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EX VIVO EXPANDED CORD BLOOD NATURAL KILLER CELLS AS A NOVEL 

THERAPEUTIC FOR MULTIPLE MYELOMA 

 
Nina Shah, MD 

 
Advisory Professor: Scott Kopetz, MD, PhD 

 

Multiple myeloma (MM) is the second most common hematologic malignancy in 

adults and, to date, is incurable. Allogeneic natural killer (NK) cells are active in 

various hematologic malignancies and may have a role against MM. Umbilical cord 

blood is a potential source for allogeneic NK cells and ex vivo expanded umbilical 

cord blood-derived NK (CB-NK) cells demonstrate activity comparable to that of 

peripheral blood-derived NK cells.  However, large-scale expansion of these cells is 

required for clinical translation.  Here we studied a potential method for ex vivo 

expansion of NK cells from fresh and cryopreserved CB.  Using artificial antigen 

presenting cells (aAPCs), interleukin-2 (IL-2) and a gas permeable culture system 

we were able to expand CB-NK cells 1848-fold (fresh CB) and 2389-fold 

(cryopreserved CB).  The resultant cells were >95% pure for NK cells and 

demonstrated an activated, unexhausted phenotype.  Expanded CB-NK cells 

demonstrated formation of functional immune synapses with target MM cells and 

dose-dependent cytotoxicity against various MM cell lines.  Finally, infusion of CB-

NK cells to a murine MM model resulted in slower progression of disease and 

improved survival.  Thus CB-NK cells can be expanded to clinically meaningful 

doses for cellular therapy and may be an important immunotherapy tool to treat MM.   
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Chapter 1 

INTRODUCTION 

 

Multiple myeloma.   

Multiple myeloma (MM) is a hematologic malignancy characterized by the 

clonal proliferation of plasma cells.  It is the second most common adult hematologic 

malignancy and, to date is considered incurable.  This disease is typically one of 

older individuals, with median age at diagnosis of 69 years [1], a pertinent statistic as 

a growing percentage of the population falls in this age category.  Indeed 

approximately 24,000 new cases of MM were expected in 2014.[2]  In addition to its 

chronic nature, MM also causes significant morbidity, including anemia, renal 

insufficiency, hypercalcemia, immune suppression and multiple bone fractures.   

 

The landscape of MM has changed dramatically over the past 10 years, with 

numerous novel and effective agents, including immunomodulatory agents 

(thalidomide, lenalidomide, pomalidomide) and proteasome inhibitors (bortezomib, 

carfilzomib).  These agents are usually given in an induction phase; thereafter 

eligible patients are consolidated with high dose chemotherapy and autologous 

hematopoietic stem cell transplantation (HSCT).  Though the survival of MM pts has 

improved significantly because of these interventions[3], the 5-year survival is still 

only 46.6%.[1] 
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Multiple myeloma and the immune system. 

MM is a disease characterized by immune dysregulation and exhaustion, 

whereby proliferation of malignant plasma cells is not checked by the native immune 

system.[4]  In attempting to overcome this barrier, allogeneic (HSCT) has been 

studied for its graft versus myeloma (GVM) effect.  Long term remissions of MM 

have been achieved with allogeneic HSCT, suggesting an immunological graft 

versus myeloma GVM effect.[5]  However, treatment-related toxicity and graft versus 

host disease (GVHD) from donor alloreactive T cells limit the use of this modality.  

Natural killer (NK) cells are thus ideal candidates for this type of adoptive cellular 

therapy, as they exert anti-tumor effects without causing GVHD.[6]   

 

NK cell alloreactivity.  

NK cells are cytotoxic, non T/B-lymphocytes which are CD56+/CD3- [7].  NK 

cells destroy cells lacking major histocompatibility complex (MHC)-class I molecules 

[8].  Normal cells are protected from NK cytotoxicity by interaction of inhibitory self-

killer immunoglobulin receptors (KIRs) with self-MHC class I molecules.  NK cells 

are thus well suited to kill tumor cells, which often down-regulate MHC class I to 

evade immune surveillance.[9]   

 

Mismatch between the donor KIR and recipient MHC class I molecules is a 

proposed mechanism for NK-mediated allo-reactivity.  Normally, KIR proteins 

interact only with specific (class I) human leukocyte antigen (HLA)-B and C 

molecules [7].  In an allogeneic HSCT with donor-recipient mismatch in the alleles of 
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HLA-B or C, the target tumor cells of the recipient lack the appropriate HLA alleles, 

thereby disinhibiting KIR signaling and promoting NK cell cytotoxicity.  Alloreactive 

NK cell-mediated cytotoxicity in hematologic malignancies has been demonstrated in 

vitro and in murine models [10] [11].  Additionally, in patients with hematologic 

malignancies treated with allogeneic HSCT, NK cell alloreactivity appears to 

correlated with decreased relapse rate and protection against GVHD.[6] [12] 

 

NK cells and multiple myeloma.  

