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IMPROVING ATTENUATION CORRECTION IN HYBRID POSITRON 

EMISSION TOMOGRAPHY 

 

Hua Asher Ai, B.Sc. 

Advisory Professor: Richard Wendt III, Ph.D. 

Hybrid positron emission tomography imaging techniques such as PET/CT and PET/MR 

have undergone significant developments over the last two decades and have played 

increasingly more important roles both in research and in the clinic. A unique advantage 

PET has over other clinical imaging modalities is its capability of accurate quantification. 

However, as the most critical component of PET quantification, attenuation correction in 

hybrid PET systems is challenged in several different aspects, including the spatial-

temporal mismatch between the PET emission images and the associated attenuation 

images provided by the complementary modality, and the difficulty in bone identification 

in the MR-based attenuation correction approaches. These problems, if left unaddressed, 

can limit the potential of the hybrid PET systems. 

 This research developed solutions to overcome the spatial-temporal mismatch in 

PET/CT and PET/MR, and established the requirements for bone identification in 

PET/MR. An automatic registration algorithm based on a modified fuzzy c-means 

clustering method and gradient correlation was developed and validated to perform 

automatic registration in cardiac PET/CT data of different breathing protocols. A free-

breathing MR protocol and post-process algorithm were developed to provide MR-based 

attenuation images that also match the temporal resolution of PET and were evaluated in 

a feasibility study. The relationship between the sensitivity of bone identification in 

attenuation images and PET quantification of bone lesions uptake was evaluated in a 

simulated study using data from 
18

F-sodium fluoride PET/CT exams.  
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1.1 Introduction 

This work aims to improve the accuracy of hybrid positron emission tomography by 

reducing the spatial-temporal mismatch between emission and attenuation images and by 

defining the requirements for the correction of bone attenuation in PET/MR scanners. 

Positron emission tomography (PET) is a functional imaging technique that can 

provide in vivo, metabolic information of various molecular, biological processes of the 

subject in a non-invasive manner. It obtains functional information of a specific 

metabolic activity (for example, myocardial blood flow, receptor density, cellular mitosis 

and glucose metabolism) by first injecting the positron-emitting radioactive tracer that 

exclusively targets such metabolic process into the subject, and then detecting the pair of 

511 keV gamma photons created from positron-electron annihilation events and thereby 

tracking the distribution of injected tracer. Because the concentration of the tracer reflects 

the local level of activity of the target metabolic process, the distribution and 

accumulation of the tracer, captured by the reconstructed PET images, can reveal 

information about the underlying metabolism. 

Since its clinical introduction in the early 1990s by Siemens and GE [1], PET has 

gained widespread popularity in clinical practices, including neurology [2], cardiology 

[3], pharmacology [4] and, probably most importantly, oncology [5-7]. As more 

applications have been developed, the imaging modality itself has also evolved over the 

last few decades, with two of the greatest milestones being the introductions of the two 
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hybrid PET imaging modalities: combined PET/CT systems and combined PET/MR 

systems. 

Previous studies have consistently demonstrated that PET provides better 

diagnostic performance than Single Photon Emission Computed Tomography (SPECT), 

which is another widely used functional imaging modality in nuclear medicine. Among 

the many advantages PET has, one of the most important is its potential for absolute 

quantification via accurate correction of the loss of photon counts to the media that 

photons have to travel through before reaching the PET detectors. This is largely 

attributable to the unique mechanism utilized by PET imaging: instead of detecting 

individual photons, PET detects pairs of photons that reach the gantry simultaneously, 

and localizes their origin to lie along the line connecting the two points of detection. As a 

result, the number of photon pairs lost to the medium depends only on the total amount of 

attenuation along the path connecting the detector pairs and not upon the precise location 

where the annihilation event occurs [8]. Accurate correction of the photon attenuation 

during the PET scan is thus possible, at least in theory. 

Attenuation correction of the PET data requires an accurate knowledge of the 

distribution of attenuation coefficients of the various media that attenuate the photons. In 

the design that is used in the early generation of stand-alone PET systems, this is 

achieved with separate transmission scans performed independently of the emission scan. 

A positron-emitting source to produce 511 keV photons, usually 
68

Ge in the physical 

form of a rod, is rotated around the empty bore of the scanner, and the number of 
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coincidence events is recorded to produce the so-called blank scan. This process is 

usually done once a day and its data are used for all of the PET scans performed during 

the day. The same process is repeated when each subject of the PET exam is placed 

inside the scanner. From the difference of the recorded numbers of coincidence events 

with and without the patient, a map of photon attenuation coefficients is calculated and 

used to perform attenuation correction. 

However, the maximal count rate that can be recorded by PET detectors is 

restricted by the hardware, which limits the number of coincidence events that can be 

detected by the PET scanner per unit time. At the same time, a certain number of photon 

counts is required in order to obtain an acceptable signal-to-noise ratio (SNR) in the 

attenuation coefficient map and thus adequate quality in the attenuation-corrected image. 

As a result, a relatively long acquisition time is usually required for the transmission 

scan, which alone can be as long as 40 minutes. This greatly limits the clinical throughput 

of PET scans made with such devices, and despite the long scan duration, attenuation 

maps calculated from transmission scans often remain noisy. 

 

1.2 Background and Significance 

1.2.1 Hybrid PET/CT Imaging 

The invention of the combined PET/CT system in 1998 and its subsequent introduction to 

the clinic in 2001 is a revolutionary development of the PET technology. The integration 
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of a computed tomography module into the PET system provides several important 

advantages. 

First, it produces complementary, anatomical images that are well-registered with 

the functional images provided by PET. This enables accurate localization of functional 

abnormality including tumor infiltration of adjacent structures which could not be 

assessed conclusively using separate CT and PET data [9]. The combination of PET and 

CT has been shown to consistently result in improved diagnostic performance over either 

modality when used alone [10-12]. 

Secondly, attenuation coefficient maps of 511 keV photons can be derived from 

CT images, which represent the attenuation coefficients at lower energy levels of 80-140 

kVp [13, 14]. This capability essentially eliminated the necessity for PET transmission 

scans. In these methods, the photon attenuation coefficients between the lower energy 

levels of 80-140 kVp CT X-rays and the higher energy 511 keV PET photons are 

measured for homogenous tissue types, mainly soft tissue and cortical bone. The scaling 

factors between different energy levels, which differ for different materials and tissue 

types, are determined and then used to convert CT images into PET attenuation maps. 

Voxels with CT coefficients that fall between the measured values of the homogeneous 

tissue types are simply assumed to be a mixture of the materials that have been 

characterized. Any voxel below 0 HU is assumed to be a mixture of air and soft tissue, 

while any voxel above 0 HU is assumed to be a mixture of soft tissue and bone. Under 

this assumption, the conversion of the CT measured attenuation coefficients into 511 keV 
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attenuation coefficients can be achieved with a bilinear scaling procedure. This 

attenuation correction strategy has been verified and proven to be sufficiently accurate 

when compared to the PET transmission scan approach, and thus has become the de facto 

gold standard for PET attenuation correction. 

Since a whole-body CT scan acquired in helical CT mode takes less than 20 

seconds, the replacement of PET transmission scans with a CT scan for attenuation 

correction purposes shortens the duration of a PET imaging session from about one hour 

to 30 minutes or less. The briefer exam duration improves patient comfort and also 

increases the clinical throughput of the imaging procedure. CT-derived attenuation maps 

have vastly better noise properties compared to the ones from PET transmission scans, 

although the better signal-to-noise ratio and higher spatial resolution do come at the price 

of increased radiation dose to the patient. It has been reported that the effective dose 

contributed by CT can account for 50%-80% of the total effective dose of a whole-body 

PET/CT exam [15]. 

Because of the advantages provided by the integration of CT, combined PET/CT 

imaging technology was rapidly embraced by the healthcare professions. By 2006, all 

major vendors had stopped offering standalone whole-body PET systems, and hybrid 

PET/CT became the standard form of PET imaging. By the middle of 2008, over 3000 

combined PET/CT systems had been installed worldwide and were being employed in 

routine clinical operations. 
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1.2.2 Respiration-Induced Attenuation Artifact 

Although CT-based attenuation correction offers a number of benefits, it also creates 

some problems. In addition to the higher radiation dose, another problem is the 

attenuation artifact that arises when there is spatial mismatch between the PET emission 

images and the CT attenuation images despite the mechanical registration of the 

combined scanner modules. 

Attenuation artifacts can arise when the values in the map of attenuation 

coefficients that are used for correction purposes do not match the actual attenuation that 

affects the emitted photons during the PET exam. This is most problematic when the 

misregistration between emission and attenuation images involves a region containing 

different photon-attenuating media with large difference in attenuation properties, such as 

the interfaces between lungs and soft tissues, between air and soft tissues, and between 

soft tissues and bones. 

Attenuation artifacts are a common problem in PET imaging of the thorax due to 

the presence of respiratory motion. In PET/CT imaging, the PET scan and the CT scan 

are performed sequentially, not simultaneously. On the one hand, the PET emission scan 

is generally slow and can take 2-5 minutes for each bed acquisition to complete, and so 

clinical PET scans are always done while the patient breathes freely. As a result, the 

reconstructed PET emission images reflect the spatial distribution of PET tracers 

averaged over multiple respiratory cycles. On the other hand, CT attenuation scans are 

usually performed during a breath-hold. This is done to avoid the inconsistent 
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measurements that can be induced by respiration and lead to artifacts in the reconstructed 

helical CT images. This means that the breathing states captured by the two modalities 

are different, which can cause severe spatial misregistration between the emission and the 

attenuation images that gives rise to attenuation artifacts. 

 

1.2.3 Four-dimensional Computed Tomography (4DCT) and Respiration-

Averaged CT (ACT) 

The use of a slowly rotating gantry in the CT scan has been suggested as a method to 

produce a motion blurring or averaging effect that is similar to that seen in the PET 

images [16]. However, CT data acquired with a slowly rotating gantry can cause 

inconsistency in the measured data as the patient anatomy moves from view to view 

during respiration. This produces new artifacts in the CT scan. 

Four-dimensional CT was developed as a solution to address the problem of 

respiratory motion in the thorax [17]. In 4DCT scans, the CT gantry rotates around the 

target with a fast rotation speed in axial mode while the patient table remains stationary. 

The table is then moved and the process repeated if a longer axial field of view is 

required. The acquisition at each table position lasts longer than one respiratory cycle. 

The CT data are sorted into respiratory phases; volumetric CT data corresponding to the 

patient’s anatomy at various respiratory phases can be then obtained and accumulated 

into a time-resolved CT or 4DCT dataset. The phase-sorted CT data can also be averaged 

over the respiratory cycle to mimic the signal averaging intrinsic in the PET images. 
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4DCT can effectively reduce the motion artifact in the CT images that is caused 

by respiratory motion as well as provide information about the motion itself. However, 

since the SNR of the 3DCT data at each phase of the respiratory cycle needs to be 

maintained, the acquisition of 4DCT delivers a greater radiation dose to the patient. 

Respiration-averaged CT (ACT) can be directly created from cine axial CT data 

even without recording the respiratory signal [18]. In this approach, a low-dose, cine CT 

protocol continuously acquires CT images for the duration of a respiratory cycle at each 

table location while the patient breathes freely. All images acquired at the same location 

are averaged to create the respiration-averaged CT images. Several studies have shown 

that ACT is effective in reducing the spatial mismatch between PET and CT data [19, 

20]. 

 

1.2.4 Hybrid PET/MR Imaging 

While combined PET/CT systems were under development, there was also interest in 

combined PET/MR systems. A hybrid PET/MR system is desirable because it offers 

several distinct advantages over PET/CT, including superior soft tissue contrast, reduced 

radiation dose to the patient, the potential for simultaneous, multi-parametric functional 

imaging, and real-time motion tracking and correction [21]. However, combining PET 

and MR scanners poses a much more formidable engineering challenge than combining 

PET and CT. This is primarily because of the employment of photomultiplier tubes 

(PMT) in the traditional PET detector module: the PMT is extremely adversely affected 
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by the strong magnetic field that is required for MR imaging. In the first ever combined 

PET/MR prototype, which was developed by Shao et al. in 1997 [22], 4-meter long 

optical fibers were used to transmit the light from the scintillation crystals (placed inside 

the MR bore) to the PMTs located outside the main magnetic field. 

The subsequent development of PET/MR systems mainly involved using MR-

compatible PET detectors such as avalanche photodiodes (APD). A prototype PET/MR 

system featured a PET head insert based on lutetium oxyorthosilicate (LSO)-APD 

detector rings in a 3T MR system. It was introduced into clinical research in 2006 and 

used for the first human PET/MR study, which was of the brain [23]. The first whole-

body PET/MR system (Philips Ingenuity TF PET/MR Hybrid Imaging System, Best, The 

Netherlands) became commercially available in 2010. It used two separate MR and PET 

scanners that were placed in the same room and shared a common table to shuttle the 

patient between the scanners [24]. This design can minimize any potential interference 

between the PET and MR hardware. However, MR and PET exams have to be performed 

sequentially. A variation of this design, triple-modality PET/CT-MRI, was also reported 

[25]. Also in 2010, the first fully integrated whole-body PET/MR system [26] with the 

potential of simultaneous PET/MR imaging (Siemens Biograph mMR, Erlangen, 

Germany) was introduced. By 2014, about 50 whole-body PET/MR systems were 

operational worldwide [27]. The adoption of PET/MR systems has been relatively slow 

in contrast to the adoption of PET/CT, for which about 500 systems had been operational 

worldwide three years after its introduction [27]. This is possibly due to higher cost, more 

complicated operations, lack of reimbursement and some uncertainty in the targeted key 
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clinical applications. Although at a slower pace, interest in hybrid PET/MR systems 

continues to grow steadily. 

 

1.2.5 PET Attenuation Correction with MR images 

Despite the progress in the development of hybrid PET/MR systems, many technical 

challenges remain for PET/MR imaging, among which attenuation correction is critical. 

Ideally, for PET/MR systems the map of attenuation coefficients should be derived from 

the MR images, since a CT-based attenuation map is not available, and the addition of 

PET transmission scans to PET/MR imaging is less than desirable because the limited 

diameter of MR scanner bores leaves little space, if any, for the rotation of a transmission 

source. Unfortunately, attenuation correction based on MR images is not a simple task. 

First, a number of scanner structures that attenuate the 511 keV photons, such as 

the patient table, the positioning aids and the MR RF coils, are not visible in typical MR 

images. It is possible to compute 3D templates of the attenuation coefficients of fixed 

structures that are invisible in MR and insert them digitally back into an MR-derived 

attenuation map [28, 29]. However, such methods are difficult to implement correctly 

when the structure’s size or location is not predictable, as in the case of non-rigid MR 

surface coils. Secondly, direct conversion from MR images to a PET attenuation map is 

not possible because MR signals represent the proton density weighted by the tissue 

relaxation properties: the spin-lattice relaxation time T1 and the spin-spin relaxation time 

T2. They are not correlated with the photon attenuation coefficients. Other challenges 
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include the truncation artifact when the patient is larger than the limited MR field of view 

(FOV) [30], and the artifacts to which MR is susceptible when the patient contains metal 

implants [31]. 

In order to create PET attenuation maps from MR images, a number of 

approaches have been proposed. They fall into two broad categories: atlas-based 

approaches and tissue-classification-based approaches. 

Atlas-based methods derive attenuation maps from MR images with the aid of a 

pre-established atlas, which contains either CT images only [32] or co-registered pairs of 

MR and CT images [33, 34]. Patient-specific MR images are converted to pseudo-CT 

images with either deformable registration or machine learning-based methods. Pseudo-

CT images derived from these approaches have continuously-distributed attenuation 

values and are visually similar to real CT images, most notably including bone. 

Unfortunately, this approach is prone to artifacts when the patient has anatomical 

abnormalities that are not well represented by the data in the atlas. 

Tissue-classification-based approaches, also known as segmentation-based 

approaches, assign each voxel to one of several different types or “classes” of tissue 

using the MR images, which are usually acquired with T1-weighted gradient echo 

sequences. Standard, discrete attenuation values are then assigned to the classified voxels 

to create MR-based attenuation maps. Differences among patients in the attenuation 

values of the same tissue class are usually ignored. This approach is relatively 

straightforward and can, in theory, adapt to any atypical anatomy. So far, all 



13 

 

commercially available systems have adopted the tissue-classification approach for 

attenuation correction in PET/MR systems. The Philips Ingenuity TF system uses a three-

class segmentation method [35], which classifies the voxels of the MR images as air, lung 

or soft tissues, while the Siemens Biograph mMR uses a four-class segmentation method 

[36], which classifies the voxels as air, lung, fat or non-fat tissues. Fat and non-fat tissues 

are distinguished using Dixon water-fat imaging sequences. 

