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TARGETING ZINC FINGER 304 (ZNF304) BY DUAL ASSEMBLY 
NANOPARTICLES (DANP) IN OVARIAN CANCER 

 
Burcu Aslan, M.S. 

Supervisory Professor: Gabriel Lopez-Berestein, M.D. 

Abstract 
 

Ovarian cancer (OC) is a highly metastatic disease, but no effective strategies to 

this process currently are known. Here, an integrated computational analysis of 

The Cancer Genome Atlas ovarian cancer dataset coupled with experimental 

validation identified a novel zinc finger transcriptional factor 304 (ZNF304) as one 

of the key factors for ovarian cancer metastasis. High tumoral ZNF304 

expression was associated with poor overall survival in ovarian cancer patients. 

Through reverse phase protein array analysis, we demonstrated that ZNF304 

promotes multiple proto-oncogenic pathways important for cell survival, 

migration, and invasion. ZNF304 transcriptionally regulates β1 integrin, which 

subsequently regulates Src/focal adhesion kinase and paxillin and prevents 

anoikis. Targeting ZNF304 using small interfering RNA (siRNA) reduces cell 

survival, anoikis and migration in vitro. A novel dual assembly nanoparticle 

system (DANP) was designed for in vivo delivery and sustained gene silencing. 

DANP-ZNF304 siRNA led to sustained ZNF304 silencing for 14 days, increased 

anoikis, and reduced tumor growth in orthotopic murine models of ovarian 

cancer. Taken together, ZNF304 is a novel transcriptional regulator of β1 

integrin, promotes cancer cell survival, and protects against anoikis in ovarian 
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cancer; DANP is a safe and efficient delivery system that provides prolonged 

gene silencing following systemic administration. 
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CHAPTER I: Introduction 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
(Parts of this section were adapted with permission in part from Aslan, B et al., Nanotechnology in 
Cancer Therapy from Journal of Drug Targeting, 2013; and from Aslan, B et al., Chitosan 
Nanoparticles, Encyclopedia of Nanotechnology, 2012) 
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Nanotechnology In Cancer  
 

Cancer is one of the leading causes of morbidity and mortality worldwide and it is 

expected to be the major cause of death in the coming decades (Bray et al., 2012). 

Despite the advances and extensive research on novel approaches, current treatments 

are still limited to surgery, radiotherapy, chemotherapy, and immunotherapy. Treatment 

failure is related to either drug resistance, pharmacological or toxicity issues in most 

instances. In contrary, utilization of nanocarriers leads to increased therapeutic index 

and tumor tissue concentrations of the drugs and can enhance the efficacy of currently 

used regimens by providing superior pharmacokinetic features, extended blood 

circulation time, and elevated cellular uptake that are major factors for an improved 

therapeutic window and subsequent clinical success. Advances in nanotechnology are 

also expected to provide foundation for development of novel therapeutics and wide 

applications of diagnostic methods in cancer. 

 

Key factors in selecting biomaterials are biocompatibility, biodegradability, safety and 

ease of assembly in the structures with the desired characteristics. Taken together, 

biomaterials and nanotechnology offer a unique opportunity to improve survival in 

cancer patients. In this part of the chapter, I will focus on strategies of nanoparticle 

design and highlight the latest developments in cancer nanomedicine. 
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Nanoparticles 

 

The history of nanoparticles starts in 1950s with a polymer-drug conjugate that was 

designed by Jatzkewitz (Jatzkewitz, 1954), followed by Bangham who discovered the 

liposomes in mid-1960s (Bangham and Horne, 1964), (Bangham et al., 1965). In 1972, 

Scheffel and colleagues first reported albumin based nanoparticles (Scheffel et al., 

1972), which formed the basis of albumin-bound paclitaxel (Abraxane). Abraxane was 

approved in 2005 by US Food and Drug Administration (FDA) for the treatment of 

breast cancer (Gradishar et al., 2005) and recently approved for the treatment of lung 

cancer (Casaluce et al., 2012). Abelcet, amphotericin B lipid complex, was approved by 

FDA (Chonn and Cullis, 1995) for the treatment of invasive fungal infections and it is 

widely used to treat systemic fungal disease, which is a source of major morbidity in 

cancer patients (Herbrecht, 1996).  

