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NEW INSIGHTS ON THE ROLE OF JMJD2A IN 
CANCER PROGRESSION 

 

YUAN GAO 
	  

Supervisory Professor: Hui-Kuan Lin, Ph.D 
 

Changes in chromatin architecture are known to be one of the underlying 

causes of cancer because of its ability to alter gene transcription. Histone 

methylation is one of the most intricate epigenetic marks because it adds multiple 

layers of modification on the targeted sites. Therefore, many studies have 

brought histone methylases and demethylases into focus, hoping to decipher 

their roles in cancer progression. Among these enzymes, JMJD2A is the first to 

shown to have demethylation activity against trimethylation, and to regulate gene 

expression, development, and cancer progression. While many studies have 

mainly focused on its role in transcriptional regulation, only recently, its non-

enzymatic function has started to unveil, but the studies are scarce and 

inconclusive.  

In our study, we showed that JMJD2A is essential in mediating activation 

of the canonical Wnt/β-catenin pathway, a highly conserved and complex 

signaling cascade that ultimately leads to nuclear accumulation of β-catenin. 

Nuclear β-catenin serves as a transcriptional coactivator by forming a 

transcriptional complex with TCF to activate Wnt target gene expressions. The 

presence of JMJD2A keeps β-catenin from interacting with the destruction 
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complex components, which functions in subsequent phosphorylation and 

proteasomal degradation of β-catenin. JMJD2A, through maintaining the protein 

stability of β-catenin, affects the transcriptional activity of β-catenin and the 

expression of its target genes, and this is independent of the demethylase activity 

of JMJD2A. Surprisingly, in resting cells without Wnt ligand stimulation, JMJD2A, 

a supposedly nucleus-localized histone modifying protein, is mainly resided in the 

cytosol, and its nuclear translocation can be enhanced by active Wnt signaling.  

Moreover, JMJD2A interacts with β-catenin endogenously and is required 

for the nuclear translocation of β-catenin upon Wnt ligand stimulation. Finally, we 

showed that JMJD2A has indispensable roles in cell proliferation, tumorigenesis, 

metastasis, and cancer stem cell traits through stabilizing β-catenin protein. Our 

study highlights a non-histone and non-enzymatic function of JMJD2A in the Wnt 

signaling pathway, and also provides cues to design inhibitors that target not only 

the enzyme activity but also the protein-protein interactive ability of JMJD2A.  
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1.1 Histone Demethylases: JMJD2 family  
	  
Changes in chromatin structure are closely linked to tumor since they largely 

affect gene expression, which suggests that abnormal epigenetic regulation may 

be an underlying cause for cancer. Chromatin modulation can be regulated 

through several mechanisms, with histone posttranslational modification being 

one of them. These modifications (acetylation, methylation, phosphorylation, 

ADP-ribosylation, ubiquitination, SUMOlyation) occur on histone tails to either 

promote or repress gene transcription, depending on their effects on chromatin 

architecture and compaction (Berger, 2007; Luger and Hansen, 2005).   

Unlike other modifications, histone methylation was long thought to be 

permanent until the identification of histone demethylases, which make this mark 

reversible and dynamic (Byvoet et al., 1972; Shi et al., 2004; Thomas et al., 

1972). Different from the other posttranslational modifications, methylation has 

multiple layers and states of complexity, and each layer is capable of employing 

different effect on overall chromatin biology (Lachner et al., 2001; Rea et al., 

2000). Although more labile than previously assumed, histone methylation 

pattern must be correctly established for correct embryonic development and 

prevention of diseases such as cancer. This buttresses the idea that histone 

modifiers such as methylases and demethylases serve pivotal roles in 

maintaining normal biological processes and must be tightly regulated (Dawson 

and Kouzarides, 2012).  

Up to date, two evolutionarily conserved classes of histone demethylases, 

LSD and JMJC, have been identified. Compared to LSD, which was the first 
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direct histone demethylase class to be discovered, JMJC class is much bigger 

and utilizes a different demethylation mechanism from LSD1 (Black et al., 2012; 

Shi et al., 2004). The name JMJC originated from the fact that these enzymes all 

contain the Jumonji C catalytic domain (JmjC). The JMJC demethylase class can 

further be defined into seven evolutionarily conserved groups based on the 

homology of their JmjC domains (Klose et al., 2006). Among these groups, the 

JMJD2 family has drawn much attention due to their substrate specificity and 

prominent role in cancer. The JMJD2 family contains six members of 

demethylase, JMJD2A, JMJD2B, JMJD2C, JMJD2D, JMJD2E and JMJD2F 

(Figure 1-1) (Katoh, 2004). While JMJD2A, JMJD2B and JMJD2C are structurally 

similar and share the same target specificity, JMJD2B shows much lower 

catalytic activity than the other members of demethylase, and its knockout mice 

did not display any phenotypes.  Interestingly, JMJD2A-C proteins seem to share 

similar physiologic functions in cancer, which suggests that the JMJD2 family 

may execute overlapping roles and may compensate each other for their 

functions (Kawazu et al., 2011). Unlike JMJD2A-C, JMJD2D lacks both the PHD 

and Tudor domain. It also has different substrate specificity. Although JMJD2D 

seems to have some functions in cancer, the Jmjd2d knockout mice have no 

obvious phenotypes as well (Krishnan and Trievel, 2013). The remaining two 

members of JMJD2 families, JMJD2E and JMJD2F do not possess promoters 

and are intronless, thus, are considered pseudogenes. So far, it remains unclear 

whether they are functional genes (Whetstine et al., 2006).  

 



4 
	  	  

 

 

 

Figure 1-1: Schematic representation of the JMJD2 family demethylases.  

The JMJD2 family demethylase architectures all contain one JmjN domain, which 

interacts and stabilizes the catalytic domain JmjC. JmjC is the most evolutionarily 

conserved domain among all the other ones. The PHD and Tudor domains are 

only present in the JMJD2A-C demethylases, which are presumably important for 

substrate site recognition and binding.   
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1.2 The protein structure of JMJD2A 
	  
Compared to the other members of the family, JMJD2A, also known as 

KDM4A or JHDM3A (JmjC domain-containing histone demethylase 3A), is more 

well-recognized and studied. It is evolutionarily conserved from Caenorhabditis 

elegans (C. elegans) to human (Clissold and Ponting, 2001). JMJD2A is 

composed of several domains to make up for its structure (Figure 1-2A). JMJD2A 

has a Jumonji C (JmjC) and a Jumonji N (JmjN) domain, in which JmjC shows 

the strictest sequence conservation, while JmjN is less conserved. In addition, 

JMJD2A is also endowed with a double plant homeodomain (PHD) and a double 

Tudor domain, whereas they exhibit minimal conservation. Intriguingly, the 

degree of the sequence conservation presumably correlates with their 

importance for the demethylation activity of JMJD2A. The JmjC domain, shown 

by the crystal structure, is folded into eight β-sheets, forming an enzymatically 

active pocket, which directly participates in the demethylation reaction. The JmjN 

domain forms extensive interactions with and provide structure integrity and 

stability for JmjC domain (Chen et al., 2006; Shi and Whetstine, 2007). The PHD 

and Tudor domains are believed to be mainly responsible for binding to 

methylated marks for site recognition. However, more studies are needed to 

understand the functional significance of these two domains since JMJD2D, 

while lacking these domains, can still exert its demethylation function on the 

appropriate histone sites. Thus, there must be other mechanisms in which these 

demethylases recognize and bind to their substrates.  

 



6 
	  	  

 

 

 

 

Figure 1-2: Functional domains of JMJD2A  

(A) A schematic representation of the structure ofJMJD2A. Its architecture is 

consisted of one JmjN and one JmjC domain, which are important for its 

catalytic activity. The two PHD domains and hybrid Tudor domains are 

important for substrate site recognition.  

(B) A schematic representation of the JmjC domain, showing the position and 

amino acid residues that are important for Fe (II) binding (top) and α−KG 

binding (bottom)  
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1.3 The function of JMJD2A and its substrate specificity  
	  

The function of JMJD2A is to mainly demethylate histone 3 lysine 9 (K9) 

and lysine 36 (K36), albeit its ability to demethylate H3K9me3 is about 5-fold 

more efficient than H3K36me3. In particular, H3K9me3 is linked to 

heterochromatic regions of the chromatin and usually leads to transcription 

repression. Meanwhile, its other substrate site H3K36me3 inhibits gene 

transcription at the start site by preventing unwanted transcription initiation within 

the body of the gene.  JMJD2A overexpression, thus, relieves chromatin from its 

compact structure, increases chromatin accessibility, and promotes gene 

transcription and aberrant transcription initiation (Loh et al., 2007; Wagner and 

Carpenter, 2012). The demethylation function of JMJD2A acts through a five-step 

dioxygenase reaction mechanism that requires Fe (II) in the catalytic center and 

α-ketoglutarate to demethylate its targets (Hausinger, 2004). Within the JmjC 

catalytic domain, three amino acids bind to Fe (II), while two amino acids bind to 

α-ketoglutarate (Figure 1-2B). To catalyze the reaction, the cofactor-bound JmjC 

will produce a very reactive specie oxoferryl species that could hydroxylate the 

methylated site, allowing the lost methyl group to become formaldehyde (Clifton 

et al., 2006; Klose et al., 2006). More specifically, its demethylase activity against 

trimethylation is much higher compared to dimethylation, and essentially has no 

activity against monomethylated residues. The proposed reason, as revealed by 

X-ray crystallographic analysis, is that the space and the electrostatic 

environment in the methyl group-binding pocket of JMJD2A only allows tri- and 

di- but not monomethylated lysine to position a methyl group efficiently toward 
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the iron-containing catalytic center (Chen et al., 2007; Chen et al., 2006; Couture 

et al., 2007; Ng et al., 2007).  

1.4 JMJD2A and its role in cancer progression 
	  

Only recently, the role of JMJD2A in different types of cancer has started 

to emerge (Table 1-1). A major emphasis on the role of JMJD2A has been 

transcription regulation. When JMJD2A is expressed aberrantly, the downstream 

effects may either to activate oncogene or repress tumor suppressor 

expressions. One of the first discoveries that linked JMJD2A to cancer is its 

overexpression in prostate cancer. In this study, JMJD2A can form a complex 

with androgen receptor (AR) through its C-terminal ligand binding domain upon 

ligand binding. JMJD2A is considered a coactivator of AR to stimulate its 

transcriptional activity, such as activating prostate-specific antigen (PSA), an AR 

target gene and pivotal marker in screening prostate cancer (Shin and 

Janknecht, 2007). More importantly, in this event, the catalytic activity of JMJD2A 

is essential. Similarly, in breast cancer, JMJDA can also interact with estrogen 

receptor (ER) to enhance its transcriptional activity. Hence, deletion of JMJD2A 

in ER-positive cells leads to decreased ER target genes such as c-Jun and 

cyclinD1, which in turn causes reduced cell proliferation. Interestingly, in 

endometrial cancer, JMJD2A also promotes cell migration and invasion by acting 

as a transcriptional cofactor by forming complexes with ER to promote its activity 

(Wang et al., 2014). In addition to activating these hormonal receptors, as seen 

in squamous cell carcinoma and lymph node metastases, JMJD2A also 

enhances the transcription factor activating protein 1 (AP-1), which is essential 
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for metastatic and tumorigenic potentials. Even though AP-1 can be 

transcriptionally activated by JUN and FOS, but through a positive feedback loop, 

JUN and FOS can also be activated by recruiting AP-1 to their own promoters. 

However, H3K9me3, being the transcriptional repressive mark, inhibits AP-1 

recruitment, and JMJD2A serves the opposite by relieving the region from 

repressive histone mark to allow AP-1 recruitment. To further expand its 

transcriptional role, in colon cancer, JMJD2A interacts with p53 on the promoter 

of p21, and serves as a transcriptional repressor for p53-mediated p21 

transcription. The depletion of JMJD2A leads to increases in p53, p21, 

proapoptotic protein PUMA to induce apoptosis in colon cancer cells. JMJD2A is 

also overexpressed in human lung cancer cell lines. In one study, JMJD2A 

transcriptionally represses chromodomain helicase DNA binding protein 5 

(CHD5), which is involved in the p53-dependent senescence.  This repression of 

the CHD5 tumor suppressor leads to transformation of primary cells in lung 

adenocarcinoma (Mallette and Richard, 2012). Another study suggested that 

JMJD2A may have additional target genes in lung cancer cell line, through 

demethylating H3K9me3 to promote their transcription and expression. These 

target genes include ADAM12, CXCL5 and JAG1, which are cancer related 

genes that are known to enhance cell proliferation, tumor growth, angiogenesis in 

various cancer signaling pathways such as Notch (Kogure et al., 2013; Simon et 

al., 2012).  
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Table1-1. The role of JMJD2A in different cancer types. 