In current MR-based attenuation correction methods, bone is not identified as a 

separate tissue class. Instead, the bones are assimilated into soft tissue with the aid of 

morphological operations and assigned with the soft tissue attenuation coefficient. 

However, this can be problematic. In the human body, bone is much more attenuating to 

photons than are the soft tissues. For 511 keV photons, the attenuation coefficients of 

bone and soft tissues are approximately 0.172 cm
-1

 [14] and 0.100 cm
-1

 [37], respectively. 

Given such a marked difference, bone should ideally be identified as a separate tissue 

class in a tissue-classification-based MR AC approach. Unfortunately, bone imaging 

using MR is a longstanding challenge, and identification of bone in MR images is very 

difficult. The MR signal represents tissue proton density weighted by its relaxation times. 

The proton density of bone is only 20-25% of that of typical soft tissues. More 

importantly, the transverse relaxation time, T2 (and its counterpart in gradient echo 

sequences, T2
*
), of bone (0.3-0.5 ms) is substantially shorter than those of typical soft 

tissues (10-300 ms). Because of the extremely short T2, the MR signal of bone decays 

almost instantaneously after each RF excitation. Thus, bones are essentially invisible in 
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typical clinical MR images. Voxels containing only bone have values that are 

indistinguishable from those of air. 

Ultrashort-echo-time (ultrashort-TE or UTE) sequences have been proposed for 

the segmentation of bone for PET/MR attenuation correction [37, 38]. Using specially 

designed RF pulses, UTE sequences are capable of realizing an extremely short echo time 

(TE), which can capture the MR signal of bone before it has decayed completely. 

Quantitative MR parameters, such as R2
*
 (=1/T2

*
) or proton density [39], can then be 

used to separate bone from the air and soft tissues. 

Although UTE sequences have shown some promise in making bone visible in 

MR, another impediment to effective MR bone imaging has rarely been discussed: the 

averaging of bone and soft tissues within a voxel as a result of the limited spatial 

resolution and voxel size used in typical clinical MR imaging. Some parts of the human 

skeleton can be very thin and often are smaller than the size of the voxels that are used in 

clinical MR imaging protocols. As a result, in a typical 3D MR dataset, a considerable 

number of voxels contain both bone and soft tissue. Identifying bone in voxels with a 

lower fraction of bone is more difficult than in voxels with a higher fraction of bone, and 

as of now it is unclear how the heterogeneity of voxel contents in regarding to bone and 

soft tissue influence the quantification of PET. The consequences of intra-voxel 

heterogeneity are investigated as part of this work. 
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1.2.6 Statement of Problem and Scope of Dissertation 

Quantitative, functional imaging has been increasingly incorporated into routine clinical 

care and is expected to play an even greater role in the future as modern healthcare heads 

in the direction of personalized and precision medicine. As one of the primary functional 

imaging modalities, the integration of PET with CT has been proven to be tremendously 

successful, and the integration of PET with MR, another powerful modality that can be 

used for both morphological and functional imaging, also has exhibited great potential. 

However, it is important to ensure that the capability of achieving accurate quantification 

in PET is not compromised in the hybrid modalities. 

Despite the development and progress in hybrid PET systems, there are a number 

of problems that can compromise attenuation correction and quantification of the PET 

data that remain to be solved. The goal of this dissertation is to address some of the 

problems that can adversely affect the quantification of PET and to improve attenuation 

correction of PET in the hybrid systems. More specifically, this work addressed three 

currently existing problems that plague the attenuation correction of hybrid PET systems. 

1. The spatial misregistration that can occur between PET and CT images of the heart. 

 An automatic registration algorithm was developed for cardiac PET/CT in order 

to achieve accurate registration and reduction of the attenuation artifacts caused by the 

misregistration between PET and CT images. 

2. The temporal mismatch that exists between PET and MR images of the heart. 
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 A fast 2D MR protocol and an associated post-processing algorithm were 

developed to produce MR-based attenuation maps that have a temporal resolution that is 

consistent with PET. 

3. The difficulty of identifying bone in MR and the resultant PET quantification bias in 

bone lesions. 

 The scenarios in which bones are identified in MR images with various levels of 

sensitivities and then assigned with proper attenuation coefficients were simulated with 

CT images, and the impact of bone identification sensitivity on PET quantification of 

bone lesions was studied. 

 

1.3 Summary of the Chapters 

1.3.1 Chapter 2: Reduction of Spatial Misregistration between PET and CT 

The hypothesis of this study is that an automatic registration algorithm based on FCM-

assisted gradient correlation for cardiac PET/CT data can reduce misregistration between 

PET and CT to less than 5mm (which is the physical spatial resolution for typical clinical 

PET scanners) on average compared to manual registration regardless of the CT 

breathing protocol. 

In order to reduce the spatial misregistration between cardiac PET and CT 

images, an automatic registration algorithm was developed for both helical CT and 

average CT images based on the principle of gradient correlation with the assistance of a 
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modified fuzzy c-means clustering algorithm. The algorithm was developed on a training 

group containing 55 cardiac PET/CT datasets and tested on a testing group containing 

another 65 different datasets. The results of automatic registration were evaluated against 

manual registration. A quantitative measure that characterizes the fraction of myocardial 

volume mis-projected into lung tissues was developed as a secondary measure to evaluate 

the registration results. 

 

1.3.2 Chapter 3: Reduction of Temporal Mismatch between PET and MR 

The hypothesis of this study is that using respiration-averaged MR images for PET 

attenuation correction is feasible, and can reduce the PET attenuation artifact compared 

to using MR images obtained under breath-hold. 

A method that aims to reduce the temporal mismatch between PET emission data 

and MR-derived attenuation data was developed based on the same principle that is 

utilized in average CT for PET/CT. A 2D fast SPGR sequence was used to obtain cine 

MR images over one respiratory cycle while the patient breathed freely. A three-class 

tissue-classification approach was adapted to convert the individual cine MR images into 

pseudo-CT images. Two different sets of attenuation coefficients were assigned to create 

the segmented attenuation images. These were then averaged over the different phases to 

obtain pseudo-ACT images, which were subsequently used for the attenuation correction 

of the PET data. The difference between the AMR-corrected and the ACT-corrected PET 



18 

 

data was evaluated quantitatively as well as with a clinically relevant, semi-quantitative 

measure. 

 

1.3.3 Chapter 4: Effect of Bone Identification Sensitivity on PET Quantification 

Accuracy 

The hypothesis of this study is that using a binary-tissue-classification-based MR 

attenuation correction approach with a bone identification sensitivity of 50% bone 

volume fraction can reduce the PET bone lesion quantification errors caused by the 

presence of bone to be less than 5%. 

Data from eight NaF PET/CT studies were analyzed. Sodium fluoride is used to 

image the skeleton. Homogeneous bone voxels were first identified on the CT attenuation 

images with combined thresholding and morphological operations and then used to 

reduce the inaccuracy in the measured CT attenuation coefficients. A metric called the 

Bone Volume Fraction (BVF) was estimated for each voxel in the CT attenuation images. 

Attenuation images were constructed for different thresholds of the bone volume fraction. 

Attenuation correction was performed with the simulated attenuation maps. The effect of 

bone identification sensitivity on quantification was evaluated in 139 NaF-avid bone sites 

using the PET data corrected with the original CT as a reference. 
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1.3.4 Chapter 5: Conclusions 

The main goals of this dissertation were achieved. The automatic registration algorithm 

was found to be effective in reducing spatial misregistration between the PET and CT 

images regardless of the breathing protocol. It was also found to be as effective as manual 

registration in reducing the mis-projection of myocardial activity. The MR protocol was 

able to obtain artifact-free respiration-averaged MR images of the thorax while the 

patient was breathing freely, and the feasibility of converting respiration-averaged MR 

images to PET attenuation maps were demonstrated. The non-monotonic relationship 

between PET bone lesion quantification accuracy and bone identification sensitivity was 

revealed, and the requirements on reducing quantification errors in bone lesions uptakes 

were established.  
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2.1 Abstract 

In cardiac perfusion PET/CT studies, respiratory motion can cause a mismatch between 

the PET and CT data, which can cause erroneous projection of myocardial uptake into 

lung tissues and therefore lead to attenuation artifacts in the reconstructed PET images. 

Fast helical CT (HCT) acquired at or near the end-expiration phase of the respiratory 

cycle under breath-hold, and cine respiration-averaged CT (ACT) acquired over a 

respiratory cycle under free-breathing have been proposed to reduce the mismatch 

between CT and PET images and to mitigate inaccurate quantitation in PET images 

caused by the mismatch. However, neither ACT nor HCT can eliminate the mismatch 

from voluntary patient motion such as self-repositioning for a more comfortable position 

during the exam, for which image registration is required. The purpose of this study was 

to develop and evaluate an automatic registration algorithm to minimize the spatial 

mismatch between CT and PET data and to improve the quantification of cardiac 

perfusion data. We used 3D rigid-body translation for registration of the CT to PET data 

in this study. A modified fuzzy c-means clustering algorithm was introduced to facilitate 

and regulate the algorithm. A similarity metric was constructed as the vector correlation 

of the gradient maps derived from the PET and CT images. The algorithm was developed 

on a training group containing 55 consecutive clinical datasets and tested on a separate 

group of 65 datasets. The registration results were compared to the results from two 

observers and evaluated with an objective metric that characterizes the fraction of mis-

projected myocardial volume (FMMV) inside lung tissues. Misalignment between the 

PET and CT data was observed in both the medial-lateral and superior-inferior directions 
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for HCT but only in the medial-lateral direction in ACT. The frequency and extent of 

large misalignment (>=10mm) was less severe in ACT than in HCT. The automatic 

registration algorithm reduced the overall misalignment between the PET and CT data 

from 6.8±2.7mm to 3.9±1.7mm for ACT and from 9.5±8.6mm to 3.7±1.6mm for HCT. 

The misalignment after automatic registration was no greater than the inter-observer 

variability. Evaluation of the objective metric showed that myocardial uptake is projected 

into lung tissues in the PET/CT data before registration (FMMVACT = 11.3±9.0%, 

FMMVHCT = 20.1±22.7%), and the mis-projection is substantially reduced after 

registration by the observers (FMMVACT = 1.5±1.5%, FMMVHCT = 2.4±2.5%) and by the 

algorithm (FMMVACT = 1.4±1.5%, FMMVHCT = 2.5±2.4%). Auto-registration reduced 

the attenuation artifacts in cases with severe misalignment. This algorithm is effective for 

cardiac PET/CT registration for both the fast helical CT at or near end-expiration and the 

averaged CT regardless of the CT breathing protocol, and is potentially useful in a 

clinical setting. ACT is better than HCT in reducing the mismatch between CT and PET 

data in cardiac PET/CT, but it still requires registration to achieve accurate quantification. 

 

2.2 Introduction 

Positron emission tomography (PET) has the capability to quantify myocardial perfusion 

in vivo. The diagnostic accuracy of PET has been shown to surpass that of the more 

routinely used single photon emission computed tomography (SPECT) [40]. Previous 

research has suggested that PET, as a noninvasive method, can provide a definitive 
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assessment of early or advanced coronary atherosclerosis [41]. The accuracy of 

quantification of PET imaging in PET/CT can be affected by various factors, the most 

important of which is the attenuation correction of PET data with CT images, which 

depends largely on the registration of the CT and PET data [42-46]. 

Because the acquisition duration of CT is generally much shorter than that of PET 

(less than three seconds for a 16-slice helical CT (HCT) compared to several minutes for 

PET), anatomic mismatch can occur between PET and CT images due to respiratory 

motion [47]. This problem is especially prominent in cardiac PET imaging because the 

heart is directly above the diaphragm and is thus subjected to respiratory motion. Such 

mismatch can cause the myocardial uptake to be erroneously projected into lung tissues 

and, if left uncorrected, can lead to severe artifacts in the reconstructed PET images 

(Figure 1) that can be misinterpreted as myocardial ischemia or infarction. Special 

breathing maneuvers, such as asking patients to hold their breath at or near end-expiration 

for a fast HCT scan to obtain better matches between CT and PET data, can reduce the 

mismatch to some extent [48-50], but these maneuvers may be too difficult for sicker 

patients to perform. 
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Figure 1. An example of the misregistration between PET and CT. The images from left to right are 

CT, PET, and fused CT and PET. An attenuation artifact is shown in (a) with HCT. ACT in (b) was 

able to fix the artifact. 

We have also investigated cine respiration averaged CT (ACT) to scan patients 

under free-breathing in order to match the temporal resolution of CT and PET images and 

reduce misregistration. In ACT, the CT slices acquired under the cine mode over various 

phases of the respiratory cycle are averaged to match the PET data taken over several 

minutes spanning many respiratory cycles [18, 51, 52]. The efficacy of ACT has also 

been verified independently by other groups [19, 20]. However, ACT alone cannot 

compensate for gross physical motion of the patient; a mismatch between CT and PET 
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data can still occur, for which image registration is necessary. The mismatch under ACT 

is easier to manage than under HCT because it is mostly caused by patient re-positioning 

for a more comfortable position during the scan instead of mismatch in the breathing state 

between the CT and PET data. For the latter, a more sophisticated deformation type of 

registration may be needed [53]. In the clinic, image registration is generally performed 

manually with a 3D rigid-body translation, which is subjective and thus susceptible to 

operator variability. Rigid-body translation may not be effective if the mismatch is due to 

respiratory motion, which is non-rigid in nature and can be more effectively taken care of 

by ACT. The purpose of this research was to develop an automatic registration algorithm 

to reduce misregistration between CT and PET data in cardiac PET/CT for both ACT and 

HCT. 

Various registration algorithms – most of them based on 3D rigid-body translation 

– have been proposed previously to automatically register cardiac PET images with CT 

attenuation images. Khurshid et al. [54] developed a 2D edge-based method which 

registers PET and CT data by minimizing the distance between the edges detected in PET 

and in CT. However, the results of their algorithm were not validated against manual 

registration, leaving the accuracy of the algorithm in question. Also, edge detection is 

likely to have a greater uncertainty on ACT datasets due to edge blurring from averaging 

data over the respiratory cycle. Alessio et al. [53] developed a registration scheme based 

on the Radon consistency conditions between attenuation and emission data. Their 

method includes rotations in the modeling to improve algorithm robustness against PET 

data corrupted with artifacts. It is also computationally intensive. 
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Mutual information methods are popular for multi-modality image registration 

and have also been investigated for cardiac PET/CT with some success [55-57]. 

However, Martinez-Moller et al. [44] found the mutual information method to be 

incapable of properly assessing the similarity of the cardiac PET and CT data. They 

circumvented registration and developed an emission-driven method to reduce 

attenuation artifacts by assigning soft tissue attenuation coefficients to all voxels that are 

located inside the lung region in the attenuation image and correspond to the myocardium 

in the emission image. Their method was effective in artifact reduction but requires 

alteration of the attenuation images, instead of registration, which can have unknown 

effects on PET quantification. 

The challenge in registering cardiac PET images with CT images lies in the fact 

that PET images represent the distribution of the injected tracer, which is different from 

the CT images, which represent the anatomy of the body.  For the cardiac region, in PET 

images the myocardium appears hyperintense while in CT the myocardium and the blood 

have a similar intensity (unless a contrast agent is present in the blood of the patient). 

Consistent with the findings of Martinez-Moller et al. [44], our experiments 

demonstrated that the dissimilarity between PET and CT images usually limits the 

robustness of the methods that derive a similarity index such as mutual information from 

the original images. 

We noted that in manual registration of the CT and PET data, human observers 

often pay the most attention to the high-gradient regions at the myocardial boundaries, 

regardless of the breathing protocol types of the CT images. In light of this observation, 
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we developed a novel registration algorithm for cardiac PET/CT to improve registration 

(hence mitigating the attenuation artifact) using a 3D gradient correlation with a modified 

fuzzy c-means (FCM) clustering algorithm. To the best of our knowledge, this is the first 

cardiac PET registration algorithm that has been developed for and evaluated on both 

clinical ACT and HCT images. The results of automatic registration were compared 

against those from manual registration and evaluated with an objective metric that 

characterizes the fraction of mis-projected myocardial volume (FMMV) inside the lung 

region. 

