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ABSTRACT TEXT 

There are important but ill-defined interactions between benign immune cell subsets 

and neoplastic B cells within follicular lymphoma (FL). Using the novel technique of 

correlation matrix analysis (CMA) of publicly available FL whole-tumor gene 

expression profiling (GEP) data, we have identified signatures of immune cell 

subsets. Overall survival correlated most highly with a model using signatures of 

macrophages, T cells, and stroma, which was able to add significantly to existing 

clinical prognostic tools. From our own data of a cohort of 43 FL tumors sorted into 

B-cell and non-B cell (NB) fractions for GEP, CMA of the tumor infiltrating NB 

fraction revealed additional immune cell subset signatures, including T follicular 

helper (TFH) cells. Comparison of gene signatures between FL and tonsils (n=24) 

suggested that TFH cells and macrophages are qualitatively distinct in FL from 

normal tissue. “Cross-correlation”, between FL NB fraction signatures and individual 

B fraction genes, suggests that TFH cells promote proliferation, germinal center 

stage differentiation, B-cell receptor signaling, and induction of CCL17 and CCL22 

by tumor B cells. This novel analytical approach may be broadly applicable to define 

gene signatures of rare immune cell subsets in the tumor microenvironment, 
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determine their prognostic impact, discover novel therapeutic targets, and identify 

patients likely to benefit from therapies targeting tumor-stroma interactions.
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Chapter 1 

INTRODUCTION 

 

Follicular Lymphoma 

Follicular lymphoma (FL) is the second most common subtype of non-Hodgkin 

lymphoma (NHL) with ~15,000 new cases annually in the United States.(1) For reasons 

that remain unclear, the incidence of FL has increased in the United States and Europe 

over the past 2 decades.(2, 3) FL arises from maturing B cells within the lymph node 

germinal center. The neoplastic cells are typically organized in follicles (hence the name 

of the disease), and express germinal center-associated markers including BCL6, 

CD10, SERPINA9 (GCET1), and LMO2.(4) In addition, FL cells have a gene expression 

profile similar to that of centrocytes, a common cell found in the germinal center.(5) FL 

cells have an identical immunoglobulin (Ig) gene rearrangement pattern, which indicates 

that the malignant transformation occurs after VDJ gene recombination.(6, 7) Nearly all 

cases of FL feature the genetic hallmark of an acquired t(14;18)(q32;q21) translocation, 

resulting in deregulation of BCL2, a critical gene which regulates apoptosis and cell 

death. The t(14;18) translocation is generally thought to represent the initial genomic 

alteration in FL, but alone is insufficient for lymphomagenesis.(7) Up to 50% of healthy 

individuals harbor circulating cells that contain t(14;18) translocation, and rarely 

progress to FL. (8-12)  Peripheral blood cells which harbor the t(14;18) translocation in 

healthy individuals were thought to represent naïve B cells, but this assumption has 

been challenged by the discovery of many similarities to FL cells, including class-switch 

recombination and surface expression of IgM and IgD.(9) The significance of the 
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presence of the t(14;18) translocation in healthy individuals is unclear, and to date has 

not correlated with any prognostic or therapeutic relevance, but does suggests a 

potential common pre-malignant stage. It is noted that the incidence of FL, and the 

prevalence of t(14;18)-containing cells, both increase with age.(13) A subsequent 

discovery of MLL2 mutation, a histone methyltransferase gene, has been found in 89% 

of FL patients, representing a potential second founder mutation.(14) However, elegant 

studies utilizing exome sequencing of sorted FL patients samples has demonstrated a 

large amount of intratumoral diversity in FL, and that MLL2 mutations may be late 

common events, and not founder mutations.(6) In addition, these experiments identified 

mutations in another histone-modifying enzyme, CREBBP, that appear to be early 

events in the clonal evolution of FL. 

 

Prognostic Systems for FL 

Over 70% of newly diagnosed FL patients present with advanced disease, either due to 

early dissemination from the initial site or to a long asymptomatic phase prior to 

diagnosis. In the modern era, many patients are diagnosed with asymptomatic disease 

due to serendipitous imaging findings obtained for other indications. It is unclear if this 

potential lead time bias will ultimately have any impact on the natural history of FL. 

Follicular lymphoma is characterized by the Ann Arbor staging system, originally 

devised nearly 40 years ago to account for radiation field size. The system of scoring is 

based upon a stepwise anatomic progression of lymph node involvement, a pattern 

found commonly in Hodgkin’s lymphoma but not NHL, and thus its applicability to FL 

has been questioned.(15) Generally, it is suspected that patients whose extent of 
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involvement by FL appears to be only stage I (localized to a single lymph node) or stage 

II (localized to more than one lymph node on one side of the diaphragm) are likely to 

have undetectable disease at distant sites. A clinical trial conducted at M.D. Anderson 

found that patients with localized FL who were treated with aggressive chemotherapy 

and radiation still had a 24% chance of disease relapse at 10 years.(16) Indeed, clinical 

outcomes are not uniform within FL stages, confirming the suspicion that factors other 

than the simple location of the disease may affect outcomes. 

 

The original prognostic model for NHL was the international prognostic index (IPI), 

which accounted for clinically apparent factors.(17) The IPI incorporates age (>60), 

performance status (>2), lactate dehydrogenase (elevated), extranodal sites of disease 

(•2), and disease stage (•3) as adverse factors, and is able to separate patients into 3) as adverse factors, and is able to separate patients into 

general categories. Unfortunately, these categories are heterogeneous in that patient 

the high risk group may do well, and low risk may do poorly, and thus their applicability 

is not predictive for a given patient. In 2000, the Intergruppo Italiano Linfomi 

retrospectively evaluated for these additional factors and created a prognostic 

model.(18) This initial model accounted for known risk associated factors including: pre-

treatment age, gender, number of sites of extranodal disease, B symptoms (fevers, 

chills, night sweats, significant weight loss), and the level of serum lactate 

dehydrogenase (LDH) and erythrocyte sedimentation rate (ESR) in the blood. Building 

upon their work, an international cooperative group created the Follicular Lymphoma 

International Prognostic Index (FLIPI) based on the data from over 4000 FL 

patients.(19)  This model included age (• 60 years vs < 60 years), Ann Arbor stage (III 60 years vs < 60 years), Ann Arbor stage (III-
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IV vs I-II), hemoglobin level (< 12 dg/L vs • 12dg/L), number of nodal areas (> 4 vs < 4), 12dg/L), number of nodal areas (> 4 vs < 4), 

and serum LDH level (above normal vs normal or below). By counting the adverse 

features present, patients were classified into three risk groups with 10 year overall 

survival (OS) of 70.7%, 50.9%, and 35.5%. The most predictive factor for the greatest 

risk of death evaluated in the multivariate analyses was advanced age. 

 

The FLIPI is widely utilized, but has several important weaknesses. First, the FLIPI was 

generated from a retrospective database analysis of patients that were treated with 

chemotherapies that did not include the currently ubiquitous immunotherapy rituximab. 

Second, the FLIPI dataset did not include significant data including the performance 

status and blood tests of ESR and β 2M. Third, the FLIPI2M. Third, the FLIPI had a primary endpoint of OS, 

which is challenging to study in an indolent disease like FL. The long natural history of 

the disease, serial responses to multiple effective therapies, and duration of follow up 

required to evaluate OS make this endpoint problematic. In order to attempt to 

overcome these known weaknesses, the International Follicular Lymphoma Prognostic 

Factor Project created the F2 study in 2003.(20) The primary endpoint of the model now 

referred to as FLIPI2 was progression free survival (PFS), which is the preferred metric 

in lymphoma clinical trials.(21) In multivariate analyses, factors found to achieve 

significance for increased risk included elevated blood β 2M, 2M, a single lymph node with a 

length greater than 6 cm, involvement of the bone marrow with FL, low hemoglobin level 

(< vs • 12dg/L), and  12dg/L), and advanced age (• vs < 60 years. Based on the number of factors 

present, patients were classified into three risk groups with 5 year PFS of 79.5%, 

51.2%, and 18.8%.  
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Indications for therapy of FL 

FL generally is highly sensitivity to multiple therapeutic classes, although the disease is 

considered incurable as relapse after initial response is nearly uniform.(22) Due to the 

fact that the majority of patients with FL have an indolent disease that is treatable but 

incurable, the option of deferred therapy has been found to have no negative impact on 

overall survival.(23, 24) In order to identify patients who do not require immediate 

therapy, the Group d’Etude des Lymphomes Folliculaires (GELF) criteria were 

developed from a prospective clinical trial.(25, 26) Patients with • 3 nodal sites with  3 nodal sites with 

greatest length of • 3 cm 3 cm, a single lymph node with a length of • 7 cm 7 cm, symptomatic 

splenomegaly, B symptoms, and patients with cytopenias or effusions were found to 

have inferior outcomes with observation. As a result, the presence of any “GELF 

criteria” implies the need for therapy. 

 

Watch and Wait in FL 

Spontaneous regressions of biopsy proven sites of FL occur in 5 – 25% patients, which 

is likely related to the interaction of the intact immune-FL interaction.(27) In an 

immediate vs. delayed therapy clinical trial, patients with FL were randomized to 

chemotherapy or observation, and were found to have equivalent survival.(28) Of note, 

~10% of the observation patients did not require systemic therapy during the 10 years of 

follow up. Many other clinical trials have demonstrated similar excellent outcomes with 

delayed therapy.(29, 30) To date, there are no conclusive studies that show that a 

strategy of “watch and wait” results in inferior long term survival outcomes, despite the 
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current availability of many novel effective therapies. Further arguing for observation, 

therapy with a single chemotherapy drug or combination of drugs was shown to result in 

responses, but not a significant change in the overall survival of FL patients.(31) 

Modern therapy which includes biologically relevant agents has resulted in moderate 

improvements in overall survival, although disease eradication is still only achieved in 

an extreme minority, if any FL patients. This “responding, remission, relapsing” pattern 

remains poorly understood. 

 

Immunotherapy 

The immune system has been successfully manipulated to combat cancer for over 100 

years. In 1891, Dr. William Coley treated cancer patients with a mixture of bacterial 

toxins (Coley’s toxin), and reportedly achieved dramatic results in lymphoma and other 

malignancies. Other investigators could not achieve similar results, and thus early 

attempts at immune-based cancer therapy fell out of favor compared with radiation or 

chemotherapy.(32)  

Dr. Ronald Levy from Stanford and others have proposed that the use of monoclonal 

antibodies, a passive immunization strategy, could have efficacy via targeting 

lymphoma cell surface markers. In 1994, the phase I trial of IDEC-C2B8, a monoclonal 

antibody now commonly known as rituximab which targets the B-cell marker CD20, 

resulted in tumor regression in 40% of heavily pre-treated B-cell lymphoma patients.(33) 

The mechanism of action of rituximab is a combination of antibody-dependent cellular 

cytotoxicity, complement-mediated cytotoxicity, and direct signaling. The subsequent 

phase II and III rituximab trials evaluated 4 doses, administered once a week, of 
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375mg/m2 rituximab in relapsed low grade NHL and demonstrated overall response 

rates (ORR) of 46 and 48%, with a median duration of response of 10.2 and 13.0 

months, respectively.(34, 35) Of note, these large trials found rituximab to be very well 

tolerated with toxicities limited to allergic type reactions during the infusion. 