NK cells have demonstrated anti-MM activity in vitro and in vivo.[13, 14]  

Unfortunately, autologous PB-NK cells from MM patients appear to be 

hypofunctional, with a decrease in activating receptors[15] and increase in PD-1.[16]  

In addition, the variety of treatments for MM, including steroids and alkylating 

therapies can alter the predictability of obtaining sufficient numbers of activated NK 

cells.  Thus allogeneic NK cells may be more a more optimal choice for this adoptive 

cellular immunotherapy.  Several clinical trials of peripheral blood (PB)-derived 

allogeneic NK cell therapy have been performed.  To date, these cells appear safe 

and, in the leukemia literature, potentially clinically active.[17, 18]   

 

Umbilical cord blood as a source of NK cells. 

 While much of the work on NK cell adoptive therapy has been done with cells 

from peripheral blood, we have been interested in developing umbilical cord blood 

(CB) as a source of NK cells.  CB has the benefit of being previously cryopreserved 

with HLA typing already performed.  This allows for an “off-the-shelf” cellular therapy 
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that does not require manipulation of a live donor (as would be required in the case 

of PB).   

 

 CB is a well-established valuable source of hematopoietic stem cells.  

Multicenter clinical trials with CB HSCT for hematologic malignancies have shown 

efficacy comparable to that of unrelated or HLA-mismatched HSCT.[19-22]  The 

lower rates of acute GVHD in some of these trials is attributed to the lower dose of 

T-cells in CB and proportionately more naïve T-cells compared with bone marrow 

(BM).  Required matching for UCB at only 4/6 of the HLA-A, B and DR antigens 

allows more flexibility in graft selection than BM.   

 

CB is also a promising source of NK cells; however, the quiescent state and 

limited baseline NK cell content (2 x 108 cells/ UCB unit) requires ex vivo activation 

and expansion before clinical use.  Our laboratory has been able to demonstrate 

that, after culture with IL-2, CB-NK cells exhibit an activated phenotype comparable 

to that of PB-NK cells.[23]  These CB-NK cells also demonstrate in vivo activity in a 

murine model of acute myelogenous leukemia.    

 

Thus we have been interested in further developing this potential 

immunotherapy for eventual clinical translation, particularly in MM.  To do this we 

would have to optimize a simple but powerful ex vivo expansion process for CB-NK 

cells that would eventually allow for Good Manufacturing Practice (GMP)-compliant 
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generation.  In addition, the resultant NK cells would have to demonstrate anti-MM 

activity.   

 

Summary. 

 In this study we utilized recently developed artificial antigen presenting cells 

(aAPCs)[24], IL-2 and a gas permeable flask culture system to grow NK cells from 

both fresh and frozen CB units.  We compared this novel expansion procedure to the 

standard expansion of CB-NK cells from fresh CB, using IL-2 alone.  We further 

examined these expanded NK cells to determine their phenotype, activation state 

and activity against MM.  This is the first step in developing a novel cellular therapy 

for MM, with a goal of clinical translation in the near future.   
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Chapter 2 

MATERIALS AND METHODS[25] 

 

This chapter is based on original work done by the student and published as: Shah 

N, Martin-Antonio B, Yang H, Ku S, Lee DA, Cooper LJ, Decker WK, Li S, Robinson 

SN, Sekine T, Parmar S, Gribben J, Wang M, Rezvani K, Yvon E, Najjar A, Burks J, 

Kaur I, Champlin RE, Bollard CM, Shpall EJ.  “Antigen presenting cell-mediated 

expansion of human umbilical cord blood yields log-scale expansion of natural killer 

cells with anti-myeloma activity.” PLoS One. 2013 Oct 18;8(10):e76781. doi: 

10.1371/journal.pone.0076781. eCollection 2013. PLoS One does not require 

permission for reuse/ reprint of content provided the original article is cited.   

 

Ethics Statement. 

All research involving human materials was approved by the MD Anderson 

(MDACC) Institutional Review Board (IRB).  Cord blood units were obtained from 

healthy donors who gave written informed consent.  All animal work was performed 

under an MDACC Institutional Animal Care and Use Committee (IACUC)-approved 

protocol specific to this study. 

 

Cells and cell lines. 

K562-based aAPCs expressing membrane bound IL-21 “Clone 9.mbIL21” 

were generously provided by Dr. Laurence Cooper (MDACC, Houston TX).  Clone 

9.mbIL21 cells express membrane-bound IL-21, 41BB ligand, CD64 (FcγRI) and 
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CD86.  This cell line has recently been shown to promote PB-NK cell expansion 

[24].and is GMP-grade for clinical use.  Targets for NK cell functional assays 

consisted of K562 cells (American Type Culture Collection  (ATCC), Rockville, MD) 

and MM cell lines RPMI 8226 (ATCC), ARP-1 (Multiple Myeloma Research Center, 

Little Rock AK), and U266 (ATCC).  Autologous, unselected CB cells (from the same 

CB unit as the NK cells) were used as a negative control for 51chromium (Cr) 

experiments.   

 

Generation of eGFP-FFLuc-expressing ARP-1 cell line for in vivo experiments. 