 

In the 1980s, Maeda and colleagues observed the enhanced accumulation of 

nanoparticles in the tumor site due to the altered structure of tumor vasculature 

(Matsumura and Maeda, 1986). Blood vessels in tumors are different compared to 

normal blood vessels due to abnormal and leaky architecture. Impaired regulation in 

blood vessels leads to ‘enhanced permeability and retention (EPR) effect’ (Maeda et al., 

2006). The reduced lymphatic drainage, increased size of fenestrations and gaps 

between endothelial cells, varies from 200 to 1200 nm, in contrast to normal 

endothelium with pores with 10 to 50 nm contributes to EPR effect. This effect has 

become a hallmark of the solid tumor vasculature leading to increased nanoparticle 
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accumulation in the tumor site due to ‘passive targeting’. Hereby drug carriers exhibit 

enhanced therapeutic efficacy in tumors, in addition to reduced side effects and toxicity.  

Despite the advantages of passive targeting approaches, several limitations exist that 

still needs to be eliminated in the future. Certain tumors are difficult to deliver due to 

lack of EPR effect, hence the permeability in blood vessels may not be identical 

throughout the same tumor (Yuan et al., 1995). To overcome these limitations, 

nanoparticles are designed to bind to specific targets (active targeting) through the 

ligands that recognize particular receptors in target cells.  

Active Targeting 

 

Various receptors on the tumor cell surface have been studied as potential sites to 

achieve selective delivery. Nanoparticle surface can be modified by a variety of 

conjugation chemistries to attach specific receptor ligands (Torchilin, 2005). 

Nanoparticles recognize and bind to their targets with subsequent uptake through 

receptor mediated endocytosis. Once internalized, the drug or payload is released in the 

cytoplasm or nucleus. Such receptor ligands may be peptides, vitamins, antibodies, 

carbohydrates and other chemical structures. For instance, the overexpression of 

transferrin and folate in certain tumors have been exploited to deliver nanoparticles 

conjugated with these receptor’s ligands (Yang et al., 2010), (Fernandes et al., 2008). 

Another example is the ανβ3 integrin, which is overexpressed in a wide range of tumors 

and angiogenic tumor-associated endothelium, and is largely absent in normal tissues. 

Han and colleagues have recently reported that the administration of chitosan 

nanoparticles conjugated with cyclic Arg-Gly-Asp (RGD) led to increased tumor delivery 
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and enhanced anti-tumor activity in ovarian cancer models (Han et al., 2010) (Fig.1). A 

variety of targeting agents such as monoclonal antibodies (mAbs) and nucleic acids 

(aptamers) are also used to enhance tumoral uptake of nanoparticles. Using mAbs for 

targeting in cancer therapy was first described by Milstein in 1981 (Warenius et al., 

1981). Since then, antibody-based targeting has made a significant progression as a 

feasible strategy in cancer therapy. Clinically approved and widely used mAbs include 

rituximab (Rituxan) for the treatment of non-Hodgkin’s lymphoma (James and Dubs, 

1997), trastuzumab (Herceptin) for breast cancer treatment (Albanell and Baselga, 

1999), bevacizumab as an angiogenesis inhibitor in colorectal cancer (Ferrara, 2005). 

Since 1997, 12 mAb-based therapy have been approved and a large number of 

antibody-based strategy is in progress for preclinical or clinical trials (Scott et al., 2012). 

Conjugation of an antibody directly to a therapeutic agent has been also explored. 

Mylotarg was the first approved formulation with this regard in clinic. Calicheamicin is a 

chemotherapeutic agent and it was conjugated with the CD33 antibody (Peer et al., 

2007). Zevalin and Bexxar are radio-immunoconjugates formulated by using CD20 

antibody and approved for the treatment of non-Hodgkin’s lymphoma (Grillo-López, 

2002), (Blagosklonny, 2004). 

 

Recently, nucleic acid aptamers have gained immediate attention after the in vitro 

selection of functional nucleic acids (termed SELEX) that was discovered in 1990 

(Ellington and Szostak, 1990, Tuerk and Gold, 1990). Aptamers are single stranded 

oligonucleotides that can modulate molecular targets with high specificity and affinity 

through their three-dimensional structures. Aptamers exhibit significant advantages 
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such as the technical possibility in selection and chemical modification, specificity to 

target any given molecule, its substantial bio-activity in vivo, the low production costs, 

the simplicity in synthesis and storage for the marketing (Scaggiante et al., 2013). There 

are currently several aptamers that are in clinical trials (Scott et al., 2012). For instance, 

Pegaptanib was approved by FDA and used as a VEGF-specific aptamer that binds to 

VEGF and blocks the interaction with its receptor (VEGFR) thereby inhibiting its activity 

(Gragoudas et al., 2004). Moreover, aptamers seem alluring to modify the surface of 

nanoparticles for the design of targeted drug delivery systems. 