The Food and Drug Administration (FDA) approved immunomodulatory drug 

lenalidomide has shown promising efficacy in both newly diagnosed and relapsed 

FL.(36-39) A phase II trial in newly diagnosed FL patients found that lenalidomide and 

rituximab had an ORR of 98% and CR of 87%.(39-41) An ongoing phase III trial 

randomizes newly diagnosed FL patients who meet criteria for needing therapy to 

receive rituximab with lenalidomide or standard chemotherapy, followed by 

maintenance rituximab. 

Other immunomodulating agents have shown preliminary impressive activity against FL.  

We recently reported that pidilizumab, a monoclonal antibody directed against 

programmed death receptor 1 (PD1), a co-inhibitory receptor expressed by activated T 

cells, B cells, NK cells, and myeloid cells, had minimal toxicity and impressive efficacy 

when combined with rituximab in relapsed FL.(42) Pidilizumab is a humanized IgG1-

kappa recombinant monoclonal antibody that blocks the interaction of PD-1 with its 

ligands. The antitumor activity of the antibody in preclinical models was associated with 

increased numbers of CD4+ and CD8+ T cells and NK cells, and induction of 

immunologic memory. Based on our preliminary studies, administration of pidilizumab 

was expected to augment the naturally induced antitumor T-cell immunity in FL and 

enhance ADCC mediated by natural killer (NK) cells in the presence of rituximab. It was 

hypothesized that activation of both innate (NK cells) and adaptive (T cells) arms of the 
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immune system would likely minimize the emergence of immune escape variants and 

lead to improved remission duration. Indeed, we found that the overall response rate 

(ORR) of pidilizumab and rituximab was 66% (19/29) and the complete response (CR) 

rate was 52% (15/29).(42) In comparison, previously reported data in a similar 

population found rituximab alone to result in an ORR of 40% and CR rate of 11%.(43) 

Tumor immunoglobulin (idiotype, Id) is expressed in a clonal fashion on FL cells and 

has been demonstrated as safe and immunogenic in Phase I/II vaccination trials.(44-51) 

In a randomized, double-blind multicenter phase III clinical trial, patient-specific tumor-

derived Id protein was conjugated with a carrier protein (keyhole-limpet hemocyanin, 

KLH) and administered together with an adjuvant (granulocyte-macrophage colony 

stimulating factor, GM-CSF) to patients with advanced stage, previously untreated FL, 

in CR following standard induction chemotherapy.(52) Patients receiving vaccination 

with Id-KLH+GM-CSF had a significantly prolonged disease-free survival (DFS) when 

compared with the control group that received a non-specific immune stimulant 

(KLH+GM-CSF). This trial demonstrated the first positive result for a Phase III vaccine 

trial against lymphoma. Although significant, the therapeutic benefit of Id vaccination 

was small, and no change in overall survival was detectable.  Further improvements to 

cancer vaccine therapy are needed if it is to be a viable treatment strategy for patients 

with FL. 

Chemotherapy 

Follicular lymphoma is generally sensitive to chemotherapy, with numerous 

combinations demonstrating significant activity over the past 40 years. A retrospective 

review from M. D. Anderson Cancer Center found that over 25 years, each subsequent 
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generation of initial therapy, outcomes for patients with FL improved (both failure free 

survival (FFS) and OS).(53) Rituximab-based therapies had not yet reached their 

median FFS and OS, but appeared to result in a significant improvement in outcomes.  

The addition of rituximab to chemotherapy is known to be superior to chemotherapy 

alone.(54) As a result, rituximab is nearly ubiquitous in FL therapies, alone and 

combined with chemotherapy. A trial by the German Low-Grade Lymphoma Study 

Group randomized FL patients to CHOP with or without rituximab and found improved 

outcomes with the rituximab treated patients.(55) 

Interaction of the benign immune system and cancer 

It is now established that that the innate and adaptive immune systems can prevent the 

development of or eradicate tumors (cancer immunosurveillance or cancer 

elimination).(56, 57) Multiple studies have demonstrated that deficiencies of various 

immune components (such as interferon gamma or FasL) increase the rate of 

development of malignancies, including lymphomas.(58, 59) Mice lacking recombinase 

activating gene (RAG2), an essential gene for somatic rearrangement of lymphocyte 

antigen receptors, have a total lack of peripheral effector T cells, B cells, and NK/T cells. 

In a RAG2 deficient mouse model, Shankaran et al. found that the development of 

sarcomas after carcinogen exposure was significantly increased as compared to RAG2 

wild type mice, which along with other similar studies definitively established the 

principle of cancer immunosurveillance/elimination. 

Beyond prevention or eradication, the immune system can also modulate the immune 

profile of the tumor cells. Tumors from immune deficient models can be rejected when 

transplanted into immune competent models, speaking to their being more 



 10

immunogenic than those which developed in the presence of a functional immune 

system (cancer immunoediting).(56, 59) In order for cancer to escape the 

immunosurveilance or elimination in an immune competent host, malignant cells may 

display fewer antigens, and thus be less immunogenic.(60) In addition, cancers have 

also been shown to express inhibitory T-cell receptors, such as CTLA-4 and PD-1, 

which result in an immune tolerance phenotype, and eventual progression of 

cancer.(61) Those cancer cells with the ability to impair an immune surveillant response 

would have a large evolutionary advantage in comparison to their immune regulated 

counterparts, and thus the immune system provides a selection pressure. Together, 

these data speak to the “cancer immunoediting hypothesis” with three phases in the 

tumor modulation process: the “three Es of cancer immunoediting”: elimination, 

equilibrium, and escape.(62) 

 

Follicular lymphoma evades endogenous antitumor immune responses 

Follicular lymphoma has a relatively unique biology. Patients may have durable stable 

disease, spontaneous regressions, or even remissions, and yet the majority of patients 

eventually suffer disease progression. This unusual behavior for a malignancy is related 

to the complex interaction between the benign immune system and FL. This “waxing 

and waning” clinical course suggests that FL may go through an equilibrium phase 

where tumor progression is impeded or partly reversed by the immune system. 

Eventually, escape mechanisms develop resulting in progression of FL.  

Numerous recent studies support the hypothesis that the immune system plays a 

significant role in the control of FL. Among types of NHL, FL has a relatively high 
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proportion of non-neoplastic immune cells infiltrating involved lymph nodes (T, NK, and 

monocytes/macrophages). The extensive differences between neoplastic B cells and 

non-neoplastic cells may allow the overall gene expression profiles, determined by 

microarrays on the whole tumor, to be de-convoluted into “signatures” that are 

attributable to different elements within the tumor. Indeed, the landmark GEP study of 

FL by Dave et al. identified multiple signatures, two of which were attributed to 

infiltrating T cells and macrophages, with respectively positive and negative effects on 

outcome, adding to the effect of clinical prognostic tools.(63) Of note, this study did not 

find a predictive signature which could be assigned to the neoplastic FL cells, in 

contrast to other types of cancers. The prognostic significance of immune-response 

signatures has largely been validated by subsequent studies using microarrays and 

comparable techniques to measure mRNA (qRT-PCR),(64) including in patients treated 

with Rituximab,(65) and is among the evidence that the immune environment is an 

important determinant of outcome in FL. Although Dave et al. observed that “the 

immune-response 1 signature is not merely a surrogate for the number of T cells in the 

tumor-biopsy specimen, since many other standard T-cell genes…were not associated 

with survival,” to date GEP has not revealed specific mechanisms affecting the immune 

response in FL. 

Further speaking to the immune-FL relationship, an increased level of CD8+ T-cells in 

FL involved lymph nodes correlated with an improved prognosis.(66) In addition, the 

prognosis of patients with FL is positively correlated with an immunosurveillance pattern 

(CD8+ T cells) and negatively with an immune-escape pattern (CD57+ T cells).(67)  

Finally, tumor-specific T cells can be isolated from the tumor microenvironment and 
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peripheral blood in patients with FL.(68, 69) Together, these data suggest that an 

endogenous antitumor immune response is present in patients who harbor FL, but 

eventually becomes ineffective at controlling the tumor. This escape by the tumor is 

likely due to the development of various immunosuppressive mechanisms in the tumor 

microenvironment. 

Over the past decade, there have been significant advances in our understanding of the 

exceedingly complex and tightly controlled interaction of immune stimulating and 

inhibiting receptors.(70) Importantly, tumor-specific effector T cells have been found to 

be impaired by immunoregulatory mechanisms in the tumor microenvironment in 

various cancer models.(71) Cancers, including FL, are now known to modulate tumor-

beneficial immunosuppressive mechanisms which have the potential to result in 

progression from immune “equilibrium” to the “escape” phase.(61, 72, 73) Important 

inhibitory pathways that decrease tumor-specific T-cell effector function include extrinsic 

suppression by regulatory T cells (Tregs), direct inhibition through inhibitory ligands 

(Figure 1), and soluble factors such as transforming growth factor β  and interleukin (IL) and interleukin (IL)-

10.(71)  
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Figure 1. Co-stimulatory and co-inhibitory receptors expressed on T cells and their 

corresponding ligands on antigen presenting cells. (Adapted from (70)) 

  

Summary and Application of The Above Information To Thesis Project 

Gene expression profiling (GEP) provides a wealth of high-content molecular data 

regarding the genomic state of tumors, which are complex mixtures of cancer and non-

cancer cells. In the landmark study by Dave et al., whole-tumor GEP data from 191 
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pretreatment samples of FL patients were utilized to seek features (predictors) which 

significantly correlated with OS.(63) A model based on two multi-gene signatures (one 

favorable, the other unfavorable) was found to add to the predictive power of the IPI. 

Remarkably, neither of these signatures was determined to originate from tumor B cells, 

but instead from benign tumor-infiltrating immune cells. As the signatures contained 

numerous genes related to the immune system, they were named immune response 

(IR)-1, attributed to T cells (OS-favorable), and IR-2, attributed to macrophages (IR-2, 

OS-unfavorable). The IR-1 signature “included several T-cell restricted genes but was 

not merely a measure of the number of tumor-infiltrating T cells, since a signature of 

pan-T-cell genes was not associated with survival.”(63) The conclusion of this statement 

is that the outcome in FL could be influenced by differences in infiltrating T cells, not 

only quantitative (i.e., their frequency) but also qualitative, such as proportions of the 

multiple T-cell subsets and physiologic states now known. Subsequent studies, most 

employing immunohistochemistry (IHC), have validated prior data regarding a role of 

the host immune microenvironment as a major determinant of outcome in FL, but 

consistent evidence is lacking for the cell types and mechanisms involved. 

In the 10 years since the study of Dave et al. was published, there have been significant 

advances in the understanding of both the immune system and its interaction with 

cancer. Knowledge of basic and tumor immunology has rapidly evolved, including the 

identification of multiple T-cell subsets and physiologic states of immune cells (e.g., T-

cell exhaustion, and states of macrophage polarization). In particular, the T follicular 

helper (TFH) cell, first reported in 2000, has been identified as a critical promoter of 

normal germinal center B cells. However, the ability of GEP to discover interactions 
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within and between the tumor cell and host immune cell compartments of FL, and their 

impact on survival, greatly depends on the technical and analytical methods employed. 