Cancer type JMJD2A  
expression 

Associated with References 

Prostate Overexpression AR, PSA (Shin and 
Janknecht, 2007) 

Colorectal Overexpression p53, p21 (Kim et al., 2012) 
Lung Overexpression CHD, Ras, JAG1, 

ADAM12, CXL5 
(Kogure et al., 
2013; Mallette and 
Richard, 2012) 
 

Squamous cell 
carcinoma, lymph 
node metastasis  

Overexpression FOS1, JUN, AP-1 (Ding et al., 2013) 

Breast Overexpression ER, c-Jun, Cyclin 
D1, SP1 

(Berry et al., 2012; 
Li et al., 2014) 

Gastric  Overexpression miR-34a  (Hu et al., 2014) 
Endometrial  Overexpression ERα (Wang et al., 2014) 
Table is adopted from review article (Guerra-Calderas et al., 2014), with 

additional information supplemented from the listed references.  
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1.5 The implications of JMJD2A in development 
	  

The history of Jumonji family proteins originated from studies in examining 

mouse development. The name “Jumonji” means “cruciform” in Japanese, and 

the name was given because Jumonji mutant mice developed abnormal grooves 

on their neural plates, and this phenotype resembled a cross (Takeuchi et al., 

1995). Thus, it is not surprising to see that JMJD2A also has roles in body 

development. One study demonstrates that JMJD2A induces myogenesis. It is 

responsible for activating myogenin (Myog), a skeletal system gene that is 

responsible for skeletal muscle differentiation from myoblasts into myotubes, by 

removing the H3K9me3 methylation on the promoter of Myog (Verrier et al., 

2011). Another study linked JMJD2A to embryonic development and neural crest 

specification. By removing H3K9me3 and H3K36me3, JMJD2A, expressed in the 

forming neural folds, controls the expression of developmental genes such as 

Snail and Sox10 at the appropriate developmental time (Strobl-Mazzulla et al., 

2010). Moreover, mice with homozygous deletion of JMJD2A exhibit embryonic 

lethality due to a spectrum of heart developmental defects and heart failure 

phenotypes. This genetic evidence further supports the role of JMJD2A in 

embryonic development and also in cardiac development (Takeuchi et al., 2006; 

Zhang et al., 2011). Finally, by using the C. elegans model, depletion of JMJD2A 

increases germ cell apoptosis, and it is also responsible for maintaining low 

levels of H3K36me3 on the X chromosome for low gene expression during 

germline development (Whetstine et al., 2006).  
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1.6 The functional relevance of the enzymatic domain in JMJD2A  
	  

One of the unresolved questions in the field regarding JMJD2A is whether 

its enzyme activity is absolutely required for its oncogenic role in cancer. To date, 

very few studies have focused on the non-enzymatic function for JMJD2A. 

Among them, one study showed that JMJD2A, independent of its enzymatic 

activity, can impair DNA damage response and induce genomic instability. In this 

study, the Tudor domain of JMJD2A and p53-binding protein 1 (53BP1), which is 

a DNA damage factor, compete for binding at dimethylated histone H4 lysine 20 

(H4K20me2). Upon DNA damage response, JMJD2A undergoes K48-linked 

ubiquitination and proteasomal degradation induced by E3 ligases 

RNF8/RNF168 to allow the recruitment of 53BP1 to DNA damage foci for repair. 

Nevertheless, overexpression of JMJD2A can suppress the recruitment of 53BP1 

to DNA damaged sites for efficient DNA repair (Mallette et al., 2012b). 

Furthermore, in Drosophila melanogaster, genes repressed or activated by 

JMJD2A were observed to not rely on its catalytic activity, suggesting that 

JMJD2A may have a role on gene expression independent of its enzymatic and 

transcriptional activity (Crona et al., 2013). Other studies show that in the ER-

negative breast cancer cells, depletion of JMJD2A still exhibits reduced cell 

growth and migration in vitro, and overexpression of JMJD2A is observed in 

about 60% of breast tumors, regardless of the ER status. This means that other 

than serving as a coactivator to stimulate the ER activity, there must be other 

ways for JMJD2A to induce breast tumor in the ER-negative breast cancer cells 

(Berry et al., 2012; Li et al., 2011). However, the mechanisms remain to be 
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uncovered. One study may have provided some clue that in MDA-MB-231 triple 

negative breast cancer cells, JMJD2A negatively regulates the transcriptional 

activity of Sp1, a tumor suppressor that predicts late stage breast cancer. 

Intriguingly, this inhibition is not affected by the enzyme-dead mutant H188A, but 

is significantly affected by JMJD2A protein-interacting truncation mutant (Li et al., 

2014). This finding provides some solid evidence that protein-protein interactive 

activity may be one of the mechanisms important for the oncogenic function of 

JMJD2A. Therefore, more effort should be dedicated to studying the non-

enzymatic function of JMJD2A.  

1.7 The history of Wnt and its biogenesis  
	  

The Wnt1 gene, also known as int-1, was initially identified in 1982, and 

encodes a secreted cysteine-rich glycolipoprotein. The highly conserved Int-1 

homolog was also extensively studied in Drosophila and designated the name 

Wingless “Wg”. The combination of int-1 and Wingless led to the name Wnt. Wnt 

was found as an oncogene that could be activated by a proviral insertion of the 

Mouse Mammary Tumor Virus (MMTV) at the Wnt1 locus in murine breast 

cancer, and Wnt1 transgenic mice also developed mammary tumors. Hence, 

these pioneering studies linked WNT1 to mammary tumorigenesis and 

established its role in cancer (Nusse and Varmus, 1982; Nusslein-Volhard and 

Wieschaus, 1980). Since these findings, 19 Wnt genes were identified in the 

human genome, and they all have crucial roles in cell proliferation, survival, 

migration, cell polarity, cell fate determination during embryonic development and 

tissue homeostasis (Logan and Nusse, 2004; Willert et al., 2003).  
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Wnt proteins are cysteine-rich of roughly around 40 kDa in size that harbor 

an N-terminal signal peptide for secretion (Tanaka et al., 2002). Wnt proteins are 

lipid modified, and this is important for stimulating efficient signaling and may 

also be essential for Wnt secretion. The biogenesis of Wnt proteins starts in the 

endoplasmic reticulum (ER), where it gets palmitoylated by Porcupine, a 

multipass transmembrane ER protein that contains an O-acyl transferase domain 

(Banziger et al., 2006; Hofmann, 2000). The lipid modified Wnt proteins are then 

transported by Wntless (Wls) from the Golgi to the plasma membrane for 

secretion and signaling facilitation (Banziger et al., 2006; Hofmann, 2000; 

Kadowaki et al., 1996).  

1.8 The canonical Wnt signaling pathway  
	  

Once matured and secreted, Wnt proteins can act as stimulant to activate 

the Wnt signaling pathway. The Wnt signaling pathway is mainly divided into two: 

the canonical and non-canonical pathway. The canonical pathway involves β-

catenin (CTNNB1), and is also called the Wnt/β-catenin pathway (Figure 1-3). 

The non-canonical pathway is independent of β-catenin and is related to cell 

polarity. Although the two pathways have been well characterized, the precise 

mechanism by which Wnt stimulates one pathway versus the other is currently 

unclear. Some studies suggest that this pathway preference may depend on 

specific Wnt receptors (van Amerongen et al., 2008). For the topic of this thesis, 

we mainly focus on the canonical Wnt signaling pathway.  

The hallmark of the canonical Wnt signaling pathway is the nuclear 

accumulation of β-catenin, an important coactivator that binds to TCF 
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transcriptional factor to promote gene transcription, which is the ultimate outcome 

of the activated Wnt signal. This nuclear localization of β-catenin contributes to 

cancerous phenotypes (Valenta et al., 2012).  In the absence of Wnt protein 

stimulation, the surface receptor Frizzled (Fz) and low-density lipoprotein 

receptor-related protein 5/6 (LRP5/6) are not engaged (He et al., 2004). The 

destruction complex, which is consisted of APC, GSK3β, Axin1 and CK1, is 

intact, and holds β-catenin within the formation of this complex. CK1 

phosphorylates the Axin1-bound β-catenin first at serine 45 (Ser45), which 

primes it for sequential phosphorylation by GSK3β at threonine 41 (Thr41), 

serine 37 (Ser37) and serine 33 (Ser33). β-catenin phosphorylation at Ser33 and 

Ser37 forms a “degron” motif that can be recognized by the F-box/WD repeat E3 

ubiquitin ligase β-TrCP. Consequently, β-TrCP targets the phosphorylated β-

catenin for K48-linked ubiquitination and proteasomal degradation (Kimelman 

and Xu, 2006). The degraded β-catenin can no longer translocate to the nucleus 

to serve as a coactivator for transcription factor TCF. This causes TCF to interact 

with corepressor TLE1, which recruits histone deacetylases (HDACs) to promote 

chromatin compaction and consequently turns off gene transcription (Cavallo et 

al., 1998; Roose et al., 1998).  

On the other hand, once Wnt protein stimulates the signaling pathway, it 

forms a complex with Fz and LRP5/6. The Fz intracellular domain recruits Dvl to 

the plasma membrane, which directly results in the relocation of Axin1 and 

GSK3β to the plasma membrane as well. GSK3β, then, is in the proximity to 

phosphorylate LRP5/6, which is a key step in this cascade. The phosphorylated 
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receptor serves as a docking site for Axin1 to recruit more GSK3β for 

phosphorylation (Davidson et al., 2005; Mao et al., 2001; Tamai et al., 2004; 

Zeng et al., 2005). This cellular membrane translocation of the destruction 

complex releases β-catenin from CK1 and GSK3β phosphorylation, thus is in the 

stabilized form to translocate and accumulate in the nucleus. In the nucleus, β-

catenin binds to TCF to displace TLE1, and recruits other coactivator to 

eventually turn on gene transcription (MacDonald et al., 2009).  

Although nuclear accumulation of β-catenin by Wnt pathway activation has 

long been demonstrated by many studies, but the exact nuclear route and 

molecular mechanism that β-catenin takes for nuclear translocation remains 

unclear. Some studies suggest that post-translational modifications on β-catenin 

are nuclear localization drivers while other studies suggest that binding partners 

are essential (Jamieson et al., 2014). Thus, the β-catenin nuclear and 

cytoplasmic distribution and dynamic most likely involves multiple complex 

mechanisms that require further research.  
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Figure 1-3. The canonical pathway of Wnt signaling.  

Left: Without Wnt ligand activation, β-catenin is held in the destruction complex 

and is phosphorylated by CKI and GSK3β. E3 ubiquitin ligase β-TrCP recognizes 

the phosphorylated β-catenin and consequently targets it for proteasomal 

degradation. Degraded β-catenin can no longer be translocated to the nucleus to 

turn on gene transcription of its target genes; right: with Wnt ligand activation, it 

binds to Fz receptor and LRP5/6 coreceptors, which recruits Dvl, inactivates the 

destruction complex, and releases β-catenin from protein degradation. β-catenin 

accumulates in the nucleus and activates target gene transcription. 
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1.9 The Wnt signaling in cancer  
	  

Since the initial finding of the oncogenic function of WNT1 in mouse 

models, much effort was invested in understanding the compound role of the Wnt 

signaling pathway in cancer (Table 1-2).  Just like any other cancer signaling 

pathway, the suppressing components are usually mutated or experience loss of 

function under oncogenic condition, while the activating components are 

constitutively active (Polakis, 2012). The most well studied negative regulator of 

the Wnt signaling pathway is APC, and it is also one of the most frequently 

mutated genes in human cancers. The truncating mutation of APC can no longer 

bind to Axin1, which causes the disassembly of the destruction complex, causing 

β-catenin to translocate the nucleus to activate gene transcription. Genetic 

defects of APC are the origins of familial adenomatous polyposis, a condition that 

could ultimately lead to colorectal cancer in those who inherit it (Kinzler and 

Vogelstein, 1996; Korinek et al., 1997; Morin et al., 1997; Salahshor and 

Woodgett, 2005; Segditsas and Tomlinson, 2006). Likewise, Axin1, also a tumor 

suppressor, is susceptible to deletions and truncations in hepatocellular 

carcinoma and colorectal cancer, and these mutations prevent Axin1 from acting 

as a scaffold protein to eventually lead to disruption in the destruction complex 

and inability to degrade β-catenin (Salahshor and Woodgett, 2005;(Satoh et al., 

2000). Another group recently uncovered that an in-frame splice deletion has a 

negative effect on the kinase domain of GSK3β in chronic mylogenous leukemia 

(Abrahamsson et al., 2009). This causes failure of GSK3β to phosphorylate β-

catenin, leading to its nuclear translocation. At the level of cellular membrane, 
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Wnt signaling pathway receptor LRP5 is also subjected to oncogenic mutations. 