 

Drug Delivery Systems  

Liposomes  

Liposomes are self-assembling nanoparticles formed by dispersion of phospholipids 

with hydrophilic heads and hydrophobic anionic/cationic long chain tails, creating closed 

membrane structures. Hydrophilic agents such as drugs and siRNA or hydrophobic 

drugs can be incorporated into the inner compartments and, into the hydrophobic 

membranes respectively. Currently, several liposomal anticancer drugs are used 

successfully as carriers in the clinic or studied in advanced stages of clinical trials. For 

instance, doxorubicin loaded liposomes were modified with polyethylene glycol (PEG) 

that alters the plasma pharmacokinetics and tissue distribution of doxorubicin and this 

PEGylated liposomal doxorubicin (Doxil) carriers, were approved by FDA for the 

treatment of Kaposi’s sarcoma (Patel, 1996). Along with Doxil, approved liposomal 

formulations include non-pegylated liposomal doxorubicin (Myocet by Elan), liposomal 

daunorubicin (DaunoXome by Gilead), liposomal amphotericin B (abelcet), liposomal 
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cytarabine (DepoCyte by SkyePharma/Enzon/Mundipharma) and liposomal cisplatin 

(Lipoplatin by Regulon) (Huwyler et al., 2008). On the other hand, antisense 

oligonucleotides are also attractive to be used in liposomal formulations for cancer 

therapy (Tari et al., 1995). Antisense oligonucleotides can selectively inhibit disease-

causing genes and thereby inhibiting the production of disease associated-proteins. For 

instance, liposomal formulation of bcl-2 oligos was demonstrated to inhibit bcl-2 protein 

production thereby leading to a growth inhibition in follicular lymphoma cell lines (Tormo 

et al., 1998). Furthermore, liposomal bcl-2 antisense oligos were studied to evaluate the 

in vivo behavior in rodents. The liposomes were widely distributed and no significant 

toxicity was observed over 6-week treatment of intravenously administered liposomal 

Bcl-2 oligos (Gutiérrez-Puente et al., 1999). Another example is raf antisense 

oligonucleotide that inhibits c-raf that leads to enhanced sensitivity to radiation and 

chemotherapy. LErafAON is the liposomal formulation of raf oligonucleotide that 

showed success for advanced solid tumors in its Phase I study (McGinnis et al., 2012). 

 

Polymeric micelles 

Polymeric micelles are formed from self-assembly of amphiphilic-block copolymers 

ranging between 10-100 nm in size. They are composed of a hydrophobic core and a 

hydrophilic corona. Micelles can improve the bioavailability of hydrophobic drugs, confer 

protection and inactivation of the drugs under the effect of biological surroundings 

(Torchilin, 2001). Polymeric micelle formulations are used for both passive and active 

targeting in anticancer therapy. For example, Genexol-PM is currently under 

investigation as a paclitaxel loaded polymeric micelle formulation for the treatment of 
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breast, lung, and pancreatic cancer. Pluronic and NK911 are doxorubicin loaded micelle 

formulations that are also currently studied in Phase I (Sultana et al., 2013). NC-6004 is 

carboplatin loaded formulation that is also studied in early clinical trials for the treatment 

of solid tumors (Wilson et al., 2008). Furthermore, there are polymeric micelle 

formulations that are designed for active targeting and modified with different ligands 

such as folate (binds to folate receptor) and mAb C225 (binds to EGF receptor). In a 

nude mice xenograft model, doxorubicin loaded PLGA-b-PEG polymeric micelle 

formulation has been shown to increase tumoral uptake and significant tumor 

regression (Yoo and Park, 2004). 

