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GENETICS OF OBESITY IN STARR COUNTY, TEXAS MEXICAN AMERICANS

Heather Michelle Highland

Advisory Professor: Craig L. Hanis, Ph.D.

Currently, over two-thirds of Americans are classified as over-weight or obese.
Obesity increases risk for many other diseases including type 2 diabetes, heart disease,
stroke, and cancer, making obesity the largest public health problem in America and
most other Westernized nations. Hispanics have a higher rate of both obesity and type 2
diabetes, making them a particularly interesting population in which to study obesity.
For the last 33 years, the Starr County Health Studies has collected an array of
phenotypes and biological samples from residents of Starr County, along Texas-Mexico
border. This study includes 825 subjects who were not known to have diabetes at
ascertainment. These subjects have now been seen a second time, on average 8.5 years
later. At both visits we measured several aspects of obesity including BMI,
bioimpedance to estimate percent body fat, and waist, hip, and arm circumferences. By
using multivariate approaches to leverage the array of obesity measures, we have better
captured both the amount of adipose tissue and the location of fat deposits.

To assess association of obesity related traits with genetic variation from both
genome-wide array data imputed to 1000 Genomes Phase 1 integrated dataset and
exome sequencing, both gene-based and single variant tests were conducted. Through
these single variant tests, we identified an association with waist to hip ratio and low

frequency variants, in two adjacent GABA receptor subunit genes, GABRBZ2 and



GABRAG6, including a nonsynonymous variant in GABRA6. Additional associations
include an association with a composite measure of adiposity that encompasses degree
of adiposity and location of excess fat above or below the waist and TREK, a gene
responsible for trafficking the GABA 4 receptor to the cell membrane. Gene based tests
of rare variants yielded associations between central versus peripheral adiposity and
ACSLI, a gene involved in triglyceride biosynthesis. Further replication is required to
confirm these associations. While the importance of neuronal signaling pathways in
body fat distribution has long been known, many aspects of these pathways are poorly
understood. Better understanding of these pathways may identify potential

pharmaceutical targets.
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Chapter 1: Background and Significance

Epidemiology and Impact of Obesity

With obesity prevalence increasing at alarming rates, it is now more important
than ever to understand the risk factors and underlying biology of body fat mass and
distribution. Obesity is defined as having a body mass index (BMI) of at least 30
kg/m*(1).The prevalence of obesity has more than doubled between 1995 and 2012(1).
Hispanics, particularly in Texas, consistently have a higher prevalence of obesity than
the general United States population (Figure 1). The research presented here focuses on
identifying genetic factors contributing to obesity specifically in the Mexican-American

population of Starr County, Texas.
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Figure 1. Prevalence of obesity and overweight. The prevalence of BMI > 25kg/m” in

the United States and Texas split by ancestry(1).



While one could argue whether obesity itself is a disease, it is certainly a risk
factor for the development of many other diseases, including type 2 diabetes, heart
disease, cancer, stroke, osteoarthritis, and sleep apnea. A decrease in body fat, lowers an
individual’s risk of developing these comorbidities. These comorbidities contribute to
the considerable economic impact of obesity in the forms of increased medical costs, lost
productivity, and the diet and exercise industry. Individuals with elevated BMIs have
higher costs for medical care; the biggest absolute increases are attributable to
comorbidities of circulatory diseases (10.53% increase) including cardiovascular disease
and myeloproliferative diseases (10.67% increase) such as chronic myelogenous
leukemia and thrombocytosis in men and musculoskeletal conditions (3.46% increase)
and circulatory diseases (4.27% increase) in women(2). Someone with a BMI of 45 will
average more than double the medical costs of someone with a BMI of 19(2). In total the
excess medical spending attributable to obesity was $147 billion in 2008(3). Beyond
increased medical costs, employees with obesity are estimated to have a 22% increase in
missed work over their normal-weight counterparts(4). While employers have increased
costs due to obesity in the form of higher insurance premiums, lost labor, and decreased
productivity, individuals have increased spending as well, largely in the form of medical
expenditures and costs associated with attempts to lose weight. The weight loss industry
accounts for more than $60 billion spending annually; this spending includes gym
memberships, supplements, diet food, and weight loss plans(5).

Lifestyle intervention, diet, exercise, and behavior therapy have all been shown
to result in clinically significant weight loss in some people. In an 8-year behavioral

intervention, 26.9% of individuals had a net weight loss of at least 10% at the end of the



study(6). This weight loss alters risk for comorbidities in a disproportionate manner; for
example behavioral intervention aimed at reducing weight by 7%, also reduces risk of
developing type 2 diabetes by 58%(7). The success of these studies is contrary to what
was seen in early studies, where it was shown that nearly all weight was regained within
5 years(8), leading to a common perception that achieving long-term weight loss is near
impossible. However, population based studies of the NHANES 1999-2006 show that
17.3% of individuals reported long term weight loss, defined as a >10% weight loss
maintained for at least a year(9). In NHANES 1999-2002, 33.5% of overweight
individuals that had lost at least 10% of their maximum weight experienced weight
regain in the prior year(10).

The National Weight Control Registry was designed to look at the behaviors of
those that successfully maintained weight loss(11); this study found at 5 and 10 years of
follow up that 86.6% of participants maintained at least 10% weight loss(12). Those that
started with a bigger initial weight loss showed faster regain while those who had
maintained weight loss for more than 2 years at baseline experienced less regain(12).
Weight loss and maintenance, which leads to decreased risk of comorbidities, were once
perceived to be near impossible. Now it is recognized that while difficult, a subset of the
populations can achieve long-term weight loss through lifestyle changes.

For those who cannot achieve sufficient weight loss through lifestyle changes,
surgical interventions have become a viable option. Following weight-loss surgery, a
majority of patients with diabetes, hypertension, hyperlipidemia, or obstructive sleep
apnea had these comorbid condition(s) resolved(13, 14). Due to the overall impact on

health, insurance companies now offer coverage for weight-loss surgeries such as gastric



bypass and gastric banding; however, changes in requirements, such as surgery center
designation, may keep some from accessing this coverage(15). Different weight-loss
surgeries have different risks and benefits. While gastric bypass (laparoscopic Roux-en-
Y gastric bypass) yields higher excess weight loss than the gastric band, 69% versus
46%, gastric bypass comes with a higher risk of perioperative complications(16). The
adjustable gastric band is subject to long-term complications that may result in a second
operation due to band slippage, pouch dilation, or unsatisfactory weight loss(16). In
2013 approximately 179,000 bariatric surgeries were performed in the United States(17).
The rate has slowed considerably from the initial exponential growth seen in the early
2000s(15). The decline in surgeries in 2011-2013 seen in Figure 2 may be due to
different sources of data, but others have suggested the decline is due to combined

economic recession and increased surgery center regulation(15, 18).
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Figure 2. Incidence of Bariatric Surgery in the United States. Estimates from 1992-
2009 came from (18). Estimates from 2011-2014 came from (17). No estimates were
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Obesity Risk Factors

The body accumulates fat as a means of storing energy when more calories are
consumed than are expended. In his “thrifty gene” hypothesis, Neel proposed that
evolutionarily, this stored energy allows someone to survive when food resources are
scarce(19, 20). In developed societies, humans no longer have extended periods of food
scarcity. Furthermore, the typical Western diet now consists of processed foods that are
high in fat and sugar that are inexpensive and convenient. While diet is one part of the
energy balance, energy expenditure must also be considered. As computers, television
and video games have become ubiquitous across America, people are spending more
leisure time in a sedentary state. This, coupled with an increase in desk jobs, has led to a
significant decrease in total energy expenditure(19).

Even though most members of Western society are exposed to this “obesogenic”
environment, not everyone becomes obese(21). This difference may, in part, be due to
differences in diet and exercise. In large part, exercise habits and food preferences are
learned in childhood(22). Other factors affecting obesity risk are sex, age, smoking,
education, socioeconomic status, racial group, and family history(23).

The location of stored body fat is sexually dimorphic. Men have a greater
propensity to store excess body fat as visceral adipose tissue, while women are more apt
to store excess fat as subcutaneous adipose tissue, meaning overweight men have more
fat between their organs while overweight women carry fat just under the skin; this
sexual dimorphism increases with age(24). Visceral adipose tissue is thought to have a

larger effect on metabolic state and overall health(24).



Obesity prevalence increases with increasing age through the 50’s, and begins to
decline in the 60°s(23). The decline in later years may be due to a combination of a
survivor’s effect and weight loss due to serious health conditions. The prevalence of
obesity is lower for smokers (17.8%) than never smokers (20.9%) or former smokers
(23.9%)(23). Weight gain is associated with smoking cessation and the amount of
weight gained is correlated with cigarettes smoked per day(25).

Education, socioeconomic status, income, and ethnicity have complex combined
relationship with obesity. Obesity prevalence decreases with increasing level of
education(23). Lower income is associated with increased obesity prevalence(26).
African Americans have higher obesity rates than Hispanics which have higher rates
than Caucasians(26). Ancestry contributes to obesity risk through differences in culture
and genetics, but is confounded by disparities in income and education(26). Some of the
differences may stem from differences in food availability, neighborhood walkability,
and access to exercise facilities(26).

Family history encompasses two factors, the common environment shared by
people living together and genetics. Close relatives tend to have similar body shapes and
sizes. This is reflected in the correlation of BMIs between different relationships as
shown in Table 1. Twin studies yield higher heritability estimates (0.60-0.80) than
family studies (0.30-0.60)(27); while adoption studies yield estimates similar to family
studies in the absence of a common environment(28). Adoption studies, which look at
monozygotic twins adopted by different families at birth, show that in the absence of a
shared home environment, BMIs have a correlation of 0.66 to 0.70(29). 4 priori there

are many factors and pathways likely to be involved in the risk of obesity with each



subject to alteration by genetic variation. These include genes involved in basal
metabolic rate regulation, lipid metabolism, carbohydrate metabolism, and neurological
factors involved in feeding and exercise behaviors(30). Identification of these genes,
however, has proven to be challenging, however one example of a pathway that has

repeatedly been implicated in obesity is the leptin-melanocortin pathway.

Relationship Correlation
Monozygotic twins 0.74
Dizygotic twins 0.32
Full siblings 0.24
Parent-offspring 0.19
Spouses 0.12

Table 1. BMI correlation between relatives. Pooled estimates across studies come

from Maes et al. (27)

Underlying Signaling Pathways

While many mechanisms are plausible, most variants identified so far associated
with obesity are in genes relating to the leptin-melanocortin pathway (shown in Figure
3), which is involved in hunger and satiety. Leptin, a hormone secreted by adipose
tissue, travels through blood to the arcuate nucleus of the hypothalamus where it binds to
the leptin receptor (LepR) in two types of cells to decrease food intake through two
distinct pathways, the anorexigenic pathway and orexigenic pathway(31). In the
anorexigenic pathway, leptin binding to the leptin receptor induces transcription of
proopiomelanocortin (POMC), which is then cleaved into a-MSH and B-MSH by
prohormone convertase 1(PC1)(32). a-MSH and -MSH travel to the paraventricular
nucleus of the hypothalamus and signal through the melanocortin 4 (MC4R) and
melanocortin 3 (MC3R) receptors to inhibit food intake and decrease fat storage(32).

This is accomplished through unknown mechanisms that involve Single-minded



homolog 1 (Drosophila) (SIM1), nucleobindin 2 (NUCB2), brain derived neurotrophic
factor (BDNF) and Tyrosine receptor kinase B (TrkB) that is encoded by NTRK2(32). In
the orexigenic pathway, the binding of leptin to the leptin receptor inhibits agouti related
protein (AgRP) expression in the arcuate nucleus of the hypothalamus(32). AgRP acts as
an antagonist of a-MSH by binding MC3R and MC4R, inhibiting signaling of satiety
through these receptors(32). NPY is produced in the same neurons as AgRP(33). In
mice, the NPY is released in the paraventricular nucleus of hypothalamus and results in
increased production of corticotropin-releasing factor and subsequent activation of the
hypothalamic pituitary adrenal axis which controls cortisol levels and the “fight or flight
response” to stress. (34). NPY is down regulated with increased leptin levels(33).
Disruption of the leptin-melanocortin pathway can result in obesity, as demonstrated by
several monogenic obesity disorders where mutations in these pathway genes lead to
severe obesity. This pathway demonstrates the complex relationship between genes and
their gene products. The complexity and redundancy of pathways contributes to the
difficulty of identifying genes and variants that contribute to obesity but whose effects

may be masked by the complex relationships between gene products.
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Figure 3. Leptin- Melanocortin Pathway. Image adapted and expanded from Beckers,
S., D. Zegers, L. F. Van Gaal, and W. Van Hul. 2009. The role of the leptin-
melanocortin signalling pathway in the control of food intake. Critical reviews in
eukaryotic gene expression 19:267-287.(32). Abbreviations: ARC: Arcuate nucleus of
hypothalamus, LepR: leptin receptor, POMC: proopiomelanocortin, PC1: prohormone
convertase 1, AgRP: agouti related protein, NPY: neuropeptide Y, a-MSH: alpha
Melanocyte stimulating hormone, f-MSH: beta Melanocyte stimulating hormone, PVN:
paraventricular nucleus of hypothalamus, MC3R: melanocortin 3 receptor, MC4R:
melanocortin 4 receptor, NUCB2: nucleobindin 2, SIM1: involve Single-minded
homolog 1 (Drosophila), CRF: corticotropin-releasing factor, BDNF: brain derived
neurotrophic factor, TrkB: Tyrosine receptor kinase B, VMH: ventromedial nucleus of

hypothalamus.



Monogenic Disorders

In addition to common obesity, there are single gene disorders that cause obesity
or lipodystrophy, sometimes in the context of a more complex syndrome (Table 2).
Monogenic forms of obesity are typically characterized by being extreme and very early
onset. Many of the genes implicated in single gene disorders are also part of the leptin
melanocortin pathway and are characterized by hyperphagia. Mutations in MC4R result
in the most common form of monogenic obesity, occurring in up to 6% of individuals
with severe childhood obesity, meaning a BMI z-score > 3 standard deviations from the
age and sex specific mean (35, 36). Leptin (LEP) and leptin receptor (LEPR) mutations
are perhaps the best-recognized genes due to parabiosis experiments involving the first
murine obesity models. 0ob/ob (LEPR homolog) and db/db (LEP homolog) knock out
mice are phenotypically similar; the mice are hyperphagic, develop morbid obesity and
diabetes(37). When sewn together so as to share their circulatory systems with either a
wild-type or db/db mouse, an ob/ob mouse decreases food intake, lose weight, and have
decreased blood sugar levels; when paired with the db/db mouse, these effects are so
severe that the ob/ob mouse can die of starvation without intervention(37). In contrast,
db/db mice, paired with either wild-type or ob/ob mouse, continue to gain weight in the
form of adipose tissue while its partner starves to death(37). Similarly, humans with
mutations in both copies of LEP, develop severe obesity in early childhood characterized
by hyperphagia, but respond to treatment with leptin injections(38).

Lipodystrophy is class of metabolic disorders characterized by the loss of body
fat and sometimes localized accumulation of body fat. Both monogenic forms and

acquired forms (see Table 2) have been reported(39). Lipodystrophy patients have
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complications of insulin resistance, hepatic steatosis, and hypertriglyceridemia,
highlighting that adipose tissues is metabolically active(39).

The third class of monogenic obesity disorders is syndromic disease. These
diseases occur with an array of other traits specific to each disorder (see Table 2). Many
monogenic disorders include intellectual disability, hypogonadism, malformations of
organs, and bone deformities. For example Bardet-Beidel syndrome, which is a
ciliopathy characterized by renal abnormalities, retinal degeneration, polydactyly, central
obesity, and intellectual disability(40), is a genetically heterogeneous disease, with 19
different genes implicated thus far. Some of these genes form the BBSome, which is a
molecule involved in signaling receptor trafficking to the cilia(41). Wilms tumor,
aniridia, genitourinary anomalies, intellectual disability, and obesity (WARGO), is
caused by a deletion in 11p13; deletions that include genes WT'1, PAX6, and BDNF
include an obesity component of the disease(42). These are just two examples of the 35
syndromes that include obesity as a key feature. While monogenic obesity, syndromic
obesity, and genetic forms of lipodystrophy provided insight into the pathways
contributing to fat mass and distribution, these account for only small fraction of obesity
cases, but common variants in or near some of these genes have been implicated in

common obesity as discussed below.
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Table 2. Monogenic forms of obesity, lipodystrophy, and syndromic obesity.

monogenic disease characteristics implicated genes mode of references
inheritance
Monogenic obesity (isolated) hyperphagia, severe early onset obesity =~ BDNF, CRHRI, CRHR?2, varies (43)
LEP, LEPR, MCHRI,
MC3R, MC4R, MRAP?2,
NTRK2, PCSK1, POMC,
SIM1
Berardinelli-Seip congenital lipoatrophic diabetes, acanthosis nigricans, AGPAT2, BSCL2, CAV1, AR (39)
lipodystrophy large hands and feet, lipemia, PTRF
hepatosplenomegaly, insulin resistance
Familial partial partial lipodystrophy, insulin resistance CIDEC AR (44)
lipodystrophy (FPL)
Familial partial loss of subcutaneous fat; fat accumulation LMNA, PPARG, AKT?2, AD (39)
lipodystrophy (FPL) in face, insulin resistance PLINI
Autoinflammation, annular erythematous plaques, partial PSMBS AR (45, 46)
lipodystrophy, and lipodystrophy, immune dysregulation,
dermatosis syndrome recurrent fever, muscle weakness
Carbohydrate-deficient hypotonia, hyporeflexia, trunk ataxia, PMM?2 AD (47)
glycoprotein syndrome type growth retardation, lipodystrophy of the
la buttocks
Hutchinson-Gilford progeria short stature, low body weight, early hair LMNA AD, some AR (48)

loss, lipodystrophy, scleroderma, aged
facial features, decreased joint mobility
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monogenic disease characteristics implicated genes mode of references
inheritance
Mandibuloacral dysplasia growth retardation, craniofacial anomalies, LMNA AR (49)
(MAD), Type A mandibular hypoplasiam, lipodystrophy
with acral loss of fatty tissue
Mandibuloacral dysplasia small chin, nose, and mouth, thin facial ZMPSTE24 AR (50)
(MAD), Type B skin, skeletal anomalies, generalized
lipodystrophy,
Achondroplasia short-limb dwarfism, characteristic facies, FGFR3 AD (51)
obesity
AHO resistance to parathyroid hormone, GNAS Maternally (52)
(Pseudopseudohypoparathyr thyroid-stimulation hormone, and inherited defect
oidism) gonadotropins; short stature, obesity,
round facies, subcutancous ossifications,
brachydactyly, intellectual disability
Alstrom syndrome blindness, sensorineural hearing loss, ALMS]I AR (53)
childhood obesity, hyperinsulinemia, type
2 diabetes
Angelman syndrome with developmental delays, movement/balance UBE3A Maternally (54)
obesity disorder, frequent laugher/smiling, speech inherited defect
impairment, microcephaly, seizures,
Atypical progeroid syndrome lipodystrophy and progeroid syndrome LMNA AD (55)
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monogenic disease

characteristics implicated genes

mode of references
inheritance

Bardet-Biedl syndrome

Borjeson-Forssman-
Lehmann syndrome

Brachydactyly mental
retardation syndrome

Carney complex with
primary pigmented nodular
adrenocortical disease and
Cushing's syndrome
Carpenter Syndrome 1