The mutation deletes the extracellular domain and transforms LRP5 into its 

constitutively active form, where it binds and destabilizes Axin1 (Mao et al., 

2001). This, once again, releases β-catenin from its destruction complex for 

nuclear translocation. In addition to mutations of the Wnt signaling components, 

overexpression of WNT ligands also has a crucial role in the proliferation and 

survival of cancer cells by aberrantly “turning-on” the Wnt signaling pathway.  

Even though it is unclear so far how different cancers respond to various WNT 

ligands stimulation to activate the Wnt signaling pathway, it is clear that the 

expression patterns of WNT ligands can serve as cancer markers and prognostic 

factors for patient outcomes (Aguilera et al., 2006; Chim et al., 2007; Kansara et 

al., 2009; Klarmann et al., 2008). 

The ultimate oncogenic outcome of an active Wnt signaling pathway is 

mainly the nuclear accumulation of β-catenin. The presence of nuclear β-catenin 

is resulted from even a small mutation from the Wnt signaling pathway. In 

addition to serving as the outcome of the Wnt signaling pathway activity, β-

catenin itself is also disposed to oncogenic mutations in different types of cancer. 

These mutations usually occur on the serine and threonine sites, which are 

essential sites for GSK3β-mediated phosphorylation. The mutations then 

abrogate the interaction between β-catenin and β-TrCP, making β-catenin 

refractory to degradation, and eventually nuclear accumulation. These mutations 

have been found in many cancer tissues such as liver, kidney, ovary, 

endometrium and soft tissues (Giles et al., 2003). Many studies have pinpointed 
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β-catenin as a key modulator in cancer cell proliferation and survival. This 

oncogenic effect results from activating a variety of oncogenes by serving as a 

coactivator from binding to TCF/LEF transcription activating complex. The 

plethora genes that β-catenin is capable of activating include ones that drive cell 

transformation, cell proliferation and survival, migration, invasion, EMT, 

angiogenesis and cancer stem cell (Table 1-2 with references).   
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Table 1-2. Wnt signaling proteins and their involvement in different types of 

cancer. 

Protein Cancer 
Type  

Relevance in Cancer References 

APC  Breast  Expression is increased in grade 3 
tumors compared with normal breast 
tissues  

(Wong et 
al., 2002a) 

Colorectcal Truncation mutation occurs in the vast 
majority colorectal cancer 

(Clements 
et al., 2003; 

Liu et al., 
2011) 

β-catenin Breast Nuclear β-catenin expression is 
associated with reduced metastasis 
and overall survival in breast cancer  

(Geyer et 
al., 2011; 
Lin et al., 
2000) 

Colorectal Overexpression of nuclear β-catenin is 
associated with invasive tumors and 
patient death  

(Cheah et 
al., 2002) 

Glioblastoma High nuclear β-catenin is associated 
with poor survival in glioblastoma  

(Liu et al., 
2011) 

Lymph node 
metastases 

Overexpression of nuclear β-catenin is 
significantly associated with metastatic 
lymph nodes 

(Cheng et 
al., 2011; 
Kageshita 
et al., 2001) 

Prostate Overexpression of nuclear β-catenin is 
associated with bone metastatic 
prostate cancer  

(Wan et al., 
2012) 

Melanoma Nuclear accumulation of β-catenin in 
primary tumors predict patient deaths 

(Kageshita 
et al., 2001) 

WNT1 Breast  WNT1 protein expression is increased 
in breast tumor tissues compared to 
non-cancerous tissue  

(Wong et 
al., 2002b) 

Gliobastoma Increased WNT1 expression is 
associated with poor survival in glioma  

(Yin et al., 
2012) 

WNT2 Esophageal Overexpression of WNT1 is correlated 
with poor survival in esophageal 
squamous cell carcinoma 

(Fu et al., 
2011) 

TCF Lung Increased TCF activity is associated 
with metastatic lung adenocarcinoma  

(Nguyen et 
al., 2009) 

Table is mainly adopted from (Anastas and Moon, 2013) supplemented with 

additional information from the listed references.  
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Table 1-3. Major Wnt signaling target genes and their functions in cancer. 

Table is mainly adopted from (Thakur and Mishra, 2013) supplemented with 

additional information from the listed references. 

 

 

 

 

 

 

Gene Name  Function Reference  

cyclinD1, c-Myc, c-Jun, 
survivin, fra-1, Hath1, 
Met, FGF9, FGF18 

Cell growth, cell 
proliferation, survival  

(Boon et al., 2002; 
Hendrix et al., 2006; 
Leow et al., 2004; Mann 
et al., 1999; Shimokawa 
et al., 2003; Shtutman et 
al., 1999; Tetsu and 
McCormick, 1999; Zhang 
et al., 2001) 

JAG1, PPARdelta, c-Myc 
binding protein,  

Cell transformation  (Jung and Kim, 2005; 
Kim et al., 2005; Rodilla 
et al., 2009) 

CD44, VEGF, Ephb, 
BMP4, EDN1, GREM1 

Angiogenesis  (Batlle et al., 2002; 
Goncalves et al., 2008; 
He et al., 1999; Kim et 
al., 2002; Kim et al., 
2005; Zhang et al., 2001) 

MMP2, MMP9, Tiam1, 
MMP-7, Twist, uPAR, 
Snail, MMP26 

Migration, Invasion, EMT (Brabletz et al., 1999; 
Hendrix et al., 2006; Li 
and Zhou, 2011; Mann et 
al., 1999; Marchenko et 
al., 2002; Wu et al., 2007; 
Yook et al., 2006) 

CD44, Oct4, Nanog Cancer stem cell  (Cole et al., 2008; 
Goncalves et al., 2008; 
Hoffmeyer et al., 2012) 



23 
	  	  

1.10 The Wnt signaling in development and stem cell maintenance 
	  

To study the role of Wnt signaling in mammalian development, genetic 

engineered mouse models have given the field more insights and details on how 

Wnt affects the multiples stages of mammalian development and maintaining 

homeostatic tissue function. The knockout of 9 out of 18 mouse Wnt gene 

exhibited severe defective phenotypes in embryonic development. Wnt3a -/-, 

which is one of the Wnt ligands that if frequently overexpressed in cancer, 

exhibited failure in primitive streak and gastrulation. Double knockout of Lrp5-/- 

/Lrp6 -/- mice also fail to form primitive streak and die during gastrulation (Kelly et 

al., 2004).  Consistent with the notion that β-catenin is the keystone in the Wnt 

signaling pathway, β-catenin knockout mice recapitulated the gastrulation failure 

observed in both Lrp 5/6 and Wnt3 knockout mice. Further, β-catenin-/- mutant 

mice showed additional defect in body anterior-posterior (A-P) axis formation and 

die 7 days post coitum (dpc). Double knockout of Wnt1 and Wnt3a displayed 

defects in neural crest development and somite patterning. Table 1-4 shows the 

knockout phenotype of some of the central players in the Wnt signaling pathway 

as well as important Wnt ligands and receptors. Because these defects are 

critical to the embryonic development, mice deficient for these core components 

of the Wnt signaling pathway are often embryonic lethal (van Amerongen and 

Berns, 2006).  

Other than embryogenesis, Wnt signaling also plays multiple roles in 

regulating stem cell niches. In particular, inhibiting the Wnt signaling eliminates 

hair follicles and other skin appendages such as mammary glands (DasGupta 
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and Fuchs, 1999). Mice deficient of Lef1 exhibit a significantly reduction in hair 

follicles while transgenic mice bearing overexpression of Lef1 had increased de 

novo hair follicle formation. Consistently, transgenic overexpression of stable 

form of β-catenin expanded the hair follicle formation. In the hematopoietic 

system, treatment of Wnt3a increases self-renewal, as measured by clonogenic 

assays and long-term reconstitution in irradiated mice (Willert et al., 2003). 

Activated Wnt can also mediate maintenance of pluripotency in mouse 

embryonic stem cells (ten Berge et al., 2011).   

Table 1-4. Phenotypes of Wnt signaling components knockout mice. 

Gene 
knockout  

Phenotype  Reference  

β-catenin No primitive streak, defects in 
gastrulation, embryonic ectoderm,  

(Haegel et al., 1995; 
Huelsken et al., 2000) 
 

Axin1 Neuroectodermal and cardiac 
abnormalities  

(Zeng et al., 1997) 

Lef1 Defects in hair follicle formation, brain 
abnormalities  

(van Genderen et al., 
1994) 

Tcf3 A-P axis formation failure (Merrill et al., 2004) 

Lrp6 Failure in neural tube closure and 
brain development, limb patterning 

(Pinson et al., 2000) 

Wnt1 Mid- and hindbrain deficiencies  (Thomas and Capecchi, 
1990) 

Wnt3a Defects in primary body axis 
formation, 

(Takada et al., 1994) 

Wnt5a Truncated A-P axis, mesoderm 
formation defect  

(Yamaguchi et al., 1999) 

Wnt7a A-P defects, reproductive system 
defects 

(Miller et al., 1998; Parr 
and McMahon, 1995) 

Table summarizes phenotypes observed in some conventional knockout mice of 

Wnt signaling components. Gsk3β -/- mice were not included because they suffer 

defects from NF-κB signaling, independent from Wnt signaling.  
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1.11 Rationale and Hypothesis  
	  

The Jumonji family proteins are mainly known to carry out their functions 

on histone post-translational modifications, thereby regulating gene expression. 

Among the Jumonji family proteins, JMJD2A, also known as KDM4A, is critical 

for demethylating H3K9me3 and H3K36me3. Because of its ability to regulate 

chromatin dynamics, JMJD2A is shown to govern embryonic, neural, muscle and 

cardiac development, and its knockout mice are embryonic lethal. Only in the 

recent years, the role of JMJD2A in cancer has started to unveil. In these studies, 

JMJD2A has indispensable functions in proliferation and metastasis in many in 

vitro cancer cell models, and its overexpression is seen in a variety of cancer 

tissues. This may be due to its ability to associate and modulate different 

oncogenic genes. Interestingly, these JMJD2A-modulated genes are also major 

target genes in the Wnt/β-catenin signaling pathway, such as cyclinD1, Jagged, 

and c-Jun. Wnt/β-catenin signaling pathway is a vital and complex regulatory 

system in developmental biology and cancer, which controls gene expressions 

via the transcriptional coactivator β-catenin. In particularly, JMJD2A can 

cooperate with oncogenic Ras to promote cellular transformation of normal lung 

fibroblast, while the co-expression of Ras and β-catenin induces lung tumor in 

mouse models. Furthermore, transgenic knockout mice of Wnt signaling 

components revealed defects in embryonic, neural crest, and cardiac 

development, and also exhibit embryonic lethality, which are all observed in 

JMJD2A deficient conditions. All these serve as indicators to provoke a rational 

question that whether JMJD2A may be associated to the Wnt/β-catenin signaling 
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pathway. Therefore, our goal in this study was to explore the potential 

interplay between JMJD2A and the Wnt/β-catenin signaling pathway.  
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Materials and Methods 



28 
	  	  

2.1 Cell Culture and Reagents 
	  
MDA-MB-231, Hep3B, PC-3, HEK293, HEK293T cells were obtained from 

American Type Culture Collection. All cells lines were cultured in DMEM 

(Hyclone) supplemented with 10% fetal bovine serum (Sigma Aldrich), 1% 

penicillin/streptomycin solution and 1% L-glutamine (Hyclone). Jmjd2a flox/flox 

mouse embryonic fibroblasts (MEFs) were prepared from mice as previously 

described. In short, female pregnant mice were sacrificed, and embryos were 

isolated at 13.5 days after mating. Embryos were digested and the resulting cells 

were cultured in complete DMEM. All procedures were conducted under the 

approved protocol of Institutional Animal Care and Use Committee (IACUC). 