When GEP data derives from whole (unseparated) tumor samples, as used by Dave et 

al., the cell type(s) from which individual mRNA transcripts originate is not readily 

apparent. However, newer methods applied to GEP data from whole tumor biopsies, 

including correlation matrix analysis, are able to identify the relative proportions of T-cell 

subsets and other non-neoplastic cells infiltrating the tumor, and their correlation with 

outcome.(74) We report here our results from applying these methods to the data of 

Dave et al., as well as results from an independent series of FL tumors in which GEP 

was performed after separation into B-cell and non-B-cell fractions. 
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Chapter 2 

METHODS 

Cell Sorting 

Follicular lymphoma tumor biopsy samples were obtained from patients treated on the 

BiovaxID phase III idiotype vaccine clinical trial.(75) All tissue samples were obtained 

after written informed consent was obtained from patients through this institutional 

review board-approved protocol. Samples derived from a pre-treatment biopsy, 

obtained in part for idiotype vaccine generation, were processed into single cell 

suspension and viably preserved in -80
o
C refrigeration until removal for this project. All 

patients were subsequently treated with PACE (prednisone, doxorubicin, 

cyclophosphamide, etoposide)(47) chemotherapy for 6 cycles. If a patient achieved a 

clinical response which proved durable for at least 6 months, he/she was subsequently 

randomized to receive one of two adjuvant therapies: idiotype vaccination with immune 

stimulation vs. immune stimulation alone. 

A single sample vial for a given patient was identified by a patient-specific barcode and 

removed from -80
o
C refrigeration and immediately placed in a 37

o
C water bath. After 2 

minutes, 2ml of “Thawing Media” was added. “Thawing Media is defined as: 

RPMI liquid medium with 1x Glutamax = 500 mL bottle, added: 

1. HEPES buffer 1M – 10 mL or 20mM,  

2. sodium pyruvate 100mM – 5mL or 1mM,  

3. Penicillin 10,000 U/mL + Streptomycin 10,000 ug/ml – 5mL 

4. Gentamycin 10mg/ml – 500 uL 

5. 2-Mercapto Ethanol stock – 1000X – 500uL 
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6. 125mL of heat inactivated fetal bovine serum 

Cells were allowed to stand at room temperature for an additional 2 minutes prior to 

being centrifuged at 4
o
C with 1500 RPM for 10 minutes. The supernatant was removed, 

and the cell pellet was re-suspended in 2ml of MACS buffer (Miltenyi), and again 

centrifuged at 4
o
C with 1500 RPM for 10 minutes.  The supernatant was removed, and 

the cell pellet was re-suspended in 10ml of MACS buffer. After gentle vortexing to 

ensure relatively homogeneity of suspended cells, a 2ml aliquot was removed and 

placed in a separate vial.  Both the 8ml and 2ml samples were centrifuged at 4
o
C with 

1500 RPM for 10 minutes, and supernatant was discarded. The 8ml sample (referred to 

as “Non-B”) had 5ul of both Miltenyi CD19 and CD20 MicroBeads added per 1e7 cells, 

along with 90ul of MACS buffer and was gently vortexed for 30 seconds. The 2ml 

sample (referred to as “B”) had 10ul of Miltenyi CD3 MicroBeads per 1e7 cells added, 

along with 90ml of MACS buffer and was gently vortexed for 30 seconds. Both vials 

were then placed in an 8
o
C refrigerator for 30 minutes.  While the cells were incubating, 

the LD columns (Miltenyi) were prepared by placing them in the magnetic field of a 

MACS separator, and rinsing the LD column with 2 mL of MACS buffer.  The cells were 

removed from the refrigerator and washed by adding 1mL of MACS buffer, and 

centrifuged at 4
o
C with 1500 RPM for 10 minutes. The supernatant was removed, and 

the cell pellet was re-suspended in 500ul of MACS buffer. The labeled cells and MACS 

buffer wash were then added to the LD column in MACS separator, and the elution was 

collected (negatively selected cells). The column was washed with an additional 1 mL of 

MACS buffer twice to ensure elution of the maximal amount of unbound cells.  The 

column was then removed from the magnetic separator, placed in a new collection tube, 
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and washed with gentle manual pressure to elute 1.5 mL of MACS buffer to allow 

collection of the positively selected cells. 

The negatively selected cells were counted and assessed for viability based with trypan 

blue dye uptake. The cells were then aliquoted in 1e6 portions and placed in the 

centrifuge at 4
o
C with 1500 RPM for 7 minutes, and the supernatant was discarded. The 

cell pellet was snap frozen in -80
o
C and stored until all desired samples had undergone 

the above process. 

Prior to freezing, a portion of the cells were set aside for flow cytometry evaluation 

(~1e5 cells) from unsorted, negative and positive selection of both the CD19 and CD20 

and the CD3 populations. These cells were then assessed for purity with labeling with 

5uL CD3 PE and CD20 PerCP, along with 1uL of Kappa FITC via standard flow 

cytometry methods, and analysis with FloJo software. 

Nucleic acid extraction: 

Samples with an adequate number of negatively selected cells (>= 1e6 cells) were 

thawed for nucleic acid extraction. Vials were removed from the -80
o
C freezer and 

placed in ice for transportation to the bench. Immediately after arrival, 350uL of Buffer 

RLT Plus (Qiagen - AllPrep DNA/RNA Mini) was added to disrupt the cell membrane 

and cellular enzymes which may destroy nucleic acids. The vial was gently flicked to 

ensure the pellet was completely dissolved in buffer, and the homogenized lysate was 

then transferred to an AllPrep DNA spin column. The column was placed in a 2 mL 

collection tube, and then centrifuged at 10,000RPM for 30 seconds.  

The AllPrep DNA spin column was then transferred to a new collection tube and stored 

at room temperature. The flow through from the initial column wash had 350 uL of 70% 
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ethanol added, and was mixed well by pipetting up and down gently. The now ~700uL 

mixture, including any precipitate, was transferred to an RNeasy spin column placed in 

a 2 mL collection tube, and centrifuged at 10,000 RPM for 15 seconds. The flow through 

was processed for microRNA collection, and stored for future potential studies. The 

RNeasy spin column then had 700uL of Buffer RW1 (Qiagen) added, and was 

centrifuged at 10,000 RPM for 15 seconds, with the flow through being discarded. The 

RNeasy spin column then had 500 uL of Buffer RPE (Qiagen) added and was 

centrifuged at 10,000 RPM for 15 seconds, with the flow through discarded. An 

additional 500 uL of Buffer RPE (Qiagen) was then added to the RNeasy spin column, 

centrifuged at 10,000 RPM for 2 minutes, and the flow through was discarded. To dry 

the column completely, the RNeasy spin column was centrifuged at full speed for 1 

minute, and then placed in a new 1.5mL collection tube. The now dry RNeasy spin 

column had 30uL of RNase-free water added, and was centrifuged at 10,000 RPM for 1 

minute to elute the RNA. An additional 20uL of RNase-free water was added, and again 

centrifuged at 10,000 RPM for 1 minute to elute any remaining RNA. The tube 

containing the eluted RNA was then placed in an 8C refrigerator. 

The DNA was then eluted from the DNA spin column used earlier per Qiagen’s AllPrep 

DNA protocol.  

Quantification of DNA and RNA 

To ensure an adequate quantity of nucleic acid was present, a Nanodrop 

Spectrophotometer 2000 was utilized. After cleaning the device, 1uL of blank (RNase 

free water for RNA, Buffer EB for DNA) was pipetted to the pedestal to calibrate 

machine. Per standard protocol, 1uL of the nucleic solution from the previous extraction 
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steps was then pipetted onto the pedestal and measured, including the 260/280 ratio 

(absorbance of light a 260nm and 280nm), with a goal ratio of 1.8 – 2.2. 

Determination of quality of RNA 

To ensure an adequate quality of nucleic acid was present, an Agilent 2100 Bioanalyzer 

was utilized. After cleaning the device, the standard RNA ladder (Agilent) was gently 

thawed in an ice bath, which serves as a reference RNA to allow standardization 

between assays and ensure an external quality measurement. The electrode cleaner 

chip had 350 uL of RNase free water added and was placed in the Agilent 2100 

Bioanalyzer for 5 minutes. To prepare the gel matrix for the chip, 550 uL of RNA 6000 

Pico (Agilent) gel matrix was added to a supplied spin filter, and centrifuged at 

4000RPM for 10 minutes. Then 65uL of the gel matrix was combined with 1uL of RNA 

6000 Pico dye, and the mixture was centrifuged at 14,000 RPM for 10 minutes.  An 

RNA Pico chip was placed in the priming station, and 9 uL of dye-gel mixture was 

pipetted into the appropriate well. The chip was then primed by depressing 1mL of air 

from the syringe into the appropriate well to force the dye-gel mixture into the 

microtubes. After priming, 9 uL of the dye-gel mixture was then pipetted into each well, 

and 9 uL of RNA 6000 Pico conditioning solution and 5 uL of RNA 6000 Pico marker 

were then pipetted into their respective wells. In order to minimize secondary structure 

formation of the RNA, the sample was then heated to 70C for 2 minutes. After heating, 

1 uL of the RNA ladder and 1 uL of sample RNA were then pipetted into the correct 

wells, and vortexed in the Agilent vortex at 2400 RPM for 60 seconds. The RNA 6000 

Pico chip was then placed into the Bioanalyzer, and the software package was then 

instructed to “Run” the assay. The Bionanalyzer then determined the 
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“electropherogram” for the control markers, and the pattern of the 18S and 28S peaks. 

The software calculates an “RNA integrity number” (RIN), which correlates with the 

degree of RNA degradation and overall quality.  To ensure high quality data, only 

samples with both a B and non B fractions having a RIN number of at least 6.6 were 

taken to the next steps. 

RNA amplification and cDNA generation 

For preparation of gene expression profiling, the RNA from previous steps requires 

amplification. Into a sterile RNase free 0.5 mL microcentrifuge tube, ~1000ng (100ng 

minimum, 10ug maximum) of RNA was aliquoted, and enough nuclease free water to 

bring to 11 uL total volume was added. 