Carpenter Syndrome 2

Choroideremia with deafness
and obesity

renal abnormalities, polydactyly, retinal ~ ARL6, BBIP1, BBSI,

degeneration, obesity BBS10, BBS12, BBS2, BBS4,
BBS5, BBS7, BBS9,
WDPCP, CCDC28B,
CEP290, IFT27, LZTFLI,
MKKS, MKS1, TMEMG67,
SDCCAGS, TRIM32, TTCS

severe mental defect, epilepsy, PHF6
hypogonadism, hypometabolism, obesity,
characteristic facies,

short stature, stocky build, intellectual GPR35,
disability, brachymetaphalangia, eczema,
obesity

tumors, myxomas in the heart, endocrine PRKARIA
tumors, Cushing's syndrome, weight gain

acrocephaly, peculiar facies, RAB23
brachydactylyl, congenital heart defects,
intellectual disability, hypogenitalism, and

obesity

craniosynostosis, polysyndactly, obesity, MEGFS§
umbilical hernia, cryptochidism,

congenital heart disease

CHM, DFN3

varies, mostly AR (56-60)

X-linked (61)
AD (62)
AD (63)
AR (64)
AR (65)
X-linked (66)
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monogenic disease characteristics implicated genes mode of references
inheritance
Cohen syndrome psychomotor retardation, clumsiness, VPS13B AR (67)
microcephaly, hypotonia and joint laxity,
progressive retinochoroidal dystrophy,
thick hair, short philtrum, characteristic
facies, obesity
Combined pituitary hormone panhypopituitary dwarfism, deficiency of PROPI AR (68)
deficiency pituitary hormones, increased weight,
Cortisone reductase ACTH-mediated adrenal H6PD complex (69)
deficiency hyperandrogenism, males: precocious
pseudopuberty; females: hirsutism,
oligomenorrhea, infertility, overweight
Fanconi-Bickel syndrome hepatorenal glycogen accumulation, SLC242 AR (70)
proximal renal tube dysfunction, impaired
glacatose and glucose utilization, facial
obesity, lipodystrophy
Fragile X syndrome with intellectual disability, obesity, anal atrasia FMRI X-linked (71)
Prader-Willi-like phenotype
Insulin resistance syndromes severe insulin resistance, acanthosis INSR AD, some AR (72)
nigricans, accelerated growth, obesity,
polycystic ovary syndrome
Isolated growth hormone dwarfism, delay bone maturation, GHI, GHRHR AR, some AD (73)

(GH) deficiency

micropenis, fasting hypoglycemia, truncal
obesity, young facial appearance, high
pitched voice
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monogenic disease characteristics implicated genes mode of references

inheritance
MEHMO syndrome intellectual disability, epileptic seizures, ~MEHMO X-linked (74)
hypogonadism and hypogenitalism,
microcephaly, and obesity
Mental retardation X-linked, intellectual disability, emotional MECP2 X-linked (75)
syndromic 16 disturbances, hypotonia, obesity, and
gynecomastia
Mental retardation X-linked, intellectual disability, obesity, MRXS7 X-linked (76)
syndromic 7 hypogonadism, and tapering fingers
Mental retardation, X-linked, intellectual disability, characteristic facial MRXSI1 X-linked (77)
syndromic 11 dysmorphic features, obesity, large testes
Multiple endocrine neoplasia, tumors of endocrine tissues, including MENI AD (78)
type 1 with Cushing's disease pituitary and adrenal tumors
Prader-Willi syndrome decreased fetal activity, intellectual GABRG3, IPW, MAGEL2,  Paternally (79)
disability, short stature, hypogonadotropic MKRN3, NDN, PWCRI, inherited defect
hypogonadism, small hands and feet, SNRPN
obesity
Prader-Willi-like syndrome hypotonia, progressive obesity, delayed — SIM1 AD (80)
(chromosome 6q) developmental milestones, small
extremities
Prader-Willi-like syndrome, hypogenitalism, obesity, intellectual PWLSX X-linked (81)
X-linked disability
Simpson-Golabi-Behmel 1  pre- and postnatal overgrowth, congenital GPC3, GPC4 X-linked (82, 83)

heart defects, coarse facies.
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monogenic disease characteristics implicated genes mode of references
inheritance
Simpson-Golabi-Behmel 2  developmental delay, macrocephaly, early OFDI X-linked (84)
death, intellectual disability, dysmorphic
facies, obesity
Thyroid hormone resistance Resistance to thyroid hormone, goiter, THRB AR (85)
syndrome short stature, obesity
Ulnar-Mammary (Schinzel) ulnar-ray defects, small penis, delayed TBX3 AD (86)
syndrome puberty, obesity, abnormal breast
development
WAGR syndrome with Wilms tumor, aniridia, genitourinary 11p13 deletion including AD 42)
obesity anomalies, intellectual disability, and PAX6, WT'1, BDNF
obesity
Wilson-Turner syndrome dysmorphic facial features, hypogonadism, HDACS X-linked (87)

short stature, truncal obesity, severe
intellectual disability

Table 2. Monogenic forms of obesity, lipodystrophy, and syndromic obesity.
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Genetics of Common Obesity

Investigations of monogenic and syndromic obesity and lipodystrophy have
identified several genes, including many from the leptin melanocortin pathway, capable
of causing obesity. These studies certainly demonstrate that genes cause obesity, but
carriers of these mutations represent only a small proportion of obese people. To identify
genes involved in the common forms of obesity in humans, over 500 candidate gene
studies, 95 genome-wide linkage studies, and 43 genome-wide association studies
(GWAS) with obesity-related traits have been performed(88). The results of these
studies have established associations with obesity-related traits on all 22 autosomes and
the X chromosome(88). The linkage studies, in particular, implicate broad regions of the
genome not specific variants and genes. Genome wide SNP arrays began to dominate the
field in 2005. The 43 genome wide association studies published to date on obesity and
adiposity related traits have identified 305 variants at 167 loci associated with an obesity
related trait at P < 5x10°® (Figure 4)(89-131). Key findings include associations with
variants in and near genes that are part of the leptin-melanocortin pathway, including
MC4R, BDNF, and PCSK1 as well as many other genes, such as LYPLALI, NEGRI, and
NRXN?3, that are also expressed in the brain and thought to be involved in hunger and
satiety pathways(21).

Two additional well-replicated loci are 70 and INSIG2. A signal in the
noncoding region of F'7O was initially attributed to the /7O gene, due to increased fat
mass in murine models in which increased F'7O expression was induced (132, 133).
Despite this, the BMI increasing variants have not been connected to changes in F70

expression or function. These variants are eQTLs for the neighboring gene, /RX3(134).
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Smemo et al. show that the BMI associated region of F'70O interacts with the promoter of
IRX3 altering the expression pattern(134). Further support for the role of /RX3 in body
fat mass comes from knock out murine models that demonstrate a 25-35% decrease in
body mass in comparison to wild type(134). For this locus the field has been able to
elucidate a mechanism, through the /RX3 gene, albeit the field was initially dominated
by FTO studies themselves. This is an exception, however, as generally linkage and
genome wide chip arrays leave us with broad regions of the genome associated with the

trait and no causal variant or gene.
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Figure 4. Obesity Loci Identified by GWAS. Loci identified as being associated with
obesity-related traits at p value< 1x10™® are indicated with blue triangles. Monogenic
adiposity loci are indicated by red triangles. Variants within 1 mega-base are represented
only once(135).While genome-wide chip data provide an agnostic look, the hypothesis
that coding variants are more likely to alter gene function justifies looking more closely
at coding variation. As the cost of sequencing has decreased, there has been a recent
influx of data in the form of whole genome sequencing, whole exome sequencing, and
an array targeting low frequency variation seen by exome sequencing data

(http://genome.sph.umich.edu/wiki/Exome Chip Design). To date no large-scale exome
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array or exome sequencing studies have been published for adiposity traits, although
these studies are currently underway.

With the increasing prevalence of obesity, it is important to understand the
genetic basis of disease. Each gene involved in obesity represents a potential mechanism
that could be exploited to treat obesity. Heritability estimates indicate there is a
substantial role for genetic variation, however currently identified genes and variants
explain less than 3% of the variance in BMI(130). Large-scale studies have investigated
associations of common variation and only the most basic measures of obesity, BMI and
WHR, in predominately European samples. To identify novel associations, the work
presented here utilizes additional adiposity measures, rare coding variants as well as
common variants in Hispanics from Starr County, Texas.

Starr County Health Studies

To investigate the role of genetic variation in the amount and distribution of body
fat, a sample of non-diabetic individuals from Starr County, Texas will be used. Starr
County, Texas lies along the Texas-Mexico border, approximately 100 miles inland from
the Gulf of Mexico. The population of Starr County is over 95% Hispanic(136).The
population is overwhelmingly poor, with over 40% of individuals living below the
poverty line; the median income between 2008 and 2012 being just $24,653(136). The
combination of homogenous low income and single ancestry composition makes this an
ideal population for genetic studies.

The contemporary Mexican-American population is the result of admixture of
Native Americans, Europeans and Africans. Ancestry was computed for genome-wide

array data using the 1000 Genomes reference populations using ADMIXTURE
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(http://www.genetics.ucla.edu/software/admixture/)(137, 138). On average in Starr
County, Mexican-Americans have 61% European Ancestry, 37% Native American
Ancestry, and 2% African Ancestry. This is similar to previous reports in this population
using microsatellite markers and blood groups(139, 140).

Epidemiological studies in Mexican-Americans in Starr County started in 1981.
These early studies looked at familial aggregation of diseases including type 2
diabetes(141), gallbladder disease(142), and hypertension(143). These studies showed an
exceptionally high prevalence of type 2 diabetes resulting in a long-term focus on
diabetes, its complications, risk factors, and interventions(144-147).

From 2002-2006 a group of 1,345 individuals were sampled from the population
to be representative of adults in Starr County not diagnosed with type 2 diabetes (148).
During this study, subjects underwent an oral glucose tolerance test, electrocardiogram,
anthropometrics measurement, blood pressure determination, and collection of blood
samples. All of these individuals were invited to take part in a second study occurring
from 2010-2013; 57% of individuals took part in this subsequent study. During the
second visit, most of the same measures as before were obtained as well as additional
measures including cardiovascular measures from an echocardiogram and an in-home
sleep study. The individuals participating in these two examinations form the sample for
study in this dissertation.

Because obesity is a major risk factor for developing type 2 diabetes, it has been
studied through the years in the Starr County Health Studies. One of the first genetic
studies of obesity in Starr County was an affected sib-pair study that looked for linkage

between the Leptin gene and obesity(149).While there was no evidence of linkage with
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obesity in this study, a later study which used families, did find linkage between Leptin
variation and waist to hip ratio (WHR)(30). This larger study also found evidence of
linkage between obesity and NPY, but no evidence of linkage for several other candidate
genes including LEPR, GLPIR, and UCP1(30).

More recently, association signals from large-scale genotyping studies have been
replicated in samples from Starr County. For example, Herbert et al. identified
1s7566605, a variant near INSIG2, associated with BMI in both children and adults(150).
Replication efforts, including data from Starr County did not find evidence of
association with this variant and an array of adiposity traits including obesity, BMI,
weight, waist circumference and WHR(151). The variability of replication of this variant
across studies has been the subject of much discussion. A meta-analysis looked at
sources of heterogeneity across studies(152). Heid et al. found evidence that the effect is
largest when comparing normal weight individuals to individuals with extreme obesity.

Here I will expand on the obesity related analyses in Starr County. First I will
investigate measures of obesity using multivariate techniques to capture overall
adiposity and distribution of fat. I will then carry these measures forward as outcome
variables for genetic analyses, using both genome-wide array and whole exome
sequencing data. In addition to standard single variant analyses, gene-based analyses that
aggregate signal across a gene, accounting for linkage across sites in the case of common
variants will be utilized. Finally I will investigate the array of variation in genes known

to cause monogenic obesity disorders.
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Chapter 2: Alternative obesity measures
INTRODUCTION

While obesity is defined as having a body mass index of at least 30 kg/m?, it is
actually excess adipose tissue that is associated with the risk of comorbidities. The ease
with which BMI can be calculated makes it an attractive measure; however, it essentially
is only weight adjusted for height and does not account for either the type of tissue or fat
distribution. Two individuals with the same BMI can have very different body
compositions. For example, athletes are often classified as overweight or obese despite
having low amounts of adipose tissue and increased muscle mass(153). In Starr County,
data show that individuals with the same BMI can have markedly different
distribution/disease profiles. Therefore, it seems prudent to examine alternative measures
of obesity and fat distribution that may more adequately reflects the underlying
biological processes. Measures that better reflect the underlying biological processes
may be more amenable to discover the genetic effects. In this chapter, alternative
composite measures of obesity are explored.

Percent body fat quantifies the proportion of adipose tissue in an individual’s
body. The gold standard for calculating body fat is through medical imaging such as
dual-energy X-ray absorptiometry (DEXA) or magnetic resonance imaging (MRI);
however, both of these involve expensive medical equipment, require specialized
training and expose subjects to radiation(24, 154). Bioelectrical impendence analysis is a
proxy for percent body fat. Bioelectrical impendence analysis is obtained sending a
small electrical current through the body and measuring resistance and reactance(155).

This can be done using small portable devices that require little training. Scales utilizing
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this technology can now be readily purchased for home use. Offsetting the advantages of
bioimpedance is the fact that it is sensitive to factors such as dehydration. Even so
estimates of percent body fat derived from bioimpedance have a correlation greater than
0.9 with measures from DEXA(155). As with BMI, quantifying the amount or percent of
adipose tissue does not specify where the adipose tissue is.

Adipose location and type are important considerations, because deposits in
different regions of the body have varying metabolic properties. For example,
subcutaneous adipose tissue is thought to have a lesser role in the risk of developing
comorbidities whereas excess visceral adipose tissue increases risk for an array of
metabolic disease such as cardiovascular disease and type 2 diabetes(24). To better
capture the distribution of body fat, measures such as circumferences and skin folds are
used. Waist circumference and waist to hip ratio reflect central adiposity, but they are
correlated with BMI(156). Adjusting for BMI has led to the successful identification loci
specific to central adiposity(107, 157). Mid upper arm circumference is a measure of
subcutaneous adipose tissue(158). Another measure of subcutaneous adipose tissue is
skin fold thickness at a variety of anatomical sites. Skin fold measures have poor
reproducibility and are more difficult to obtain in obese individuals(159).

BMI and other single measures of adiposity and adiposity distribution are limited
in their ability to capture the amount of fat and fat distribution simultaneously. The
confounding and correlation between these measures is likely to hinder the identification
of loci and variants. Previously, principal components analyses and factor analyses of
skinfold measures, percent body fat, body circumferences, BMI, and ratios between

some of these measures have identified factors that have an independent genetic basis
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and represent total obesity, subcutaneous fat, or fat distribution between extremities and
trunk (160-163).

While the Starr County data does not contain skinfolds, and thus cannot be
directly compared to any of these prior studies, the multiple circumferences, BMI, and
percent body fat allow the use of principal components to create composite measures of
obesity that capture both magnitude and distribution of adiposity.

METHODS

In the Starr County Health Studies, measurements of mid upper arm, hip, and
waist circumferences, height, weight and bioimpendance were assessed at two visits an
average of 8.5 years apart. Waist measurements were taken to the nearest 10" of a
centimeter (cm) while holding a tape measure horizontal to the ground at the umbilicus.
An observer verified the tape measure remained horizontal. Hip measurements were
taken at the widest circumference to the nearest 10™ of a cm. Arm circumference was
measured half way between the shoulder and elbow to the nearest 10™ of a cm. Height
was measured without shoes using a wall-mounted stadiometer to the nearest 10" of a
cm. Weight was measured to the nearest 10" of a kilogram using a balance beam scale.
These were used to calculate BMI. Weight at age 18 and weight at maximum were both
self reported, and measured height was used to calculate BMI. Bioimpedance was
measured using a bioimpedance device from RJL Systems (Clinton Township, NJ). Fat
free mass, and subsequently percent body fat, were then calculated using the equations
of Segal et al.(155). The average and standard error for each of these measurements at
each visit and the correlation between the two visits are presented in Table 3, excluding

individuals diagnosed with type 2 diabetes prior to the visit or without genetic data.
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Individuals that meet diagnostic criteria for type 2 diabetes at the study visit are retained
in analyses, because they have not been exposed to diabetes treatments that alter body
composition. On average, individuals gained 3 kg, 1.6 cm on the hips and 5.1 cm on the

waist between visits.

VISIT 1 VISIT2 correlation
Sample size 825 438 -
Newly diagnosed T2D 5.40% 9.50% -
Percent female 71% 76% -
Age (years) 39.6 (9.6) 48.5 (8.9) -
Weight (kg) 79.3 (18.5) 81.3 (18.1) 0.90
Height (cm) 161.6 (8.7) 160.3 (8.2) 0.98
BMI (kg/m?) 30.3 (6.3) 31.7 (6.6) 0.89
BMI at age 18 - 23.4 (4.9) -
BMI at maximum 35.1(7.7) -

Waist circumference (cm) 97.1 (15.0) 105.8 (15.5) 0.82
Hip circumference (cm) 109.2 (12.5) 112.1 (13.9) 0.87

WHR 0.89 (0.08) 0.91 (0.07) 0.72
Percent body fat 32.1(10) 34.8 (9.7) 0.86
Arm circumference (cm) 32.9 (4.6) 33.8(4.9) 0.80

Table 3. Characteristics of samples at each visit. Means and standard deviations are
given for each anthropometric measure at each of two study visits. The Pearson’s
correlation coefficients between measures from the two visits are given in the last

column.

Each measure of adiposity has its own strengths and weaknesses. To capture a
composite of these measures, I combined all the measures at each visit using principal
components analysis (PCA). Here, the correlation matrix was used since variables have
different scales. PCA transforms the original set of N measures into N uncorrelated
linear combinations with the first accounting for the largest proportion of variation and

the N™ accounts for the least variation. Each principal component is orthogonal

27



(uncorrelated) to each prior component. For each time point I utilized five measures:

BMLI, percent body fat, waist, hip, and arm circumferences.

RESULTS

The proportion of variance explained by each principal component is in Table 4.

The similarity between the principal components analysis for the two visits is striking.

For visit 1 and visit 2, the first principal component, which accounts for 82.3% and

82.6% of the variation, respectively, is strongly correlated with BMI (r* = -0.98 and -

0.97, respectively) as shown in Tables 5 and 6 and plotted in Appendix Figures 1 and 2.

The first principal component has similar loadings, the weight each variable has in the

component, for all five of the correlated obesity measures Tables 5 and 6.

proportion of variance

explained
VISIT 1 VISIT 2
PC1 0.823 0.826
PC2 0.092 0.089
PC3 0.050 0.047
PC4 0.025 0.026
PCS 0.010 0.012

Table 4. Proportion of variance explained by each principal component.

Comp.1 Comp.2 Comp.3 Comp .4 Comp.5
scaling | loading corr. |loading corr. |loading corr. |loading corr. |loading corr.
BMI 6.292 | -0.483 -0.980| 0.000 0.010 | 0.000 -0.007| 0.000 0.019 | 0.874 0.200
waist 15.016 | -0.440 -0.890 | 0.469 0.320 | -0.525 -0.260| 0.476 0.170 | -0.289 -0.065
hip 12.484 | -0.466 -0.950| 0.000 -0.030| -0.271 -0.140| -0.814 -0.290| -0.212 -0.048
PBF 0.100 | -0.405 -0.820| -0.822 -0.560| 0.000 0.014 | 0.327 0.120 | -0.230 -0.052
arm 4.641 | -0.437 -0.890| 0.320 0.220 | 0.806 0.400 | 0.000 0.009 | -0.236 -0.053

Table S. Principal component loadings and correlations for visit 1.
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Comp.1 Comp.2 Comp.3 Comp.4 Comp.5
scaling | loading corr. |loading corr. |loading corr. |loading corr. |loading corr.
BMI 6.500 | -0.480 -0.970| 0.000 -0.028 | 0.000 0.008 | -0.144 -0.052| 0.867 0.210
waist  14.348 | -0.440 -0.890 | -0.456 -0.300| 0.572 0.280 | 0.482 0.180 | -0.217 -0.049
hip 12.826 | -0.467 -0.950| 0.000 0.066 | 0.226 0.110 | -0.757 -0.280| -0.369 -0.096
PBF 0.097 | -0.408 -0.830| 0.809 0.540 | 0.000 -0.024| 0.403 0.150 | -0.134 -0.030
arm 4.659 | -0.439 -0.890| -0.355 -0.240| -0.786 -0.380| 0.105 0.380 | -0.215 -0.057

Table 6. Principal component loadings and correlations for visit 2.

