias also manifests throughout different stages of heart 

failure [13].  Multiple, signaling, functional, structural remodeling occur simultaneously 

in the hypertrophic heart [16].  From Chapter 4, we identify and characterize multiple 

ankyrin-B isoform expressions and localization in cases of primary cardiac arrhythmias.  

Using that as platform to interrogate electrical changes in secondary cardiac hypertrophy 

in Chapter 3, I demonstrate that ankyrin-B expression decreases in a murine model of 

cardiac hypertrophy via overactivation of the mTORC1 pathway by increased 

hemodynamic load.  Furthermore, I demonstrate a link between mTORC1 activation and 

reduced ankyrin-B expression at the sarcomeric M-line.  Changes in ankyrin-B 

expression may induce arrhythmia in the hypertrophic heart by disrupting the proper 

subcellular localization and function of the sodium calcium exchanger and/or other 

calcium ion handling proteins.  In sum, this chapter lays out a molecular path that may in 

part account for arrhythmogenesis associated with secondary cardiac hypertrophy. 
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CHAPTER 2: THE DIFFERENTIAL EFFECTS OF PRENATAL AND/OR 

POSTNATAL RAPAMYCIN ON NEURODEVELOPMENTAL DEFECTS AND 

COGNITION IN A NEUROGLIAL MOUSE MODEL OF TUBEROUS 

SCLEROSIS COMPLEX 
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2.1 Introduction 

Tuberous sclerosis complex (TSC) is a tumor suppressor disorder caused by 

heterozygous mutations in either the TSC1 (hamartin) or the TSC2 (tuberin) genes [150, 

151].  Loss of heterozygosity of either gene [152, 153] and activation of the mTORC1 

kinase [152, 154] are important molecular features associated with TSC pathology.  

Although TSC affects multiple organs, neurodevelopmental defects result in the most 

substantial morbidity and mortality. Tubers, subependymal nodules and subependymal 

giant cell astrocytomas (SEGAs) represent common TSC neurodevelopmental 

abnormalities [155, 156] and are associated with intellectual disability, autism and 

epilepsy. The prevention and management of these developmental brain lesions are 

major challenges in caring for patients. 

The hamartin and tuberin heterodimer inhibit the rapamycin-sensitive mTORC1 

signal transduction pathway that controls translation, proliferation and cell growth [57, 

157, 158].  Preclinical trials have demonstrated significant rescue of many neurologic 

defects using rapamycin [95-97, 159, 160], a macrolide that, upon binding to the 

intracellular binding protein FKBP12, inhibits the ability of the mTORC1 kinase to 

signal to its downstream effectors.  These studies have paved the way for several human 

clinical trials that have recently resulted in the approval of everolimus, a rapamycin 

derivative, for the treatment of SEGAs [161, 162].  Nonetheless, the ability of rapamycin 

to rescue perinatal defects remains largely untested.  A recent report demonstrated a 

promising effect of one dose of prenatally-administered rapamycin on the longevity of a 

Tsc1-Nestin mouse model of TSC [159].  Here, we substantially extend those studies by 

comparing and contrasting the histological and behavioral effects of different perinatal 
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rapamycin treatment regimens in the previously reported Tsc2-hGFAP neuroglial mouse 

model of TSC [98].  Using the Tsc2-hGFAP mouse model, we have shown that the loss 

of Tsc2 in radial glial progenitor cells recapitulates many brain manifestations of TSC.  

Tsc2-hGFAP animals have cortical and cellular hypertrophy, heterotopias, defects in 

lamination and myelination, astrogliosis and die at about one month of age [98].  These 

defects are a combination of prenatal and postnatal neurodevelopmental abnormalities 

and thus provide a good model for the study of perinatal treatment of TSC.  Using the 

Tsc2-hGFAP model, we sought to systematically determine the most effective treatment 

regimens to rescue neurodevelopmental defects.  We show that combined rapamycin 

treatment resulted in almost complete rescue of neuronal and glial pathologies, while 

prenatal or postnatal treatment alone yielded less complete but significant improvements 

in brain histology.  Surprisingly, the animals treated with combined therapy did not 

perform as well as postnatally treated animals on learning and memory tasks.  mTORC1 

activity is critical for dictating the overall growth of differentiating neuronal stem cells 

and postmitotic neurons [163, 164], axon guidance [165] and dendritic arborization 

[166].  Therefore, overt inhibition of mTORC1 during neurodevelopment may disrupt 

proper axon guidance and dendritic arborization leading to subsequent deficit in learning 

and memory in adulthood.  These results show that rapamycin can rescue perinatal 

neurodevelopmental defects and support the cautious design of trials that will assess 

early rapamycin treatment of TSC-affected children. 
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2.2 Materials and Methods 

2.2.1 Animals 

Tsc2-hGFAP mice (Tsc2ko/flox;hGFAP-Cre) were generated and genotyped as 

previously described [98]. All protocols were approved by the University of Texas 

Health Science Center at Houston Animal Welfare Committee. 

 

2.2.2 Rapamycin treatment regimen 

 Rapamycin (MP Biomedicals) was dissolved in 100% methanol at 1.0 mg/ml for 

storage at -200C.  Before use, rapamycin was diluted with PBS and administered 

intraperitoneally at 0.1 mg/kg daily.  Prenatal treatment was conducted by administering 

rapamycin to pregnant dams from embryonic day 12.5 (E12.5), the approximate day of 

hGFAP-Cre expression in radial glial progenitors, until delivery (prenatal group).  

Postnatal treatment started at birth (P0) and ended at weaning (P21) (postnatal group).  A 

third group was treated prenatally from E12.5 and then after birth until weaning 

(pre+post = combined group).  One group of treated animals was used for histologic 

analysis, and another group was observed for longevity. 

For behavior testing, animals were switched from 0.1 mg/kg rapamycin daily to 2 

mg/kg rapamycin three times a week between P35 and P44 as daily 0.1 mg/kg was no 

longer sufficient to suppress seizure activities of the Tsc2-hGFAP mice two weeks past 

weaning.  We used 2 mg/kg because this dose was able to extend the lives and maintain 

the health of the Tsc2-hGFAP mice without runting them (Figure 2.5).  Rapamycin has a 
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half-life of 4.5 hours in blood [167] so that it is virtually eliminated completely from the 

body at the end of every 24-hours post injection, the alternate inhibition and activation of 

mTORC1 every other day appears to achieve therapeutic effects. 

 

2.2.3 Western analysis, histology and immunohistochemistry 

Brain lysates were made from P21 animals and analyzed as previously described 

[98].  Briefly, P21 mice were anesthetized with 2.5% avertin and transcardially perfused 

with cold PBS followed by 4% paraformaldehyde.  Hematoxylin and eosin staining and 

immunohistochemistry were performed as previously reported [98].  Antibodies used 

were: phosphorylated (Ser 240/244) S6 (1:100, Cell Signaling), Cux1 (1:50, Santa Cruz), 

BrdU (1:50, Becton Dickinson), GFAP (1:400, Sigma), NeuN (1:100), MBP (1:200) 

(Millipore), Olig2 (1:200) (Millipore) and CC1 (1:100, Calbiochem). Antibodies used 

for western analysis were: tuberin (1:500), hamartin (1:500), a-tubulin (1:2000), S6 

(1:500), pS6 (S240/244) (1:500), pS6 (S235/236) (1:500) from Cell Signaling. 

 

2.2.4 Quantitative analysis 

Three sections from three mice of each group were used for all quantitation.  

Sections were matched and a standard area was used for counting.  ANOVA was used 

for analysis of data.  The log-rank test was used to compare survival curves.  For BrdU 

analysis, the cortex was divided equally into 10 bins, and a standardized width was used 

for counts.  Learning and memory testing experimenters were blind to the treatment 
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groups.  Animals were trained in two variations of the hidden platform version of the 

Morris water-maze task: 1-day version and a 7-day version [168-171].  For 1-day 

training protocol, animals were given 12 consecutive trials (4 min inter-trial interval) in 

1 day and a probe test 24 h later.  For the 7-day protocol, animals were given four 

training trials a day (4 min inter-trial interval) for six consecutive days.  A probe trial 

was given 48 h later.  Movement within the maze was monitored by a video camera 

linked to tracking software.  Analysis of data was done with unpaired, two-tailed 

Student’s t-test (number of platform crossings and path length) and repeated-measure 

ANOVAs (learning curves and quadrant preference).  Context discrimination testing was 

done as previously described [172].  Briefly, animals were pre-exposed (no shock) to 

two contexts that shared certain features (horizontal grid floor, background noise, animal 

handling to and from the room) while differing in others (differently spaced grids, scent, 

distal cues, floor shape and color).  Animals were given one trial a day of 3 minutes in 

each chamber with a minimum of 3.5 h between trials.  In the shock chamber, animals 

were given a 2 s, 0.75 mA shock given at 148 s, while no shock was given in the safe 

chamber.  Discrimination of the two contexts was assessed by comparing the time spent 

freezing (monitored in 2 s intervals) in each chamber during a test trial done on day 4 

during which no shock was given. Analysis of the data was done with paired, two-tailed 

Student’s t-test. Data were considered significant at P<0.05. 

 

 

2.3 Results 
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To examine whether rapamycin could rescue some or all defects in Tsc2-hGFAP 

mice, we designed three rapamycin treatment regimens to target prenatal and/or 

postnatal developmental abnormalities (Figure 2.1A). We optimized a rapamycin dosage 

(0.1 mg/kg i.p. daily) that suppressed mTORC1 activity as measured by levels of 

phosphorylated ribosomal protein S6 (Figure 2.1B and C), but did not kill embryos or 

retard postnatal growth.  This dose is 10–50-fold lower than that used in other studies 

involving TSC mouse models [95-97, 159].  Rapamycin treatment was stopped at birth 

in the prenatal group or at postnatal day 21 (P21) in the combined and postnatal groups. 

Animals were either sacrificed for brain histology or observed for longevity. 

In all treatment groups, rapamycin improved the health of Tsc2-hGFAP mice 

(Figure 2.1D, E, F). The postnatal and combined treatment groups were healthy and 

appeared indistinguishable from controls at P21, but began to die from seizures at about 

P40 (Figure 2.1F).  These results along with our longevity study presented in Figure 2.5 

further demonstrated that rapamycin treatment must be continued to prevent death in 

mutant animals as shown in other models [96, 97].  Nonetheless, the median age of 

survival of both postnatal and combined groups was significantly longer than untreated 

mutants.  Prenatal treatment had a modest effect on postnatal health, and did not 

significantly alter the median survival.  These attenuated effects of prenatal treatment are 

likely due to the reactivation of mTORC1 after the cessation of treatment at P0 as 

demonstrated by increased phosphorylated S6 (pS6) immunostaining (Figure 2.2A). 
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 Phosphorylation of S6 in the brains of the postnatal and combined treatment 

groups at P21 (Figure 2.2A) was decreased compared with untreated mutants, consistent 

with the immunoblot analysis used to optimize the dose of 0.1 mg/kg (Figure 2.1C).  

Further histologic analysis demonstrated significant reduction in cortical enlargement 

and cellular hypertrophy in all three treatment groups (Figure 2.2B, D, F, G).  The 

effects of combined treatment on cortical and hippocampal organization were most 

striking (Figure 2.2B, C, E).  Prenatal and combined treatment restored the cell sparse 

marginal zone (MZ) that was thinner and less defined in the untreated and postnatal 

treated brains (Figure 2.2B).  The hippocampal pyramidal layer of the combined 

treatment group was well organized and almost indistinguishable from control (Figure 

2.2C and E).  Prenatal and postnatal treatment also improved hippocampal organization, 

although the CA1 and CA3 regions remained somewhat disorganized.  All untreated 

Figure 2.1. Prenatal, postnatal and combined rapamycin treatments improved health, weight gain 
and longevity. A, Rapamycin treatment regimens and their relationship to brain development. 
Prenatal treatment was from E12.5-birth (P0); postnatal treatment from P0 to weaning (P21); 
combined treatment from E12.5 to P21. In the cohorts used for histology and longevity studies, 
prenatal treatment stopped at birth (open circle), postnatal and combined treatments were stopped 
at P21 (open circle).  B, Brain lysates from newborn animals after 0.1 mg/kg prenatal rapamycin 
treatment from E12.5 to birth were analyzed by immunoblotting. The levels of phosphorylated S6 
(pS6), an indicator of mTORC1 activation, were decreased in the lysates of the rapamycin-treated 
Tsc2-hGFAP (mutant) animals, although not to control levels. Total S6 was unaffected.  C, 
Immunoblots of cortical and hippocampal lysates from P21 mice treated with 0.1 mg/kg i.p. 
rapamycin from P0 to P21. Levels of pS6 in the untreated Tsc2-hGFAP cortex and hippocampus 
were increased. Treatment reduced mutant pS6 levels to approximately untreated control levels. 
Total levels of S6 remained unchanged. Based on these results, daily 0.1 mg/kg i.p. was used for 
further experiments.  D, Control and Tsc2-hGFAP mutant mice at P21 after the different 
rapamycin treatment regimens.  E, Graph demonstrating an improvement in weight gain for all 
rapamycin regimens compared with untreated Tsc2-hGFAP mice (solid black line). Rapamycin 
treatment regimens had no effect on weight gain in control animals.  F, The Kaplan–Meier 
survival plots of untreated and all treatment regimens after the cessation of rapamycin. Colored 
arrows correspond to day of rapamycin cessation for specific groups. Median age of death: MUT-
untreated P23 (n = 20); MUT-prenatal P31 (n = 12; P = 0.08); MUT-postnatal P45 (n = 6; P < 

0.001); MUT-combined P41 (n = 5; P = 0.0001). 
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Tsc2-hGFAP animals have distinctive ring heterotopias in the stratum lacunosum 

moleculare (SLM) (Figure 2.2C).  No heterotopia was seen in the prenatal or combined 

treatment samples.  Small heterotopias were seen in two out of seven postnatal-treated 

animals.  We then examined ectopic NeuN-positive cells in the stratum oriens (SO) to 

assess how rapamycin affected the abnormal position of these cells.  Postnatal and 

combined treatments reduced the number of ectopic cells in the SO, but combined 

treatment reduced the number of ectopic cells to almost control levels (Figure 2.2E and 

H). These results demonstrate that rapamycin can correct the abnormal migration of 

Tsc2-deficient neurons. The additive effect of pre- and postnatal rapamycin treatment on 

hippocampal organization is consistent with the in utero and postnatal development of 

this structure [173]. 
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To examine the effects of rapamycin on cortical lamination, we performed 

immunohistochemistry to detect the layer II– IV-specific transcription factor Cux1 [174] 

(Figure 2.3A and B).  Both prenatal and combined rapamycin decreased the number of 

Figure 2.2. Effects of daily 0.1 mg/kg rapamycin treatment regimens on cortical histology and 
organization.  A, Cortical and hippocampal phosphorylated S6 (pS6) immunohistochemistry. Untreated 
Tsc2-hGFAP brains at postnatal day 21 demonstrated an increased pS6 signal compared with control. 
Postnatal and combined treatments decreased the intensity of pS6 staining in Tsc2-hGFAP brain 
consistent with suppression of mTORC1. In the prenatally-treated brains, pS6 expression was 
comparable with untreated Tsc2-hGFAP levels, suggesting reactivation of mTORC1 during the period 
of no treatment from P0 to P21.  B, H&E staining of the cerebral cortex. Note the well-formed MZ in 
the brains from prenatal and combined treated Tsc2-hGFAP mice.  C, H&E staining of hippocampus. 
Combined treatment resulted in a mutant hippocampus that was almost identical in organization to the 
control. The CA1 and CA3 regions were indistinguishable between control and combined treatment 
groups, but remain somewhat split and disorganized (arrows and asterisks) in the prenatal and postnatal 
groups. The ring heterotopia in the SLM of the mutant mice (arrowheads and insets) were absent in 
prenatal and combined treatments, and were occasionally seen in the postnatal group (two out of seven 
animals examined; 15/15 untreated Tsc2-hGFAP mice have ring heterotopias).  D, Higher 
magnification of cortical layers II/III showing NeuN immunohistochemistry of enlarged neurons of the 
untreated mutant and the rescue of cell size by the various treatments.  E, NeuN immunohistochemistry 
of the CA1 region of the hippocampus. Note the ectopic cells in the SO of untreated Tsc2-hGFAP mice 
that are decreased in number in postnatal treatment, and almost disappear in combined treatment brains.  

F, Bar graph showing the rescue of cortical thickness in all treatment regimens (∗∗∗P < 0.001). The 
thickness of the control cortex was unaffected by the different rapamycin regimens.  G, Bar graph 

showing the rapamycin rescue of neuronal hypertrophy (∗P < 0.05; ∗∗P < 0.01; ∗∗∗P < 0.001). Control 
neuronal size was not significantly affected by rapamycin.  H, Bar graph showing the number of 
ectopic neurons in the SO of the hippocampus in different treatment groups. Combined treatment had 

the greatest effect on reducing the number of ectopic neurons in the SO (∗∗P < 0.005; ∗∗∗P < 0.0005). 
Data represent mean +SEM. MZ, marginal zone; SLM, stratum lacunosum-moleculare; SO, stratum 

oriens; DG, dentate gyrus. 
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ectopic Cux1-positive cells in cortical layers V and VI of Tsc2-hGFAP mice.  Postnatal 

treatment had little effect on the distribution of Cux1-positive cells. These results 

suggest that in utero administration of rapamycin can rescue the abnormal migration of 

cortical neurons to appropriate layers of the cortex.  To further assess the effect of 

rapamycin on neuronal migration, we analyzed the fate of cortical neurons born at E15.5 

using BrdU birthdating (Figure 2.3C and D).  In control mice, the majority of BrdU 

labeled neurons at E15.5 appear in the upper cortical layers.  More BrdU-labeled 

neurons are present in the lower cortical layers of the untreated mutant, suggesting that 

the loss of Tsc2 affects the migration of some late-born neurons.  Prenatal treatment 

increased the distribution of BrdU-labeled cells toward more superficial layers, whereas 

postnatal and combined treatments resulted in a BrdU distribution that was most similar 

to controls.  These demonstrate that rapamycin can alter the abnormal migration of Tsc2-

deficient neurons during both prenatal and postnatal cortical development. 
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Loss of Tsc1 or Tsc2 in astrocytes causes reactive astrogliosis characterized by 

increased expression of glial fibrillary acidic protein (GFAP) (Figure 2.4A) [98, 108].  

Only postnatal and combined treatments prevented the astrogliosis. Prenatal rapamycin 

treatment had no effect on the overexpression of GFAP at P21 likely due to the 

reactivation of mTORC1 by P21 (Figure 2.2A). The effects of rapamycin on 

oligodendrocytes and myelination were examined.  Untreated Tsc2-hGFAP mice at P21 

showed a decreased number of mature cortical and callosal oligodendrocytes (Figure 

2.4B, C, E, and F). Prenatal rapamycin treatment had little effect on mature 

oligodendrocyte number. Postnatal and combined treatments significantly restored the 

number of mature oligodendrocytes in both the cortex and corpus callosum of mutant 

animals. These results are consistent with the late embryonic and postnatal maturation of 

oligodendroglia [175].  Cortical myelination is also a postnatal event.  Accordingly, we 

observed substantial rescue of myelination defects in only the postnatal and combined 

treatment groups (Figure 2.4D). 

Figure 2.3.  . Effects of daily 0.1 mg/kg rapamycin treatment regimens on cortical lamination.  
A, Cux1 immunohistochemistry. Note the ectopic Cux1-positive cells in the deep cortical layers 
of the untreated Tsc2-hGFAP brain.  B, Bar graph of ectopic Cux1-positive cells.  Prenatal and 
combined rapamycin treatment significantly reduced the number of ectopic Cux1 cells in layers 

V and VI (∗P < 0.05; ∗∗P < 0.005).  C, BrdU immunohistochemistry at P21 showing cortical 
cells BrdU-labeled at E15.5.  D, Histogram showing distribution of E15.5 BrdU-labeled cells in 
different treatment groups. Bin 1 is at the pial surface and bin 10 is at the ventricular zone. 
Untreated Tsc2-hGFAP mice have more BrdU-labeled neurons in the lower bins 9 and 10. All 
treatments increased the proportion of BrdU-labeled cells in the more superficial bins.  Arrows 
indicate significant differences between control and untreated, and among treatment regimens.  
Data represent mean±SEM. MZ, marginal zone. 
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Figure 2.4.  Effects of daily 0.1 mg/kg rapamycin treatment regimens on astrocytes, oligodendroglia and 
myelination.  A, Glial fibrillary acid protein (GFAP) immunohistochemistry. Prominent astrogliosis in 
untreated mutant was defined by increased cortical GFAP expression.  Postnatal and combined 
rapamycin treatment normalized GFAP expression.  Prenatal treatment had little effect on the 
upregulation of GFAP.  B and C, CC1 and Olig2 immunohistochemistry to identify mature 
oligodendroglia in the midline cortex (B) and lateral corpus callosum (C).  Many mature oligodendroglia 
were found in the control midline cortex and corpus callosum.  In the same structures of the untreated 
Tsc2-hGFAP, there was a marked decrease in mature oligodendrocytes.  Postnatal and combined 

treatments restored the cortical oligodendrocyte distribution to control levels (∗∗∗P < 0.001), whereas 
prenatal treatment had little effect.  D, Myelin basic protein (MBP) immunohistochemistry.  MBP 
distribution in the cortex is almost absent from untreated Tsc2-hGFAP mice.  Postnatal and combined 
treatment demonstrated significant restoration of the normal MBP pattern. Data represent means ±SEM. 
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While haploinsufficiency for Tsc1 and Tsc2 is associated with modest behavioral 

deficits [95, 176, 177], the consequences of LOH on behavior have been more difficult 

to assess due to the lethality associated with many of these mouse models [98, 107, 108].  

We found that 2 mg/kg intraperitoneal injection of rapamycin three times a week 

beginning at P10 was able to maintain the health and extend the lifespan of Tsc2-hGFAP 

mice as long as treatment continued (Figure 2.5).  We reported weights of the animals 

for three reasons: 1.) untreated mutants or prenatal rapamycin treated mutants all appear 

physically runted by postnatal day 23, 2.) it is unknown how increased mTORC1 activity 

in the brain reduces body weight but it is possible that hypothalamic mTORC1 activation 

suppresses appetite [178], and 3.) seizure activities may cause a reduction in weight but 

it is difficult to assess subclinical seizures.  Therefore, to asses if histologic rescue in the 

combined and postnatal groups led to improved brain function, postnatal and combined 

treatment groups were switched from 0.1 mg/ kg daily to 2 mg/kg rapamycin three times 

a week between postnatal days 35 and 44 to maintain their health and permit behavioral 

analysis (Figure 2.6A).  Behavior testing was initiated after the first four doses of 

rapamycin and spanned P42–P120 (1.5–4 months).  After the completion of behavioral 

testing, brains were isolated for histologic analysis. 
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Spatial memory, which is sensitive to the manipulation of the TSC2-mTOR 

cascade, was tested using a modified 1-day version of the Morris water maze task [168, 

169, 179].  Consistent with this, control mice treated with 2 mg/kg rapamycin had 

significantly impaired long-term memory as indicated by increased latency (P = 0.04) 

and path length (P = 0.03) to cross the previous location of the hidden platform during a 

Figure 2.5.  Effects of 2mg/kg rapamycin i.p. on longevity and weight of Tsc2-hGFAP mice.  Tsc2-
hGFAP animals were treated with 2mg/kg rapamycin three times a week starting at postnatal day 10.  
This regimen extended the life and health of the Tsc2-hGFAP mice so that they were 
indistinguishable from control mice.  Mutant animals began to die from seizures approximately 2 
weeks after rapamycin was discontinued. 
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probe trial administered 24 h after training (Figure 2.6B).  Untreated mutants were 

unable to be tested because none survives beyond postnatal day 40.  When the 

performance of the postnatal and the combined Tsc2-hGFAP treatment groups were 

compared, no significant difference in acquisition was observed (Figure 2.6B versus C, 

left panels).  Probe trials showed a decreased path length and significantly increased 

number (P = 0.036) of platform crossings for the postnatal group when compared with 

those observed for the combined treatment group, suggesting enhanced memory.  As the 

1-day paradigm does not typically give rise to strong spatial localization, these animals 

were given daily training (four trials) for an additional 7 days.  Consistent with our probe 

trial results, the postnatal group showed improved memory for the platform location on 

day 1 compared with the combined group.  This difference was maintained throughout 

the training (P = 0.037), with both groups acquiring the location of the hidden platform 

at similar rates (Figure 2.6D). When spatial localization was assessed in a probe trial 

given 48 h after the last day of training, a significant preference for the target quadrant 

was observed for the postnatal (P < 0.001), but not the combined treatment groups (P = 

0.204).  No significant differences in either swimming speed or performance in a visible 

platform task were observed between the two treatment groups (Figure 2.7).  

Heterozygous Tsc2+/- mice have an impaired ability to discriminate between two similar 

contexts, a deficit that could be lessened by pre-training rapamycin treatment [95].  

Untreated control mice can distinguish between two similar contexts after 1 day of 

training as indicated by significantly more freezing in the context in which a mild foot 

shock was delivered (Figure 2.6E).  In agreement with the previous results, control 

animals treated with rapamycin were unable to perform this discrimination.  When both 
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rapamycin-treated Tsc2-hGFAP groups were tested after 3 days of training, only the 

postnatal-treated group was able to distinguish between the two contexts (Figure 2.6F).  