The generation of retrovirus vectors encoding green fluorescent protein 

(eGFP)-Firefly Luciferase (eGFP-FFLuc) and production of transient retroviral 

supernatant have been previously described [26, 27].  Briefly, the fusion protein 

eGFP-FFLuc was cloned into an SFG retroviral vector and retroviral supernatant 

was produced using 293-T cells co-transfected with the following retroviral vectors: 

eGFP-FFLuc SFG plasmid, the Peg-Pam-e plasmid containing the sequence for the 

MoMLV gag-pol and the RDF plasmid encoding for the RD114 envelope. Retroviral 

supernatant was collected at 48 and 72 hours after transfection and stored at -80oC 

for further use. For the generation of eGFP-FFLuc-expressing ARP-1 tumor cells, 

50,000 cells were plated in presence of retroviral supernatant encoding eGFP-FFLuc 

in one well of a 24-well plate pre-coated with recombinant fibronectin fragment (CH-

296; Takara Shuzo, Otsu, Japan). Transduced ARP-1 cells were expanded and 

eGFP expression evaluated by fluorescence-activated cell sorter (FACSCalibur; 

Becton-Dickinson (BD), San Jose, CA) analysis, whereas expression of FFLuc was 
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detected using D-luciferin (Promega, Madison, WI) and bioluminescence measured 

with a luminometer (Modulus; Turner BioSystems, Sunnyvale, CA). Because of the 

absence of selection gene in the eGFP-FFLuc retroviral construct, single cell cloning 

of the ARP-1-transduced cells was performed to isolate and expand an ARP-1 clone 

(clone # 24) with high level of eGFP and FFLuc expression. As ARP-1 expresses 

both CD138 and kappa light chain [28, 29], Clone 24 was further validated by flow 

cytometry analysis for CD138 and Kappa light chain expression and enzyme-linked 

immunosorbent assay (ELISA) for kappa light chain secretion. 

 

Isolation and expansion of umbilical cord blood-derived NK cells. 

CB units were obtained from healthy donors who gave informed consent 

under MDACC IRB-approved protocols. Culture media was comprised of 45% 

RPMI-1640 (Cellgro, Manassas, VA) and 45% Click’s media (Irvine Scientific, Santa 

Ana, CA) supplemented with 10% AB human serum (Atlanta Biologicals, 

Lawrenceville, GA) and 100 IU/mL  IL-2 (Proleukin; Chiron, Emeryville, CA).    

 

CB mononuclear cells (MNCs) were isolated from fresh or frozen CB units by 

ficoll density gradient centrifugation.  Twenty million MNCs were plated in 400 mL 

media in a GP500 gas permeable bioreactor (Wilson Wolf Corporation, New 

Brighton, MN) with irradiated (100 Gy) aAPC feeder cells (2:1 feeder cell:MNC ratio) 

at 37º C.  IL-2 was replenished every 2-3 days.  On day 7, cultured cells were CD3-

depleted via immunomagnetic depletion according to manufacturer’s instructions 

(Miltenyi Biotech, Auburn, CA).  Remaining cells were then re-plated in the same 
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conditions, re-stimulated with aAPC feeder cells and cultured for an additional 7 

days (Figure 1).  Flow cytometric analysis was performed on Days 0, 7 and 14 

during the expansion.  NK cell number was determined by multiplying the live total 

nucleated cell count by the percentage of CD56+/CD3- cells.  Differences in cell 

growth were calculated using a 2-tailed student’s t-test (Microsoft Excel 2010, 

Redmond, WA).   

 

 

 

 

 

 

 

 

 

 

 

Original expansion techniques. 

For comparison, CB-NK cells were also expanded by a method already 

known to be successful in our laboratory [30].  Fresh CB MNCs were isolated as 

above and then subjected to CD56+ immunomagnetic selection.  These cells were 

then suspended at 1x106 cells/mL culture media with IL-2 at 500 IU/mL.  The cells 

were cultured for 14 days at 37º C; IL-2 was replenished every 2-3 days.   

Figure 1.  Culture of CB-NK cells.  Unselected CB MNCs were cultured for 7 days in a GP500 
bioreactor with IL-2 (100 IU/mL) and aAPCs at 2:1 aAPC:MNC ratio.  Cells were immunomagnetically 
CD3-depleted on Day 7 and re-cultured in same conditions for an additional 7 days.  On day 7 cells 
were again CD3-depleted and subject to phenotypic and functional studies.  This figure is taken from 
original work done by the student and published as: Shah N, Martin-Antonio B, Yang H, Ku S, Lee DA, 
Cooper LJ, Decker WK, Li S, Robinson SN, Sekine T, Parmar S, Gribben J, Wang M, Rezvani K, Yvon 
E, Najjar A, Burks J, Kaur I, Champlin RE, Bollard CM, Shpall EJ.  “Antigen presenting cell-mediated 
expansion of human umbilical cord blood yields log-scale expansion of natural killer cells with anti-
myeloma activity.” PLoS One. 2013 Oct 18;8(10):e76781. doi: 10.1371/journal.pone.0076781. 
eCollection 2013. PLoS One does not require permission for reuse/ reprint of content provided the 
original article is cited.   
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NK cell phenotyping via flow cytometry. 