Dendrimers 

Dendrimers are hyperbranched nanoparticles composed of a core, branching units and 

functionalized terminal groups. The major advantage of dendrimers is that multiple 

anticancer agents can be incorporated in the central core or conjugated to functional 

end groups (Lee et al., 2005). In addition, depolymerization of dendrimers can be 

controlled to modify release profiles of the payload (Wong et al., 2012). For example, 

polyamidoamine (PAMAM) dendrimers can be tailored to enhance their biocompatibility 

and release properties through PEGylation, acetylation, and modified with anionic, 

neutral ligand molecules (Cai et al., 2013). As an example, doxorubicin was conjugated 

to PEGylated PAMAM dendrimers by acid-sensitive linkages in order to trigger the 

release of doxorubicin in acidic conditions (Zhu et al., 2010). Evaluations of pH-

dependent payload release, cytotoxicity, cellular uptake and intracellular localization 

were performed using SKOV-3 ovarian cancer cell line. In addition, dendrimers with 

highest PEGylation degree showed the maximum- accumulation in SKOV3 tumor 
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xenografts in mice. On the other hand, polylysine dendrimers conjugated with a ligand 

for α5β1 also known as fibronectin receptor was designed for tumor targeting. Activated 

α5β1 is highly expressed in breast cancer cells compared to non-transformed cells and 

it plays a vital role in invasion and metastasis pathways in cancer. PHSCN peptide is a 

ligand that interacts with a specific region of the α5 subunit of integrin thereby blocking 

its activity. Polylysine dendrimers can be modified with this ligand for tumor targeting 

and the treatment with this carrier led to a significant reduction in the number of invasive 

human breast cancer cells (Yao et al., 2011). Furthermore, when tumor bearing mice 

were treated with polylysine dendrimers modified with integrin ligand, lung colony 

formation was obviously inhibited. In conclusion, despite the fact that dendrimers are 

extensively used for the design and development of therapeutics, further research is 

needed to improve its immunogenicity to assure the safety of long-term administration in 

clinic. 

Polymeric nanoparticles 

Polymer based delivery systems show great promise for biomedical applications due to 

their high biocompatibility and flexibility in which their structures can be modified to 

engineer multifunctional nanoparticles with desired shape, size, internal and external 

morphology as well as surface modifications. During the preparation stage of 

nanoparticles, polymers can be utilized through isolation from their natural sources such 

as chitosan that is produced from chitin or they can be synthesized in the desired 

structure such as poly-lactic-co-glycolic acid (PLGA). PLGA, arginine, chitosan, human 

serum albumin, alginate, and hyaluronic acid have been widely used in preclinical 

studies for drug delivery. Polymer based nanoparticles shows great promise in 
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preclinical studies. For example, chitosan nanoparticles are one of the most popular 

polymeric delivery system that is widely used in particular gene delivery. Chitosan 

nanoparticles serve as an attractive candidate for small interfering RNA (siRNA) 

delivery due its positive charge. Electrostatic interactions between negatively charged 

siRNA and positively charged chitosan create a safe carrier for siRNA in the blood 

circulation. Kim and coworkers analyzed the therapeutic effects of src and fgr inhibition 

using siRNA incorporated chitosan nanoparticles in orthotopic models of ovarian 

cancer. Dual silencing of src and fgr with chitosan nanoparticles in vivo, led to a 

significant reduction in tumor growth (Kim et al., 2011). 

 

For clinical studies, albumin bound paclitaxel (abraxane) is the first polymeric 

formulation that is approved by FDA for the treatment of metastatic breast cancer 

(Gradishar et al., 2005) and it is recently approved for the treatment of lung cancer. 

Abraxane exploited the ability of albumin to bind to 60-kDa glycoprotein (gp60) receptor 

(albondin) (Miele et al., 2009). After this receptor-ligand interaction, albumin-gp60 

complex triggers caveolin-1 mediated uptake of protein bound plasma molecules. On 

the other hand, albumin also binds to osteonectin (secreted protein acid rich in cysteine 

[SPARC] due to a sequence homology with gp60. SPARC is highly expressed in 

particular neoplasms (breast, prostate, and lung cancer) and contributes to intratumor 

accumulation of all albumin-bound drugs (Hawkins et al., 2008). In addition, Livatag 

(Doxorubicin Transdug) is a poly (isohexyl cyanoacrylate) nanoparticle formulation 

loaded with doxorubicin and approved for the treatment of multidrug-resistant protein-

overexpressing hepatocellular carcinoma (Sultana et al., 2013).   
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Characteristics of Nanoparticles  

 

Physical and chemical characteristics of nanoparticles including size, charge, shape, 

and surface properties individually play major roles for in vivo biodistribution and cellular 

internalization of these drug carriers. In this section, we will focus on the major 

parameters that determine the lifetime and delivery of the nanoparticles. 