Altogether, these results show that postnatal rapamycin can enable Tsc2-hGFAP animals 

to learn and remember.  While combined rapamycin treatment produced a most complete 

histologic rescue, these animals had impaired memory when compared with the 

postnatal group.
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Figure 2.6.  Effects of rapamycin treatments on learning and memory.  A, Rapamycin treatment 
regimens and timing for behavior testing. Animals were treated with 0.1 mg/kg rapamycin daily 
starting at E12.5 (combined group) or birth (postnatal group). Between P35 and P44, rapamycin 
dosing was changed to 2 mg/kg three times a week to maintain the health of the animals. Treatment 
continued throughout behavior testing and ended at P120.  B, Left panel: latency to platform during 
a 1-day Morris watermaze training protocol (n = 10 control untreated group, n = 10 control postnatal 
rapamycin group; two-way repeated-measures of ANOVA with treatment and trial number as 
between-subjects factors: F(1,18) = 2.95, P = 0.103).  Right panels: latency to platform and path 
length traveled during probe trial 24 h after completion of training (two-tailed, unpaired Student’s t-
test; latency to platform P = 0.04; path length P = 0.03).  C, Left panel: latency to platform during a 
1-day Morris watermaze training protocol (n = 8 for both groups; two-way repeated-measures 
ANOVA with treatment and trial number as between-subjects factors: F(1,14) = 3.01, P = 0.105).  
Right panels: platform crossings and path length traveled during probe trial 24 h after completion of 
training (two-tailed, unpaired Student’s t-test; platform crossings P = 0.036; path length P = 0.09).  
D, Left panel: latency to platform during a 7-day Morris watermaze training protocol (n = 8 
MUTpostnatal rapamycin group, n = 9 MUT-combined rapamycin group, two-way repeated-
measures ANOVA: group main effect F(1,15) = 5.271, P = 0.037).  Right panel: quadrant preference 
during a probe trial 48 h after training (one-way repeated-measures ANOVA (MUT-postnatal group) 
and ANOVA on ranks (MUT-combined group) with quadrant as between-subjects factor: F(3,21) = 
12.831, P < 0.001; Chi-square = 4.600, 3 d.f., P = 0.204). E, Percent time spent freezing in shock 
cage or safe cage after 1 day of training in a context discrimination protocol (n = 10 both groups; 
two-tailed, paired Student’s t-test P = 0.009 (control untreated); P = 0.085 (control postnatal 
rapamycin).  F, Percent time spent freezing in shock cage or safe cage after 4 days of training in a 
context discrimination protocol [n = 7 MUT-postnatal rapamycin group, n = 9 MUT-combined 
rapamycin group; two-tailed, paired student’s t-test P = 0.014 (MUTpostnatal rapamycin group); P = 

0.37 (MUT-combined rapamycin group)]. ∗P < 0.05, ∗∗P<, 0.01, ∗∗∗P<, 0.001. Data represent 
means±SEM. 
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After the completion of behavioral testing, we analyzed the brains of the 

postnatal and combined groups to assess if 2.5 months of 2 mg/kg rapamycin treatment 

changed the brain histology that was observed at P21 after daily 0.1 mg/kg rapamycin.  

We found increased expression of phosphorylated S6 (240/244) above control levels 

(Figure 2.8A).  While 2 mg/kg rapamycin three times a week was enough to maintain the 

health of the animals, it was not sufficient to suppress mTORC1 to control levels as we 

Figure 2.7.  Visual and motor control tasks for Morris water maze.  
A, There was no difference in latency to finding a visual platform 
between the two mutant groups.  B, There was no difference in the 
swim speed between the two mutant groups.  Data represent 
means±SEM. 
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observed in the P21 brains.  We also noted an increase in cortical thickness in the mutant 

animals compared with controls that would also be consistent with increased mTORC1 

activity.  The increased pS6 was accompanied by an increase in GFAP (Figure 2.8B), 

indicative of astrogliosis associated with mTORC1 hyperactivity as has been reported 

previously [98, 108, 180].  Hippocampal and cortical organization, lamination and 

myelination were unchanged compared with the histologic analysis observed at P21 after 

daily 0.1 mg/kg rapamycin in the postnatal and combined groups (Figure 2.9).   
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Figure 2.8. Effects of 2 mg/kg rapamycin on cortical phosphorylated S6 levels and 
GFAP expression after behavioral testing.  A, There is increased expression of pS6 
levels in the cortex of both the postnatal and combined groups, indicating that 2 mg/kg 
of rapamycin was not sufficient to maintain the mTORC1 inhibition observed at P21 
after 0.1 mg/kg from Figure 2.  B, The increased pS6 expression is accompanied by 
cortical astrogliosis.   C, Merge of A and B. 
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Figure 2.9.  Brain histology after 2 mg/kg 
rapamycin and behavior testing.  A, H and E 
staining of the cortex.  The cortex is thicker in 
the treated mutant animals but appears well 
organized.  The postnatal treated brains are 
thicker than the combined group.  B,  Cux1 
immunohistochemistry.  As seen at P21 after 
0.1 mg/kg rapamycin, the mutant brains show 
organized cortical layers II-IV, but the 
postnatal group has more ectopic Cux1 
positive cells in layers V and VI.  C, MBP 
immunohistochemistry.  Myelination is not 
affected by the 2 mg/kg rapamycin treatment 
and remains well established.  D and E, CC1 
immunohistochemistry.  Oligodendrocyte 
distribution does not appear to be affected by 
the 2 mg/kg rapamycin treatments, though the 
thickness of the corpus callosum is increased 
in the mutant brains.  F, H&E staining of 
hippocampus.  The hippocampus of the 
mutant animals remains well organized after 
the 2 mg.kg treatment, though some ectopic 
pyramidal cells remain in the stratum oriens of 

the postnatal group as seen at P21 (arrows). 
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2.4 Discussion 

In this study we demonstrate the prevention of Tsc2-associated 

neurodevelopmental abnormalities in a neuroglial mouse model of TSC using different 

perinatal rapamycin treatment regimens.  Prenatal, postnatal and combined rapamycin 

treatment regimens were well tolerated and improved the overall health of Tsc2-hGFAP 

mice.  However, discontinuation of rapamycin at postnatal period ultimately led to death, 

a finding consistent with previous reports [96, 97].  Of the three regimens tested, the 

combined treatment was most effective in restoring histologic development of the cortex.   

However, the observed reductions in cortical and hippocampal developmental 

pathologies did not correlate with memory function.  The postnatal-treated animals 

performed better than the combined treatment group in two hippocampus-dependent 

memory tasks. 

The combined treatment, which targeted both in utero and postnatal 

neurodevelopment, achieved a remarkable histologic rescue that was almost 

indistinguishable from untreated control animals.  The results of combined treatment 

were an additive effect of rapamycin on prenatal and postnatal developmental events. 

For example, the migration of cortical neurons to their appropriate layer is 

predominantly a prenatal event. Only prenatal and combined treatments were able to 

rescue the MZ and the distribution of Cux1-positive cells. Postnatal treatment had little 

effect on antenatal neuronal migration defects.  Likewise, postnatal and combined 

treatments mainly affected developmental defects that are predominantly postnatal or 

continue through the postnatal period such as oligodendrogenesis, myelination and the 

later stages of hippocampal development [173, 175].  These results suggest 
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developmental windows of opportunity for the perinatal rescue of TSC pathology with 

rapamycin. 

The Tsc2-hGFAP mutant mice used in this study died postnatally, even if 

rapamycin treatment was maintained at 0.1 mg/kg given daily (Figure 2.1F).  In order to 

test the consequences of rapamycin treatment on learning and memory, 2 mg/kg 

rapamycin was administered three times a week during behavioral testing.  Although this 

dosing was not adequate to suppress mTORC1 activation to control levels, it still has a 

major clinical relevance and suggests that partial mTORC1 inhibition in human TSC 

patients may be adequate to improve neurologic function. 

Although both combined and postnatal groups appeared to learn the 7-day Morris 

watermaze task, the performance of the postnatal group was found to be significantly 

improved when compared with the combined treatment group (Figure 2.6C).  This 

improved performance was also observed when long-term memory was assessed, as 

indicated by increased search times in the immediate vicinity where the platform was 

previously located.  Consistent with this, combined treatment animals were incapable of 

performing a context discrimination task, suggesting that prenatal rapamycin exposure 

has subtle effects that significantly affect memory consolidation in this group.  As the 

mTORC1 pathway participates in a number of processes critical for neurodevelopment 

such as neuronal growth, axon guidance, synapse formation and myelination, disruption 

of these processes could contribute to the observed memory dysfunction in the combined 

treatment group [181-184].  Additional ultrastructural and dose–response studies would 

be needed to assess these possibilities. 
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The results of these and a previous study raise the feasibility of administering 

lose-dose rapamycin to women carrying a TSC-affected fetus and/or treating TSC-

affected children within the first few years of life [159].  Specifically we saw that daily 

0.1mg/kg rapamycin treatment had a significant impact on the prenatal mutants but that 

dose has minimal effects on the adults suggesting a different dose-response curve 

between fetuses and mothers.  Moreover, many TSC-associated functional deficits such 

as epilepsy and autism spectrum disorders often manifest within the first few years of 

life [155].  In utero medical treatment has precedence.  Periconceptual folic acid 

prevents neural tube defects [185].  Rapamycin is classified as a class C teratogen.  

Animal studies suggest adverse effects on the fetus at higher doses, but there are no 

well-controlled human studies.  There have been a few reports of pregnant mothers 

having received rapamycin in the transplant literature [186].  Most of the infants were 

phenotypically normal; however, no formal follow-up cognitive testing has been done. 

In spite of these observations, the negative effects of rapamycin on the behavior of the 

combined treatment group suggests that more preclinical studies need to be done to 

better assess the neuroanatomic and physiologic consequence of mTORC1 inhibition on 

the developing mammalian brain.  Nonetheless, the postnatal studies are perhaps more 

encouraging and raise the possibility of clinical trial in infants or young children.  

Further studies are needed to assess dosages that would be beneficial, but not induce a 

failure to thrive phenotype as we and others have observed with high doses of rapamycin.  

 In summary, we demonstrate several novel developmental effects of rapamycin 

on a neuroglial loss of heterozygosity model of TSC.  These results suggest that 

rapamycin treatment during the early perinatal period might be an opportune interval to 
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treat developmental disorders caused by mTORC1 dysregulation.  Partial mTORC1 

rescue in human TSC patients may provide significant therapeutic benefit.  Our results 

will help better design future preclinical and clinical trials for TSC and other 

mTORopathies. 
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CHAPTER 3: mTORC1 ACTIVATION INDUCED ARRHYTHMOGENESIS 
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3.1 Introduction 

Mammalian target of rapamycin complex 1 (mTORC1) overactivity has been 

implicated in many studies to be closely involved with epileptogenesis, a manifestation 

of the hyperactive electrical signals in the central nervous system [91, 93, 187].  

mTORC1 is also a strong candidate for pathologic cardiac hypertrophy and arrhythmias.  

Many transcriptional, cell signaling, and metabolic changes accompanying mTORC1 

signaling and the pathologic remodeling have been identified [188-190].  Prolonged 

pathologic cardiac hypertrophy causes the heart to eventually decompensate, thus many 

studies have focused on therapeutic methods to modulate mTORC1 signaling to halt or 

even reverse the cardiac remodeling process [191-193].  However, the Framingham 

Heart study identified that left ventricular hypertrophy is not only associated with 

increased risk of heart failure, but it is also associated with sudden cardiac death due to 

fatal arrhythmias [11-13]. 

Mechanisms of arrhythmias in hypertrophied hearts are complex.  The most 

consistent observations in arrhythmias in the hypertrophic myocardium are 

heterogeneous increases in ventricular contraction and relaxation duration [13].  At the 

cellular level, the ionic perturbations are often a result of alterations in calcium ion 

handling proteins leading to prolonged action potential duration and repolarization [194-

196].  This remodeling of the electrical property of the myocardium can likely induce 

arrhythmogenesis by the development of early and/or delayed afterdepolarizations, or 

abnormal depolarization of cardiomyocyte that affect different phases of cardiac action 

potential [197].  Early afterdepolarization is depolarization that affects either stage 2 or 3 

of a cardiac action potential either because of decreased potassium ion channel 
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conductance or increased inward calcium current [198, 199].  In contrast, delayed 

afterdepolarization arises from resting action potential after the completion of 

repolarization secondary to cytosolic calcium overload [198]. 

The development of arrhythmias may also arise from changes in gap junction 

signaling that would delay the propagation of action potentials across the myocardium.  

The degree of prolonged action potential duration is not uniform throughout the 

hypertrophic heart.  In some animal models, the degree of action potential duration 

varied between epicardium and endocardium [200, 201].  At the cellular level, action 

potentials propagate between adjacent cardiomyocytes through the intercalated disc.  

Connexin 43 is a gap junction protein expressed at the intercalated disc and its retention 

and function are regulated by several kinases including protein kinase A, protein kinase 

C, MAPK, and casein kinase [202-208].  Hypertrophic hearts show decreased 

phosphorylation and localization at the intercalated disc that correlate with slowing of 

action potential conduction and an increase in overall contraction time [209-212].  Such 

heterogeneous increase in depolarization duration is likely arrhythmogenic with altered 

electrical gradients and abnormal repolarization [201].  Indeed, animal studies have 

shown that dispersed repolarization and refractoriness within the hypertrophied 

myocardium is susceptible to induced polymorphic ventricular tachycardia or ventricular 

fibrillation [213-215].   

Despite advances in understanding mechanisms of and novel therapeutics for 

cardiac hypertrophy, the mechanism by which the stressed heart progresses from 

structural and functional remodeling to electrical remodeling remains elusive [216].  

Calcium ion homeostasis is central to establishing normal sinus rhythm and calcium 
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mishandling is increasingly viewed as central point of disease-related electrical changes 

[217, 218].  In the hypertrophic heart or the failing heart, calcium-handling channels and 

transporters such as sarco-endoplasmic reticulum calcium ATPase (SERCA2a) displays 

reduced expression and function [219, 220] whereas expression of the sodium-calcium 

exchanger (NCX1) is increased [221].  While NCX1 expression increases in this model 

of cardiac hypertrophy, the overall NCX1 current density is decreased due to either 

decreased channel activity or membrane expression. 

Calcium transport by NCX1 is a major mechanism of establishing normal 

calcium homeostasis via removal of intracellular calcium during diastole [222].  NCX1 

catalyzes the bidirectional exchange of three sodium ions for one calcium ion and works 

in concert with sodium-potassium ATPase (NKA) to repolarize the cell.  It has been 

shown in vivo and in vitro that the cytoskeletal adapter protein ankyrin-B, encoded by 

the ANK2 gene, is critical for the proper membrane targeting and functioning of NCX1 

and NKA [2, 5, 133].  Recently, it was shown that ankyrin-B expression is altered in 

cardiomyopathy and regulated by calcium-dependent pathways in similar fashion as 

SERCA2a and NCX1.  Yet, the link between cellular hypertrophic growth signaling and 

the changes in electrogenic protein expression remain unexplored. 

Cardiac hypertrophy is closely linked with cardiac arrhythmias [213-215] and 

mTORC1 signaling is central in regulating cellular hypertrophic response [193, 223].  

We propose that mTORC1 activity links cardiac hypertrophy to arrhythmia via 

regulation of ankyrin-B expression. 
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3.2 Materials and Methods 

To determine the effects of mTORC1 on cardiac rhythm, we employed both in 

vivo and in vitro methods to activate mTORC1.  We first used an established in vivo 

model of load-induced cardiac hypertrophy and examined the effects on cardiac rhythms 

with electrocardiogram (EKG) recordings.  EKG recordings and heart tissues were 

obtained from 3 groups of animals: (1) mice chest cavities were exposed, aorta 

visualized, but was not constricted (sham); (2) mice chest cavities were exposed, aorta 

visualized, and was constricted (transverse aortic constriction, or TAC).  They were 

allowed a 1-week recovery period prior to 2-week DMOS vehicle administration; (3) 

Another group of TAC’d mice were allowed a 1-week recovery period prior to 2-week 

daily intraperitoneal administration of 2mg/kg rapamycin [stock 1mg/1mL DMSO and 

diluted in 1x PBS prior to injection] (MP Biomedicals).  A baseline EKG recording was 

obtained in all groups prior to the start of vehicle or rapamycin administration.  Figure 

3.1 outlines the timeline for the in vivo experimental protocol. 

We also employed an in vitro model of induced mTORC1 activity in primary 

neonatal rat ventricular myocyte (NRVM) culture.  We chose NRVM culture because 

the dispersed NRVMs spontaneously and rhythmically contract in culture starting 1 day 

after plating and express cardiomyocyte structures such as transverse-tubules and 

sarcomeres.  Whereas adult mouse cardiomyocytes are difficult to maintain in culture, 

NRVMs are easier to isolate, culture, and readily transfected.  This makes them an ideal 

model for exploring signaling regulation for cardiomyocytes in vitro [224, 225]. 
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Induced mTORC1 activity was achieved by disrupting the direct upstream 

inhibitor of mTORC1 - the tuberous sclerosis complex (TSC) - via siRNA knockdown of 

tuberin, a TSC complex constituent containing GTPase activity [73, 226, 227].  We 

examined the effects of mTORC1 on NRVM contraction rhythm by video recording of 

the contractions in culture.  Figure 3.2 outlines the timeline for the in vitro experimental 

protocol. 

All the animal experimental protocol was reviewed and approved by UTHSC 

Animal Welfare Committee, Institutional Animal Care and Use Committee of Baylor 

College of Medicine, or both.  All animal surgeries were performed by Dr. Corey 

Reynolds from BCM mouse phenotyping core lab. 
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3.2.1 Pressure-overload model (transverse aortic constriction) 

 An animal model of pressure-overload hypertrophy and heart failure was induced 

by a transverse aortic constriction (TAC).  Adult animals (8-week old C57BL/6) will be 

used in the surgical preparation. Prior to anesthesia each animal will receive a dosage of 

buprenorphine (0.1-2.5 mg/kg SC).  We purchased this agent through Center for 

Comparative Medicine (Baylor College of Medicine) per animal.  The animal was then 

anesthetized using 2% isoflurane in 100% 02.  The neck and chest areas were prepared 

by shaving and removing hair, cleansing the skin with surgical soap followed by wiping 

with 70% ethanol.  This procedure was repeated three times. Prior to surgery, all 

instruments were sterilized in a dry bead sterilizer.  The anesthetized animal was placed 

in a supine position and a 5mm section of the trachea was carefully exposed by mid-neck 

incision and retraction of muscle tissue.  This allowed visualization for insertion of the 

endotracheal tube which was a polyethylene size 90 tubing beveled on the edge for ease 

of entrance through the larynx.  The tongue was carefully manipulated as the 

endotracheal tube was inserted into the trachea with visibility through a dissecting 

microscope, viewing the trachea and entrance of the endotracheal tube.  Once the proper 

position was confirmed, the endotracheal cannula was connected to a volume-cycled 

rodent ventilator (CWE, Inc.) which runs on supplemental 100% oxygen with a tidal 

volume approximately 0.15-0.25ml and a respiratory rate of 100-125 breaths per 

minute.  Once steady breathing was established, an incision was made through the 

ventral chest skin to mid-thorax after which the thorax was opened to mid-sternum.  This 

partial thoracotomy was followed by retracting the sternal edges with a retractor (Fine 

Science Tools).  The thymus was then retracted to expose the transverse aorta.  Between 
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the right innominate and left carotid artery, an aortic constriction was placed by tying a 

6-0 suture black braided non-absorbable silk suture) against a 3mm length of 27 gauge 

needle.  After two knots, the 27 gauge needle was promptly removed which yielded a 

constriction of approximately 0.3mm as the outer diameter of the 27 gauge needle.  This 

produced a 60-80% aortic constriction.  The outflow was then briefly (1-2s) pinched off 

on the respirator to allow re-inflation of the lungs.  The retractor was removed and the 

ribs were drawn together and sutured using 5-0 Prolene (blue monofilament 

polypropylene suture).  Once the chest was closed, the outflow was briefly pinched off 

again to ensure proper breathing.  The skin was then closed using 5-0 non-absorbable 

monofilament sutures, which will be removed within 10 days post-surgery.  Once all 

sutures were in place, anesthesia was stopped and the animal was allowed to recover and 

removed from the ventilator.  The animal was monitored closely for any abnormal signs 

of pain or labored breathing before being returned to the animal room.  In case of any 

signs of pain, the animal received another dosage of buprenorphine (0.1-2.5 mg/kg SC) 

every 6-12 hours when needed.  The degree of constriction was evaluated with a Doppler 

flow study a week after the procedure on the Vevo ultrasound machine. 

 

3.2.2 Mouse EKG monitor and analysis 

 The mouse was anesthetized with 2% isoflurane mixed with 100% oxygen.  Once 

sedation was obtained, the paws of the mouse were placed on the heated mouse monitor 

pad (Indus Instruments) in a supine position and the feet were taped to the EKG leads.  

A rectal probe was inserted for core body temperature monitoring during the procedure.  
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EKG rhythms were then recorded from the mouse for offline analysis with Adobe 

Photoshop (version 11.0, San Jose, CA, USA). 

 For each EKG recording, P-, Q-, R-, S-, and T-waves are identified on a cardiac 

cycle.  The following three parameters that assess the conduction system of the heart are 

measured: (1) Time between start of the P-wave to start of the Q-wave (P-R interval); (2) 

start of the Q-wave to end of the S-wave (QRS interval); and (3) start of the Q-wave to 

end of the T-wave (Q-T interval).  The same measurements are made for a total of 3 

cardiac cycles per recording and repeated 2-3 times per each condition and animal.  See 

figure 3.3 for illustration of the EKG waveforms and parameters measured. 

 

 

  

Figure 3.3.  An example of each of the three parameters 
measured for each cardiac cycle from the animal EKG 
recordings.  Reproduced with permission from Wagner, G., 
Marriott's Practical Electrocardiography (Wagner) Series. 
11th edition 2007, Lippincott Williams & Wilkins [7]. 
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3.2.3. Isolation of adult mouse cardiomyocytes 

 Two to three mice from the Sham/TAC experiment were used for isolation, and 

all solutions used for the procedure were sterile filtered.  This protocol was adapted from 

the method used in Dr. Heinrich Taegtmeyer’s lab at The University of Texas Health 

Science Center at Houston [228]. 

 The animals were anesthetized with avertin.  Once anesthetized, the mouse was 

rinsed with 70% ethanol followed by exposure of the abdominal cavity.  The abdominal 

aorta was visualized and injected with 0.1mL of 1000U heparin.  Immediately, the chest 

cavity was exposed and all organs in the chest cavity were removed quickly and placed 

in ice-cold PBS containing no calcium or magnesium.  Excise the heart cleanly from 

other tissues but leaving the ascending aorta attached.  The ascending aorta was 

cannulated using a flat-tipped 22 gauge cathether attached to a sterile syringe containing 

ice-cold perfusion buffer [120.4mM NaCl, 14.7mM Kcl, 0.6mM KH2PO4, 0.6mM 

Na2HPO4, 1.2mM MgSO4-7H2O, 10mM Na-HEPES, 4.6mM NaHCO3, 30mM taurine, 

10mM BDM, 5.5mM glucose in ddH2O and adjusted to pH 7.35 with HCl/NaOH] and 

fastened with a micro clip.  Some perfusion buffer was injected through the catheter and 

into the aorta to ensure the success of the cannulation.  Once cannulated, surgical knot 

was tied with a suture around the micro clip, micro clip was removed, and the catheter 

transferred to the primed Langendorff-style retrograde perfusion system containing 

calcium-free and collagenase-free perfusion buffer at 370C.  The heart was perfused at a 

flow rate of 4mL/minute throughout.  Initially, the heart was perfused with the calcium-

free and collagenase-free perfusion buffer for 3 minutes followed by 15mL calcium-free 

digestion buffer [perfusion buffer with 2.4mg/mL collagenase type II (Worthington)].  
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Finally, it is perfused with digestion buffer containing collagenase type II and 40µM 

CaCl2 for an additional 6-8 minutes until the heart appears pale.  This indicates a 

successful digestion of the extracellular matrix. 

 After completion of the digestion process, the heart was removed from the 

perfusion apparatus and transferred to a 60mm2 dish containing 5mL stopping buffer 

[4.5mL perfusion buffer containing 100µM CaCl2, and 0.5mL FBS].  The catheter was 

removed with the suture and heart was cut into small pieces in the stopping buffer.  The 

pieces were further dispersed by mechanical trituration with a transfer pipette.  The 

digested suspension was filtered through a 100µm-cell strainer into a 50mL conical, 

transferred to a 15mL conical, and centrifuged at 300rpm at 4oC for 5 minutes.  The 

supernatant was immediately removed, and cell pellet was resuspended and fixed in 

100% ice-cold ethanol.  The fixed cells were kept in 100% ethanol and stored in -20oC 

until further processing. 

 

3.2.4. Isolation of neonatal rat ventricular cardiomyocytes 

 1-2 days old neonatal Sprague-Dawley rats (Texas Animal Specialities, Humble, 

TX) were used to isolate neonatal rat ventricular cardiomyocytes.  The isolation was 

performed under sterile conditions in the tissue culture hood and all solutions were 

sterile filtered in the hood.  This protocol was adapted from the method used in Dr. 

Heinrich Taegtmeyer and Dr. Diane Bick’s lab at The University of Texas Health 

Science Center at Houston [228]. 
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 The neonatal rats were rinsed with 70% ethanol three times.  They were 

decapitated, chest cavity exposed quickly and heart removed and placed in warmed 1x 

ADS buffer [6.8g NaCl, 0.4g KCl, 1.5g NaH2PO4, 1g glucose, 0.1g MgSO4, 4.76g 

HEPES, pH to 7.38 with HCl/NaOH, and brought up to 1 L with ddH2O].  Hearts were 

rinsed once more with fresh 1x ADS when all hearts have been collected, then cut into 

quarters with fine forceps to minimize tissue destruction.  The cut tissues were 

transferred to a 25mm2 culture flask containing 9mL of digestion buffer [0.6mg/mL 

pancreatin (Sigma P-3292-25g) and 73U/mL collagenase type II (Worthington) in 1x 

ADS] for a maximum of 15 hearts.  Hearts were incubated in the flask for 20 minutes at 

370C while shaking at 140rpm.  Supernatant from this first digestion was discarded and 

replaced with 9mL fresh digestion buffer for a total of four replacements.  At the end of 

the final digestion, a transfer pipette was used to gently triturate the remaining 

undigested heart tissues in warm 1x ADS.  Supernatant from all except for the first 

digestion was collected, centrifuged for 5 minutes at 300g at room temperature and the 

resultant supernatant discarded and pellet suspended in warmed 2mL fetal bovine serum 

(Gibco).  The resuspensions were pooled together and kept in incubator at 370C and 5% 

CO2 until all digestion steps were completed. 

 The resuspensions were centrifuged for 5 minutes at 300g, supernatant discarded, 

and the pellet was resuspended in warm 1x ADS at 1mL/heart harvested.  The 

resuspension were pre-plated in 6-well Nunc plates (Thermo Fisher Scientific) at 2mL 

per well and kept in incubator for 2-5 hours to decrease the number of fibroblasts in the 

final cardiomyocyte culture.  The media from each well was collected without disturbing 

the bottom layer and centrifuged for 5 minutes at 300g.  The resulting supernatant was 
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discarded and pellet was resuspended in complete media [500mL DMEM, 50mL BCS, 

5mL of 100U/mL penicillin/streptomycin] at 1mL/heart harvested.  Cells were counted 

with Trypan Blue solution and plated at 1 million cell/well in a 6-well Primaria plate 

(Fisher/Corning Life Sciences) or 1 x 105 cells per fibronectin-coated glass-bottom Mat-

Tek plate (MatTek Corporation). 