The following antibodies were used: FITC-conjugated CD45, CD158a, 

CD158b, CD94; PE-conjugated CD16, CD56, NKp30, NKp46, NKp44, NKG2C; 

PerCP-conjugated CD3;  APC-conjugated CD56, NKG2A; Alexa Fluor 647- 

conjugated Eomesodermin (Eomes), T-bet  (BD Biosciences); FITC-conjugated 

CD158e1 (BioLegend, San Diego, CA); aAPC-conjugated NKG2A  (Beckman 

Coulter, Brea, CA).  Intracellular staining for Eomes and T-bet was performed per 

manufacturer’s guidelines (BD Cytofix/ Cytoperm, BD Biosciences).  Data were 

acquired by the BD FACSCalibur device using BD CellQuest-Pro software.  Flow 

cytometry analysis was performed using CellQuest and FlowJo (Tree Star, Ashland, 

OR) software.    Differences in mean fluorescence intensity (MFI) were calculated 

using a two-sided paired t-test (Microsoft Excel 2010). 

 

Immunofluorescence and confocal microscopy image acquisition. 

Immunofluorescent labeling was performed as previously described [31].  

Target cells were labeled with CellTracker Blue CMAC (7-amino-4-

chloromethylcoumarin, Molecular Probes, Eugene, OR).  NK cell-target cell 

conjugates were formed by suspending equal volumes and cell numbers of NK 

effector cells and target cells (5×106/mL) in culture media for 15 min at 37°C. Cells 

were then transferred onto microscope slides using a cell concentrator (Cytofuge 2, 

IRIS International, and Chatsworth, CA), fixed with 3% methanol-free formaldehyde 

and then permeabilized. NK effector cell F-actin was stained with rhodamine-
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phalloidin (Molecular Probes, Invitrogen, Carlsbad, CA).  Images were acquired 

using an Olympus IX81 microscope (Center Valley, PA).   

 

NK cell 51Cr cytotoxicity assay. 

Serial dilutions of NK cells were co-incubated in triplicate for 4 hours with 

5000 51Cr-labeled target cells (Amersham Pharmacia Biotech, Piscataway, NJ), in a 

total volume of 100 µl in a V-bottom 96-well plate (Corning, Corning, NY).   

Thereafter, supernatants (50 µl) were harvested and transferred to a Luma-Plate-96 

(Perkin-Elmer, Waltham, MA).  After drying overnight, 51Cr release was measured on 

a TOPCount NXT microplate scintillation and luminescence counter (Perkin-Elmer). 

Cytotoxicity was determined by the formula: cytotoxicity = (sample value-

spontaneous lysis) / (max-lysis-spontaneous lysis) x 100%.   

 

ARP-1 myeloma murine model 

NOD/SCID IL-2Rγnull (NSG) mice (Jackson Laboratories, Bar Harbor, ME) 

were irradiated with 300 cGy and inoculated with 1x 06 eGFP-FFLuc -transduced 

ARP-1 cells (Clone 24) intravenously on day -1.  Where indicated, 10x106 ex vivo, 

fresh, aAPC-expanded CB NK cells were given retro-orbitally on days 0, 12 and 19 

with IL-2 (2000 IU intrapertioneally (IP) three times per week).  Mice were subjected 

to twice weekly bioluminescence imaging (BLI) and weekly serum kappa light chain 

measurements.  Prior to image acquisition mice were anesthetized with 2% 

isoflurane in 98% oxygen.  BLI was performed using a Xenogen IVIS 200 system 

(Caliper, Waltham, MA) 10 minutes following a 100 µL IP injection of D-luciferin (20 
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mg/mL phosphate buffered saline).  BLI images were acquired at 5-minute 

exposures and superimposed on bright field photographs of the animals.  Signal 

quantitation in photons/second (p/s) was performed by determining the photon flux 

rate within standardized regions of interest (ROI) using Living Image software 

(Caliper).  Serum kappa levels were measured by a commercially available ELISA 

kit (Bethyl Laboratories, Montgomery, TX) according to manufacturer’s instructions.  

Results reported are a representative experiment with 5 mice in each group.  

Differences in BLI and serum kappa levels were calculated using a 2-tailed student’s 

t-test (Microsoft Excel 2010).  Survival was calculated using the Kaplan-Meier 

method (SAS statistical software, version 9.2, Cary, NC). 
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Chapter 3  

RESULTS[25] 

 

This chapter is based on original work done by the student and published as: Shah 

N, Martin-Antonio B, Yang H, Ku S, Lee DA, Cooper LJ, Decker WK, Li S, Robinson 

SN, Sekine T, Parmar S, Gribben J, Wang M, Rezvani K, Yvon E, Najjar A, Burks J, 

Kaur I, Champlin RE, Bollard CM, Shpall EJ.  “Antigen presenting cell-mediated 

expansion of human umbilical cord blood yields log-scale expansion of natural killer 

cells with anti-myeloma activity.” PLoS One. 2013 Oct 18;8(10):e76781. doi: 

10.1371/journal.pone.0076781. eCollection 2013. PLoS One does not require 

permission for reuse/ reprint of content provided the original article is cited.   

 

aAPC-mediated CB-NK expansion from fresh or cryopreserved CB units yields 

significantly greater fold expansion of NK cells than expansion of CD56+ cells 

with IL-2 alone.   