Following the protocol for Illumina TotalPrepTM RNA Amplification Kit instructions, the 

Reverse Transcriptase Master Mix is prepared as follows (multiply below by number of 

assays to be run): 

1. 1 uL of T7 Oligo(dT) primer 

2. 2 uL of 10X First Strand Buffer 

3. 4 uL of dNTP mix 

4. 1 uL RNase Inhibitor 

5. 1 uL of ArrayScript 

Into each RNA sample, 9 uL of Reverse Transcriptase Master Mix is transferred to bring 

to 20 uL total volume, and mixed well. The tube is then placed into the thermal cycler 

and incubated for 2 hours at 42C, allowing the first reaction to occur. After 2 hours 

elapse, the tube is placed on ice to stop the reaction.  
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The Second Strand Master Mix (Illumina TotalPrepTM RNA Amplification Kit, multiply 

below by number of assays to be run) was then prepared as follows: 

1. 63 uL of nuclease free Water 

2. 10 uL of 10x second strand buffer 

3. 4 uL of dNTP mix 

4. 2 uL of DNA Polymerase 

5. 1 uL of RNase H 

Into each sample from the Reverse Transcription first step, 80 uL of Second Strand 

Master Mix is transferred (total volume of 100 uL) and mixed well. The tube is placed 

into the thermal cycler and incubated for 2 hours at 16C. After 2 hours is completed, the 

sample tube is placed on ice to stop the reaction. To prepare for eventual sample 

elution, sufficient nuclease-free water to allow for at least 20uL for sample is preheated 

to 55C. The tube is removed from the ice bath and 250 uL of cDNA Binding Buffer 

(Illumina) was added to each sample, and mixed well. A new cDNA filter cartridge was 

placed in a wash tube supplied with the kit. The cDNA and Binding Buffer mixture were 

then pipetted on to the cDNA filter cartridge membrane, and centrifuged at 10,000 RPM 

for 1 minute, with flow through being discarded. To each cDNA filter cartridge, 500 uL of 

Wash Buffer (Illumina) was added and centrifuged at 10,000 RPM for 1 minute, with 

flow through being discarded. The cDNA filter cartridge was then transferred to a cDNA 

elution tube, and 20 uL of preheated nuclease free water was pipetted to the cDNA filter 

membrane. The membrane was allowed to stand at room temperature for 2 minutes, 

and then centrifuged at 10,000 RPM for 1.5 minutes. The flow through which contained 

the cDNA sample was then transferred into a PCR tube and placed on ice. 



 23

The IVT Master Mix (Illumina TotalPrepTM RNA Amplification Kit, multiply below by 

number of assays to be run) was then prepared as follows: 

1. 2.5 uL of T7 10x Reaction Buffer 

2. 2.5 uL of T7 Enzyme Mix 

3. 2.5 uL of Biotin-NTP Mix 

Into each cDNA sample, 7.5 uL of IVT Master Mix is transferred and mixed well. The 

mixture is then placed in the thermal cycler and incubated for 14 hours at 37C. After 14 

hours was completed, 75 uL nuclease free water was added to stop the reaction, and 

the sample was placed on ice. Prior to stopping the reaction, sufficient nuclease free 

water for at least 100uL per sample was preheated to 55C.  

To each sample, 350 uL of cRNA Binding Buffer (Illumina TotalPrepTM RNA 

Amplification Kit) was added, followed by 250 uL of 100% ethanol, which is mixed by 

pipetting. The resulting mixture was pipetted onto the filter of a cRNA Filter Cartridge 

and was centrifuged at 10,000 RPM for 1 minute, and the flow through was discarded. 

Each cRNA filter cartridge then had 650 uL of Wash Buffer (Illumina TotalPrepTM RNA 

Amplification Kit) added, and was centrifuged at 10,000 RPM for 1 minute, discard flow 

through with the flow through discarded. The filter was further dried by centrifuging at 

10,000 RPM for an additional minute, and then transferred to a cRNA collection tube. 

The cRNA filter then had 100 uL of preheated nuclease free water added and was 

incubated for 10 minutes in a 55C heat block. The heated tube was then removed, and 

centrifuged at 10,000 RPM for 1.5 minutes. The flow through containing the cRNA was 

then transferred to an eppendorf tube for storage at -80C. 
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cRNA Hybridization 

The Illumina Hybrization Oven was pre-heated to 58
O
C for at least 30 minutes, and the 

HYB and HCB buffer tubes were placed in the oven for 10 minutes to ensure any 

precipitation was dissolved. The cRNA was quantified with the nanospectrometer, and 

750ng was removed from the storage eppendorf tube for hybridization, with RNase-free 

water added to bring the total volume to 5uL. To the cRNA and RNase-free water 

mixture, 10uL of HYB buffer (Illumina) was added. The Hyb Chamber was then 

prepared following the protocol from Illumina, with Hyb Chamber inserts and Gaskets 

installed and 200uL of HCB buffer added into the 8 humidifying buffer reservoirs. A 

single HT12 Illumina BeadChip was then removed from its package for each 12 

samples to be hybridized, and placed in the Hyb Chamber Insert. A total of 15 uL of 

solution containing the cRNA was then loaded into the inlet port of the BeadChip and 

observed for evidence of air bubbles, which were recorded to allow for adequate 

interpretation of results. The Hyb Chamber inserts with BeadChips were then placed in 

the Hyb Chamber, and the Chamber was locked prior to being placed in the 

Hybridization Oven for between 14 – 20 hours.  

The Illumina High-Temp wash buffer was then prepared per protocol, and allowed to 

heat to 55
O
C overnight. The following day, the Wash E1BC buffer was prepared by 

adding 6mL of E1BC buffer to 2L of RNase-Free water. The Hyb Chamber was 

removed from the Hybridization Oven and disassembled. All BeadChips were removed 

and placed face-up in a beaker with Wash E1BC buffer. While submerged, the cover 

seal of the BeadChip was removed, and then the BeadChip was transferred to a 

submerged slide rack in a staining dish filled with Wash E1BC buffer. The slide rack 
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was then transferred to the Hybex Waterbath containing the High-Temp wash buffer 

and allowed to incubate for 10 minutes. After incubation, the slide rack was then 

immediately transferred to a staining dish with fresh Wash E1BC buffer and plunged in 

and out of the solution 5-10 times. The staining dish was then placed on an orbital 

shaker and agitated at room temperature for 5 minutes. The slide rack was then 

transferred to a new staining dish containing 100% ethanol, plunged in and out of the 

solution 5-10 times, and returned to the orbital shaker for an additional 10 minutes. The 

slide rack was then transferred to the staining dish with Wash E1BC buffer and plunged 

in and out of the solution 5-10 times, and returned to the orbital shaker for 2 minutes. 

The BeadChip wash tray was then prepared on the Rocker Mixer, with 4 mL of Block E1 

buffer (Illumina) added. Using tweezers, the BeadChip was removed from the slide rack 

and transferred into the BeadChip wash tray face up, ensuring the entire chip is covered 

by the buffer. The tray was then placed on the rocker and agitated at medium speed for 

10 minutes. The BeadChip was then grasped with tweezers and transferred to a fresh 

BeadChip wash tray 2 mL of Block E1 buffer containing a 1:1000 dilution of Cy3-

Streptavidin. The tray was then covered completely by placing an empty opaque ice 

bath container over the wash trays, and agitated gently for 10 minutes. The BeadChip 

was then removed from the wash tray and transferred with tweezers to a slide rack 

submerged in Wash E1BC buffer, and the slide rack was then plunged in and out of the 

solution 5-10 times. The staining dish containing the Wash E1BC buffer was then 

agitated gently for 5 minutes.  

To fully dry the BeadChips, the centrifuge was prepared with paper towels and allowed 

to rise to room temperature. The slide rack containing BeadChips was then removed 
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from the Wash E1BC buffer and centrifuged at 1400 RPM for 4 minutes, and transferred 

to a dry opaque storage container. The BeadChips were then taken to the University of 

Texas Medical Center Microarray facility and processed per manufacturer 

recommendations using an iScan device.  The resulting data files were then transferred 

back to our secure hard drive for further processing. 

Samples from normal tonsils from 24 children undergoing elective tonsillectomy were 

similarly prepared as single cell populations and viably frozen, and were depleted of B 

cells to generate NB fractions using the same approach as described above for FL 

samples. 

 

Flow cytometry  

Immunophenotyping of single-cell suspensions from FL lymph node biopsies and tonsils 

was done by 10-color, 12-parameter flow cytometry (LSR Fortessa, Becton Dickinson), 

using a panel of antibodies against CD3, CD4, CD8, CD20, CD16, CD56, CD68, 

CD45RA, CCR7, CXCR5, PD-1, and Foxp3 (all from Becton Dickinson) to determine 

various subsets of immune cellular elements.  For each subset, the relative percentage 

of total live cells was determined with the software package FlowJo version 9.3.3. 

Data Analysis 

GEP data and clinical information (prognostic factors and censored survival time data 

points) were downloaded from http://llmpp.nih.gov/follicularlymphoma from the Dave et 

al dataset.(63) 

Affymetrix gene expression data were handled essentially as originally detailed, with a 

few minor modifications. According to the most recent version of the annotation file, the 
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Affymetrix probe sets were matched to the corresponding gene symbols (Affymetrix 

U133 set, 2011/6/9), and the probe sets which did not correspond to a unique gene 

symbol annotation were removed. Finally, the median expression value of all remaining 

probe sets was selected as the expression value for further analysis of the 

corresponding individual gene. These data processing steps, principally the probe set 

with gene symbols matching, resulted in minor differences from the original analysis of 

Dave et al. From the initial IR-1 and IR-2 signatures, not all genes were retained in our 

analysis. The Cox model was used to identify either signature in multivariate models 

associated with survival outcomes up to 10 years after diagnosis. The log-rank test and 

Kaplan-Meier curves were employed to evaluate for differences in survival outcomes, 

using the Bioconductor “survival” software package. 

Data from the B and Non-B fractions from the sorting procedural steps described in this 

thesis were processed and normalized both together and independently, using methods 

previously described.(76) Raw bead-level fluorescence intensities for a given probe set 

was corrected by the model-based background correction method,(77) subtracting the 

mean value of negative control probes. Next, the intensities were trimmed by the 3-MAD 

method offered with Illumina software, quantile-normalized to equalize the distribution, 

and subsequently averaged resulting in a single value for a probe. A lower level of 

detection threshold value was also generated for each array from the negative control 

value distribution, which was subsequently used as the “floor” for experimental probe 

values. Next, probes were converted to gene symbols via the Bioconductor 

"illuminaHumanv4.db" software package. Standard methods of hierarchical clustering 

and heat mapping using Cluster and Treeview software packages were employed,(78) 
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and were used to screen for batching effects. When batching effects were suspected, 

they were addressed by discarding unsatisfactory samples, re-arraying samples, or 

using batch-effect correction software methods.(79) The samples from normal tonsils 

that were similarly prepared as our FL samples and underwent the GEP process to 

generate control NB fractions, and subsequently underwent a combined normalization 

along with the FL NB fractions to allow for comparisons. 

 

For the jointly-normalized dataset of combined B and non-B fraction array results, 

11,959 genes were expressed above background in 25% or more of samples. For each 

gene in this dataset, an NB-B fold-difference in expression between NB and B fractions 

was calculated as the average difference in paired log2-transformed values. For each of 

the B and NB fraction datasets normalized separately, genes were also eliminated that 

were not expressed above background in 25% or more of samples, and which were 

judged to represent contamination from the other fraction. After this, totals of 12,087 

and 10,652 genes remained in the NB and B gene expression profiles respectively.  