The second principal component accounts for 9.2% and 8.9% of the variance for
visit 1 and visit 2 respectively; but unlike BMI is not strongly correlated with any one
trait. The loadings for principal component 2 (PC2) are zero for both BMI and hip
circumference. PC2 increases with increasing waist circumference, increasing arm
circumference and decreasing percent body fat, resulting in a separation between males
and females. The direction of the loadings is flipped for visit 2, but the magnitude is
similar. PC2, although uncorrelated with hip circumference, is more correlated with
waist to hip ratio than either waist circumference or arm circumference, as shown for
visit 1 in Figure 5. PC2 separates men with excess abdominal fat from women with
small waist to hip ratios. This indicates that PC2 appears to be capturing degree of
central adiposity.

PC3 captures 5% and 4.7% of the variation at visit 1 and visit 2, respectively.
PC3 increases with increasing arm circumference and decreases with both waist and hip
circumferences. Unlike PC2, PC3 is not sexually dimorphic. This separates
individuals that have large waist, hip, and arm circumferences from those with
large waist and hip circumferences, but average arm circumference. PC3 is strongly

correlated with the ratio of arm circumference to waist circumference (Figure 6).
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This indicates PC3 is capturing disproportionately central versus peripheral

adiposity.
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Figure S. Relationship between PC2 and PC3 with adiposity measures for visit 1.
The bottom half shows the scatter plot for each pair of traits, with PC2 in the bottom
row. The upper half shows the Pearson correlation coefficient for the two measures.

Histograms of the traits are displayed in the middle. Points are color coded by sex and
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obesity status. Obese males are dark blue; non-obese males are light blue; obese females

are red, non-obese females are pink.
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Figure 6. Correlation between PC3 and arm to waist ratio at visit 1.

DISCUSSION

Of the many measures of adiposity available, some are easier to obtain in the
field than others. With the gold standards being derived from imaging that is cost-
prohibitive, alternative measures are more accessible. By combining multiple measures
that require minimal equipment, I have created composite measures, PC2 and PC3. PC1
is strongly correlated with BMI. Due to the loss of clinical interpretability when using
the composite measure, BMI, not PC1, will be used as an outcome for genetic analyses.
For PCA, BMI was not split into weight and height, because BMI represents a non-linear
combination of the two traits. When including weight and height separately, the second
principal captured height, instead of adiposity.

PC2, like waist to hip ratio, exhibits marked sexual dimorphism. There are two
sources of sexual dimorphism in these adiposity traits. The first is that there are real

differences in where men and women store excess fat, as discussed in chapter 1. The
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second comes from the equations used to calculate percent body fat, with four specific
equations for males and females with and without obesity(155). To account for this, sex
will be used as a covariate in all genetic analyses.

PC2 polarized men with excessive abdominal fat from women with extremely
low waist to hip ratios; this can be thought of as a measure of central adiposity. PC3
separates those with excessive adiposity all over from those with high central adiposity
and average arm circumferences and can be thought of as a measure of central versus
peripheral adiposity. Similarly Comuzzie ef al. found that in principal components
analyses using skinfolds the first PC represents overall magnitude of skin folds, the
second upper vs. lower subcutaneous adiposity, and the third central versus peripheral
subcutaneous adiposity(163). Livshits ef al. ’s factor analysis of BMI, body fat, skinfolds,
and circumferences resulted in four primary factors with factor 1 representing the skin
folds, factor 2 representing total fat and BMI, factor 3 representing central adiposity
distribution and factor 4 representing the subcutaneous fat on the trunk versus
extremities(160). PC2 here is analogous to Comuzzie ef al.’s PC 2 and Livshits ef al.’s
Factor 3, while PC3 here is analogous to Comuzzie et al.’s PC 3 and Livshits ez al.’s
Factor 4(160, 163). Both of these studies looked at the relationship between these traits
across family members and found there is a significant genetic component(160, 163)

By analyzing these composite measures, which I refer to as PC2 and PC3
throughout, in addition to standard measures of adiposity I aim to identify loci that are

involved in body fat distribution and overall adiposity.
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Chapter 3: Genome wide SNP analysis
INTRODUCTION

As previously discussed in chapter 1, obesity related traits have a high
heritability. To better understand the genetic basis of obesity related traits at least 41
genome-wide association studies have been completed. Traditionally, these studies have
looked at the evidence that each individual variant is associated with obesity, BMI, waist
circumference, or waist to hip ratio. With time the density of variants has increased.
Early studies genotyped a mere 100,000 SNPs; today it is common to have over 10
million variants after imputation, as we do here.

While many associations have already been successfully identified, only 2.7% of
the variation in BMI is explained(130). Factors such as different allele and haplotype
frequencies in different populations, interaction with the environment, and distribution
of the trait can give rise to different association signals. Utilizing an array of adiposity
measures increases the power of this data set. Two multi-variate approaches will be used
to leverage this data set. First, the composite measures of adiposity introduced in chapter
2 will be utilized. Second, by meta-analyzing association results for array of adiposity
traits while correcting for the correlation between the traits, we will be able to detect
variants that have a pleiotropic effect. Further, beyond testing for association with each
variant, we also test for a cumulative association across genes using versatile gene-based
association study (VEGAS) (164). By utilizing VEGAS, we will be able to identify
genes that have multiple variants associated with an outcome at levels lower than single

variant significance thresholds.
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METHODS

Genotyping: Genomic DNA isolated from whole blood from 1980 unique
individuals form Starr County was genotyped on the Affymetrix Genome-Wide Human
SNP Array 6.0 at the Center for Inherited Disease Research (CIDR). Genotypes were
called with two algorithms, Birdseed v2(165) and corrected robust linear model with
maximum likelihood classification (CRLMM)(166). Only calls that matched across the
two algorithms were kept(167).

Sample subset: While samples were selected to be unrelated at close level, pair-

wise identity-by-decent (IBD) estimates were calculated in PLINK
(http://pngu.mgh.harvard.edu/~purcell/plink/) and identified numerous related
individuals(168). One individual from each related pair with an IBD>0.28 was removed.
Individuals with type 2 diabetes were preferentially kept over controls. This unrelated
subset was carried forward for additional genotyping, imputation and sequencing. For
the sake of comparability across genetic datasets this unrelated subset has been used

throughout.

Imputation to 1000 Genomes: To expand the number of loci we have genetic
information on, we imputed our hard calls out to the 1000 Genomes haplotypes-- Phase
1 integrated variant set March 2012 release(137). Additional QC of genotyped data,
including tests of Hardy-Weinberg disequilibrium and removal of ambiguous (A/T and
G/C) variants were applied prior to imputation. This yielded a set of 643,446 scaffold
variants. The Starr County Affymetrix genotypes were first phased using
SHAPEIT(169), then imputed in 1 mega base sections with a 500 kilobase buffer using

IMPUTE?2 as part of the T2D-GENES project(170, 171).
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Trait transformations: Within the unrelated subset of data, analyses were limited

to individuals that were not diagnosed with type 2 diabetes prior to the time of the visit.
This is due to the effects of many diabetes treatments, both medications and
recommended changes in lifestyle, on weight and body fat. Residuals were calculated for
each trait (BMI, WHR, waist circumference, hip circumference, arm circumference,
percent body fat, and two composite measures of obesity, PC2 and PC3, at the two visits,
and BMI at age 18 and maximum BMI) after adjusting for age at time of measurement
and sex. For WHR, transformations were performed separately in males and females and
with and without adjusting for BMI, resulting in a total of 28 outcomes. The residuals
were rank-normalized to meet the assumption of normality, which is particularly
important for low frequency and rare variant association tests. To obtain biologically
meaningful effect sizes, analyses of the untransformed residuals were performed in
parallel.

Population structure: To account for population structure, genetic principal

components were calculated using a set of variants directly genotyped that were not in
linkage disequilibrium with each other. The principal components were calculated with

in the unrelated dataset using EIGENSTRAT(172).

Single variant analysis: Association of variants with phenotype residuals were
analyzed using a linear regression model, which accounts for uncertainty in genotype
imputation, implemented in SNPTEST v2.5
(https://mathgen.stats.ox.ac.uk/genetics_software/snptest/snptest.html) (173). To account
for population structure, principal components were included as covariates in the model.

Analyses were restricted to variants with an imputation information score of at least 0.7
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and a minor allele count greater than five due to instability in models for very rare
variants. Genome-wide significance was defined as P < 5 x 10, which corrects for the
approximately one million independent genome wide tests(174). Lowering an order of
magnitude to P < 5 x 107 was used as criteria for genome-wide suggestive associations.

Multi-trait analysis To capture variants’ effects across the spectrum of adiposity

traits, t-test statistics were meta-analyzed across all the traits correcting for the
correlation between the test statistics using the software CPASSOC v.2(175, 176).

Gene-based analysis: Versatile Gene-based Association Study (VEGAS) was

used to assess the association of variation across genes with adiposity traits(164).
VEGAS, as implemented in FAST (https://bitbucket.org/baderlab/fast/wiki/Home),
accounts for linkage between variants within each gene by first calculating the pairwise
LD correlation matrix, then simulating multivariate normal vectors and calculating the
simulated test statistic(177). Genes were defined as 20 kilobases in each direction from
start and stop positions in NCBI build 37.3. Variants in the physical region with a minor
allele frequency (MAF) > 0.01 and imputation info > 0.7 were included in the combined
test. Additional gene-based tests including annotation information are utilized with the
exome sequencing data in chapter 4.

RESULTS

Single Variant Associations: The single variant test statistics were well

calibrated, after quality control measures of imputation information > 0.7 and minor
allele count (MAC) > 5 were implemented. Quantile quantile (QQ) and Manhattan plots
for the 24 traditional outcomes are in Figures 7 and 8, respectively. The genomic

inflation factors (1), which measures how well the p-values follow the expected
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distribution under the null hypothesis of no association, range from 0.984 to 1.01,
indicating that there is no systematic inflation of the test statistic and any population
structure is adequately controlled for. Due to low sample size, the tendency towards
deflated QQ plots, meaning there is less association than should be observed by chance
alone, is expected.

Variants that are significantly (P <5 x 10™) or suggestively (P <5 x 107)
associated with any of these 24 traditional obesity related analyses are in Table 7. A total
of 5 significant associations at 2 loci were observed. Significant results include an
association with low frequency variants in and near gamma-aminobutyric acid (GABA)
A receptor, beta 2 (GABRB?2) and decreased WHR at the second visit (P = 1.66 x 10'9, N
=434, 3 (SE)=-0.14 (0.02), MAF= 0.01, info=0.71). This association persists after
adjusting for BMI. An association with increased waist circumference at the second visit
and two rare variants in complete linkage disequilibrium (LD) upstream of SHZ domain
containing 4A (SH2D4A) (index SNP 15180998363, P=1.25 x 10® N =497, B (SE) =
42 (6.1), MAF=0.01, info=0.75).

There are also 56 suggestive association signals at 20 additional loci. A few
highlights from biologically interesting genes including /ipin! (LPIN1) and percent body
fat at visit 1, neuropeptide Y (NPY) with BMI at visit 1, polycystic kidney and hepatic
disease 1 (PKHD1) and neural precursor cell expressed, developmentally down-
regulated 4-like E3 ubiquitin ligase (NEDD4L) with WHR at visit 1, SH3 and multiple
ankyrin repeat domains2 (SHANK?2) with maximum BMI, MACRO domain containing 2
(MACROD?2) with arm circumference. The betas are directionally consistent across the

two visits for all traits.
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Figure 7. QQ plots for single variant association tests with imputed data.

38



percent body fat visit 1 percent body fat visit 2

N N
o o

Observed
0 2 4 6

Observed
0 2 4 6

)

0 2 4 6 8 2 4 6 8

waist visit 1 waist visit 2

o~ o~
o o
© ) ©

Observed
o 2 4 6

Observed
o 2 4 6

o I8

2 4 6 8 0 2 4 6 8
Expected Expected
Expected distribution: chi-squared (2 df) Expected distribution: chi-squared (2 df)

WHR females visit 1 WHR females visit 2

& &
2 2
R R
- -
o © o ©
2 2
o o
- -
N N
. ol
[ 2 4 6 8 [ 2 4 6 8
Expected distribution: chi-squared (2 df) Expected distribution: chi-squared (2 df)
WHR males visit 1 WHR males visit 2
o o
=3 =3

Observed
o 2 4 6

Observed
o 2 4 6

0 2 4 6 8 0 2 4 6 8
Expected Expected
Expected distribution: chi-squared (2 df) Expected distribution: chi-squared (2 df)

Figure 7. QQ plots for single variant association tests with imputed data.

39



WHR visit 1 WHR visit 2

o o
o o
© ©
o | o
2 2
o © o ©
2 2
2 2
[e] [e]
< <
o o
o o
0 2 4 6 8 0 2 4 6 8
Expected Expected
Expected distribution: chi-squared (2 df) Expected distribution: chi-squared (2 df)

WHR adjusted for BMI WHR adjusted for BMI
females visit 1 females visit 2

o o
=) o
@ ) @
° °
° o
2 2
s o© g ©
2 2
o (e}
- -
o o
o o
0 2 4 6 8 0 2 4 6 8
Expected Expected
Expected distribution: chi-squared (2 df) Expected distribution: chi-squared (2 df)

WHR adjusted for BMI WHR adjusted for BMI
males visit 1 males visit 2

o o

© )
] o
® 3
2 2
o © o ©
1] @ -
2 8 -
[e] o

< <

o o«

o o

0 2 4 6 8 0 2 4 6 8
Expected Expected
Expected distribution: chi-squared (2 df) Expected distribution: chi-squared (2 df)

WHR adjusted for BMI WHR adjusted for BMI
visit 1 visit 2

o o
e e
@ @
o °
°
g e
©
2 ° 2
(o) o
<« -
o o
o o
0 2 4 6 8 0 2 4 6 8
d Expected
Expected distribution: chi-squared (2 df) Expected distribution: chi-squared (2 df)

Figure 7. QQ plots for single variant association tests with imputed data.

40



arm circumference visit 1 arm circumference visit 2

o o
3 3
g" g "
: :
N N
. .
1 2 3 4 5 6 7 8 9 10 11 12 13 15 17 19 21 1 2 3 4 5 6 7 8 9 10 11 12 18 15 17 19 21
Chromosome Chromosome
BMI visit 1 .
BMI visit 2
© ©
.
© ©
3 3
g" g~
! T
~ o
© =]
1 2 3 4 5 6 7 8 9 10 M 1213 15 17 1921 1 2 3 4 5 6 7 8 9 10 11 12 13 15 17 19 21
Chromosome Chromosome
BMI at maximum
BMI at age 18
R o
R o
3 3
g ;
. N
. -
1 2 3 4 5 6 7 8 9 10 11 12 13 15 17 19 21 1 2 3 4 5 6 7 8 9 10 11 1213 15 17 192
Chromosome Chromosome
hip circumference visit 1 hip circumference visit 2
o o
.
.
© . | : R 4 R . °
.
E e ) ‘. . . ' E
g - g "
‘ ‘
N N
. .
1 2 3 4 5 6 7 8 9 10 11 12 13 15 17 19 21 1 2 3 4 5 6 7 8 9 10 11 12 13 15 17 19 21
Chromosome Chromosome

Figure 8 Single variant Manhattan plots from genome-wide imputed data

41



percent body fat visit 1 percent body fat visit 2

° ©
© T ° ... ' 3 8. . ©
3 3
£ R
J [
L o~
e (=}
1 2 3 4 5 6 7 8 9 10 11 12 13 15 17 19 21 1 2 3 4 5 6 7 8 9 10 11 12 13 15 17 19 21
Chromosome
waist circumference visit 1
“ -
. o
3 3
N R
¥ §
N o
- -
1 2 3 4 5 6 7 8 9 10 11 12 13 15 17 19 21 1 2 3 4 5 6 7 8 9 10 11 12 13 15 17 19 21
Chromosome Chromosome
WHR females visit 1 WHR females visit 2
w -
. o
3 3
2 EgN
£ g
N o
. -
1 2 3 4 5 6 7 8 9 10 11 12 13 15 17 19 21 1 2 3 4 5 6 7 8 9 10 1 12 13 15 17 19 21
Chromosome Chromosome
WHR males visit1 WHR males visit 2
N -
. -
3 3
E, - _? -«
‘
N o
. .
1 2 3 4 5 6 7 8 9 10 11 12 13 15 17 19 21 1 2 3 4 5 6 7 8 9 10 11 12 13 15 17 19 21
Chromosome Chromosome

Figure 8 Single variant Manhattan plots from genome-wide imputed data

42



WHR visit 1 WHR visit 2

° 1 2 s 4 s . 7 N o 10 11 12 18 8 17 19 21 1 2 3 4 5 6 7 8 9 10 11 12 13 15 17 19 21

Chromosome Chromosome

WHR adjusted for BMI females visit 1 WHR adjusted for BMI females visit 2

1 2 8 4 5 6 7 8 910 11 12 13 15 17 19 21 1 2 3 4 5 6 7 8 9 10 11 12 13 15 17 19 21
Chromosome Chromosome

WHR adjusted for BMI males visit 1 WHR adjusted for BMI males visit 2

1 2 3 4 5 6 7 8 9 10 11 12 13 15 17 19 21 1 2 3 4 5 6 7 8 9 10 11 12 13 15 17 19 21
Chromosome Chromosome

WHR adjusted for BMI visit 1 WHR adjusted for BMI visit 2
P g -

1 2 3 4 5 6 7 8 9 10 11 12 13 15 17 19 21
1 2 3 4 5 6 7 8 9 10 11 12 13 15 17 19 21

Chromosome
Chromosome

Figure 8 Single variant Manhattan plots from genome-wide imputed data

43



chr  position Variant gene ref alt Trait Visit | B (SE) info EAC N MAF
1 202021786 1574862838 ELF3(dist=35471), T G WHRadjBMI vl [1.10x 107 -0.036(0.0073) 0.73 84 818 0.051
GPR37LI(dist=70243) v2 | 0.0039 -0.029(0.0098) 0.72 50 434  0.057

2 11827803 rs191122460 LPINI

2 11883170 rs112863316 LPINI

C

T

A percent body
fat

C percent body
fat

vl
v2

vl
v2

2.80 x 1077
0.21

1.80 x 1077
0.31

0.086 (0.019)
0.042 (0.027)

0.086 (0.019)
0.038 (0.026)

093 20 824
099 10 410

0.012
0.012

091 21 824
0.84 11 410

0.013
0.014

2 34721460 rs7557071 LINCO01317(dist=198647),

LINC01320(dist=181164)

2 34725422 1513414227 LINCO01317(dist=202609),

LINC01320(dist=177202)

A

G

C hips

vl
v2

vl
v2

0.015
1.20 x 107

0.011
1.70 x 107

2 (0.82)
5.3 (1.1)

2.1(0.81)
5.2(1)

0.75
0.77

1271 821
763 496

0.23
0.23

0.76
0.77

1263 821
757 496

0.23
0.24

2 203424027 1575023458 BMPR2

3 132415424 1576177059 NPHP3-ACADI1

C WHR

C WHR

vl
v2

vl
v2

2.90 x 10”7
0.0015

1.90 x 1077
0.014

-0.02 (0.0037)
-0.017 (0.0051)

-0.036 (0.007)
-0.022 (0.0083)