In comparison with our original expansion approach of CD56-selected cells 

cultured with IL-2 alone, culture of either fresh or frozen CB MNCs with aAPC feeder 

cells resulted in greater expansion of NK cells after culture for 14 days (p <0.05 for 

both fresh or frozen conditions, Figures 2A and 2B).  Culturing of fresh CB MNCs 

(n=8) with aAPC feeder cells yielded a mean fold expansion of 1848 fold (609 fold  – 

4778 fold) while culturing of frozen CB MNCs (n=6) with feeder cells yielded a mean 

fold expansion of 2389 fold (103 fold – 4931 fold).  This was in comparison to 20 fold  

(11 fold -27 fold) expansion from culture of fresh CD56+-selected cells with IL-2 
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Figure 2.  Co-culture of CB MNCs with IL-2 
and aAPCs yields significantly greater 
expansion of NK cells than culture with IL-
2 alone.  A.  Mean fold growth of CD56

+
/CD3

-
 

NK cells from 8 fresh and 6 frozen cord blood 
expansions with aAPCs and IL-2  versus 3 
expansions with IL-2 alone (14 day culture).  
B.  Time course of NK cell growth over 14 day 
culture between all 3 conditions.  By day 7, the 
fresh CB aAPC-containing culture 
demonstrated greater NK cell growth than 
culture with IL-2 alone (p<0.05).  The frozen 
CB showed a similar trend at day 7, which did 
not reach statistical significance (p =0.06).  C.  
All three culture conditions yielded 
comparable, low percentages of CD3

+
 cells:. 

0.44%, 0.74% and 0.66% CD3
+
 cells from the 

culture with IL-2 alone, fresh CB MNCs with 
aAPC feeders or frozen CB MNCs with aAPC 
feeders respectively (p>0.5 for all 
comparisons).    Mean +/- SD is shown for 
each figure.  P <0.05 where indicated (*).  This 
figure is taken from original work done by the 
student and published as: Shah N, Martin-
Antonio B, Yang H, Ku S, Lee DA, Cooper LJ, 
Decker WK, Li S, Robinson SN, Sekine T, 
Parmar S, Gribben J, Wang M, Rezvani K, 
Yvon E, Najjar A, Burks J, Kaur I, Champlin 
RE, Bollard CM, Shpall EJ.  “Antigen 
presenting cell-mediated expansion of human 
umbilical cord blood yields log-scale 
expansion of natural killer cells with anti-
myeloma activity.” PLoS One. 2013 Oct 
18;8(10):e76781. doi: 
10.1371/journal.pone.0076781. eCollection 
2013. PLoS One does not require permission 
for reuse/ reprint of content provided the 
original article is cited.   

alone (n=3).   The difference in NK cell yield was apparent by day 7 for the fresh CB 

culture with aAPC feeders (p<0.05) but did not reach statistical significance for the 

frozen CB condition until day 14 (p=0.06 at day 7).  As seen in Figure 2C, the final 

culture contained very few (< 1%) CD3+ cells and this was not significantly different 

between the 3 culture conditions: mean value of 0.44% CD3+ cells from the culture 

with IL-2 alone, 0.74% CD3+ cells from fresh CB MNCs with aAPC feeders and 

0.66% CD3+ cells from frozen CB MNCs with aAPC feeders (p>0.5 for all 

comparisons).    
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aAPC-mediated expansion yields a pure population of NK cells with a mature 

phenotype.   

As seen in Figure 3A, co-culture of CB MNCs with IL-2 and aAPC feeder cells 

yielded a population that was pure for NK cells at the end of the 2 week expansion 

period.  After CD3-depletion, 96% of cells were CD56+/CD3- and less than 1% were 

CD3+.  CB-NK cells expanded with aAPCs demonstrated a CD56hi phenotype similar 

to CB-NK cells expanded with IL-2 alone. Of note, culture of unselected CB MNCs 

with IL-2 and soluble IL-21 yielded a relatively pure CD56+/CD3- NK cell population 

but with limited expansion of cells (mean expansion of 14 fold, data not shown). In 

addition, after log-fold expansion, aAPC-expanded CB-NK cells did not appear 

exhausted; rather, CB-NK cells continued to strongly express Eomes and T-bet, 

transcription factors recently recognized as necessary for NK cell maturation and 

activation [32, 33] (Figure 3B).  Interestingly, the surface expression of NK 

cytotoxicity receptors (NCRs) NKp30, NKp46 and NKp44 was significantly lower for 

aAPC-expanded CB-NK cells versus IL-2-expanded CB-NK cells (p< 0.05 for all 

three NCRs).  However, the expression of KIR antigens, NKG2A, co-receptor CD94 

and the activating receptor NKG2C was similar between the two expansion methods 

(Figure 3C).   
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Figure 3.  Phenotype of CB-NK cells cultured with aAPCs.  A. Over the 14-day expansion, 
CB-NK cells cultured with aAPC feeder cells demonstrated a progressively pure, CD56