From the unsorted tumor GEP from the Dave et al. dataset, a master matrix of pairwise 

r values was determined from the Pearson correlation of all possible pairs from the 

14,383 genes with an average log2 expression value > 6. The master matrix then was 

iteratively filtered, depicted in Figure 2, to arrive at a final set of genes with a target 

number (N) or more correlations with other genes in the set exceeding a target 

correlation level of a positive r value threshold (Y). This process results in a list of genes 

with at least N correlations with the other genes in the set exceeding a positive r value 

of Y, of which N and Y can be modified for variable gene list creation to identify an 
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optimal fit. Visual inspection of the resulting hierarchically-clustered heat maps of the 

correlation matrix of r values of the remaining genes, as illustrated in the Results, was 

used to select the optimal values of N and Y, and to identify highly associated gene 

clusters of genes, which were then selected as gene signatures. These heat maps have 

a 45 degree axis of full correlation of a gene with itself (r=1), and result in a small 

number of large highly correlating on-diagonal clusters (red color). The clustering of 

genes, and thus their order in the list, is not determined by similarities in pairwise r 

values, but takes into account all respective vectors of their pairwise r values with all 

others genes including in the list. If two genes have similar vectors, and thus a similar 

pairwise r pattern with non-self genes, they would be ranked closely together in the list 

and thus their intersection pixels would be near the diagonal. If their vectors are not 

similar, and thus a dissimilar pairwise r pattern with non-self genes, they would not be 

ranked closely together and the red pixels which demonstrate their tight correlation with 

each other would be off the diagonal.  

These large clusters generally have significantly more than the minimal N number of 

correlations, and thus can be designated as a signature.  

Figure 2. Schematic of iterative filtering approach 
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For the B and NB fractions, the initial filtering step using N = 1 and Y = 0.8 resulted in 
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NB genes in the B gene set). In the B fraction matrix, a total of 886 genes 

B cell types were identified and removed. From the NB fraction, 64 
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TNFRSF13C (BAFFR), MS4A1 (CD20), CD40, and CD79B) were identified and 
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To deal with this significant roadblock, we employed the iterative filtering described 

above for its initial use in our analysis of the Dave dataset. We believed the weak 

correlations found in the separated tumor datasets were likely due to undesirable genes 

with low numbers of correlations which were obscuring those genes with higher 

numbers of correlations. By setting our iterative filtering criteria, as outlined in Figure 2, 

we were able account for this issue. 

To assign an attribution for a given signature from CMA, we tested the genes in the 

cluster for their correlation with previously published gene sets, or enrichment for 

containing genes from within these sets, via the hypergeometric distribution test.(80) 

The full methods of this test are published, but in brief can be described by Figure 3.  

 

Figure 3. Hypergeometric Distribution Test 

 

Legend: In this equation, p is the p value of enrichment. n is the number of 

genes included in a given cluster identified by our CMA. M is the number of 

genes in a previously published gene set that has a validated correlation with a 

biologic term, such as a cell type or cellular process. k is the number genes 

from n which are included in M. N is the total number of genes evaluated in the 

microarray studies and are members of one or more gene sets in a signature 

collection. 
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For the “self-correlation” matrix analysis of the separated FL tumor cell suspensions, the 

B and NB fraction datasets were normalized separately.  Genes that were not 

expressed above background in at least 25% of the dataset samples were removed. 

This filtering resulted in totals of 12,087 and 10,652 genes in the NB and B gene 

expression profiles, respectively. For each fraction, the initial master matrix of pairwise r 

values was filtered to retain only those genes with at least one r value > 0.8 with another 

gene. For the remaining genes, hierarchically-clustered heat maps of pairwise r values 

were then examined to identify clusters of genes that were likely to represent 

contaminating cells from the other fraction.  

 

In the correlation matrix of the NB fraction, 64 genes were identified to have an 

apparent origin from B cells (including CD19, CD22, TNFRSF13C (BAFFR), MS4A1 

(CD20), CD40, and CD79B), and were subsequently removed. In the correlation matrix 

of the B fraction, 886 genes were identified to have an apparent origin from non-B cell 

were similarly identified and removed. For both fractions, the remaining genes were 

then iteratively filtering as described above, with a visual inspection of clustered heat 

maps to select N and Y values, as illustrated in the Results, to identify highly associated 

gene clusters of genes, which were then selected as gene signatures. 

For “cross-correlation”, additional genes were eliminated from the B fraction that were 

more prevalent in the NB fraction, as defined as an NB-B fold-difference > 0, as 

determined in the jointly-normalized B and NB fraction data. The value for each NB 

signature, defined as the average value of its constituent genes, was then calculated 
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from the NB fraction of each sample. These values allowed the creation of correlation 

metric to quantify the correlation with the value of each remaining gene in the B fraction 

of corresponding samples: 

����������	 ������ � ��	��� �
����� ��	�� � ����	�	� ��	������

������2��������
 

The absolute values of this correlation metric would increase with increasing variation in 

expression of the B gene and/or the non-B signature, and with correlation (either 

positive or negative) between these two values. 

 

For those genes with multiple probes, the correlation metric values were averaged. 

Genes were then ranked from highest to lowest by their correlation metric value, which 

was subsequently utilized for gene set enrichment analysis (GSEA),(81) with standard 

methods and using default settings and the “Run Gsea on a Pre-Ranked gene list” 

option.. Gene sets originated from the Molecular Signatures Database v4.0 C2, C3, C5, 

C6, and C7 categories (http://www.broadinstitute.org/gsea/msigdb/index.jsp), and from 

custom gene sets created from relevant literature. 
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Chapter 3 

RESULTS 

Correlation matrix analysis of whole-tumor GEP data reveals signatures of 

immune cell types and biological features in FL tumors 

We utilized our correlation matrix analysis (CMA) technique to analyze GEP data from 

whole-tumor pretreatment biopsies of 191 FL patients, which were treated with a variety 

of therapies, from the Dave et al. dataset.(63) In contrast, the previous CMA work by 

Galon et al. utilized a small pre-selected list of T-cell relevant genes in their study of 

colon carcinoma.(82) Additionally distinct from our approach, Dave only assessed for 

correlation in genes which displayed a univariate correlation with overall survival (OS). 

In contrast, we took an unbiased approach, as detailed in the Methods section, to 

analyze the Dave dataset. We generated a master “correlation matrix” of pairwise 

Pearson correlation r values between all genes. This matrix was then iteratively filtered 

to arrive at a final set of genes with N equaling 5 or more r values (correlation with other 

genes in the set) exceeding a certain positive threshold of Y equaling r =0.7 for 

p<0.0001 in the 191 samples, resulting in a list of 468 genes. Data exploration involved 

selection of trial N and r value thresholds, followed by assessment of hierarchically-

clustered heat maps of the r values of final genes. This approach differs from typical 

heat maps of expression values as it is symmetrical, with the same genes in the same 

order in both rows and columns. Thus, the diagonal represents a self-correlation. The 

large red squares along the diagonal of Figure 3 identify groups of highly-correlated 

genes, containing >N number of genes, which are suitable candidates for designation 

as signatures. Goodness of heat maps was based on the degree of clustering of high r 
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values into discrete squares along the diagonal, and the degree to which genes in these 

squares plausibly represented immune cell types or biological features (e.g., 

proliferation).  

Analysis of the CMA heat map resulted in generation of eight signatures, which were 

subsequently analyzed for their constituent genes (figure 4). Based upon analysis of the 

genes which were included, the signatures were attributed to immune cell types or 

processes as described in the methods using the hypergeometric distribution test. Most 

of the genes in the attributed signatures were related to immune cell types in the tumor 

microenvironment, but some (Proliferation and Ribosomal) are features whose 

restriction to cell types, if any, are unclear.  

Figure 4. Whole-FL tumor correlation matrix reveals outcome-correlated signatures  

Legend: The self-correlation heat map shows pairwise r values of correlation for 



468 genes, selected by iterative filtering with N of 5 and Y of

the GEP data of Dave et al. The heat map is symmetrical, with the same order of 

genes in rows and columns, and hierarchical clustering of any two genes is based 

on the similarity of their pairwise r values with other genes in the matrix

values are colored according to the scale of the color bar. Large red squares along 

the diagonal identify groups of highly

with the attributions shown in yellow (NK = natural killer). 

A ninth group of 11 Y-chromosome associated genes, highly correlated due to the 

presence of male and female patients in the dataset, served as quality control. The 

levels of the Y-chromosome signature were distributed in a biphasic pattern which 

corresponded with the gender proportions in the Dave dataset

Figure 5. The Y-chromosome gene signature, defined by correlation matrix analysis of 

whole-tumor GEP data from Dave et al

Legend: Y-chromosome signature levels (average log2 lev

468 genes, selected by iterative filtering with N of 5 and Y of 0.7 for 191 samples in 

the GEP data of Dave et al. The heat map is symmetrical, with the same order of 

genes in rows and columns, and hierarchical clustering of any two genes is based 

on the similarity of their pairwise r values with other genes in the matrix

values are colored according to the scale of the color bar. Large red squares along 

the diagonal identify groups of highly-correlated genes, which become signatures 

with the attributions shown in yellow (NK = natural killer).  

chromosome associated genes, highly correlated due to the 

presence of male and female patients in the dataset, served as quality control. The 

chromosome signature were distributed in a biphasic pattern which 

er proportions in the Dave dataset (Figure 5). 

chromosome gene signature, defined by correlation matrix analysis of 

tumor GEP data from Dave et al, identifies patient gender.  

chromosome signature levels (average log2 levels of signature 
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for 191 samples in 

the GEP data of Dave et al. The heat map is symmetrical, with the same order of 

genes in rows and columns, and hierarchical clustering of any two genes is based 

on the similarity of their pairwise r values with other genes in the matrix. Pairwise r 

values are colored according to the scale of the color bar. Large red squares along 

correlated genes, which become signatures 

chromosome associated genes, highly correlated due to the 

presence of male and female patients in the dataset, served as quality control. The 

chromosome signature were distributed in a biphasic pattern which 

.  

chromosome gene signature, defined by correlation matrix analysis of 

 

els of signature 
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genes) are shown for each of the 191 patients, ranked by their patient identifier 

index number. The inset shows the degree to which signature levels, 

dichotomized at the log2 = 7 threshold, correctly identifies the gender of 

patients in the training and test sets of patients 

To explore the validity of the iterative filtering, we analyzed the CMA without iterative 

filtering to evaluate for the presence of organized signatures. A correlation matrix heat 

map of the 547 genes resulting from the same N and Y criteria but without iterative 

filtering (Figure 6) is not as well-organized, showing that exclusion of genes by iterative 

filtering helps in defining signatures. The lack of iterative filtering did not prevent 

identification of clustering genes, however there were more genes with a strong 

correlation (red) that were off the diagonal, with much larger and less tightly defined 

clusters. 

Figure 6. Correlation Matrix Heat Map Without Iterative Filtering 
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Signatures of immune cell types in FL tumors are predictive of outcome 

The signatures created with the CMA method were then evaluated in a multivariate Cox 

model to determine their correlation with survival outcomes (10-year OS) in the 164 

patients for which clinical parameters allowing for calculation of the IPI score data. We 

required that each signature was able to contribute significantly (p < 0.05) to the 

creation of the model, both with and without inclusion of the IPI. Based upon this 

requirement, a 3-signature predictive model was found (Table 1) that stratified patients 

into groups with significantly-different OS (Figure 7).  