Jmjd2aflox/flox mice were provided by Dr. Zhi-Ping Liu (The University of Texas 

Southwestern). Wnt3a ligand (R&D System) was treated according to the 

experimental time points (100ng/ml). MG132 (Sigma) was treated up to 6 hours 

(20ng/ml). Cycloheximide (CHX) was treated according to the time points at 

20µg/ml. Cultured cells were kept at 37°C in a standard 5% CO2 incubator.  

2.2 Antibodies and Constructs  

 Antibodies used in this study include: anti-JMJD2A from Active Motif (Western 

blot); anti-JMJD2A from Abcam (IP), Cell Signaling (immunofluorescence); anti-

β-catenin from BD Laboratories (Western blot); anti-phosphorylated-β-catenin 

(Ser33/Ser37Thr41), anti-Axin1, anti-Axin2, anti-GSK3β and anti- β-TrCP from 

Cell Signaling; anti-c-Myc, anti-cyclinD1 and anti-ubiquitin from Santa Cruz 

Biotechnology; anti-Flag, anti-α-tubulin and anti-β-actin from Sigma Aldrich; anti-

Lamin B1 from Abcam.  
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Mammalian expression vector pEV3S-Flag-JMJD2A was a gift from Dr. Ralf 

Janknecht from Oklahoma University. pBabe-JMJD2A was subcloned from Flag-

JMJD2A using blunt end cloning method. Enzyme dead mutants (H188A) of 

JMJD2A were mutated using a PCR-based site-directed mutagenesis with the 

following primers: 

forward, 5’-CCTTTGCTTGGGCCACTGAAGAC 

reverse, 5’-CATGTCTTCAGTGGCCCAAGCAA 

JMJD2A truncation delC domain was constructed using the following primers: 

forward, 5’-GTGAACACCCCATATACCCGTCGGTGGAT 

reverse, 5’-ATCCACCGACGGGTATATGGGGTGTTCAC 

pcDNA3-Flag-β-catenin and pcDNA3-Flag-S33Yβ-catenin were purchased from 

Addgene. TOP-FLASH and FOP-FLASH plasmids were gifts from Dr. Mong-

Hong Lee’s lab, MD Anderson Cancer Center.  

2.3 Immunoblotting and Immunoprecipitation  
	  
For immunoblotting (Western blots) analysis, cells were lysed in RIPA lysis buffer 

(50mM Tris-HCl [pH of 8.0], 150mM NaCl, 5mM EDTA, 0.5% sodium 

deoxycholate, 0.1% SDS, 1% NP-40, protease inhibitor cocktail [Roche, Inc]). 

The lysed cell samples were then normalized based on protein concentration by 

using the Bio-Rad protein assay dye reagent. The normalized protein samples 

were then subjected to SDS-PAGE analysis. For immunoprecipitation, cell pellets 

were lysed in E1A buffer (50mM HEPES [pH of 7.5], 250mM NaCl, 5mM EDTA, 

0.1% NP-40, protease inhibitor cocktail) followed by 60-70 strokes of sonication. 

The lysed cell samples were then normalized using the same method described 
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previously. Normalized cell samples were incubated on the rotator with the 

corresponding antibodies overnight at 4°C. Protein A/G beads (Santa Cruz 

Biotechnology) were further incubated with the lysates for 3 hours on the rotator 

at 4°C. Beads were washed 4-5 times with E1A buffer. Proteins were finally 

eluted from the beads using 2X SDS-sample buffer. Samples were then 

subjected Western blot analysis.  

2.4 Viral infection and Transfection 
	  
For lentiviral short hairpin RNA (shRNA) infection, 293T cells were prepared 

50%-60% confluency) and cotransfected with either luciferase (shLuc) or target 

gene shRNA with packaging plasmid (pHelper) and envelop plasmid (pEnv) by 

using the calcium phosphate transfection method. Medium was changed 6 hours 

later. After 48 hours, the virus particles were harvested and used to infect 

parental cells for another 48 hours. The stably infected cells were then selected 

by 2 µg/ml puromycin for 5-7 days. The shRNA sequences used for this project 

are listed below (Sigma Aldrich).  

Table 2-1. Lentiviral shRNA sequences  

Name Sequence 
shJMJD2A 1 CCGGGCTGCAGTATTGAGATGCTAACTCGAGTTAGCATCTCAAT

ACTGCAGCTTTTT 
shJMJD2A 2  CCGGGCACCGAGTTTGTCTTGAAATCTCGAGATTTCAAGACAAA

CTCGGTGCTTTTT 
shJMJD2A 3 CCGGCCGAAACTTCAGTAGATACATCTCGAGATGTATCTACTGA

AGTTTCGGTTTTT 
shJMJD2A 4 CCGGGCCTTGGATCTTTCTGTGAATCTCGAGATTCACAGAAAGA

TCCAAGGCTTTTT 
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For retroviral infection, MSCV and MSCV-Cre were transfected with VSV-G and 

Gag-Pol retroviral packaged plasmids into the HEK293T cells. Medium was 

replaced 6 hours later. After 48 hours, the virus particles were collected to infect 

MEFs for another 48 hours. The cells were selected by 1 µg/ml puromycin for 4-5 

days. For transient transfection, plasmids were transfected by using either the 

calcium phosphate method or Lipofectamine 2000 (Invitrogen) reagent following 

the manufacturer’s instructions. For calcium phosphate transfection, cells were 

plated around 60-70% confluency. Indicated plasmids were mixed with sterile 

H2O, 2M CaCl2, 2X HBSS (drop by drop). Mixed solutions were incubated for 30 

minutes at room temperature, and added to the cells in DMEM high glucose 

medium. After 6-8 hours, medium was replaced with fresh regular medium. 

Transfected cells were harvested 48 hours after transfection.  

2.5 Reverse Transcription and Real-Time PCR 
	  
For reverse transcription, RNA was extracted using TRIzol® (Invitrogen) following 

the company protocol. All apparatus and the autoclavable equipment were 

sterilized to be RNAse free. After RNA extraction, the purified RNA were 

normalized (5 µg) and used for reverse transcription using the SuperScript® III 

First-Strand Synthesis System (Invitrogen) to obtain cDNA for each sample. 

cDNAs were then used for real-time PCR analysis by using SYBR® Green PCR 

Master Mix (Invitrogen), following the standard protocol. The relative mRNA 

levels were calculated using the comparative Ct method: 2(∆!"  !"#$%&!∆!"  !"#"!"$%")  

Primers for real-time PCR are listed in Table 2-2. 
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Table 2-2. Real-Time PCR Primer sequences used   

	  
	  

2.6 TOP/FOP Luciferase Reporter Assay 
	  
TOP-FLASH and FOP-FLASH reporter plasmids were transfected along with 

Renilla luciferase reporter plasmid in MDA-MB-231 shLuc and shJMJD2A cells. 

TOP-FLASH reporter plasmid contains three wild-type optimal copies of 

TCF/LEF binding sites for β-catenin while FOP-FLASH reporter plasmid contains 

three mutant copies of TCF/LEF binding sites in which β-catenin is unable to bind 

to drive transcription. 48 hours after transfection, cells were harvested and both 

firefly and Renilla luciferase activity was measured in triplicates using the Dual-

Glo™ Luciferase Assay System (Promega). The firefly activity was normalized 

against the Renilla luciferase activity and fold increase in TOP-FLASH activity 

was compared to FOP-FLASH activity.  

2.7 Cytosolic and Nuclear Fractions 
	  
After cell harvesting, cell pellets were resuspended in hypotonic buffer (10mM 

Tris-HCl [pH of 7.6], 10mM MgCl2, 0.1% NP-40, protease inhibitor cocktail tablet) 

Name  Sequence 
GAPDH F  5'-GAGCCAAAAGGGTCATC 
GAPDH R 5’-GTGGTCATGAGTCCTTC 
β-Catenin F 5’-AAAATGGCAGTGCGTTTAG 
β-Catenin R 5’-TTTGAAGGCAGTCTGTCGTA 
Cyclin D1 F 5’-AAATGCCAGAGGCGGAGGAGAACAAAC 
Cyclin D1 R 5’-GGAAGTTGTTGGGGCTCCTCAGGTT 
c-Myc F 5′-TCAAGAGGCGAACACACAAC 
c-Myc R  5′-GGCCTTTTCATTGTTTTCCA 
Axin2 F 5’- GCAAACTTTCGCCAACCGTG 
Axin2 R  5’- CTCTGGAGCTGTTTCTTACTGCCC 
LEF-1 F 5’-ACAGCGGAGCGGAGATTACAGAGC 
LEF-1 R 5’-TCAGATGTAGGCAGCTGTCATTCTGGGA 
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and homogenized using dounce homogenizer (pestle B for tighter fit). The cell 

suspensions were centrifuged at 1,300 x g for 5 minutes at 4°C. The supernatant 

(cytosolic) was carefully separated from the pellets (nuclear). The supernatant 

was processed for cytosolic fractionation: centrifugation at 13,500 rpm for 15 

minutes at 4°C. The nuclear pellets were washed once with hypotonic buffer and 

were centrifuged again. The pellets were then resuspended in RIPA buffer 

followed by brief sonication and centrifugation. For input analysis, the 

fractionation samples were normalized for immunoblotting. For protein-protein 

interaction analysis, follow the immunoprecipitation protocol.  

2.8 Immunofluorescence Assay 
	  
Prior to immunostaining, cells were seeded in chamber slides (NuncTM Lab-TekTM 

II) and allowed to attach. For analysis, cells were fixed with 4% formaldehyde for 

30 minutes, and permeabilized with 3% Triton x-100 PBS for 10 minutes. After 

blocking (2% BSA) and incubating with the indicated primary and corresponding 

secondary antibodies, cells were rinsed with 1X PBS and mounted with Antifade 

Reagent with DAPI.  

2.9 Photobleaching fluorescence resonance energy transfer (FRET) 
	  
MDA-MB-231 cells were treated with Wnt3a ligand according to the time points. 

After washing with PBS, the cells were fixed for 15 min with 4% formaldehyde in 

PBS and incubated in blocking solution (PBS containing 10% fetal bovine serum) 

for 30 min at room temperature. This procedure was followed by incubation with 

primary monoclonal anti-β-catenin and anti-JMJD2A antibodies at 1:200 dilution 

in blocking solution for 2 hours at room temperature. Following incubation with 
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the primary antibodies, the cells were washed in PBS (0.5% Tween 20) and 

incubated with FITC- and Rhodamine-labeled anti-rabbit secondary antibody 

(Jackson ImmunoResearch Lab Co.). The samples were washed three times 

with PBS (0.5% Tween 20), mounted with Gel Mount (Sigma), and images were 

acquired using a Leica TCS SP5 Confocal Spectral Microscope Imaging System 

(Leica Microsystems, Wetzlar, Germany), as described previously (Chen et al., 

2012). The acceptor bleaching FRET method (Xia and Liu, 2001) was used 

according to the manufacturer’s instructions (FRET Wizards in the Leica 

Application suite). Briefly, the initial donor (FITC 488) image represents donor 

fluorescence in the presence of the acceptor, rhodamine. After complete 

photobleaching of the acceptor, a second donor image was collected. 

Quantitative analysis of the D/DA values was performed using the method of Xia 

and Liu (Xia and Liu, 2001) after image acquisition with the Leica Application 

Suite-Advanced Fluorescence software (Leica FRET AB). The total FRET activity 

folds values of the nuclear and cytosolic parts were counted from the 500 

randomly selected cells. The fold ratios of the Wnt-3a-treated cells (2, 6, and 10 

hours) were obtained by comparison to the control-treated (0 hour) group. 

2.10 Cell Proliferation, In Vitro Migration and Invasion Assays 
	  
Approximately 5000 cells were seeded per well in 12-well plates in triplicates. 

Cells were then stained with trypan blue, and viable cells counted on the 

indicated days by using the hemocytometer under the microscope. For cell 

migration, 500 µL of complete medium was dispensed per well in the 12-well 

plates. 105 cells were seeded with serum free medium in the transwell inserts 
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situated in the wells. Cells were allowed to migrate toward FBS in the incubator 

for the indicated time period. Medium was removed, and inserts were washed 

with 1X PBS. 4% paraformaldehyde was then added to the lower chamber 

(between inserts and the bottom of the well) to fix the cells for 20 minutes at 

room temperature. The unmigrated cells in the transwell inserts were removed by 

Q-tips before staining. Cells were stained by Hematoxylin for 20 minutes at room 

temperature. Following staining, the inserts were washed with 1X PBS until all 

excess stain was removed. Invasion assay was executed similar to that of 

migration assay except transwell inserts were coated with Matrigel for 20 minutes 

in the incubator prior to cell seeding, and cells were allowed to invade for 24 

hours. Migrated and invaded cells were counted, and three fields per group were 

recorded for statistical analysis.  