+
/CD3

-
 

population, (representative dot plots of 17 expansions).  B. aAPC-expanded CB-NK cells 
maintained Eomesodermin

hi
 and T-bet

hi
 phenotype after expansion.  Representative histograms 

from 3 different CB-NK expansions; cells are gated on the live CD56
+
 population.  C. CB MNCs 

from the same CB unit were expanded with aAPCs +IL-2 or IL-2 alone (n=3 separate CB units).  
Representative dot plots of NK cell surface receptor expression on day 14 are shown.  D. By 
median fluorescence intensity (MFI), aAPC-expanded CB-NK demonstrated a decreased surface 
expression of the NCRs NKp30, NKp46 and NKp44.  However there was a similar expression 
between the conditions of the KIR antigens, inhibitory receptor NKG2A, co-receptor CD94 and 
activating receptor NKG2C), (n= 3 paired expansions, mean +/- SD is shown, p <0.05 where 
indicated).  This figure is taken from original work done by the student and published as: Shah 
N, Martin-Antonio B, Yang H, Ku S, Lee DA, Cooper LJ, Decker WK, Li S, Robinson SN, Sekine 
T, Parmar S, Gribben J, Wang M, Rezvani K, Yvon E, Najjar A, Burks J, Kaur I, Champlin RE, 
Bollard CM, Shpall EJ.  “Antigen presenting cell-mediated expansion of human umbilical cord 
blood yields log-scale expansion of natural killer cells with anti-myeloma activity.” PLoS One. 
2013 Oct 18;8(10):e76781. doi: 10.1371/journal.pone.0076781. eCollection 2013. PLoS One 
does not require permission for reuse/ reprint of content provided the original article is cited.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CB-NK cells cultured with aAPCs demonstrate in vitro anti-myeloma activity.   

In order to kill targets, NK cells must directly contact the cell of interest and 

form the “NK immune synapse” (NKIS) [34, 35].  Our lab has previously 

demonstrated that expansion of CB-NK cells is necessary to repair the defective 

NKIS exhibited by naïve CB-NK cells [30].  To demonstrate that this synapse ability 

is maintained in CB-NK cells expanded with aAPC feeder cells, we performed a 

series of synapse assays with various MM targets.  As shown in Figure 4A, NK cells 
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Figure 4.  aAPC-expanded CB-NK cells form immunological synapses with and are cytotoxic against 
myeloma targets .  A.  CMAC-labeled tumor targets (blue) were incubated at a 1:1 ratio with aAPC-
expanded CB-NK cells for 15 minutes.  Conjugates were then fixed, permeabilized and stained for NK 
effector cell F-actin with rhodamine-phalloidin (red).  Confocal and brightfield images were acquired; 
representative images from each slide are shown.  aAPC-expanded CB-NK cells form immune synapses with 
the classic NK target K562 as well as a variety of MM cell lines.  B.  aAPC-expanded CB-NK cells were co-
incubated in triplicate for 4 hours with 

51
Cr-labeled target cells at ratios as shown.  Supernatants were then 

harvested and analyzed the next day for 
51

Cr content.  % Cytotoxicity = (sample value-spontaneous lysis) / 
(max-lysis-spontaneous lysis) x 100%.  CB-NK cells demonstrate dose-dependent cytotoxicity against K562 
(classic NK cell target) and MM cells lines RPMI 8266, ARP-1 and U266 (representative of n>3 assays for 
each cell line).  C.  aAPC-Expanded CB-NK cells displayed equal or more cytotoxicity against K562 cells 
versus CB-NK cells expanded with IL-2 alone (representative from n=4 assays) .  This figure is taken from 
original work done by the student and published as: Shah N, Martin-Antonio B, Yang H, Ku S, Lee DA, 
Cooper LJ, Decker WK, Li S, Robinson SN, Sekine T, Parmar S, Gribben J, Wang M, Rezvani K, Yvon E, 
Najjar A, Burks J, Kaur I, Champlin RE, Bollard CM, Shpall EJ.  “Antigen presenting cell-mediated expansion 
of human umbilical cord blood yields log-scale expansion of natural killer cells with anti-myeloma activity.” 
PLoS One. 2013 Oct 18;8(10):e76781. doi: 10.1371/journal.pone.0076781. eCollection 2013. PLoS One 
does not require permission for reuse/ reprint of content provided the original article is cited.   
 

cultured with aAPC feeder cells formed a functional NKIS (demonstrated by F-actin 

polarization) with the classic NK cell target K562, MM cell lines RPMI 8226, aARP-1 

and U266.    
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To demonstrate the functionality of CB-NK cells expanded with aAPC feeder  

stimulation, we performed a standard 51Cr cytotoxicity assay.  aAPC-expanded CB-

NK cells were cytotoxic to all of the MM cell line targets (Figure 4B).  Furthermore, 

despite the differences in phenotype with regard to the NCRs, in comparison with 

CB-NK cells expanded with IL-2 alone, the aAPC-mediated expanded CB-NK cells 

demonstrated equal or greater cytotoxicity against K562 (Figure 4C).  This finding 

was consistent across the MM cell lines as well (data not shown).  Neither of the CB-

NK preparations demonstrated autologous cytotoxicity.   

 

Treatment with expanded CB-NK cells delays development of myeloma in a 

murine model.   