0.73
0.69

1031 818
554 434

0.37
0.36

0.88 99 818
0.89 61 434

0.06
0.07
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chr  position Variant gene ref alt Trait Visit | B (SE) info EAC N MAF
4 5844364 1s34613066 CRMP1 C T WHR females vl 0.2 0.014 (0.012) 0.8 42 579  0.036
v2 [1.90x 107 0.069 (0.015) 0.76 24 330 0.036

4 59573143 1s142866966 LOC101928851(dist=1240991), A G

NONE(dist=NONE)

vl
v2

arm

5 160597595 1113244407 G WHR females vl

v2

LOC285629(dist=231962), T
GABRB2(dist=117841)

5 160597595 rs113244407 LOC285629(dist=231962), T

GABRB2(dist=117841)

G WHR adj BMI vl
v2

5 160689360 1517456567 LOC285629(dist=323727), G

GABRB2(dist=26076)

A WHR females vl

v2

8.20 x 10°®
4.00 x 107

0.45
7.60 x 10°®

0.57
2.30 x 107

0.49
2.70 x 107

0.71
0.71

48
34

824
497

5.2 (0.84)
4.8 (1)

0.89
0.84

18
10

579
330

-0.0038 (0.016)
-0.12 (0.021)

-0.0018 (0.012)
-0.098 (0.018)

0.9
0.85

22
12

818
434

0.85
0.82

19
10

579
330

-0.0031 (0.016)
-0.11 (0.021)

0.029
0.034

0.015
0.015

0.013
0.013

0.016
0.015

5 160831588 rs111330620 GABRB2 A G WHR vl

v2

5 160880879 rs150769823 GABRB2 C T WHR adjBMI vl

v2

0.29
3.50 x 107

0.3
7.80 x 10

0.83
0.74

28
13

818
434

-0.013 (0.013)
-0.11 (0.02)

0.91
0.71

19
10

818
434

-0.015 (0.013)
-0.14 (0.022)

0.017
0.015

0.011
0.012
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chr  position Variant gene ref alt Trait Visit | B (SE) info EAC N MAF
6 80291793 rs143783440 LCA5(dist=44646), G A  BMIatl8 vl [2.60x107  -1.4(0.32) 0.85 362 825 0.22
SH3BGRL2(dist=49207) V2

6 163490679  chr6:163490679:D PACRG

8 19170363 rs180998363 SH2D44

2.70 x 107 0.016 (0.0033)

0.013  0.01(0.0042)

0.0099
1.20 x 108

14 (3.8)
42 (6.1)

0.95
0.94

756 818
395 434

0.84 19
0.75 8

822

0.011
497  0.0085

0.46
0.45

11 71042064 1571473821 SHANK2(dist=106222),

FLJ42102(dist=74728)

11 74066524 1561902400 PGM2L1

G

A BMlatmax vl
v2

A WHR vl
v2

1.70 x 107 -10 (2.4)

0.021  0.0076 (0.0035)
3.20 % 107 0.022 (0.0046)

0.99 10

0.79 785 818
0.76 413 434

809  0.0062

0.48
0.48

12 127088883 rs1541486 LOC100128554(dist=131552),

LOC100996671(dist=48609)

12 127088883 rs1541486 LOC100128554(dist=131552),

LOC100996671(dist=48609)

C

C

T WHR vl
v2

T WHR adj BMI vl
females V2

0.032  0.0077 (0.0037)
2.10 x 107 0.024 (0.0048)

0.0082  0.01 (0.0042)
3.40 x 107 0.027 (0.0056)

0.85 493 818
0.86 256 434

0.86
0.85

357 579
195 330

0.3
0.3

0.31
0.3
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chr  position Variant gene ref alt Trait Visit P B (SE) info EAC N MAF
12 127092972 154765418 LOCI00128554(dist=135641), T G WHR vl | 0.1  0.0054 (0.0035) 097 511 818 03I
LOC100996671(dist=44520) v2 [4.80 x 107 0.021 (0.0045) 0.98 263 434 0.3

12 127093438  chr12:127093438  LOCI100128554(dist=136107),  C T WHR vl | 0078  0.0059(0.0034) 1 493 818 03
LOC100996671(dist=44054) v2 [3.60x 107 0.021(0.0044) 1 254 434 029

12 127094364 chr12:127094364:D LOCI100128554(dist=137033), CTT  C WHR vl | 0.19  0.0046 (0.0037) 1 368 818 023
LOC100996671(dist=43128) v2 [3.80x 107 0.023(0.0048) 1 193 434 022

12 127094542 rs11058745  LOCI00128554(dist=137211), T  C WHR vl | 0077  0.006(0.0035) 098 502 818  0.31
LOC100996671(dist=42950) v2 230 x 107 0.022(0.0044) 099 259 434 0.3

12 127094542 rs11058745  LOCI00128554(dist=137211), T C WHRadjBMI vl | 0.059  0.0056 (0.0031) 0.97 502 818 0.1
LOC100996671(dist=42950) v2 470 x 107 0.02(0.0042) 098 259 434 0.3

12 127094630 rs11058746  LOCI00128554(dist=137299), T G  WHR vl | 0073  0.006(0.0034) 099 492 818 03
LOC100996671(dist=42862) v2 [4.10x 107 0.021 (0.0044) 0.99 254 434 029

12 127094761 rs11058747  LOCI00128554(dist=137430), A  C WHR vl | 0074  0.006(0.0035) 0.99 499 818 0.3
LOC100996671(dist=42731) v2 [2.40 x 107 0.022 (0.0044) 099 258 434 0.3

12 127094761 rs11058747  LOCI00128554(dist=137430), =~ A C WHRadjBMI vl | 005  0.0057 (0.0031) 098 499 818 031
LOC100996671(dist=42731) v2 490 x 107 0.02(0.0042) 099 258 434 0.3

12 127094795 rs11058748  LOCI00128554(dist=137464), A G  WHR vl | 0.19  0.0045(0.0037) 1 368 818 0.2
LOC100996671(dist=42697) v2 [3.70x 107 0.024(0.0048) 1 193 434 022

12 127094931 1s79856323  LOCI00128554(dist=137600), ~ C A  WHR vl | 0.9 00046 (0.0037) 1 368 818 0.3
LOC100996671(dist=42561) v2 [3.70 x 107 0.023(0.0048) 1 193 434 022

12 127095200  chr12:127095200 LOCI00128554(dist=137869), = G A  WHR vl | 019  0.0045(0.0037) 1 368 818  0.22
LOC100996671(dist=42292) v2 [3.70x 107 0.023(0.0048) 1 193 434 022

12 127096227 rs11058749  LOCI00128554(dist=138896), ~C G  WHR vl | 0.9  0.0046 (0.0037) 099 367 818  0.22
LOC100996671(dist=41265) v2 [3.50 x 107 0.024 (0.0049) 099 192 434 022

12 127096299 rs10847184  LOCI00128554(dist=138968), A T WHR vl | 0.19  0.0046 (0.0037) 0.99 367 818 0.2
LOC100996671(dist=41193) v2 [3.50 x 107 0.024 (0.0049) 0.99 192 434 0.2

14 57116309 15142932442 TMEM260 cC G hip vl [1.60x 107 -12(2.6) 0.78 27 81 0017
v2 | 0.0024 -9 (3.7) 078 14 496 0.014
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chr  position Variant gene alt Trait Visit P B (SE) info EAC N MAF

14 97241615 rs117881117 PAPOLA(dist=208162), T BMlatmax vl 2.30x107  -11(2.8) 082 8 809 0.0049
VRK1(dist=22069) v

18 55589140 1s9948233 ATP8BI(dist=118813), C WHR females vl [2.10x 107 -0.026(0.005) 09 266 579 023

NEDD4L(dist=122470) v2 | 0.037  -0.011(0.0056) 094 164 330  0.25

18 55601636 154941202 ATP8BI(dist=131309), C WHR females vl [4.40 x 107 -0.023 (0.0046) 0.96 306 579  0.26

NEDD4L(dist=109974) v2 | 03 -0.0059(0.0054) 0.95 175 330 0.7

20 15619338  chr20:15619338 MACROD2 C arm vl [1.70x 107 1.6 (0.31) 1 267 824 016

v2 | 0.089 0.76 (0.41) 1 155 497  0.16

22 38158273 rs73168260 TRIOBP G WHRadjBMI vl | 0012  -0.012(0.005) 098 95 239 0.2

males v2 [4.20x 107 -0.04 (0.0081) 0.95 44 104 0.1

Table 7. Single Variant results for imputed data. All significant and suggestive single variant associations signals are shown in order of

physical position. Associations are shown for both visits. The betas are all directionally consistent across visits.
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Composite Measures of Adiposity: In addition to the analysis of traditional

measures of obesity, associations with the composite measures of obesity, PC2 capturing
central adiposity above or below the waist, and PC3, which captures truncal versus
peripheral adiposity, were also analyzed. QQ and Manhattan plots are in Figures 9 and
10; the top results are in Table 8. Multiple variants on chromosome 16 are genome-wide
significantly associated with PC2 at the second (index SNP rs2244324, P =2.81 % 10'8,
N =408, B (SE)=-0.17 (0.03), MAF= 0.30, info=0.98). There is also a suggestive
association between PC3 at visit 2 and a variant in Down syndrome cell adhesion

molecule (DSCAM). These were the only significant or suggestive results.
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Figure 9. QQ plots for single variant association tests with composite measures of

adiposity.
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Figure 10. Manhattan plots for single variant association tests with composite

measures of adiposity.
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chr  position Variant Trait

gene ref alt

16 73832185 rs410109 LINCO01568(dist=376890), G A

LOC101928035(dist=394106)

16 73832579 15427478 LINCO01568(dist=377284), C T

LOC101928035(dist=393712)

16 73836905 1559844697 LINCO01568(dist=381610), G T

LOC101928035(dist=389386)

16 73847624 1s2244324 LINCO01568(dist=392329), T A

LOC101928035(dist=378667)

Visit| P B (SE)
vl 0.69 -0.0082 (0.02)
v2 [1.80 x 107 -0.16 (0.03)

vl 0.59
v2 |4.40 x 107

-0.011 (0.02)
-0.15 (0.03)

vl 1
v2 [3.10x 10

-0.18 (0.031)

vl 0.76
v2 [2.80 x 10°®

0.0073 (0.02)
-0.17 (0.03)

-0.00015 (0.021) 0.99 403 816

info EAC N MAF

1 474 816  0.29
0.99 247 408 0.3

1 469 816  0.29
0.99 244 408 0.3

0.25
0.26

098 211 408

098 485 816 0.3
0.98 246 408 0.3

Table 8. Single variant association tests with composite measures of adiposity.
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Multi-trait Analysis: Using the composite measures of obesity is useful for

capturing adiposity distribution. To capture variants effects across the spectrum of
adiposity traits, t-test statistics were meta-analyzed across all traditional measures of
obesity at both time points while correcting for the correlation between the test statistics
using the software CPASSOC(175, 176). The resulting QQ and Manhattan plots are in
Figures 11 and 12; the QQ plots show a minimal inflation in the combined test statistic.
While no variant reached genome-wide significance, there are 9 variants in 4 loci that
are genome-wide suggestive which are shown in Table 9. These consist of low-
frequency variants on chromosome 4, in the gene sema domain, immunoglobulin
domain (lg), short basic domain, secreted, (semaphorin) 3C (SEMA3C) and in the gene
early B-cell factor 4 (EBF4), and a common variant between the genes growth arrest-
specific 7 (GAS7) and myosin, heavy chain 13, skeletal muscle (MYH13). The
association between these variants and traditional measures of obesity are all sub-
significant. The most convincing of these signals is the variant between GAS7 and

MYH13, which is nominally significant (p < 0.05) in 7 of the 16 traits.

Multi-trait Analysis

Obsarved
L
\i

Expected

Figure 11 QQ plot of single variant multi-trait analysis.
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Figure 12. Manhattan plot of single variant multi-trait analysis.

chrom position Variant Gene ref alt P-value MAF
4 182524751 chr4:182524751:D LINC00290(dist=444449), TA T  4.55x107 0.0098
LOC90768(dist=535062)
7 80503452 rs58283863 SEMA3C A G 329x107  0.0049
17 10105523 rs77233190 GAS7(dist=3655), A G 342x107 0.2488
MYH13(dist=98660)
20 2688091 rs79712868 EBF4 C T 6.91 x10®  0.0165
20 2691964 rs8121831 EBF4 A G 1.17x 107 0.0170
20 2696131 rs80151839 EBF4 G A 1.18 x 107 0.0170
20 2699607 rs80023036 EBF4 A G 1.37x 107 0.0173
20 2705316 rs79049619 EBF4 C T 1.34x 107 0.0171
20 2705474 rs112916871 EBF4 C T 1.34x 107 0.0171

Table 9. Multi-trait single variant analysis top results.

Gene based Associations: The QQ plots for the gene-based test VEGAS are

systematically deflated, with genomic inflation factors ranging from 0.94 to 0.99. In the

QQ plots (Figure 13) there are small shelves instead of a smooth linear line. This reflects

rounding, as the number of simulations performed with in the VEGAS association test is

increased only if required to establish significance. In addition to this, deflation reflects

limited power due to sample size.

Using a genome-wide significance cut off of p < 2.5 x 10, which is the

equivalent of correcting for the approximately 20,000 genes in the human genome, one
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gene across all the traits is genome-wide significant. C8orf4 is associated with BMI at
maximum weight. Looking down an order of magnitude to 2.5 x 10, an additional 15
loci (16 genes) are associated with at least one trait, as shown in Table 10. This includes
both Oxidized Low Density Lipoprotein (Lectin-Like) Receptor 1 (OLRI) and
transmembrane protein 52B (TMEM52B) on chromosome 12 which are associated with
multiple waist to hip ratio outcomes at visit 1. These two gene-based tests are
overlapping with each other. Similarly, two transcripts associated with percent body fat
at visit 2, ring finger protein 13 (RNF13) and LOC100422259, represent also
overlapping regions on chromosome 3.

Gene-based Associations of Composite Measures: In addition to looking at the

traditional measures of obesity, we also tested for association between transcripts and the
composite measures of adiposity, PC2, which captures adiposity above or below the
waist, and PC3, which captures central versus peripheral adiposity. Only three
transcripts are suggestively associated with PC3 at visit 1 (Figures 15 and 16, Table 11).
Two of the transcripts are physically overlapping and both represent portions of the T

cell receptor alpha variable region (TRAV12-3 and TRAVS-6).
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Figure 13. QQ plots for common variant gene-based association tests.
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Figure 13. QQ plots for common variant gene-based association tests.
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Figure 14. Manhattan plots for common variant gene-based association tests.
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Figure 14. Manhattan plots for common variant gene-based association tests.
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Trait Name Chr Start

percent body fat RNF13 3 149530475
WHR males LOCI100420939 172398504
WHR females RPLI9PI6 4 169676949

LOC642554 64151128

BMI at max C8orf4 40010989

WHR adj BMI females OLRI 10310899

WHR females OLR1 12 10310899

WHR females TMEMS52B 12 10331557

LOC401767 14 25894117

WHR adj BMI males PLA2G3 22 31530793

Table 10. Common variant gene-based association results.

End

149679926

172399011

169677632

64153818

40012821

10324790

10324790

10344403

25901442

31536469

Visit 1 Visit 2
Length | SNPs Tests Pval SNPs Tests Pval
149452 405 30.7 0.040 407 28.8 4.00 x 10°
508 136 12.6 2.34x107° 109 7.9 0.0013

684 140 11.6 2.40 x 107 140 11.6 0.119

2691 112 11.2 0.0089 111 2.02 x 107

1833 114 22.5 2.00 x 10°°
1.72 x 107

13892 228 0.75

4.00 x 10°®

13892 228 19.2 0.82

12847 255 19.3 3.00 x 10°° 0.54

7326 261 26.4 0.021 1.71 x 107

5677 116 19.1 0.59 99 13.5 3.00 x 10°°
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Figure 15. QQ plots for common-variant gene-based association tests for
composite adiposity measures.
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Trait Name Chr Start End Length
PC3 MYCLI 1 40361096 40367687 6592
PC3 TRAV12-3 14 22433736 22434290 555
PC3 TRAVS-6 14 22446919 22447360 442

Table 11. VEGAS association results for composite adiposity measures.

SNPs
130
199
157

Visit 1

Tests Pval
13.6 1.49 x 107
13.4 1.96 x 107
10.7 2.22x107°

Visit 2
SNPs Tests Pval
131 14.6 0.089
200 13.7 0.0071
158 11.2 0.0090
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Multi-trait Gene-Based analysis: As with the single variant analyses, a multi-trait

analysis was conducted for the gene-based results generated by VEGAS (Figures 17 and
18). Three transcripts come up as genome-wide significant or suggestive and are shown
in Table 12. All three are located on chromosome 17p13.2 and are physically adjacent or
overlapping. While no variant in these genes or the genes themselves came up as
significant or suggestive for any one trait, the most significant gene-based signal is an
association between Germ Cell Associated 2 (GSG2) and WHR adjusted for BMI at the
first visit (p = 3.75 x 10™). For these three transcripts, multiple traits were nominally
associated with these three genes including BMI, arm circumference, hip circumference,
and percent body fat at visit 2, BMI at maximum, WHR with and without adjusting for
BMI and hip circumference at visit 1, indicating these genes have a small impact on

multiple traits.

12

10

Observed
8

Expected

Figure 17. Multi-trait common variant gene-based analysis QQ plot.
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Chromosome

chr gene start end p-value
17 P2RX5-TAXIBP3 3566187 3599698 1.66 x 107
17 P2RXS5 3576521 3599698 1.46 x 107
17 GSG2 3627197 3629993 9.02 x 1077

Table 12. Multi-trait common variant gene-based analysis top associations

DISCUSSION

Based on the sexual dimorphism, WHR residuals were created within sex
stratum. Genetic analyses were performed both in the combined residuals and separately
for males and females. Based on the top association signals shown in Table 7, there is of
overlap of association signals between the female and sex-combined analyses, this is not
apparent with males. This is due to the much lower male sample size resulting from the
sample being about 75% female. The composite measures, PC2 is also sexually
dimorphic, however in this case the residuals were highly correlated whether samples
were stratified on sex or sex was adjusted for as a covariate. Genetic analyses of PC2
were done on the residuals created using sex as a covariate.

Due to the correlation between BMI and WHR, WHR analyses were done both

with and without a BMI covariate. By including BMI as a covariate, the GIANT
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consortium has successful identified loci that are associated with central adiposity, and
not overall BMI(107). Despite the success of this approach in large consortium settings,
in these data the correlation between associations with and without BMI were high
(1*>0.8), and most signals were stronger in the analysis without adjusting for BMI.
However there are some signals that are stronger after adjusting out BMI, but only
rs74862838 on chromosome 1 reached genome-wide suggestive criteria.

The analysis of the same adiposity traits measured in the same people 8.5 years
apart should yield highly correlated results. However many of the top signals in Table 7
are not associated or are only associated at a nominal level for the other time point. The
raw traits are correlated across the visits with an r* ranging from 0.72 to 0.90 (see Table
3 in chapter 2). The t-statistics are much less correlated (r* ranging from 0.03 to 0.94,
excluding WHR adjusted for BMI); this is primarily due to including a non-random
subset of samples from the first visit in the second visit and secondarily due to changes
in BMI over time. While there was some loss to follow up, most individuals were
excluded from the analysis due to being treated for type 2 diabetes prior to the second
visit. Because these samples are not missing at random, the different associations may be
due to differences in adiposity between those that did not develop diabetes over the 8.5
years between visits and those that did. The individuals that develop diabetes within a
short time frame are the most interesting, because this is time frame in which disease
development may be preventable with targeted intervention.