 

3.2.5. Tissue and cell protein extraction and quantification 

 Two to three hearts from each treatment group outlined in 3.2 were snap frozen 

in liquid nitrogen.  Protein was isolated from snap-frozen heart tissues using sucrose 

lysis buffer (1:4 weight to volume) containing 25mM sucrose, 1mM EDTA, 10mM Tris 

HCl, 1mM PMSF (a protease inhibitor), and phosphatase inhibitor cocktail.  Tissues 

were pulverized in liquid-nitrogen chilled mortar and pestle then homogenized in a 

dounce homogenizer on ice.  Lysates were centrifuged at 4˚C for 13,000g for 15 minutes 

and supernatant recovered. 

 Cells were washed in ice-cold 1x PBS twice, then scraped and collected in the 

presence of ice-cold cell lysis buffer (5mM HEPES pH 7.4, 0.1mM EDTA pH 8.0, 

0.1mM MgCl2, 0.1mM DTT, 1% Triton-X, 150mM NaCl, 1 Mini-Tab protease inhibitor 

(Roche) per 10mL of lysis buffer, and 100µL of each phosphatase inhibitor cocktails 2 

and 3 (Sigma) per 10mL of lysis buffer.  Lysate was triturated 10-15 times on ice 

through a 1mL 27.5 gauge syringe, then underwent 3 rapid freeze/thaw cycles with dry 

ice in ethanol and 37oC water bath.  The lysate was then sonicated on ice for 3 seconds 

then centrifuged at 13,000g for 10 minutes at 4oC, and the supernatant was recovered. 
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The protein concentration from each tissue/cell sample was quantified using 

colorimetric Bradford Protein Assay (BioRad).  A series of known BSA protein 

concentrations were diluted to generate a standard curve (1-10 µg/µL).  Protein samples 

were diluted 5- to 10-fold and each diluted sample at two distinct amounts (2 µL and 5 

µL) were added to 200 µL of Bradford reagent in a 96-well plate.  The absorbance was 

read on a microplate reader and each sample protein concentration was determined based 

on the standard curve. 

 

3.2.6. Immunoblot assay 

 0.1mM DTT and 4x loading dye were added to equal quantities of protein lysates 

from 3.2.5 and heated at 70oC for 15 minutes.  Protein lysates were then separated by 

SDS-PAGE and transferred onto a PVDF membrane (Bio-Rad) using XCell II Blot 

Module (Invitrogen).  Membrane was washed with 1x TBST (0.1% tween-20) and 

blocked with 5% nonfat milk in 1x TBST for an hour at room temperature to block non-

specific binding on the membrane.  Membrane was incubated at 4oC in primary antibody 

solution (5% milk or BSA in TBST) overnight.  Primary antibody was then washed off 

and incubated with horseradish peroxidase-conjugated secondary antibody for 1 hour at 

room temperature.  Protein of interest was visualized using SuperSignal West Pico 

Chemiluminescent Substrate kit (Pierce).  Primary antibodies used were: tuberin (1:500; 

Cell Signaling), phospho-S6 (1:500; Cell Signaling), S6 (1:500; Cell Signaling), pan-

ankyrin-B [229], ankyrin-G [142], ankyrin-R (1:500; Aviva System Biology), NCX1 

(1:500; Swant), and GAPDH (1:20,000; Fitzgerald). 
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3.2.7. Fluorescent immunocytochemistry 

Cells isolated and cultured from 3.2.4 were washed twice with ice-cold 1x PBS 

and fixed in 2% paraformaldehyde for 15 minutes at room temperature and cells 

collected from 3.2.3 were washed in ice-cold phosphate-buffered saline (pH 7.4) 3 times.  

Cells were then blocked with 5% normal goat serum and 0.075% TritonX-100 for 30 

minutes at room temperature then incubated in primary antibodies overnight at 4°C.  The 

primary antibodies used were: tuberin (1:500; Cell Signaling), phospho-S6 (1:500; Cell 

Signaling), pan-ankyrin-B [229], ankyrin-G [142], ankryin-R (1:500; Bethyl 

Laboratories), Myomesin (1:500; Developmental Studies Hybridoma Bank/University of 

Iowa), α-actinin (1:1000; Sigma).  Secondary antibodies used were goat anti-rabbit 

conjugated to Alexa Fluor 488 and goat anti-mouse conjugated to Alexa Fluor 568 

(1:500, LifeTechnologies).  Hoechst 33258 (1:1000, LifeTechnologies) was used for 

nuclear staining after removal of the secondary antibody.  ProLong® Gold Antifade 

reagent (LifeTechnologies) was used for mounting coverslips.  Images were obtained 

with a Nikon A1 confocal microscope (Nikon, Melville, NY) equipped with 60X oil, 

numerical aperture 1.4 objective lens. 

 

3.2.8. NRVM RNA interference experiments 

 The siRNA duplexes targeting rat TSC2 and non-targeting siRNA control 

(scramble) were purchased from Sigma.  The siRNA was diluted in Tris-EDTA buffer 

[10mM Tris, 1mM EDTA, pH to 7.0 with HCl/NaOH] to a stock concentration of 25µM.  
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Prior to transfection, amount of siRNA calculated to have a final concentration of 

100nM was mixed with Opti-MEM (Thermo Fisher Scientific).  Separately, 

DharmaFECT® (Dharmacon GE) [4µL per 2mL of culture media] was mixed with Opti-

MEM.  After 5 minutes of incubation, the two are mixed together and allowed 15-20 

minutes of incubation in room temperature prior to application to serum-free DMEM.  

The NRVMs were transfected for 6 hours with 100nM of each siRNA, then media was 

changed to fresh serum-free DMEM.  Media change was the same for untransfected 

controls.  Experiments with transfected NRVMs were performed 48 hours later for 

quantitative real-time PCR and 72 hours later for immunoblotting and cell contraction 

recordings.  The sequence of siRNA is as follows: 

 

TSC2 siRNA sequence 1 starts on target 1092 

       sense: 5’-GAGAUUGUUCUGUCCAUAA[dT][dT]-3’ 

anti-sense: 5’-UUAUGGACAGAACAAUCUC[dT][dT]-3’ 

TSC2 siRNA sequence 2 starts on target 3271 

       sense: 5’-GAAAUAAGCUGGUCACUGU[dT][dT]-3’ 

anti-sense: 5’-ACAGUGACCAGCUUAUUUC[dT][dT]-3’ 

Scramble siRNA sequence 

       sense: 5’-GCUCCCAGCUCGUCUAUGU[dT][dT]-3’ 

anti-sense: 5’-ACAUAGACGAGCUGGGAGC[dT][dT]-3’ 
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3.2.9. Measurements of mRNA expression 

 Total RNA was extracted from NRVM with PerfectPure™ RNA Cell and Tissue 

kit (5 Prime).  cDNA synthesis from 500µg of total RNA was performed using 

SuperScript III reverse transcriptase (LifeTechnologies) with random hexamers.  

Transcript expression levels of TSC2 and GAPDH were measured in triplicate by 

quantitative real-time (qt)-PCR using SYBR Green Dye (Bio-Rad).  Transcript levels of 

TSC2 were adjusted to the expression of GAPDH.  The sequence of PCR primer 

targeting junction of TSC2 exons 23/24 is as follows; 5’-

GACTAGACAG/CGTGAGATGG (slash indicates junction of exon 23 and 24)-3’ and 

3’-GCTAGCTGTAGCAGAGATGTG-5’ for TSC2; targeting junction of GAPDH exons 

6/7: 5’-CATCACTGCCACTCAGAAGAC-3’ and 3’-CATACTTGGC/AGGTTTCTCC 

(slash indicates junction of exon 6 and 7) – 5’ 

 

3.2.10. NRVM syncytium contraction recording and analysis 

 A Mat-Tek plate with NRVMs was placed in a warm humidified chamber on a 

flat stage of a light microscope (Micromaster; Fisher) with 10X magnification eyepiece 

and 20X objective lens.  A cell phone camera with 10 megapixel resolution (HTC One 

M8) was mounted on the microscope using Snapzoom Universal Digiscoping Adapter 

(Snapzoom).  Once a NRVM syncytium was located visually, the contractions were 

recorded for 2 to 2.5 minutes.  The same recording method was used for recording of the 

syncytia following stimulation with 1µM epinephrine. 



73 

 

 Using Video Spot Tracker (VST) program (http://cismm.cs.unc.edu/downloads) 

and using the tracking method as described by Fassina et. al. [230], we placed a marker 

on the contracting syncytium for each video recording in the program.  By starting the 

video, the program tracked the marker displacement frame by frame (30 frames per 

second) and registered the spatial-temporal coordinates x, y, (expressed in pixels), and t 

(expression in frame number that converts to second) of the marker.  The coordinates are 

plotted in Excel (Microsoft) and each peak corresponds to an active syncytial contraction.  

We then assessed the rhythmicity of the syncytial contractions by randomly picking a 

consecutive 30-second interval then measuring the time between contractions.  Figure 

3.4 is an example of the spatial-temporal pattern of marker displacement.  The time 

interval between contractions is plotted on GraphPad (GraphPad Software) as box-and-

whisker plots. 
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3.3 Results 

3.3.1. Electrical remodeling in response to chronic load-induced hemodynamic 

stress in vivo 

 We hemodynamically stressed the heart with increased load via transverse aortic 

constriction (TAC) to induce mTORC1 activation as evidenced by the increased 

phosphorylation of the ribosomal protein S6.  Daily treatment with rapamcyin, a known 

mTORC1 inhibitor, reduced the phosphorylation of S6 to baseline in the TAC group 

(Figure 3.5A). 

 To determine the effects of chronic mTORC1 activation on the electrical 

property in the heart, we obtained EKG for sham, TAC with vehicle treatment, and TAC 

with rapamycin treatment groups 1 week (recovery period with no drug administered) 

and 3 weeks (with drug treatment) post-surgery.  We focused on three EKG parameters 

including P-R interval, Q-T interval, and QRS duration.  P-R interval measures the 

conduction time of depolarization from sinus atrial (SA) node in the atria through the 

atrioventricular (AV) node to the ventricles.  Q-T interval measures the time between 

ventricular depolarization and repolarization.  QRS duration measures ventricular 

depolarization time.  There was not a statistically significant change in P-R interval and 

Q-T interval between sham and TAC groups at 1 week post-surgery.  However, we 

observed a slight yet statistically significant increase in the QRS duration in the TAC 

mice (Sham 15.90±0.51 ms, TAC Vehicle 19.59±1.44 ms, and TAC Rapa 18.55±0.87 

ms. *p<0.05 between Sham and either TAC groups) (Figure 3.5B). 
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 At 3 week post surgery, P-R interval increased to an average of 42ms in TAC 

treated with vehicle but normalized to 35ms with rapamycin treatment.  The increased 

duration confirms the findings by Zhang C et. al.[75] and represents a significant first-

degree heart block.  Q-T interval decreased in both TAC groups treated with vehicle or 

daily administration of rapamycin at 2mg/kg/day.  QRS duration was similar between all 

groups at the end of the experiment (Figure 3.5C).  Thus, sustained mTORC1 activity 

partially affected the electrical property of the myocardium.  Specifically, the conduction 

between the atria and the ventricle was delayed.  Decreased Q-T interval in TAC with or 

without rapamycin demonstrated the contributions of mTORC1-independent pathways 

in electrical remodeling of the hemodynamically stressed heart.   
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3.3.2. Ankyrin proteins expression changes in response to chronic load-induced 

hemodynamic stress and mTORC1 inhibition 

Figure 3.5.  mTORC1 activity and electrical remodeling in hearts subjected to high 
workload in vivo.  Treatment with rapamycin rescues the conduction from atria to 
ventricles.  A, Representative Western blots  demonstrated an increase in S6 
phosphorylation 3 week after TAC surgery and the phosphorylation returns to baseline 
with rapamycin treatment.  B, Graph showing the three measured EKG parameters (P-R 
interval, Q-T interval, and QRS duration) at the end of 1 week  recovery after TAC 
surgery.  No drug treatment is yet administered at this time.  No difference is seen in P-R 
interval and Q-T interval between groups.  However, QRS duration increases slightly in 
the TAC groups (Sham 15.90±0.51 ms, TAC Vehicle 19.59±1.44 ms, and TAC Rapa 
18.55±0.87 ms).  C, Graph showing the three measured EKG parameters 3 weeks after 
TAC surgery and with either vehicle or rapamycin treatment.  P-R interval increases 
significantly in the TAC Vehicle group, but returns to baseline with rapamycin treatment 
(Sham, 35.68±1.47 ms, TAC Vehicle 41.37±2.5 ms, TAC Rapa 35.05±1.76 ms).  Q-T 
interval remains decreased in both TAC Vehicle and TAC Rapa groups suggests 
mTORC1-independent processes may play a role in electrical remodeling (Sham 
67.46±3.13 ms, TAC Vehicle 54.83±2.40 ms, TAC Rapamycin 54.16±3.65 ms).  
*p<0.05 vs sham, #p<0.05 vs TAC Rapa. n = 6 for each group.  TAC, transverse aortic 
constriction; Rapa, rapamycin. 
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 Ankyrin proteins (ankyrin-B, -G, and –R) are adapter proteins pivotal in the 

regulation of normal cellular physiology.  A wide spectrum of arrhythmias (e.g. sinus 

node disease, atrial fibrillation, and polymorphic ventricular tachycardia) have been 

directly linked with loss-of-function mutations in the adapter protein ankyrin-B (ANK2) 

[3, 5, 229].  Another specific type of arrhythmia characterized by S-T segment 

elevations, atrial fibrillation, and sudden cardiac death known as Brugada syndrome has 

been linked with disrupted interaction with ankyrin-G (ANK3) [142, 231].  Finally, 

although not yet linked to any arrhythmia phenotype, ankyrin-R (ANK1) has been shown 

to play an important role in calcium regulation - central to the integrity of the excitation-

contraction coupling that establishes the normal rhythm and contraction of the 

myocardium - via establishment and maintenance of normal sarco-endoplasmic 

reticulum (SR) structure essential for normal functioning of sarco-endoplasmic reticulum 

calcium ATPase 2a (SERCA2a) [232-235].  To date, there is limited data in regulation 

of ankyrin-B [216], and no evidence yet exists for either ankyrin-G or ankyrin-R, 

expression in the stressed heart.  Mechanisms that link structural and electrical 

remodeling in the stressed heart are also lacking. 

mTORC1 signaling has been identified as a central regulator of cardiac 

hypertrophic growth [190, 192, 193] and modulates the expression of the calcium 

handling protein SERCA2a [236].  However, mTORC1 activity has not been shown to 

directly affect the function or the expression of sodium-calcium exchanger (NCX1) [237, 

238], another essential calcium regulator, despite increased NCX1 expression in the 

stressed heart [239, 240].  Yet, it was reported that NCX1 current decreases in an animal 

model of pressure-overload cardiac hypertrophy [221]. 
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NCX1 proper membrane localization and function requires direct interaction with 

adapter protein ankyrin-B [2, 133].  Reduced ankyrin-B expression reduces NCX1 

function and localization to the transverse-tubule [4, 132].  Hence we assessed whether 

mTORC1 affects NCX1 function and localization via regulation of ankyrin-B. 

 Consistent with the published data, NCX1 expression increased in our 

hemodynamically stressed hearts and decreased when the hypertrophic process was 

attenuated [221, 239, 241].  Using the same set of heart samples, we evaluated the 

effects of mTORC1 activity on ankyrin-B expression.  When mTORC1 activity was 

unopposed, in the TAC Vehicle group, ankyrin-B expression was significantly decreased 

compared with the sham control.  However, attenuation of mTORC1 activity with 

rapamycin administration partially restored ankyrin-B expression (Figure 3.6A). 

We also assessed the effects of mTORC1 activity on the subcellular localization 

of ankyrin-B using isolated cardiomyocytes from the stressed heart.  In addition to 

overall generalized decreased expression, ankyrin-B localization also appeared to be 

slightly dispersed in the TAC Vehicle group compared to the sham control.  Treatment 

with rapamycin (TAC Rapa group) not only restored ankyrin-B expression but also 

restricted the dispersion and the subcellular level (Figure 3.6B). 

Other important factors in the regulation of calcium homeostasis are sarco-

endoplasmic reticulum calcium ATPase (SERCA2a) expression and function and its 

proper localization at the sarcoplasmic reticulum (SR).  Although alterations in 

SERCA2a function and expression may not be the initial cause of cardiomyopathy, the 

contributions to the consequent development of arrhythmia in the hypertrophic heart are 
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well-documented [219, 220, 242].  More recently, it has been shown that SERCA 

expression, proper localization, and function are regulated by the adapter protein 

ankyrin-R in striated muscle [232, 233].  Given that mTORC1 modulation alters levels 

of SERCA2a expression in the heart [23, 44, 236], we evaluated whether mTORC1 

affects SERCA2a expression by regulating ankyrin-R expression. 

When we mechanically triggered mTORC1 activation in vivo by pressure 

overloading the heart (TAC), our results showed that ankyrin-R expression clearly 

decreased similar to findings in SERCA2a.  However, whereas mTORC1 inhibition with 

rapamycin in the stressed heart somewhat normalized SERCA2a expression, we did not 

observe any change between rapamycin or vehicle treated TAC mice.  This pointed to 

the possibility of ankyrin-R regulation by mechanisms independent of mTORC1 

signaling (Figure 3.6A).  

In addition to the calcium regulatory function of NCX1, intercellular electrical 

conduction to facilitate the transfer of current from one cardiomyocyte to another at the 

intercalated discs is another important mechanism in establishing normal cardiac rhythm.  

Key components of the intercalated disc include the gap junction protein connexin43 

(Cx43), voltage-gated sodium channel (Nav1.5), and desmosomal protein plakophilin-2 

(PKP2), and all three exhibit decreased expressions in cardiomyopathies involving 

arrhythmias [23, 243, 244].  Central to this molecular complex involving these three 

proteins is ankyrin-G that interacts, targets, and maintains these proteins at the 

intercalated disc [142, 231, 245].  We asked how ankyrin-G expression changes in the 

hemodynamically stressed heart. 
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Using our TAC model, our results indicated that ankyrin-G expression is 

markedly decreased in pressure overloaded hearts.  Regression of the cardiac 

hypertrophic process and inhibition of mTORC1 with rapamycin treatment did not 

attenuate the effects of pressure overload and normalize the expression of ankyrin-G 

(Fig 3.6A).  Similar to ankyrin-R, this suggests the possibility of other mechanically-

triggered pathways other than mTORC1 that is responsible for regulating the expression 

of ankyrin-G.  

Collectively, our results suggest that mTORC1-responsive and mTORC1-

independent factors contribute to arrhythmogenesis in the hypertrophied hearts.  Among 

the three ankyrin proteins each with its unique set of interacting proteins, ankyrin-B 

appears to be the only one regulated by mTORC1 whereas ankyrin-R and ankyrin-G are 

mechano-sensitive but not mTORC1-specific.  This idea is in line with our observations 

of the EKG changes in TAC Vehicle and TAC Rapa mice.  We observed normalization 

of the P-R interval in the pressure-overload hearts with rapamycin treatment but it had 

no effect on the Q-T interval (Figure 3.5B and 5C). 
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Figure 3.6.  Effects of in vivo pressure overload on ankyrin-B, -G, and –R.  A, Representative 
Western blots showing decreased ankyrin-B, -G, and –R expression in response to transverse 
aortic constriction.  Treatment with rapamycin partially restored the level of ankyrin-B but had 
not effect on levels of ankyrin-G and –R.  NCX1, one of the interacting partners of ankyrin-B, 
had increased expression in response to pressure overload and normalized with rapamycin 
treatment.  B, Fluorescent immunocytochemistry of individually isolated adult mouse 
cardiomyocytes from sham control, TAC mice treated with DMSO vehicle, and TAC mice treated 
with rapamycin.  In sham control, majority of the ankyrin-B population is concentrated at the M-
line demonstrated by its localization in between the Z-line marker α-actinin whereas the minor 
population is localized at the Z-line.  In contrast, the relative intensity of ankyrin-B decreases at 
the M-line and is not observed at the Z-line in TAC mice treated with DMSO vehicle.  
Furthermore, ankyrin-B population at the M-line shows some degree of dispersion.  Rapamycin 
treatment reversed the expression and dispersion effects.  Insets are shown to the right of the 
corresponding images.  Green, ankyrin-B; red, α-actinin; blue, Hoechst.  TAC, transverse aortic 
constriction; Rapa, rapamycin. 
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3.3.3 Effects of in vitro mTORC1 activation on ankyrin-B expression 

 The induced biomechanical stress with transverse aortic constriction directly 

activates numerous intracellular signaling pathways other than mTORC1 as well as 

paracrine and autocrine signaling.  These include, but are not exclusive to, mitogen-

activated protein kinase (MAPK) pathway, angiotensin II signaling, endothelin-I, and 

calcium/calmodulin-dependent kinase (CaMKII) [16, 82].  Hence, we wondered whether 

the findings observed in vivo with ankyrin-B and mTORC1 correlate with increased 

mTORC1 activity in vitro. 

 One strategy to elicit the regulatory mechanism between mTORC1 and ankyrin-

B is by selectively activating mTORC1 without directly affecting other signaling 

pathways.  mTORC1 becomes activated when its cellular negative regulator tuberous 

sclerosis complex (TSC) is disrupted [226, 246].  TSC is a heterodimer composed of the 

proteins hamartin (Tsc1) and tuberin (Tsc2), and deletion of tuberin has been 

demonstrated to lead to overt mTORC1 activation [73, 98, 99]. 

We used siRNA against Tsc2 to activate mTORC1 in primary neonatal rat 

ventricular myocyte cultures (NRVM) and studied the effects on ankyrin-B expression.  

NRVMs transfected with scramble siRNA served as controls.  QT-PCR of extracts of 

NRVMs showed approximately 50% reduction in TSC2 transcripts with either TSC2 (1) 

or TSC2 (2) siRNA transfected compared to the untransfected or the scramble siRNA 

transfected (Figure 3.7A).  Western blots showed a similar decrease in levels of tuberin 

for NRVMs transfected with TSC2 (1) or TSC2 (2) siRNA compared to either of the 

controls. 
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As expected, mTORC1 becomes more active when the TSC complex is disrupted 

by the knockdown of tuberin as measured by levels of phosphorylated ribosomal protein 

S6 - a well-characterized downstream target of mTORC1 [69, 247].  And similar to the 

results we obtained from the TAC mouse hearts in vivo, selective mTORC1 activation in 

vitro reduced levels of ankyrin-B expression (Figure 3.7B).  This further suggests that 

mTORC1 activity regulates ankyrin-B.  

 

 

 

 

 

 

 

 

 

Figure 3.7.  Selective mTORC1 activation reduces ankyrin-B exression in vitro.  A, TSC2 
transcripts are reduced in NRVM cultures transfected with either siRNA sequences against TSC2.  
TSC2 transcripts are not affected in either the untransfected or cultures transfected with scramble 
siRNA.  B, Tuberin protein is reduced in NRVM cultures transfected with either siRNA sequences 
targeting TSC2 and is not affected in the untransfected or scramble siRNA control transfected 
cultures.  Ribosomal protein S6, a mTORC1 target, is phosphorylated demonstrating increased 
mTORC1 activity when tuberin is knocked down.  Ankyrin-B expression decreases when mTORC1 
is active. 
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3.3.4 In vitro mTORC1 activation alters ankyrin-B subcellular expression 

 siRNA targeting TSC2 to activate mTORC1 in vitro obviated the use of 

mechanical force to activate mTORC1 as in the TAC hearts.  Individually isolated 

cardiomyocytes from pressure-overloaded hearts showed decreased ankyrin-B 

expression and dispersion (Figure 3.6B).  We now assessed the whether similar changes 

can be recapitulated using the in vitro method. 

 Because the NRVM isolation procedure was not completely selective for 

cardiomyocytes as some cardiac fibroblasts continued to remain in culture, we 

performed fluorescent immunocytochemistry staining for Tsc2 to ensure that Tsc2 was 

removed from the cardiomyocytes.  We observed that Tsc2 staining was either absent or 

significantly decreased in majority of the cardiomyocytes transfected with TSC2 siRNA 

(Figure 3.8A).  This finding also corroborated our results in figure 3.7. 

Using the same technique, we assayed for the subcellular localization of ankyrin-

B.  Similar to the cardiomyocytes from TAC hearts, ankyrin-B expression in the 

NRVMs transfected with TSC2 siRNA was decreased dramatically but displayed no 

dispersion at the M-line.  Interestingly, while the TAC cardiomyocytes demonstrated an 

overall decrease in ankyrin-B expression at both the M-line and the transverse-tubule, 

the TSC2 siRNA treated NRVMs appeared to have an increase in ankyrin-B expression 

at the transverse-tubule (Figure 3.8B). 
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Figure 3.8.  Selective mTORC1 activation changes ankyrin-B expression differently at different 
subcellular domains in vitro.  Fluorescent immunocytochemistry of neonatal rat ventricular myocytes 
(NRVM) transfected with siRNA targeting TSC2, scramble siRNA control, or untransfected.  
Myomesin is used as a marker for the sarcomeric M-line and to differentiate NRVMs from fibroblasts 
in staining.  A, Tsc2 (tuberin) expression is either absent or dramatically decreased in the NRVMs 
transfected with TSC2 siRNA compared to either of the control.  Green, Tsc2 (tuberin); red, myomesin 
(M-line marker); blue, Hoechst.  B, Ankyrin-B expression at the M-line is decreased in the TSC2 
siRNA transfected NRVMs and no dispersion is observed.  However, ankyrin-B intensity at the 
transverse-tubule (midway between two M-lines) is increased relative to the M-line population and the 
transverse-tubule population of either of the controls. Insets are shown to the right of the corresponding 

images.  Green, ankyrin-B; red, myomesin; blue, Hoechst. 
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3.3.5 Physiologic consequences of in vitro mTORC1 activation 

Our in vivo study with the hemodynamically stressed hearts demonstrated 

increased mTORC1 activity and abnormal EKG changes (Figure 3.5), we evaluated the 

functional consequences of mTORC1 activation on cardiomyocyte contraction rhythms.  

We tracked the contraction patterns of the NRVMs transfected with TSC2 siRNA and 

compared them against the untransfected and scramble siRNA transfected controls.  In 

the absence of any exogenous stimulation, NRVM transfected with TSC2 siRNA in 

general contracted slower and had a higher variability in time interval between 

consecutive contractions.  The box and whisker plot for TSC2 siRNA demonstrated an 

increased and a wider spread in the timing between contractions relative to the 

untransfected and scramble siRNA controls (Figure 3.9). 