Size  

Particle size is one of the crucial primary factors in determining the circulation time of 

the nanoparticles. After systemic administration, nanoparticles accumulate in spleen 

due to mechanical filtration and removed by reticulo-endothelial system (RES). For 

example, as the main constituent of RES, Kupffer cells play a major role for the removal 

of the particles accumulated in the liver (Moghimi et al., 2001). Currently, 100-200 nm is 

accepted as optimal size for drug delivery systems since nanocarriers take the 

advantage of EPR effect in tumors and avoid filtration in the spleen whereas they are 

large enough to avoid the uptake in the liver (Petros and DeSimone, 2010). Particles 

with a smaller diameter than 5nm are rapidly cleared from blood circulation through 

renal clearance or extravasation (Wong et al., 2008), (Alexis et al., 2008), (Choi et al., 

2007). However, particles with a size up to 15 µm; accumulate in liver, spleen and bone 

marrow (Petros and DeSimone, 2010).  

 

In addition, particle size has a significant impact on cellular internalization through 

phagocytosis, macropinocytosis, caveolar-mediated endocytosis, clathrin-mediated 

endocytosis. As mentioned above, size range has high influence on biodistribution and 



 12 

cellular internalization. In addition, recent studies show that the geometry of the 

particles is as important as size range in terms of cellular internalization and distribution 

(Geng et al., 2007), (Decuzzi et al., 2010). In addition, Gratton and coworkers studied 

the correlation between shape and size on the internalization frequency in HeLa cells 

and interestingly, the particles with different shapes but similar volumes were 

internalized at extremely assorted rates (Gratton et al., 2008). In a distinct study, Godin 

and coworkers demonstrated that the accumulation of discoidal particles in breast 

tumors were five times higher than spherical particles despite their similar diameters 

(Godin et al., 2012). As a result, accumulating evidence shows that although size is a 

major parameter in the design of nanocarriers for decades, the shape as well, has a 

high impact along with the size. 

Shape 

Degradation properties of nanoparticles and subsequent payload release have been 

shown to be dependent on particle shape (Bawa et al., 1985). The importance of 

surface area and diameter were also demonstrated to be critical for cellular uptake of 

the nanoparticles (Panyam et al., 2003), (Dunne et al., 2000). Hemi-spherical particles 

were generated as sustained release devices in order to achieve zero-order. Spherical 

particles, however, can provide different degradation profiles as their shapes are 

susceptible upon degradation (Champion et al., 2007). Additionally, deformability of 

spherical nanoparticles is also playing a key role to avoid spleen filtration since spleen 

exhibit asymmetric filtering units (Moghimi et al., 2001). Therefore, nanoparticles which 

are especially larger than 200 nm should be either deformable enough to bypass the 
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filtration in spleen or flexible as erythrocytes that can avoid filtration even with 10 µm 

diameter. 

In an elegant study, Decuzzi and co-workers studied the effect of size and shape of 

nanoparticles on biodistribution and tumor accumulation after intravenous injection. 

Spherical silica particles were generated in different sizes ranging from 700 nm to 3µm 

also in different shapes such as quasi-hemispherical, discoidal, and cylindrical silicon 

based particles. After a single, intravenous particle injection to tumor bearing mice, 

tumors and the major organs including liver, spleen, heart, lungs, kidneys, and brain 

were analyzed for silicon content and histological evaluation. This study elucidated the 

importance of shape properties of nanoparticles in addition to size distribution, 

indicating that geometry of the nanoparticles contributes to opsonization, in vivo 

biodistribution, the strength of adhesion and internalization rate in the cells (Decuzzi et 

al., 2009). 

Surface characteristics 

Surface properties play a key role on the period of nanoparticles in blood circulation 

subsequent systemic administration. After administration, nanoparticles may be 

associated with proteins, which are known as ‘opsonins’, such as immunoglobulins, and 

complement proteins that contribute to recognition of nanoparticles by macrophages. 