Table 1. Multivariate Cox Model to determine the correlation with survival outcomes 

Overall model IPI T cell Macrophage Stroma 

7.602e-05  0.000585 (-0.764) 0.000106 (1.0389) 0.000919 (-0.6556) 

1.976 E-06 0.000691 (0.6996) 0.015134 (-0.5967) 0.001203 (0.9396) 0.014737 (-0.512) 

The p values for the individual parameters, and for the models overall (by the Wald test) 

are without parenthesis. The model coefficients, with positive values indicating 

parameters with an unfavorable effect on survival and negative values indicating a 

favorable effect on survival, in parenthesis.  

 

 

 

 

 

 

 

Figure 7.  Overall survival in the three signature model without the IPI 
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As a confirmatory finding, our model included signatures for T cells and macrophages 

that were respectively OS-favorable and OS-unfavorable in the Dave dataset, and no 

signature of apparent B-cell origin similar to the Dave dataset. Distinct from the Dave 

initial findings included a favorable effect of stroma, as previously reported in diffuse 

large B-cell lymphoma,(83) and that our signature genes were more clearly linked to T 

cells (e.g., CDs 2, 3, and 5; ZAP70; ITK; ICOS) and MP (e.g., CDs 14 and 63).  

Highly filtered data such as our signatures is often evaluated for the possibility of 

“overfitting”, which is ideally addressed by utilizing the model in an independent dataset. 

As there is no such available comparable dataset, we simulated testing our 3-signature 

model 10,000 times. Each test allowed determination of the coefficients in a randomly-

selected training set (50% of patients), with subsequent evaluation with the coefficients 

in the test set (50% of the patients). Utilizing this method of confirmation with inclusion 
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of the IPI to correct for patient factor imbalances between sets, the model was 

predictive (p < 0.05) in both the randomly-selected training and test sets in 90.5% of the 

10,000 tests, far greater than by chance (figure 8). This is not equivalent to an external 

dataset, but does lessen concerns regarding overfitting the data.  

Figure 8. Permutation test for robustness of the 3-signature+IPI model 

 

Legend: A) Schematic of the iterative procedure used. For the 164 patients 

for whom IPI data were available, each iteration involved random division into 

training and test sets of 82 patients each. For the training set patients, 

coefficients and the significance of correlation with overall survival (OS) were 

determined in a multivariate Cox model using levels of the IPI and the 3 most 

predictive CMA-defined signatures (Macrophage, T cell, and Stroma). The 

significance of correlation with OS was then determined in the test set, using 

the same coefficients. The process was repeated for a total of 10,000 times. 

B) Totals for the 4 possible outcomes, according to threshold of significance. 
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Features of immune cell types in the FL microenvironment revealed by CMA of 

separated tumor cell suspensions 

Although our correlation matrix analysis of the data from Dave et al. confirmed the 

previously reported importance of the microenvironment in FL, featuring opposing 

effects of macrophages and T cells, it did not provide further insights into important 

interactions between various cell populations. As the detection of GEP features of a 

particular cell type are likely obscured by the presence of other cell types in a 

heterogeneous sample,(84) the presence of B cells in whole-tumor biopsies may have 

limited or influenced our ability to examine the microenvironment, as well as its effects 

on B cells. To account for this limitation, and attempt to correct for it, we analyzed 

viably-frozen cell suspensions from untreated FL tumors, as described in the Methods 

section. Technically adequate results for both B and NB fractions from a given patient 

were achieved for 43 patient samples.  

CMA of NB fraction data (“self-correlation”), using N of 5 and Y of 0.8 (p<0.0001), 

resulted a highly organized heat map of 1097 genes (Figure 9). Without the potentially 

confounding presence of B cells, we could detect signatures of immune cell types aside 

from T cells and macrophages, including five highly self-correlating signatures of 

immune cell types and three highly self-correlating signatures of mechanistic processes 

(Signaling, IL10, and Proliferation). 
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Figure 9. Self Correlation heat map from the NB fraction 

Legend: The self-correlation heat map shows pairwise r values of correlation for 

1097 genes from GEP data of NB fractions from 43 FL tumors, selected by 

iterative filtering with N of 5 and Y of 0.8. Signature attributions are in white: Mac = 

macrophage, NK = natural killer, mDC = myeloid dendritic cell, FDC = follicular 

dendritic cell, Endo = endothelial, pDC = plasmacytoid dendritic cells. The 

signature marked with an asterisk is an FDC_Endo_Stroma-associated signature 

of 27 genes. 
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Of interest, plasmacytoid dendritic cells (pDC) manifested a small self-correlating gene 

signature, despite their typically only representing ~0.1% of all cellular events by flow 

cytometry (FACS) in FL. Some of our identified immune cell signatures were not 

attributable to a single cell type including macrophage (Mac) genes which were mixed 

with genes of natural killer (NK) and myeloid dendritic cells (mDC) in a Mac_NK_mDC 

signature. However, the Mac_NK_mDC signature did correspond to the presence of 

macrophages in the tumor samples. For confirmation, 39 samples from this dataset 

were analyzed with FACS for CD68+ cells. The proportion of CD68+ cells among non-B 

cells correlated highly with NB fraction levels of CD68 gene expression alone and with 

the Mac_NK_mDC signature (Figure 10)  

Figure 10. Flow cytometry of CD68 expression compared with Mac_NK_mDC signature 

and CD68 gene expression 

Legend: The expression of CD68 was determined as outlined in the Methods. In 

each tumor sample, the median expression value of the Mac_NK_mDC signature 

(left panel) and gene expression of CD68 (right panel) were correlated with the 

normalized CD68 flow cytometry data, showing good correlation. 
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The self-correlating T cell signature found in our NB fraction (T
NB

) was compared to 

signatures of effector T cells (T
eff

) and T
FH

 cells previously published by us,(42) derived 

from GEP comparing flow cytometry defined T
eff

 (PD1(PDCD1)
int
CXCR5

int
 or 

PD1
lo
CXCR5

lo
) vs. T

FH
 cells (PD1

hi
CXCR5

hi
) in 3 independent FL samples. Although only 

18 genes were identified in both the 113-gene T
NB

 signature created by our CMA and 

the 55-gene T
FH

 signature from our prior work, we found a highly-significant positive 

correlation (r=0.944, p<0.001) in their levels in the NB fraction (Figure 11).  

Figure 11. The CMA-defined T
NB

 signature compared with a previous T
FH

 signature 

Legend: The median gene expression value for the T
NB

 signature was determined 

from each patient and compared with the median gene expression value for the 

previously published T
FH,

 from the same patient, showing excellent positive 

concordance. 
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 Based upon this strikingly high correlation, we conclude that T
NB

 signature from the 

separated FL samples essentially represents a T
FH

 signature.  

In Figure 9, the increased negative correlation manifested by green off-diagonal clusters 

of negative r values at the intersections between T
NB

 and Mac_NK_mDC clusters 

suggests an inverse relationship between these cell types. This finding is confirmed by 

Pearson correlation between average levels of signature genes (r=−0.889, p<0.00001; 

Figure 12). Additional negative correlations were noted between the pDC and IL-10 

signatures, and between the Proliferation and both Signaling and Macrophage 

signatures. A positive correlation was observed between the Proliferation and T cells 

signatures in the FL microenvironment. 

Figure 12. The T
NB

 signature compared with the Mac_NK_mDC signature 

Legend: The median gene expression value for the T
NB

 signature was determined 

from each patient and compared with the median gene expression value for the 

Mac_NK_mDC signature from the same patient, showing strong negative 

concordance.  



 46

In theory, the attribution of a signature to a particular cell type could allow the 

conclusion that other genes in the signature, not previously reported to be associated 

with a specific cell type, are expressed by the putative cell of origin. This feature of self 

correlation matrixes applies to many genes, including chemokines, cytokines, and 

surface or intracellular molecules such as CCL19 from FDC/endothelial cells, and 

CCL3, CXCL16, FGL2, S100A8, S100A9, IL8, and TNFSF13B  from macrophages.  

A single signature for T cells was identified via our self correlation matrix, containing the 

genes CXCR5, PDCD1, ICOS, SH2D1A, CD40LG, CD200, BTLA, TIGIT, CD200 that 

are known to have varying levels of expression levels in distinct T cells subsets, such as 

Tfh, Th1, Tc1, and Treg.  

Comparison of follicular lymphoma microenvironment with the normal lymphoid 

microenvironment 

The interactions suggested by our correlation matrix analyses of FL patient tumor 

biopsies may not be unique to the FL microenvironment. To address the potential that 

immune cell types found in the FL microenvironment are qualitatively different from 

immune cells in a benign lymphoid organ, we performed GEP on the NB fraction of 

tonsils from 24 healthy children. In the NB fraction of the tonsils, we evaluated the T
NB

 

and Mac_NK_mDC signatures that we had previously generated in the FL NB fraction 

CMA. The individual genes from each signature were evaluated for their pairwise 

correlation in the benign tonsil NB fractions. In addition, we compared the expression of 

individual genes from these signatures in the NB tonsil population to the gene 

expression in the FL NB fractions. We found that the pairwise r values of the expression 

of the T
NB

 cell and macrophage signature genes demonstrated a significantly weaker 
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correlation with each other in benign tonsils than in FL samples, as graphed in 

histograms from the two sample types (Figure 13).  The Pearson correlation r values 

are much lower in the NB fraction of tonsils than FL, which suggests that the T cells and 

macrophages (or NK or mDC cells) in the FL cells are distinct from their benign 

microenvironment counterparts.  

Figure 13. Histogram of T
NB

 and Mac_NK_mDC signature correlation in FL and Tonsils 

Legend: The genes comprising the T
NB

 signature and the Mac_NK_mDC were 

evaluated for correlation with other genes of in the signature. The histogram 

shows the tonsil (blue) samples had a much weak correlation than did the FL 

(orange) samples, demonstrating the differences between the microenvironment 

in the benign and malignant context. 

 

We concluded that this weaker correlation in the NB fraction of the benign tonsils is due 

to the possibility that our signatures correspond to with a cell type that is not normally 

found in benign lymphatic tissue. Based upon the above analyses, this indicates that 
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TFH and at least one of the Mac_NK_mDC cell types are qualitatively distinct in FL vs. 

the normal lymph node microenvironment.  

Similar findings were identified when the expression of previously determined 

signatures of effector T cells (T
eff

)(42) and T
FH

 cells in FL and tonsil samples were 

compared. When the genes from these signatures were combined in a single heat map 

(Figure 14), we identified clusters which corresponded largely according to signature, 

and perfectly distinguished the FL samples from the tonsil samples. Furthermore, the 

samples from the NB FL population clustered into two distinct groups, predominantly on 

the basis of genes more associated with T
FH

 cells. These data suggest that T
FH

 cell 

infiltration of FL is not uniform, and may speak to the clinical heterogeneity seen in this 

disease.  
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Figure 14. Heat map comparing FL and tonsil samples for the expression of previously-

determined signatures of effector T cells (Teff) and TFH cells 

Legend: Mean-centered expression values are shown for genes (right) from the 

combined signatures distinguishing sorted Teff (green) and TFH (red) cells in 3 

previously-studied FL samples. The color bar indicates the fold value of expression 

relative to the mean of each gene. Data come from GEP of NB fractions of 43 FL 
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samples (red) and 24 normal tonsils (blue). Hierarchical clustering for similar 

variation in expression shows that genes cluster largely according to signature, and 

samples cluster perfectly according to sample group. The FL samples (red box) 

have 2 relatively distinct populations, one of which is highlighted (yellow box). 