 

2.3 Materials and Methods 

2.3.1 Patient Data 

We used Matlab (The Mathworks, Natick, MA) for the development of the algorithm. A 

group of 55 sets of consecutive cardiac perfusion Rb-82 PET/CT images was used in the 

development of the algorithm (training group), and a separate group of 65 datasets was 

used to test the effectiveness of the algorithm (testing group). The data were 

retrospectively obtained, and the patient information was de-identified. Each patient data 

set consists of 1) a breath-hold HCT scan at or near end-expiration before the resting 

perfusion PET data and 2) ACT derived from a free-breathing, low-dose cine CT scan 

covering the heart after the stress perfusion PET data. The stress PET images without 

attenuation correction (PETnoAC) were used for registration with the ACT and HCT. The 

PET data were acquired over five minutes and reconstructed with the filtered back 
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projection (FBP) algorithm with a Butterworth filter using a cutoff frequency of 0.55, and 

roll-off of 10. Randoms were corrected by the option of singles, and scatter correction 

was applied. Both CT and PET images were reconstructed for a 50.0-cm field of view 

over a longitudinal coverage of 15.4 cm with 3.27 mm slice spacing. The matrix size was 

512 × 512 × 47 for CT and 128 × 128 × 47 for PET. Because the gradient calculation is 

sensitive to noise, both ACT and HCT images were filtered with a 2D, 5mm-FWHM 

Gaussian filter. The smoothing filter also enhances the gradient map in HCT which 

facilitates the registration algorithm. 

 

2.3.2 Matching image spatial resolution 

A summary of the algorithm is presented in Figure 2. Before processing the images, we 

performed linear interpolation of the datasets so that the image matrix size matched in all 

three orthogonal directions. Selection of the target spatial resolution depends on the 

desired precision of image registration. For faster computation, we adopted a dual-

resolution approach: the two sets of images were first matched on the lower resolution of 

the PET image (3.91 mm × 3.91 mm) to generate a fast and approximate registration 

result. Then the images were matched on the higher resolution of the CT image (0.98 mm 

× 0.98 mm) to improve the precision. 
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Figure 2. Flow chart illustrating our automatic registration algorithm. After initialization (matching 

resolution and initializing alignment), both CT and PET images go through fuzzy c-means (FCM) 

clustering to extract relevant information. The similarity index over a pre-determined search volume 

is then calculated based on gradient correlation to find the maximum. We adopted a dual-resolution 

approach, which represents the pixel sizes of PET and CT. The algorithm is first executed at the low-

resolution level with a larger search volume; the PET and CT datasets are realigned according to the 

results. The algorithm is then executed at the high-resolution level to improve the registration 

precision. This substantially reduces the execution time of the algorithm compared to a single high-

resolution approach with the same search volume. 

 

2.3.3 Application of the Modified Fuzzy C-means Clustering Algorithm 

We employed a modified FCM algorithm [58] to facilitate the registration of cardiac 

PET/CT data. Unlike in conventional segmentation techniques in which each pixel 
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belongs to only a particular cluster, in FCM clustering each pixel can have a partial 

membership (expressed as numerical values ranging continuously from 0 to 1) in each 

cluster. The memberships of a particular pixel in all clusters add up to 1. We selected 

FCM instead of other segmentation techniques because FCM-segmented images (i.e., the 

maps of memberships) vary smoothly at the edges and therefore preserve the gradient 

information that is crucial to our method. For CT, the soft tissue cluster is extracted for 

registration; for PET, the myocardial cluster is extracted. 

The introduction of FCM into the algorithm serves two purposes: 1) to extract the 

information that is most relevant to the registration and 2) to introduce a regulation 

parameter that can be used to optimize the algorithm. Our implementation of FCM is 

summarized in the following paragraphs. 

In the original FCM clustering algorithm [59], the memberships of each pixel in 

each cluster are found by solving an optimization problem for the objective function (J): 
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where N is the total number of image pixels; c is the pre-selected total number of clusters; 

i and j are the indices for the pixel and cluster, respectively; uji is the membership of pixel 

i in cluster j; m is the parameter that controls the “fuzziness” of the computation, which is 

set to 2 (FCM algorithms generally use 2 for this value); xi is the intensity of pixel i; and 

vj is the centroid value of cluster j. This problem can be solved by iteratively computing 

the following equations (in which k is the index of the clusters): 
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Both the memberships and cluster centroids are updated in each iteration. The iteration 

ends when the difference between two consecutive iterations in u and/or v is lower than a 

predetermined threshold. 

Instead of iterative computation in the original FCM algorithm, we assign pre-

determined values to the cluster centroids and calculate the associated membership values 

in our implementation. Not only does this step reduce computation, it also improves the 

robustness of the algorithm because automatic estimation of the FCM centroids can fail 

in certain CT and PET cases in which an atypical distribution of pixel values is 

encountered. For example, for a patient with little body fat, in FCM of the CT image the 

fat can be absorbed into the soft tissue cluster, and another cluster, usually either lung or 

bone, will be split into two clusters. Assigning pre-determined centroid values can be 

justified for the CT images because the CT numbers for different tissue types, especially 

those for soft tissue, do not vary substantially among patients. Five clusters – 

representing air, lung, fat, non-fat soft tissue, and bone – are used in the processing of CT 

images. The cluster centroids assigned in our study are the mean values of the cluster 

centroids, which are automatically estimated from the CT images in the 55 datasets of the 
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training group: air = -980 HU, lung = -680 HU, fat = -120 HU, soft tissue = 30 HU, bone 

= 480 HU. 

For the processing of PET images, the assigned centroid values are dependent on 

the maximal activity inside the myocardium, Imax, which can be identified automatically. 

For the background (air), non-myocardial tissue and myocardium, the centroids were 

assigned as 0, 0.2 Imax, and α Imax, respectively. The cluster centroid for non-myocardial 

tissue was determined empirically by observing the histogram of the PET images in the 

training group, which was found to be typically in the range of 10% to 30% of the 

maximum myocardial uptake. The parameter α was introduced as a means to regulate the 

segmentation of the myocardium in PET, which in turn regulates the PET gradient map 

calculation and thus the registration algorithm. To determine the appropriate value for α, 

we performed the computation with various α values on the training group and compared 

the results to those from manual registration. Once the cluster centroids have been set, the 

memberships can be computed according to Eq. 2-3. 

After FCM segmentation, clusters that represent the myocardium in the PET 

images (PETmyoc) and the soft tissues in the CT images (CTsoft) are extracted (Figure 3) 

and used for calculating the similarity index. 
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Figure 3. The CTsoft (a) and PETmyoc images (c) compared with the original CT (b) and PET (d) 

images. Voxels with high membership in the soft tissue cluster in CT and the myocardial cluster in 

PET appear hyperintense in each image. 

 

2.3.4 Similarity Index 

For our algorithm, registration is modeled as a 3D rigid-body translation, which is also 

what has been used in manual registration. In this model, the alignment of the PET and 

CT data can be uniquely described by a vector l
v

∆  of three coordinates, representing the 



34 

 

relative displacements between the PET and CT datasets along the three orthogonal axes; 

the corresponding similarity index )( lS
v

∆  is defined as the vector correlation between the 

two gradient maps: 
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where r
v

 is the spatial location of pixels in the frame of reference of the PET coordinate 

system (which in our algorithm is kept stationary); V  is an automatically determined 

volume of interest (VOI) that encloses the cardiac anatomy in PET; ∇ is the 3D gradient 

operator; and 
myocPETI  and 

softCTI  are the intensities of PETmyoc and CTsoft, respectively. To 

determine the VOI, a minimal 3D bounding box was automatically selected to enclose all 

the myocardial voxels above 50% of the maximal myocardial uptake. The bounding box 

was then extended by 5% of the FOV along the longitudinal direction (8 mm) and the two 

axial directions (25 mm) on both ends so that the VOI had a sufficient coverage. The 

gradient operator produces a 3D vector, each element of which is calculated by averaging 

the results of the forward and backward finite difference operations. The gradient along 

the S-I direction is scaled to account for the difference between the resolutions within the 

plane and perpendicular to the plane. 

 

2.3.5 Search for the Optimal Registration 

Like many other commonly used similarity indices in image registration, the gradient 

correlation can have local maxima (Figure 4). Non-exhaustive search schemes such as the 

gradient descent algorithm are not guaranteed to arrive at the desired global maximum. 
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However, owing to the simplicity of this similarity index, an exhaustive search scheme is 

computationally affordable. Adoption of an exhaustive search scheme also ensures the 

reproducibility of the algorithm. In our dual-resolution approach, the vector representing 

the initial alignment of PET and CT is defined as 0=∆l
v

. In the low-resolution 

registration, the corresponding similarity index )( lS
v

∆  was computed for every possible 

translation l
v

∆  within a 3D search volume of 51 mm × 51 mm × 101 mm
 
centered at the 

initial alignment. The search volume was determined according to the maximal initial 

misalignment in the training datasets. The registration with the maximal similarity is 

chosen as the initial alignment for the high-resolution registration. It should be noted that 

in the low-resolution stage, the gradient map along the anterior-posterior (A-P) direction 

was excluded from the calculation of the similarity index in order to improve the 

robustness of the algorithm. The reason is that the A-P gradient in CT images along the 

anterior cardiac wall sometimes has a very narrow spatial distribution; as a result, during 

the low-resolution registration stage it can be overpowered by the gradient at the anterior 

chest wall and cause erratic registration results. 

The same process is repeated at the higher resolution with a smaller search 

volume of 17 mm × 17 mm × 3 mm. The search volume has a greater expansion in the in-

plane directions to compensate for the exclusion of the A-P gradient at the low-resolution 

stage. A representative distribution of the similarity index is shown in Figure 4. 
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Figure 4. Typical similarity distribution at low resolution (3.91 mm × 3.91 mm with a large search 

volume) and high resolution (0.98 mm × 0.98 mm with a small search volume). For better 

visualization, the 3D volumetric data were collapsed onto two dimensions in both plots by taking the 

maximum value along the superior-inferior direction. 

 

2.3.6 Parameter optimization and evaluation of registration results 

The algorithm was first applied to the training group with the value of α, the regulating 

parameter in the FCM processing of the cardiac PET data, varying between 0.30 and 

0.95. The optimal value for α was then determined and the algorithm was applied to the 

testing group. Manual registration was performed on both groups by two observers using 

our in-house manual registration software that allows visualization of the fused PET/CT 

images as well as their interactive alignment using 3D rigid-body translation. In order to 
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improve the accuracy and consistency of the procedure, the manual registration was 

conducted in the following manner: 

1) the two observers were asked to perform manual registration independently on 

the PET/CT datasets while blinded to the results of the algorithm and of each other’s 

manual registration; 2) the registration results from the two observers were compared, 

and for cases with large disagreements (>=5 mm), the two observers were asked to repeat 

the registration until the disagreement was less than 5 mm; 3) the average registration 

position was then used as the reference to which the automatic registration results were 

compared. 

In addition to assessing the difference between the automatic and manual 

registrations, we designed an objective metric with which to evaluate the registration 

results. Because attenuation artifacts in cardiac PET originate from the erroneous 

projection of myocardial uptake into lung tissues, the fraction of mis-projected 

myocardial volume (FMMV) inside the lung tissue of the CT images can serve as an 

indicator of the severity of the attenuation artifact in the reconstructed PET images. 

FMMV is computed as: 

myoc

lungmyoc

V

VV
FMMV

I
=   Eq. 2-5 

For a pair of registered PET/CT data, values of FMMV that are close to 0 denote 

minimal mis-projection of the myocardial uptake, and hence minimal attenuation artifact 

is expected. On the other hand, if FMMV is considerably greater than 0, a more severe 

attenuation artifact can be expected in the reconstructed PET image (Figure 5). In our 
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approach, we measured FMMV by first segmenting the myocardium from PETnoAC and 

the lungs from CT and then calculating the percentage of the myocardial voxels in the 

PET data that fell inside the lungs in the CT images. Both segmentations were performed 

with a threshold-based region-growing algorithm instead of FCM in order to avoid any 

potential bias. The segmentation of the myocardium was performed with a lower 

threshold of 0.5Imax and was manually validated for each case. The segmentation of the 

lung was performed with the threshold of -330 HU, which is the average of the mean 

lung HU and the mean soft tissue HU from one of our previous studies [60]. The results 

of the lung segmentation were also manually verified. 

 

Figure 5. Examples of calculated FMMV at different registrations. The mis-projection in these 

examples is highlighted by white arrows. A higher FMMV value indicates more cardiac uptake being 

erroneously projected into the lung tissues, which generally leads to attenuation artifacts. 
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FMMV quantifies the amount of the myocardium in the PET images that 

encroaches into the lung region of the CT images; therefore it can be a good indicator of 

attenuation artifact. It should be noted that FMMV by itself cannot directly quantify the 

accuracy of registration because a large misalignment between PET and CT could still 

have a low or nil FMMV value when the myocardium in PET is “pulled” deep into the 

heart region on CT. FMMV can, however, evaluate the relative quality of two 

registrations if the possibility of the aforementioned scenario has been precluded, e.g. 

when the PET and CT data have been registered using either manual or automatic 

registration. 

The two-sided Wilcoxon signed rank test was the primary statistical test 

employed to evaluate the significance of the difference because the numerical results in 

this study did not follow a normal distribution. In the case of different sample sizes, a 

two-sided Wilcoxon rank sum test was used. The two-sided Z-test was also used when 

testing results involving proportions. For the cases with a prominent initial 

misregistration, the PET images were attenuation-corrected with the CT images before 

and after the automatic registration to demonstrate the reduction of attenuation artifacts. 

 

2.4 Results 

2.4.1 Manual registration 

Inter-observer variability of the manual registration was evaluated in data from both the 

training group and the testing group (i.e., Ntotal=55+65=120) since it does not depend on 
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the algorithm. For the first round of manual registration, the disagreements between the 

two observers were 4.6±2.0 mm (max 11.1 mm) and 4.2±2.0 mm (max 9.0 mm) for ACT 

and HCT datasets (p = 0.094), respectively, with 43/120, or 36%, and 36/120, or 30%, 

cases (p = 0.336) having inter-observer disagreement greater than 5 mm. After repeated 

registration of these cases where the disagreement exceeded 5 mm, the disagreements 

reduced to 3.0±1.3 mm and 2.8±1.4 mm for ACT and HCT, respectively. 

 

2.4.2 FCM parameter selection 

Using the average manual registration provided by the two observers as the reference, the 

effect of the PET FCM parameter α on the registration error is plotted in Figure 6 for both 

the HCT and the ACT data from the training group. When α is too small (<=0.60), the 

FCM segmentation of the myocardium in PET starts to fail, which in turn leads to erratic 

registration results. A “stable” region is observed for values above 0.60; however, 

increasing α imposes a small yet consistent error in the alignment compared to the 

manual registration and thus should be also avoided. Weighing both the registration 

errors and the risk of algorithmic failure, α = 0.65 was selected for the registration with 

both ACT and HCT for the testing group. 
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Figure 6. Registration difference between algorithm and manual registration as α varies in the 

training datasets. A low α can cause the registration algorithm to fail due to inappropriate FCM 

segmentation of PET images. A “stable” region is observed for α ≥ 0.65. 

 

2.4.3 Misalignments in ACT and HCT before and after Automatic Registration 

Execution of our dual-resolution Matlab-based algorithm takes approximately 15 seconds 

on a Dell Precision T5600 workstation (Intel Xeon E5-2667, 2.9 GHz). The 

misalignments between PET and CT in the testing group before and after automatic 

registration (using the average manual registration as the reference) are listed in Table 1 

and plotted in Figure 7. The initial misalignment of ACT is less than that of HCT 
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(6.8±2.7 mm vs 9.5±8.6 mm), although the difference was not found to be statistically 

significant using the Wilcoxon signed rank test (p = 0.165). For cases with greater initial 

misalignments (either ACT or HCT >=10 mm), however, the mismatch in ACT datasets 

is significantly smaller than that in HCT (8.4±3.3 mm vs 16.4±10.8 mm, N = 24, p = 

0.005, not tabulated). In addition, for cases with large misalignments (>=10 mm) both the 

frequency (9/65 vs 20/65, p = 0.021) and extent (11.9±2.0 mm vs 18.8±10.2 mm, p = 

0.030) are less severe in ACT than in HCT. The findings agree with those of previous 

investigations [19, 20, 47]. 
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Figure 7. Misalignment between PET and ACT/HCT data before and after automatic registration 

(REG) using manual registration results as reference for all cases (a, b) and cases with initial 

misalignment greater than 10mm (c, d) in the testing group. Initial misalignment is prominent only in 

M-L for ACT, while both M-L and S-I shows a relatively large misalignment for HCT. After 

automatic registration, registration is improved in all directions for both ACT and HCT. The 

improvement in registration is more evident in cases with greater initial misalignments. 