When stimulated with exogenous β-receptor agonist that increases the rate of 

contraction by increasing the cycling rate of intracellular calcium, we observed an 

overall increase in contraction rate as shown by the decrease in time between 

contractions for all three groups.  However, administration of epinephrine to the TSC2 

siRNA group further enhanced the contraction time variability.  This suggests an 

underlying calcium handling dysfunction when mTORC1 is overactive and that it is 

further exacerbated by the pharmacologic stress with epinephrine application (Figure 

3.9). 
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Figure 3.9.  mTORC1 activation leads to arrhythmic contractions of NRVMs in vitro.  
Contractions of untransfected, scramble siRNA transfected control, and TSC2 siRNA 
transfected are recorded, and time between contractions was measured.  Smaller time 
between consecutive contractions equates to faster contraction rate and vice versa.  
TSC2 siRNA transfected NRVMs tend to have a slower and a wider range of contraction 
rates compared with either of the controls.  When pharmacologically stressed by 
epinephrine, all three groups tend to have similar contraction rates although TSC2 
siRNA + Epi group displayed an even wider range of contraction rates.  n = 5-7 NRVM 
syncytia per group and 30 seconds of recording was analyzed per n. 
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3.4 Discussion 

 A prominent mechanism of death in heart failure patients is arrhythmia leading to 

inadequate delivery of oxygen and nutrient to vital tissues.  Mortality rate for patients 

with advanced heart failure is as high as 50% per year [14].  However, despite the 

advances in preserving cardiac function in heart failure, existing anti-arrhythmic 

therapeutics remain ineffective largely because the understanding of the mechanism 

linking structural heart disease and electrical abnormalities in the failing heart remains 

inadequate. 

 In the hypertrophic heart, expression and function changes in ion channels and 

transporters have been documented in an animal study conducted by Zhang C et. al.[75] 

They demonstrated electrical changes and inducible malignant arrhythmias at the tissue 

level secondary to pressure-overload cardiac hypertrophy.  At the same time, when 

angiotensin II type 1 receptor was pharmacologically inhibited in the pressure-loaded 

hearts, many of the changes in the electrophysiology parameters were attenuated 

suggesting that underlying signaling changes associated with heart failure not only 

affects structural remodeling, but may also affect electrical remodeling [75].  However, 

the mechanism by which electrical properties of the heart is affected by pro-hypertrophic 

signaling pathways remains to be elucidated. 

A well-characterized cellular hypertrophic signaling pathway that underlies the 

development of pressure-overload cardiac hypertrophy is the mammalian target of 

rapamycin complex 1 (mTORC1) signaling.  Genetic studies and mechanically stressed 

hearts with activated mTORC1 recapitulated many signaling, structural, functional, and 
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electrical abnormalities observed in hypertrophic cardiomyopathy [23, 24, 193, 248].  

Most importantly, calcium cycling, important for establishment of normal contractility 

and excitation-contraction coupling in cardiomyocytes, was dysregulated in these animal 

models.  Conversely, when mTORC1 activity was inhibited with either rapamycin or 

metformin, many of the pathologic remodeling, especially abnormal calcium handling, 

were either attenuated or reversed [192, 236, 249]. 

Major calcium handling proteins in cardiomyocytes include sarcoplasmic-

reticulum calcium ATPase (SERCA2a), SERCA2a-accesory protein phospholamban, 

and sodium-calcium exchanger (NCX1).  SERCA2a actively transports cytosolic 

calcium ions into sarcoplasmic reticulum during the relaxation phase of a heartbeat 

allowing for repolarization and phospholamban modulates levels of SERCA2a activity.  

On the other hand, NCX1 extrudes the remaining cytosolic calcium to the extracellular 

space using sodium gradient as the driving force.  In cardiomyopathy, changes in 

expression and activity of the calcium handling proteins results in altered calcium 

cycling - a pathologic hallmark of heart failure - that leads to defects in excitation-

contraction coupling and reduced contractility [250].  Whereas SERCA2a and 

phospholamban have marked reduction in expression [23, 236], NCX1 shows increased 

expression that is likely an adaptive response to compensate for SERCA2a 

downregulation [251-253].  Interestingly, studies have shown that although NCX1 

expression is increased in the stressed heart, the overall NCX1 current actually decreases, 

suggesting another level of regulation for NCX1 activity in the hypertrophic heart [221, 

254]. 
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Normal functioning of NCX1 requires precise localization and retention at the 

transverse-tubule [255, 256].  The molecular mechanism required for the targeting and 

maintenance of NCX1 at this specialized cardiomyocyte membrane domain was recently 

identified to be an adaptor protein, ankyrin-B.  Ankyrin-B binds, coordinates, anchors, 

and is required for the post-translational stability of NCX1 at the transverse-tubule to the 

underlying cytoskeleton [2, 133, 257].  Cardiomyocytes deficient in ankyrin-B show 

decreased NCX1 expression and exhibit abnormal spontaneous contractions and calcium 

dynamics.  Animal hearts deficient in ankyrin-B exhibit abnormal electrocardiogram 

recordings at baseline (increased P-R interval, QRS duration, QT interval, and 

intermittent R-R interval variability) and develop fatal polymorphic ventricular 

tachycardia with adrenergic stimulation by concomitant exercise and epinephrine 

stimulation [4, 5].  Lastly, expressions of ankyrin-B and its interacting partner are 

concurrently reduced in cardiomyopathy [216]. 

Even though ankyrin-B expression is decreased in heart failure and decreased 

ankyrin-B expression is clearly linked to various cardiac arrhythmias that are present in 

end-stage heart failure, pathway underlying ankyrin-B regulation in heart disease has not 

been explored.  Coupling the increased mTORC1 activity commonly observed in 

hypertrophied hearts with changes in ankyrin-B expression, our findings provide data 

suggesting that ankyrin-B is regulated by mTORC1.  Specifically, we demonstrate that 

TAC hearts have increased mTORC1 activity and significantly decreased overall 

ankyrin-B expression, but inhibition of mTORC1 returns ankyrin-B expression to 

baseline levels.  Additionally, fluorescent immunocytochemistry demonstrates 

dispersion of the remaining ankyrin-B suggestive of an underlying cytoskeletal 
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organization in the pressure-overloaded cardiomyocytes.  Furthermore, physiologic 

consequences of mTORC1 activity modulation is reflected by the electrocardiogram 

recordings and saw that P-R interval, a measure of conduction between the atria and the 

ventricles, increases in TAC hearts but returns to baseline with rapamycin treatment.  

However, it should be noted that Q-T interval, a measure of rate of ventricular 

repolarization, remains unchanged in TAC hearts with or without treatment, suggestive 

of mTORC1-independent factors that remodels the electrical properties of the heart. 

The same observations in expression changes and physiology are observed in our 

in vitro system.  The only exception in the NRVM is increased ankyrin-B expression at 

the transverse-tubule.  This difference could be contributed to a lack of a mechanical 

force on the cultured cardiomyocytes that does not perturb the structural integrity of the 

transverse-tubule [235, 258-260].  On the other hand, the mechanical force applied to the 

intact heart likely contributes to the lack of expression changes for both ankyrin-G and 

ankyrin-R - localized at the intercalated disc and sarcoplasmic reticulum respectively – 

in TAC hearts treated with vehicle or rapamycin. 

Even though the in vitro ankyrin-B fluorescent immunocytochemistry finding 

was different from cardiomyocytes isolated from TAC hearts, it is nevertheless 

interesting as one subpopulation decreases in expression while another increases with 

increased mTORC1 activity.  This begs the possibility of whether there exists different 

isoforms of ankyrin-B that are differentially regulated.  On closer observation, 

immunoblot from both TAC hearts and cultured cardiomyocytes shows ankyrin-B 

population with different molecular weights.  This issue will be explored in greater detail 

in the following chapter. 
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This is the first demonstration of a hypertrophic cellular signaling pathway 

directly affecting the electrical remodeling of the myocardium by regulating the 

anchoring protein that targets and maintains the proteins that make up the excitable 

domains in the heart (Figure 3.10).  But additional studies will be necessary to unravel 

the mechanisms that differentially regulate the ankyrin-B subpopulations.  For instance, 

are there direct protein-protein interactions between the signaling proteins along the 

mTORC1 pathway and ankyrin-B?  Is mTORC1-regulated autophagy the common 

mechanism that underlies decreased SERCA2a expression and ankyrin-B population at 

the M-line?  Is there a transporting mechanism that shifts ankyrin-B localization from 

one subcellular domain to another?  Is the change in ankyrin-B expression affecting 

functions of NCX1?  All these questions will need to be adequately addressed to clearly 

define the role of ankyrin-B in cardiovascular health and disease.  We will first start by 

addressing the different ankyrin-B populations and their interactions with NCX in the 

following chapter. 

 

 

 

 

 

Figure 3.10. Proposed model for mTORC1 regulation of two subpopulations of ankyrin-B.  
Increased mTORC1 activities appears to decrease the ankyrin-B population at the M-line although 
there appears to be an increase expression of the ankyrin-B population at the SR/T-tubule. 
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CHAPTER 4: IDENTIFICATION AND CHARACTERIZATION OF TWO 
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4.1 Introduction 

Excitation-contraction coupling requires correct subcellular distribution of ion 

channels and transporters in cardiomyocytes.  Ankyrin-B is an adaptor protein that 

facilitates recruitment and retention of membrane proteins to subcellular domains in 

cardiomyocytes such as the transverse tubule and M-line of the sarcomere.  Mutations 

that disrupt interaction with ankyrin-B have been linked to a variety of cardiac 

arrhythmias including type 4 long QT syndrome, sick sinus syndrome, and atrial 

fibrillation [4, 229, 261]. 

 In 1991, the cDNA for ankyrin-B 220kD was constructed by combining 

overlapping but partial cDNAs identified through an expression library screen using an 

antibody to ankyrin-R [147].  Since then, it has been assumed that this coding sequence 

represents the dominant ankyrin-B isoform in most tissues including the heart.  

Unfortunately, this assumption is not consistent with the common observation that 

tissues frequently express numerous alternative isoforms of ankyrin genes [1, 138-141, 

262, 263]. 

 Alternative splicing of ankyrin genes is an important process because it most 

likely confers specific functions to particular isoforms.  In fact, the current paradigm that 

the heart only expresses ankyrin-B 220kD is confounded by the observation that 

ankyrin-B interacts with a variety of ion channels and transporters that lack similarity in 

function and subcellular distribution.  We hypothesize that the heart expresses a diverse 

population of ankyrin-B isoforms that are tailored through alternative splicing to impart 

functional specificity and distinct subcellular distribution.  We previously demonstrated 
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that the heart expresses over 25 unique iterations of ANK2 transcripts, but a limitation of 

that study was that we only evaluated partial mRNA transcripts [1]. 

 Here, we describe the identification and characterization of two ankyrin-B 

isoforms AnkB-188 and AnkB-212 that were isolated by long-range reverse 

transcriptase-PCR from human ventricular mRNA.  Atrial and ventricular tissues from 

mouse, rat, and human hearts express ANK2 transcripts corresponding to these isoforms 

as determined by quantitative real-time PCR.  We demonstrate that both isoforms bind to 

the sodium calcium exchanger (NCX) in an in vitro binding assay, but only AnkB-188 

increases NCX membrane expression and current.  Furthermore, siRNA knockdown of 

AnkB-188 in neonatal cardiomyocytes decreases NCX expression and localization at 

transverse-tubules.  We generated an isoform-specific antibody to AnkB-212 and 

demonstrate that this isoform is selectively expressed in heart and skeletal muscle.  

Moreover, endogenous AnkB-212 localizes to the M-line in adult and neonatal 

cardiomyocytes.  Only AnkB-212 binds to obscurin, a large scaffolding protein 

implicated in M-line formation and maintenance, and this interaction regulates AnkB-

212 targeting to the M-line.  Moreover, siRNA treatment to AnkB-212 significantly 

reduces the expression of endogenous ankyrin-B at the M-line, but has no effect on NCX 

localization at the T-tubules.  In summary, our data provide the first description of two 

ankyrin-B isoforms that display unique functions and subcellular distributions in 

cardiomyocytes. 
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4.2 Materials and Methods 

4.2.1 Animals 

Mice used in these studies include adult and neonatal wild-type (C57BL/6) and 

ankyrin-B (C57BL/6) heterozygous and homozygous null animals.  Neonatal Sprague-

Dawley rats used in these studies were ordered from Texas Animal Specialties (Humble, 

TX).  Studies were conducted in accordance with the Guide for the Care and Use of 

Laboratory Animals published by the National Institute of Health following protocols 

that were reviewed and approved by the University of Texas Health Science Center at 

Houston Animal Welfare Committee. 

 

4.2.2  Human tissue samples 

 Ventricular and atrial tissues from healthy donor hearts not suitable for 

transplantation were obtained through the Iowa Donors Network and the National 

Disease Research Interchange.  Age and sex were the only identifying information 

acquired from tissue providers and the Iowa Human Subjects Committee determined that 

informed consent was not required.  This investigation conforms to the principles 

outlined in the Declaration of Helsinki. 

 

4.2.3  Isolation and cloning of full-length ANK2 transcripts from human ventricular 

mRNAs 
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RNA was isolated from ventricular tissue using a Qiagen RNeasy mini-kit and 

500 ng of RNA was reverse-transcribed with a poly dT primer using SuperScript III 

reverse transcriptase (LifeTechnologies).  cDNAs corresponding to AnkB-188 and 

AnkB-212 were PCR-amplified using the primer sets (atgaccaccatgttgcaaaag, 

cttttaattattgatccatcctc) and (atgaccaccatgttgcaaaag, cttttcaaaagctgcatcttc).  PCR products 

were subcloned into pcDH1-MCS lenti-viral expression plasmid (System Biosciences).  

The complete amino acid sequences for each isoform are shown here: 
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4.2.4  Quantitative real-time (qt)-PCR analysis of ANK2 transcripts 

Exon-exon boundary spanning primers were designed to the unique splice 

junctions encoding the C-terminal domains of AnkB-188 kD (exon junction 45 to 51) 

and AnkB-212 kD (exon junction 50 to 51).  Primers were optimized based on 

nucleotide sequence and annealing temperatures such that primer efficiencies were 

between 90 – 110%.  cDNAs were generated from ventricular and atrial mRNA that was 

isolated from three human and three mouse hearts.  Relative expression of ANK2 

transcripts was measured in triplicate by qt-PCR using SYBR Green dye (Bio-Rad) and 

experiments were replicated three times.  Individual Ct values were normalized to the 

average of the Ct values of ANK2 transcripts with exon junction 31 to 32 (which encodes 

the minimal spectrin-binding domain).   

The following table 4.1 contains the ANK2 qt-PCR primer sequences: 

Primer set 5’ primer 3’ primer Size 

(bp) 

Tm  

(C°) 

Primer 

eff. 

(%) 

Hu-

E31/32 

GCATGGATGAAG/tactggatag ctgctcagtacacctccttc 151 64 91 

Hu-

E45/51 

CAGCTTTTGAAAAG/gacaac

aatgag 

caagtcctccttgcagaaa

tg 

180 62.5 90 

Hu-

E50/51 

GGATCAATAATTAAAAG/g

acaacaatgag 

caagtcctccttgcagaaa

tg 

183 57 94 

      

Mu-

E31/32 

CATGGATGAAG/tgctggacag cactgtgctgctcagtact

c 

158 67 90 

Mu-

E45/51 

CGCTTTTCAAAAG/gacaacaat

gcg 

gaaggagttgctggagat

ctc 

157 59 97 

Mu-

E50/51 

GATCAATAATTAAGAG/gac

aacaatgcg 

gaaggagttgctggagat

ctc 

160 62 90 
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Ra-E12/13 GGTTTTACTCCACTGCACA

TTG 

GTTAGTGACAT

CTGGAGAGGC 

192 64.5 107 

Ra-E31/32 CATGGATGAAG/tgctggacag gacagcttgcacctgtgat

ac 

178 64.5 101 

Ra-E50/51 GATCAATAATTAAGAG/gac

aacaatgag 

gaaggagttgctggagat

ctc 

159 57 101 

Hu: human; Mu: mouse; Ra: rat; Tm: optimal annealing temperature 

 

4.2.5  AnkB-212 antibody generation 

93 amino acids encoded by ANK2 exons 50 and 51 and unique to AnkB-212 

were subcloned in triplicate into pET-15b (Novagen), over-expressed in 

BL21(DE3)pLysS competent cells (Promega), and purified over a nickel column.  

Polyclonal antibody production was contracted to Pocono Rabbit Farm and Laboratory 

(Canadensis, PA). 

 

4.2.6  Tissue immunoblot assay 

Heart, skeletal muscle, brain, lung, and liver lysates were isolated from neonatal 

wild-type and ankyrin-B null mice.  Human atrial and ventricular heart lysates were 

obtained from donor hearts. Protein lysates were separated by SDS-PAGE, transferred to 

nitrocellulose membrane (Whatman), incubated with primary antibody at 4°C overnight, 

and visualized using SuperSignal West Pico Chemiluminescent Substrate (Pierce).  

Primary antibodies used were: pan-ankyrin-B [229], AnkB-212 specific antibody 

(1:3000), and pan-actin-5 (1:10,000; Thermo Scientific). 
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4.2.7  Cellular fractionation immunoblot assay 

HeLa-T7 cells stably expressing NCX lentivirally transduced with GFP, AnkB-

188-GFP, or AnkB-212-GFP were washed with cold PBS, lysed in 200µL of 

homogenization buffer (10mM Tris pH 7.5, 5mM MgCl2, 1mM EGTA, 0.003mg 

aprotinin, 0.1mM Na3VO4, 0.033mg leupeptin, and 1mM DTT), and homogenized with 

1mL-syringe and 23G1¼ needle with repeated strokes.  The homogenate was 

centrifuged 1500 x g for 10 minutes at 4°C and the supernatant was removed for 

ultracentrifugation at 100,000 x g for 40 minutes at 4°C.  The resulting supernatant 

(cytosolic fraction) was placed in a new tube, and the pellet (membrane fraction) was 

washed and resuspended in homogenization buffer by sonication for 1 min at 4°C.  

Protein contents for both fractions were measured and same protein quantities were 

separated by SDS-PAGE and immunobloted with the following primary antibodies: 

NCX (1:250, Swant, Switzerland), GFP (1:500, Santa Cruz), and pan-actin-5 (1:10,000; 

Thermo Scientific). 

 

4.2.8 Isolation of neonatal mouse hearts and cultures of neonatal rat ventricular 

cardiomyocytes 

Neonatal mouse cardiomyocytes were isolated from newborn mouse pups (P0) 

and NRVM were isolated from 1-2 day old Sprague-Dawley rat hearts as previously 

described with a minor modification [228].  In accordance with the animal protocol 

approved by the Animal Welfare Committee at University of Texas Health Science 

Center at Houston, neonatal rat pups were euthanized by decapitation.  Briefly, hearts 

were exposed, excised, minced, and digested through a series of agitations in buffer 
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containing collagenase type II (Worthington, Collagenase type II 305U/mg) and 

pancreatin (Sigma).  Cells from each digestion were collected and pooled, and pre-plated 

on Nunc plates (Thermo Fisher Scientific) to reduce fibroblasts and enrich for 

cardiomyocytes.  Cells were then collected and plated on either Primaria plates (Corning) 

or fibronectin-coated glass-bottom MatTek plates (MatTek Corporation).  Media was 

changed 24-hours after plating and experiments started 2 days after plating to ensure 

homogenous cultures.  Following 3 days in culture, cardiomyocytes were transfected 

with either siRNA or lenti-viral constructs of GFP-tagged full-length AnkB-188 or 

AnkB-212.  Cells were harvested for RNA or protein lysates or were and imaged 4 days 

later by confocal microscopy. 

 

4.2.9  siRNA construct and NRVM transfections 

NRVMs were transfected with siRNAs at a final concentration of 50 nM with 

DharmaFECT (Dharmacon GE) targeting rat AnkB-188, AnkB-212, and non-targeting 

siRNA control (scramble).  The NRVMs were transfected for 6 hours, then media was 

changed to serum-free DMEM.  Experiments were performed 48 hours later for 

quantitative real-time PCR and 72 hours later for immunoblot analysis and cell 

contraction recordings.  The following table 4.2 contains the siRNA sequences targeting 

rat Ank2: 

Target Oligo Name Sequence (5’-3’) 

E12 B188-siRNA sequence #2 sense CUGCCUUCAUGGGCCACUU[dT][dT] 

 B188-siRNA sequence #2 anti- AAGUGGCCCAUGAAGGCAG[dT][dT] 
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sense 

E17 B188-siRNA sequence #1 sense CCAUGUUGCUGCUCAUUAU[dT][dT] 

 B188-siRNA sequence #1 anti-

sense 

AUAAUGAGCAGCAACAUGG[dT][dT] 

   

E48 B212-siRNA sequence #1 sense CAGCUAUUCCAAAGUGAUA[dT][dT] 

 B212-siRNA sequence #1 anti-

sense 

UAUCACUUUGGAAUAGCUG[dT][dT] 

E49 B212-siRNA sequence #2 sense GUUUCAGGCGGAACCAGUA[dT][dT] 

 B212-siRNA sequence #2 anti-

sense 

UACUGGUUCCGCCUGAAAC[dT][dT]- 

   

 Scramble sense GCUCCCAGCUCGUCUAUGU[dT][dT] 

 Scramble anti-sense ACAUAGACGAGCUGGGAGC[dT][dT] 

 

 

4.2.10  Isolation of individual adult mouse cardiomyocytes 

Adult mouse cardiomyocytes were isolated as described previously (Baskin KK 

and Taegtmeyer H. Circ Res 2011).  In accordance with the animal protocol approved by 

the Animal Welfare Committee at University of Texas Health Science Center at Houston, 

3 month-old mice were anesthetized with intraperitoneal injection of tribromoethanol-

Avertin (Sigma T48402) at 250 mg/kg in 1X PBS and euthanized by removing the heart.  

Hearts from wild type or ankyrin-B+/- mice were placed in ice-cold saline and the aorta 

was cannulated.  Hearts were first perfused with warm perfusion buffer for a few 
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minutes, followed by perfusion with digestion buffer containing collagenase 

(Worthington, Collagenase type II 305U/mg).  Once digested, hearts were minced and 

triturated, then centrifuged at 300 rpm x 5 minutes at 4°C.  Supernatant was removed and 

cells were immediately fixed in ice-cold 100% ethanol, and kept in -20°C until use. 

 

4.2.11  Fluorescent immunocytochemistry and image quantification 

Cells were washed in ice-cold phosphate-buffered saline (PBS, pH 7.4) 3x.  Cells 

were then blocked with 5% normal goat serum and 0.075% TritonX-100 for 30 minutes 

at room temperature then incubated in primary antibodies overnight at 4°C.  Primary 

antibodies used were: ankyrin-B [229], ankyrinB-212 (1:300), α-actinin (1:1000, Sigma), 

myomesin (1:500, Developmental Studies Hybridoma Bank, University of Iowa), 

MyBPC3 (1:250, Santa Cruz), GFP (1:250, UC Davis/NIH NeuroMab Facility).  

Secondary antibodies used were goat anti-rabbit conjugated to Alexa Fluor 488 and goat 

anti-mouse conjugated to Alexa Fluor 568 (1:500, LifeTechnologies).  Hoechst 33258 

(1:1000, LifeTechnologies) was used for nuclear staining after removal of the secondary 

antibody.  Images were obtained with a Nikon A1 confocal microscope (Nikon, Melville, 

NY) equipped with 100X oil, numerical aperture 1.4 objective.  Fluorescence intensities 

for ankyrin-B populations and sarcomeric markers were analyzed with ImageJ (version 

1.47, NIH, Bethesda, MD) and Excel (Microsoft, Bellevue, WA).  Intensities were 

obtained by the mean pixel intensity of the magnified image. 

 

4.2.12  Binding studies 
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AnkB-188-GFP and AnkB-212-GFP were expressed in HeLa-T7 cells and 

purified using an affinity-purified GFP Ig coupled to protein A-agarose beads as 

previously described [133] and incubated with in-vitro translated 35S-radiolabeled 

fragments of the sodium-calcium exchanger (Asp-253 to Lys-615, NM_021097) or the 

C-terminal domain of human obscurin (Leu-6148 to Asn-6460, NM_052843) (TnT T7-

Coupled Reticulate Lysate System, Promega).  Binding reactions occurred in 500µL 

binding buffer (50mM Tris pH 7.4, 1mM EDTA, 1mM EGTA, 150mM NaCl, 0.1% 

TritonX-100) at 4oC overnight.  Reactions were washed in wash buffer (binding buffer 

with 500 mM NaCl and 1% TritonX-100), pelleted, re-suspended in SDS-sample buffer, 

separated by SDS-PAGE, and visualized with autoradiography film (HyBlot CL, 

Denville Scientific). 

 

4.2.13 Patch-clamp recording 

Whole-cell patch-clamp recordings were performed using an Axopatch 200B 

amplifier (Molecular Devices, CA) at room temperature (22–24 °C) on the stage of an 

inverted phase-contrast microscope equipped with an appropriate filter set for green 

fluorescence protein visualization.  Pipettes pulled from borosilicate glass (BF 150-86-

10; Sutter Instrument Company, Novato, CA) with a Sutter P-97 pipette puller had 

resistances of 2–4 MΩ when filled with pipette solution containing (mM) 120 CsCl, 20 

NaCl, 5 Na2ATP, 3 CaCl2, 1 MgCl2, 10 HEPES, and 10 EGTA with pH 7.3 and 

315 mOsm l−1 in osmolarity. The extracellular solution for whole-cell recording 

contains (mM) 140 NaCl, 5  CsCl, 2 CaCl2, 1 MgCl2, 10 mM glucose, and 5 mM 
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HEPES (the pH was adjusted to 7.4 with NaOH, and the osmolarity was adjusted to 

340 mOsm l−1 with sucrose). The whole-cell membrane currents were recorded using 

a voltage ramp (from +80 to -100 mV at 100 mV/s) following 100-ms step 

depolarization to +80 mV from a holding potential of -40 mV. Data were acquired and 

analyzed using pClamp 10 software (Molecular Devices, CA). Currents were filtered at 

2 kHz and digitized at 10 kHz with Digidata 1440A acquisition system (Molecular 

Devices, CA). Membrane capacitance was directly read from the membrane test function 

of pClamp 10. Current density was obtained by dividing the current amplitude by cell 

capacitance. 

 

4.2.14 Recording and analysis of NRVM contraction rates 

Contracting NRVM syncytium was located on light microscope (Micromaster; 

Fisher) with 10X magnification eyepiece and 20X objective lens.  A camera with 10 

megapixel resolution (HTC One M8) was mounted on the microscope using Snapzoom 

Universal Digiscoping Adapter (Snapzoom).   Contractions were recorded for 2 to 2.5 

minutes.  The same recording method was used following stimulation with 1µM 

epinephrine. 