2.11 Stem Cell Sphere Culture 
	  
1:1 ratio of DME/F12 and MEGM medium was used to culture stem cell sphere 

with the following ingredients: Insulin (Sigma), human EGF (Sigma), 4%BSA, 

hydrocortisone (Sigma), B27 supplement (Invitrogen), and1% penicillin and 

streptomycin. Before seeding, cells were washed twice with 1X PBS to remove 

residuals of FBS. 5000 cells were seeded per cell in triplicates in 12 well Ultra-

low Attachment Plate (Corning), and let grow in the incubator for up to 14 days. 

Stem cell spheres with diameters bigger than 100 µm were counted with cell 

counter.  
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2.12 Stem Cell Aldefluor Assay 
	  
For each sample, 1X106 cells were counted and diluted with 1 mL of the 

ALDEFLUOR™ (Stemcell Technologies) buffer. After labeling one “test” tube and 

one “control” tube, 1 mL of the diluted cell suspension was dispensed into the 

“test” tube. 5 µL of DEAB reagent was added to the “control” tube, and 5 µL of 

the activated reagent was added to the 1 mL cell suspension in the “test” tube. 

After adding the active reagent, the cell suspension was mix immediately and 0.5 

mL of the suspension was dispensed into the DEAB “control” tube. After both of 

the tubes were ready, both samples were incubated for 30 minutes at 37°C. 

Following incubation, the tubes were then centrifuged for 5 minutes and 

resuspended each sample with 0.5 mL Assay Buffer. Cell mixtures were then 

stored on ice at 4°C. The samples were then place on the flow cytometer for data 

requisition. DEAB group served as the control group.   

2.13 In Vivo Tumorigenesis and Metastasis Assay  
	  
For tumorigenesis, 3 million stable MDA-MB-231 cells with control and JMJD2A 

knockdown expressions were subcutaneously injected into the flanks of nude 

mice (Taconic, Inc.). Tumor size was measured by the caliper weekly, and tumor 

volume (mm3) was calculated based on the equation: volume = (width)2 x 

length/2. Approximately 5 mice were used for each group. All animal experiments 

were performed under the Institutional Animal Care and Use Committee 

approved protocol. Tumors were isolated, and pictures were taken to 

demonstrate the tumor size. For in vivo metastasis analysis, 2 million stable 

MDA-MB-231 cells with depletion of control and JMJD2A expressions were 
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injected through tail vein. Three mice were used for each group. After 3 months, 

the lungs of the mice were isolated and counted for nodule numbers. Pictures 

were taken to visually demonstrate in vivo metastasis to the lungs.  

2.14 Statistical Analysis 
	  
The statistical significance of the data in this project was determined by unpaired 

two tailed Student’s t-tests, unless indicated otherwise in the figure legends. P-

values less than 0.05 were considered statistically significant.  
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3.1 JMJD2A affects Wnt target gene expressions  
	  

Recent studies have revealed that the expression of JMJD2A is aberrantly 

high in many different types of cancer, and it is exceptionally overexpressed in 

breast cancer (Berry et al., 2012). To confirm this observation, we used the 

ONCOMINE microarray database platform to examine the expression of JMJD2A 

in normal breast tissue and invasive ductal breast carcinoma. The box-plot 

indicates that the mRNA expression level of JMJD2A is significantly higher in the 

breast cancer tissue (lane 2) compared to the normal (lane 1) (Figure 3-1). Thus, 

for the remaining of this project, we mainly focused using breast cancer cells to 

perform the mechanistic studies of JMJD2A. First, to test the hypothesis that 

JMJD2A is linked to Wnt/β-catenin signaling pathway, we used the TCGA Cancer 

Genomics Browser platform and analyzed the TCGA exon datasets for JMJD2A 

and common Wnt/β-catenin target genes from microarray. The heat map shows 

that in invasive breast carcinoma patient tissues, JMJD2A (KDM4A) mRNA 

expression correlates significantly (p<0.05) with most of the Wnt/β-catenin target 

genes (Figure 3-2). To verify this data, we treated MDA-MB-231 control and 

JMJD2A knockdown cells with Wnt3a ligand to see whether the deficiency of 

JMJD2A would affect the major target genes of Wnt/β-catenin pathway. As 

shown by the real-time PCR results, mRNA levels of well-established Wnt 

signaling pathway target genes CCND1 (cyclinD1), MYC (c-Myc), AXIN2, and 

LEF1, were all expectedly induced upon Wnt ligand treatment in MDA-MB-231 

control knockdown cells (Figure 3-3). However, in the JMJD2A knockdown cells, 

the mRNA expressions of these target genes were decreased, compared to the 
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control cells. Surprisingly, even after the treatment of Wnt3a ligand to activate the 

Wnt-signaling pathway, the mRNA expression levels of these target genes were 

much lower compared to the control knockdown cells (Figure 3-3). This data 

provided some cues for us that the manifestation of JMJD2A is critical for the 

activation of Wnt/β-catenin signaling pathway. To follow up on this finding, we 

revealed that the Wnt3a-induced transcriptional activity of β-catenin was 

significantly blocked by the knockdown of JMJD2A, as demonstrated by the 

TOPFlash luciferase assay (Figure 3-4). It is worth mentioning that while the 

mRNA levels of β-catenin target gene were reduced in the JMJD2A knockdown 

cells, the mRNA level of β-catenin itself did not change upon JMJD2A depletion 

(Figure 3-3). To validate this notion, we examined the protein level of these target 

genes in four different JMJD2A shRNA stable knockdowns, as well as 

Jmjd2aflox/flox MEF infected with MSCV-Cre cells. Consistent with their mRNA 

expression levels, the protein levels of these target genes also decreased under 

the ablation of JMJD2A, compared to their control counterparts (Figures 3-5 A-

C). However, unlike its mRNA expression level, the protein level of β-catenin was 

decreased significantly upon deficiency of JMJD2A (Figures 3-5 A-C). Moreover, 

after treatment with Wnt3a ligand, while control cells nicely exhibited increased 

protein levels of expression in β-catenin and its target gene cyclinD1, the protein 

levels of Wnt target genes as well as β-catenin still failed to be induced in the 

JMJD2A knockdown cells (Figures 3-5D). These results collectively indicate that 

JMJD2A is needed to stimulate Wnt ligand-induced β-catenin transcriptional 

activity and to activate its target gene expressions.  
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Since JMJD2A is a histone protein that functions as a demethylase for histone 

tail post-translational modifications, we then asked the question whether this 

effect is through modulating the histone methylation status of these target genes, 

thereby affecting their expressions. We restored vector, WT JMJD2A and 

enzyme dead mutant H188A back into the MDA-MB-231 JMJD2A knockdown 

cells, and examined the protein level of the β-catenin and its target genes. Just 

like its WT counterpart, enzyme-dead mutant H188A still successfully restored 

the expressions of β-catenin target genes (Figure 3-6), indicating that the histone 

demethylase activity of JMJD2A is not required to exert its effect on the Wnt/β-

catenin signaling pathway.  
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Figure 3-1. JMJD2A is overexpressed in breast cancer.  

Expression of JMJD2A mRNAs in total of 593 patient samples is shown in the 

format of box plot. Lane 1 represents expression of JMJD2A in normal breast 

tissues; Lane 2 represents the expression of JMJD2A in ductal breast carcinoma. 

Shown are log2-transformed mRNA levels with the median. Statistical 

significance was calculated using Student’s t-test to compare the difference of 

mRNA expression in normal and cancerous tissues. p<0.01. Microarray data was 

acquired from TCGA and analyzed through the ONCOMINE web portal.   
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Figure 3-2. JMJD2A expression correlates with Wnt signaling pathway 

target genes.  

TCGA Cancer Genomic Browser exon dataset for invasive breast cancer tissue 

was used to examine the expression of JMJD2A and major Wnt/β-catenin 

signaling target genes. Total patient samples=1215. The top 30% and bottom 

30% patient data were used (n=729). Statistical bar is displayed on the left side 

of the heat map. Statistical significance (p<0.05) was calculated using the 

Wilcoxon signed-rank rest. Red means positive correlation, green means 

negative correlation. 
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Figure 3-3. JMJD2A affects Wnt target gene expression on the mRNA level. 

MDA-MB-231 cells with control (shLuc) or JMJD2A knockdown were treated with 

Wnt3a for 6 hours. RNA was extracted for reverse transcription followed by real-

time PCR to analyze the mRNA expression of Wnt target genes. The result is 

shown as means ± s.d. (n=3). **p<0.01, *p<0.05. 
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Figure 3-4. JMJD2A affects β-catenin transcriptional activity.  

MDA-MB-231 control and JMJD2A knockdown cells were transfected with the 

TOP-Flash and FOP-Flash (negative control) luciferase reporter, and treated with 

Wnt3a ligand for 6 hours. The ratios between TOP-Flash and FOP-Flash were 

calculated 48 hours after transfection. The result is shown as means ± s.d. (n=3). 

**p<0.01.  

	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  

MDA-MB-231

Fop F
las

h

Top F
las

h

Top F
las

h + 
W

nt3
a

0

50

100

150
shLuc
shJMJD2A 

fo
ld

 c
ha

ng
e 

** 
** 



46 
	  	  

	  
	  
	  
	  
	  
	  
	  
	  
	  

	  
	  

 

 

 

 

Figure 3-5. JMJD2A affects the protein level of β-catenin and its target 

genes.  

(A) MDA-MB-231 cells with control (shLuc), and JMJD2A knockdown were 

subjected to immunoblotting to examine the protein level of β-catenin and its 

target genes. 

(B) Jmjd2aflox/flox MEFs infected with control (MSCV) or MSCV-Cre were 

subjected to immunoblotting to examine the protein level of β-catenin and its 

target genes. 

(C) The mRNA level of JMJD2A in Jmjd2aflox/flox-MSCV and Jmjd2aflox/flox-MSCV-

Cre MEFs as in (B) was validated. 
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Figure 3-5. JMJD2A affects the protein level of β-catenin and its target 

genes (continued). 

(D) MDA-MB-231 cells with control (shLuc) or JMJD2A knockdowns were treated 

with Wnt3a ligand like indicated for 6 hours.  Cells were harvested for 

immunoblotting to examine the protein level of β-catenin and its transcriptional 

target gene cyclinD1.  
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Figure 3-6. JMJD2A enzyme activity is not needed to regulate β-catenin and 

its target gene expressions. 

Restoration of WT JMJD2A and enzyme-dead mutant H188A of JMJD2A in 

JMJD2A knockdown cells. Whole cell extracts of the cells were subjected to 

immunoblotting for β-catenin and the protein level of its downstream targets.  
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3.2 JMJD2A regulates the β-catenin expression through protein stability 
	  

Having shown that JMJD2A only affects the protein abundance of β-

catenin but not its mRNA level, we hypothesized that JMJD2A affects β-catenin 

protein expression through a post-transcriptional mechanism. To assess whether 

JMJD2A regulates the stability of β-catenin, we measured the half-life of 

endogenous β-catenin by inhibiting new protein synthesis with cyclohexmide 

(CHX). In MDA-MB-231 control knockdown cells, the half-life of β-catenin only 

decreased marginally over the course of 8 hours (Figures 3-7A, B). Conversely, 

in the JMJD2A knockdown cells, the half-life of β-catenin dropped dramatically 

between 4 to 6 hours (Figures 3-7A, B). Since most of protein degradation is 

through proteasome, including β-catenin, therefore, we tested whether the 

downregulation of β-catenin under the JMJD2A deficient condition is mediated by 

the ubiquitin-proteasome pathway. To do this, we treated MDA-MB-231 control 

and JMJD2A knockdown cells with proteasome inhibitor MG132. Consistently, 

ablation of JMJD2A decreased the level of β-catenin and its downstream target 

gene cyclinD1 (Figures 3-7C,D). Nevertheless, MG132 treatment successfully 

blocked the degradation of β-catenin as well as its target genes, with or without 

Wnt3a ligand treatment (Figures 3-7C,D). These results suggest that the 

decreased protein level of β-catenin is mediated through the ubiquitin-

proteasome pathway.  