 

The initial misalignment in the M-L direction is relatively prominent for both 

ACT (5.2±2.6 mm) and HCT (5.5±3.5 mm). This is the direction along which patient 
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motion is most likely to occur. On the other hand, the initial misalignment along the A-P 

direction is minor for both ACT (2.4±1.2 mm) and HCT (2.8±2.7 mm) datasets. This is 

most likely due to motion restriction by the scanner table. Along the S-I direction, 

however, HCT has a substantially greater misalignment than ACT (5.8±8.6 mm vs 

2.7±2.4 mm, p = 0.012). This is most readily attributable to the end-expiration breath-

hold of the HCT protocol, which moves the heart away from its average location along 

the S-I direction, and the longer temporal separation between the HCT scan and the PET 

stress scan. 

This algorithm significantly reduced the overall misalignment (root-of-sum-of-

squares, or RSS, distance) and misalignments along each orthogonal direction for both 

HCT and ACT datasets (Table 1). After registration, the RSS misalignment decreased to 

3.9±1.7 mm for ACT and 3.7±1.6 mm for HCT, respectively. The residue RSS 

misalignment in ACT was found to be less than that of the inter-observer variability (p = 

0.017), and in HCT they were found to be comparable (p = 0.135). The reduction of 

misalignment was particularly conspicuous in datasets with greater initial misalignments 

(Table 1, Figure 7). Examples of registration are shown in Figure 8. 
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Table 1. Misalignment between PET and CT before and after registration. Numbers in parentheses are the 

maximal distances within that group. 

All cases (N=65) 

Distance from reference (mm) ACT HCT p-value 

Anterior-Posterior (A-P) Before 2.4±1.2 (5.9) 2.8±2.7 

(13.7) 

0.927 

After 2.0±1.3 (4.9) 1.7±1.1 (4.9) 0.186 

 p-value 0.035 0.031  

Medial-Lateral (M-L) Before 5.2±2.6 

(14.6) 

5.5±3.5 

(15.1) 

0.511 

 After 2.0±1.7 (6.8) 1.8±1.3 (4.9) 0.395 

 p-value <0.001 <0.001  

Superior-Inferior (S-I) Before 2.7±2.4 (9.8) 5.8±8.6 

(42.5) 

0.012 

 After 1.8±1.5 (6.5) 2.0±1.7 (6.5) 0.303 

 p-value 0.005 <0.001  

Root-of-Sum-of-Square (RSS) Before 6.8±2.7 

(15.5) 

9.5±8.6 

(45.4) 

0.165 

 After 3.9±1.7 (9.0) 3.7±1.6 (8.6) 0.636 

 p-value <0.001 <0.001  

     

 

Cases with initial misalignment >=10mm in ACT (N=9) 

Distance from reference (mm) ACT 

 A-P M-L S-I RSS 

Before 3.7±1.3 (5.9) 8.8±3.7 (14.6) 5.5±3.3 (9.8) 11.9±2.0 (15.5) 

After 2.2±1.6 (4.9) 3.0±2.4 (6.8) 3.3±1.6 (6.5) 5.5±2.1 (9.0) 

p-value 0.094 0.004 0.188 0.004 

     

 

Cases with initial misalignment >=10mm in HCT (N=20) 

Distance from reference (mm) HCT 

 A-P M-L S-I RSS 

Before 4.8±3.9 (13.7) 8.9±3.3 (15.1) 14.4 ±11.2 

(42.5) 

18.8±10.2 (45.4) 

After 1.5±1.1 (4.9) 1.5±1.1 (4.9) 2.1±1.9 (6.5) 3.5±1.6 (6.6) 

p-value 0.005 <0.001 <0.001 <0.001 
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Figure 8. Examples of misalignment before and after registration by the algorithm. Both ACT and 

HCT cases were initially mis-aligned and become well-aligned after the automatic registration. 

Misalignment in HCT can be particularly severe due to respiration mismatch and is generally minor 

in ACT, though registration is still necessary for accurate quantification. 
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2.4.4 Reduction of Erroneously Projected Myocardial Uptake 

FMMV values for the 65 datasets in the testing group before and after the registrations 

are plotted in Figure 9. Before any registration, FMMV was 11.3±9.0% for ACT and 

20.1±22.7% for HCT. After manual registration, FMMV decreased to 1.5±1.5% (p < 

0.001) for ACT and 2.4±2.5% (p < 0.001) for HCT, while after automatic registration it 

decreased to 1.4±1.5% (p < 0.001) for ACT and 2.5±2.4% (p < 0.001) for HCT. The 

difference between the manual registration and the algorithm was statistically 

insignificant (p = 0.397 for ACT, p = 0.636 for HCT). The measured FMMV showed that 

a considerable mis-projection of myocardial uptake exists for the PET/CT data before 

registration, indicating the presence of quantification errors if no registration is 

performed. 
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Figure 9. Measured FMMV for initial alignment (NO REG), after manual (MANUAL) and 

automatic (ALGM) registration. The results suggest that the HCT started out with more severe 

misregistration than did the ACT. Both manual and automatic registrations reduced FMMV to a 

similar level. 

 

2.4.5 Example of Attenuation Artifact Reduction 

In cases where severe misregistration was found in the PET/CT images, the automatic 

registration algorithm substantially reduced the registration error and the resultant 

attenuation artifact in the attenuation-corrected cardiac PET images. One example is 

shown in Figure 10. 
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Figure 10. An example of dataset before and after registration. The original images were severely 

misregistered, which resulted in artifactual hypoperfusion in the lateral walls (white arrows). After 

automatic registration with our algorithm, the images were well registered and the artifact was 

removed. The misalignment was usually most severe along the M-L direction, but in this particular 

case it occurred along the A-P direction. 

 

2.5 Discussion 

We have developed a novel algorithm for the automatic registration of cardiac PET and 

CT images that is based on a 3D gradient correlation algorithm with a modified FCM 

method. The results from the algorithm were in good agreement with those from the 

manual registration, with the mean differences being less than 4 mm (and the maximum 
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differences being 9.0 mm for ACT and 8.6 mm for HCT). After optimization, the 

registration results compare favorably to previously reported approaches: in the studies 

conducted by Alessio et al. [53] with 5 patients and Bond et al. [55] with 26 patients, the 

mean translation differences were reported to be 6.6 mm (and the maximum 10.8 mm) 

and 8 mm (and the maximum 27 mm), respectively. 

After the FCM clustering algorithm removes the information that does not 

contribute to – or may even confound – the image registration process, the gradient 

correlation can reach the maximal value only when the myocardium in the PET and CT 

images aligns well in all three orthogonal directions. As long as the segmentation is 

performed properly (i.e., with the appropriate α value selected), the maximal similarity 

index is expected to translate into minimal registration error between the PET and CT 

images. The simplicity of our similarity index enabled an efficient calculation of the 

algorithm and the adoption of an exhaustive search scheme.  

The inter-observer variability of manual registration was demonstrated in this 

study. Surprisingly, the disagreement between the two observers was greater than 5mm in 

over 30% cases for both ACT and HCT datasets before reconciliation. This underscores 

the limitation of using manual registration as the reference when evaluating a registration 

algorithm. In this study, the difference between our algorithm and the manually 

performed reference registration is less than or comparable to the inter-observer variation 

within the manual registration. Assuming that a manual registration produces tolerable 

results, this suggests that cardiac PET/CT registered using our algorithm might be 

acceptable in the clinic. 
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The difference between ACT and HCT in our results demonstrated the advantage 

of the average CT protocol over helical CT in reducing misalignment in cardiac PET/CT. 

First, the initial misalignments along the S-I direction of ACT in the testing group are 

significantly lower than those of HCT (p = 0.012). The large initial misalignment along 

the S-I direction in HCT was likely due to the patients’ holding their breath during 

acquisition and the longer separation in time between the acquisitions of the HCT and the 

stress PET scan. Secondly, when greater misalignment (>=10 mm) occurs, ACT tends to 

be less severe than HCT in terms both of frequency (9/65 vs 20/65, p = 0.021) and of 

extent (11.9±2.0 mm vs 18.8±10.2 mm, p = 0.030). Additionally, in HCT, two cases (3%) 

were found to have greater than 10 mm misalignment along the A-P direction, while in 

ACT the maximum misalignment along this direction was only 5.9 mm. These results 

suggest that ACT can largely compensate for the respiration-induced misalignment along 

the S-I and A-P directions. The remaining misalignment in the M-L direction most likely 

stems from the patient motion, which ACT alone cannot correct for. 

The difference in FMMV between pre-registration ACT and HCT data is another 

indication of the advantage of ACT in reducing attenuation artifacts. Although the overall 

misalignment of ACT prior to registration was smaller, the average FMMV remained at 

11%, suggesting that registration is still necessary in order to achieve accurate 

quantification. We did not include rotations in our registration modeling because ACT 

was able to reduce the misregistration to a simpler translational type of registration in the 

clinic [52]. The consequence of this can be perceived in the FMMV values: after manual 

registration, ACT has less activity remaining inside the lung than HCT 
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(FMMVACT=1.5±1.5%, FMMVHCT=2.4±2.5%, p<0.001). This suggests that even after 

careful manual registration, ACT can still provide a potentially better attenuation map for 

cardiac PET than does HCT. The algorithm was able to reduce FMMV to a level similar 

to that achieved by manual registration for both ACT and HCT, indicating its 

effectiveness in reducing attenuation artifacts in cardiac PET. 

The primary purpose of this study was to develop an automatic registration 

method and to evaluate its accuracy in registration with ACT and HCT. We did not 

evaluate the reduction of the attenuation artifact in the reconstructed PET image. This is a 

limitation of our study. However, by measuring and comparing FMMV values, we 

demonstrated that considerable mis-projection of the myocardial uptake exists in the 

PET/CT datasets without registration, and our algorithm achieved an FMMV reduction 

similar to that of the manual registration. Given that the attenuation artifact in the cardiac 

PET image is produced by such mis-projection, we believe our algorithm can achieve a 

similar artifact reduction to a level comparable to the manual registration. This 

observation needs to be verified by future work. 

 

2.6 Conclusion 

We have designed a novel automatic algorithm for the registration of cardiac PET and CT 

images and evaluated it in clinical datasets containing both ACT and HCT images. The 

registration results from our algorithm were compared to those from manual registrations 

performed by two human experts, and an objective metric, FMMV, was developed to 

characterize the fraction of mis-projection of the myocardial uptake inside the lung 
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tissues, which causes attenuation artifacts. Our evaluation of the results shows that our 

algorithm can mitigate the misalignment between the cardiac PET and CT data and 

reduce the activity mis-projection to a level similar to that of manual registration, 

suggesting the effectiveness of the algorithm in reducing attenuation artifacts. The 

algorithm is computationally efficient and potentially useful in a clinical setting. ACT is 

found to be advantageous over HCT in reducing the mismatch in cardiac PET/CT, but it 

still requires registration for accurate quantification. 

  



54 

 

 

 

 

 

 

 

Chapter 3: Reduction of Temporal Mismatch 

between PET and MR1 

  

                                                 
1
 The work described in this chapter was accepted for publication in the Journal of Applied Clinical 

Medical Physics (H. Ai, T. Pan, Feasibility of using respiration-averaged MR images for attenuation 

correction of cardiac PET/MR imaging, Journal of Applied Clinical Medical Physics Vol. 16, No. 4, 2015) 
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3.1 Abstract 

Cardiac imaging is a promising application for combined PET/MR imaging. However, 

the current MR imaging protocols for whole-body attenuation correction can produce 

spatial mismatch between PET and MR-derived attenuation data owing to a disparity 

between the two modalities’ imaging speeds. We assessed the feasibility of using a 

respiration-averaged MR (AMR) method for attenuation correction of cardiac PET data 

in PET/MR images. First, to demonstrate the feasibility of motion imaging with MR, we 

used a 3T MR system and a two-dimensional fast spoiled-gradient-recalled echo (SPGR) 

sequence to obtain AMR images of a moving phantom. Then, we used the same sequence 

to obtain AMR images of a patient’s thorax under free-breathing conditions. MR images 

were converted into PET attenuation maps using a three-class tissue segmentation 

method with two sets of pre-determined CT numbers, one calculated from the patient-

specific (PS) CT images and the other from a reference group (RG) containing 54 patient 

CT datasets. The MR-derived attenuation images were then used for attenuation 

correction of the cardiac PET data, which were compared to the PET data corrected with 

average CT (ACT) images. In the myocardium, the voxel-by-voxel differences and the 

differences in mean slice-activity between the AMR-corrected PET data and the ACT-

corrected PET data were found to be small (less than 7%). The use of AMR-derived 

attenuation images in place of ACT images for attenuation correction did not affect the 

summed stress score. These results demonstrate the feasibility of using this SPGR-based 

MR imaging protocol to obtain patient AMR images and using those images for cardiac 

PET attenuation correction.  
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3.2 Introduction 

The advent of hybrid positron emission tomography (PET)/magnetic resonance (MR) 

imaging systems offers the potential of superior diagnostic performance over PET/CT 

(computed tomography) in certain applications [61-65], including cardiac imaging [66-

70]. However, respiratory motion can compromise the quantification of cardiac PET data 

using MR data. This issue was discussed in the previous chapter for the case of PET/CT: 

the respiratory motion–induced spatial mismatch between the emission data from PET 

and the attenuation data estimated from CT can cause moderate to severe artifacts in up 

to 40% of clinical cardiac PET/CT studies [42, 44]. This mismatch, which reflects the 

different breathing states captured by the respective imaging modalities, is largely due to 

the disparity in the modalities’ imaging speeds [71]. Unlike PET data, which are 

averaged over several minutes, each CT slice is captured in less than one second. 

Similarly, in whole-body PET/MR imaging, MR images for attenuation correction, unlike 

PET data, are usually acquired using a breath-hold Dixon sequence, which takes about 18 

seconds for each 21-cm bed position [36]. Examples of respiration-associated attenuation 

artifacts in clinical whole-body PET/MR have been reported by Keller et al [72]. The 

difference in image acquisition time suggests that artifacts caused by spatial mismatch 

can also occur in cardiac PET/MR imaging. 

 For cardiac PET/CT attenuation correction, the use of respiration-averaged CT 

(ACT) images has been reported to reduce respiratory motion-induced misalignment of 

PET and CT images [19, 20, 71]. Similarly, we posit that using respiration-averaged MR 

(AMR) images for attenuation correction could reduce misalignment between cardiac 
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PET and MR data and thus reduce myocardial perfusion artifacts in PET/MR images. As 

a proof of concept, in the present study, we 1) assessed a spoiled gradient recalled echo 

(SPGR)-based MR imaging protocol for obtaining cardiac AMR images under free 

breathing conditions, 2) demonstrated the feasibility of deriving attenuation maps from 

AMR data, and 3) evaluated this technique in a patient study. 

 

3.3 Methods 

3.3.1 Phantom Validation 

To assess the effect of respiratory motion on the MR imaging protocol, we scanned a 

spherical phantom (diameter = 16.5 cm) containing 0.1% sodium azide using a 3T 

clinical MR imaging system (GE Discovery MR750) integrated with a motion-enabled 

table (ROCKER system, GE). The spherical phantom was fixed to the top of the table. 

Because the table is able to generate one-dimensional periodic motion along the axial 

direction of the scanner, it can be used to simulate respiratory motion, which is usually 

modeled as one-dimensional motion along the superior-inferior direction of the patient 

(i.e., the axial direction of the scanner). The table moves with a prescribed velocity and 

range; it pauses briefly at either end of the motion, leading to a trapezoidal motion track 

(Figure 11). In our experiment, we used a range of ±1.5 cm and a velocity of 1.5 cm/s, 

which resulted in a motion period of 4.88 seconds. 
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Figure 11. Motion trajectory of the phantom. Owing to a limitation of the motion system, a 

trapezoidal track was used instead of a sinusoidal one. The range (30 mm) and period (4.88 seconds) 

of the motion are reasonable approximations of human respiratory motion. 