To investigate whether ex vivo expanded CB-NK cells can inhibit the growth 

of MM cells in vivo, we studied NSG mice treated with GFP firefly luciferase-

transduced ARP-1 cells (Clone 24).  Using the bioluminescent signal intensity as a 

surrogate for tumor cell density, serial images demonstrated that mice treated with 

CB-NK cells had a delay in the onset of MM (Figure 5A). After 1 week, the signal 

intensity (p/s) was significantly greater in those mice who received Clone 24 ARP-1 

cells alone versus those who received Clone 24 ARP-1 cells and CB-NK cells 

(Figure 5B, p<0.05 from Day 8-22) This was consistent with the ELISA analysis of 

serum kappa light chains; mice receiving Clone 24 ARP-1 cells alone had 

significantly more measurable serum kappa than mice who received Clone 24 ARP-

1 cells and CB-NK cells, (Figure 5C, p <0.01 at each time point).  Finally, there was 

also a difference in survival between the 2 groups with a median survival of 31 days 
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in the mice who received Clone 24 ARP-1 cells alone versus 38 days for the mice 

who received Clone 24 ARP-1 cells and CB-NK cells, (Figure 5D, p = 0.003).   

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
  

Figure 5.  aAPC-expanded CB-NK cells delay development of myeloma in a NSG murine model.  1x10
6
 

GFP  firefly luciferase-transduced ARP-1 cells (Clone 24) were given IV on day -1.  In the CB-NK treated group, 
10x10

6
 ex vivo, aAPC-expanded CB NK cells were given retro-orbitally on days 0, 12 and 19 with IL-2, 2000 IU 

(IP) three times per week.  Serial BLI and kappa ELISA measurements were acquired until day 18.  Results 
represent mean values of n=5 mice in each group until day 18, by which time 1 mouse in the ARP-1 alone group 
had died.  A.  Serial BLI images demonstrate impaired myeloma development in mice receiving CB-NK cells.  B.  
Signal intensity (p/s) was significantly greater in mice receiving Clone 24 ARP-1 cells alone versus those 
receiving both Clone 24 ARP-1 cells and CB-NK cells.  Region of interest (ROI) is indicated by rectangles 
superimposed on each mouse from Figure 5A, p <0.05 at days 8-22.    C.  Serum kappa levels (ng/mL) were 
significantly higher in mice treated with Clone 24 ARP-1 cells versus those treated with Clone 24 ARP-1 cells 
and CB-NK cells, p <0.01 at each time point.  D.  By Kalpan-Meier method, there was a significant difference in 
survival of the mice, (p=0.003) in favor of the NK-treated group.  The mice who received Clone 24 ARP-1 cells 
alone had a median survival of 31 days versus 38 days for the mice who received Clone 24 ARP-1 cells and 
CB-NK cells.  This figure is taken from original work done by the student and published as: Shah N, Martin-
Antonio B, Yang H, Ku S, Lee DA, Cooper LJ, Decker WK, Li S, Robinson SN, Sekine T, Parmar S, Gribben J, 
Wang M, Rezvani K, Yvon E, Najjar A, Burks J, Kaur I, Champlin RE, Bollard CM, Shpall EJ.  “Antigen 
presenting cell-mediated expansion of human umbilical cord blood yields log-scale expansion of natural killer 
cells with anti-myeloma activity.” PLoS One. 2013 Oct 18;8(10):e76781. doi: 10.1371/journal.pone.0076781. 
eCollection 2013. PLoS One does not require permission for reuse/ reprint of content provided the original 
article is cited.   Please note Dr. Beatriz Martin contributed significantly to this figure in taking images and 
performing the ELISA.  Dr. Eric Yvon generated the ARP-1 cell line.   
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Chapter 4 

DISCUSSION 

 

While there have been numerous advances in therapy options for myeloma, 

the disease remains incurable.  As evidence accumulates to show an association 

between this disease and immune dysfunction [4, 36, 37] the urgency for immune 

therapies concurrently grows.  These therapies currently include immunomodulatory 

agents and antibodies; experience with allogeneic HSCT and donor lymphocyte 

infusions [38] indicates that allogeneic cellular therapy is another approach for this 

modality.   

 

We have been interested in developing NK cell therapy as a possible adjunct 

to traditional chemotherapy.  NK cells have the benefit of having anti-MM activity 

without the risk of GVHD.  Though PB-NK cells have been given for this patient 

population, PB requires a live, related, healthy donor to go through a separate 

procedure.  Thus we have been working to develop CB-NK cell therapy, which would 

provide an “off the shelf” source of NK cells, obviating the need for an additional 

healthy donor procedure.   

 

In order to bring CB-NK cell therapy to the clinic we had to overcome several 

barriers.  CB-NK cells require robust, reliable ex vivo expansion.  In addition, this 

expansion must be possible from a cryopreserved CB unit as this is how all banked 
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CB units are stored.  CB-NK cells must exhibit an activated, unexhausted 

phenotype.  Finally, these CB-NK cells must demonstrate anti-MM activity.   