Using Video Spot Tracker (VST) program (http://cismm.cs.unc.edu/downloads) 

and the tracking method described by Fassina L et. al. [230], we placed a marker on the 

contracting syncytium and the program tracked the marker displacement frame by frame 

(30 frames per second) registering the spatial-temporal coordinates x, y, (expressed in 

pixels), and t (expression in frame number that converts to second).   Coordinates were 
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plotted in Excel (Microsoft) with each peak corresponding to an active syncytial 

contraction.  We assessed rhythmicity of the syncytial contractions by randomly picking 

a consecutive 30-second interval and measuring the time between contractions.  The 

average contraction time for each video was calculated and the time difference between 

each contraction and the average was plotted on GraphPad Prism 6 (GraphPad Software) 

using box-and-whisker plots. 

 

4.2.15 Statistical analysis 

P-values were determined for single comparisons using unpaired Student’s t-test 

(two-tailed).  The NRVM contraction data was assessed for normality and processed to 

calculate the mean and the standard deviation separately for each syncytial recording.  

To standardize the dispersion of the time difference between each contraction and the 

average contraction time for each respective syncytium, the coefficient of variation for 

each recording was calculated.  The coefficients of variation across the groups were 

compared using the Kruskal-Wallis test with post-hoc Wilcoxon rank-sum test.  A P-

value of less than 0.05 was considered statistically significant.  Values are expressed as 

means ± SE except for the box-and-whisker plot for contractile rhythm variability where 

the box contains interquartile range covering 25-75% of the readings and the whiskers 

contains 90% of the readings. 
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4.3 Results 

4.3.1  Identification and cardiac expression of ankyrin-B isoforms 

The biggest challenge to isolating tissue-specific ankyrin cDNAs is that ankyrin 

genes are long and complex containing over 50 exons that are alternatively spliced 

resulting in mRNA transcripts over 5000 bases in length.  To identify full-length ANK2 

cDNAs encoding ankyrin-B isoforms expressed in human heart, we performed long-

range PCR on reverse transcribed mRNA isolated from human hearts.  We identified 

two novel ankyrin-B isoforms AnkB-188 and AnkB-212, which are labeled based on 

their predicted molecular weights (Figure 4.1A).  In contrast to ankyrin-B 220kD, which 

starts with exon 1, both isoforms start with exon 1’ [1].  Both isoforms display similar 

alternative splicing patterns including excision of exons 7, 30, and 40.  Unique 

alternative splicing to AnkB-188 includes excision of exons 24, 28, 38, and 46-50.  

Remarkably, exons 46-50 encode the majority of the C-terminal regulatory domain 

including the binding site for the large scaffolding protein obscurin [136].  Unique 

alternative splicing to AnkB-212 includes excision of exons 12-13 and 17.  Previously, 

we have mapped the NCX binding site to the three ANK repeats encoded by exons 15-

17 [133] suggesting that AnkB-212 does not interact with NCX.  In addition, the cDNA 

for AnkB-212 includes exon 50 that shifts the open reading frame by plus one such that 

exon 51 encodes a unique stretch of 62 amino acids terminating with the residues QEAK.  

In contrast, the amino acid sequences for both ankyrin-B 220kD and AnkB-188 

terminate with residues DNNE (see materials and methods 4.2.3 for the complete 

sequences).  Missense mutations associated with ankyrin-B dysfunction and cardiac 

arrhythmias have been mapped to the spectrin-binding and C-terminal regulatory 



113 

 

Figure 4.1.  Exon composition and protein domains of ankyrin-B isoforms AnkB-188 
and AnkB-212.  A, Exon organization and functional domains of ankyrin-B 220kD, 
AnkB-188, and AnkB-212.  Individual ANK repeats are indicated by dotted gray 
squares and dipeptides linking ANK repeats are labeled.  The ZU5A, ZU5B and UPA 
domains are identified in the SBD.  Binding sites for sodium/calcium exchanger 
(NCX) and obscurin (Obs) are shaded in gray.  B, Ten missense mutations associated 
with cardiac arrhythmias are mapped to both isoforms [1-6].  MBD: membrane-
binding domain, SBD: spectrin-binding domain, DD: death domain, CTD: C-terminal 
regulatory domain. 

domains of both isoforms (Figure 4.1B).  Interestingly, the mutation E1425G resides in 

exon 38 and this exon is not present in the AnkB-188 isoform.  E1425G has been well 

studied and linked to a variety of arrhythmias including type 4 long QT syndrome, sick 

sinus syndrome, and atrial fibrillation [2-5, 261]. 
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 To validate and measure the expression of these isoforms in heart mRNA, we 

designed exon-exon boundary spanning primers that specifically amplify partial 

transcripts based on unique exon junctions in each isoform.  For example, to detect 

partial mRNAs encoding AnkB-188 we designed a primer set to the unique exon 

junction of exons 45 to 51.  This exon-exon boundary spanning primer anneals to the 

terminal 14 nucleotides of exon 45 (CAGCTTTTGAAAAG) and the initial 12 

nucleotides of exon 51 (GACAACAATGAG).  We validated that a PCR product is only 

amplified using a full-length exon-exon boundary spanning primer (Figure 4.2A, lane 3).  

In contrast, no PCR products are amplified using half the exon-exon boundary spanning 

primer (Figure 4.2A, lanes 1 & 2). To amplify partial transcripts of AnkB-212, we 

designed a primer set to amplify the junction of exons 50 to 51. All primer sets were 

optimized based on nucleotide sequences and annealing temperatures such that primer 

efficiencies are within 90 – 110% (see materials and methods 4.2.4). 

 Using these exon-exon boundary spanning primers, we performed qt-PCR to 

measure the relative mRNA expression of AnkB-188 and AnkB-212 in ventricular and 

atrial tissues isolated from both human and mouse hearts (Figure 4.2B and C).  Relative 

expression of each isoform was normalized to expression of exon junction 31/32.  These 

exons encode the minimal spectrin-binding domain and presumably this domain is 

expressed in the majority of ankyrin-B isoforms.  Both isoforms are expressed in atrial 

and ventricular tissues.  Interestingly, each primer set demonstrated a similar expression 

pattern between human and mouse.  Both human and mouse hearts express less mRNA 

for AnkB-188 (45/51) than AnkB-212 (50/51).  While the trends are the same in human 

and mouse hearts, the magnitude of difference between the paired junctions (45/51 vs. 



50/51) is not the same.  For example, junction 50/51 is ~3

45/51 in mouse, but only ~1.5

tissue extraction and preservation most likely account for these differences.  Taken 

together, these findings demonstrate that mouse and human hearts express 

transcripts with unique exon junctions present in AnkB

Figure 4.2.  Relative mRNA expression of AnkB
mouse cardiac tissues.  A, Exon
amplify alternative splice junctions unique to each isoform (AnkB
AnkB-212: junction 50/51).  B
junctions in AnkB-188 and AnkB
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50/51) is not the same.  For example, junction 50/51 is ~3-fold greater than junction 

45/51 in mouse, but only ~1.5-fold greater in human.  We speculate that var

tissue extraction and preservation most likely account for these differences.  Taken 

together, these findings demonstrate that mouse and human hearts express ANK2

transcripts with unique exon junctions present in AnkB-188 and AnkB-212.

Relative mRNA expression of AnkB-188 and AnkB-212 in human and 
Exon-exon boundary spanning primers were used to PCR 

amplify alternative splice junctions unique to each isoform (AnkB-188: junction 45/51, 
0/51).  B, Relative mRNA expression of alternative splice 

188 and AnkB-212 was measured in cardiac tissues from three 

fold greater than junction 

fold greater in human.  We speculate that variations in 

tissue extraction and preservation most likely account for these differences.  Taken 

ANK2 

212. 

 

212 in human and 
exon boundary spanning primers were used to PCR 

188: junction 45/51, 
Relative mRNA expression of alternative splice 

212 was measured in cardiac tissues from three 
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human hearts.  Expression of each splice junction was normalized to the expression of 
exon junction 31/32 (presumably expressed in all ANK2 transcripts and set to 100%).  C, 
Relative mRNA expression of alternative splice junctions in AnkB-188 and AnkB-212 
was measured in cardiac tissues from three mouse hearts.  For B & C, samples were 
repeated in triplicate (n=3) and experiments were repeated three times 

 

 

4.3.2 AnkB-188 and AnkB-212 binding to NCX  

In the heart, many different functions have been ascribed to ankyrin-B including 

the recruitment and retention of various membrane proteins including dystrophin [264], 

sodium potassium ATPase (NKA) [2, 4], IP3 receptor [2, 4, 265], and NCX [4, 133].  We 

previously demonstrated that ANK repeats 16-18 in the membrane-binding domain of 

ankyrin-B encodes the binding site for NCX [133].  Considering AnkB-212 lacks exon 

17 that encodes ANK repeat 18, we anticipated that NCX would not bind to this isoform 

(Figure 4.3A). 

 To assess whether the AnkB isoforms display different NCX binding, we 

performed an in vitro binding assay with radiolabelled NCX fragment and full-length 

AnkB-188 or AnkB-212 (Figure 4.3B).  GFP-tagged AnkB isoforms were transiently 

expressed in HeLa-T7 cells and immunoprecipitated from lysate using a GFP antibody.  

Interestingly, both isoforms equally bound NCX suggesting that the absence of ANK 

repeat 18 had no effect on NCX binding in this in vitro paradigm. 
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Figure 4.3. Both AnkB-188 and AnkB-212 bind NCX.  A, Exons encoding the 
membrane-binding domains of AnkB-188 and AnkB-212.  The NCX binding site maps 
to ANK2 exons 15-17.  (B) 35S-labelled, in vitro translated NCX fragment binds to both 
AnkB isoforms. Experiments were repeated three times.  Coomassie Blue Stain 
demonstrates equal expression of both isoforms. 

  

4.3.3 AnkB-188 increases NCX membrane expression and current 

To examine the effect of each isoform on NCX function, we measured the NCX 

current in HeLa-T7 cells stably expressing NCX and transiently expressing either GFP-

tagged AnkB isoform.  Similar expression of each isoform was demonstrated by 

immunoblot analysis of the GFP-tag, and individual GFP-positive cells were measured 

for NCX current (Figure 4.4A).  While a basal NCX current was also detected in the 

stable cell lines, only the transient expression of AnkB-188 enhanced this current 

compared to cells expressing GFP alone or AnkB-212 (Figure 4.4B).  HeLa-T7 cells 

express an endogenous isoform of ankyrin-B as detected by immunoblot (data not 

shown), which most likely accounts for the basal NCX current in the stable cell lines.  

Qt-PCR analysis demonstrated that NCX mRNA expression was equivalent in all 
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transfection conditions, indicating that neither ankyrin isoform increases NCX mRNA 

expression (Figure 4.4E). 

 To investigate the molecular basis for increased NCX current mediated by AnkB-

188, we measured the expression of NCX in cytosolic and membrane fractions of cells 

transiently expressing GFP alone, AnkB-188, or AnkB-212 by immunoblot analysis 

(Figure 4.4C).  We found that membrane expression of NCX was 2-fold greater in cells 

expressing AnkB-188 compared to cells expressing GFP alone or AnkB-212 as 

determined by densitometry analysis of immunoblots from three independent 

experiments (Figure 4.4D).  Taken together, these data suggest that cells expressing 

AnkB-188 display enhanced NCX current because this isoform increases NCX 

expression in the plasma membrane. 
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Figure 4.4.  AnkB-188, but not AnkB-212, increases NCX current and membrane 
expression.  A, Detection of the GFP-tag on isoforms by immunoblot and 
immunofluorescence in HeLa-T7 cells that stably express NCX.  Scale bar is 5 µm.  B, 
NCX voltage-current curves of HeLa-T7 cells transiently expressing GFP, AnkB-188, or 
AnkB-212 (n=29 for GFP and AnkB-188, n=27 for AnkB-212, *P<0.05).  C, NCX 
expression is increased in the membrane fraction of HeLa-T7 cells expressing AnkB-188.  
Equal protein loading was demonstrated by immunoblot to pan-actin, while membrane 
enrichment was demonstrated by immunoblot to caveolin-1.  Experiments were 
replicated three times.  D, Densitometry of NCX membrane expression from C.  E, Qt-
PCR of NCX mRNA expression in untransfected HeLa cells and HeLa cells transiently 
expressing GFP, B188-GFP, or B212-GFP. 

 

4.3.4 AnkB-212 is selectively expressed in heart and skeletal muscle 

In the initial characterization of ankyrin-B, a polyclonal antibody was generated 

against the death and C-terminal domains (Figure 4.5A).  We have previously 

demonstrated that the C-terminal regulatory domain is subject to complex alternative 

splicing presumably resulting in numerous alternative ankyrin-B isoforms [1].  Using 

this pan-AnkB antibody, we demonstrate that multiple AnkB isoforms are expressed in 

adult mouse heart and in mouse neonatal tissue including heart, skeletal muscle, brain, 

lung, and liver (Figure 4.5A).  In contrast, no isoforms are detected in the same tissues 

isolated from neonatal AnkB null (-/-) mice.  Using the same antibody, multiple ankyrin-

B isoforms are also detected in atrial and ventricular tissues isolated from adult human 

heart. 

 One of the challenges in characterizing alternative isoforms is identifying a 

unique stretch of amino acids that could be used to generate an isoform-specific antibody.  

Fortunately, the coding sequence for AnkB-212 includes exon 50, which shifts the open 

reading frame plus one such that exon 51 encodes a unique stretch of 62 amino acids 

(Figure 4.5B).  Numerous expressed sequence tags (>10) from human cDNAs contain 
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this unique coding sequence including DB499390.1, DA768553.1, and DA364599.1.  To 

generate an isoform-specific antibody to AnkB-212, we made a bacterially expressed 

and purified His-tag fusion protein of the 93 amino acids encoded by exons 50 and 51.  

Rabbit anti-serum was used to detect AnkB-212 expression in AnkB wild-type (+/+) and 

null (-/-) tissues including heart, skeletal muscle, brain, lung, and liver (Figure 4.5B).  

Interestingly, AnkB-212 is expressed in wild-type adult and neonatal mouse heart as 

well as skeletal muscle.  However, it is not expressed in brain, lung, or liver from wild-

type neonates.  AnkB-212 was also detected in human atrial and ventricular tissues.  

These findings suggest that expression of AnkB-212 is restricted to striated muscle. 
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4.3.5 Endogenous AnkB-212 is expressed at the cardiomyocyte M-line 

Within cardiomyocytes, ankyrin-B is expressed at the sarcomeric M-line and the 

sarcoplasmic reticulum/transverse-tubule junctions, which generally co-localize with 

components of the sarcomeric Z-line.  Using the pan-AnkB antibody, we demonstrate 

Figure 4.5. Expression of pan-AnkB and AnkB-212 in various tissues.  A, The antibody to 
pan-AnkB was generated against the death and C-terminal domains encoded by exons 41-
45, 47-48 and 51.  Expression of multiple AnkB isoforms was detected in neonatal mouse 
heart, skeletal muscle, brain, lung, and liver of wild-type (+/+) and adult mouse heart.  B, 
The antibody to AnkB-212 was generated against amino acids encoded by exons 50 and 
51.  Only one isoform of AnkB-212 was detected in heart and skeletal muscle of wild-type 
neonates and adult mouse heart.  Pan-actin immunoblot demonstrates equal protein 
loading.  For A & B, experiments were replicated three times. 



123 

 

the expression of these two ankyrin-B subpopulations at the Z- and M-lines in isolated 

adult cardiomyocytes (Figure 4.6A and C).  We measured the relative fluorescence 

intensity of this signal and found that the less abundant ankyrin-B population co-

localizes with the resident Z-line marker protein α-actinin, while the more abundant 

population co-localizes with myomesin, a M-line resident protein.  Interestingly, AnkB-

212 is only detected at the M-line of adult cardiomyocytes (Figure 4.6B and D).  

Specifically, AnkB-212 co-localizes with myomesin, but not with α-actinin.  Similar 

results were found in experiments using cardiomyocytes isolated from ankyrin-B 

heterozygous hearts (Figure 4.7).  These findings suggest that the M-line population of 

ankyrin-B is partially comprised of the AnkB-212 isoform. 
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 Figure 4.6.  AnkB and AnkB-212 endogenous localizations in adult cardiomyocytes. A and C, Two 
subpopulations of ankyrin-B are detected using the pan-AnkB antibody.  The less abundant population 
(white arrow heads) co-localizes with the Z-line marker α-actinin while the more abundant population 
(white arrows) co-localizes with the M-line marker myomesin.  Relative fluorescence intensities of the 
insets were measured and graphed.  B and D, Only one population of AnkB-212kD (white arrows) is 
detected and co-localizes with the M-line marker myomesin and not the Z-line marker α-actinin.  For all 
antibody conditions, 6-8 myocytes per condition were imaged.  Scale bar = 2 µm 
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4.3.6  Exogenous AnkB-212 is targeted to the M-line via an interaction with 

obscurin 

 To investigate the molecular basis of AnkB-212 targeting and retention at the 

sarcomeric M-line, we evaluated the isoforms for binding to obscurin, an 800kD 

structural protein that has been implicated in M-line formation and alignment [234, 266, 

267].  Two ankyrin-binding sites reside in the C-terminal domain (CTD) of obscurin 

Figure 4.7. Expression of pan-AnkB and AnkB-212 in isolated AnkB+/- adult cardiomyocytes.  A and 
C, Two subpopulations of ankyrin-B are expressed in AnkB+/- cardiomyocytes.  The less abundant 
population (white arrowheads) co-localizes with α-actinin at the Z-line while the more abundant 
population (white arrows) co-localizes with myomesin at the M-line.  B and D, There is one 
population of AnkB-212 (white arrows) that co-localizes with myomesin, but not with α-actinin.  For 
all antibody conditions, 6-8 myocytes per condition were imaged.  Scale bar = 2 µm 
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[268].  We previously demonstrated that the ankyrin-B C-terminal domain contains two 

obscurin-binding sites encoded by ANK2 exons 46 and 47 [136].  Interestingly, the C-

terminal domain of AnkB-188 lacks exons 46 through 50, while the same domain in 

AnkB-212 contains these exons (Figure 4.8A). We performed an in vitro binding assay 

in which the obscurin CTD was in vitro translated and radiolabelled with 35S methionine, 

then incubated with GFP-tagged AnkB-188 or AnkB-212, which was over-expressed 

and purified from HeLa-T7 cells.  Obscurin only bound to AnkB-212, and not to AnkB-

188 (Figure 4.8B). 

 

  

 

Figure 4.8.  AnkB-212, but not AnkB-188, binds to obscurin.  A, Exons coding 
the C-terminal regulatory domains of AnkB-188 and AnkB-212.  ANK2 exons 46 
and 47 encode two obscurin binding domains.  B, In vitro translated obscurin 
CTD binds GFP-tagged AnkB-212.  C, GFP immunoblot demonstrates similar 
expression of ankyrin isoforms.  Experiments were replicated twice.  OBD, 
obscurin binding domains. 
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Because we lack an antibody specific to AnkB-188, we evaluated the co-

localization of each isoform to three sarcomeric proteins: α-actinin (Z-line), myosin-

binding protein C (A-band), and myomesin (M-line) to assess whether AnkB-188 and 

AnkB-212 display differential subcellular localization in cardiomyocytes.  GFP-tagged 

ankyrin isoforms were expressed in rat neonatal cardiomyocytes by lenti-virus and 

images were acquired by confocal microscopy.  AnkB-188 expression was diffusely 

cytosolic and lacked sarcomeric localization (Figure 4.9A).  In contrast, AnkB-212 

distinctly co-localizes with myomesin and is flanked by myosin-binding protein C 

suggesting that its localization does not extend beyond the M-line (Figure 4.9B).  

Removal of exon 46, which encodes the first obscurin-binding site, from the CTD of 

AnkB-212 disrupts AnkB-212’s interaction with obscurin and abrogates the M-line 

localization (Figure 4.10).  Taken together, these data suggest that AnkB-212 is targeted 

to the M-line via its interaction with obscurin. 
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Figure 4.9.  AnkB-212 is 
targeted to the M-line of 
cardiomyocytes. Double 
labeling of A, GFP-tagged 
AnkB-188 or B, GFP-
tagged AnkB-212 with Z-
line marker α-actinin, A-
band marker MyBP-C, and 
M-line marker myomesin 
in neonatal rat 
cardiomyocytes.  AnkB-
212, but not AnkB-188, 
colocalizes with 
myomesin at the M-line.  
For all antibody 
conditions, 6-8 myocytes 
were imaged.  MyBP-C, 
myosin binding protein C.  

Scale bar = 2µm. 
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4.3.7 AnkB-188 knockdown decreases the expression and proper subcellular 

localization of NCX 

Figure 4.10.  AnkB-212 CTD ∆E46 lacks obscurin-binding and M-line targeting.  A, 
Diagram of two tagged (flag and GFP) constructs of AnkB-212 CTD that lack exon 46, the 
first obscurin binding site in ANK2.  B, A GST-fusion protein of obscurin CTD (containing 
the ankyrin-binding sites) does not precipitate AnkB-212 CTD ∆E46.  C, GFP-tagged AnkB-
212 CTD ∆E46 does not co-localize with myomesin in virally transduced cardiomyocytes.  
Scale bar = 2µM. 
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 To identify potential functions associated with either ankyrin-B isoform in rat 

neonatal cardiomyocytes, we used siRNAs to selectively knockdown each isoform.  

SiRNAs were designed to unique exons in each isoform (Figure 4.11A).  We used qt-

PCR transcript analysis to evaluate the efficacy and specificity of the siRNAs against its 

intended isoform (Figure 11B, gray bars) versus the other isoform (Figure 4.11B, black 

bars).  SiRNAs that displayed preferential knockdown of each isoform were used in 

subsequent assays.  Immunoblot analysis was performed to confirm siRNA-mediated 

knockdown of each isoform.  Using the pan-AnkB antibody, two high molecular weight 

isoforms are clearly resolved and siRNAs to AnkB-188 reduce the expression of the 

smaller isoform although expression of the larger isoform also decreases but to lesser 

extent (Figure 4.11C).  The isoform-specific antibody to AnkB-212 demonstrates a 

marked reduction in the expression of this isoform following siRNA treatment (Figure 

4.11C). 

 

  



 

Figure 4.11. AnkB-188 knockdown decreases the expression of NCX.  A
siRNAs were designed to exons unique to AnkB
mRNA was assessed by qt-PCR using primer sets unique to each is
values were normalized to GAPDH mRNA expression and expressed as a percentage of isoform 
expression in untransfected cardiomyocytes, which was set to 100%.  Gray bars represent isoform 
mRNA expression targeted by the siRNAs.  
and the other isoform.  C, Immunoblot analysis of AnkB
siRNA-treated cardiomyocytes.  Pan
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188 knockdown decreases the expression of NCX.  A, Isoform
siRNAs were designed to exons unique to AnkB-188 and AnkB-212.  B, Knockdown of isoform 

PCR using primer sets unique to each isoform (black arrows).  Qt
values were normalized to GAPDH mRNA expression and expressed as a percentage of isoform 
expression in untransfected cardiomyocytes, which was set to 100%.  Gray bars represent isoform 
mRNA expression targeted by the siRNAs.  Black bars represent mRNA expression of controls 

Immunoblot analysis of AnkB-188, AnkB-212, and NCX in control and 
treated cardiomyocytes.  Pan-actin immunoblot demonstrates equal protein loading.

Isoform-specific 
Knockdown of isoform 

oform (black arrows).  Qt-PCR 
values were normalized to GAPDH mRNA expression and expressed as a percentage of isoform 
expression in untransfected cardiomyocytes, which was set to 100%.  Gray bars represent isoform 

Black bars represent mRNA expression of controls 
212, and NCX in control and 

actin immunoblot demonstrates equal protein loading. 



132 

 

 Previous studies have demonstrated that ankyrin-B is important for the 

expression and proper subcellular targeting of NCX [2, 4, 133].  Considering AnkB-188 

increases NCX membrane expression and current in HeLa-T7 cells (Figure 4.4 B, C, and 

D), we evaluated siRNA-mediated knockdown of each isoform on the expression and 

localization of NCX in neonatal rat cardiomyocytes.  While NCX protein expression is 

slightly reduced following AnkB-212 knockdown, AnkB-188 knockdown results in a 

more significant reduction in NCX protein expression (Figure 4.11C).  In untransfected 

cardiomyocytes, NCX predominantly co-localizes with α-actinin at the Z-line (Figure 

4.12D) while two populations of ankyrin-B are detected at the M- and Z-lines (Figure 

4.12A and B).  AnkB-212 knockdown dramatically reduces ankyrin-B expression in 

cardiomyocytes, but interestingly NCX maintains its striated patterning over the Z-lines 

(Figure 4.12A and D).  In contrast, the Z-line striated patterning of NCX is markedly 

reduced in cardiomyocytes following AnkB-188 knockdown (Figure 4.12C and D) 

suggesting that this isoform is important for NCX subcellular localization in 

cardiomyocytes. 
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Figure 4.12. AnkB-188 knockdown decreases NCX Z-line localization.  A, Endogenous AnkB-
212 co-localizes with the M-line marker myomesin.  AnkB-212 siRNA treatment reduces 
AnkB-212 expression at the M-line.  B, Both the M-line and Z-line populations of ankyrin-B 
are visualized in the untransfected and scramble controls.  AnkB-188 siRNA treatment 
diminishes the AnkB subpopulation at the Z-line.  C, NCX localization is diminished by AnkB-
188 siRNA.  (D) NCX expression at the Z-line (α-actinin) is not affected by either scramble or 
AnkB-212 siRNA treatment.  In contrast, AnkB-188 siRNA treatment dramatically reduces the 

expression and striated patterning of NCX. 
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4.3.8 AnkB-188 and AnkB-212 knockdown causes different arrhythmic contraction 

patterns 

Ankyrin-B haploinsufficiency results in decreased NCX membrane expression, 

altered calcium dynamics, and decreased contractions in ventricular cardiomyocytes [3, 

4, 133].  Considering the numerous cardiac arrhythmias associated with ankyrin-B 

dysfunction, we evaluated the effect of isoform-specific knockdown on cardiomyocyte 

contractile rhythms.  Both untransfected and scramble siRNA-treated cardiomyocytes 

display a pattern of uniformly timed contractions (Figure 4.13A).  In contrast, 

cardiomyocytes with knockdown of AnkB-188 display patterns of arrhythmic 

contractions.  Surprisingly, cardiomyocytes with knockdown of AnkB-212, which has no 

effect on NCX membrane expression or localization, also exhibits patterns of arrhythmic 

contractions (Figure 4.13A).  The same patterns are observed following epinephrine 

treatment (Figure 4.13B). 
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Figure 4.13. AnkB-188 and AnkB-212 knockdown precipitates different contraction 
irregularities.  A, The left panel presents representative contraction rhythms of untransfected 
and transfected cardiomyocytes.  The right panel presents the summary data.  Box-and-
whisker plots represent the difference in time between individual contractions and the 
average contraction time over a 30-second interval.  B, The left panel presents 
representative contraction rhythms in control and transfected (scramble, B188-siRNA, 
B212-siRNA) cardiomyocytes following epinephrine stimulation (1 µM).  The right panel 
presents the summary data for each condition.  Box-and-whisker plots represent the 
difference in time between individual contractions and the average contraction time over a 
30-second interval.  Sample size for unstimulated NRVM is untransfected: 6, scramble: 7, 
B188-siRNA: 7, and B212-siRNA: 5.  Sample size for NRVM stimulated with epinephrine 
is untransfected: 5, scramble: 5, B188-siRNA: 7, B212-siRNA: 5.  #p>0.05 and *p<0.05 
when compared to the untransfected control. 
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4.4  Discussion 

Normal heart function requires the proper functioning of proteins at unique 

membrane and sarcomeric domains in cardiomyocytes such as the costamere, 

intercalated disc, and T-tubules.  As an adaptor protein, ankyrin targets and maintains 

distinctive networks of membrane and signaling proteins at these domains by tethering 

them to the underlying cytoskeletal network.  The alternative splicing of an ankyrin gene 

regulates the modular nature of ankyrin isoforms such that they can serve as a common 

interface between β-spectrin and unique cohorts of proteins that define functionally 

distinct subcellular domains. 