To obtain axial slices of the phantom under simulated respiratory motion, we 

performed an MR scan with a two-dimensional (2D) multi-slice, multi-phase, fast spoiled 

gradient recalled echo (SPGR) sequence (field of view = 260 mm × 260 mm, slice 

thickness = 5 mm, frequency/phase encoding = 128×128, repetition time [TR]/echo time 

[TE] = 3.0 ms/1.4 ms, flip angle = 20°, bandwidth = ±125 kHz) with a single-channel 

head coil. Fourteen temporal frames were acquired for each slice. Each frame’s duration 

was 0.4 seconds, resulting in a temporal coverage of 5.6 seconds for each slice. A total of 

30 slices were acquired, covering 150 mm along the axial direction. The scan duration 

was 169 seconds. 
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3.3.2 Patient PET/CT study  

A patient who received a cardiac rubidium-82 (
82

Rb) chloride PET/CT was recruited for 

the MR imaging, which was performed under free breathing conditions. The PET and 

MR images were acquired separately, not concurrently or simultaneously. Cardiac 

PET/CT was performed using a GE Discovery ST 16-slice PET/CT system with the 

patient in a supine, arms-up position. Dipyridamole stress testing with PET was 

performed over six minutes beginning 70 seconds after the start of 
82

Rb infusion (1,295–

1,850 MBq [35-50 mCi]). Dipyridamole stress testing was followed by a cine CT for 

ACT (8 × 2.5 mm X-ray collimation, 120 kVp, 0.5-second gantry rotation, 5.9-second 

cine duration) [18]. PET perfusion images were reconstructed with filtered back 

projection using a Butterworth filter with a cutoff frequency of 0.55, a “roll-off” value of 

10, and a pixel size of 3.27 × 3.27 mm
2
. Randoms were corrected by the option of 

singles, and scatter correction was applied. 

 

3.3.3 Patient MR Study 

For MR imaging, the patient was placed in an 8-channel torso coil and scanned using the 

GE 3T MR imaging system in a supine, arms-up position. Images of the patient’s thorax 

and upper abdomen were obtained using the 2D multi-slice, multi-phase SPGR sequence 

used for the phantom, with slightly modified parameters (TR/TE = 3.7 ms/2.2 ms, flip 

angle = 20°, frequency/phase encoding = 128×128, field of view = 400 mm × 400 mm, 

slice thickness = 5 mm, bandwidth = ±125 kHz). In particular, TE was automatically 

determined by the console as the result of choosing the “in phase” setting, which ensures 
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that the phase difference between water and fat signals in the MR image is minimized. 

TR was automatically adjusted to account for the change in TE. Axial slices were 

acquired for attenuation correction of the PET images. A total of 30 slices were acquired, 

covering 150 mm along the superior-inferior direction. The acquisition time for each 2D 

frame was 0.48 seconds, and 12 temporal frames (5.76 seconds) were obtained 

consecutively to ensure continuous and sufficient coverage of at least one respiratory 

cycle for each slice location. The temporal coverage was close to 5.9 seconds, which was 

the duration chosen in a previous ACT study based on recorded breathing cycles for 600 

patients [71]. The total scan duration was slightly less than three minutes, which is a 

typical PET acquisition time per bed position in oncology. 

 

3.3.4 Data Processing 

Previously developed segmentation-based methods produce attenuation maps that assign 

discrete attenuation coefficients for each tissue class. As a result, these methods cannot 

directly convert AMR images into synthetic ACT images, ACTAMR, whose attenuation 

properties should reflect the motion blurring. Direct conversion from AMR to ACTAMR 

can be potentially achieved with a pattern recognition or machine learning algorithm 

combined with a dedicated ACT/AMR atlas [73], or a fuzzy segmentation of the MR 

images. In the present study, we circumvented this problem by processing each MR 

image frame acquired at different temporal phases instead of processing AMR images. 

After each frame of the MR image was converted into a synthetic CT image, ACTAMR 
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was derived as the average of all the frames for each slice. In other words, the averaging 

was performed on attenuation data rather than on MR data. 

A simple three-class (air, lung, and soft tissue) segmentation approach [74-76] 

was adopted to convert MR images into synthetic CT images. To overcome the low 

signal-to-noise ratio and spatial inhomogeneity in each frame of the MR images, we 

implemented the following steps to achieve better segmentation. First, anisotropic 

diffusion filtering [77] was applied to reduce noise while preserving edge information. 

Then, sequential morphological erosion and dilation algorithms, which aim to remove 

small, isolated noise clusters that had been treated as “soft tissue” during the initial 

thresholding, were used to threshold-segment and refine the soft tissue. Bone voxels 

could not be separately identified in these MR images; instead, they were subsumed by 

the soft tissue class during segmentation.  After the soft tissues were identified, the rest of 

the pixels in each 2D image were grouped into connected regions using a modified 

Moore-Neighbor tracing algorithm [78]. The region that contained pixels outside the 

body contour was identified as air, while all the non-tissue regions inside the body were 

identified as lung. After segmentation, predetermined CT numbers were assigned to each 

segmentation class in order to generate a corresponding synthetic CT image. Finally, the 

averaged attenuation images were derived as the pixel-by-pixel arithmetic mean of the 

individual synthetic CT images of all phases. 

The assigned CT numbers for lung and tissue were determined by segmenting the 

CT images that were obtained in cardiac PET/CT. Non-anatomical components (the 

scanner table, blanket, etc.) were removed from the CT images, and then the lung was 
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segmented using a region-growing algorithm with a fixed upper threshold (-350 HU). 

Tissue was segmented by applying a lower threshold (-500 HU) and then excluding the 

segmented lung. Both fat and bone were thus included in the soft tissue class. Class-

specific mean CT numbers were then calculated from the segmented tissue classes and 

used to create attenuation images. 

We used two sets of CT numbers to generate attenuation images from MR data. In 

one set, patient-specific (PS) CT numbers were derived from the patient who underwent 

MR imaging. This set was created to ensure that the attenuation property of the created 

image matched that of the patient. In the other set, reference group (RG) CT numbers 

were computed by taking the mean of class-specific mean CT numbers from a 54-patient 

reference group. This set was created to ensure that average attenuation could also be 

used for attenuation correction. The average attenuation images derived using these two 

sets of CT numbers—ACTAMR-PS and ACTAMR-RG—were used along with the original 

ACT data for attenuation correction of the PET data. 

Before performing attenuation correction, we digitally removed the scanner table 

from the ACT data so that the ACT data matched the AMR data. Both the ACT- and 

AMR-derived attenuation images were manually shifted to ensure good alignment with 

the emission images in the myocardial region. To reduce subjectivity, two independent 

observers verified the results of the manual registration. Attenuation correction of the 

PET data was then performed with the ACT- and AMR-derived attenuation images, the 

results of which are referred to as PETACT, PETAMR-PS, and PETAMR-RG, respectively. 
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3.3.5 Assessing Differences in Attenuation-Corrected PET Images 

The quantitative difference in the myocardial region was evaluated. The myocardium was 

segmented in PETACT using a region-growing algorithm with the lower threshold set at 

50% of the maximal myocardial activity. We evaluated the myocardial quantification 

difference between MR-based and CT-based PET data by comparing voxel-by-voxel 

difference and mean slice activity (MSA). To assess the potential clinical impact 

resulting from the quantification difference, we used a semi-quantitative five-point 

scoring system [79] to evaluate the perfusion map for each attenuation-corrected PET 

dataset, which was created by reformatting the myocardial PET data using a 17-segment 

model recommended by the American Heart Association [80]. The definitions of these 

quantities are described below. 

For each voxel, the relative difference d1 and absolute relative difference d2 were 

computed as 
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where I and IREF represent the measured tracer concentration (Bq/cc) in each voxel. For a 

slice z, the MSA was first computed as 

z

Mj

PET

z
N

jI

MSA Z

∑
∈

=

)(

 

Eq. 3-2 



64 

 

where j is the index for a voxel, Mz is the set of voxels in slice z that were identified as 

myocardium, and Nz is the size of Mz. For comparison, normalized mean slice activity 

(nMSA) was calculated as 
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Eq. 3-3 

where MSAmax is the maximal MSA of all slices in the attenuation-corrected PET 

datasets. The difference in MSA in slice z was calculated as 

ACTzAMRzz nMSAnMSAdMSA ,, −=  

Eq. 3-4 

The polar perfusion maps were created with the Emory Cardiac Toolbox (ECToolbox, 

Atlanta, GA). Based on the amount of perfusion present in each segment, a score ranging 

from 0 to 4 was assigned automatically by the software as an indicator of cardiac 

perfusion function (0 = normal, 1 = equivocal, 2 = moderately reduced, 3 = severely 

reduced, 4 = absent). 

 

3.4  Results 

3.4.1 AMR Images of the Phantom and Patient  

For both the phantom that included simulated respiratory motion and the patient under 

free breathing conditions, visual inspection of the acquired MR images revealed that the 

MR protocol could generate AMR images without visible motion artifacts and with 
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average motion blurring effect, which is crucial to the success of this technique (Figure 

12). For the patient study, motion artifacts were not visible in the individual frames even 

when the images were displayed at the signal intensity level of the noise, indicating the 

effectiveness of the proposed MR protocol for free-breathing MR acquisition (Figure 13). 

 

Figure 12. (A) A single-frame phantom image and (B) a corresponding motion-averaged phantom 

image; (C) a single-frame patient image and (D) a respiration-averaged patient image. Motion 

blurring is clearly visible in the averaged images. 
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Figure 13. All twelve frames of one slice from the patient MR study acquired with the 2D FSPGR 

sequence. These frames are displayed at the signal intensity level of noise; motion ghosting artifacts 

that usually affect clinical MR images are not visible in these images, which were acquired under 

free-breathing, which indicates the effectiveness of the proposed MR protocol. 

 

3.4.2 Class-specific Mean CT Numbers 

The mean CT numbers calculated for lung and tissue were -726 HU and 47 HU, 

respectively, for the patient, and -727±51 HU and 4±18 HU, respectively, for the 54-

patient reference group. The same segmentation parameters were used for all datasets. 
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3.4.3 Quantification of PETAMR 

Representative slices of the sagittal, coronal, and axial views created from AMR, 

ACTAMR-PS, and ACT data are shown in Figure 14. With PETACT as the reference, the 

differences d1 and d2 of PETAMR-PS were -2.0±5.1% and 4.3±3.3%, respectively; for 

PETAMR-RG, the differences were -6.2±5.0% and 6.3±4.8%, respectively. 

 

Figure 14. Representative slices of the sagittal, coronal, and axial views created from AMR, ACTAMR-

PS, and ACT data. Views created from the ACTAMR-RG data, which are not visually different from 

those created from ACTAMR-PS data, are not shown. ACTAMR-PS and ACT images are shown with the 

same brightness and contrast. Respiration-averaging effects in the AMR images were preserved in 

the MR-derived attenuation images. Bones were included in the soft tissue class. Spatial mismatch 

between AMR and ACT images, which was the result of different table shapes, is clearly present in 

the dorsal area. 

 

The nMSA values for different PETAMR-PS, PETAMR-RG, and PETACT slices are 

plotted in Figure 15. The highest MSA value was that of slice 7 of PETAMR-PS, and this 
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value was used to normalize all three datasets. The absolute quantification difference in 

mean myocardial activity between PETAMR-PS and PETACT at different slices was 

2.0±1.6%; the maximum difference was 5.0%. The absolute quantification difference 

between PETAMR-RG and PETACT was 4.7±2.5%, with a maximum difference of 8.8%. 

 

Figure 15. Mean myocardial uptake in different slices normalized to maximal mean uptake. The 

slices are labeled from the most superior slice to the most inferior slice. The three curves are from 

PET corrections with ACT, AMR-PS (patient specific) and AMR-RG (reference group). 

 

Reformatted PET images (PETACT, PETAMR-PS, and PETAMR-RG images) of the 

myocardium along the short axis, horizontal long axis, and vertical long axis are shown in 

Figure 16. The PET images of the left ventricle in the attenuation-corrected PET images 

were reformatted into the polar maps using the 17-segment model. In the original ACT-
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corrected PET image, the summed stress score was 0, indicating normal cardiac function. 

The scores in all segments were the same in both AMR-corrected PET datasets (Figure 

17). 

 

Figure 16. Reformatted myocardial PET images showing different cardiac axes, in which rows A–C 

are short-axis views, rows D–F are horizontal long-axis views, and rows G –I are vertical long-axis 

views. In each three-row section, the PETACT, PETAMR-PS, and PETAMR-RG images appear in sequence 

from top to bottom. 
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Figure 17. PETACT, PETAMR-PS, and PETAMR-RG myocardial perfusion images. Stress scores were 

assigned to each segment. The patient had normal cardiac function, with a summed stress score of 0 

in the PETACT image. Using MR-derived attenuation images for attenuation images for attenuation 

correction did not affect the stress scores. 

 

3.5 Discussion 

The different patient tables of the MR system and the PET/CT system caused a visible 

spatial mismatch between AMR and ACT images in the dorsal area of the patient (Figure 

14) because the MR system’s table has a flat surface, whereas the PET/CT system’s table 

has a curved surface. This mismatch, which would not be an issue in a combined 

PET/MR system, most likely contributed to the underestimation of the cardiac activity in 

PETAMR-PS and PETAMR-RG. In the present study, we reduced the effect of this spatial 

mismatch on the PET quantification by ensuring good alignment of the attenuation 

images and emission images in the myocardial region. This was achieved by manual 
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registration, which is the typical approach to correcting misregistration between cardiac 

PET and CT images [44]. 

In a previous phantom-based study, Bin et al. [28] found that reconstructed PET 

activity can be underestimated by 10%-20% if one does not correct for the attenuation 

that is introduced by the MR system’s table. Our phantom experiment using the PET/CT 

system, with its curved table, produced similar results. Therefore, the imaging system 

table must be considered in order to accurately quantify PET data. In the present study, 

we attempted to incorporate the PET/CT system’s table into the AMR-derived 

attenuation images. Unfortunately, this proved to be difficult owing to the mismatch of 

the patient’s body contour resulting from the different shapes of the two tables. For the 

purpose of a fair comparison, therefore, we digitally removed the table from the ACT 

images before performing the attenuation correction. 

 As a proof of concept, we used a three-class segmentation scheme to derive MR-

based attenuation images. Despite its simplicity, this method achieved relatively accurate 

quantification in the reconstructed PET images. While creating the attenuation map from 

AMR images, we did not perform bone segmentation. Bone segmentation is difficult 

without the aid of a dedicated ultrashort-echo-time imaging sequence. To date it has been 

mainly applied in PET/MR imaging of the brain [37, 38]. In brain PET, quantification 

bias have been attributed to having ignored bone [81]. In whole-body PET/MR imaging, 

however, neglecting bone in segmented attenuation images has been thought to cause 

large errors only in regions that are inside or near bones [82-84]. In one example 

demonstrated by Samarin et al. [84], classifying bone as soft tissue resulted in a 
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difference of less than 6% for PET voxels in the heart region. Ouyang et al. [85] also 

concluded that the three-class segmentation can be sufficient for PET quantification in 

the heart, as it yields less than 5% quantification difference after compensation. These 

studies indicate that bone segmentation may not be necessary for cardiac PET/MR. 

Martinez-Moller et al. [36] proposed using a four-class segmentation scheme with 

the Dixon technique, in which fat is separated from non-fat soft tissue and assigned a 

different attenuation coefficient. Although evaluating different segmentation-based 

attenuation correction methods was beyond the scope of our study, it should be noted that 

the Dixon technique can be integrated into our proposed AMR protocol with a 

modification of the MR sequence to separate fat and non-fat soft tissue while maintaining 

similar temporal resolution. Such an approach may improve PET quantification in 

patients with higher body-fat composition. 

To investigate the effect of the assigned CT numbers on quantification, we 

created two sets of attenuation images from MR data: ACTAMR-PS and ACTAMR-RG. As 

expected, ACTAMR-PS resulted in a smaller quantification difference because of the more 

accurately estimated attenuation coefficients for the patient. In clinical PET/MR 

applications, however, patient-specific CT images are usually unavailable, and general 

coefficients must be used for attenuation correction. In the present study, the mean lung 

CT number of the patient (-726 HU) was close to that of the reference group (-727±51 

HU); however, a Student’s t-test revealed that the patient’s mean tissue CT number was 

significantly higher than that of the reference group (47 HU vs 4±18 HU, p<0.001). As a 

result, the quantification difference in the ACTAMR-RG-corrected PET data (6.3%) was 
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higher than that in the ACTAMR-PS-corrected PET data (4.3%). However, the error was 

small. For patients whose mean attenuation coefficients or CT numbers deviate less from 

the population mean, a smaller quantification difference is expected. AMR-based 

attenuation correction did not affect the summed stress score, indicating that the 

quantification difference is not clinically significant in this one case. Further investigation 

is required to evaluate the clinical effect of this method of MR-based attenuation 

correction. 