In the canonical Wnt signaling pathway, during the Wnt-off resting phase, 

the proteasome-mediated degradation of β-catenin occurs through several 

sequential steps: 1) GSK3β targets β-catenin for phosphorylation; 2) 
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Phosphorylated β-catenin binds and gets recognized by E3 ligase β-TrCP; 3) β-

TrCP induces β-catenin ubiquitination and proteasome-induced degradation. To 

thoroughly study the mechanism of how JMJD2A regulates β-catenin 

degradation, we then examined the effect of JMJD2A on each of these critical 

steps in destabilizing β-catenin. In the first step, we stimulated MDA-MB-231 

stable control and JMJD2A knockdown cells with Wnt3a in a time course 

treatment to examine the level of phosphorylation of β-catenin by GSK3β on 

Ser33/Ser37/Thr41. As expected, Wnt activation abrogated GSK3β-mediated 

phosphorylation of β-catenin in a time-dependent manner, while total level of β-

catenin was induced (Figure 3-8A). Yet, in the JMJD2A knockdown cells, the 

levels of phospho-β-catenin were dramatically higher while the total level of β-

catenin was lower, compared to its control counterparts (Figure 3-8A). To 

corroborate the involvement of GSK3β in facilitating the degradation of β-catenin, 

we restored the constitutive active β-catenin S33Y, a mutant that cannot be 

phosphorylated by GSK3β, into the JMJD2A knockdown cells. This restoration 

not only rescued the destabilized β-catenin expression seen in JMJD2A 

knockdowns, as well as the downstream target gene expressions (Figure 3-8B). 

This data indicates that JMJD2A is required to inhibit GSK3β-mediated 

phosphorylation of β-catenin. From these results, we hypothesized that without 

JMJD2A, GSK3β may have a higher binding affinity for β-catenin to induce higher 

phosphorylation, which eventually culminates in β-catenin degradation. To test 

this theory, we carried out co-IP experiment to examine the integrity of the 
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destruction complex and their interaction with β-catenin in control and JMJD2A 

ablation conditions. Compared to the control, JMJD2A deficiency significantly 

enhanced the interaction between β-catenin and GSK3β (Figures 3-9A,B). In 

addition, although Wnt stimulation abrogated the interaction between GSK3β and 

β-catenin in control cells, it had marginal effect on their interaction in the JMJD2A 

knockdown cells (Figure 3-9C). This result supports our previous observation that 

JMJD2A suppresses the phosphorylation of β-catenin mediated by GSK3β.  

In the second step of the β-catenin degradation process, the 

phosphorylated β-catenin gets recognized by and binds to the F-box protein E3 

ligase β-TrCP. In our co-IP experiment (Figure 3-10A), the basal interaction 

between β-catenin and β-TrCP was very low in the control knockdown cells (lane 

1), but could be enhanced after MG132 treatment (lane 2). Expectedly, Wnt 

ligand treatment attenuated this interaction so that β-catenin could be stabilized 

for further nuclear translocation (lane 3).  Contrariwise, in the JMJD2A 

knockdown cells, the basal interaction between β-catenin and β-TrCP (lane 5) 

was drastically increased, and MG132 treatment greatly enhanced this 

interaction (lane 6). While Wnt stimulation partially inhibited this binding, the 

interaction intensities between β-catenin and β-TrCP were generally higher in 

JMJD2A knockdown cells (lane 7).  

In the third step, after β-catenin binds to β-TrCP, it acts as an E3 ligase to 

induce K48-linked polyubiquitination for subsequent proteasomal degradation. 

We performed immunoprecipitation with anti-ubiquitin antibody and 

immunoblotted with anti-β-catenin antibody to detected the level of ubiquitinated 
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β-catenin. We also treated the IP reactions with N-ethylmaleimide (NEM) 

deubiquitinating enzyme inhibitor to prevent protein deubiquitination. While the 

level of β-catenin ubiquitination was inhibited by the Wnt stimulation in the control 

group, it was increased by the depletion of JMJD2A, compared to its control 

counterpart (Figure 3-10B). Collectively, the above data suggest that JMJD2A 

has an indispensable role in this sequential event to induce β-catenin 

degradation, and that without the presence of JMJD2A, β-catenin destabilization 

still takes place even in the Wnt-on phase.  

	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  

	  
	  

	  



53 
	  

	  
	  

	  
	  
	  
	  

	  
	  
	  
	  
	  

	  
	  
	  

	  
	  
	  
	  
	  
	  
	  
	  
	  

	  
	  

Figure 3-7. JMJD2A affects β-catenin protein level through degradation 

(A) MDA-MB-231 cells with control (shLuc) and JMJD2A knockdown were 

treated with cyclohexmide (CHX). Cells were harvested at the indicated times for 

inhibition of new protein synthesis.  

(B) Quantitation of the β-catenin level in (A) is normalized to the β-actin loading 

control and expressed relative to 0 h
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Figure 3-7. JMJD2A affects β-catenin protein level through degradation 

(continued) 

(C) MDA-MB-231 with stable control and JMJD2A knockdown cells were treated 

with vehicle and MG132 for 6 h, and cells were subjected to immunoblotting. 

(D) Cells in (C) were treated with MG132 proteasome inhibitor and Wnt3a ligand 

simultaneously for 6 h. Cells then were subjected to immunoblotting to examine 

the protein level of β-catenin and its downstream target genes. 
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Figure 3-8.  JMJD2A affects GSK3β-mediated phosphorylation of β-catenin.  

(A) MDA-MB-231 cells with stable control (shLuc) and JMJD2A knockdown were 

treated with Wnt3a for the indicated time points. Phosphorylated β-catenin 

(Ser33/Ser37/Thr41) level was examined by using Western blot analysis  

(B) Cells in (A) were transiently transfected with vector and S33Y β-catenin, and 

stimulated with Wnt3a ligand like indicated. The cells were subjected to 

immunoblotting to examine the levels of β-catenin and its downstream target 

genes. 
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Figure 3-9.  JMJD2A affects the integrity of the destruction complex.  

(A) MDA-MB-231 with control and JMJD2A knockdowns were 

immunoprecipitated with anti-β-catenin antibody to examine level of interaction 

with GSK3β.  

(B) Samples in (A) were reloaded to normalize the levels of immunoprecipitated 

β-catenin in the control and JMJD2A knockdown. The sample-loading ratio is 

indicated on the bottom of the IP blots. The interaction intensity between β-

catenin and GSK3β was re-immunoblotted after the levels of immunoprecipitated 

β-catenin were normalized.  
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Figure 3-9 JMJD2A affects the integrity of the destruction complex 

(continued) 

(C) MDA-MB-231 with control and JMJD2A knockdowns were 

immunoprecipitated with anti-β-catenin antibody to examine their intensities of 

interaction with GSK3β. MG132 and Wnt3a were treated simultaneously as 

indicated.  
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Figure 3-10. Ablation of JMJD2A induces the binding between β-catenin 

and β-TrCP.  

(A) MDA-MB-231 cells with stable control (shLuc) and JMJD2A knockdown were 

treated with Wnt3a and MG132 simultaneously for 6 h, as indicated. The cells 

were subjected to β-catenin IP to examine its interaction with E3 ligase β-TrCP. 

S.E indicates short exposure time, and L.E indicates long exposure time.  

(B) Cells from (A) were treated with Wnt3a ligand and MG132 as indicated. The 

cells were immunoprecipitated with anti-Ubiquitin to examine the endogenous β-

catenin ubiquitination. 
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3.3 JMJD2A and β-catenin interact in the cytosol and nucleus   
	  
Since we have already shown that JMJD2A regulates the β-catenin degradation 

through regulating its interaction with the destruction complex, then we asked the 

question whether JMJD2A binds to β-catenin. We performed reciprocal co-

immunoprecipitation experiments, and we were able to observe that exogenously 

expressed of JMJD2A interacted with endogenous β-catenin in HEK293T cells 

(Figures 3-11A,B). We further used the split-luciferase assay to confirm their 

interaction. In the control group (no Wnt ligand treatment), the luminescence 

signal was low, as quantified by bioluminescence (Figure 3-13B). After 

stimulating the cells with Wnt3a, JMJD2A and β-catenin showed significant 

higher interaction and full reconstitution of the split-luciferase enzyme with 

enhanced luminescence signal (Figure 3-11C). Since previous data showed that 

the enzyme-dead mutant H188A of JMJD2A has the same effect on β-catenin 

protein stability as the WT, we then aimed to study whether the enzyme activity 

of JMJD2A is needed for its interaction with β-catenin. To avoid the possibility 

that point mutation is not sufficient enough to affect protein-protein interaction, 

we generated JMJD2A truncation that is missing its catalytic Jumonji C (delC) 

domain, instead of using point mutation H188A enzyme-dead mutant. Consistent 

with our observation, the catalytic truncation of JMJD2A did not affect its binding 

with β-catenin (Figure 3-12), further corroborating that the enzyme activity of 

JMJD2A is not needed to exert its function in the Wnt signaling pathway. We 

then strived to confirm whether this interaction still occurs under the physiological 

condition by performing endogenous immunoprecipitation for JMJD2A and β-
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catenin. Since Wnt ligand is capable of stabilizing β-catenin, we treated the IP 

reactions with Wnt3a ligand. The amount of β-catenin that was bound to JMJD2A 

increased substantially with the treatment of Wnt3a ligand (Figure 3-13). This 

data confirmed our IP result that the interaction of JMJD2A and β-catenin can be 

heightened by the activation of the Wnt-signaling pathway. 

Because both endogenous JMJD2A and β-catenin exist in two cellular 

pools—cytosol and nucleus, we next examined their interaction in each of these 

two pools upon Wnt ligand treatment. The fractionated portions of the cells were 

immunoprecipitated with anti-JMJD2A antibody. In the cytosolic fraction, JMJD2A 

bound to β-catenin under normal resting conditions, and its interaction was 

abrogated upon Wnt3a treatment (Figure 3-14A). On the contrary, in the nuclear 

fraction under resting condition, JMJD2A and β-catenin did not interact since 

most of the protein resided in the cytosol prior to Wnt stimulation. After Wnt3a 

ligand treatment, their interaction was enhanced in the nucleus due to the 

translocation of these two proteins into the nucleus (Figure 3-14A). To ascertain 

that JMJD2A and β-catenin interact and translocate to the nucleus upon the 

activation of Wnt signaling pathway, we used FRET assay to further confirm this 

observation. After stimulating the cells with Wnt3a in a time-course manner, we 

observed FRET activity, indicated by the yellow fluorescence signal, in the 

cytosol at time 0 for the Wnt3a treatment (Figure 3-14B,C), confirming our IP 

results that cytosolic JMJD2A and β-catenin interact in resting cells. As the 

stimulation of Wnt3a progressed, both JMJD2A and β-catenin translocate from 

the cytosol to the nucleus, and their interaction and FRET activity was 
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significantly heightened, indicated by the red-orange fluorescence signal (Figures 

3-14 B,C). Thus, we concluded that β-catenin interacts with JMJD2A in both the 

cytoplasm and the nucleus, and Wnt activation promotes their interaction in the 

nucleus by translocating both proteins to the nucleus.  
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Figure 3-11. JMJD2A and β-catenin interact with each other.  

(A) Transient transfection of Flag-JMJD2A was performed in HEK293T cells. 

Anti-Flag antibody was used for immunoprecipitation.  

(B) HEK293T cells were transiently transfected with Flag-JMJD2A, and anti-β-

catenin antibody was used for immunoprecipitation.  
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Figure 3-11. JMJD2A and β-catenin interact with each other. 

(C) β-catenin was constructed to the N-terminal of luciferase plasmid while 

JMJD2A was constructed to the C-terminal of luciferase plasmid, and these 

plasmids were transfected into the MDA-MB-231 cells, and treated with Wnt3a 

like indicated. Luciferase activities would be fully reconstituted if the two proteins 

interact. The upper panel shows representative images of the luminescence 

signal and the lower panel presents the quantitative results. (Data done by Dr. 

Yuan-Soon Ho’s group) 
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Figure 3-12.  Enzyme-dead JMJD2A mutant has no effect on JMJD2A and β-

catenin interaction. 

WT Flag-JMJD2A and Flag-JMJD2A delC were transiently transfected in 

HEK293T cells. Immunoprecipitation was carried out with anti-Flag antibody to 

examine the interaction between Flag-JMJD2A and β-catenin
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Figure 3-13. JMJD2A and β-catenin interact endogenously 

293T cells were treated with vehicle and Wnt3a ligand for 6 h. Cells were 

immunoprecipitated with anti-JMJD2A antibody, and immunoblotted with anti-β-

catenin antibody.  
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Figure 3-14.   JMJD2A and β-catenin interact in the nucleus upon Wnt 

activation. 