Despite having very few significant and suggestive signals, some of these signals
are biologically interesting. To start with, variants in the same region as some

associations reported here have previously been associated with obesity related traits.
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These include variants in and near NPY, PKHD1, and MACROD_2. NPY encodes
neuropeptide Y, a signaling molecule that acts in the nervous system, including in the
arcuate nucleus of hypothalamus, regulating hunger and satiety along side POMC and
the leptin-melanocortin pathway(178). In Starr County, previous linkage studies have
associated this gene with obesity(30). Here we report an association of a rare variant
(MAF = 0.6%) 200kb from NPY with BMI at the first visit; this association is not seen at
the second visit due to having fewer than 5 carriers.

PKHD1, which when mutated can cause autosomal recessive polycystic kidney
disease(179), has previously been associated with waist circumference(101) and weight
loss following bariatric surgery(180). Our associated variant PKHD1 has a much lower
MAF, indicating it is not in strong LD with previously reported signals. The initial
association with smaller WHR adjusted for BMI at the first visit is diminished at visit 2,
despite only having one fewer carrier. The imputation quality is at the lower boundary
(info = 0.7) of variants that we examined, calling the association observed here into
doubt.

MACROD?2 was previously reported as associated with disordered eating(181)
and suggestively associated with extreme obesity(94). The protein is expressed in many
tissues including the brain, liver, muscle and pancreas(182). Our reported suggestive
association with arm circumference further supports previous findings that this region of
the genome plays a role in obesity.

Beyond these previously reported loci, there are also additional biologically
interesting loci. GABRB2, encodes a subunit of gamma-aminobutyric acid (GABA) A

receptor, which mediates inhibitory synaptic signal transmission in the nervous
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system(183). The GABA4 receptor is composed of five subunits, usually two alpha class
subunits, two beta class subunits, and one gamma class subunit(184). The various
homologs of each subunit class have different specificities to allosteric modulators
including many pharmacological agents including benzodiazepines(184). The GABAA
receptor is largely responsible for inhibitory signals to the hypothalamo—pituitary—
adrenocortical axis(185). Dysregulation of this signaling pathway, as occurs under stress,
is related to obesity(186, 187). Genes encoding other subunits of the receptor have
previously been associated with obesity related traits including GABRB I with change in
weight in Hispanic children(188) and GABRA4 with type 2 diabetes(189). We reported
an association of a rare variant in GABRB2 with WHR at the second visit. This variant is
imputed, however the quality at the second visit is near the minimum threshold for
inclusion.

Carriers of the rare allele of rs112863316 in LPINI had an average of 8.6%
higher percent body fat than non-carriers at the first visit. There are far fewer carriers at
the second visit (21 at visit 1 compared to 11 at visit 2) reducing power to detect an
effect. Mice harboring knock out mutations in this gene have characteristics typical of
human lipodystrophy, including neonatal fatty liver, hypertriglyceridemia in infancy,
adipose tissue deficiency, and glucose intolerance(190). Overexpression of Lpinl in
adipose tissue results in mice with diet-induced obesity and enhanced insulin
sensitivity(191). This suggests a causal variant in the region may increase LPIN]
expression or activity.

These handful of associations are biologically interesting candidates. While

biological plausibility gives us confidence in an association results, it is neither
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necessary nor sufficient to conclude a variant or gene is causative. Replication in
independent studies is needed to determine if these variants truly play a role in fat
distribution, or if these associations are spurious. These regions have not previously been
associated with obesity related traits, however large-scale studies including very rare
variants are still underway.

Most of these variants are low frequency, resulting in lower imputation quality.
While strict quality control criteria were applied, imputation leaves additional
uncertainty in the genotypes. If one of ten individuals called as a carrier were incorrectly
imputed, then the test statistic could be drastically altered. Using sequencing data, or
arrays intended to capture rare variation will give us additional certainty in the
genotyping.

The multi-trait analysis will detect associations in multiple traits that are not due
to the correlation across the traits. For this analysis, only four signals are suggestive
(Table 9). Zhu et al. propose an extension that allows for heterogeneous effects across
traits and studies, however the original method is more powerful when considering traits
on the same scale(176). Since we are analyzing inverse normalized residuals, the
original method was utilized. Two of the suggestive results are biologically interesting.
1s7723319 resides between GAS7 and MYH13. MYH13 encodes a part of the myosin
heavy chain, which is a key part of skeletal muscle fibers. GAS7 encodes growth arrest-
specific 7, which plays a role in neuronal development. Multiple low-frequency variants
in EBF4, which encodes early B cell factor 4, are suggestively associated with these

traits. EBF4 plays a role in both neuronal development and B-cell maturation. Because
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we know neuronal signaling and development are important for hunger and satiety, both
of these genes are biologically plausible.

While gene-based analyses offer the potential to identify genes that contain
multiple smaller effect size variants, the association results from VEGAS, using genes
and 20 kilobases in each direction, yielded only one genome-wide significant result, in
28 different analyses. While the lack of signal may be due to not having genes with
multiple variants independently associated with obesity-related traits, it could also be
due to a number of considerations for gene-based tests. Including 20 kilobases in both
directions from the gene may include many null variants, diminishing the combined
signal. To check this, a secondary analysis was run including only three kilobases in
each direction from genes. This analysis was also well calibrated, however it did not
reveal stronger signal. Each window size identified some unique associations, however
most signals were common to both analyses. Another option to alleviate the problem of
excessive null signal is to include only variants that are associated at some preset level.
This requires additional statistical considerations to account for the bias. To decrease the
number of variants we can also use functional annotation to include only variants we
have biological reason to think could impact protein function. Genome-wide array data
has little coding variation well represented, and annotation informed approaches are

better suited to coding-centric data, as will be investigated in chapter 4.
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Chapter 4: Whole Exome Sequencing
INTRODUCTION

While genome-wide arrays, offer an agnostic look across the genome, it is often
difficult to parse out causative transcripts and variants from these data. They do not
provide sufficient coverage of the mutations and variants that are most likely to be
functional. When trying to assess functionality of a variant, the most clear cut case is that
of a protein altering variant, that is one that changes the amino acid sequence, length, or
splicing of the gene product. Very few protein-altering variants are assayed on genome-
wide chips. Some coding variants are imputed, but these are limited to common
haplotypes that are represented in the 1000 genomes reference panel. The development
of next generation sequencing, however, provides the opportunity to interrogate most of
coding variation either through whole genome or whole exome sequencing.

While the “thrifty gene” hypothesis would support the idea that genetic variants
increasing efficiency of energy storage would be common(20), this applies to older
variation that has undergone generations of selection during times of famine. The Exome
Sequencing Project (ESP), has shown us that while most variation within a data set is
rare (86% of variants have a MAF<0.5%), most of an individual’s variation is
common(192). At the study level, ESP reported 58% of variants in whole exome
sequencing data are nonsynonymous and 38% are synonymous, while individuals
average 35 nonsense variants, 5754 missense variants, and 7652 synonymous
variants(192). A considerable amount of the variation passed down from parent to
offspring is rare and relatively recent variation and consequently it has not had sufficient

time for selection to play its role. Both common variants that may have been selected for
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when famine was a selective pressure, and more recent rare variation are shared and
plausibly contribute to the genetic architecture of obesity.

To assess the role of coding variation in obesity, unrelated individuals with
genome-wide array data were whole exome sequenced, although a subset were removed
prior to sequencing due to insufficient DNA. More common variants were tested for
associations with the same traditional measures of adiposity as in chapter 3, as well as
the composite measures of adiposity derived in chapter 2. To assess the role of low
frequency and rare variants, gene-based tests aggregating variants across a transcript
were used for the same outcomes. As in chapter 3, the test statistics from the traditional
adiposity measures were meta-analyzed correcting for the correlation between traits, to
identify genes independently associated with multiple obesity measures.

METHODS

Whole Exome Sequencing: The T2D-GENES Consortium was formed to

investigate the role of coding variation in type 2 diabetes across multiple ancestry
groups. As part of this consortium, 13,000 individuals from 5 ancestry groups were
whole exome sequenced, including all of the 1618 unrelated Starr County samples with
Affymetrix 6.0 genotype data available that were analyzed in chapter 3. Sequencing was
performed using Agilent SureSelect All Exon Kit v.2. Using Picard
(http://picard.sourceforge.net), sequencing reads were processed and aligned to hg19
reference genome. The GATK HaplotypeCaller was used to call variant sites across 26k
samples that represent the T2D-GENES consortium as well as SIGMA LuCamp, and the

Exome Sequencing Project (193). A total of 1,497 unrelated Starr County samples were
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successfully sequenced; however 7 failed QC metrics such as excess heterozygosity,
excess non-reference alleles, or low GWAS concordance.

Single variant analysis: Tests of association with each variant with a minor allele

count of at least five were performed using a linear regression model accounting for
cryptic relatedness between individuals using EMMAX as implemented in the EPACTS
pipeline(194). Variants with a minor allele count of less than five were excluded due to
instability in model for very rare variants. To adjust for population structure two genetic
principal components, as described in chapter 3, were included as covariates. Exome-
wide significance was defined as P <5 x 107, which corrects for the approximately
100,000 coding variants tested. Variants with P <5 x 10° were considered exome-wide
suggestive.

Gene grouping criteria: All variants were annotated using SnpEff v.3.1 and

dbNSFP(195-197). Annotation provides information about the impact of a variant on
each gene-product. For gene-based testing, variants were annotated to all possible
transcripts and variants within each transcript were included based on these annotations
and the minor allele frequency in the Starr County data. Transcript specific annotations
were used instead of most deleterious annotation in the gene, because alternative
transcripts are found in different amounts across various tissues, making them the logical
biological product of interest. Criteria, number of transcripts and number of variants

included are presented in Table 13.
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Mask Functional annotation Maximum Variants Transcripts

allele with at least
frequency two variants
Truncating stop loss, stop gained, 5% 11,734 6,331
initiator codon, splice
“PTV” acceptor, splice donor,
frame shift
Protein altering, Truncating variants and 1% 31,379 19,140
predicted damaging splice region, missense,
miRNA, in frame mutations
“LR” predicted damaging by
metalLR(198)
Protein altering Truncating variants and 1% 195,132 74,124
splice region, missense,
“NS” miRNA, in frame

Table 13. Criteria for gene-based grouping. Variants were annotated to all possible

transcripts using SnpEff(195).

Gene based association testing: For rare and low frequency variants, single

variant test are underpowered and sometimes unstable. To test for an association across a
transcript, variants annotated to with functional impacts as described in Table 13 were
aggregated together using SKAT-O, as implemented in EPACTS, including a linear
mixed model to account for cryptic relatedness (194, 199). SKAT-O optimizes between
SKAT, which allows variants to have different directions of effect, and traditional
burden test, which assumes that all variants have the same direction of effect(199).

Multi-trait analysis

Assessment of overall significance across the array of obesity related measures
was conducted by combining the t-statistics across traits adjusting for the correlation
between traits. Analysis was conducted using the software CPASSOC(175, 176). For
gene-based tests, p-values were transformed into a multivariate normal distribution by

applying the inverse of the normal cumulative probability function. These values were
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than combined across traits accounting for the correlation across traits, as for single
variants. The gene-based p-values of the resulting test statistic were calculated from the
Gamma distribution, due to inflated type I error in simulated data sets when using the
originally proposed Chi-squared distribution (Hao Hu personal communication, January
2,2015).

RESULTS

Single variant associations: The single variant test statistics are well calibrated,

meaning they follow the expected null distribution, after quality control. QQ and
Manhattan plots for all 24 traditional adiposity measurements are in Figures 19 and 20,
respectively. The genomic inflation factors (A) range from 0.995 to 1.017, indicating that
there is not systematic inflation of the test statistic and any population structure is
sufficiently controlled for.

Variants that are significantly (P <5 x 10”) or suggestively (P <5 x 10°)
associated with any of these 24 obesity related traits are in Table 13. A total of 3
significant associations at 3 loci were observed. A common synonymous variant
(rs5996200, p =2.52 x 10, B (SE) = 2.2 (0.37), MAF=0.11) in CYB5R3 was
significantly associated with arm circumference at visit 1, and also suggestively
associated with arm circumference at visit 2 and BMI at visit 1. A common intronic
variant (152301922, p =2.71 x 107, B (SE) = 4.2 (0.87), MAF= 0.24) in WIPF3 is
associated with waist circumference at visit 1; the same variant is also suggestively
associated with BMI at visit 1. Lastly, a low-frequency synonymous variant
(rs117042905, p =2.41 x 107, B (SE) = -0.083 (0.8018, MAF=0.03) in ARHGAP39 is

associated with WHR adjusted for BMI in males at visit 2; this is based on 89 men.
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Figure 19. QQ plots for exome sequencing single variant association tests.
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Figure 19. QQ plots for exome sequencing single variant association tests.
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Figure 19. QQ plots for exome sequencing single variant association tests.
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Figure 20. Manhattan plots for exome sequencing single variant association
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tests.
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protein
change

chr pos variant gene ref alt consequence trait visit ) B (SE) EAC N MAF

WHR v [ 386x10° -0.023(0.0050) 152 516 0.14729
3 141905259 159857725 GK5 T G NA intronic 24
BMI 2 0.1219  -0.0099(0.0067) 86 291 0.14777
females
. whHR vl | 2.18x10°  -0.025(0.0055) 152 516  0.14729
3 141905261 1s9857726 GK5 T G NA intronic
females 2 0.1056 -0.010(0.0068) 86 292 0.14726
, WHR vl 0.1453  -0.0098(0.0065) 136 216 0.31481
6 46684222 rs1805017 PLA2G7  C T R92H  missense 6
males v2 | 3.81x10°  -0.044(0.0094) 55 89  0.30899

2.81 x 10° -0.063(0.014) 539 0.01763

7 6080686 1rs34909691 EIF24KI A T,G L319H  missense

0.02583 -0.033(0.016) 16 306 0.02614

females

whr V0 | 281x10°  -0.0630.014) 19 539 0.01763
7 6227341 1541282682 CYTH3 A G Y43Y synonymous 24

BMI 2 | 0.02583 -0.033(0.016) 16 306  0.02614

females
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protein
change

chr pos variant gene ref alt consequence trait visit ) B (SE) EAC N MAF

vl 2.71 x 107 4.2(0.87) 361 759  0.23781
v2 0.003174 2.8(1.1) 217 455 0.23846

7 29915593 rs2301922 WIPF3 G C NA intronic waist

WHR vl | 4.01x10°  0.02000.0040) 543 537  0.49441

12 10313075 1s3736235 OLRI T C NA intronic
females v2 0.7703 -0.0019(0.0052) 289 305  0.47377

vl 1.39 x 10 8.6(1.5) 16 762  0.0105
22 42998902 rs113513063 POLDIP3 G T P108P synonymous BMI

v2 0.0006665 8.0(2.1) 10 399 0.01253

vl 9.41 x 107 2.6(0.50) 170 762  0.11155
22 43032742 1$5996200 CYBS5R3 C T P77P synonymous BMI

v2 0.00119 2.5(0.74) 90 399 0.11278

Table 14. Significant and suggestive single variant associations from exome sequencing.



Composite adiposity measures: In addition to traditional measures of adiposity,

associations with the composite measures of adiposity, PC2 and PC3, which capture
truncal adiposity above or below the waist, and central versus peripheral adiposity
respectively, were also tested. The QQ and Manhattan plots are in Figures 21 and 22,
respectively. There were only two suggestive associations, as shown in Table 15. The
association with PC2 at visit 1 in TRAK (rs4234445, p=2.12 x 10, (SE) =
0.12(0.025), MAF= 0.19) replicates a prior suggestive association with visceral adipose

tissue/subcutaneous adipose tissue ratio(200).
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Figure 21. QQ plots for exome sequencing single variant association tests with

composite measures of adiposity.
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protein
change

chr pos variant gene ref alt consequence trait visit P B (SE) EAC N MAF

vl 0.003124 0.33(0.12) 17 753 0.01129

21 41465622 rs78085341 DSCAM A T NA intronic ~ PC3 "
v2 1.26 x 10 -0.82(0.16) 9 370  0.01216

Table 15. Significant and suggestive single variant associations with composite adiposity measures from exome sequencing.

87



Multi-trait analysis: In addition to analyzing composite measures of obesity (PC2

and PC3), analysis was conducted combining the t-test statistics across adiposity trait
while accounting for correlation using the software CPASSOC(175, 176). QQ and
Manhattan plots are in Figures 23 and 24 respectively. The test statistic was well
calibrated with a genomic inflation factor of 1.002. Significantly and suggestively
associated variants are in Table 17. Only rs57772251 was the only variant to reach
exome-wide significant (p = 2.34 x 10”7, MAF=0.001). All significant and suggestive

signals were intronic.
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Figure 23. Multi-trait analysis QQ plot of single variant exome sequencing variants.
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chr position variant ref alt gene function MAF  p-value
2 33810799 var 2 33810799 A G FAM984 INTRONIC 0.007 2.63 x10°
5 147812971  1s147707335 T C FBXO38 INTRONIC 0.012  4.16x10°
11 64594490 1857772251 A G CDC42BPG INTRONIC 0.001 234 %107
16 2161887 var 16 2161887 C T PKDI INTRONIC; 0.0054 242 x10°
CREATE SPLICE
ACCEPTOR

Table 16. Significant and suggestive associations from multi-trait analysis of single

variant exome sequencing variants.

Gene-based associations: The QQ plots for gene-based SKAT-O tests for

traditional measures of adiposity are in Figure 25, and exhibit some shelves or plateaus,
reflecting genes with multiple transcripts, that result in redundant test statistics. For the
three different grouping criteria defined in Table 13 as protein truncating with a MAF <
5% (PTV), PTV plus protein altering predicted damaging with a MAF < 1% (LR), PTV
plus protein altering with a MAF < 1% (NS), the test statistics were generally well
calibrated, although genomic inflation factors range from 0.82 to 1.1. The small genomic

inflation factors reflect phenotypes with small sample sizes, as low as 89 for male
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specific analyses at visit 2, as well as the small number of tests in comparison to single
variant tests. The large genomic inflation factors show early departure from the expected
distribution, in part due to the redundancy of including multiple transcripts.

The Manhattan plots for the gene-base SKAT-O tests are in Figure 26. There
were no exome-wide significant results (p < 2.5 x 10°°) for any variant grouping or trait.
Ten suggestive associations (p < 2.5 x 10) with nine genes are in Table 17. Results for
both time points and each of the three masks are included. In the case where multiple
transcripts were redundant, only the transcript with the smallest p-value was included in
the table. Eleven of the associations come from the NS mask, which contains low
frequency protein altering variants regardless of functional prediction; all but three of

these genes include fewer than two variants in the other masks.
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Figure 25. QQ plots for gene-based association tests. Associations for each

of three masks are shown. PTV- protein truncating variants with MAF < 5%, LR-

PTV mask plus nonsynonymous variants with MAF < 1%. predicted damaging

by metaLR, and NS- PTV mask plus nonsynonymous variants with MAF < 1%.
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Figure 25. QQ plots for gene-based association tests. Associations for each
of three masks are shown. PTV- protein truncating variants with MAF < 5%, LR-
PTV mask plus nonsynonymous variants with MAF < 1%. predicted damaging

by metaLR, and NS- PTV mask plus nonsynonymous variants with MAF < 1%.
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Figure 25. QQ plots for gene-based association tests. Associations for each
of three masks are shown. PTV- protein truncating variants with MAF < 5%, LR-
PTV mask plus nonsynonymous variants with MAF < 1%. predicted damaging

by metaLR, and NS- PTV mask plus nonsynonymous variants with MAF < 1%.
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Figure 25. QQ plots for gene-based association tests. Associations for each
of three masks are shown. PTV- protein truncating variants with MAF < 5%, LR-
PTV mask plus nonsynonymous variants with MAF < 1%. predicted damaging

by metaLR, and NS- PTV mask plus nonsynonymous variants with MAF < 1%.
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WHR
adjusted
for BMI
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124165606

142524981

25633916

transcript

ENST00000251481

ENST00000393501

ENST00000476941

ENST00000581185

SULTIC2

visit 1

# variants

5.00 x 10°°
1.30 x 10
0.0017541

0.52068
0.52068
0.19228

NA
NA

1.59 x 107

NA

0.46123
6.97 x 10°°

Table 17. Suggestive gene-based associations with traditional obesity measures.