“Cross-correlation” analysis identifies interactions between tumor cells and 

immune cells in the immune microenvironment 

A fundamental hypothesis underlying this thesis is that the biology of FL involves 

significant cross talk, either symbiotic and/or antagonistic, between FL cells and multiple 

benign immune cell types in the tumor microenvironment. To examine this hypothesis, 

we explored whether these interactions might be revealed by “cross-correlation” 

analysis, similar to the “self-correlation” analysis of the NB fraction described above, but 

involving correlation between levels of genes in one cell fraction (B or NB) and those of 

genes in the opposite fraction. Individual genes in each fraction for cross correlation  

were limited to those whose levels were at least as high as in the other fraction, to 

minimize the risk for identifying highly cross-correlated genes originating from cell types 

present in both fractions. Iterative filtering, using N of 8 and Y of 0.65 applied to genes 

of both fractions, produced a cross-correlation matrix of 226 B fraction genes and 278 

NB genes. The heat map of this matrix (Figure 15) clustered into non-overlapping paired 

groups of positively-correlated genes from each fraction, which were negatively-

correlated with each other. Evaluation of the gene lists via the hypergeometric 

distribution test showed that one group of NB fraction genes was characteristic of T
FH

 

cells. The positively-correlated group of B fraction genes which corresponds to the T
FH

 

genes contained many genes associated with proliferation, including CDC20, TOP2A, 



CCNB2, AURKA, AURKB, suggesting that tumor 

cells. This group of B genes also included SERPINA9, 

characteristic of germinal center B cells and 

genes was characteristic of macrophages. Upon evaluation

distribution test, the corresponding positively

not clear as to their implications, but overlapped significantly with several stem cell gene 

sets. 

Figure 15. Cross-correlation heat map of B vs. NB fraction 

In another approach to cross

compared to those of T cell signatures in the NB fraction; other signatures were not 

considered, since the methods used to prepare the fractions did n

potential presence of non-B, non

approach also differed in that the metric for comparison was not based solely on the 

Pearson r value, but also considered

signature as described in the 

, suggesting that tumor T
FH

 cells support proliferation of FL B 

. This group of B genes also included SERPINA9, previously reported to be 

characteristic of germinal center B cells and FL.(85, 86) The other group of NB fraction 

s characteristic of macrophages. Upon evaluation with the hyperge

the corresponding positively-correlated group of B fraction genes were 

not clear as to their implications, but overlapped significantly with several stem cell gene 

correlation heat map of B vs. NB fraction genes in FL tumors

In another approach to cross-correlation, levels of individual B fraction genes were 

compared to those of T cell signatures in the NB fraction; other signatures were not 

considered, since the methods used to prepare the fractions did n

B, non-T cells (such as macrophages) in both fractions. This 

approach also differed in that the metric for comparison was not based solely on the 

Pearson r value, but also considered the variances of expression of e

described in the Methods section. This approach created 
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cells support proliferation of FL B 

previously reported to be highly 

The other group of NB fraction 

the hypergeometric 

correlated group of B fraction genes were 

not clear as to their implications, but overlapped significantly with several stem cell gene 

genes in FL tumors 

 

correlation, levels of individual B fraction genes were 

compared to those of T cell signatures in the NB fraction; other signatures were not 

considered, since the methods used to prepare the fractions did not exclude the 

T cells (such as macrophages) in both fractions. This 

approach also differed in that the metric for comparison was not based solely on the 

the variances of expression of each gene and 

approach created a cross-
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correlation matrix which represents a set of independent correlations between the T
NB

 

signature and all B fraction genes. These values allow ranking of individual B fraction 

genes by their correlation with each NB signature. Table 2 shows results for the top 

individual 20 genes from the B fraction with the highest positive correlation with the T 

cell signature from the NB self correlation matrix. The B fraction gene with the strongest 

correlation with the T cell signature was SERPINA9, and several other genes 

associated with proliferation. We also identified genes previously described to be 

associated with proliferation (e.g., CDC20, TOP2A, AURKA, AURKB) were highly 

correlated, which imply that the NB T cell signature and/or tumor infiltrating T
FH

 cells play 

a positive role in supporting B-cell proliferation, which here would mean malignant B-cell 

proliferation. As additional findings, B fraction levels of CCL17 and CCL22 were highly 

ranked, consistent with our previous observation that T
FH

 induce these chemokines in FL 

B cells.(87)  
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Table 2. B genes having expressions with top 20 highest correlation with the T-cell NB 

signature 

 

In addition, we also examined the previously determined T
eff
 and T

FH
 signatures(42) in 

cross-correlation analysis between the B and NB fractions. B fraction genes that ranked 

most positively by the correlation metric with the T
FH

 signature in the NB fraction, and 

most negatively with the T
eff

 signature, were similar to those ranked positively with the 

T
NB

 signature. This finding is consistent with our previous conclusion that the T
NB

 

signature is effectively a surrogate for a T
FH

 signature. Further supporting our prior 

conclusion that T
FH

 cells support FL proliferation, we also identified that the prior 

published T
FH

 signature in the NB fraction correlated highly with B fraction levels of a 

proliferation signature identified by CMA of the B fraction. 

symbol Metric Rank

SERPINA9 0.79959191 1

CDC20 0.75779624 2

KIAA0101 0.51064588 3

TOP2A 0.50500598 4

TYMS 0.47261181 5

RPS4Y1 0.46898551 6

CCL22 0.45483511 7

IGJ 0.41632578 8

CCNB2 0.37535751 9

CAMP 0.33334485 10

UBE2C 0.32712714 11

KCNK12 0.30605593 12

ELL3 0.30466897 13

CCL17 0.29107038 14

GTSF1 0.27116205 15

AURKA 0.27057119 16

CDCA5 0.26226925 17

AURKB 0.25810637 18

KIFC1 0.25697333 19

SLC2A5 0.2460317 20

TFH,	CMA-defined
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Cross-correlation analysis was able to identify other previously reported biological 

interactions between FL B cells and immune cells. We previously identified that T
FH 

 cells 

induce expression of the chemokines CCL17 and CCL22 by FL B cells.(87) In our cross 

correlation analysis, we identified that B fraction levels of these chemokines were highly 

ranked as positively correlated with NB fraction levels of both the T
NB

 and T
FH

 signatures. 

This finding may imply that the expression of these chemokines by malignant FL B-cells 

likely plays an important role in shaping the FL immune microenvironment, including 

recruitment of T
FH

 cells. We also found a positive correlation between individual values 

of the T
NB

 signature in NB fractions and values of CCL22 and CCL17 in their 

corresponding B fractions, is shown in Figure 16. 
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Figure 16. Correlation of CCL17 and CCL22 in the B tumor fraction with the TNB 

signature in the NB fraction 

Legend: The individual genes CCL17 and CCL22 were determined in the B 

tumor fraction from each patient and compared with the median expression value 

of the T
NB

 signature from the NB fraction in the same patient, showing good 

concordance. 

To allow for further interpretation of the cross correlation matrix, we employed Gene Set 

Enrichment Analysis (GSEA)(88) which we conducted by ranking B fraction genes 

based upon their correlation with the T
NB

 signature. We identified previously known 

findings, including that ranked B fraction genes based upon correlation with the T cell 

signature had a strong positive enrichment for gene sets related to proliferation. 

However, our GSEA also positively enriched two gene sets which are based the 

comparison of germinal center (GC) B cells to cells at neighboring stages of 

differentiation, including before (naïve B cells; GSE12366_GC_VS_NAIVE_BCELL_UP) 
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or after (memory B cells; GSE12366_GC_VS_MEMORY_BCELL_UP) the GC 

stage.(89) This finding was not anticipated as all samples were from FL, which is known 

to correspond to the GC stage. This finding suggests that the FL samples with B 

fractions that have strong similarities to normal GC B cells are those with increased T
FH

 

cells. Another possible mechanism for this finding may be that T
FH

 cells are associated 

with FL variants with a greater reliance on B-cell receptor (BCR) signaling, as a 

signature comparing splenic B cells from wild type mice against BTK-mutant mice 

(GSE2826_WT_VS_XID_BCELL_UP)(90) was also enriched by correlation with the T
NB

 

cell signature.  
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Chapter 4 

DISCUSSION 

The creation and use of signatures to interpret GEP data is a common practice as it 

allows for conceptualization of the complex gene interactions that occur in normal and 

diseased cells. When a signature is determined in a given context, it is generally 

applicable to other datasets, at least for hypothesis generation. This includes signatures 

found in the public repository Molecular Signatures Database. The novel technique of 

correlation matrix analysis (CMA), assisted by iterative filtering, is distinctive in that it is 

able to identify groups of coordinately expressed genes from the data themselves, 

which thus fit the data well. This allows for a “dimension reduction” of the GEP data, 

which can greatly assist analysis.  

The work in my thesis is an unbiased use of all potential genes for CMA, as opposed to 

previous applications of CMA, which have generally utilized a preselected set of genes, 

for which the proper attribution to a given cell type is known. Our novel approach poses 

new challenges, the first being whether signatures can be identified that are discrete 

(i.e., composed of genes that correlate more highly with each other than with genes of 

other signatures) and biologically plausible rather than random collections of covariant 

genes. The use of iterative filtering, which we developed for this study, contributed 

greatly to our ability to identify discrete signatures. Although results depended on the N 

and Y criteria used for the iterative filtering, we found that the number of signatures was 

relative small, and that their constituent genes generally provided a clear basis for 

attribution. In other words, at least in FL, there is substantial “structure” to the data, 

reflecting the presence of well-defined immune cell types and highly-orchestrated 
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biological processes (such as proliferation) in the tumor. In other words, just as there 

are not an unlimited number of different cell types in an FL tumor, so there are not an 

unlimited number of signatures. 

In the dataset from the landmark study of intact whole-tumor of FL GEP by Dave, our 

method of CMA was able to identify multiple groups of coordinately expressed genes 

which we could attribute to biologically relevant immune cell subsets and other essential 

cellular function programs. Our signatures included the OS-favorable T cells and OS-

unfavorable macrophages, similar to the initial non-CMA findings. We did not consider 

these similarities to be surprising, as the initial group used hierarchical correlation, 

similar to the pairwise correlation we used, to group genes into a total of 10 signatures, 

2 of which were T cells and macrophages. However, their data analysis did not 

incorporate all potential genes and thus had an introduction of bias. The genes that 

Dave et al selected for clustering had to first meet a minimum level of significance (p < 

0.1) with OS in a univariate correlation analysis. In contrast, our analysis included all 

genes, and performed correlation with OS only on CMA-defined groups of genes, or 

signatures. This distinction likely resulted in our CMA-defined T cell and macrophage 

signatures including a greater number of total genes, and a greater number of genes 

that are characteristic of their putative cell of origin. In our T cell signature, we identified 

genes associated with CDs 2, 3, and 5, ZAP70, ITK, and ICOS. In our macrophage 

signature, we identified genes associated with CDs 14 and 63, suggesting biologic 

plausibility. Our analysis also identified a stroma-related signature which was OS-

favorable, consistent with the findings of others in another subtype of NHL, diffuse large 

B-cell lymphoma.(83) Together, these findings lead us to conclude that our method of 
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signature creation is valid and can create biologically relevant signatures that are 

attributable to immune cell subtypes and other cellular processes. 