 In earlier studies that initially described ankyrin genes, there were many 

references to alternative isoforms.  Some of these isoforms displayed tissue specific 

expression, while other isoforms demonstrated unique subcellular distribution.  For 

example, while ankyrin-G expression is relatively ubiquitous throughout tissues, a brain-

specific isoform is targeted to the neuronal axon initial segment by a ~6000 bp exon 

[137, 138].  Likewise, an alternative start site in the ankyrin-R gene gives rise to a 

truncated muscle-specific isoform with a novel transmembrane domain that sequesters it 

to the membrane of the sarcoplasmic reticulum [262, 269, 270]. 

 In the initial characterization of the ankyrin-B gene, two isoforms (440kD and 

220kD) were detected in the brain [146, 147].  The cDNA for the 220kD isoform was 

synthesized by combining seven partial, but overlapping cDNA clones that were 

identified in an expression library screen [147].  The only difference between these 

cDNAs is that a ~6000 bp exon is included in the cDNA of the brain-specific 440kD 
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isoform.  With time, it became tacitly assumed that the 220kD isoform represented the 

predominant isoform expressed in other tissues. 

 This study is the first to describe two novel ankyrin-B isoforms identified by 

long-range PCR of reverse transcribed mRNA isolated from human ventricular tissue.  

We demonstrate the expression of mRNA and protein of these isoforms in human, rat, 

and mouse hearts.  In addition, we can discriminate between the two isoforms based on 

their function and subcellular distribution in cardiomyocytes.  Specifically, over-

expression of AnkB-188 in HeLa-T7 cells increases NCX membrane expression and 

current, while siRNA-mediated knockdown of this isoform decreases NCX expression 

and subcellular localization at Z-lines in neonatal cardiomyocytes.  Using an isoform-

specific antibody, we demonstrate that expression of AnkB-212 is restricted to striated 

muscle and distinctly expressed at the M-line in cardiomyocytes.  Moreover, the M-line 

targeting of AnkB-212 is regulated by its interaction with the large scaffolding protein 

obscurin.  In contrast to AnkB-188, the preferential knockdown of AnkB-212 in neonatal 

cardiomyocytes does not alter the Z-line striated patterning of NCX.  Interestingly, 

knockdown of either isoform results in arrhythmic contractions.  The function of AnkB-

212 at the M-line and whether these isoforms share areas of functional overlap remain 

unanswered questions but are important lines of inquiry for future experiments.  The 

summary of the experiments and results is shown below (Table 4.3). 
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Table 4.3.  Summary of the experiments and findings.  The last two rows are experiments 
involving the use of isoform specific siRNA. 
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One unresolved question in the ankyrin field is what regulates ankyrin specificity 

for particular membrane proteins.  Ankyrin-B 220kD has been shown to interact with a 

diverse array of proteins including the sodium calcium exchanger (NCX), sodium 

potassium ATPase (NKA), inositol 1,4,5-triphosphate receptor (IP3R), ATP-sensitive 

inward-rectifying potassium channel subunit (Kir6.2), dystrophin, and obscurin [2, 133, 

136, 264, 265, 271-273].  Our data supports the hypothesis that alternative splicing 

tailors ankyrin proteins such that they are specific for particular membrane or 

scaffolding proteins.  We anticipate that the heart expresses additional ankyrin-B 

isoforms that have yet to be identified. 

 The expression of different function-specific ankyrin-B isoforms in heart would 

provide a fitting explanation for the diversity of arrhythmias associated with ankyrin-B 

dysfunction.  In fact, the designation of ankyrin-B syndrome has been adopted to 

incorporate the various arrhythmias associated with ankyrin-B dysfunction, which 

partially include bradycardia, idiopathic ventricular fibrillation, catecholaminergic 

polymorphic ventricular tachycardia, and atrial fibrillation [3-5, 229].  Past efforts to 

understand the molecular basis of dysfunction stemming from these mutations have been 

performed in the context of ankyrin-B 220kD.  While these studies have provided insight 

into ankyrin-B function, it is important to re-evaluate ankyrin-B syndrome in the context 

of the newly identified ankyrin-B isoforms.  For example, previous studies have 

Figure 4.14.  Summary model of the subcellular domain localizations of the two full-
length ankyrin-B isoforms.  AnkB-188 localizes to the transverse tubule with NCX.  
AnkB-212 localizes to the sarcomeric M-line by interacting with ankyrin-binding 
domains (ABD) of obscurin. 
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demonstrated that the arrhythmia-associated AnkB missense mutation E1425G decreases 

NCX membrane expression in ventricular cardiomyocytes.  Our data demonstrates that 

NCX membrane expression is regulated by AnkB-188, which lacks exon 38 and would 

not express the E1425G missense mutation.  We anticipate future experiments 

characterizing these isoforms will provide a more complete picture of ankyrin-B 

function in normal hearts and how missense mutations in different ankyrin-B isoforms 

result in various atrial, nodal, and ventricular arrhythmias. 
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CHAPTER 5: CONCLUDING CHAPTER 
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5.1 Summary of results and perspectives 

On the surface, it may appear that the heart simply beats.  In reality, it is an 

extremely dynamic organ subjected to complex signaling and metabolic regulations.  In 

establishing and maintaining a normal beat-to-beat rhythm in response to various 

stressors, the heart remodels functionally, electrically, and metabolically.  Central to all 

these changes is the immediate and prolonged intracellular signaling modifications: the 

mammalian/mechanistic target of rapamycin. 

  Like the heart, another organ subjected to such complex signaling and metabolic 

regulation is the brain.  Although the brain does not perform mechanical work, its main 

function is to communicate via excitation and conduction.  Instead of beat-to-beat 

contractions, the brain utilizes and dedicates most of its energy to the active transport of 

ions to restore membrane potentials for its unceasing activities [274].  However, when 

the normal excitation-conduction becomes dysregulated, the abnormal neuronal firings 

manifests physically as seizures.  A classic seizure disorder is the neurodevelopmental 

disease tuberous sclerosis complex where up to 95% of the patients exhibit medically 

refractory epilepsy [275, 276]. 

 A well-characterized brain-specific mouse model of TSC, the Tsc2
flox/ko

;hGFAP-

Cre [98], exhibits intractable seizures that result in death at around weaning age (median 

survival at postnatal day 23).  Additionally, many aspects of the TSC neuropathology 

were recapitulated including defects in neuronal migration, cortical lamination, 

subcortical organization, myelination, and maturation [98, 99].  Interestingly, the seizure 

disorder and the histologic pathologies observed in this mouse model were alleviated 
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with the treatment of rapamycin, an allosteric inhibitor of mTORC1 [277, 278].  

Furthermore, as long as the animal is maintained on a regular treatment with rapamycin, 

no seizure activity is observed.  This is in stark contrast to the cessation of rapamycin 

treatment where 100% of the animals have seizures that result in death.  Taken 

altogether, this suggests the high degree of mTORC1 involvement in maintaining the 

ionic homeostasis of the neurons and its role in general seizure disorders. 

 Unlike the brain where abnormal electrical activities result in seizures, the 

abnormal electrical activities in the heart - whose primary function is to beat regularly – 

is manifested as arrhythmia, or irregular contractions.  Whereas there is a readily 

available genetic model of brain-specific dysregulated mTORC1, no such model yet 

exists for the heart.  Instead, it was discovered that increased hemodynamic load by 

constricting the transverse or the descending abdominal aorta can trigger increased 

mTORC1 activity in addition to other cellular growth pathways such as the MAP-kinase 

and angiotensin pathways in the heart [16, 75, 192, 193, 279].  Prolonged exposure to 

hemodynamic stress in the animals results in abnormal electrical activities in the heart at 

baseline that appears to have slowed conduction – increased P-wave duration and PR 

interval as measured by electrocardiogram.  The labile electrical nature of the stressed 

heart is made evident when frank ventricular fibrillation can easily be induced by fast 

external pacing [75]. 

In the preceding chapters I demonstrated changes in electrical conductance in the 

heart in as early as 1-week of aortic constriction.  But the heart, being a dynamic organ, 

remodels itself continuously such that the electrical changes observed acutely are 

different from the chronically stressed heart.  As expected, overactivity of mTORC1 in 
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the stressed heart is abated by rapamycin administration that also attenuates the 

hypertrophic and fibrotic (structural), functional, and metabolic remodeling secondary to 

pressure overload [190, 192, 193]. 

Like the neurons, the heart must repolarize after every depolarization in order to 

initiate the next depolarization wave.  The time between depolarization and 

repolarization is termed Q-T interval.  Calcium removal processes are paramount during 

the repolarization period, and the two major players involved are the sarco/endoplasmic 

reticulum calcium ATPase (SERCA2a) and sodium-calcium exchanger (NCX1).  

SERCA2a is responsible for sequestering approximately 90% of the cytosolic calcium 

ions and NCX1 contributes around 7% in small animals and 70% and 25% in humans, 

respectively [280].  SERCA2a expression decreases in the stressed heart but is 

normalized with rapamycin treatment [23, 192, 219, 281].  In contrast, NCX1 expression 

is increased in the stressed heart and rapamycin does not alter its expression, surface 

localization, or transporter activity [221, 237].  Contrary to the expected, NCX1 current 

is decreased in the stressed heart despite the increased expression and surface 

localization [221].  The heart may adapt to the decreased NCX1 activity by reducing L-

type calcium current and shortening action potential to further limit calcium similar to 

the NCX knockout mouse model [282-284](.  This may in part explain our finding that 

despite the regression of structural, functional, metabolic, and most of the electrical 

changes in the hemodynamically stressed heart with mTORC1 inhibition, the Q-T 

interval remains shortened and seems unresponsive to rapamycin treatment. 

Even though NCX1 seemingly only contributes to a small percentage of the 

calcium removal process during repolarization, it has a profound impact on the 
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maintenance of a normal cardiac rhythm.  In animal models where NCX1 stability is 

affected by a loss-of-function mutation in the adaptor protein ankyrin-B, the main 

targeting and interacting partner of NCX1 in the heart, high degree of heart rate 

variability, rhythm variability, and lethal arrhythmias with adrenergic stimulation have 

been reported.  At the cellular level, calcium transients are irregular and both slow and 

fast pacing induced unsolicited action potentials [2, 4, 5, 133].  Thus, when we 

interrogate ankyrin-B expression in the stressed heart, we observe a change in ankyrin-B 

expression that could account for the decreased NCX1 current despite the increased 

NCX1 expression and secondarily lead to arrhythmias.  Similar findings are found in our 

in vitro system when we genetically activated mTORC1 by knocking down Tsc2.  This 

also marks the first study where the adaptor protein ankryin-B is shown to be regulated 

by the mTORC1 pathway. 

Although ankyrin-B expression was altered with dysregulated mTORC1 activity 

both in vivo by hemodynamic stress and in vitro by genetic ablation, it should be noted 

that ankyrin-B expression was reduced ubiquitously in the stressed heart whereas the 

mTORC1-specific activation in vitro saw a reduction in expression at the cardiac M-line 

and a dramatic upregulation at the SR/T-tubule, the subcellular domain where NCX1 

resides.  The discrepancy between the in vivo and in vitro systems brings up several 

interesting issues: 1.) what other cell signaling pathway(s) is/are able to regulate 

ankyrin-B expression, 2.) what mechanism is responsible for the degradation of ankyrin-

B at the M-line secondary to mTORC1 activity, and 3.) what specific regulatory 

mechanisms govern which ankyrin-B isoform expression. 
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Increased mTORC1 activity generally increases protein synthesis, but the 

reduction of protein expressions has also been observed.  For example, SERCA2a and α-

myosin heavy chain both have documented reduced expressions in the hemodynamically 

stressed heart that are reversible with rapamycin, but the reductions are at least in part 

associated with transcriptional changes [23, 192, 219, 281].  On the other hand, ankyrin-

B mRNA transcript level remains the same in the stressed heart suggesting that 

mTORC1-regulation of ankyrin-B (at least the M-line population) is a post-translational 

event.  It was reported recently that chronic mTORC1 activation leads to endoplasmic 

reticulum stress in the heart [190], and given the relationship between endoplasmic 

reticulum stress and mechanisms of autophagy, it is possible that ankyrin-B is degraded 

via autophagic processes [285, 286].  In addition to autophagy, it is also possible that the 

calpain system contributes to the ankyrin-B degradation [216] although the specificity 

for the M-line versus the SR/T-tubule population remains to be elucidated. 

In the preceding chapters, we present compelling evidence for the existence of 

multiple ankyrin-B isoforms and the different subcellular localizations of two full-length 

ankyrin-B isoforms – AnkB-188 and AnkB-212.  Given that AnkB-188 interacts with 

the SR/T-tubule resident protein NCX1 and that knockdown of AnkB-188 decreases 

NCX1 expression, AnkB-188 likely accounts for the changes in NCX1 function in the 

stressed heart although this is yet to be determined because of the absence of 

transcriptional changes and the lack of an AnkB-188-specific antibody.  What is more 

surprising to us is that ankyrin-B population at the M-line, of which AnkB-212 is a part 

of, is important, and perhaps even more so than AnkB-188, for maintaining regular 

cardiac rhythm.  In both the in vitro models where either Tsc2 or AnkB-212 is targeted 
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by siRNA knockdown, the expression of the ankyrin-B population at the SR/T-tubule 

either increases or remains the same.  However, both demonstrate a dramatic decrease in 

ankyrin-B expression at the cardiac M-line and significant irregular contraction patterns.  

Although AnkB-212 interacts with the M-line organizer obscurin, the molecular 

function(s) of AnkB-212 remains to be determined and represents an interesting and 

imperative direction for future investigation of the mechanisms of cardiac hypertrophic 

changes and arrhythmias.  Finally, there are many other ankyrin-B isoforms that have yet 

to be identified and characterized.  It will be interesting to see how each functions and 

contributes to maintenance of normal cardiac rhythm. 

While this thesis explores the relationship between mTORC1 signaling, ankyrins, 

and electrical properties of the heart, it brings forth another interesting area for further 

investigation: seizure disorders associated with TSC.  In the nervous system, multiple 

isoforms of all three ankyrin genes have been identified and characterized and their 

proper localization and function are critical to the formation and maintenance of 

excitable subcellular domains in neurons.  It was recently identified that seizure 

activities affects the expressions of the adaptor protein ankyrin-G at the axon initial 

segment, the site where information is integrated and the action potential is generated, 

and its interacting partner voltage-gated sodium channel (Nav 1.6) [128].  We showed 

that dysregulated mTORC1 causes electrical remodeling in the heart and that the M-line 

ankyrin-B population expression is subjected to regulation by mTORC1.  The 

Tsc2
flox/ko

;hGFAP-Cre has a pronounced dysregulated mTORC1 activity, cortical 

disorganization, and severe myelination defect in addition to a lethal tonic-clonic seizure 

phenotype.  It will be intriguing to see how the expression and localization of different 
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ankyrin proteins are affected in Tsc2
flox/ko

;hGFAP-Cre mice (Tsc2-hGFAP) which may 

potentially shed light on the mechanistic relationship between cell signaling and aberrant 

electrical activities in the central nervous system of the TSC patients. 

While there are still many questions and interesting areas of investigation, it is 

evident that mTORC1 activity is at least in part responsible for structural, functional, 

metabolic, and electrical remodeling processes in the heart and that proper ankyrin 

function and localizations are central for maintaining the normal electrical properties of 

the heart.  This thesis provides evidence that supports the idea that mTORC1 regulation 

of ankyrin-B serves as the link between the hypertrophic response and arrhythmogenesis 

in the stressed heart.  The results I present in this thesis have wide-ranging implications 

for heart diseases and central nervous system disorders, and uncovering the relationship 

between mTORC1 activity and ankyrin regulation could potentially lead to novel 

therapeutics. 

 

5.2  Future experiments 

 There remain many questions to be addressed.  First, how is the trafficking of 

AnkB-188 handled and how does NCX1 get transported to the SR/T-tubule to be 

anchored by AnkB-188?  A related question is what are the interacting partners of 

AnkB-212 such that its knockdown mediates arrhythmias?  Second, what mechanism 

directs mTORC1 downregulation/upregulation of ankyrin-B expression in the heart?  

Third, how do the expressions of different ankyrin proteins change in the Tsc2-deficient 

neurons and do different ankyrin proteins play a role in the neuropathology of TSC? 
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 The first two inquiries can be addressed by exogenously expressing GFP-tagged 

full-length AnkB-188 and RFP-tagged NCX in the neonatal rat ventricular 

cardiomyocytes starting immediately after isolation.  The timepoint is important as the 

sarcomeric structures are disturbed during the isolation procedure and will start to re-

organize right after plating.  At this time, we can perform live cell imaging on the 

transfected NRVMs to monitor trafficking of AnkB-188 and NCX to the developing 

transverse tubules.  The results of this study will differentiate whether AnkB-188 

interacts with NCX first and then is co-transported to the SR/T-tubule.  Alternatively, 

separate intracellular transport machinery may exist for both AnkB-188 and NCX1 and 

they may subsequently interact at the SR/T-tubule.  Also, rate of protein turnover must 

be balanced by the rate of protein synthesis.  Previously NCX half-life has been 

determined to be around 27.2 hours in wild type cardiomyocytes [133], so future 

experiments should determine mechanisms of transport and retention at the SR/T-tubule 

for both AnkB-188 and NCX1.  Similarly, to address the molecular transport of AnkB-

212, we will use GFP-tagged AnkB-212 and assess its transport from the Golgi network 

to the M-line where it interacts with the M-line organizer protein obscurin. 

Separately, to identify the unique interacting partners of each isoform, we will 

precipitate macromolecular complexes associated with each of the two ankyrin-B 

isoforms for  mass spectrometry analysis.  One of the most interesting and challenging 

questions from our study in Chapter 4 is identifying the mechanism(s) responsible for 

the abnormal contractions rhythms of the cardiomyocytes with decreased levels of 

AnkB-212.  We may begin addressing this question by identifying the interacting 

partners of AnkB-212. 
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 Although it has previously been demonstrated that calpain may be a mechanism 

for ankyrin-B degradation in the heart [216], given our findings with decreased ankyrin-

B expression at the M-line following induced mTORC1 activation, we cannot discount 

the fact that prolonged mTORC1 activation may induce autophagy from imbalance 

between protein synthesis and degradation [285].  To address this issue, we will 

investigate the role of autophagy in ankyrin-B regulation by inhibiting autophagy with 

bafilomycin or chloroquine in models of mTORC1 overactivity.  If inhibition of 

autophagy restores ankyrin-B expression at the M-line, it would highly suggest 

mTORC1 regulates ankyrin-B expression at the M-line by increasing autophagic flux.  

Alternatively, another key degradation pathway in the heart is the ubiquitin-proteasome 

pathway [228]. 

 Finally, virtually nothing is known regarding mTORC1-mediated regulation of 

ankyrin proteins in the central nervous system.  Fortunately, there is a well-characterized 

TSC mouse model with overactive mTORC1 [98, 99].  Preliminary experiment will 

assess expression of all three different ankyrin proteins, voltage-gated sodium and 

potassium channels (known interacting partners of ankyrin-G) in brain lysates of the 

Tsc2-hGFAP at embryonic day 15.5 (3 days after genetic mTORC1 activation), at birth, 

and at postnatal day 21 (weaning age when the mice are nearing 50% mortality).  The 

results will be compared side-by-side with the mice treated with the combined 

rapamycin protocol. 

Ankyrin proteins, especially ankyrin-G, have been shown to be important for 

establishing axo-dendritic polarity and axon initial segment (AIS) [287, 288].  Tsc2-

hGFAP mice have increased dendritic sprouting, neuronal migration and cortical 
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lamination defects.  Therefore, another experiment will assess the establishment of 

neuronal polarity from the neurite stage, dendritic arborization, axon initial segment 

(AIS), and nodes of Ranvier formations in primary cortical neurons from Tsc2-hGFAP 

mice by immunocytochemistry at different timepoints.  It will be important to note the 

clustering of the ankyrin proteins such as ankyrin-G at the AIS and nodes of Raniver and 

ankyrin-B clustering at the developing axon and at the dendrites as migration and 

cortical lamination defects may be secondary to a loss or delayed axo-dendritic 

specification. 

Lastly, since all Tsc2-hGFAP mice exhibit seizures and if mTORC1-mediated 

dysregulated ankyrin protein expression mediates abnormal action potential conductance, 

the necessary experiments are 1.) exogenously express the decreased or knockdown the 

increased ankyrin in the Tsc2-hGFAP primary neurons, 2.) re-assess the expression and 

localization of the respective interacting partners such as voltage-gated ion channels at 

the appropriate subcellular domains by immunocytochemistry, and 3.) record the 

intrinsic electrical activities in the neurons and assess the synaptic strength.  Coupling 

these findings with mTORC1 inhibition with rapamycin or torin1 (a potent in vitro 

mTOR inhibitor) will establish mTORC1-mediated ankyrin expression/localization 

changes as a mechanism for the abnormal electrical activities and neuropathologies in 

TSC. 
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A.1 Introduction 

 Increases in the rates of energy substrate metabolism are the first responders to 

hemodynamic stress in the heart (Goodwin GW, Taylor CS, Taegtmeyer H. JBC 1998).  

When subjected to a sustained increase in pressure, hearts remodel both metabolically 

and structurally.  Metabolically, hearts increase their reliance on carbohydrates for 

energy provision (Goodwin GW, Taylor CS, Taegtmeyer H. JBC 1998; Bishop S and 

Altschuld R. Am J Physiol 1970).  Structurally, hearts hypertrophy (Dorn GW II, Force 

T. JCI 2005).  In independent studies we have previously demonstrated that the 

footprints of metabolic remodeling precede structural remodeling of the heart in 

hypertension and that activation of the insulin signaling pathway downstream of Akt 

requires hexose-6-phosphate (Taegtmeyer H and Overturf ML. Hypertension 1988; 

Sharma S et. al. Cardiovasc Res 2007).  We now asked: Could the metabolic remodeling 

process also regulate signaling pathways of structural remodeling in the heart? 

Remodeling is to some extent driven by the mammalian target of rapamycin 

(mTOR), a regulator of myocardial protein synthesis that is downstream of Akt in the 

insulin signaling pathway.  mTOR kinase nucleates 2 major protein complexes – mTOR 

complex 1 (mTORC1) and mTOR complex 2 (mTORC2).  Under stressed conditions, 

mTORC1 activity in the heart is inhibited by the tuberous sclerosis complex (TSC), 

composed of hamartin (TSC1) and tuberin (TSC2).  Phosphorylation of a number of 

serine and threonine residues on TSC2 relieves TSC’s inhibition on mTORC1 (Huang J 

and Manning BD. Biochem J 2008; Inoki K et. al. Nat Cell Biol 2002).  Activated 

mTORC1 triggers protein synthesis and cardiac growth by phosphorylating p70S6 
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kinase (p70S6K) and eIF-4E binding protein 1 (4E-BP1) to promote ribosomal 

biogenesis and CAP-dependent protein translation, respectively. 

It is already known that mTORC1 plays a critical role in promoting cardiac 

growth in response to increased workload (Shioi T et. al. Circ 2003) and that mTORC1 

is activated by nutrients and growth factors (Proud CG. Eur J Biochem 2002).  Whether 

inotropic mTORC1 activation is regulated by changes in energy substrate metabolism 

that occur in response to increased workload is unknown, however.  We therefore 

investigated the functional and structural consequences of glucose-mediated mTOR 

signaling in the stressed heart and discovered that it is both deleterious and preventable.  

 

A.2 Materials and Methods 

 To determine whether enhanced glucose uptake regulates mTOR activation at 

increased workload, we first tested the hypothesis ex vivo. The hearts were obtained 

from 4 groups of animals: (1) rats pretreated with vehicle for 7 days before ex 

vivo perfusion with noncarbohydrate substrates; (2) rats pretreated with vehicle for 7 

days before ex vivo perfusion with glucose; (3) rats pretreated with mTOR inhibitor 

rapamycin for 7 days before ex vivo perfusion with NCS; (4) rats pretreated with the 

mTOR inhibitor rapamycin for 7 days before ex vivo perfusion with glucose. TABLE 

A.1 lists the perfusion protocols. Each of the experimental groups was then evaluated in 

normal workload conditions for 60 minutes or for 30 minutes at normal workload 

followed by increased workload conditions for another 30 minutes. Hearts were 

freeze‐clamped at the end of the protocol. 
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A.2.1. Rationale for animal models used and overall strategy 

The structural and functional response to increased workload has been 

extensively studied in the murine transverse aortic constriction (TAC) model (Rockman 

et. al. PNAS 1991).  How the metabolic response to increased workload regulates these 

changes has yet to be investigated. To systematically answer this question, we used 3 

models. First, we used the isolated working rat heart ex vivo to elucidate the mechanisms 

for the observed in vivo phenomena. The isolated working rat heart permitted a dynamic 

minute‐by‐minute assessment of metabolism and function and allowed for assessment of 

intracellular metabolites and activation of relevant signaling pathways at the end of the 

perfusion. The ex vivo isolated working heart model was also chosen because it gave us 

complete control over workload, substrate concentration, and hormone supply. Second, 

we optimized in vivo 2‐deoxy, 2[18F]fluorodeoxy‐glucose positron emission tomography 

(FDG‐PET) and magnetic resonance imaging (MRI) to simultaneously image changes in 

metabolism, function, and structure in mice subjected to TAC for up to 4 weeks. In this 

model we established that metabolic remodeling (enhanced glucose uptake) and 

contractile dysfunction precede structural remodeling (growth and dilation of the left 

ventricle). In addition, a set of mice underwent in vivo aortic banding for molecular and 

metabolite analyses.  Third, we analyzed left ventricular tissue from failing human heart 

muscle before and after mechanical unloading with a left ventricular assist device to 

correlate our findings to the failing human heart. 
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A.2.2. Experimental groups 

The experimental groups and conditions are listed in TABLE A.1.  The animals 

received standard laboratory chow and water ad libitum.  A subset of rats received either 

rapamycin (4 mg/kg per day) or vehicle control (propylene glycol) by oral gavage for 7 

days before experimentation.  A second subset received either metformin (250 or 500 

mg/kg per day) or vehicle control (saline) intraperitoneally for 7 days before 

experimentation.  On day 7, animals were anesthetized with chloral hydrate (300 mg/kg) 

and anticoagulated with heparin (200 U) immediately before their hearts were isolated 

and perfused in the working mode as described previously (Taegtmeyer, Hems, Krebs. 