0.0082261
0.0020738
0.047537

0.0013
0.00131
0.0092

0.16982
0.16982
411 %10

NA
NA
0.25612

NA
NA
9.95 x 10°

visit 2

# variants

NA
NA
0.0087912
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Composite adiposity measures: In addition to looking at the traditional measures

of obesity, we also tested for association between transcripts and the composite measures
of adiposity, PC2, which captures adiposity above or below the waist, and PC3, which
captures central versus peripheral adiposity. Three genes are suggestively associated
with these composite measures (Figures 27 and 28, Table 18). This includes an
association with Long chain acyl-CoA synthetase 1 (ACSLI1) with PC3 at the first visit.

At the second visit the association persists but is slightly weaker.
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Figure 27. QQ plots for gene-based association tests with composite
measures of obesity. Associations for each of three masks are shown. PTV-
protein truncating variants with MAF < 5%, LR- PTV mask plus nonsynonymous
variants with MAF < 1%. predicted damaging by metaLR, and NS- PTV mask

plus nonsynonymous variants with MAF < 1%.
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Figure 27. QQ plots for gene-based association tests with composite
measures of obesity. Associations for each of three masks are shown. PTV-
protein truncating variants with MAF < 5%, LR- PTV mask plus nonsynonymous
variants with MAF < 1%. predicted damaging by metaLR, and NS- PTV mask

plus nonsynonymous variants with MAF < 1%.
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Figure 28. Manhattan plots for gene-based association tests with composite
measures of obesity. Associations for each of three masks are shown. PTV- protein
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variants with MAF < 1%.

119



PC3 visit 1

PTV PC3 visit 2
PTV
g g
2 ° . ) 0 . *
. .
. o g o0 e T, te .t e
%’ L0 o o} e s o . seo, °88
1 2 3 4 5 6 7 8 9 10 11 12 13 14 715 18 éD 1 2 3 4‘ 5 6 7 8 9 10 11 12 14 15 1‘7 19 21
Chromosome Chromosome
PC3L\|QSIt 1 PC3 visit 2
LR
T . ° : l'.’ °° T N 4 ° " .; ° .
~ [} F3
® o
1 2 3 “l 5 6 7 8 9 10 11 1‘2 13 14 16 ‘18‘20‘ 1 2 3 4 5 6 7 8 9 11 1‘2 13 14 16 18 20
Chromosome Chromosome
PC3 visit 1 PC3 visit 2
NS NS

1 2 3 4 5 6 7 8 9 10 11 12 13 14 16 18 20 1 2 3 4 5 6 7 8 9 10 11 12 13 14 16 18 20

Chromosome Chromosome
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120



visit 1 visit 2

chr

transcript # variants # variants  ¢cMAF

10874532 10877397  ENST00000379491

GCM2  pry
LR

NA NA NA
0.00328
5.88 x 10°°

NA NA NA
0.00444
0.000885

Table 18. Suggestive gene-based associations with composite adiposity measures.
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Gene-based multi-trait analysis: As with single variant analyses, transcripts were

analyzed across the array of obesity related traits. The test statistics were well calibrated
to a Gamma distribution as shown in the QQ plots in Figure 29; the corresponding
Manhattan plots are in Figure 30. Three transcripts in the NS variant grouping attained
exome-wide suggestive criteria (p < 2.5 x 10™) (Table 19). None of these transcripts
were strongly associated with anyone one trait. Both DLG4 and INPP5F are driven by
many traits with weak associations. In contrast, RUNX3 is nominally associated with

only 3 traits, BMI and arm circumference at visit 2 and hip circumference at visit 1.

chr start end transcript gene P-value

1 25254224 25256161 ENSTO00000308873 RUNX3 6.99 x 107
10 121551155 121556996 ENSTO00000369083 INPP5SF 242 %107
17 7107367 7107559  ENST00000447163 DLG4 5.41x10°

Table 19. Suggestive gene-based multi-trait associations. All suggestive associations

come from the NS variant grouping.
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DISCUSSION

Both gene-based and single variant tests were generally well calibrated, however
no transcripts and only four single variants attained exome-wide significance criteria
across the 28 traits and multi-trait analyses. One of these rs117042905 in ARHGAP39 is
associated with WHR in males adjusted for BMI at the second visit. Due to the limited
number of men without diabetes at visit 2, the samples size was only 89, making this test
underpowered and subject to error.

Phenotypes at the two visits are correlated, and we would expect to see similar
effect sizes across the visits for true associations. With the exception of OLR, the top
signals the betas are directionally consistent at the other time point, with the exception of
PC2 and PC3 where directionality is flipped, as explained in chapter 2. Fourteen of the
twenty-one suggestive single variant associations are also nominally (p < 0.05)
associated with the same trait at the other visit. For gene-based associations, nine of
eleven gene-based signals with a second time point are also nominally associated at the
other time point. While this is not independent replication, lack of consistent association
at the other time point casts doubt for common variants. For rare variants this is less
concerning; the carriers missing from the second time point have a larger impact on the
association test than for common variants.

GABRAG p.Arg92His, which is associated with WHR at visit 2, is physically
close to GABRBZ2, which contains single variants also associated with WHR at visit 2
(Chapter 3). Both GABRA6 and GABRB? are subunits of the GABA, receptor. The

relationship between these variants will be further investigated (Chapter 5).
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Additional associations are also part of neuronal signaling or neuronal
development. The gene GCM2 was suggestively associated with PC3 at visit 1 in the
gene-based association test of protein truncating variants and rare non-synonymous
variant. GCM2 serves as a switch in neuronal development, which determines if cells
become neurons or glial cells, the insulating cells along neural axons that make long-
range signal transduction possible(201). Deletion of this gene in humans has been
reported to cause familial isolated hypoparathyroidism, which is characterized by
hypocalcemia(202). This gene is involved in development; genes involved in neuronal
signaling throughout life were also associated with obesity related traits. A common
variant in TRAK 1, rs4234445, was suggestively associated with PC2 at visit 1. This
replicates a prior association with subcutaneous adipose tissue to visceral adipose tissue
ratio. The gene is known to be involved in trafficking of receptors, particularly GABA A
receptors, to and from the cell membrane(203, 204). One gene from the multi-trait gene-
based analysis, DLG4, is known to play a role in maintenance of the synaptic junction;
interestingly this gene is overlapping in a head to head orientation with ACADVL, which
is involved in B-oxidation of long-chain fatty acids(205). Coding variants in ACADVL
were not associated with any adiposity traits, however based on these observations
multiple mechanisms for variants in this locus impacting adiposity are possible.

Rare coding variants in another gene involved in fatty acid metabolism, ACSL1,
were suggestively associated with PC3 at visit 1 and nearly attained suggestive
association at the second visit as well. The gene product, long chain acyl-CoA synthetase
1, is important for both B-oxidation of long-chain fatty acids and the synthesis of cellular

lipids(206). Based on the gene’s function it was hypothesized to cause lipodystrophy,
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however adipose tissue specific knock out mice have the same mass as their littermates,
but higher percentage body fat(207). The knock out mice were unable to maintain their
body temperature in a cold environment and had lower fatty acid oxidation rates(207).
This indicates that disruption of fatty acid oxidation and triglycerides can change amount
of body fat, as well as disrupt the normal physiological function of adipose tissue.

Both the multi-trait analysis and the composite measures of adiposity provided
biologically compelling associations signals; however, the composite measures provided
more associations including replication of an association with subcutaneous adipose
tissue to visceral adipose tissue ratio. This is a measure that is typically expensive and
time consuming to measure. This suggests that some approximation of this can be
obtained from PC2, which utilizes routine non-invasive measures of adiposity.

While other significant and suggestive associations form the exome sequencing
analyses lack readily apparent biological links to obesity, the top signals should be
followed up in a replication sample set before further investigating the biological impact
of the variants. The replication sample set should be carefully matched to the same
ancestry group because many rare variants are unique to a single ancestry group. A set of
2000 individuals from Starr County is currently undergoing whole-exome sequencing
and would make an ideal replication data set. The current analyses are restricted to
individuals without a diagnosis of diabetes. Using individual with type 2 diabetes for
replication is far from ideal, due to the impact of diabetes medications and behavioral

interventions on obesity related traits, but would be easily accessible.
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Chapter 5: Conditional Analysis of Overlapping Loci
INTRODUCTION

Once an association signal is identified, the next step is to develop hypotheses of
what molecular changes are induced and identify an effector transcript. In the past,
candidate variants have been obtained through sequencing genes in close proximity to
strong signals. Since most individuals in this genome-wide chip data set also have whole
exome sequencing data, we can look at these two types of data together without having
to limit to the very strongest signals. Given that we have already tested for single variant
associations exome wide, a first pass screen of looking for physical overlap of top
signals from the imputed data and exome sequencing data is a good starting point. While
this can be quickly ascertained by visual inspection of Manhattan plots, additional
investigation to assess the size of regions and the linkage disequilibrium (LD) pattern
between variants is required. Signals from the imputed data that are not seen in the
exomes may either be spurious signals, or are not well captured by the targeted exome
sequencing. Either way investigating the sequencing data is not informative.

Traditionally, a causative variant should be one of if not the strongest
association. In this case, it is possible for other variants to have stronger associations due
to the smaller sample size of the exome sequencing data. It is also possible for a single
gene to contain multiple causative variants, which depending on the LD pattern between
the causative variants and other variants in the region can create different association

patterns.
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METHODS

Overlap of signals across the genome wide chip data and exome sequencing data
was assessed by visual comparison of Manhattan plots for the same trait and visit. To
understand these loci, analyses in the region were repeated, conditioning on the lead
variants in both the sequencing and chip data, as well as biologically interesting variants
such as nonsynonymous variants when they are available. Regions were visualized both
before and after conditioning on candidate variants using the stand-alone version of
LocusZoom v1.3 (http://genome.sph.umich.edu/wiki/LocusZoom Standalone), which
creates Manhattan plots of small regions including information on LD, genes in the
region, and previously published GWAS hits(208).

RESULTS

There was no over-lapping top signals between the common variant gene based
test (VEGAS) applied to the genome wide data and the rare variant gene-based test
(SKAT-O) results from the exomes sequencing data. The lack of common associations is
reflective of the different hypotheses tested by the different methods. In VEGAS we
expect to detect multiple independent common signals in the same gene, where as in
SKAT-O look for association grouping rare, putatively functional variants.

Nine regions were identified as having single variant signals in both the whole
exome sequencing data and the genome-wide chip data imputed to 1000 Genomes. This
includes a region on chromosome 22 including CYB5R3 and POLDIP3 that is associated
with BMI, percent body fat, and arm circumference all at the first visit; WIPF3
associated with BMI and waist circumference at visit 1; and GABRB2 and GABRA6

associated with WHR with and without adjusting for BMI. Results are shown in the form
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of LocusZoom regional plots. Variants from the exome sequencing data are shown as
solid circles while results form the genome-wide chip data imputed to 1000 Genomes are
shown as open circles. The coloring of the points represents LD with the lead variant.
For example, looking at Figure 32A, the plot spans the length of the entire gene
COL24A1. The lead SNP, rs1911545, is represented by a purple circle; other variants are
colored based on their LD with this SNP, with red being the highest r* and dark blue
being the lowest. The blue vertical lines represent recombination rates.

A region on chromosome 1, which contains COL24A1 is near-suggestively
associated with PC3 at visit 1 in both exome sequencing and chip data. A closer look
revealed two protein altering variants, rs11161732 (COL24A1 p.Pro546Ser) and
1s56046090 (COL24A1 p.Thr328Lys). The lead most significant variant, rs1911545 is in
linkage disequilibrium with rs11161732 (r* = 0.49). Conditioning on rs11161732 (Figure
32 B) attenuated some of the signal, but signal remained. By conditioning on
156934354 (Figure 32 C) it appears the complimentary signal was attenuated; this was
confirmed by conditioning on both variants simultaneously (Figure 32 D). This indicates
there may be two independent signals in this gene, which both include nonsynonymous

variants.
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Figure 31. COL24A1 association with PC3 at visit 1. The panels show associations of

PC3 at visit 1 in the region of COL24A1 A) without conditioning on any variants, B)

conditioning on rs11161732, C) conditioning rs56046090, and D) conditioning on both

rs11161732 and rs56046090. Open circles represent genome wide chip variants; solid

circle represent exome sequencing variants. The point color reflects linkage

disequilibrium with the top variant. All points are grey in panel B due to lack of LD

information in 1000 Genomes on the top variant.

Variants on chromosome 21 near DSCAM are associated with PC3, which

captures central verses peripheral adiposity at visit 2. Upon conditioning on the rare

intronic variant, rs78085341 in DSCAM, (Figure 33); no association signal persists. This

indicates that a single haplotype is responsible for the association with PC3 at visit 3
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across both sequencing and chip data. The prior association with “Obesity related traits”
shown on the plot is with arm span and height in Hispanic children. DSCAM is primarily

expressed in the pituitary gland and brain tissues(209).
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Figure 32. DSCAM association with PC3 at visit 2. The panels show associations of
PC3 at visit 2 in the region of DSCAM A) without conditioning on any variants, and B)
conditioning on rs78085341. Open circles represent genome wide chip variants; solid
circle represent exome sequencing variants. The point color reflects linkage

disequilibrium with the top variant.

A region including WIPF3 on chromosome 7 is associated with both BMI and
waist circumference at visit 1. These are highly correlated traits (r’=0.87). For
simplicity, results are shown for waist circumference, which had a slightly stronger
association (Figure 34). By conditioning on the lead variant, rs2301922, there is no
remaining signal, indicating one driving haplotype. The “Obesity-related traits”

indicated as previously associated in the plot is actually a sleep respiratory quotient in

Hispanic children(188).
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Figure 33. WIPF3 associtation with waist circumference at visit 1. Association with
waist circumference at visit 1 and variants in the region of WIPF3 are shown A) without
conditioning on any variants and B) conditioning on rs2301922. Open circles represent
genome wide chip variants; solid circle represent exome sequencing variants. The point

color reflects linkage disequilibrium with the top variant.

A region on chromosome 3 containing GKJ5 is suggestively associated with WHR
in females at visit 1 both with and without adjusting for BMI (see Table 13).
Conditioning on the lead variant, rs9857725, attenuated all signal in the region (Figure
35). This lead variant is intronic and no coding variants are included in the haplotype
block. Intronic variants can alter expression in many ways including altering

transcription levels or disrupting or creating splice sites.
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Figure 34. GK5 association with WHR at visit 1 in females. Associations with WHR
in females at visit 1 with variants near GK5 are shown A) without conditioning on any
variants and B) conditioning on rs9857725. Open circles represent genome wide chip
variants; solid circle represent exome sequencing variants. The point color reflects
linkage disequilibrium with the top variant. All points are grey in panel B due to lack of

LD information in 1000 Genomes on the top variant.

Variants on chromosome 12 in and near OLR] are associated with WHR in
females at visit 1. After conditioning on rs3736235, the lead variant from analysis of the
exome sequencing data, the signal in attenuated (Figure 36). The common variant gene-
based test for OLR1 was also suggestively associated with WHR in females at visitl.
However, conditional analysis suggests only one haplotype is responsible for this

association.
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Figure 35. OLRI association with WHR in females at visit 1. Associations with WHR
in females at visit 1 with variants near OLRI are shown A) without conditioning on any
variants and B) conditioning on 1rs3736235. Open circles represent genome wide chip
variants; solid circle represent exome sequencing variants. The point color reflects

linkage disequilibrium with the top variant.

Despite the low number of males, two regions were associated with WHR
adjusting for BMI in males in both the sequencing and chip data. At visit 1, ECEI on
chromosome 1 is associated in both genetic data types. Conditional analyses indicate
there are two regions of the gene independently associated with WHR adjusted for BMI
in males. The first is represented by the lead SNP in the exome sequencing data,
rs1076669; this is a nonsynonymous variant causing amino acid residue 341 to change
from threonine to isoleucine. Conditioning on ECE/ p.Thr341lle attenuates all the signal
in the 3’ part of the gene, but a stronger signal about 100 kilobases away in the promoter
region of the gene remains (Figure 37 B). After conditioning on the common intergenic
variant, rs12137689 in the genome-wide chip data, the promoter signal is diminished
(Figure 37 C). This indicates there are two separate signals, one coming form the

haplotype including ECEI p.Thr3411le, and another from common variation in the
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promoter region of ECEI. The second male specific WHR association signal comes

from visit 2, where we observe an association with variants in an near TRIOBP (Figure

38); this association is attenuated after conditioning the on rs739138, the top variant

from the whole exome sequencing analyses. This variant is a nonsynonymous variant,

changing residue 1300 from histidine to arginine.
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Figure 36. ECE1 association with WHR adjusted for BMI in males at visit 1.

Associations with WHR in males at visit 1 with variants near ECE are shown A)

without conditioning on any variants, B) conditioning on rs1076669 (ECE1

p.Thr3411le), and C) conditioning on rs12137689 in the imputed data. Open circles

represent genome wide chip variants; solid circle represent exome sequencing variants.

The point color reflects linkage disequilibrium with the top variant.
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Figure 37. TRIOBP association with WHR adjusted for BMI in males at visit 2.
Associations with WHR in males at visit 2 with variants near TRIOBP are shown A)
without conditioning on any variants and B) conditioning on rs739138. Open circles
represent genome wide chip variants; solid circle represent exome sequencing variants.

The point color reflects linkage disequilibrium with the top variant.

On chromosome 22, a region containing both CYB5R3 and POLDIP is associated
with arm circumference, BMI, and percent body fat at visit 1. Results shown in Figure
39 are for arm circumference, where the association is strongest, but the pattern is the
same in all three traits. After conditioning on rs5996200, the top signal coming from the

exome sequencing data, no association signal remains. This is a synonymous variant in

CYB5R3.
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Figure 38. CYB5R3 associations with arm circumference at visit 1. Associations with
arm circumference at visit 1 with variants near CYB5R3 are shown A) without
conditioning on any variants and B) conditioning on rs5996200. Open circles represent
genome wide chip variants; solid circle represent exome sequencing variants. The point

color reflects linkage disequilibrium with the top variant.

Lastly, a region on chromosome 5 containing both GABRB2 and GABRAG6 is
associated with WHR at visit 2. The variant with the strongest association is
rs150769823, a low-frequency intronic variant with a borderline imputation quality (info
=0.72). In the exome sequencing data, the lead variant is the low frequency
nonsynonymous variant, rs3811993, which changes threonine at residue 187 of GABRA6
to methionine (Figure 40). This variant was also imputed in the chip data, however the
imputation quality excluded it from further consideration (info = 0.59) and due to poor
concordance could not be used for conditional analyses. The lead variant from the
imputed data, rs150769823 was not captured by the exome sequencing data.
Conditioning on either of the lead variants attenuates other signal in the region for the
respective datasets. The high LD between the two variants (1* = 0.88), suggests they may

represent a single effector haplotype.
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Figure 39. GABRB2 and GABRA1 association with WHR at visit 2. Associations
with WHR visit 2 with variants near GABRB2 and GABRAI are shown A) without
conditioning on any variants and B) conditioning on rs3811993 in the sequencing data
and C) conditioning on rs150769823 in the imputed data. Open circles represent genome
wide chip variants; solid circle represent exome sequencing variants. The point color

reflects linkage disequilibrium with the top variant.

DISCUSSION

Through conditional analysis of nine loci clearly associated with the same traits

in exome sequencing and genome-wide chip data, nonsynonymous variants that may
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account for the association signal ion the region were identified for four of the sites

(Table 20).