Several authors have proposed MR-based respiratory motion correction for 

thoracic PET/MR [86-89], and at least one phantom-based study tested a tagged MR 

imaging–based technique for cardiac motion correction [90]. Although such approaches 

aim to eliminate the effect of motion on the reconstructed PET image, they usually 

require non-standard MR sequences that are not clinically available. In contrast, the 

approach we propose uses a scheme that has proven effective in PET/CT to reduce the 

spatial mismatch between emission and attenuation data and the consequent artifact in the 

cardiac perfusion PET image. The present study’s findings suggest that a similar 

improvement can be achieved in cardiac PET/MR imaging without resorting to motion 

correction. 

In the present study, we tested the feasibility of using AMR images of the thorax 

to create attenuation maps for cardiac PET data. As a proof of concept, we designed a 

simple strategy to include the motion blurring effect by processing the images of 

individual phases. This strategy does not fully capture the motion blurring effect and is a 
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potential limitation of this study. However, the quantification errors were small, 

suggesting that this simple strategy is feasible.  

 

3.6 Conclusion 

The findings of the present study demonstrate the feasibility of using AMR images for 

attenuation correction of cardiac PET data. Despite the fact that the different tables of the 

MR and PET/CT systems caused a geometrical mismatch of the AMR-based and ACT-

based attenuation images, the PET data corrected with the MR images achieved accurate 

quantification and maintained the same summed stress score. Further study with more 

patients is warranted to determine the effectiveness of AMR-based attenuation correction 

in cardiac PET/MR imaging. 
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Chapter 4: Effect of Bone Identification 

Sensitivity on PET Quantification Accuracy 
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4.1 Abstract 

A tissue-classification-based attenuation-correction strategy has been proposed as a 

solution for correcting bone attenuation in PET/MR imaging. The feasibility of this 

approach has been investigated by previous CT-simulated studies. However, the unique 

problem of voxel averaging associated with bone but not soft tissue has been largely 

overlooked in the past, and this study aims to investigate the issue related to voxel 

averaging of bone and the effect of bone identification sensitivity in attenuation images 

on the quantification of PET in bones. Data from eight NaF PET/CT studies of the 

skeleton were retrospectively obtained for this study. The CT attenuation images were 

used to simulate MR-derived attenuation images with various bone identification 

sensitivities, which was achieved by estimating the volumetric fraction of bone inside a 

voxel from its CT HU value using a linear signal model. The simulated attenuation 

images were then used for PET attenuation correction. The PET quantification difference 

was evaluated in 139 NaF-avid bone sites identified in the skull, pelvis, ribs, vertebral 

processes and vertebral bodies. The omission of bone identification caused a difference 

of -10.3%±5.6% in the evaluated bone sites (-20.3%±4.1% for lesions in the skull and -

8.5%±3.6% for non-skull lesions). No significant difference was found between lesions 

in the pelvis and vertebrae. A non-monotonic relationship between bone identification 

sensitivity and PET quantification accuracy was observed, with the minimal 

quantification difference achieved at a bone volume fraction (BVF) around 40% for skull 

lesions (2.0%±1.6%) and 30% for non-skull lesions (1.3%±1.0%). This study further 
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demonstrated the feasibility of a tissue-classification-based approach for attenuation 

correction of bone in PET/MR. 

 

4.2 Introduction 

Since its commercial introduction in 2010 [24, 26], the application of combined positron 

emission and magnetic resonance imaging has been growing steadily. By February 2014, 

more than 50 whole-body PET/MR systems had been installed worldwide for clinical use 

[27]. Promising applications of PET/MR include neurology, cardiology and oncology 

(especially pediatric oncology), as well as clinical research. Compared to PET/CT 

systems, PET/MR delivers significantly less radiation dose to the patients during 

imaging, can provide images with superior soft tissue contrast, and has the potential to 

realize contemporaneous multi-parametric functional imaging [91, 92], real-time motion 

tracking and correction [21]. 

However, PET/MR systems face a number of challenges that need to be addressed 

before the combined modality can reach its full potential. Among these factors, 

inaccuracy in generating correct attenuation coefficients using MR-based approaches, 

which can compromise PET quantification accuracy for the combined PET/MR systems, 

has been recognized as one of the weakest points in current PET/MR technology [27]. 

First, scanner accessories such as the patient table, positioning aids and the MR RF coils 

create additional photon attenuation even though they cannot, in general, be visualized in 

the MR images, and thus require special means of correction. Second, for materials that 
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can be visualized in MR images, the MR signal reflects the proton density of the material 

weighted by its magnetic relaxation properties (T1 and T2) and not the material’s photon 

attenuation properties. Therefore, MR is not directly translatable into the 511 keV photon 

attenuation coefficients that are required for PET attenuation correction. In order to 

obtain a patient-specific attenuation map from MR images, two different approaches have 

been proposed.  

One of the approaches derives a patient-specific attenuation map from the 

information in an established MR-attenuation map atlas. This approach can produce 

attenuation maps from MR images that have a high visual similarity to CT images and 

that produce accurate PET quantification. However, the atlas approach cannot reflect the 

range of possible anatomical anomalies, such as patients whose anatomy had been 

distorted by surgery. The second approach of deriving MR-based PET attenuation maps 

involves classifying or segmenting the MR images into different tissue categories 

followed by assigning standard tissue-specific attenuation coefficients to each voxel 

based upon its assigned class. Due to its simplicity and flexibility, all of the commercially 

available PET/MR models have used the tissue-classification approach. Usually either 

three-class (air, lung and soft tissue) [74] or four-class (air, lung, fat and non-fat soft 

tissue) [36] methods are employed. 

Despite the substantial difference in attenuation properties, bones are not 

recognized as a separate tissue class but instead are included in the soft tissues in the 

attenuation maps provided in current clinical PET/MR systems. A number of studies have 
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demonstrated the necessity of distinguishing bone as a separate tissue-class for improved 

PET quantification, especially in brain imaging and for voxels adjacent to or inside bones 

[84, 93-95]. The omission of bones from the MR tissue-classification-based attenuation 

correction approach is largely due to the difficulty in identifying bone in MR images: 

first, the number of protons in bones that are visible to the MR scanner is only about 

20%-25% of that in soft tissues [96]; second, the transverse relaxation time, T2, of bones 

is substantially shorter than those of soft tissues (<=1ms vs 10~100ms), leading to a 

rapidly decaying signal that cannot be captured by conventional MR sequences. These 

two challenges are well-recognized and have been discussed extensively in the MRI and 

PET/MR literatures. In order to address these difficulties, ultra-short-echo-time MR 

sequences, which can capture the signal of bone before its disappearance by utilizing an 

extremely short TE, have been proposed to overcome these challenges [37, 38]. These 

techniques have been applied to head imaging and, although still facing challenges [97, 

98], can potentially provide bone information for attenuation correction in whole-body 

PET/MRI systems. A few previous CT-simulated studies have shown that identifying 

these partially bone voxels is indeed a valid approach to correct for bone-induced 

quantification inaccuracy [93, 99]. 

However, another important challenge of clinical bone imaging has heretofore 

been largely ignored in the literature of MR tissue-classification-based attenuation 

correction: the relatively small size of bone and the consequent intra-voxel averaging of 

bone and non-bone tissues. In the anatomical sense, bones are visible organs with sizable 

volumes that can be easily identified in gross anatomy. However, the material 
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composition of bone is highly heterogeneous, and the “hard-tissue” part of bones (the part 

with a high attenuation coefficient which is difficult to image using MRI) is usually very 

thin (with a few exceptions such as the skull and the long bones found in the extremities). 

The thickness of the cortical layer of bones in the torso, such as the vertebrae and ribs, 

can be around 1mm or less [100, 101]. One millimeter is substantially smaller than the 

dimensions of most soft tissues structures (~10 mm or more). Because the voxel sizes 

used in clinical tomographic imaging are generally on the order of 1-3 mm, the mixing of 

bone with other tissue types within a single voxel cannot be neglected, as it can be in the 

case of soft tissues whose dimensions are appreciably larger than the voxel size. In 

clinical tomographic imaging, the fraction of bone within a voxel can take any value 

between 0 and 1, because of the uncertainty of the location and orientation of the bone 

structures in relation to those of a voxel. 
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Figure 18. To intuitively illustrate the extent of intra-voxel averaging for different tissue types, a 3D 

whole-body CT dataset was classified into different tissue categories. The percentage of voxels 

located on the interfaces of different tissues, which are potentially subject to intra-voxel averaging, is 

recorded for tissue-classification methods. The images displayed here are, from left to right, the 

original CT, the three-class segmentation, the four-class segmentation and the five-class 

segmentation. The CT dataset used here has a typical voxel size for attenuation images (1.5 mm × 1.5 

mm ×3.0 mm).  In this case, the percentage of bone voxels on the tissue interface is greater than 50%, 

indicating that there is a substantial intra-voxel averaging for bone. 

The measured value of a voxel under intra-voxel averaging deviates from those of 

homogeneous voxels, which can be estimated as the average of the values of the 

composing tissue types weighted by their respective volumetric fractions within this 
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voxel. It should be noted that the relationship between the composition of a voxel and the 

value representing its characteristic can be nonlinear when such value is not directly 

measured but rather derived (Figure 19). For the imaging of bone, the continuous 

distribution of volumetric bone fractions inside voxels is the primary reason why bone 

voxels have a much wider HU range than soft tissues on a typical CT histogram (Figure 

20). 
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Figure 19. Simulated relationship between BVF and HU in CT (tissue - 30 HU, bone - 1300 HU) and 

between BVF and R2
*
 (tissue - 0.03 ms

-1
, bone - 2.56 ms

-1
) in MR under a noiseless scenario. The 

simulation of R2
* 
also assumed T1 = 1400 ms for soft tissue and T1 = 223 ms for bone, and that proton 

density in bone is 25% of that in soft tissue. TE and TR in the simulation of MR signals are from 

Keereman et al. (J Nucl Med, 2010. 51(5): p. 812-8). HU is directly measured from CT, while R2
*
 has 

to be derived from multiple MR images, which, because of the exponential T1 and T2
* 
relaxation, led 

to a nonlinear relationship between BVF and nominal R2
*
 of voxels. 
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Figure 20. Histogram of a typical whole-body CT dataset (all voxels outside the patient body were 

excluded), plotted in linear scale (left) and in logarithmic scale (right). Both soft tissue and fat have a 

narrow distribution on the HU spectrum, while lung and bone have substantially wider distribution 

from intra-voxel averaging. For “bone voxels”, it can be clearly seen on the logarithmic plot that the 

number of voxels on the lower HU end (representing voxels of lower BVF) is much greater than the 

voxels one the higher HU end (representing voxels of higher BVF). 

  

A few previous CT-simulated studies have shown that, despite the presence of 

substantial voxel averaging, identifying voxels that are partially bone and then assigning 

a single attenuation coefficient is an effective approach to correct for bone-induced 

quantification inaccuracy [85, 93, 99]. However, these studies generally used rather low 

HU thresholds (representing voxels of low BVF) when simulating the segmentation of 

bone in MR. In other words, these studies simulated the scenario that MR has a high 

sensitivity in bone identification, similar to that of CT. Given that MR is inherently ill-

suited for bone imaging and may never be able to achieve the high sensitivity level in 

previous CT-simulated studies, it is unclear whether binary-classification method remains 
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a viable approach to correct for the bone-induced photon attenuation in PET/MR when 

the sensitivity of bone identification is limited in MR-based attenuation images. 

This study examined the relationship between the PET quantification accuracy 

and the sensitivity of bone identification in the attenuation image in an attempt to 

establish the requirement for accurate quantification of bone uptake in PET/MR. We 

simulated the scenarios of various bone identification sensitivity in MR-based attenuation 

images with the CT images acquired during PET/CT scans. This is possible because there 

is the excellent contrast between bone and soft tissues in CT. We determined the proper 

attenuation coefficients to be assigned to bone for each level of sensitivity and then 

evaluated the associated quantification difference inside bone. 

 

4.3 Methods 

4.3.1 
18

F-Sodium Fluoride PET/CT Data 

18
F-sodium fluoride (NaF) is a radiotracer developed for skeletal imaging. It has been 

clinically used to evaluate metastatic bone diseases in oncology [102]. Image data of 

eight patients (five male, three female, age 57.5±16.5 yr, weight 92.1±19.8 kg) who had 

undergone whole-body 
18

F-NaF PET/CT exams at The University of Texas MD 

Anderson Cancer Center were retrospectively obtained for this study. The studying of 

these patient data was approved by the Institutional Review Board of The University of 

Texas M. D. Anderson Cancer Center. All of the PET/CT exams had been performed on 

a Siemens Biograph mCT flow PET/CT scanner. The injected NaF doses were 9.0±0.5 
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mCi. After an uptake time of 47.4±8.9 minutes, whole-body CT attenuation data and PET 

emission data were acquired from the vertex of the skull to the toes. The CT data were 

acquired with 140 kVp (except for one exam that used 120 kVp), pitch factor = 1.4, and 

collimation = 16×1.2 mm and were reconstructed into images with 512×512 matrices 

with a 1.5 mm transverse voxel size. The PET data were acquired in 3D mode and 

reconstructed into 200×200 matrices with a 4.1 mm transverse voxel size. Both datasets 

have 3 mm slice thickness and 2 mm slice spacing. PET reconstructions were performed 

using the “UltraHD-PET” option, which includes correction for the point spread function 

of the PET system and for time-of-flight correction, using two iterations, 21 subsets and a 

5-mm FWHM Gaussian filter. The same parameters were used for all PET 

reconstructions in this study. 

 

4.3.2 Estimation of intra-voxel averaging between bone and soft tissues 

The HU value in CT reflects the overall attenuation property of a voxel. For a voxel that 

contains multiple tissue types, the attenuation of the voxel is the mean of the attenuation 

of each tissue type that it contains, weighted by the volumetric fraction of each type and 

ignoring noise:  

∑=
n

nn HUzyxczyxHU ),,(),,( , where 1),,( =∑
n

n zyxc   Eq. 4-1 

In this equation cn denotes the volume fraction of tissue type n. In this study, the 

primary concern was the voxel averaging between soft tissue (without differentiating 
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between fat and non-fat tissues) and bone. The scenarios of voxels containing more than 

two different tissue types were not considered. Using the Bone Volume Fraction (BVF) 

to replace cn in the dual-tissue-type scenario, equation 4-1 becomes: 

tissuebone HUzyxBVFHUzyxBVFzyxHU ⋅−+⋅= )],,(1[),,(),,(  Eq. 4-2 

 And BVF can be solved for as 

%100
),,(

),,( ×
−

−
=

tissuebone

tissue

HUHU

HUzyxHU
zyxBVF   Eq. 4-3 

The linear relationship between the volumetric fraction of bone and HU values 

measured with clinical CT scanner has been demonstrated for ex vivo situations [103]. 

This linear relationship is also assumed in the CT-based attenuation correction in the step 

that converts the CT images into the 511 keV photon attenuation maps of PET. 

In order to estimate the bone volume fraction for voxels, an assumption was made 

that the HU variation of homogenous soft tissue voxels (BVF=0) and homogenous bone 

voxels (BVF=1) are small enough to be essentially considered as constant given the large 

HU difference between these two types of tissues. This is a reasonable assumption for 

both fat and non-fat soft tissues, which have little intra- and inter-patient variation in 

images from a properly calibrated CT scanner. In this study, HUtissue was set as 0, the HU 

value of water.  

However, assuming constant HU values for “homogeneous” bone voxels in 

clinical patient datasets is less acceptable, and will lead to greater inaccuracy when 
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estimating BVF from HU values unless additional correction is performed. This is 

primarily caused by the polychromatic nature of the X-ray beams that are generated by 

the X-ray tube of CT scanners. Instead of ideal, monoenergetic X-ray photons, the 

photons produced by CT scanners have a continuous distribution on the energy spectrum. 

Photons of lower energy are attenuated by the patient more strongly per unit distance than 

are the ones with higher energy. Thus, the effective energy of the beam increases as the 

beam penetrates deeper into the tissues, resulting in a variation of the measured HU 

values along the path of the beam. This is known as beam hardening. Although 

theoretically this would cause HU inaccuracy in all HU values, in reality it is minimized 

around 0 HU because of the calibration procedures and built-in correction algorithms of 

CT scanners. However, this does not hold true for HU values in the higher range, as can 

be seen in the results of our phantom experiment. 