Biochem J 1980).  A third subset of untreated rats hearts were isolated and perfused with 

metformin (10, 5, 1 mmol/L) added directly to the perfusion buffer. 

 

A.2.3. Isolated working rat heart perfusions 

To assess rates of myocardial glucose metabolism in response to increased 

workload, male Sprague‐Dawley rats (387±11 g) were obtained from Harlan 

Laboratories (Indianapolis, IN) and housed in the Animal Care Center of the University 

of Texas Medical School at Houston under controlled conditions (23±1°C; 12‐hour 

light/12‐hour dark cycle). 

Briefly, hearts were perfused as working hearts (Taegtmeyer, Hems, Krebs. 

Biochem J 1980) in the presence or absence of glucose (5 mmol/L) plus 0.05 µCi/L 

[2‐3H]‐glucose to measure rates of glucose uptake and 20 µCi/L [U‐14C]‐glucose to 

measure rates of glucose oxidation.  In the absence of glucose, sodium propionate (2 
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mmol/L) plus lithium acetoacetate (5 mmol/L) were used as a noncarbohydrate substrate 

(NCS) control.  Together these substrates fuel the Krebs cycle without generating any 

upstream metabolites (Russell, Mommessin, Taegtmeyer. Am J Physiol 1995) and 

sustain cardiac work in the absence of glucose and in the presence of nonmetabolizable 

glucose analogues (Doenst, Taegtmeyer. J Nucl Med 2000).  Hearts perfused with NCS 

were first perfused substrate‐free for 15 minutes to deplete endogenous glycogen stores 

(Goodwin, Taegtmeyer JBC 1998).  Under steady‐state conditions, hearts were perfused 

at a normal (physiological) workload (afterload set to 100 cm H2O) for 60 minutes 

(protocol A). Hearts subjected to a high workload were perfused for 30 minutes at 

normal workload followed by 30 minutes of perfusion at increased workload (afterload 

raised to 140 cm H2O plus 1 µmol/L epinephrine bitartrate added to the perfusate; 

protocol B). Left atrial pressure was 15 cm H2O in each perfusion protocol. At 60 

minutes the beating hearts were freeze‐clamped with aluminum tongs cooled in liquid 

nitrogen. A portion of frozen heart tissue was weighed and dried to constant weight. The 

remainder was stored at −80°C for further analyses. 

 

A.2.4 Cardiac power, oxygen consumption, metabolic rates, metabolite 

concentrations 

In ex vivo isolated working hearts, coronary and aortic flows were recorded every 

5 minutes, and aortic pressures were recorded continuously with a 3F Millar pressure 

transducer (Millar Instruments, Houston, TX) in sidearm to the aortic cannula linked to a 

physiologic recorder (Gould Model 2400S, Gould Instruments, Cleveland, OH).  Cardiac 
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power (in milliwatts) was calculated as the product of cardiac output (coronary plus 

aortic flow, m3/s) and mean aortic pressure (in pascals). 

Myocardial oxygen consumption and rates of glucose uptake and oxidation were 

determined as previously described (Goodwin, Taegtmeyer. JBC 1998; Katz, Dunn. 

Biochemistry 1967).  ATP, ADP, and AMP levels were quantified in freeze‐clamped 

hearts as described previously (Taegtmeyer. JMCC 1985).  Glucose 6‐phosphate levels 

were measured by spectrophotometric enzymatic analysis using glucose 6‐phosphate 

dehydrogenase coupled to NADPH production with extinction at 340 nm (Bergmeyer 

HU. Methods of Enzymatic Analysis 1974).  

 

A.2.5. PET and MRI imaging 

Male C57BL/6 mice (8 to 9 weeks of age) obtained from Charles River 

Laboratories (Raleigh, NC) were subjected to sham operation or transverse aortic 

constriction to induce pressure‐overload hypertrophy by methods previously described 

(Liao, Takashima. Circ Res 2003).  All mice were housed in a 12‐hour light/12‐hour 

dark cycle and given standard laboratory chow and water ad libitum.  Prior to imaging, 

animals were fasted overnight with access to water.  All experiments were performed in 

compliance with the Guide for the Care and Use of Laboratory Animals, published by 

the National Institutes of Health, and were conducted under protocols approved by the 

Animal Care and Use Committee at the University of Virginia. 

Left ventricular pressure measurements were performed using a Mikro‐tip 

Catheter Transducer (Model SPR‐671, size 1.4F; Millar Instruments Inc, Houston, TX) 
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connected to Millar and PowerLab hardware and ADI Software (AD Instruments Inc, 

Colorado Springs, CO).  Animals were anesthetized with 3% isoflurane and maintained 

at 1% to 2% while the catheter was placed in the right carotid artery under 

stereomagnification and advanced through the aorta so that the tip was positioned in the 

left ventricle.  Heart rate and cardiac pressure were continuously monitored throughout. 

Body temperature was maintained at 37°C with a warming blanket. 

FDG‐PET and MRI were sequentially performed in anesthetized animals. PET 

imaging was performed in a Focus 120 micro PET scanner (Siemens Molecular Imaging 

Inc, Knoxville, TN) to assess changes in metabolism. The protocol was initiated by 

injecting 150 to 200 µL of 18.5‐37 MBq FDG solution intravenously over a period of 1 

minute. Myocardial glucose uptake was assessed using FDG (IBA Molecular, Sterling, 

VA) at baseline, 1 day, 2 weeks, and 4 weeks after surgery. The net FDG influx constant, 

Ki (mL/min per gram), was measured over a period of 4 weeks (Locke, Berr, Kundu. 

Mol Imaging Biol 2011).  Determination of Ki is considered a robust index of glucose 

transport and phosphorylation (Nguyen, Mossberg, Taegtmeyer. Am J Physiol 

1990).  Therefore, our present work focused on determination of Ki with partial volume 

and attenuation corrections in vivo. Throughout the procedure, heart rate, respiration, 

and body temperature were recorded with a physiological recorder (model 1025L; SA 

Instruments, Inc, Stony Brook, NY), and the ECG was monitored (Blue Sensor, Ambu 

Inc, Glen Burnie, MD). All the signals were sent to a single SA Instruments software 

interface, which was configured to trigger data acquisition based on the ECG. The SAI 

1025L was also used to maintain the animal's core body temperature at 37°C. 
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Mice were also imaged using a 7T Bruker‐Siemens Clinscan MRI system for 

structural and functional analyses of the heart. After once again being anesthetized, each 

mouse was placed prone inside the radiofrequency coil, and the ECG leads were 

connected to an ECG monitoring module (SA Instruments, Inc, Stony Brook, NY). An 

ECG‐triggered 2‐dimensional cine gradient echo pulse sequence was used (Berr, Roy, 

French. Magn Reson Med 2005), with a slice thickness of 1 mm and a zero‐filled, 

in‐plane resolution of 100×100 µm2. During each session, the entire left ventricle (LV) 

was imaged with 6 to 7 contiguous short‐axis slices.  The MR images were analyzed 

using the ARGUS software package (Siemens Medical Systems, Erlangen, Germany) for 

left ventricular end‐systolic volume, left ventricular end‐diastolic volume, and left 

ventricular ejection fraction was computed from the traced borders.  Epicardial contours 

were also traced at the end‐diastolic and end‐systolic phases to compute LV mass 

(Vinnakota, Bassingthwaighte. Am J Physiol Heart Circ Physiol 2004).  This was 

divided by the body weight to obtain the heart weight to body weight (HW/BW) ratios. 

 

A.2.6. Transgenic mice overexpressing cardiac‐‐‐‐specific isoform of SERCA2a 

Transgenic mice overexpressing rat SERCA2a (TG) in heart were produced as 

described before (He, Giordano, Dillmann. JCI 1997).  Ascending aortic constriction 

was performed in both TG and age‐matched wild‐type mice to induce pressure‐overload 

left ventricular hypertrophy (Pinz, Tian, Ingwall. JBC 2011).  Mice were studied 8 

weeks after surgery.  Cardiac function was assessed by M‐mode echocardiography.  
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Subsequently, hearts were freeze‐clamped and stored at the temperature of liquid 

N2 before extraction at a later time. Sham‐operated mice were used as controls. 

 

A.2.7. Tissues from failing human hearts 

Cardiac tissue samples were obtained from 11 nondiabetic patients with idiopathic 

dilated cardiomyopathy (10 were male) referred to the Texas Heart Institute for heart 

transplantation and placed on left ventricular assist device (LVAD) support for a mean 

duration of 254±63 days. Tissue from the left ventricular apex was obtained during 

LVAD implantation and again during LVAD explantation (each patient went on to 

transplantation). Tissue samples were immediately frozen in liquid nitrogen and stored at 

−80°C for metabolic and molecular analyses at a later time. TABLE A.2 provides 

further detail on the patients assessed in this study.  The protocol was approved by the 

Committee for the Protection of Human Subjects of St. Luke's Episcopal Hospital in 

Houston, Texas, and of the University of Texas Medical School at Houston. 
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A.2.8. Western Blot Analyses 

Protein was extracted from frozen heart tissue after homogenization (Polytron, 

Brinkman Instruments), and Western blot analyses were performed as previously 

described (Razeghi, Sharma, Taegtmeyer. Circ 2003).  Antibodies for PI3K, Akt 1/2, 

TSC2, mTOR, RAPTOR, p70S6K1, 4EBP1, AMP kinase (AMPK), acetyl CoA 

carboxylase (ACC), phospho‐PI3K p85 (Tyr458), phospho‐Akt1/2 (Ser473), 

phospho‐TSC2 (Ser939), phospho‐TSC2 (Ser1387), phospho‐mTOR (Ser2448), 

phospho‐p70S6K (Thr389), phospho‐4EBP1 (Thr70), phospho‐AMPKinase (Thr172), 

phospho‐ACC (Ser79), and phospho‐RAPTOR (Ser792) were obtained from Cell 

Signaling (Beverly, MA).  GAPDH was used to normalize for protein loading (Research 

Diagnostics, Flanders, NJ). Densitometry was performed with ImageJ program provided 

by the NIH. For clarity, densitometry values (mean±SEM) are presented for all blots 

collectively following the figures. 

A.2.9. RNA Extraction and qRTPCR 

Gender 
Ethnicity 
Mean age 
Mean LVEDD before 
LVAD 
Mean LVEDD after LVAD 
Mean EF before LVAD 
   

10 males, 1 female 
  
5 Caucasian, 5 African-American, 1 Hispanic  
48±4 years (range, 19-67) 
75.33±4.40 mm 
55.67+±3.22 mm 

21±3% 

Table A.2.  Clinical Data: Samples from Failing Human Hearts.  LVEDD, left ventricular 
end-diastolic dimension; LVAD, left-ventricular assist device; EF, ejection fraction 
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For transcriptional analysis, total RNA was extracted with TRI Reagent 

(Molecular Research Center, Cincinnati, OH) and treated for genomic DNA 

contamination with DNA‐free (Applied Biosystems/Ambion, Austin, TX).  RNA 

concentration was measured with a NanoDrop 1000 Spectrophotometer (Thermo 

Scientific, Wilmington DE).  Absolute quantification of transcripts was based on known 

amounts of synthetic DNA standard (Integrated DNA Technologies, Coralville, IA). 

 

 

A.3 Results 

A.3.1. mTORC1 Activation and Impaired Cardiac Power With Increased 

Workload 

Irrespective of the substrate present in the perfusate, increased workload alone 

induced phosphorylation of PI3K, and Akt at both Thr308 and Ser473 (Figure A.1A).  

However, strong phosphorylation of TSC2, mTOR, p70S6K, and 4EBP1 was observed 

only in the presence of glucose at high workload.  Rapamycin pretreatment of the rats 

for 1 week inhibited phosphorylation of Akt at both Thr308 and Ser473, TSC2, 

mTORC1, p70S6K, and 4EBP1.  mTORC1 signaling was not activated in hearts 

perfused either at normal workload with glucose or at increased workload in the absence 

of glucose. 

To determine the functional consequence of mTORC1 activation, we measured 

cardiac power in hearts from vehicle‐treated and rapamycin‐treated rats perfused with 
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glucose or non-carbohydrate substrate (NCS) (Figure 1B).  At normal workload, there 

was no significant difference in mean cardiac power between the experimental groups.  

When subjected to increased workload, all perfused hearts demonstrated an increase in 

cardiac power relative to their normal workload values.  However, in the 

vehicle‐pretreated group, hearts perfused with glucose as the only substrate did not 

increase their cardiac power to the same extent as the other 2 groups.  Because this 

differential effect of glucose on cardiac power was mitigated by pretreatment with 

rapamycin, the difference is most likely mTORC1 dependent. 
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Figure A.1.  At high workload, glucose activates mTORC1 and impairs cardiac power 
in perfused rat hearts. Pretreatment of animals with rapamycin inhibits mTORC1 and 
rescues contractile function. A, Representative Western blots of the mTORC1 signaling 

pathway in hearts freeze‐clamped at the end of perfusion. High workload resulted in 
phosphorylation of PI3K and Akt in all hearts.  However, phosphorylation of TSC2, 
mTOR, and p70S6K at high workload occurred only in the presence of glucose. 
Pretreating rats for 7 days with rapamycin (4 mg/kg per day) before perfusion of the 
heart resulted in decreased phosphorylation of Akt, TSC2, mTOR, and its downstream 
targets. B, At normal workload there was no difference in cardiac power among the 3 
groups. At high workload the presence of the glucose substrate decreased cardiac power 

in hearts from vehicle‐treated rats. Pretreatment of rats with rapamycin for 7 days 

rescued cardiac performance in glucose‐perfused hearts. Data shown are mean±SEM; 
n=5 to 7 for each group. *p<0.05 (Mann–Whitney rank sum test) for hearts from 

vehicle‐treated rats perfused with glucose in comparison with hearts from vehicle‐treated 
rats perfused with NCS and those from rats pretreated with rapamycin and perfused with 
glucose at high workload. mTOR indicates mammalian target of rapamycin; TSC2, 
tuberin; NCS, noncarbohydrate substrate. 

 

 

 

 

 

* * * 
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A.3.2. Oxygen Utilization and Mitochondrial Efficiency Were Not Affected By 

Increased Workload or Rapamycin Treatment 

To evaluate whether the differences in cardiac power were the result of changes 

in efficiency, we also measured oxygen consumption in groups at comparable workloads.  

There was no difference in oxygen consumption (Figure A.2A) or efficiency (Figure 

A.2B) between groups at comparable workloads. 

 

 

 

 

Figure A.2.  Pretreatment 
with rapamycin has no effect 
on cardiac efficiency in rat 
hearts perfused with glucose 
at high workload. A, 
Myocardial oxygen 
consumption (MVO2) at low 
and high workloads did not 
differ in hearts perfused with 
noncarbohydrate substrate 
(NCS) and in hearts from rats 
pretreated with vehicle or with 
rapamycin and perfused with 
glucose. B, Cardiac efficiency, 
as calculated by dividing 
cardiac power by MVO2, was 
also unchanged. The dot plots 
show individual 
measurements for each heart 
at 2 different workloads. 
Comparison within each 
group and between groups 
showed no significant 
difference (p>0.05). 
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We also measured UCP3.  Both mRNA (Figure A.3A) and protein (Figure A.3B) 

levels of UCP3 were unchanged with rapamycin treatment or increased workload, 

suggesting that mitochondrial efficiency was also unchanged with rapamycin 

pretreatment (2 to 3 repeated measures for each animal). We also noted that under all 

experimental conditions the adenine nucleotide levels (ATP, ADP, and AMP) did not 

differ significantly despite differences in mTORC1 activity and contractile function 

(data not presented).  This is in keeping with our earlier observation that the levels of 

ATP, ADP, and AMP as well as total adenine nucleotides do not change with increased 

workload of the perfused heart (Taegtmeyer. JMCC 1985).  
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Figure A.3.  Uncoupling protein 3 (UCP3) mRNA and protein levels are not associated 

with G6P‐mediated mammalian target of rapamycin (mTOR) activation. A, Transcript 
analysis of UCP3 gene expression in isolated working rat hearts. The dot plots show 
median values for n=2 to 3 rat hearts with 2 to 3 repeats per animal. P>0.05 for all 
comparisons based on Friedman test on repeated measurements of all hearts in each 
group compared with hearts perfused with noncarbohydrate substrate (NCS) at a normal 
workload. Neither workload nor glucose in the perfusate nor pretreatment of mice with 
rapamycin changed UCP3 mRNA expression at the end of perfusion. B, Compared with 
hearts perfused with NCS at a normal workload, neither workload, glucose, nor 
rapamycin pretreatment changed UCP3 protein levels 

 

 

A.3.3.  Glucose 6‐‐‐‐Phosphate (G6P) and mTOR Activation 

To elucidate possible mechanisms of glucose‐mediated mTORC1 activation, 

rates of glucose uptake and oxidation were simultaneously quantitated in ex vivo hearts.  
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At normal workload, rates of glucose uptake (4.2±0.7 µmol/min per gram dry 

weight) matched rates of glucose oxidation (3.9±0.7 µmol/min per gram dry weight).  

However, when the workload was increased, rates of glucose uptake (11.5±0.8 µmol/min 

per gram dry weight) exceeded rates of glucose oxidation (9.5±0.6 µmol/min per gram 

dry weight) by >10%.  Rapamcyin pretreatment reduced rates of glucose uptake and 

rates of glucose, correcting the mismatch between glucose uptake and oxidation (Figure 

A.4A).  Lactate production, an indirect measure of glycolytic activity, was unchanged in 

both groups (data not shown). 

Because mTORC1 activation was associated with a suggested mismatch between 

glucose uptake and oxidation, we investigated whether the accumulation of glucose or 

one of its metabolites was associated with mTORC1 activation.  G6P levels were 4‐fold 

higher on average in hearts subjected to an acute increase in workload (4.8±1.0 nmol/mg 

protein) compared with hearts perfused at normal workload (1.3±0.2 nmol/mg protein). 

Rapamycin pretreatment severely reduced the tissue content of G6P (0.36±0.1 nmol/mg 

protein) in hearts perfused with glucose at increased workload (Figure A.4B).  In 

contrast, levels of other glycolytic intermediates were unchanged at high workload (data 

not shown). 

To assess whether hexose‐6‐phosphate accumulation leads to load‐induced 

mTORC1 activation, we next perfused 2 groups of hearts with either of the 2 glucose 

analogues: 3‐O‐methylglucose (which is transported in and out of the cardiomyocyte, 

but not metabolized), or 2‐deoxyglucose (which is taken up by the cardiomyocyte, 

phosphorylated, and trapped as a G6P analogue and not further degraded) (Doenst and 

Taegtmeyer. J Nucl Med 2000).  2‐Deoxyglucose, but not 3‐O‐methylglucose, increased 
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phosphorylation of TSC2, mTOR, and its downstream targets in hearts perfused at high 

workload (Figure A.4C). mTOR and its downstream targets were not phosphorylated in 

hearts perfused with either glucose analogue at normal workload. These experiments 

provided strong evidence that hexose phosphate levels are associated with mTORC1 

activation in hearts subjected to increased workload. 

 

 

To assess whether hexose 6-phosphate accumulates and activates mTORC1 in a 

physiologic setting, we perfused hearts with a “physiological” mix of substrates (a 

combination of glucose, NCS, and the long‐chain fatty acid oleate) at both normal and 

high workloads to mimic more closely the metabolic milieu of hearts in vivo.  Indeed, 

In
 r

es
p
o
n
se

 t
o
 h

ig
h
 w

o
rk

lo
ad

, 
ra

te
s 

o
f 

g
lu

co
se

 u
p
ta

k
e 

ex
ce

ed
 r

at
es

 o
f 

g
lu

co
se

 o
x
id

at
io

n
, 

h
ex

o
se

 6
‐p

h
o
sp

h
at

e 
ac

cu
m

u
la

te
s,

 

an
d
 m

T
O

R
 i

s 
ac

ti
v
at

ed
. 

A
, 

R
at

es
 o

f 
g
lu

co
se

 u
p
ta

k
e 

ex
ce

ed
ed

 r
at

es
 o

f 
g
lu

co
se

 o
x
id

at
io

n
 i

n
 h

ea
rt

s 
fr

o
m

 r
at

s 
p
re

tr
ea

te
d
 w

it
h

 e
it

h
er

 v
eh

ic
le

 

o
r 

ra
p
am

y
ci

n
 a

n
d
 p

er
fu

se
d
 a

t 
n
o
rm

al
 a

n
d
 h

ig
h
 w

o
rk

lo
ad

s.
 P

re
tr

ea
ti

n
g
 r

at
s 

w
it

h
 r

ap
am

y
ci

n
 s

ig
n
if

ic
an

tl
y
 r

ed
u

ce
d
 r

at
es

 o
f 

b
o
th

 g
lu

co
se

 

o
x
id

at
io

n
 (

ri
g
h
t)

. 
D

at
a 

sh
o
w

n
 a

re
 m

ea
n
±

S
E

M
; 

n
=

5
 t

o
 6

 p
er

 g
ro

u
p
. 

*
p
=

0
.0

7
 w

it
h
 M

an
n
–
W

h
it

n
ey

 r
an

k
 s

u
m

 t
es

t.
 B

, 
G

lu
co

se
 

p
h
o
sp

h
at

e 
(G

6
P

) 
le

v
el

s 
in

 f
re

ez
e‐

cl
am

p
ed

 h
ea

rt
s.

 S
u
b
je

ct
in

g
 h

ea
rt

s 
to

 h
ig

h
 w

o
rk

lo
ad

 e
x 

vi
vo

 i
n
d
u
ce

d
 a

 4
‐f

o
ld

 i
n
cr

ea
se

 i
n
 a

v
er

ag
e 

G
6

P
 

ls
, 

w
h
ic

h
 w

as
 n

o
t 

o
b

se
rv

ed
 w

h
en

 r
at

s 
w

er
e 

p
re

tr
ea

te
d

 w
it

h
 r

ap
am

y
ci

n
. 

D
o
t 

p
lo

ts
 s

h
o
w

 G
6
P

 l
ev

el
s 

fo
r 

ea
ch

 h
ea

rt
. 

K
ru

sk
al

–
W

al
li

s 
te

st
 

=
0
.0

1
2
. 

C
, 

T
o

 t
es

t 
th

e 
h
y
p
o
th

es
is

 t
h
at

 h
ex

o
se
‐6
‐p

h
o
sp

h
at

e 
(a

n
d

 n
o
 o

th
er

 g
lu

co
se

 m
et

ab
o
li

te
) 

ac
ti

v
at

es
 m

T
O

R
, 

w
e 

al
so

 

p
er

fu
se

d
 h

ea
rt

s 
w

it
h
 N

C
S

 p
lu

s 
2
‐d

eo
x
y
g
lu

co
se

 o
r 

3
‐O
‐m

et
h
y
lg

lu
co

se
. 

 R
ep

re
se

n
ta

ti
v
e 

W
es

te
rn

 b
lo

ts
 o

f 
A

k
t,

 T
S

C
2
, 

m
T

O
R

 a
n
d
 p

7
0
S

6
K

 

p
h
o
sp

h
o
ry

la
ti

o
n
 f

ro
m

 h
ea

rt
s 

p
er

fu
se

d
 w

it
h
 g

lu
co

se
 (

5
 m

m
o
l/

L
) 

o
r 

N
C

S
 p

lu
s 

th
e 

g
lu

co
se

 a
n
al

o
g
u

es
 2
‐d

eo
x
y
g
lu

co
se

 (
2
D

G
; 

5
 m

m
o
l/

L
),

 o
r 

m
et

h
y
lg

lu
co

se
 (

3
O

M
G

; 
5

 m
m

o
l/

L
) 

at
 e

it
h
er

 n
o
rm

al
 o

r 
h
ig

h
 w

o
rk

lo
ad

 a
re

 s
h
o

w
n
. 

G
lu

co
se

 o
r 

2
D

G
, 

b
u
t 

n
o
t 

3
O

M
G

, 
in

cr
ea

se
d

 

p
h
o
sp

h
o
ry

la
ti

o
n
 o

f 
T

S
C

2
, 

m
T

O
R

, 
an

d
 p

7
0
S

6
K

 a
t 

h
ig

h
 w

o
rk

lo
ad

. 
m

T
O

R
 i

n
d
ic

at
es

 m
am

m
al

ia
n
 t

ar
g
et

 o
f 

ra
p
am

y
ci

n
; 

T
S

C
2
, 

tu
b
er

in
; 

N
C

S
, 

o
n
ca

rb
o
h
y
d
ra

te
 s

u
b
st

ra
te

 



195 

 

although not quite statistically significant, hearts perfused with this “physiological” mix 

of substrate at high workload displayed a 2.5‐fold increase on average in G6P levels 

(Figure A.5A) and increased phosphorylation of both downstream targets of mTORC1, 

p70S6K and 4EBP1 (Figure A.5B) compared with hearts perfused with NCS.  

Phosphorylation of the mTORC1 targets are similar between hearts perfused with 

physiologic substrates and glucose alone. 

 

Figure A.5.  In the presence of mixed substrates (glucose, NCS, and oleate), G6P levels 
are increased and mTORC1 signaling is activated at high workload. A, G6P accumulates 
in hearts perfused with glucose, oleate, and NCS.  Dot plot shows G6P levels for each 
heart at the end of perfusion at low or high workload; p=0.083 using Mann–Whitney test. 
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B, Representative Western blots showing phosphorylation of mTORC1 targets p70S6K 
and 4EBP1 in ex vivo working rat. Both glucose and mixed substrates in the perfusate 
increased p70S6K and 4EBP1 phosphorylation. NCS indicates noncarbohydrate 

substrate; mTOR, mammalian target of rapamycin; G6P, glucose 6‐phosphate. 