Traits Locus summary

PC3 vl COL24A41 Two idependent signals p. Thr328Lys
and p.Pro546Ser

PC3 v2 DSCAM One intronic signal

BMI vl wasit V1 WIPF3 One intronic signal

WHR females vl GK5 One intronic signal

WHR females v1 OLRI One intronic signal

WHR adj BMI males ECEI Two independent singals, p.Thr3411le

vl and promoter region

WHR adj BMI males TRIOBP One signal p.His1300Arg

v2

arm circumference v1 CYB5R3 One signal, synonymous variant
1s5996200

WHR v2 GABRB2/GABRA6 High LD between GABRA6
p.-Thel87Met, and intronic GABRB2
varaiants

Table 20. Conditional analysis conclusions.

Two nonsynonymous variants in COL24A41 are independently associated with
PC3 at visit 1. Neither of these variants quite reach exome-wide suggestive criteria,
however due to the consistent effect seen in both the genome-wide chip data and exome
sequencing data they are still of interest. The gene encodes a collagen that, in the mouse,
is most expressed in the bone, retina, tendon, skin, and cornea (210). As discussed in
chapter 2, PC3 at visit 1 measures central versus peripheral adiposity. The positive effect
size for rs11161732 (B (SE) =0.10 (0.03), MAF= 0.37) indicates that carriers have a
higher in peripheral circumferences and lower central circumferences. In contrast the
rare variant 156046090 (B (SE) =-0.50 (0.13), MAF= 0.009) reflects the opposite. This
may reflect differences in fat-free mass composition, such as bone density, that would

require additional measures to further investigate.
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Conditional analyses of regions associated WHR adjusted for BMI in males, one
locus for each visit, each led to identification of putative functional nonsynonymous
variants. The association with TR/IOBP and WHR adjusted BMI for males at visit 2 may
be defined by a single variant, rs739138 p.His1300Arg. This gene encodes many
isoforms. While protein truncating variants in this gene are known to cause autosomal
recessive nonsyndromic hearing loss (211, 212), the exon containing this variant is not
part either isoform expressed in the ear, TRIOBP4 and TRIOBPS (213). TRIOBP is
involved in the regulation of cell migration, cell growth, and cytoskeletal
organization(214). The association with WHR adjusted for BMI at visit 1 with ECE has
two independent regions, one in the promoter, the other may be defined by rs1076669,
p-Thr3411Ile. Mutations in this gene have been tied to Hirschprung disease and essential
hypertension(215, 216). ECE1 knock out mice have a variety of malformations including
a lack of enteric neurons in the distal gut, consistent with Hirschprung disease(217). The
mutation previously identified as causing Hirschprung disease is Arg754Cys, which lies
on the opposite side of the protein as the variant reported here. It would be plausible that
this variant has lesser effect on enteric neurons.

The final locus with a protein altering variant potentially accounting for the
association with WHR at visit 2 is the GABRAG6 locus. As discussed in chapter 3 the
GABA receptor is a heteropentamer that acts as a major inhibitory synaptic signal
transmission in the nervous system(183). The specific o and y isoforms present
determine the molecule’s ability to bind modulators such as benzodiazepine and
ethanol. The a6 isoform is classified as diazepam-insensitive(184). Mutations in some

isoforms have been reported to cause epilepsy (GABRAI, GABRG2, GABRD), increased
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risk of alcohol dependence (GABRA2)(218-224). GABRA6 has not previously been
reported as associated with in any phenotypes. As discussed in chapter 3 disruption of
signaling through GABA 4 receptor alters inhibitory signals to the hypothalamo—
pituitary—adrenocortical axis, which may result in obesity. Further, recent work on
mouse models shows that the neurons of lateral hypothalamus that produce GABA play
a key role in compulsive sucrose seeking behaviors.(225, 226)

The other loci where conditional analyses were run did not have a
nonsynonymous variant as clear candidate functional variant. However there are other
means by which a variant can impact a trait. For example the intronic variants in WIPF3
fall into an enhancer region. A variant that alters enhancer binding may subsequently
impact expression levels. Investigation of the transcript levels of these genes in the
GTEx portal shows that the lead variants in COL24A41 (rs11161732 p=7.6 x 10”, tibial
artery), and TRIOBP (15739138 p = 5.8 x 107, whole blood), and CYB5R3 (rs5996200 p
= 1.7 x 10", esophagus mucosa) are all three cis-acting eQTLs, meaning they are
associated with mRNA levels of the gene the variant lies in(209). Other possible
mechanisms include altered promoter, repressor, or transcription factor binding. There
are also encoded regulatory elements within introns, such as miRNA that are
incompletely understood.

While conditional analyses clarify the relationship between variants in a region
they do not indicate if the signal is real. Many of these are suggestive associations, and
to establish these as obesity related variants independent replication is required. For very
rare variants, ascertainment of family members will enrich the sample for carriers

increasing power to detect an association. In the case that protein-altering variants have
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been elucidated as likely candidates, follow up work functional work is required to
establish causation. The use of existing biological information on the genes is useful for

establishing the role of the gene in adiposity.
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Chapter 6: Monogenic Obesity
INTRODUCTION

As reviewed in Chapter 1 and Table 2, there are three broad classes of
monogenic adiposity: isolated obesity, lipodystrophy, and syndromic obesity. There are
81 genes identified as causing a monogenic disorder which features obesity or
lipodystrophy. Many of these are autosomal recessive disorders that, in the heterozygous
state, may have an impact on body fat amount and distribution, albeit much smaller.
There is evidence that less detrimental variants in these genes, particularly MC4R, may
have smaller effects on body fat distribution (43). With the prior information that these
genes are likely to impact obesity and fat distribution, a more careful look at these genes
is warranted irrespective of any other associations of lack thereof seen in the prior
analyses of genome wide markers and exome sequencing. In this chapter, however, we
will focus on the arrays of mutations found in these 81 genes at look at them individually
and in aggregate. We will examine their impact on the full set of phenotypes as there
may be effects in either the amount or distribution of body fat of both.

The exome sequencing data provides information about the coding variation,
however intronic variation may alter gene expression thus having an impact on adiposity
as well. Therefore we will look at the single variant associations from the imputed data

as well as taking a deeper look at the whole exome sequencing data.

METHODS

Gene set definition: The monogenic adiposity genes listed in Table 2 were

obtained through literature search and Online Mendelian Inheritance in Man

(www.omim.org). Genes were classified as implicated in causing isolated obesity,
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lipodystrophy or syndromic obesity based on published descriptions as referenced in
Table 2; a single gene could fall in multiple categories (Table 21).

Array of variation: The number of variants and counts by annotation were pulled

from the whole exome sequencing data using PLINK\SEQ
(https://atgu.mgh.harvard.edu/plinkseq/) for all 1,490 Starr County individuals with
exome sequencing data, regardless of diabetes status. The transcript with the most
deleterious annotation was used for each variant. For example, rs117372135 is a
missense variant in two of five MCHRI transcripts. For the other transcripts this variant
is noncoding due to alternative splicing. We considered the most deleterious variant
when looking at the amount of variation since this is the form in which the variant is
most likely to have a large impact on the functionality of the gene-product.

Enrichment: To test for enrichment of association signal in monogenic adiposity
genes, genomic inflation factors (A) were calculated for variants in each of the three
subsets of genes (isolated obesity, lipodystrophy, and syndromic obesity) and the full list
of genes as shown in Table 21 for each obesity related traits. This was performed
separately on the genome wide chip data imputed to 1000 Genomes and whole exome
sequencing results. As with previous analyses, genes on chromosome X were not
included. To assess the significance of inflation or deflation single variant analyses and
genomic inflation factors were calculated for 1,000 simulated N~(0,1) outcomes for the
same subsets individuals. This allows us to assess the frequency with which enrichment
or depletion as extreme as we observed would be observed by chance alone in these

particular sets of genes and individuals.
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Global test of association: To evaluate the role of rare coding variants in the

autosomal genes, SKAT-O analyses were conducted combining the variants across each

gene set into a single gene based test. This was done for all three masks (Table 13 in

Chapter 4) and each of the four gene sets.

gene position stop gain missense splice synonymous all gene sets
LMNA chrl:156052336-156109880 0(0) 54) 1(1) 94) 32 (16) Ipd
SDCCAGS chr1:243419306-243663393 0(0) 12 (9) 2(2) 9(5) 36 (24) synd
CCDC28B chr1:32665986-32670991 0(0) 13 (9) 2 (1) 7(5) 28 (21) synd
ZMPSTE24  chrl:40723721-40759856 1(1) 3(3) 1(1) 2(1) 18 (14) Ipd
LEPR chrl:65886334-66103176 0(0) 19 (14) 1(1) 13 (10) 56 (38) ob
H6PD chr1:9294862-9331394 0(0) 29 (23) 2(2) 30 (19) 66 (48) synd
BBSS5 chr2:170336005-170363165 0(0) 9 (6) 2 (1) 5@03) 28 (20) synd
GPR35 chr2:241544824-241570676 2(1) 25 (15) 0 (0) 11 (4) 47 (26) synd
pPoOMC chr2:25383721-25391559 0(0) 7(5) 0(0) 4(2) 12 (8) ob
WDPCP chr2:63348534-63815867 0(0) 14 (9) 5(4) 0 (0) 35(25) synd
ALMS1 chr2:73612885-73837046 2 (1) 87 (57) 1(1) 46 (31) 162 (104) synd
PPARG chr3:12329348-12475855 0(0) 5(2) 2(2) 11 (10) 29 (21) Ipd
SLC2A42 chr3:170714136-170744768 0(0) 8(5) 1(1) 6(3) 24 (13) synd
THRB chr3:24158644-24536313 0(0) 42 1(1) 4(2) 19 (10) synd
LZTFLI chr3:45864809-45957216 0(0) 11 (8) 0(0) 54) 26 (19) synd
ARLG6 chr3:97483364-97520086 0(0) 1(1) 1(1) 0(0) 9 (6) synd
CIDEC chr3:9908393-9921938 1(1) 2(2) 0(0) 4(2) 11 (7) Ipd
BBS7 chr4:122745483-122791652 1(1) 12 (11) 1(0) 3(2) 28 (20) synd
BBS12 chr4:123653856-123666098 0(0) 22 (13) 1(1) 10 (2) 35 (17) synd
FGFR3 chr4:1795038-1810599 0(0) 11 (9) 7(3) 24 (15) 87 (59) synd
PROPI chr5:177419235-177423243 0(0) 6 (4) 1 (0) 4(2) 14 (9) synd
PCSK1 chr5:95726039-95768985 0(0) 94) 1(1) 8 (6) 34 (26) ob
SIM1 chr6:100836749-100911551 0(0) 17 (10) 0(0) 9(7) 36 (23) ob;synd
PSMBS8 chr6:32808493-32812712 0(0) 14 (12) 3() 8 (6) 33 (25) Ipd
RAB23 chr6:57051790-57087112 1(1) 4(2) 1(1) 1(1) 17 (15) synd
MRAP2 chr6:84743419-84800605 0(0) 6 (6) 2(1) 2 (0) 12 (8) ob
CAV1 chr7:116164838-116201239 0(0) 2 (0) 0(0) 4(3) 12 (7) Ipd
LEP chr7:127881330-127897682 0(0) 3(2) 0 (0) 6(5) 14 (9) ob
CRHR?2 chr7:30691558-30739719 0(0) 8 (4) 0(0) 3(2) 19 (11) ob
GHRHR chr7:31003635-31019146 0(0) 5(1) 2(2) 9(7) 33(17) synd
BBSY9 chr7:33169151-33645680 0(0) 24 (16) 4(3) 15 (13) 62 (44) synd
VPS13B chr8:100025493-100889814 1(0) 64 (49) 6 (5) 42 (24) 168 (120) synd
TMEM67 chr8:94767071-94831460 2(2) 10 (7) 3(2) 6 (4) 45 (32) synd
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gene position stop gain missense splice synonymous all gene sets
TRIM32 chr9:119449580-119463579 0 (0) 1515 00 54) 21 (20) synd
AGPAT2 chr9:139567594-139581911 0 (0) 7 (5) 1(1) 9(8) 36 (27) Ipd
NTRK?2 chr9:87283372-87641985 0 (0) 8(7) 4 (3) 9(6) 42 (32) ob
BBIPI chr10:112658487-112679124 0 (0) 0 (0) 0 (0) 0(0) 2(2) synd
BDNF chr11:27676441-27743605 0 (0) 5@3) 0 (0) 1 (0) 10 (6) ob;synd
PAX6 chr11:31806340-31839509 0 (0) 4 (3) 2(2) 9 (6) 26 (18) synd
WT1 chr11:32409321-32457081 0 (0) 303 0 (0) 52) 18 (10) synd
BSCL2 chr11:62457733-62477091 0 (0) 9(5) 2(2) 11 (10) 35 (23) Ipd
MENI chr11:64570985-64578766 0 (0) 13(9) 1(1) 8 (4) 30 (17) synd
BBS1 chr11:66278118-66301084 0 (0) 13 (9) 3(2) 8 (%) 43 (33) synd
TBX3 chr12:115108058-115121969 0 (0) 5(5) 0 (0) 12 (5) 22 (13) synd
BBS10 chr12:76738265-76742222 0 (0) 9(7) 0 (0) 1(1) 11 (9) synd
CEP290 chr12:88442789-88535993 1(1) 2921)  8(7) 9(4) 69 (45) synd
T7CS chr14:89290496-89344340 0 (0) 7 (6) 2(1) 5() 24 (19) synd
MKRN3 chr15:23810453-23813166 0 (0) 10 (9) 0 (0) 7 (6) 17 (15) synd
MAGEL2 chr15:23888695-23892993 0 (0) 12 (11)  0(0) 54 18 (16) synd
NDN chr15:23930553-23932450 0 (0) 4 (4) 0 (0) 54) 11 (10) synd
SNRPN chr15:25068793-25223729 0 (0) 1(1) 1(1) 54) 26 (16) synd
SNORD116-1 chr15:25296622-25296719 0 (0) 0 (0) 0 (0) 0(0) 6(4) synd
rw chr15:25361691-25367623 0 (0) 0 (0) 0 (0) 0(0) 0 (0) synd
UBE3A chr15:25582395-25684175 0 (0) 5(5) 0 (0) 52) 19 (14) synd
GABRG3 chr15:27216428-27778373 0 (0) 4(2) 2(2) 11 (3) 25 (10) synd
BBS4 chr15:72978519-73030817 0 (0) 13(11)  3(@Q) 7 (6) 35(22) synd
PLINI chr15:90207599-90222648 0 (0) 12 (7) 1(1) 4 (1) 26 (17) Ipd
BBS2 chr16:56518258-56554008 0 (0) 4 (1) 1 (0) 8(7) 30 (16) synd
PMM?2 chr16:8891669-8943194 1 (0) 13 (11) 1(1) 4(2) 35 (28) Ipd
PTRF chr17:40554466-40575338 1(1) 4 (4) 0 (0) 5(4) 10 (9) Ipd
CRHRI chr17:43861645-43913194 0 (0) 9(7) 0 (0) 4 (1) 33 (19) ob
MKS1 chr17:56282796-56296966 0 (0) 15(12) 0(0) 2(1) 31(22) synd
GH1 chr17:61994552-61996212 0 (0) 54) 1(1) 9(8) 33 (23) synd
PRKARIA chr17:66409763-66547457 0 (0) 18(15) 33 15 (12) 76 (57) synd
MC4R chr18:58038563-58040001 0 (0) 14 (9) 0 (0) 2(2) 17 (12) ob
AKT2 chr19:40736223-40791302 0 (0) 909) 4 (4) 7 (6) 56 (41) Ipd
MEGFS8 chr19:42829760-42882921 0 (0) 42 (33) 10(7) 40 (25) 109 (78)  synd
INSR chr19:7112265-7294011 0 (0) 12(11)  6Q3) 36 (15) 81 (41) synd
MKKS chr20:10385427-10414887 0 (0) 13(11)  0(0) 6@3) 27 (19) synd
MC3R chr20:54823787-54824871 1(1) 7(5) 0 (0) 5(5) 18 (13) ob
GNAS chr20:57414794-57486250 1(1) 19(17) 22 26 (19) 60 (47) synd
IFT27 chr22:37154245-37172177 0 (0) 4 (4) 0 (0) 2(1) 12 (7) synd
MCHRI chr22:41075181-41078818 1(1) 13 (9) 0 (0) 8 (6) 26 (18) ob
GPC4 chrX:132435063-132549205 0 (0) 5@3) 1(1) 1(1) 11 (5) synd
GPC3 chrX:132669775-133119673 0 (0) 7 (5) 2(1) 6(4) 19 (14) synd
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gene position stop gain missense splice synonymous all gene sets

PHF6 chrX:133507341-133562822 0 (0) 220 2() 3(3) 13(9)  synd
OFDI chrX:13752831-13787480 0 (0) 11 (11)  0(0) 6 (4) 34(27)  synd
FMRI chrX:146993468-147032647 0 (0) 5@) 10 3(2) 21(12)  synd
MECP2 chrX:153287263-153363188 0 (0) 15(13)  1(1) 139)  30(23) synd
HDACS chrX:71549365-71792953 0 (0) 2(12)  0(0) 5(2) 15(10)  synd
CHM chrX:85116184-85302566 0 (0) 8(5)  2(1) 6 (4) 25(16)  synd

Table 21. Monogenic adiposity genes. In parentheses are the numbers of variants with
a MAC<6. Abbreviations: MAC: minor allele count, synd: syndromic obesity genes, Ipd:

lipodystrophy genes, ob: isolated obesity genes.

RESULTS

Across all monogenic obesity genes, very few protein-truncating variants were
observed (Table 21). Phenotypic traits of carriers were assessed directly by inspection to
see if carriers were obvious outliers with regard to their phenotypes. Only one man
carrying a protein-truncating variant in one of these genes, MCHR, stood out as having
and extremely high BMI of 53.1 kg/m” at the age of 18. His BMI remained high
throughout adulthood, with a dip down to 38.1 at age 79. Despite having an
extraordinarily high BMI he was not diagnosed with diabetes until he was in his mid
70s. Mutations in MCHRI are reported not only to increase risk for severe early onset
obesity, but also some loss of function mutations have been identified in underweight
individuals(227, 228).

To assess the overall impact of these variants, the results from previous single
variant analyses in both the imputed and exomes data sets were looked at for each gene
set, allowing us to look outside the confidence bands instead of applying a strict
significance threshold. Few variants clearly lay outside of the confidence bands on gene-

set specific QQ-plots. From the genome-wide chip data imputed to 1000 Genomes, this
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include variants in the syndromic obesity genes VPS/3B and WDPCP for PC2 at visit 1
(Figure 41 A), TRIM31, SDCCAGS, CEP290, and SNRPN with percent body fat at visit
1 (Figure 41 B), INSR and SNRPN with percent body fat at visit 2 (Figure 41 C), and the

isolated obesity genes LEP and NTRK?2 with PC3 at visit 2 (Figure 41 D).
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Figure 40. Monogenic variants outside of confidence bands from genome-wide

imputed data single variant tests.

Similar analyses in the exome sequencing data, show variants laying above the
confidence bands were in the isolated obesity MC3R and MCHR] for PC2 at visit 1

(Figure 41 A) and the syndromic obesity genes BBS2 and VPS13B for PC2 at visit 1
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(Figure 41 B). At least one of the top variants in each of these genes from the exome

sequencing data is a nonsynonymous variant.
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Figure 41. Monogenic variants outside of confidence bands from exome sequencing

single variant tests.

In both the exome sequencing and genome-wide chip data the lipodystrophy gene
LMNA falls above the confidence bands in the sex specific analyses, interestingly the
betas for these variants are positive in females and negative in males (Figure 42). This
reflects the sexually dimorphic nature of WHR where men tend to typically increase
WHR with increasing weight and women gain weight on their hips, thus decreasing
WHR. LMNA is a lipodystrophy gene affecting fat deposit location and size, making

individuals have an atypical body shape for their sex.
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Figure 42. lipodystrophy gene variants sex-specific association with WHR.