Our CMA-defined T cell signature from the Dave et al data was not specific to a 

particular T cell subset or physiologic state, comparable to original analysis. As a result 

of this caveat, our signature is limited in mechanistic implications. However, our CMA of 

the separated untreated FL tumor samples, specifically the NB fractions resulted in our 

T
NB

 signature, larger than that of the T cell signature of Dave. Based on further 

correlative analyses, we concluded that our T
NB

 signature is effectively representative of 

T
FH

 cells. Not all tumor infiltrating T cells in FL are T
FH

 cells, as has been shown by 

immunostaining and other analyses.(87) However, our CMA-defined T cell signature 

implies that T
FH

 cells are the most consistent T cell subset across our FL biopsy 

samples, although varying in their frequency. Based upon review of the literature, we 

did not find this to be unexpected as FL is often described as originating from the 

normal germinal center of benign lymph nodes in which T
FH

 cells play an essential role. 

Our findings regarding T
FH

 cells were also unsurprising as we found that T
FH

 cells were 

increased in the NB fraction of FL tumors when compared to reactive lymph tissue.(91) 

However, our T
NB

 signature did not have significant applicability in the NB fractions 

isolated from the tonsil samples, which we concluded to imply that the T
FH

 in FL and the 

normal lymph node microenvironment have distinctive qualitative differences. 

Based upon our conclusion that T cells, specifically T
FH

 cells, have significant self 

correlation in FL samples, it is logical to assume that this may occur due to interactions 

occurring between FL tumor B cells and immune cells in the tumor microenvironment. 

To further support this hypothesis, we identified “cross-correlations” between genes 
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expressed in isolated malignant B cells from FL and the level of expression of NB 

fraction signatures. The nature of these relationships, antagonistic or tumor promoting, 

is less clear, but their existence suggest a bi-directional interaction on and by both B 

and non-B cells. Pangault et al. also performed GEP on sorted FL tumors or reactive 

lymph nodes and tonsils, utilizing different methods than ours including positive 

selection of cells during isolation. Their analysis generated “interfaces”, defined as sets 

of genes which could distinguish B and NB fractions.(92) Their use of this analytic 

technique concluded that T
FH

 cells were responsible for the majority of the differences 

between the FL and non-FL interfaces. In addition, they also concluded that the T
FH

 cell 

population affected B cells. Further supporting their implication of the role of T
FH

, they 

also found that IL-4 expression was distinctive for FL T
FH 

when compared with normal T 

cells. The FL B cells demonstrated effects of this T
FH

 IL-4 signaling, including high 

expression of IL4I1, an IL-4 target gene whose B fraction levels were highly ranked by 

metric correlation with T
NB

 signature levels in our data. Ame-Thomas et al also identified 

IL-4 as the most highly expressed gene by FL T
FH

 cells as compared to tonsil T
FH

 cells. 

In addition, they also found that antibodies which block CD40L or IL-4 were able to 

reduce the ability of autologous FL T
FH

 cells to promote survival via protection of tumor B 

cells from spontaneous apoptosis.(93) Myklebust et al. found that FL T
FH

 cells can have 

IL-4 production induced by stimulation, but are insensitive to STAT6 phosphorylation via 

IL-4, and thus can avoid a negative feedback loop.(73) Lastly, Kiaii et al. identified 

several genes, including PMCH, ETV1, and NAMPT, that were more highly expressed 

in CD4
+
 and/or CD8

+
 T cells from FL samples than from tonsils. In normal T cells co-
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cultured with FL B cells, but not with tonsillar B cells, these genes were up-regulated 

implying a distinctive FL-T cell interaction.(94) 

Recent innovative studies using multiparameter confocal immunofluorescent 

microscopy have evaluated the FL microenvironment. This technique allows for 

evaluation of multiple parameters, similar to flow cytometry, without disruption of the 

tissue architecture, similar to immunohistochemistry. These analyses support our 

findings that T
FH

 cells have effects on FL B cells, including promotion of their 

proliferation, as they demonstrate enrichment of FL tumor follicles for T
FH

 cells, defined 

as CD4
+
/PD1

+
/ICOS

+
 cells. They confirmed these cells were T

FH
 cells by protein 

expression of BCL6, the master T
FH

 transcription factor.(95) The multiparameter 

microscopy also found that 42% of proliferating tumor B cells, defined as Ki67
+
, were in 

direct contact with T
FH

 cells including synapse formation.  

An additional implication of this FL B cell – T
FH

 cell interaction was shown with cross-

correlation with NB fraction levels of the T
NB

 signature, and those from a previously-

defined T
FH

 signature, suggesting induction of CCL22 and CCL17 in FL B cells by 

infiltrating T
FH

 cells. This supports a conclusion of our previous work(87) that identified 

CCL17 and CCL22 levels to be significantly higher in both serum and tumor B cells from 

FL patients when compared with healthy donors. We also previously found that T
FH

 cells 

can strongly induce CCL17 and CCL22 production by FL tumor B cells through IL-4 and 

CD40L. Lastly, we also previously demonstrated that cultured FL supernatant could 

induce migration of both IL-4-producing T cells and regulatory T cells (T
reg

), more so 

than IFN-gamma-producing T cells.(87) Other investigators have previously found 
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similarities between T
FH

 cells and subsets of T
reg

 cells (Follicular T
reg

, T
FR

), both which 

express CD4
+
/CXCR5

+
/ICOS

+
 cells in FL.(91, 93) 

We found substantial differences in our CMA results of the whole tumor Dave dataset 

and of the separated 43 FL samples from our dataset. These differences included the 

gene lists selected by our iterative filtering, with only 87 genes overlapping between the 

Dave list (468 genes) and from our NB fraction (1097 genes). Both datasets yielded T 

cell and macrophage-related signatures generated from CMA, of which there were few 

genes in common, although more than expected by chance. These differences in CMA 

do not imply that the datasets are non-compatible, as some of the differences could 

result from whole vs. sorted tumors. Another potential explanation for these differences 

could be the use of the Affymetrix microarray platform for Dave, and Illumina for our 

dataset. Another potential limitation of our approach is illustrated by our identification of 

signatures of rare cell types including FDC and pDC in the NB fraction, but inability to 

identify unique signatures of other immune cell subsets (e.g., macrophages, NK cells, 

and mDC), or identify an attributable signature of others which would be expected to be 

present at low levels (e.g., T
regs

, and T
eff

 subsets like T
H1

, T
H2

, and T
H17

). An explanation of 

this limitation may be the potential similarities or overlaps in the expression of genes 

between these cell types, or because they may display significant heterogeneity across 

patient samples. 

The work in this thesis confirms the findings of others and contributes additional data to 

support the hypothesis of a symbiotic feed-forward relationship between the 

microenvironment and FL cells. In this interaction, T
FH

 cells induce both proliferation and 

production of CCL17 and CCL22 by FL tumor cells, which subsequently leads to 
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attracting T
reg

 and IL-4-producing T cells. These tumor-infiltrating benign immune cells 

further stimulate chemokine production, and perpetuate additional pro-tumor cell 

recruitment.  

In conclusion, the results of my thesis project suggest that the novel technique of CMA 

may have broad applicability to characterize interactions found in cancer biopsies, and 

shed light on complex but potentially targetable abnormal interactions. Our CMA 

method can define signatures of both cancer cells, as well as infiltrating benign immune 

and stromal cell subsets in the tumor microenvironment. These novel, or modified from 

prior, signatures may subsequently be utilized to characterize and potentially 

understand these tumor-microenvironment interactions, determine the prognostic 

impact of the presence or absences of microenvironmental cell types, discover novel 

therapeutic targets for future study with clinical trials, and to identify subsets of patients 

with a potential increased likelihood of response to CMA signature informed targeted 

therapies. 
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Chapter 5 

STRENGTHS AND WEAKNESSES 

This thesis is the first attempt at using CMA paired with separated cell population 

analyses in follicular lymphoma. The significant strengths of my project include its 

unique ability to determine the complex interactions between various cell types in the 

tumor microenvironment, and thus determine not just which cell types are present, but 

are also exerting an influence on other types.  

The work in this thesis demonstrates that the novel approach of CMA can discern 

signatures consisting of genes attributable to various immune cell types in FL. We 

believe that this approach can be utilized to implicate mechanisms which are essential 

to FL biology, and could be applied to other cancer types for similar analyses. We 

believe that our T
NB

 signature was validated by its high correlation in our analyses with a 

previously determined T
FH

 signature from cells sorted with flow cytometry.  

However, it is important to note there are several limitations to the work detailed in this 

thesis, including the technique of CMA and the confidence of the results. By definition, 

CMA requires multiple samples in order to evaluate for correlations, and becomes 

increasingly powerful with an increasing sample size. The implication of this 

dependence on sample size is that findings from CMA, including the signatures that it 

can generate, may be specific to the sample set and thus not applicable globally, 

especially with smaller or highly selected datasets. Furthermore, the determination of 

the variables of N and Y for iterative filtering is subjective, and may have implications on 

the ability of the conclusions to be applied to other datasets. The evaluation of 

goodness of correlation matrix heat maps is also admittedly operator-dependent. 
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However, in our analysis, we found that for a particular dataset, the CMA generated 

signatures did not change significantly as the variables were modified.  
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Chapter 6 

FUTURE DIRECTIONS 

The work in this thesis suggests previously unexplored potential targets for therapeutic 

intervention. Agents which target the pro-tumor B-T
FH

 interaction which we have 

demonstrated to be present and robust include antibodies which block the interaction 

between CD40L and CD40, which have been tested in clinical trials. To date, these 

agents have had only modest efficacy in patients with relapsed FL,(96) however this 

was as a single agent. In isolation, interfering with the CD40L and CD40 interaction, or 

other pro-tumor B-T
FH

 interactions, may not be sufficient for an impressive clinical 

response as they affect one of the many important interactions between FL B and T
FH

 

cells, leaving others (e.g., IL-4) unaffected. It is doubtful that this complex interaction 

would collapse if a single portion is interrupted, as has been seen in other complex 

network interactions. Removal of a single interaction of T
FH 

and B cells, even if it appears 

to be essential, is likely insufficient to cause significant damage to a complex network 

such as the cancer-microenvironment interaction.(97) Therefore, we hypothesize that 

agents which target and potentially kill T
FH

 cells directly may need to be developed in 

order to eliminate their pro-tumor effects, and combined with other therapeutic agents 

for maximal effect. Our T
NB

 signature from this thesis may be utilized to identify a subset 

of FL patients most likely to benefit from eradication of T
FH 

cells due to their symbiotic 

interaction in that subset. Similarly, other signatures derived from our CMA methods 

may help to identify additional patients likely to benefit from microenvironment-directed 

targeted therapies, including anti-CSF-1R therapies in patients with high levels of 

macrophage signatures and anti-PD-1 therapies in patients with high levels of the T
eff
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signature.(42, 98) This hypothesis would need to be formally evaluated in clinical trials, 

as animal models which accurately depict this complex interaction are currently lacking. 
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