 

4.3.2.1 The effect of beam hardening on HU values 

In order to demonstrate the impact of beam hardening on the HU values, an 

anthropomorphic knee phantom was scanned with the CT component of a GE Discovery 

690 PET/CT scanner using four different setups that created different degrees of beam 

hardening effects (Figure 21). Those different levels were obtained by employing 

different amounts of additional attenuating material in various scans. All of the CT data 

were acquired with the same scanning parameters: 120 kVp, 300 mAs, pitch factor = 
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0.984, and 40×0.625 mm collimation and were reconstructed into images with a 0.98 mm 

transverse voxel size, a 0.625 mm slice thickness and a 0.625 mm slice spacing. 

Voxels of homogenous “soft tissue” and “bone” were segmented with HU 

thresholding (soft tissue: [0 HU, 100 HU], bone: [1000 HU, ∞]) followed by 

morphological operations to erode the segmented masks isotropically by one voxel. The 

segmented voxels came only from the knee phantom proper, and the voxels within the 

added attenuation materials were excluded from the analysis. As can be seen in Figure 

22, the HU values for soft tissue voxels remained essentially the same, while a 

considerable difference in the HU values in the bones was induced by the increased 

amount of attenuation and beam hardening within the reconstructed CT images. 
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Figure 21. The anthropomorphic knee phantom and the scan setups used to verify the impact of 

beam hardening on HU values. The amount of total attenuation increases monotonically from setup 1 

to setup 4. 
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Figure 22. Measured HU values in the segmented “soft tissue” voxels and “bone” voxels of the knee 

phantom. Increasing attenuation did not affect the HU values measured in tissue voxels, but 

decreased the measured HU values in bone voxels. 

 

4.3.2.2 Calibration of HU values of homogeneous bone voxels 

Ideally, the value of HUbone should be calibrated for each individual voxel. However, 

accurate correction for the beam hardening effect in a clinical CT dataset is extremely 

difficult. As an attempt to reduce the HU uncertainty from beam hardening, we 

developed a heuristic method as a “first-order” correction strategy. This is based on the 

observed linear relationship between the HU values of the homogenous bone voxels and 

the total in-slice attenuation (TISA, defined as the sum of the CT numbers from all voxels 

within a slice). In this strategy, HUbone is adjusted for each individual slice when 
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estimating the BVF instead of being represented by a constant value. In other words, 

equation 4-3 becomes: 
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  Eq. 4-4 

Voxels within objects other than the patients (e.g., the scanner table and the positioning 

aids) were first excluded from the images. Then we computed HUbone for each slice in 

each CT dataset of this study using the following steps: 

a) Classification of slices 

The CT slices were divided into skull slices and torso slices. The slice that contains the 

most inferior point of the chin was first identified as the landmark, and all slices above it 

were designated as skull slices (including the landmark slice), while slices below the 

landmark were recognized as torso slices. 

b) Segmentation of homogeneous bone voxels 

The potential candidates of homogeneous bone voxels were those that exceeded a 

threshold of 1000 HU. In order to exclude the voxels that are potentially mixed with soft 

tissue, a morphological erosion algorithm was used to erode the mask of potential 

candidates isotropically by one voxel. This step ensured that the identified bone voxels 

were at least one voxel away from any soft tissue voxels. 

c) Mean HU value for bone voxels 
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The mean HU value for the segmented homogenous bone voxels in each slice was 

computed. 

d) Calibration of HUbone(z) for torso slices 

The total in-slice attenuation TISA was calculated for each torso slice. A linear 

regressional analysis was performed between TISA and the measured mean HU for bone 

voxels. HUbone(z) was then computed using the linear correlation coefficients and TISA 

for each torso slice. 

e) Calibration of HUbone(z) for skull slices 

The HU values for homogenous bone voxels in the skull slices were observed not to be 

linearly correlated with TISA. Therefore, a single HUbone(z) was used for all of the skull 

slices. It was simply calculated as the mean of all the bone voxels in the skull of each 

dataset. 

After HUbone(z) had been determined, BVF was computed for each voxel using 

equation 4-4. The computed BVFs could have values less than 0 or greater than 1, which 

are not realistically possible values for BVF. In those cases, BVFs were reset to 0 or 1, 

respectively. 
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Figure 23. Variation of TISA among the CT slices of a female adult. TISA is calculated as the sum of 

the CT numbers (shifted by 1024) of all the voxels within the slice. 

 

Figure 24. The HU of homogeneous bone voxels in one CT dataset vs. TISA. Each data point and 

error bar represents the voxels in one CT slice. It can be seen that the relationship between the mean 

HU of the homogenous bone voxels and TISA is approximately linear (except for the skull slices). 
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4.3.3 Simulation of MRAC Images with Various Bone Identification Sensitivities 

For MR-based attenuation correction using tissue-classification-based approaches, 

identification of bone in voxels with higher BVF is easier because there are greater 

differences in the MR-derived parameters, such as R2
*
, between such voxels and voxels 

representing soft tissue. By the same token, identifying bone in voxels with lower BVF is 

more difficult. Therefore, the sensitivity of a bone identification method can be 

characterized with the lowest BVF that a voxel must have in order for the presence of 

bone to be detectable using this technique. A low BVF threshold indicates that the 

technique is sensitive to the presence of bone, while a high BVF threshold indicates 

relative insensitivity. 

A BVF threshold of 100% corresponds to the situation with the lowest sensitivity, 

namely that in which the presence of bone can be identified only in voxels with BVFs 

strictly greater than 100%. Such threshold simulates the MRAC approaches that are 

available on the current commercial PET/MR systems in which bone is treated the same 

as soft tissue. With a decreasing BVF threshold, the simulated sensitivity increases. In 

theory, the highest sensitivity corresponds to the BVF threshold of 0%, meaning that the 

presence of bone can be identified even in voxels in which the volumetric fraction of 

bone approaches 0%. This could not be simulated in our study, because we found that a 

10% BVF threshold roughly corresponds to 100~120 HU in the CT attenuation images. 

Further decreasing the threshold would start to include soft tissue voxels, leading to 
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unacceptable segmentation errors. This also indicates that, as the most sensitive 

tomographic bone imaging modality, the bone identification sensitivity of CT is slightly 

lower than 10% BVF. Expecting MR-based methods to achieve this level of sensitivity 

would be unrealistic with present technology. 

In order to simulate the scenarios of different bone identification sensitivities in 

MR, ten sets of different attenuation images were created, representing a range of 

sensitivity with BVF thresholds of 100%, 90%, 80%, 70%, 60%, 50%, 40%, 30%, 20% 

and 10%. Voxels with a BVF higher than the thresholds were identified in each CT 

dataset, while voxels with a BVF between 10% and the threshold values were identified 

as soft tissue, simulating the consequence of limited sensitivity. For each BVF threshold, 

the mean HU values for the identifiable voxels were calculated for each dataset. These 

mean HU values were then assigned to the segmented bone voxels, replacing the original 

HU value. The mean HU values for soft tissue voxels were also calculated for each 

patient, and assigned to the voxels with a BVF between 10% and the corresponding 

threshold. The HU values for voxels with BVF<10%, representing the soft tissue voxels, 

were not modified. By doing this, the attenuation contribution of bone is isolated from 

that of the rest of the body. The components that were first excluded prior to the BVF 

estimation (e.g., the patient table and the positioning aids) were then reintroduced into the 

attenuation images so that they were consistent with the reference CT. The ten sets of 

attenuation images, along with the original CT attenuation images, were then used in the 

reconstruction of the PET data. 



97 

 

 

4.3.4 Identification and Classification of NaF-Avid Bone Lesions 

In order to quantitatively assess the effect of bone identification sensitivity on PET bone 

lesion quantification, we evaluated the difference in tracer uptake of NaF-avid bone 

lesions (for convenience, all regions of bones with tracer uptake that was visibly higher 

than the surrounding background are referred to as lesions in this study, without 

necessarily implying any clinical indication). The lesions were visually identified on the 

PET images reconstructed with original CTAC images. 

 The definition of lesions was performed with our in-house Matlab software. A 

seed location was first chosen for each lesion, and then a region-growing algorithm was 

used to segment the PET voxels with an appropriate uptake threshold that was manually 

determined for each lesion. If necessary, this step was followed by morphological dilation 

or erosion to ensure an adequate segmentation of the entire tracer-avid region. 
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Figure 25. User interface of the in-house Matlab software developed to define lesions in this study. 
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Figure 26. An example of the misregistration between CT attenuation and the PET emission images 

in the lower extremities from voluntary patient motion during the exam. To avoid this problem, 

lesions in the extremities were not included in the quantitative analysis in this study. 

In these NaF PET/CT studies, NaF-avid lesions could be identified in bones all 

over the body. However, sometimes patients move their limbs during the lengthy PET 

scan, causing spatial misregistration of limbs between the CT image and the PET image, 

which can lead to inaccuracy in quantification of the affected lesions. An example of 

misregistration is shown in Figure 26. For this reason, lesions that are located in the 

bones of the upper and lower extremities were not included in the analysis. A total of 139 

suitable lesions were identified in five different locations: skull (N=21), pelvis (N=28), 

ribs (N=18), vertebral processes (N=18) and vertebral bodies (N=54). Maximum uptakes 

were quantified in the ROIs of these lesions. 



100 

 

4.4 Results 

4.4.1 MRAC Image with Various Bone Identification Sensitivities 

A CTAC image and the simulated attenuation images with no identified bone are shown 

in Figure 27. An example of attenuation images with various bone identification 

sensitivities are shown in Figure 28. The HU values assigned to the segmented AC 

images are given in Table 2. 

Table 2. HU values assigned to the segmented bone voxels corresponding to each sensitivity level of 

bone identification, as determined by the mean HU of the voxels above the BVF threshold in each 

dataset. The CT images were acquired with 140 kVp except for one dataset, which was obtained with 

120 kVp. That value is listed separately. 

BVF threshold HU Assigned to Segmented Bone 

Voxels 

10% 461±30 HU, 501 HU 

20% 620±34 HU, 642 HU 

30% 764±42 HU, 787 HU 

40% 885±45 HU, 914 HU 

50% 984±44 HU, 1019 HU 

60% 1067±44 HU, 1109 HU 

70% 1147±52 HU, 1202 HU 

80% 1219±54 HU, 1303 HU 

90% 1287±51 HU, 1397 HU 

Tissue 31±7 HU 
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Figure 27. Attenuation image with all voxels above 10% BVF assigned with the soft tissue 

attenuation coefficient. 
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Figure 28. An example of simulated attenuation image with bone identification sensitivities varying 

from BVF = 10% to BVF = 90% 

4.4.2 Quantification Difference in NaF-Avid Bone Lesions without and with a 

Highly Sensitive Bone Identification in Attenuation Images 

Compared to the reference PET data, the quantification difference of the 139 tracer-avid 

bone lesions when no bone was identified in the attenuation images was -10.3%±5.6% (-

2.0% to -27.6%) for the maximal uptake. The degree of underestimation differs between 
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lesions located inside the skull (-20.3%±4.1%) and lesions located in the body (-

8.5%±3.6%, p<0.001
2
). Within the body, the underestimation of lesions in ribs (-

4.5%±1.6%) is significantly lower compared to lesions in the pelvis, the vertebral bodies 

and the vertebral processes (-9.2%±3.3%, p<0.001). However, the difference between 

lesions in the pelvis, the vertebral bodies and the vertebral processes was not found to be 

statistically significant (p=0.424 for the pelvis and the vertebral processes, p=0.864 for 

the pelvis and the vertebral bodies, and p=0.137 for the vertebral processes and the 

vertebral bodies). 

 For the simulation of the case of a highly sensitive method for bone identification 

method in MR (corresponding to a BVF threshold of 10%), the quantification difference 

of the 139 bone lesions decreased from -10.3%±5.6% to 0.9%±4.8%. However, although 

the mean difference is small, there is compensation between the overestimated and the 

underestimated lesions. Analyzing the absolute values of the differences in order to 

remove the compensation effect, the absolute quantification difference of the 139 lesions 

decreased from 10.3%±5.6% to 3.9%±2.9%, which is a reduction of 62% of the original 

bias. 

Table 3. Quantification difference in 139 bone lesions when bone is classified as soft tissue in the 

attenuation image. 

Lesion location Difference in max uptake 

All (N=139) -10.3%±5.6% (-27.6% ~ -2.0%) 

                                                 
2
 The statistical significances in this chapter were all evaluated using Wilcoxon rank sum test, unless stated 

otherwise. 
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Skull (N=21) -20.3%±4.1% (-27.6% ~ -10.8%) 

Non-Skull (N=118) -8.5%±3.6% (-19.1% ~ -2.0%) 

Pelvis (N=28) -9.4%±4.4% (-19.1% ~ -2.6%) 

Ribs (N=18) -4.5%±1.6% (-7.9% ~ -2.0%) 

Vertebral Body (54) -8.9%±2.9% (-17.1% ~ -4.2%) 

Vertebral Process (18) -10.0%±2.7% (-15.9% ~ -5.9%) 

 

 

Figure 29.  Quantification difference in 139 bone lesions when bone is classified as soft tissue in the 

attenuation image. 

4.4.3 Effect of Bone Identification Sensitivity on Bone Lesion Quantification 

The dependence of quantification difference in the 139 bone lesions on the sensitivity of 

bone identification is plotted in Figure 30. Interestingly, the overall absolute 

quantification error, which was 10.3%±5.6% with no bone identified, did not decrease 
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monotonically as the sensitivity of bone identification increased, but instead reached a 

minimum of 1.5%±1.3% with the simulated attenuation images corresponding to the 

sensitivity at 30% BVF threshold. This corresponds to a reduction of 85% of the original 

quantification bias. Beyond this point increasing the bone identification sensitivity 

slightly increased the quantification error. 

 

Figure 30. Absolute quantification difference in 139 bone lesions vs. bone identification sensitivity. 

A closer examination of the lesions revealed that there is also a notable difference 

between the lesions in the skull and lesions in the body (i.e. pelvis, ribs, and vertebrae). 

As the bone identification sensitivity increased from no bone identification to 

approximately 30% BVF threshold, the degree of underestimation of bone lesions in the 

body decreased steadily from 8.5%±3.6% to 1.3%±1.1%. Overestimation then started to 
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occur and the absolute quantification difference reached 3.1%±2.0% at 10% BVF 

threshold. In contrast, underestimation of skull lesions decreased as bone identification 

sensitivity increased to 40% BVF threshold, from 20.3%±4.1% to 2.0%±1.6%, and then 

increased to 8.1%±3.4% without becoming overestimated.  

Table 4.  Mean values of absolute quantification difference in evaluated lesions vs. BVF threshold 

used in binary segmentation of bone 

BVF All Skull Body Ribs Pelvis V-Proc V-Body 

No Bone 10.3% 20.3% 8.5% 4.5% 9.4% 10.0% 8.9% 

90% 9.5% 17.2% 8.2% 4.4% 8.7% 9.5% 8.7% 

80% 8.5% 13.8% 7.6% 4.4% 7.8% 8.8% 8.2% 

70% 7.2% 9.2% 6.8% 4.2% 6.8% 7.8% 7.4% 

60% 5.7% 5.2% 5.8% 3.7% 5.6% 6.3% 6.3% 

50% 4.2% 2.7% 4.4% 2.8% 4.2% 4.4% 5.1% 

40% 2.6% 2.0% 2.7% 1.9% 2.6% 2.4% 3.2% 

30% 1.5% 2.8% 1.3% 0.8% 1.3% 0.9% 1.5% 

20% 2.0% 5.1% 1.5% 1.2% 1.4% 1.6% 1.6% 

10% 3.9% 8.1% 3.1% 2.4% 3.1% 2.6% 3.6% 

 

Table 5.  Standard deviation of the absolute quantification difference in evaluated lesions vs. BVF 

threshold used in the binary segmentation of bone 

BVF All Skull Body Ribs Pelvis V-Proc V-Body 

No Bone 5.6% 4.1% 3.6% 1.6% 4.3% 2.7% 2.9% 

90% 4.8% 5.4% 3.1% 1.5% 3.6% 2.3% 2.5% 

80% 3.7% 4.4% 2.7% 1.5% 3.0% 2.4% 2.2% 

70% 2.6% 2.9% 2.4% 1.3% 2.5% 2.2% 2.1% 

60% 2.2% 2.3% 2.2% 1.1% 2.0% 1.9% 2.3% 

50% 2.1% 1.8% 2.1% 1.0% 1.5% 2.1% 2.3% 

40% 1.6% 1.6% 1.6% 0.9% 1.2% 1.9% 1.8% 
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30% 1.3% 2.0% 1.0% 0.6% 0.8% 0.7% 1.3% 

20% 1.9% 2.6% 1.0% 0.5% 0.9% 1.0% 1.1% 

10% 2.9% 3.4% 2.0% 1.1% 1.8% 1.8% 2.3% 

 

 

Figure 31. Absolute quantification difference of bone lesions at different location vs. bone 

identification sensitivity  
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Figure 32. Quantification difference of bone lesions (without taking absolute values) at different 

location vs. bone identification sensitivity 

4.5 Discussion 

Since combined whole-body PET/MR systems became commercially available, MR-

based attenuation correction techniques using binary tissue-classification have been 

studied by many previous investigators, most of whom concluded that identifying bone as 

a separate tissue class is necessary in order to achieve accurate quantification of the PET 

data, especially for regions inside of or near bones. Some of these studies have shown 
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that with a sensitive bone identification method, accurate PET quantification can be 

achieved. However, previous studies have not discussed the issues regarding intra-voxel 

averaging of bone and soft tissue or the required sensitivity for an MR binary-tissue-

classification based attenuation correction approach to correct for the attenuation from 

human bones. In this study, we examined the contribution to attenuation from bone in 

greater detail and, for the first time, evaluated how the sensitivity of bone identification 

can affect the PET quantification in bone lesions. We have thereby established the 

requirement for the correction of bone-induced attenuation in PET/MR. 