In addition to looking for variants that fall outside the confidence bands on the
QQ plots, the gene-set specific A provides insight into systematic inflation or deflation.
Across the combination of gene sets and traits, both enrichment and depletion were
observed with A ranging from 0.58 to 1.70 (Table 22), however this does not tell us if the

enrichment or depletion is significant. Some of sets are small, with the lipodystrophy
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gene set containing as few as 29 variants with a minor allele count of 5 or more. Further,
the sample size drops to 89 for male-specific analyses at visit 2. To assess significance,
analyses were repeated on 1,000 simulated N~(0,1) traits for the same individuals. Only
seven gene set and trait combinations were nominally significant (p-value <0.05); none
remained significant after correcting for multiple testing.

The nominally significant tests are in bold text in Table 22. In the genome-wide
imputed data, waist circumference at visit 1 p-values in isolated obesity genes were
deflated with a A = 0.73. Similarly, WHR at visit 1 p-values for isolate obesity genes
were deflated with a A = 0.77 (p = 0.036). For PC2 at visit 1, p-values in all monogenic
obesity genes are inflated, with a A = 1.12 (p = 0.044). The smallest p-values in this gene
set reside in VPS13B, which causes Cohen Syndrome, or WDPCP, which is thought to
modify Bardet-Biedl syndrome(58, 67).

In the exome sequencing data, WHR in females at visit 2 p-values in both the
isolated obesity and all monogenic obesity gene sets are deflated, with A = 0.58 (p =
0.014) and A = 0.84 (p = 0.034), respectively. PC3 at visit 2 p-values in isolated obesity
genes are deflated with A = 0.61 (p = 0.022). PC2 at visit 2 p-values were inflated with A

=1.65 (p = 0.020); the variants with the smallest p-values are in LMNA.
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Trait

arm visit 1

arm visit 2

BMI visit 1

BMI visit 2

BMI at age 18

BMI at max

hip visit 1

hip visit 2

PBF visit 1

PBEF visit 2

PC2 visit 1

PC2 visit 2

PC3 visit 1

PC3 visit 2

waist visit 1

waist visit 2

WHR females visit 1

WHR females visit 2

WHR adj BMI females visit 1
WHR adj BMI females visit 2
WHR males visit 1

WHR males visit 2

WHR adj BMI males visit 1
WHR adj BMI males visit 2
WHR visit 1

WHR visit 2

WHR adj BMI visit 1
WHR adj BMI visit 2

Table 22. Systematic enrichment of monogenic adiposity genes.

genome-wide imputed data sequencing
all isolated lipodystrophy syndromic all isolated lipodystrophy syndromic
A P-value A P-value A P-value A P-value A P-value A P-value A P-value A P-value

0.99 1.000 0.83 0.142 0.80 0.186 1.06 0.464 1.02 0.696 0.83 0.380 1.15 0.352 1.03 0.636
1.00 1.000 0.82 0.144 1.15 0.338 1.03 0.650 1.01 0.898 0.82 0.442 1.15 0.440 1.03 0.674
0.99 0.980 0.92 0.602 0.85 0.358 1.04 0.566 1.07 0.236 1.03 0.810 1.06 0.670 1.08 0.284
1.01 0.766 1.00 0.932 1.01 0.854 1.02 0.752 1.07 0.390 0.83 0.456 1.03 0.814 1.13 0.166
1.05 0.302 1.03 0.692 1.16 0.296 1.05 0.380 1.04 0.386 1.05 0.694 1.15 0.328 1.02 0.684
0.97 0.752 0.96 0.792 1.19 0.248 0.96 0.716 1.00 1.030 0.89 0.586 1.18 0.294 1.00 1.072
0.98 0.854 0.90 0.444 0.88 0.492 1.01 0.780 1.05 0.410 1.09 0.590 0.96 0.848 1.06 0.390
1.05 0.398 1.01 0.878 1.16 0.306 1.05 0.500 1.09 0.298 0.83 0.458 1.22 0.324 1.11 0.218
1.01 0.706 0.91 0.468 0.90 0.586 1.06 0.354 1.10 0.132 0.99 1.014 1.13 0.432 1.10 0.152
1.09 0.170 1.00 1.000 0.82 0.354 1.16 0.078 1.12 0.142 0.92 0.782 0.98 1.010 1.18 0.056
1.12 0.044 1.06 0.596 1.08 0.510 1.14 0.060 1.11 0.090 1.09 0.588 1.05 0.722 1.11 0.120
1.02 0.668 1.05 0.706 1.35 0.064 0.97 0.812 1.03 0.738 0.69 0.086 1.65 0.020 1.01 0.902
0.98 0.872 0.92 0.568 0.83 0.264 1.00 0.840 0.93 0.232 0.89 0.574 0.87 0.426 0.95 0.612
0.99 1.000 1.05 0.724 0.84 0.394 1.01 0.834 0.98 0.886 0.61 0.022 1.08 0.650 1.05 0.534
0.96 0.682 0.73 0.008 0.98 0.980 1.02 0.714 1.02 0.654 0.88 0.530 1.12 0.454 1.03 0.664
1.02 0.668 1.01 0.878 1.10 0.494 1.02 0.746 1.05 0.454 0.91 0.734 1.06 0.698 1.06 0.480
0.95 0.550 0.90 0.544 0.94 0.732 0.95 0.650 0.96 0.686 1.10 0.624 1.40 0.070 0.89 0.156
0.93 0.416 0.78 0.086 1.06 0.692 0.96 0.720 0.84 0.034 0.58 0.014 0.68 0.094 0.95 0.656
1.00 1.000 1.01 0.848 0.91 0.620 1.00 0.852 0.99 0.940 1.33 0.160 1.32 0.096 0.89 0.184
1.00 0.908 0.82 0.168 1.06 0.696 1.04 0.660 0.90 0.232 0.73 0.172 0.78 0.270 0.98 0.928
1.03 0.690 1.25 0.172 1.26 0.208 0.96 0.690 1.01 0.900 1.39 0.254 1.70 0.110 0.86 0.290
1.10 0.204 1.28 0.112 0.89 0.572 1.08 0.338 1.01 0.876 0.99 1.000 1.09 0.664 0.99 0.998
0.98 0.890 1.18 0.278 0.87 0.494 0.95 0.720 0.94 0.540 0.82 0.456 1.18 0.482 0.95 0.746
1.00 0.912 1.10 0.568 0.94 0.856 0.99 0.954 0.92 0.468 0.80 0.510 1.01 0.948 0.93 0.630
0.98 0.956 0.77 0.036 0.94 0.826 1.04 0.666 0.96 0.706 0.81 0.324 1.04 0.818 0.98 0.916
1.05 0.396 0.90 0.452 0.98 0.936 1.11 0.224 0.98 0.894 0.70 0.090 0.92 0.724 1.06 0.460
1.06 0.236 0.92 0.610 0.79 0.216 1.12 0.212 1.02 0.702 1.07 0.702 1.11 0.618 1.01 0.810
1.09 0.214 0.90 0.440 0.93 0.738 1.15 0.090 0.96 0.626 0.72 0.124 0.88 0.574 1.02 0.772
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To test for association of rare functional variants in these genes, SKAT-O
association tests were run on each trait combining all genes each gene set. Across all
obesity traits, three masks, and four gene sets, no test was significant after correcting for
multiple testing within trait. Conservatively treating each test as independent, Bonferroni
correction provides a significance threshold of 0.004 within each trait. The strongest
associations are shown in Table 23. Protein truncating variants and rare protein altering
variants predicted damaging by metalLR in syndromic obesity genes are suggestively
associated with PC3 at visit 2 (p = 0.00535), which captures central versus peripheral
adiposity. Protein truncating and rare protein altering variants are suggestively

associated with waist circumference at visit 2 (p = 0.00615).

trait list mask  p-value cMAF
PC3 visit 2 syndromic LR 0.00535  0.28649
waist visit 2 lipodystrophy NS 0.00615  0.21538

Table 23. Global tests of rare variant association. Abbreviations: cMAF: cumulative

minor allele frequency

DISCUSSION

Monogenic adiposity genes, by definition are known to have a large effect
change when altered. Here we have presented some suggestive evidence that variants in
MC3R, MCHRI, BB2, and VPS13B may impact central adiposity, as reflected in the
composite measure PC2 at visit 1. There is also systematic inflation of association with
PC2 at visit 1 for all monogenic adiposity genes across all variation from the genome-

wide imputed and PC2 at visit 2 for lipodystrophy genes from the exome sequencing

155



data. This supports the notion that a subset of variants in monogenic obesity genes also
plays a role in common obesity.

Systematic deflation of variants in these gene sets may be reflective of these
analyses being limited to type 2 diabetes controls, and individuals meeting diagnostic
criteria for diabetes for the first time at the current visit. Monogenic obesity patients are
at high risk for developing diabetes, and many forms of lipodystrophy feature disrupted
insulin signaling, resulting in exclusion bias that would prevent us from detecting an
association with these genes.

The amount of variation seen in these genes shown in Table 21, includes
individuals with type 2 diabetes along with the controls and newly diagnosed diabetics
used for analyses. By repeating analyses in type 2 diabetes patients, we may be able to
detect an effect in these monogenic genes; however, this comes with the added
uncertainty of the impact of diabetes treatments on each individual’s adiposity.

Monogenic adiposity genes provide attractive therapeutic targets for both the rare
cases where the gene is disrupted as well as for common obesity. Leptin injections are
very effective for the handful of individuals with congenital leptin deficiency(38).
Recently, the leptin injects have regained popularity, as their use in individuals with
leptin deficiency due to lipodystrophy has recently been approved by the FDA(229,
230). Unfortunately it is not effective for common obesity, in which a majority of people
is leptin resistant. More recently, MCHR1 antagonists have been introduced as potential
obesity therapeutic agents(231-234). However none of these have reached the stage of

clinical trials yet.
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Monogenic adiposity genes are easier to identify than common adiposity genes.
The biological pathways disrupted by monogenic obesity genes are sometimes disrupted
in common obesity to a lesser extent, nonetheless making the pathways plausible

therapeutic targets for common obesity.
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Chapter 7: Conclusions

In this dissertation we have investigated various measures of adiposity that may
better capture genetic aspects of obesity and the role of common and rare genetic
variation related to these measures utilizing the resources developed Starr County, Texas
Mexican Americans. In this chapter we synthesize the results and highlight findings
regarding potentially new variation that may be involved in adiposity both through lipid
metabolism and neurological development and signaling pathways, which all play a role
in hunger and satiety.

The two multivariate methods, principal components analyses and meta-analysis
of multiple traits, have different genetic results. The first, principal components analysis,
used the raw obesity measures as input. These components were then adjusted for age
and sex. Alternatively, the age and sex adjusted residuals could have been used.
However, this would not capture a person’s objectively measured shape. Principal
components analysis showed that BMI, the most widely used measure of obesity,
captures 82% of the variation in the array of anthropometric traits used here. This
indicates most variation in adiposity has been well captured in studies of adiposity,
despite the small portion of heritability explained. Two additional composite measures
of adiposity, PC2 and PC3 were shown to capture different aspects of adiposity,
although they capture a much smaller proportion of the variation in obesity
measurements. PC2 appears to capture the amount of adipose tissue and if it is located
above or below the waist. It is through this measure that we replicate a prior suggestive
association with subcutaneous adipose tissue to visceral adipose ratio. The later requires

medical imaging to obtain making it cost prohibitive on a large scale. The use of a
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principal components strategy based on more readily obtainable measures should
facilitate implementing such studies in larger samples. PC3 captured peripheral versus
central adiposity, which is quite similar to the ratio of arm circumference to waist
circumference. PC3 identified multiple functionally plausible associations including rare
variants in ACSL1, a gene involved triglyceride synthesis and beta oxidation; DSCAM
which is expressed in the brain and pituitary gland, and GCM2, a key switch in neuronal
development. The identification of these candidates suggests that by adding arm to waist
ratio to the set of routinely to anthropometric measures has the potential for identifying
more genes effecting fat distribution. This highlights our argument that more refined
biologically relevant measures should enhance our ability to implicate genes.

The second multivariate approach was to meta-analyze the results across the
traits at two time points while adjusting for the correlation between the test statistics.
Essentially, this combines the evidence of a variant’s or gene’s involvement for each
trait, but this cannot be done without considering that the traits, and therefore results, are
correlated with each other. This was done using the method CPASSOC to adjust for the
correlation between test-statistics in the meta-analysis(176). This approach also
identified biologically plausible associations, including a variant near the gene encoding
a key skeletal muscle protein, myosin heavy chain 13, and DLG4, which is oriented head
to head with ACADVL. DLG4 and ACADVL are both functionally interesting, as DLG4
is involved in synaptic junction maintenance and ACADVL is involved in beta-oxidation
of fatty acids. While this approach did have some success, it is intended to detect
plieotropy. The traits studied here are all measures of the same phenotype, distribution of

body fat. However each measure excels in capturing a different dimension of adiposity.
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Despite having different strengths, the measures are correlated with each other. The
correction for this correlation decreases the weight of each trait, hindering the power of
this approach. It does have the potential to be very powerful, particularly when
considering true pleiotropic effects with different metabolic outcomes.

With the same sets of obesity traits measured at two different time points there
are multiple approaches for dealing with them. Here I analyzed the measured as two
different outcomes. Another approach would be to look at how individuals changed over
time. For example one could analyze the average annual change in each measure;
however, this would limit samples size to the smaller subset that did not have diabetes at
the second visit. This approach will provide a different set of association results, and
may identify additional obesity loci. Furthermore initially one may think highly
correlated results would be expected. This is not what we observe, with good reason.
Because we have excluded individuals previously diagnosed with diabetes from these
analyses, the subset of individuals analyzed from the second visit is a non-random
subset. This introduces an exclusion bias by removing the subset that developed diabetes
over a short time span, which had a higher average BMI at the first visit. To better
understand the impact of exclusion bias as well as the adiposity profile of those most at
risk for developing diabetes exploratory analyses such as looking at the correlation
between genetic associations at visit 1 and visit 2 using only the subset of people that did
not develop diabetes. A useful multivariate approach to understand adiposity profiles in
those most likely to develop diabetes would be to make a composite measure based on
linear discriminant analysis aimed at separating those that develop diabetes between

visits from those that do not. This may help identify adiposity profiles at increased risk
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for developing diabetes allowing for additional intervention aimed at preventing the
development of diabetes. The resulting linear combinations of adiposity traits could also
be analyzed for genetic associations.

Through this work a number of genes that may be involved in body fat
distribution have been identified; however, with most only being suggestively associated
additional work is needed to confirm these associations. First, variants that were imputed
at a lower quality must undergo validation genotyping. Some variants, such those In
GABRAG6 and GABRB_? are biologically compelling; particularly in light of recent rodent
models showing that GABA producing neurons are involved in compulsive sucrose
seeking(225, 226).

To bolster statistical support for the involvement of these novel genes in obesity,
replication in an independent data set is ideal. There are several options here, depending
on the phenotype the association was observed with. BMI and WHR are readily
available. With the 43 published genome wide association studies, some of these
variants have been interrogated before. While these associations have not been seen
before, looking at other studies’ sub-significant results is one source of replication.
Many of the variants of interest, particularly rare coding variants, will not have been
tested because smaller arrays and imputation reference panels were used. Studies using
larger data sets are still underway; in fact these data have been contributed to multiple
consortia looking at these traits. BMI and WHR for the genome-wide chip data imputed
to 1000 Genomes are part of the HISLA Consortium, which is meta-analyzing BMI, and

WHR across many Hispanic studies. The exome sequencing data set is a portion of the
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T2D-GENES consortium, which plans to analyze both BMI and WHR across 13,000
samples.

In addition to these consortia, additional individuals form Starr County are
currently being genotyped: 2000 samples are undergoing exome sequencing, 900
samples are being genotyped on a chip custom designed by the PAGE consortium which
is enriched for low frequency coding variation previously seen in minority samples.
These would be ethnically matched to the current data, and would have the same set of
anthropometric measures available.

The clearest limitation of this work is the lack of power. With a limited sample
size ranging from 825 all the way down to 89 in male specific analyses at the second
visit, these analyses are underpowered, particularly for rare and low frequency variants.
With the largest sample size here we only have 80% power to detect an effect size of at
least 0.7 standard deviations in a variant with a 1% minor allele frequency. This is a
much larger effect size than has been detected thus far. There are multiple options for
overcoming the lack of power when it comes to low frequency variants.

The most obvious option is increasing sample size. One consortium, GIANT is
aiming to have more than 1 million individuals in their analyses of data sets imputed out
to 1000 Genomes. In the GIANTexomes consortium, almost 500,000 individuals with
exome chip data are being meta-analyzed, with additional studies potentially
contributing to replication analyses. The exome chip captures primarily rare and low
frequency coding variants and has a much-reduced per-sample cost in comparison to
sequencing. However, increasing power by increasing sample size has its limitations.

BMI and WHR are “extra traits” collected by most groups studying the genetic outcomes
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of other phenotypes and diseases; however, the expanded set of adiposity traits used here
are often not measured. With many contributing studies there are sources of bias and
error that can be difficult to detect and account for. Some of the outcomes data were
ascertained for may alter body composition, as type 2 diabetes and subsequent treatment
does. Additionally ascertainment schemes can introduce bias for add-on traits.

Another means to increase power is to bias sample collection to include carriers
of rare variants of interest. For years this approach has been implemented by genotyping
individuals with the most extreme outcomes. With sequencing data in hand, we can also
enrich for a particular variant of interest by recruiting family members into the study. In
the case of family members different analytical approaches, such as linkage, that
leverage relatedness rather than adjust for relatedness are necessary.

While we know that a majority of the estimated heritability is unaccounted for
there are many association signals that are statistically convincing. However, there has
been a lack of functional follow up work to understand the biological role of these
variants and genes. Functional follow up is an expensive and time-consuming prospect.
It is our responsibility as quantitative geneticists to present molecular biologists with a
compelling case that these genes and variants are worth their investment. To do this,
high throughput datasets, such as the GTEx project which has gene expression data for
many tissues as well as genotypes, can be used to show a gene is expressed in a relevant
tissue and if a variant has an impact on gene expression(209). For coding variants, the
functional prediction can be taken a step beyond in the in silico prediction tools used to
annotate variants. Existing 3D models of the protein can be utilized to view the location

and predict the impact of an amino acid change on protein function. Additional data
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types, such as methylation data, but can also be used to make the case that a gene and
variant are involved in obesity. Once we have made this case for a gene, molecular
biologists can then study the impact of a particular variant and assess the gene’s
biological role. The long-term goal of understanding the underlying biology is to identify
therapeutic targets. Diet and exercise are only effective for long-term weight control in a
subset of people. Because the obesity epidemic shows no signs of slowing down, it is

more important now than ever to explore therapeutic targets to lessen the obesity crisis.
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Appendix Figure 1 Scatter plot matrix of anthropometric measures and resulting
PCs for visit 1. The bottom half shows the scatter plot for each pair of traits, with PC2
in the bottom row. The upper half shows the Pearson correlation coefficient for the two
measures. Histograms of the traits are displayed in the middle. Points are color coded by
sex and obesity status. Obese males are dark blue; non-obese males are light blue; obese

females are red, non-obese females are pink
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Appendix Figure 2 Scatter plot matrix of PCs and anthropometric measures for

visit 2. The bottom half shows the scatter plot for each pair of traits, with PC2 in the

bottom row. The upper half shows the Pearson correlation coefficient for the two

measures. Histograms of the traits are displayed in the middle. Points are color coded by

sex and obesity status. Obese males are dark blue; non-obese males are light blue; obese

females are red, non-obese females are pink
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