 

A.3.4.  G6P‐‐‐‐Dependent mTOR Activation and AMPK Downregulation 

Next we investigated the effect of enzyme 5′‐AMP activated protein kinase 

(AMPK), an enzyme with a dual role in signaling and metabolic regulation.  AMPK is 

upstream of TSC2 and mTORC1 and regulates fuel supply and substrate metabolism in 

the heart.  When phosphorylated at Thr172, AMPK phosphorylates and inhibits 

acetyl‐CoA carboxylase (ACC), which is also used as a marker of AMPK activation. 

AMPK also phosphorylates TSC2 (Ser1387) and RAPTOR (Ser792) to inhibit mTORC1. 

Neither increased workload nor glucose alone was associated with a change in AMPK 

phosphorylation (Figure 6A). However, perfusion at increased workload with glucose 

resulted in downregulation of phospho‐AMPK (Thr172), phospho‐ACC (Ser79), and 

phospho‐TSC2 (Ser1387).  Pretreating animals with rapamycin prevented the 

downregulation of AMPK, ACC, and TSC2 phosphorylation with increased workload 

and glucose as the only substrate. RAPTOR (Ser792) phosphorylation was unchanged 

with workload or rapamycin treatment (Figure A.6A). 

To determine the functional consequences of AMPK activation, hearts from rats 

pretreated with metformin (500 mg/kg per day for 7 days IP) to pharmacologically 

activate AMPK underwent ex vivo working heart perfusions. Metformin restored cardiac 

power by 26% in hearts perfused with glucose substrate at increased workload (Figure 

A.6B); 2 time points were statistically significant (denoted by asterisks in the figure).  
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To examine whether changes in glucose metabolism secondary to AMPK activation 

were associated with the restoration of cardiac power, rates of glucose uptake and 

oxidation were quantitated.  Systemic metformin pretreatment did not change rates of 

glucose uptake (11.7±1.1 µmol/min per gram dry weight) in perfused hearts subjected to 

high workload, but it improved rates of glucose oxidation (11.0±0.7 µmol/min per gram 

dry weight) (Figure A.6C) and blunted G6P accumulation (2.1±0.1 nmol/mg protein) 

compared with vehicle‐pretreated animals (Figure A.6D).  To further determine whether 

AMPK mediates glucose‐dependent mTORC1 activation, animals were treated with the 

AMPK activator metformin for 7 days (500 or 250 mg/kg per day IP) before perfusion 

with glucose at high workload.  Systemic treatment with metformin prevented AMPK 

downregulation and inhibited mTOR activation in hearts perfused with glucose at high 

workload (Figure A.6E).  Metformin treatment had no effect on mTOR phosphorylation 

or on cardiac power in hearts perfused at physiologic workload (data not shown).  To 

circumvent systemic or off‐target effects of metformin, we also perfused hearts of 

untreated animals with buffer containing metformin.  The perfusion of hearts with buffer 

containing metformin demonstrated that metformin prevented AMPK downregulation 

and inhibited mTORC1 activation in a dose‐dependent manner (Figure A.6E). 
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Figure A.6.  G6P‐dependent mTOR activation is associated with downregulation of 
AMPK. A, Representative Western blots demonstrate reduction in phosphorylation of 
AMPK (T172) and ACC (S79), its downstream target, in hearts perfused with glucose at 
high workload. B, Contractile performance in the working heart perfused with glucose in 
the presence and absence of metformin. Data shown are mean±SEM; n=5 to 7 for each 
group. Metformin improves cardiac power at high workload. *P<0.05, #p=0.08, using 
Mann–Whitney rank sum test. C, Rates of glucose uptake and oxidation by hearts from 
animals receiving vehicle or metformin pretreatment for 7 days (vehicle treated, 
metformin treated). Data shown are mean±SEM; n=5 to 6 per group. Metformin 
treatment did not change rates of glucose uptake and oxidation at normal workload. At 
high workload, pretreating animals with metformin corrected the mismatch between 
rates of glucose uptake and oxidation. ‡p=0.021 using Mann–Whitney rank sum test. D, 
G6P levels in hearts from rats receiving either vehicle or metformin for 7 days before 
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perfusion of their hearts with glucose as the only substrate. Dot plots of G6P show 
individual measurements for each heart at normal and high workloads. G6P 
accumulation was reduced in stressed hearts perfused with glucose in hearts of animals 
pretreated with metformin. Kruskal–Wallis test yielded an overall p=0.012. E, 
Representative Western blots demonstrating increased AMPK phosphorylation and 
decreased p70S6K as well as 4EBP1 phosphorylation in hearts from animals pretreated 
for 7 days with metformin (500 or 250 mg/kg) and perfused with glucose at high 
workload or in hearts from untreated animals perfused with glucose plus metformin at 
high workload. The concentrations of metformin in the perfusate were (a) 10 mmol/L, (b) 
7.5 mmol/L, or (c) 5 mmol/L.  mTOR indicates mammalian target of rapamycin; AMPK, 

AMP kinase; ACC, acetyl‐CoA carboxylase; G6P, glucose 6‐phophate; MF, metformin. 

 

 

A.3.5.  Metabolic, Structural, and Signaling Remodeling in Response to Increased 

Workload In Vivo 

We wondered whether the findings observed ex vivo correlate with hearts 

subjected to pressure overload in vivo. In mice subjected to aortic constrictions (TAC), 

transverse end‐diastolic mid‐ventricular positron emission tomography (PET) images 

indicated an increase in 2‐deoxy,2‐fluoro‐d‐glucose (FDG) uptake beginning 1 day after 

transverse aortic constriction (TAC), which increased further and was sustained over 4 

weeks (Figure A.7A).  Sham‐operated animals showed no change in FDG uptake over 

the same period.  Quantitatively, a 5‐fold increase in the rate of myocardial FDG uptake, 

Ki (mL/min per gram), a specific measurement of metabolic remodeling, was observed 1 

day after TAC using a 3‐compartment model (Figure A.7B).  The rate of FDG uptake 

continued to increase (1.5‐ to 3.2‐fold) over time from 1 day to 4 weeks.  Calculated 

Ki at baseline (0.11±0.03) agreed well with the measured Ki (0.14±0.06) obtained from 

arterial blood samples used for input function estimation.  No significant difference in 

Ki values was observed over 4 weeks in shams.  In addition, we assessed G6P levels in 
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these hearts 1 day and 2 weeks after TAC to corroborate the metabolic remodeling 

observed with PET imaging.  We observed a slight increase in G6P levels 1 day after 

TAC, and the increase was more pronounced 2 weeks after TAC (Figure A.7C).  To 

determine the association between the increased G6P levels and mTORC1 activation in 

vivo, we assessed G6P levels and mTORC1 signaling 1 day and 2 weeks after TAC. 

Representative Western blots demonstrated an apparent increase in p70S6K and 4EBP1 

phosphorylation at both time points (Figure A.7D). 

 

Figure A.7.  Metabolic remodeling and mTOR activation precede structural remodeling 
in hearts subjected to high workload in vivo. A, Representative serial transverse, 

end‐diastolic PET slices for TAC and sham‐operated mice 1 day, 2 weeks, and 4 weeks 
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after surgery. One day after TAC, there was an increase in FDG uptake that increased 
further over 4 weeks. B, Quantification of the rate of cardiac FDG uptake (Ki) of PET 

images from all TAC (n=8) and sham‐operated (n=5) mice. Data shown are mean±SEM. 

Ki in TAC mice demonstrated a 5‐fold increase in FDG uptake on day 1 and a 1.5‐ to 

3.2‐fold increase from day 1 to 4 weeks. Sham‐operated mice showed no significant 
change in FDG uptake over 4 weeks. Comparisons at different times within TAC group: 
day 1 vs baseline (BSL), #p<0.05; 2 weeks vs BSL or day 1, **p<0.05; 4 weeks vs BSL, 
day 1, or 2 weeks, *P<0.001. Comparisons between TAC and sham groups at the same 
points, ^p<0.05. C, Tissue G6P levels in hearts after TAC or sham operation at baseline 
and after 1 day and 2 weeks. Dot plots of G6P levels for each group; n=6 for TAC and 

n=5 for sham. G6P levels were 2.3‐ and 4.6‐fold higher compared with sham‐operated 
animals 1 day and 2 weeks after TAC, respectively. Kruskal–Wallis test yielded 
overall p=0.0356. D, Representative Western blots demonstrated an increase in p70S6K 
and 4EBP1 phosphorylation 1 day and 2 weeks after TAC. mTOR indicates mammalian 
target of rapamycin; PET, positron emission tomography; TAC, transverse aortic 

constriction; FDG, 2‐deoxy, 2[18F]fluorodeoxy‐glucose. 

 

A.3.6.  Structural and Functional Remodeling in Response to Increased Workload 

In Vivo 

Although significant change in metabolic remodeling was observed starting 1 

day after TAC, there was no appreciable change at this early time in the heart weight to 

body weight ratio (HW/BW; Figure 8A).  On day 1 there was a small increase in wall 

thickness.  However, the increase in left ventricular pressure was accompanied by a 

much greater increase in the rate of glucose uptake (Figure 7A) and a decrease in the 

ejection fraction (Figure 8E).  Thus, profound changes in cardiac metabolism were 

accompanied by functional changes (decreased ejection fraction), whereas the structural 

changes were small in the acute period.  TABLE A.3 summarizes additional metabolic, 

functional, and structural parameters measured 1 day after TAC. 
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TABLE A.3.  Comparison of baseline and day 1 values for different parameters among 
TAC mice.  P-values were obtained using the Wilcoxon signed rank test.  Change (%) 
indicates average change from baseline to day 1 in each of the measured corresponding 
parameters; “n” indicates number of animals used in each of the measured corresponding 
parameters; TAC, transverse aortic constriction; HW/BW, heart weight to body weight 
ratio; LV, left ventricle. 

To see whether functional and structural changes accompany metabolic and cell 

signaling changes after TAC, end-diastolic wall thickness, end‐diastolic volume (EDV), 

end‐systolic volume (ESV), and ejection fraction (EF) were followed for a period up to 4 

weeks.   2 and 4 weeks after TAC, the HW/BW had increased by 1.4‐ and 1.7‐fold, 

respectively (Figure A.8A).  Similarly, end‐diastolic wall thickness increased 

significantly (Figure A.8B).  Increases in the ESV (Figure A.8C) and EDV (Figure A.8D) 

and significant decreases in the EF (Figure A.8E) followed the metabolic changes seen 1 

day after TAC.  Both the ESV and EDV (Figure A.8C and D) progressively increased 2 

and 4 weeks after TAC.  Subsequently, the EF continued to decrease 1.4‐ and 1.6‐fold 2 

and 4 weeks after TAC, respectively.  No significant changes in HW/BW, wall thickness, 

EDV, ESV, or EF were observed in sham‐operated animals over 4 weeks. 
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Taken together, the in vivo imaging experiments support the hypothesis that 

metabolic, signaling, and functional changes precede or accompany structural changes in 

pressure overload‐induced left ventricular hypertrophy (LVH). 
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Figure A.8.  In vivo structural and functional changes accompany metabolic changes in response to 
pressure overload. Data shown are mean±SEM; n=8 for TAC and n=5 for shams. A, Ratio of heart 
weight (HW) measured using MRI and body weight (BW). HW/BW ratio remained unchanged 1 day 

after TAC, but increased by 1.4‐ and 1.7‐fold between day 1 and 4 weeks, respectively. HW/BW showed 

no significant change over 4 weeks in sham‐operated mice. B, End‐diastolic wall thickness measured in 

vivo using MRI. Wall thickness was unchanged 1 day after TAC, but increased about 1.4‐fold between 

day 1 and 4 weeks. Wall thickness showed no significant change over 4 weeks in sham‐operated mice. 

End‐systolic volume (ESV; C), end‐diastolic volume (EDV; D), and resultant ejection fraction (EF; E) 
assessed in vivo using MRI imaging. An increase in ESV and decline in EF occurred 1 day after TAC. 

Sham‐operated mice exhibited no significant change in EDV, ESV, and EF over 4 weeks. Comparisons 
at different times in the TAC group: day 1 vs baseline (BSL), #P<0.05; 2 weeks vs BSL or day 1, 
**P<0.05; 4 weeks vs BSL or day 1, *P<0.01; BSL vs day 1, 2 weeks, and 4 weeks, †P<0.05. 

Comparisons between TAC and sham groups at the same points, ^P<0.05. Two‐way repeated‐measures 

ANOVA analyzed, and Holm‐Sidak post hoc test performed to obtain individual significance factors. 
TAC indicates transverse aortic constriction. 
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A.3.7.  Failing Human Hearts Before and After Unloading With a Left Ventricular 

Assist Device (LVAD) 

Finally, we assessed whether the findings in rodent heart had any relevance in the 

failing human hearts of patients with nonischemic idiopathic dilated cardiomyopathy 

receiving a left ventricular assist device to unload the heart as bridge to transplant. 

Changes in energy substrate metabolism have been observed in failing human hearts 

(Razeghi, Taegtmeyer. Circ 2001; Razeghi, Taegtmeyer. Cardiology 2002). We noted 

that G6P levels dramatically decreased after mechanical unloading (Figure A.9A), and to 

investigate whether changes in cardiac glucose metabolism accompanied changes in 

mTORC1 activation in the human hearts, we assessed the downstream targets of 

mTORC1 activity by the phosphorylation status of p70S6K and 4EBP1.  

Phosphorylation of p70S6K and 4EBP1 (Figure A.9B) decreased after mechanical 

unloading with an LVAD, suggesting that tight coupling of glucose uptake and oxidation 

with mechanical unloading led to decreased mTORC1 activity. 
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Figure A.9.  Mechanical unloading of failing human hearts results in reduced G6P 
accumulation and reduced mTORC1 activation.  A, Tissue G6P levels for individual 
patients with idiopathic dilated cardiomyopathy before and after mechanical unloading; 
n=11 paired samples, p<0.05 using paired t test.  B, Representative Western blots of 
p70S6K and 4EBP1 before and after mechanical unloading. Each “implant” refers to 
time of LVAD implantation and “explant” refers to removal of post-LVAD heart at the 
time of transplantation.  Each adjacent “implant” and “explant” constitute 1 patient's 

heart—4 total patients.  G6P indicates glucose 6‐phosphate. 
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A.4 Disucssion 

We set out to test the hypothesis that a metabolic signal links hemodynamic 

stress with activation of the mTOR pathway.  Our main findings are summarized in 

Figure A.10 and include the following points.  (1) Doubling the workload of rat hearts 

perfused ex vivo with glucose as the only substrate increases rates of myocardial glucose 

uptake beyond the hearts' oxidative capacity, resulting in G6P accumulation, which 

mediates load‐induced mTOR activation.  (2) Load‐induced mTOR activation impairs 

cardiac power and induces ER stress response in a glucose‐dependent manner. 

Administration of rapamycin or metformin in vivo rescues cardiac power.  (3) Correcting 

the mistmatch between glucose uptake and oxidation in the stressed heart prevents G6P 

accumulation and rescues contractile function in hearts subjected to pressure overload.  

(4) In hearts subjected to increased workload, metabolic remodeling precedes structural 

remodeling of the heart and accompanies load-induced contractile dysfunction.  (5) In 

the failing human heart, mechanical unloading decreases levels of G6P and reduces 

mTORC1 activation. 

 

 

 



 

 These findings deserve consideration in a broader context. Although the normal 

heart preferentially oxidizes fatty acids, the increased energy requirements of hearts 

subjected to high workload are met by the oxidation of carbohydrates

Taylor CS, Taegtmeyer H. JBC 1998).

Figure A.10.  Proposed mechanism by which G6P accumulation regulates load
mTORC1 activation.  The intersections of the metabolic pathway of glucose 
phosphorylation with the molecular signaling pathways addressed in the study are shown. We 
propose that rapamycin (mTORC1 inhibitor), metformin (AMPK activator
(mechanical unloading) protect the heart from metabolic stress at high 

glucose‐6‐phosphate; mTORC1, mammalian target of rapamycin
kinase; LVAD, left ventricular assist device; HK, hexokinase; TSC, or tuberous sclerosis 
complex, is composed of TSC1 (hamartin) and TSC2 (tuberin)
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These findings deserve consideration in a broader context. Although the normal 

heart preferentially oxidizes fatty acids, the increased energy requirements of hearts 

subjected to high workload are met by the oxidation of carbohydrates (Goodwin GW, 

Taylor CS, Taegtmeyer H. JBC 1998).  The classic explanation for this phenomenon is 

Proposed mechanism by which G6P accumulation regulates load‐induced 
The intersections of the metabolic pathway of glucose transport and 

phosphorylation with the molecular signaling pathways addressed in the study are shown. We 
C1 inhibitor), metformin (AMPK activator),  or LVAD 

(mechanical unloading) protect the heart from metabolic stress at high workload.  G6P indicates 

, mammalian target of rapamycin complex 1; AMPK, AMP 
kinase; LVAD, left ventricular assist device; HK, hexokinase; TSC, or tuberous sclerosis 
complex, is composed of TSC1 (hamartin) and TSC2 (tuberin). 

These findings deserve consideration in a broader context. Although the normal 

heart preferentially oxidizes fatty acids, the increased energy requirements of hearts 

(Goodwin GW, 

The classic explanation for this phenomenon is 

induced 
transport and 

phosphorylation with the molecular signaling pathways addressed in the study are shown. We 
),  or LVAD 

G6P indicates 

; AMPK, AMP 
kinase; LVAD, left ventricular assist device; HK, hexokinase; TSC, or tuberous sclerosis 
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based on the hypothesis that the heart oxidizes the most efficient substrate for a given 

environment (Taegtmeyer H, Hems R, Krebs HA. Biochem J 1980).  Aside from merely 

providing energy for cell function, however, glucose metabolites also regulate gene 

expressions in the liver, pancreatic β‐cells (Girard J, Ferre P, Foufelle F. Annu Rev Nutr 

1997; Schuit FC et. al. Diabetes 2001), and heart (Young ME et. al. Gene Regul Syst Bio 

2007).  More recently, we have suggested that the glucose metabolite G6P mediates 

activation of the transcription factor carbohydrate responsive binding protein (ChrebP) 

(Li MV et. al. Biochem Biophys Res Commun 2010) and that G6P activates 

insulin‐dependent mTOR signaling in the unstressed heart (Sharma S. et. al. Cardiovasc 

Res 2007).  We now provide evidence in 3 models (mouse, rat, and human heart) to 

suggest that load‐induced mTOR activation and the ensuing ER stress are mediated by 

G6P, as well. 

Until now, no study has addressed whether cardiac substrate metabolism can 

regulate “load‐induced” hypertrophy via the mTOR signaling pathway (Shioi T et. al. 

Circ 2003; McMullen JR et. al. Circ 2004; Zhang D et. al. JCI 2010).  Our findings in 

the working heart ex vivo demonstrate that acute increases in workload require glucose 

metabolism to activate mTOR, suggesting that “load‐induced” hypertrophic signaling 

through mTORC1 is substrate specific.  More to the point, we propose that mTORC1 is 

activated by the metabolic signal G6P, which accumulates at increased workload when 

rates of glucose uptake exceed the heart's oxidative capacity for glucose.  The G6P 

hypothesis is confirmed by the glucose analogue 2‐deoxyglucose, which is 

phosphorylated to 2‐deoxyglucose 6‐phosphate and not metabolized further, resulting in 

strong activation of mTOR (Figure A.4C). In contrast, the glucose analogue 
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3‐O‐methylglucose, which is transported into the cell and not phosphorylated, exhibited 

no effect on mTOR activation (Figure A.4C).  We consider this evidence compelling and 

in support of our hypothesis. 

The metabolic findings require a discussion of mTOR activation by a metabolic 

signal. In the unstimulated state, mTORC1 is inhibited by the heterodimer tuberous 

sclerosis complex (TSC), composed of hamartin (TSC1) and tuberin (TSC2). 

Differential phosphorylation states of TSC2 are necessary to dissociate the complex to 

release its inhibition on mTORC1. We dissected the load‐ and substrate dependence of 

mTORC1 signaling in the heart and determined that increased workload alone triggers 

PI3K, Akt, and minimal Akt‐dependent phosphorylation of TSC2 at Ser939, regardless 

of glucose.  However, complete load‐induced mTORC1 activation requires 

downregulation of AMPK‐dependent phosphorylation of TSC2 at Ser1387, which 

occurs with G6P accumulation. Indeed, AMPK activation with metformin, both in vivo 

and ex vivo, prevents G6P‐mediated mTOR activation at increased workload. In skeletal 

muscle, high levels of glucose activate mTOR in an AMPK‐dependent manner by 

modulating the redox state (Saha AK et. al. Diabetes 2010).  In heart, the redox state 

does not change with workload (Taegtmeyer H. JMCC 1985).  However, like in skeletal 

muscle, AMPK downregulation by glucose in the heart occurs independently of the 

energy state, which is consistent with previous work both ex vivo (Taegtmeyer H. JMCC 

1985) and in vivo (Balaban RS, Kontor HL, Katz LA, Briggs RW. Science 1986).  In the 

genetically modified ACSL1−/− mouse, in which cardiac glucose metabolism is 

upregulated (like a heart subjected to increased workload), mTOR activation correlates 

with G6P accumulation and AMPK downregulation independent of change in the 
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AMP/ATP ratio (Ellis JM et. al. Mol Cell Biol 2011).  Taken together, our study reveals 

that load‐induced mTOR activation is mediated by changes in glucose metabolism. 

Excessive glucose uptake by the heart has been associated with contractile 

dysfunction and deemed glucotoxic by increasing flux through the hexosamine 

biosynthetic pathway, dysregulating protein glycosylation, and producing reactive 

oxygen species (Modesti A et. al. Diabetes 2005; Ren J and Davidoff AJ. Am J Physiol 

1997).  Genetically modified mice that take up excess glucose but also demonstrate 

enhanced glycolytic flux are, however, protected from glucotoxicity (Taegtmeyer H, 

McNulty P, and Young ME. Circ 2002; Liao R et. al. Circ 2002).  We now propose that 

intermediary glucose metabolite (G6P) accumulation itself may impose metabolic stress 

on the heart and contribute to contractile dysfunction by activating mTORC1. 

Rapamycin pretreatment also rescues G6P‐mediated ER stress and cardiac 

dysfunction at increased workload.  Rapamycin binds and disrupts the mTOR complexes.  

We now discover that its indirect metabolic effects may mediate via its inhibition of 

mTOR complexes.  Prolonged rapamycin treatment inhibits mTORC2 assembly, which 

prevents phosphorylation of Akt (Sarboassov DD et. al. Mol Cell 2006), a known 

regulator of glucose uptake in the heart (Gong LN et. al. Mol Endocrinol 

1997).  Therefore, not surprisingly, we observed that rapamycin administration blunts 

Akt phosphorylation and rates of glucose uptake at increased workload. In doing so, 

rapamycin prevents the mismatch between glucose uptake and oxidation, depletes 

intracardiac G6P, and inhibits mTOR complexes. 
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Despite lowering rates of myocardial glucose uptake and oxidation to “unstressed” 

levels, rapamycin treatment also improves cardiac power (Figures A.1 and A.4).  From 

an energetic perspective, this suggests that the increased energy requirements of hearts 

subjected to high workload, which are met by the oxidation of carbohydrates, may 

largely be responsible for fueling protein turnover and protein quality control (“internal 

work”). Protein turnover utilizes roughly 15% to 20% of a cell's energy in the resting 

state (Waterlow JC. Q J Exp Physiol 1984) and at least 3 times more energy during times 

of growth (Laurent GJ and Millward DJ. Fed Proc 1980; Lane N and Martin W. Nature 

2010).  It is, therefore, tempting to speculate that the energy conserved by rapamycin's 

inhibition of protein synthesis and the resulting ER stress improves cardiac efficiency 

and contributes to its ability to reverse load‐induced cardiac dysfunction (Shioi T et. al. 

Circ 2003; McMullen JR et. al. Circ 2004; Martin TM et. al. JCI 2011).  Furthermore, 

the improvement in cardiac power observed in rapamycin‐treated rats gives credence to 

the hypothesis that the hypertrophic process may not be necessary to maintain systolic 

function in hearts subjected to increased workload (Hill JA et. al. Circ 2000).  Our 

results offer a new perspective on the energy cost of protein synthesis and protein quality 

control. 

Metformin is known to improve cardiac function in murine models of heart 

failure (Yin M et. al. Am J Physiol Heart Circ Physiol 2011; Gundewar S et. al. Circ Res 

2009).  When administered systemically, metformin also improves the oxidative 

capacity of the heart, blunts G6P accumulation, and improves cardiac function. 

Therefore, we propose that, like rapamycin, metformin metabolically protects hearts 
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subjected to increased workload and, in doing so, may account for improving survival in 

diabetic patients with heart failure (Aguilar D et. al. Circ Heart Fail 2011). 

We now report that in hearts from a cohort of 11 nondiabetic patients with 

idiopathic dilated cardiomyopathy and heart failure, mechanical unloading with an 

LVAD reduces intracardiac G6P levels and decreases mTORC1 activation.  We 

observed a significant decrease in G6P accumulation after LVAD support.  We have 

previously observed decreased myocardial glycogen content in failing human hearts 

after mechanical unloading (Razeghi P and Taegtmeyer H. Cardiovasc Res 2004), and 

more recently, proteomic analysis has revealed upregulation of proteins involved in 

glycolysis, energy, and oxidative metabolism in LVAD‐supported patients (de Weger 

RA et. al. J Heart Lung Transplant 2011).  Taken together, these studies support our 

findings and suggest that mechanical unloading promotes recoupling of glucose uptake 

and oxidation, and prevents intermediary metabolite accumulation. However, we wish to 

emphasize that we relied on metabolic and/or pharmacologic interventions in our 

experimental work. The results are therefore largely descriptive, and off‐target effects 

cannot be discounted. 

Finally, previous studies performed in rat models of progressive hypertrophy 

used the tracer FDG analogue and semiquantitative measurements of myocardial FDG 

standardized uptake value with partial volume corrections (Handa N et. al. Ann Nucl 

Med 2007).  We have shown quantitatively in vivo that enhanced glucose uptake in the 

heart accompanies load‐induced contractile dysfunction before an increase in left 

ventricular mass. When increased, workload was sustained for up to 4 weeks, and 

increased wall thickness and HW/BW ratio directly correlated with increased FDG 
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retention, suggesting that metabolic remodeling precedes and sustains structural 

remodeling of the heart. 

In summary, we have provided evidence in support of the concept that metabolic 

remodeling precedes, triggers, and sustains structural remodeling of the heart. 

Specifically, we propose that dysregulated glucose metabolism and subsequent G6P 

accumulation mediate load‐induced mTOR activation and contractile dysfunction.  Our 

study highlights the general notion that intermediary metabolism is a rich source of 

signals for cardiac growth and demonstrates the potential to reduce internal work and 

improve cardiac efficiency by targeting the metabolic axis in load‐induced heart disease. 
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