(A) Nuclear fractionation was harvested from 293T cells treated with vehicle and 

Wnt3a ligand. The cytosolic and nuclear fractions were immunoprecipitated with 

anti-JMJD2A antibody. Input lysates were subjected to immunoblotting to for 

detecting nuclear (LaminB) and cytosol (Tubulin) markers.  
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Figure 3-14. JMJD2A and β-catenin interact in the nucleus upon Wnt 

activation (continued)  

(B) MDA-MB-231 cells were stimulated with Wnt3a ligand at the indicated time 

points, and stained JMJD2A (red), β-catenin (green) for immunofluorescence to 

examine their expression. FRET activity was detected at different time point of 

Wnt3a treatment for JMJD2A-β-catenin protein interaction. Yellow fluorescence 

indicates low FRET activity while red-orange fluorescence indicates high FRET 

activity. Representative imagines are shown. (Data done by Dr. Yuan-Soon Ho’s 

group)  

(C) The percentage of FRET activity was quantitated based on cell counting for 

positive FRET activity cells among all the cells in the 3 randomly chosen field.  
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3.4 JMJD2A affects the nuclear translocation of β-catenin  
	  

While the event of nuclear translocation of β-catenin has been well 

established to be the major outcome of the activated Wnt signaling pathway, the 

nuclear transport route of β-catenin has not been clearly defined. Even though 

many other nuclear imported proteins rely on the classical Ran/importin import 

machinery, β-catenin has no NLS sequence motif to bind to the import receptor 

complex to shuttle its nuclear movement (Fagotto et al., 1998). Many studies 

suggest that specific binding partners of β-catenin can influence its nuclear-

cytoplasmic partitioning (Jamieson et al., 2014). Since our data indicate that 

JMJD2A translocates from the cytosol to the nucleus with β-catenin upon Wnt 

stimulation, we then asked the question whether JMJD2A plays a role in β-

catenin nuclear localization. To do this, we examined β-catenin nuclear 

localization in the MDA-MB-231 JMJD2A knockdown cells. We conducted 

immunofluorescence assay to examine the localization of β-catenin. Wnt3a 

treatment promoted the nuclear translocation of both JMJD2A and β-catenin in 

the control cells (Figure 3-15A). Deficiency of JMJD2A caused significant 

degradation of β-catenin, even after Wnt3a stimulation. Combination treatment of 

MG132 and Wnt3a inhibited the degradation of β-catenin, but did not promote the 

nuclear translocation of β-catenin (Figure 3-14A). To validate this result, we 

performed nuclear fractionation to examine the two pools of β-catenin 

expressions. Consistently, while ablation of JMJD2A abrogated the expression of 

β-catenin in both pools (Figure 3-15B), MG132 restored the β-catenin expression 

in JMJD2A knockdown (Figure 3-15C). However, Wnt3a could not successfully 



69 
	  

induce the nuclear translocation of MG132-stabilized β-catenin in JMJD2A 

knockdown (Figure 3-15C). These data collectively demonstrated that β-catenin 

nuclear localization depends on the expression of JMJD2A.   
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Figure 3-15.  JMJD2A affects the nuclear translocation of β-catenin.  

(A) Immunofluorescence staining for JMJD2A (red), β-catenin (green), and nuclei 

(DAPI, blue) was performed in shLuc (control) and shJMJD2A cells that were 

treated with Wnt3a and MG132, like indicated.  
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Figure 3-14.  JMJD2A affects the nuclear translocation of β-catenin 

(continued).  

(B) Nuclear fractionation assay separated the cytosolic pool and the nuclear pool 

of JMJD2A and β-catenin. Immunoblotting was performed to examine the 

expression of β-catenin and JMJD2A in both of the pools. Lamin B (nuclear) and 

Tubulin (cytosol) were blotted to serve as fractionation markers.  

(C) Cells in (B) were treated with MG132 and Wnt3a simultaneously for 6 h, like 

indicated. Cells were then subjected to nuclear fractionation assay and 

immunoblotting to examine the cytosolic and nuclear pool of JMJD2A and β-

catenin.  
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3.5 JMJD2A-mediated Wnt/β-catenin signaling in cancer progression  
 

 JMJD2A is known to be overexpressed in a variety of cancer (Guerra-

Calderas et al., 2014), we aimed to confirm the biological significance of JMJD2A 

in vitro. We performed cell proliferation assay by using multiple types of cancer 

cell lines (PC-3 prostate, Hep3B liver, BT474 Her2+ breast). Consistently, in all 

four cell lines, the deficiency of JMJD2A greatly diminished cell proliferation 

(Figure 3-16A).  Its important role in cancer progression is further validated in 

migration and invasion assay, using the in vitro cell line models (Figure 3-16B-E, 

PC-3, and Hep3B results showed similar trend, but data is not shown). Among all 

the studies regarding the oncogenic function of JMJD2A, most of the 

experiments were executed in vitro. Therefore, we examined the role of JMJD2A 

in tumor growth and metastasis in vivo. We first subcutaneously injected MDA-

MB-231 cells into the nude mice. The tumors isolated from the JMJD2A 

knockdown groups were significantly smaller compared to the control group 

(Figure 3-17). Similarly, in the tail vein injection experiment, which mimics in vivo 

metastasis, we also observed much less number of lung lesions in the JMJD2A 

deficient group compared to the control group (Figure 3-18). Since our data 

demonstrate that JMJD2A is heavily involved in the Wnt signaling pathway, and 

greatly affects the stability of β-catenin, the keystone in this pathway, we then 

sought to determine whether the biological significance of JMJD2A is through 

regulating Wnt signaling pathway. To do this, we infected the control knockdown 

cells with vector, JMJD2A knockdown cells with vector and S33Y β-catenin to 

stably restore the expression of degraded β-catenin (Figure 3-19A). Even though 
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deficiency of JMJD2A attenuated cell proliferation, migration and invasion ability 

of the cancer cells, restoration of constitutive active β-catenin S33Y rescued 

these defects, to a level similar to that of the control knockdowns (Figure 3-19B-

F).  These results reveal that JMJD2A affects cancer progression through 

regulating the stability of β-catenin.  

Since Wnt signaling pathway is known to control stem cell maintenance 

and self-renewal, we hypothesized that JMJD2A could also be implicated in stem 

cell regulation. We used sphere-forming assay and the percentage of ALDH+ 

cells, which a classical cancer stem cell marker (Visvader and Lindeman, 2008), 

to study the effect of JMJD2A in cancer stem cell maintenance in vitro. We used 

Hep3B, a hepatocyte carcinoma and classical in vitro cell line model for the 

sphere-forming assay (Figure 3-20A). While JMJD2A deficiency included a very 

small population of ALDH+ cells and failed to grow cancer stem cell spheres, 

restoration of S33Y β-catenin clearly rescued the sphere formation ability and 

amplified the ALDH+ population, to a level similar to the control cells (Figure 3-

20B-D). These results, therefore, support that JMJD2A has a role in stem cell 

maintenance through regulating β-catenin stability, and further highlighted the 

importance of JMJD2A in the Wnt signaling pathway.  
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Figure 3-16. JMJD2A has an oncogenic role in vitro  

(A) MDA-MB-231, Hep3B, PC-3 and BT474 control and JMJD2A knockdown cell 

lines were seeded in triplicates. Cells were counted every 2 days for 8 days total. 

The result is shown as means ± s.d. (n=3).  
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Figure 3-16. JMJD2A has an oncogenic role in vitro (continued) 

(B) Representative images of migration assay of MDA-MB-231 cells with stable 

control (shLuc) and JMJD2A knockdown.  

(C) Bar graph to quantitate the number of cells migrated in (A). The result is 

shown as means ± s.d. (n=3). **p<0.01. Scale bar, 100 µm.   
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Figure 3-16. JMJD2A has an oncogenic role in vitro (continued)  

(D) Representative images of invasion assay of MDA-MB-231 cells with stable 

control (shLuc) and JMJD2A knockdown.  

(E) Bar graph to quantitate the number of cells invasion in (D). The result is 

shown as means ± s.d. (n=3). **p<0.01. Scale bar, 100 µm. 
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Figure 3-17. JMJD2A affects tumor growth in vivo  

(A) MDA-MB-231 cells with stable knockdown of control (shLuc) and JMJD2A 

were subcutaneously injected into nude mice. Tumors were isolated after 8 

weeks. 

(B) Tumors were measured weekly by the caliper, and the result shown as 

means ± s.d. (n=3). **p<0.01 
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Figure 3-18 JMJD2A affects lung metastasis in vivo  

(A) MDA-MB-231 with stable control (shLuc) and JMJD2A knockdowns were 

injected into the nude mice through tail vein. Representative images are shown 

for metastatic lung nodules.  

(B) Metastatic lung lesions were counted. The result is shown as means ± s.d. 

(n=3). **p<0.01 
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Figure 3-19. JMJD2A is essential for oncogenic phenotypes through 

stabilizing β-catenin. 

(A) MDA-MB-231 shJMJD2A cells were stability infected with empty vector or 

S33Y non-degradable β-catenin. Cells were then subjected to immunoblotting to 

examine the efficiency of β-catenin restoration and the expression of its 

downstream target genes.  

(B) Cells in (A) were used for cell proliferation assay. 5000 cells for each sample 

were seeded in triplicates. Cell numbers were counted every 2 days for 10 days 

in total.  The result is shown as means ± s.d. (n=3). **p<0.01 
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Figure 3-19.  JMJD2A is essential for oncogenic phenotypes through 

stabilizing β-catenin (continued).  

(C) Representative images of migration assay of MDA-MB-231 shLuc stably 

expressing empty vector, shJMJD2A expressing empty vector and shJMJD2A 

expressing the degradation resistant mutant S33Y β-catenin as in (A). 

(D) Bar graph to quantitate the number of cells migrated in (C). The result is 

shown as means ± s.d. (n=3). **p<0.01. Scale bar, 100 µm. 
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Figure 3-19. JMJD2A is essential for oncogenic phenotypes through 

stabilizing β-catenin (continued). 

(E) Representative images of invasion assay of MDA-MB-231 shLuc stably 

expressing empty vector, shJMJD2A expressing empty vector and shJMJD2A 

expressing the degradation resistant mutant S33Y β-catenin as in (A). Scale bar, 

100 µm. 

(F) Bar graph to quantitate the number of cells invaded in (C). The result is 

shown as means ± s.d. (n=3). **p<0.01.  
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Figure 3-20. JMJD2A is essential for cancer stem cell maintenance through 

stabilizing β-catenin  

(A) Hep3B shJMJD2A cells were stability infected with empty vector or S33Y 

non-degradable β-catenin. Cells were then subjected to immunoblotting to 

examine the efficiency of β-catenin restoration and the expression of its 

downstream target genes.	  
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Figure 3-20. JMJD2A is essential for cancer stem cell maintenance through 

stabilizing β-catenin (continued)  

(B) Representative images of sphere formation of Hep3B shLuc stably 

expressing empty vector, shJMJD2A expressing empty vector and shJMJD2A 

expressing the degradation resistant mutant S33Y β-catenin as in (A). Scale bar, 

200 µm. 	  

(C) Bar graph to quantitate the number of sphere formation in (B). The result is 

shown as means ± s.d. (n=3). **p<0.01. 
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Figure 3-20. JMJD2A is essential for cancer stem cell maintenance through 

stabilizing β-catenin (continued).  

(D) Quantitative results of ALDH+ cell populations in Hep3B and MDA-MB-231 

shLuc stably expressing empty vector, shJMJD2A expressing empty vector and 

shJMJD2A expressing the degradation resistant mutant S33Y β-catenin. The 

result is shown as means ± s.d. (n=3). *p<0.05. 
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JMJD2A regulates chromatin organization by demethylating histone lysine 

residues. This alteration in the compaction of chromatin leads to changes in gene 

transcription. Recently, the function of JMJD2A in cancer has started to emerge. 