In this study, we were able to complete the first of many steps necessary to 

develop this novel immunotherapy, in preparation for clinical application.  Our unique 

expansion process required fairly simple materials (gas-permeable cell culture 

bioreactors, IL-2 and aAPCs) and a relatively short expansion phase.  Using this 

strategy we were able to expand NK cells 1000-2000 fold, a growth significantly 

greater than standard expansion with IL-2 alone.  Importantly, this expansion was 

possible using fresh or cryopreserved CB units.  Thus we may consider this method 

as a potential protocol for GMP-compliant CB-NK expansion.   

  

In addition, the resultant CB-NK cells were a pure and active product.  There 

was very little CD3 contamination (an important factor in avoiding GVHD) and the 

NK cells demonstrated activating receptors with no evidence of exhaustion.  

Furthermore, these cells were able to synapse with and kill MM cells and delay the 

development of MM in vivo.  While there was a decrease in the MFI of NCRs 

(NKp30, NKp46 and NKp44) for the aAPC-mediated expansion, this did not translate 

to any decrease in cytotoxicity.   

  

To put these results in perspective, the number of NK cells one could yield 

from a single 20% fraction of the CB unit could be as much as 1 x 109 cells or 1.5 x 

107/kg for a 75 kg person.  Thus, this robust expansion protocol now also grants the 

potential for multiple NK infusions, depending on how the CB unit is frozen.  This can 
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have significant implications when considering maintenance immunotherapy for a 

disease like MM, for which maintenance with the immunomodulatory drug 

lenalidomide is standard.[39]   

 

With these important first steps made, the possibility of adoptive CB-NK 

therapy is closer in reach.  This is even more so, considering the growth in public CB 

banks to greater than 160, with over 800,000 units banked worldwide.  Indeed, the 

CB community has begun to expand its focus to include immunotherapy, including 

virus-specific T cells, regulatory T cells and NK cells.[40, 41]  The results presented 

in this study are in line with this mission in the CB community.   
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Chapter 5 

STRENGTHS AND WEAKNESSES 

 

This study describes a novel, relatively simple expansion procedure for CB-

NK cells.  However, it is mainly a methods development study.  Thus we are only 

able to make conclusions about the expansion capability and the potential for anti-

MM effect.  Less can be said about the specific mechanisms underlying NK cell 

activity or the reproducibility in the clinical setting.   

 

Application of CB-NK cells.   

Our results compare favorably with other NK expansion techniques and are 

among the first to report CB-NK activity against MM.  Previous studies have shown 

efficient expansion of CB-NK cells; however, these techniques require several steps 

with upfront selection of CD34+ cells a culture period of 35-42 days.[42, 43]  This 

could present a logistical problem when trying to plan for clinical use; in addition 

there would be more time for potential contamination, as well as cost of extended 

expansion.  Finally, our method only requires a segment of the CB unit, which leaves 

the remainder for potential future cellular therapy use or for hematopoietic recovery 

in the case of allogeneic HSCT.   

 

Role of CB-NK cells against MM.   

Regarding the activity against MM, the novelty of this study rests in CB as the 

source for the NK cells, as others have demonstrated NK activity against MM.[14]  
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Unfortunately, due to the nature of CD138+ primary MM cells, we were unable to 

label these cells sufficiently with 51Cr, and thus unable to demonstrate dose 

dependent cytotoxicity against primary MM cells.  In addition our in vivo model 

showed a delay of progression of MM but did not demonstrate eradication.  This is 

not dissimilar to the clinical setting, in which immunotherapies are known to work 

best in the setting of concomitant chemotherapy.  Finally, all of our functional data 

was acquired with infusion of freshly expanded CB-NK cells.  Thus we are unable to 

make any statements about the activity of these expanded cells after freezing and 

thawing.   

 

Other considerations not addressed in this study include the role of KIR in NK 

cell activity against MM, something that we were not able to study as we chose the 

CB units that were available to us and did not perform KIR or HLA typing on neither 

the CB-NK cells nor the MM cell lines.  Additionally, though we were able to 

demonstrate an unexhausted phenotype of the expanded CB-NK cells with 

preservation of Eomes and Tbet, we were not able to examine this in vivo.  This is 

known to be a potential limitation which has been highlighted by other adoptive 

transfer cell therapy studies.[32]   
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Chapter 6 

FUTURE DIRECTIONS 

 

Our next steps will be several.  First, we will validate this protocol in a GMP-

based setting to prove that the expansion process is reliable, in various technical 

hands.  Second we intend to open a first-in-human phase I clinical trial of these cells 

in conjunction with high dose chemotherapy and autologous HSCT for patients with 

MM.  If we can demonstrate safety then we will move on to an expanded trial to 

assess efficacy, particularly in high risk patients.  Concurrently we will also continue 

in vitro studies to assess the viability and activity of frozen and then thawed CB-NK 

cells, which would have implications for the exportability of this technology.    

 

Regarding the NK cells themselves, we are interested in further directing their 

cytotoxicity to the target MM cells that remain untouched by chemotherapy.  Thus 

we are exploring the possibility of transducing these cells with a chimeric antigen 

receptor (CAR) construct specific for a MM antigen.  We are also interested in 

applying the technique of fucosylation to these NK cells, as previous studies from 

our laboratory indicate that fucosylation can improve homing of cells to the bone 

marrow [44], the sanctuary site of MM.   
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