When bones are not separately identified in the attenuation images, uptakes in all 

bone lesions evaluated in this study were underestimated. The underestimation spanned a 

wide range, from as little as 2.0% to almost 30%. It is significantly higher in the skull 

than in the other parts of the skeleton that were evaluated in this study. This is expected 

because in the head, the bone-to-tissue ratio is appreciably higher than in the body. The 

underestimation of lesion uptakes in the ribs is significantly lower. However, this does 

not necessarily indicate that the identification of rib bones is less important, but more 

likely stems from the deleterious effects of involuntary respiratory motion, which caused 

spatial misregistration between the PET images and the CT images and partially 

projected uptake in the rib bones into soft tissues in the CT images. 

 The most interesting result of this study is the non-monotonic relationship 

between the bone identification sensitivity and the quantification difference in bone 

lesions. Intuitively, one would expect that the more sensitively bone can be identified, the 
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less quantification bias there would be in the PET data. Our results showed otherwise: 

when a binary-tissue-classification method is used for attenuation correction of bone in 

whole-body imaging, there appears to be an optimal BVF threshold for the segmentation 

of voxels that are partially bone, beyond which improving the sensitivity is not only 

unnecessary but in fact counterproductive. This result is not entirely surprising, though, 

given how binary-tissue-classification approaches are performed in MR-based PET 

attenuation correction: a single attenuation coefficient is assigned to represent an entire 

tissue class. This can be justified relatively easily for air, fat, and non-fat soft tissues, 

whose attenuation coefficients have been shown to have small inter-patient variation 

(partly because intra-voxel averaging is not a serious problem for these tissue classes). 

This, however, proved to be more problematic for the bone and lung class [104], both of 

which are affected by substantial intra-voxel averaging (air and soft tissue for the lung 

class, and bone and soft tissue for the bone class) within typical clinical voxel sizes. As 

the result of tissue mixing at various ratios, the nominal attenuation coefficients measured 

in CT for these two classes have significantly wider distributions compared to “air”, “fat” 

and “soft tissue” even for the same patient. Consequently, using a single attenuation 

coefficient to represent the entire tissue class can be problematic, as it inevitably leads to 

overestimation in some regions and underestimation in other regions. In our study, this 

can be observed both in the split trend between skull and non-skull lesions, and the 

variation of lesion quantification within the same bone type. 

 However, this does not invalidate the binary-tissue-classification as a viable 

solution for PET bone attenuation correction. Our results in this simulated study have 
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shown that, using a binary bone segmentation method corresponding to approximately 

30% BVF threshold and assigning 760 HU (approximately corresponding to 0.135 cm
-1

 

for 511 keV photons [105]), the absolute quantification difference of bone lesions was 

reduced to 1.5%±1.3% compared to CT-corrected PET data. Although this is probably as 

accurate as a binary-classification method can be, an absolute quantification difference of 

less than 2.0% is sufficient for most clinical PET applications. More importantly, this 

study demonstrates that, in order to minimize the quantification effect of bone, MR-based 

methods do not have to be as sensitive as CT in bone identification. This is fortuitous, 

given the various limitations in the fundamental imaging mechanism of MR when it 

comes to bone. 

 It should be noted that this study has several limitations. One of the primary 

limitations is the inaccuracy in the estimation of BVF using HU values, which comes 

from two main sources. The first is the inaccuracy of the values of HUbone and HUtissue in 

the model. As explained in earlier paragraphs, ideally HUbone needs to be compensated 

for on a voxel-by-voxel basis. However, this is not practical for clinical CT data. By 

using the heuristic method we developed that aims to correct the HUbone variation 

associated with TISA (total in-slice attenuation), the uncertainty is reduced, but can still 

cause inaccuracy. The other source of BVF inaccuracy is from the CT image noise. Our 

preliminary analysis estimated that the final root-mean-square-error of voxel BVF 

estimation from all sources for the eight patients in this study is at minimum 6.0%, and 

can reach 10.3% with a more realistic estimation. Fortunately, the impact of BVF 

inaccuracy on the PET quantification was mitigated by the compensation between 
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overestimation and underestimation of BVF when the voxels that are partially bone were 

segmented to simulate the attenuation images. 

 Another limitation of this study is associated with voxel size, which largely 

determines the extent of intra-voxel averaging. In theory, when the voxel size is small 

enough compared to the dimension of human bone, voxel averaging can be reduced to a 

negligible level, and most bone will be located in homogenous bone voxels. Under this 

scenario, even a method with low bone identification sensitivity would be able to identify 

enough bone for an adequate attenuation correction. However, reducing voxel averaging 

by using small voxel sizes in clinical MR scans, especially the ones used for attenuation 

correction purposes, is impractical as it requires substantially longer acquisition times and 

also degrades the signal-to-noise ratio in the obtained image. The voxel size of the CT 

attenuation images used in this study is 1.5 mm ×1.5 mm ×3.0 mm, which is a typical 

voxel size in clinical MR imaging of the body. The optimal BVF threshold to correct for 

bone attenuation is expected to depend on the voxel size used for MR imaging, with 

larger voxel sizes being expected to require higher sensitivity. Since the voxel size for 

whole-body MR attenuation images is not likely to be significantly smaller, a BVF of 

30~40% can be considered to be the bone identification sensitivity that binary-tissue-

classification techniques should aim to achieve in order to obtain the best quantification 

in PET bone lesion uptakes. We estimate the sensitivities of previously published UTE 

MRAC studies to be around 50%~70% using the sequence parameters published in the 

articles and typical tissue MR properties. Sensitivities achieved in those studies can 
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largely compensate the bone attenuation in brain MR, but still need further improvement 

if optimized applications in whole-body PET/MR are to be achieved. 

  

4.6 Conclusion 

In this study we examined the dependence of quantification accuracy of PET lesions 

inside human bones on the bone identification sensitivity in the attenuation image. We 

showed that the omission of bone identification can lead to approximately a 10% 

underestimation inside bones, and that with a binary-tissue-classification approach, an 

optimal bone identification threshold exists (40% BVF for the skull and 30% BVF for 

non-skull skeleton) that can minimize the quantification difference compared to reference 

CT-corrected PET data. This study further proves the feasibility of tissue-classification-

based attenuation correction approach for PET/MR imaging.  
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Chapter 5: Conclusions 
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5.1 Summary of Findings 

Chapter 2 describes the automatic registration algorithm that we developed to reduce the 

spatial misregistration between emission and attenuation images for cardiac PET/CT 

studies and thus to reduce attenuation artifacts and quantification errors. The algorithm 

uses a modified fuzzy c-means clustering method to extract relevant information in both 

PET and CT images, and then tracks down the optimal registration location by 

minimizing a similarity measure calculated as the gradient correlation of the two images. 

This method was developed in a training group that contains 55 clinical cardiac PET/CT 

datasets, and was tested on an independent testing group that contains 65 datasets. Both 

ACT (respiration-averaged CT) and HCT (helical CT) data were employed in this study. 

Using the results of manual registration as a reference, the registration algorithm 

significantly reduced the misalignment between PET and CT images for both ACT and 

HCT datasets to less than 4 mm on average. The objective measure that characterizes the 

amount of overlapped volume of myocardium in PET and lung in CT, which can be used 

to indicate the amount of attenuation artifact in the reconstructed PET images, suggested 

that the registration algorithm could be as effective as manual registration in mitigating 

attenuation artifacts in cardiac PET images. ACT was found to be more advantageous for 

providing attenuation images to cardiac PET than HCT. However, registration remains 

necessary. 

 Chapter 3 describes a novel MR acquisition protocol and post-processing 

technique to produce MR-derived attenuation images whose temporal resolution is 

matched to that of PET for cardiac PET/MR. The goal of this technique is to reduce the 
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attenuation artifact that could occur in simultaneous PET/MR imaging of the thorax. 

Based on a principle similar to that used in a previously developed method for PET/CT 

[18], this technique uses a 2D fast SPGR sequence to acquire cine MR images with a 

high temporal resolution of approximately 0.5 seconds per frame while the patient 

breathes freely. Twelve frames were acquired in a continuous manner at each slice in 

order to obtain the dynamic information of the moving anatomy for at least one 

respiratory cycle. The protocol was able to obtain MR images without visible artifacts 

even though the patient was breathing freely. The individual MR images were processed 

with a three-class tissue-classification method and assigned two sets of CT numbers, one 

set derived from the patient-specific CT images and the other set from a reference group, 

to convert MR images into attenuation maps. The attenuation images were averaged over 

all frames of the same slice to obtain a set of attenuation images that has motion blurring 

similar to what seen in PET images. These were then used for the reconstruction of the 

PET data. The difference between MR-corrected PET data and CT-corrected PET data 

was acceptable, and the summed stress score, a measure routinely used to evaluate 

myocardial function, had the same value, indicating that the differences might be 

clinically irrelevant. 

 Chapter 4 describes a CT-simulated study that assesses the effect of bone 

identification sensitivity on the quantification of PET in bones using data from eight NaF 

PET/CT studies. The study simulated the scenario of an MR binary-tissue-classification 

attenuation correction strategy with a range of sensitivities in identifying bone. This was 

achieved by first estimating the volumetric fraction of bone within a voxel using a linear 
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signal model, and then assigning appropriate bone HU values to voxels whose bone 

volume fraction was above a certain threshold, while assigning tissue HU values to 

voxels whose bone volume fraction was below the threshold. The simulated attenuation 

images were then used for the attenuation correction of PET data. The quantification 

difference was evaluated in 139 NaF-avid bone lesions. The study found that without any 

bone identification in the attenuation map, uptakes in the lesions were underestimated by 

approximately 20% on average in the skull and 9% on average in the body (pelvis, ribs, 

vertebral processes and vertebral bodies). The relationship between the quantification 

difference and sensitivity of bone identification is not monotonic; the difference first 

decreases and then increases as sensitivity increases. For the typical clinical voxel size 

simulated in this study, the quantification difference reaches a minimum at around 30% 

BVF for lesions in the body and around 40% for lesions in the skull. Because it is implied 

that MR-based attenuation correction methods do not have to be as sensitive as CT in 

order to achieve accurate quantification, this study further confirms the feasibility of 

using binary-tissue-classification approach for correcting photon attenuations by bones in 

the human body. 

 

5.2 Evaluation of the Hypotheses 

This work sought to improve the attenuation correction in the hybrid PET systems 

through the pursuit of three specific aims. 
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Specific Aim I was to develop an automatic registration algorithm to reduce the 

spatial misalignment between emission and attenuation images and evaluate the 

algorithm with cardiac PET/CT. The hypothesis of this aim was that an automatic 

registration algorithm based on FCM-assisted gradient correlation for cardiac PET/CT 

data can reduce misregistration between PET and CT to less than 5 mm (physical spatial 

resolution for typical clinical PET scanners) on average compared to manual registration 

regardless of the CT breathing protocol. In this study, the misregistration after automatic 

registration performed by the proposed algorithm was less than 4 mm for both ACT and 

HCT images in the independent data group that was not involved in the development of 

the algorithm. Therefore, the hypothesis was accepted. 

Specific Aim II was to design an acquisition protocol and post-processing 

technique to reduce temporal mismatch in cardiac PET/MR. The hypothesis of this aim 

was that using respiration-averaged MR images for PET attenuation correction is 

feasible, and can reduce the amount of PET attenuation artifact compared to using MR 

images obtained under breath-hold. It was demonstrated in the study that respiration-

averaged MR images could indeed be used for PET attenuation correction, validating the 

first part of the hypothesis. The second part of the hypothesis, unfortunately, could not be 

verified in this study due to the lack of sufficient clinical data. There are strong reasons to 

believe this method can reduce the attenuation artifacts in PET/MR imaging, given how a 

similar approach was shown to be an effective solution to a similar problem in PET/CT. 

This needs to be verified by future investigations. 
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Specific Aim III was to investigate the minimal bone identification sensitivity 

required for MR-based attenuation correction strategy using a binary tissue-classification 

approach in order to reduce PET quantification bias of bone lesions to be less than 5%. 

The hypothesis was that using a binary-tissue-classification-based MR attenuation 

correction approach, a bone identification sensitivity of 50% bone volume fraction can 

reduce the PET bone lesion quantification difference caused by the presence of bone to 

be less than 5%. The quantification difference was evaluated both over all bone sites and 

inside specific bones. It was found that a sensitivity of 50% BVF, which is the “sensible” 

lower threshold for binary classification, was able to reduce average quantification 

difference of bone lesions to be less than 5%. However, the quantification differences are 

also dependent on the location of lesions. The results suggest that for the quantification 

inside vertebrae, a sensitivity higher than 50% might be necessary. 

 

5.3 Future Directions 

This dissertation sought to address some of the problems that can compromise attenuation 

correction and quantification of PET data in the hybrid systems. It has opened doors for 

some new investigations, and there are also areas in this work that can be improved upon 

by future research. 

The automatic registration algorithm developed in Chapter 2 has been shown to 

be effective in registering the emission images with the attenuation images, and the 

quantitative FMMV values have indicated that it can reduce the attenuation artifact and 



120 

 

improve quantification in the reconstructed myocardial perfusion map. Future work 

should incorporate a validation of the improvement in quantification of the PET data and 

compare the results to those of manual registration. An automatic registration algorithm 

also has the advantage of being more repeatable than manual registration. The inter-

operator variability has been demonstrated in this work; however, the intra-operator 

variability, which is another source of inaccuracy for manual registration, was not 

evaluated. Demonstration of this can further shed light on the advantage of automatic 

registration. 

 The conversion of respiration-averaged MR images to PET attenuation images in 

this work was achieved via tissue-classification of individual frames of MR images that 

capture a single phase of the respiratory motion. This is not ideal because the complete 

information of motion blurring cannot be fully preserved by the segmentation-then-

averaging step without loss. A method that directly converts respiration-averaged MR 

images to respiration-averaged pseudo-CT images is more desirable. One possible 

solution is to establish a dedicated atlas consisting of registered ACT-AMR image pairs. 

Another is to combine the fuzzy segmentation strategy with intensity inhomogeneity 

correction in MR. Work also needs to be done to show the effectiveness of this method to 

reduce the attenuation artifact in more clinical PET/MR studies. 

 The study that assesses the effect of bone identification sensitivity on the 

quantification of PET in bones could be improved in several ways. First, a more accurate 

signal model could be used to estimate the volumetric fraction of bone in each voxel, 
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including a better method to compensate the HU value inaccuracy as a result of beam 

hardening. Secondly, aiming to obtain the minimal quantification difference from tissue-

classification methods in order to demonstrate its potential, this study used the 

attenuation coefficient derived individually from each patient dataset. It would be 

interesting to see how much difference would result from using a more standardized set 

of attenuation coefficients for segmented bone voxels. Our discovery of the CT HU 

inaccuracy in voxels at the higher end of the HU range is very interesting, and could lead 

to new investigations outside the field of PET, such as quantitative computed tomography 

and MR-based treatment planning in radiation therapy, both of which could benefit from 

improved quantification of bone attenuation. The difference in the patterns of beam 

hardening between the skull and the non-skull skeleton might be another interesting 

subject of investigation. The next logical step of this study would be to validate the 

findings that were simulated using CT images with actual MR-derived attenuation 

images, although this might not be possible in the near future as more technical 

development is required in order to extend the application of UTE MR from the realm of 

brain imaging to whole-body application.  
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