Most of these studies have focused on the role of JMJD2A in regulating gene 

transcription, which eventually leads to aberrant expression of oncogenes or 

tumor suppressors. In these studies, the oncogenic function of JMJD2A relies on 

its demethylase enzyme activity to change the histone methylation status of its 

target genes. However, whether the enzyme activity of JMJD2A is absolutely 

required to exert its oncogenic activity remains unclear. Recently, there have 

been few studies that unexpectedly found that JMJD2A may act through protein-

protein interaction to elicit cancer progression, which is independent of its 

catalytic activity (Li et al., 2014; Mallette et al., 2012a). Searching for non-

catalytic functions of JMJD2A and its binding partners may increase our 

knowledge in designing inhibitors that target not only its enzymatic activity, but 

also protein-protein interactive domain to fully thwart tumorigenesis caused by 

JMJD2A. 

In this study, we unveil that other than functioning as a histone-modifying 

enzyme, JMJD2A, acting independently of its enzyme activity, participates in the 

canonical Wnt/β-catenin signaling transduction pathway. The Wnt/β-catenin 

pathway is known to promote cancer progression through the nuclear 

accumulation of β-catenin for it to serve as a coactivator in the nucleus for TCF1 

to turn on gene transcription. Our results show that the presence of JMJD2A is 

essential for regulating the protein stability of β-catenin, thereby controlling the 
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expression of β-catenin target genes. In the nucleus, β-catenin is recruited to the 

promoters of Wnt target genes, and through cooperating with the TCF 

transcription factor and recruiting other coactivators such as BCL9, MLL1/2, and 

p300/CBP, they serve as essential factors to turn on the Wnt target gene 

transcriptions. Even though JMJD2A is known as a histone-modifying protein that 

regulates gene transcription, however, supported by our data, JMJD2A itself 

does not regulate the transcription of Wnt target genes through modulating 

histone methylation since its enzyme activity is not needed (Figure 3-6). The 

restoration of constitutive active, non-degradable β-catenin in JMJD2A 

knockdown cells rescued the expression of downstream target genes (Figure 3-

8B), suggesting that JMJD2A affects Wnt target genes through regulating the 

protein stability of β-catenin.  

Without Wnt ligand stimulation, the molecular mechanism of β-catenin 

degradation occurs through several steps of sequential event (Introduction 1.8). 

Nevertheless, our data suggest that JMJD2A deficiency drives this degradation 

event, even under Wnt stimulation. Without JMJD2A, the interaction between β-

catenin and the other components of the destruction complex, such as Axin1 and 

GSK3β, increases (Figures 3-9A,B). This increased binding causes higher 

GSK3β-mediated phosphorylation on β-catenin (Figure 3-8A). This 

phosphorylation motif is considered as the “degron” that can be recognized by 

the F-box E3 ligase β-TrCP, which targets its substrate protein for K48-linked 

proteasomal ubiquitination and degradation. Consistently, we observed that the 

increased phosphorylation on β-catenin, caused by JMJD2A ablation, enhanced 
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its binding with β-TrCP, which eventually leads to higher level of β-catenin 

ubiquitination (Figures 3-10A,B). The presence of JMJD2A, thus, becomes 

relevant in maintaining the stability of β-catenin, and may serve as a negative 

regulator for the binding between the destruction complex and β-catenin for 

subsequent β-catenin nuclear accumulation. Some unaddressed questions still 

remain. What is the role of JMJD2A in the destruction complex? What is the 

mechanism that JMJD2A utilizes to release β-catenin from being targeted by the 

destruction complex? Besides residing in the cytosol, the destruction complex 

components can also be anchored at the cellular membrane once cells are 

stimulated with Wnt ligands, resulting in the release of β-catenin from the 

destruction complex (Gao et al., 2014). By using immunofluorescence and 

membrane fractionation assays, we have data to indicate that JMJD2A can also 

be localized in the cellular membrane, and that JMJD2A interacts with 

GSK3β endogenously as well (data not shown). One possible mechanism could 

be that upon Wnt ligand treatment, JMJD2A could be localized to the cellular 

membrane, while also bringing GSK3β to the membrane to phosphorylate 

LRP5/6 Wnt signaling receptor. Without JMJD2A, Axin1 itself may not be 

sufficient enough to relocate GSK3β to the membrane to phosphorylate LRP5/6 

receptor, thereby releasing β-catenin from the destruction complex. Another 

possibility is that GSK3β and JMJD2A may compete each other for β-catenin 

binding. GSK3β binds to the “degron” motif of β-catenin to mediate its 

phosphorylation. And since JMJD2A also binds to β-catenin, it is likely that 

JMJD2A binds to the “degron” motif to prevent GSK3β-mediated 
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phosphorylation. Future experiments will be needed to address these questions 

to get a clearer mechanism on how JMJD2A keeps the destruction complex from 

interacting with β-catenin.  

Since JMJD2A is known as a histone-modifying protein, previous study 

has demonstrated that JMJD2A should mainly be localized in the nucleus while 

having a marginal fraction in the cytosol (Zhang et al., 2005).  Nevertheless, our 

findings have surprisingly revealed that in the resting cells, without Wnt ligand 

stimulation, both JMJD2A and β-catenin are mainly localized in the cytosol. In 

unstimulated cells, JMJD2A and β-catenin are found to interact with each other in 

the cytoplasmic pool, and this interaction can be heightened when the Wnt 

signaling pathway is activated. Interestingly, a closer analysis shows that upon 

Wnt ligand stimulation, both β-catenin and JMJD2A translocate to the nucleus 

and the intensity of their interaction increases in the nucleus. Consistent with our 

previous observation that the enzyme activity of JMJD2A is not needed, deletion 

of the JMJD2A catalytic domain still interacted with β-catenin, similar to that of 

the WT. Together, our findings suggest that Wnt activation not only drives the 

nuclear accumulation of β-catenin, but as well as JMJD2A nuclear translocation.  

Although the nuclear localization of β-catenin has been established for 

nearly twenty years, the exact nuclear import route that β-catenin undertakes has 

not been clear. Some studies indicate that β-catenin binds with the nuclear pore 

complex, whereas others propose that the other coactivators (Bcl9/Pygopus) of 

the TCF complex are important to recruitment β-catenin to the (Behrens et al., 

1996; Townsley et al., 2004). In our study, we demonstrate that while the 
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presence of JMJD2A governs the nuclear translocation of β-catenin, the exact 

mechanism still remains to be found. Since JMJD2A is known to possess two 

NLS sequences, we postulated that JMJD2A may bring β-catenin into the 

nucleus through the traditional nuclear import machinery. To test this hypothesis, 

we deleted the two bipartite NLS sequences that reside within the C-terminal of 

JMJD2A. However, deletion of the NLS sequences in JMJD2A did not inhibit its 

nuclear translocation or the nuclear movement of β-catenin (data not shown). 

This means that the translocation of JMJD2A and β-catenin do not rely on the 

traditional nuclear import machinery. This raises the possibility that protein-

protein interaction may be involved in mediating their nuclear accumulation. 

Future studies should focus on deciphering the mechanism of how JMJD2A 

induces the translocation of β-catenin through protein-protein interaction. One 

approach to accomplish this would be to generate truncations of JMJD2A to map 

for its binding region with β-catenin. We found out that the individual deletion of 

each of the four domains in JMJD2A did not affect its binding with β-catenin (data 

not shown). Therefore, different fragments that exclude larger regions of JMJD2A 

should be used to study their interaction (Figure 4-1). Once we identify the 

binding region, this truncation mutant of JMJD2A can be used to gauge the 

nuclear translocation of β-catenin to study whether this protein-protein interaction 

is responsible in promoting the nuclear localization of β-catenin. Furthermore, 

this binding region motif can potentially provide a consensus sequence of 

JMJD2A to guide future studies in searching for other non-histone protein binding 

partners to exert its oncogenic role. 
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Figure 4-1: JMJD2A truncation fragment scheme.  

Diagram represents the truncated fragments that we will use to study the 

JMJD2A-β-catenin interaction. The first fragment excludes the JmjN and JmjC 

domains. The second fragment excludes that linker region between catalytic core 

(JmjN and JmjC) and the site-recognition domains (PHD and Tudor). The third 

fragment excludes both the PHD and Tudor domains.  
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Another question in the JMJD2A field is how it shuttles between cytosol 

and nucleus. Although JMJD2A is endowed with two NLS sequences, there has 

not been any clear indication that they are responsible for the nuclear 

translocation of JMJD2A (Tan et al., 2008). Some studies suggest that, just like 

β-catenin, the nuclear movement of JMDD2A may be mediated by protein-protein 

interaction (Caceres et al., 1997; Furuyama and Bruzik, 2002). Since our data 

strongly suggest that the nuclear translocation of β-catenin relies on the 

expression of JMJD2A, one conundrum to be answered is whether the JMJD2A-

β-catenin interaction is also important for the nuclear translocation of JMJD2A. 

To do this, we can generate stable β-catenin knockdown cells to examine the 

nuclear-cytoplasmic movement of JMJD2A.  

In our study, we were able to demonstrate, by using in vitro cell lines, that 

JMJD2A has a role in maintaining cancer stem cell traits and population through 

stabilizing β-catenin. To extend this observation, we should further conduct in 

vivo experiment. We can use our previously generated in vitro cell lines to isolate 

ALDH+ cells for nude mice subcutaneous injection to observe tumor engraftment 

incidence and growth.  

Although by utilizing in vitro cell lines, we were able to show that JMJD2A 

is a critical mediator in the Wnt signaling pathway. Genetically engineered mouse 

models are still lacking to ultimately attest this notion. Like mentioned in the 

previous sections, Jmjd2a conventional knockout mice are embryonic lethal since 

it has a stellar function in development. This has hindered additional analyses to 

characterize the oncogenic function of JMJD2A in vivo. Up to date, only one 
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group has generated the JMJD2A heart conditional knockout mice by breeding 

Jmjd2afl/fl with α-MHC-Cre (Zhang et al., 2011). By exploiting the technology of 

conditional knockout Cre-lox system, we can knockout the expression of JMJD2A 

in different mouse tissues and systems that are known to be tightly regulated by 

the Wnt signals, such as hair follicles, neural and hematopoietic systems (van 

Amerongen and Berns, 2006). The generation of these conditional knockout mice 

could potentially provide the final verdict on the importance of JMJD2A in 

mediating the activity of the Wnt/β-catenin signaling transduction in vivo. The 

generation of these mice could also be used to test JMJD2A inhibitors in the 

future.   

Since previous studies have already generated solid data to demonstrate 

that JMJD2A exerts its oncogenic capability through its catalytic activity, many 

efforts have focused on designing inhibitors to target its enzymatic core (Guerra-

Calderas et al., 2014). However, some previous studies, and our current study all 

have proven that the function JMJD2A in cancer is beyond its catalytic function, 

and its protein-protein interaction is also central for its oncogenic role. Therefore, 

these catalytic-targeting inhibitors would not completely shut down JMJD2A 

activities. The therapeutic effort should also be focused on designing small 

molecule inhibitors that can disrupt the binding region of JMJD2A with other 

proteins to completely block its oncogenic functions. By using the crystal 

structure, we can identify the protein-protein interactive “hot spots”, which are 

residues that contribute more to protein-protein binding than others, for JMJD2A. 

Computational and high-throughout screening methods can then be used to 
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identify compounds that are highly selective and specific. There are many 

effective and promising inhibitors that have been identified by using this 

approach (Arkin et al., 2014; Chan et al., 2013).  

In summary, our study presents a new non-enzymatic and non-histone 

role for histone demethylase JMJD2A in mediating the activity of Wnt/β-catenin 

signaling pathway. In our model, JMJD2A is important in maintaining the protein 

stability of β-catenin and its nuclear translocation. JMJD2A also has crucial roles 

in tumorigenesis and cancer stem cells maintenance through stabilizing β-

catenin.  Our study highlights a new oncogenic role of JMJD2A in signaling 

transduction pathway and provides therapeutic strategy to target protein-protein 

interaction interface of JMJD2A.  
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Figure 4-2. Schematic diagram of the working model.  

In cells with JMJD2A protein expression (left panel), Wnt treatment induces the 

canonical Wnt/β-catenin signaling activation. JMJD2A binds to β-catenin, and 

stabilizes its expression by preventing it from binding to the destruction complex. 

The two then translocate to the nucleus, where β-catenin acts as an coactivator 

to turn on Wnt target gene expressions, which eventually leads to increased cell 

proliferation, migration, invasion and cancer stem cell maintenance. On the other 

hand, when cells are depleted from JMJD2A expression (right panel), under Wnt 

stimulation, β-catenin still binds to the destruction complex, which eventually 

leads to its degradation, hence shuts down the Wnt signaling pathway.    
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