Therefore, opsonization is the key factor that determines the fate of nanoparticles to an 

extent in blood circulation.  Modifying the surface of nanoparticles can be used as a 

strategy to enhance or reduce their circulation time in blood and tissues. For instance, 

negatively charged nanoparticles result in rapid RES clearance from circulation (Zahr et 

al., 2006). Cationic surfaces may induce cell membrane permeability and enhance 
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cellular uptake (Chen et al., 2009) however, cationic nanoparticles prepared from 

polycationic polymers such as polyethyleneimine and diethylaminoethyl-dextran can 

induce disruption in the cell, through formation of holes, membrane thinning and 

membrane erosion in lipid bilayers (Leroueil et al., 2008).  On the other hand, the use of 

neutrally charged particles as well as particles coated with polyethylene glycol (PEG) 

lead to a major reduction of particle uptake by the RES (Torchilin and Trubetskoy, 1995, 

Otsuka et al., 2003). 

 

The surface modification of PEGylated liposomes with rat serum albumin (RAS), 

compared with non-modified PEGylated liposomes, showed prolonged blood circulation 

in rats. To further analyze, total serum protein amounts were determined quantitatively 

in the absence and presence of RAS coating. As a result, RAS-modified liposomes 

significantly reduced the total amount of serum proteins that can induce opsonization in 

serum (Furumoto et al., 2007). In addition, doxorubicin-loaded and albumin-modified 

liposomes demonstrated enhanced pharmacokinetics and tissue distribution of 

doxorubicin (Yokoe et al., 2008). Tumor accumulation and therapeutic index of albumin-

modified PEGylated liposomal doxorubicin was significantly higher than non-modified 

PEGylated liposomal doxorubicin indicating that surface modification of nanoparticles 

with albumin, enhances their safety and effectiveness. 

 

In addition, nanoparticle surface can be modified with ligands that recognize and bind to 

specific receptors. Also, monoclonal antibodies can be conjugated onto nanoparticle 

surface to provide specificity. For instance, nanoparticles modified with HER2 specific 
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antibody, delivers the drug, particularly HER2 expressing cells (Kirpotin et al., 2006). 

Torchilin’s group has also designed different approaches for active targeted delivery to 

the tumor with liposomes and micellar delivery systems. They have developed 

monoclonal antibody 2C5-modified doxorubicin loaded liposomes to enhance the 

therapeutic activity of the payload in brain tumor xenografts (Gupta and Torchilin, 2007) 

These studies demonstrate that surface characteristics are fundamentally important for 

nanoparticles to avoid  their rapid clearance from the blood circulation before reaching 

the tumor site, and to provide active targeting through surface modifications with 

antibodies or ligands. 

Release characteristics 

The release properties of nanoparticles determine the efficiency of the treatment at 

target sites. Conventional drugs used in clinic have a narrow therapeutic window due to 

rapid increase and decrease of plasma drug levels after systemic administration, 

resulting in bordering doses with subsequent side effects (Figure 1A). However, drug 

delivery systems aims at delivering the desired concentration of the drug within the 

therapeutic range at target site, culminating minimized side effects and discomfort in 

patients (Figure 1B). 
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Figure 1. Drug levels in plasma after systemic administration  
Graphs representing the drug levels in plasma over time after administration of (A) 
conventional drugs and (B) drug delivery for sustained release. 

 

 

Constant plasma drug levels over a long period of time can be attained through zero-

order release kinetics that can be achieved by using osmotic pressure, mechanical 

pumping, and electrokinetic transportation (Sakamoto et al., 2010). Besides, 

biocompatible polymeric nanoparticles are also used to prolong the period of drug 

release due to their long biodegration time in a range from days to months. Particularly, 

molecular weight is a major parameter in biodegradation rate of polymers. For instance, 

poly lactide-co-glycolide (PLGA) and poly lactic acid (PLA) were both used in order to 

study the sustained release of docetaxel after intravenous administration (Musumeci et 

al., 2006). Release rate of the drug has been shown to highly associate with molecular 

weight of the polymers. Furthermore, polymer with high molecular weight led to slower 

degradation of the material, compared to the polymer with low molecular weight, 

resulting in sustained release of the payload. 
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Multistage delivery system is an additional alternative approach providing sustained 

release of the payload where mesoporous silicon particles (MSP) offer unique 

opportunities for drug delivery (Tanaka et al., 2010). MSPs size, charge, shape, porosity 

are among the characteristics that can be tailored for particular applications and 

objectives of its use. We have used MSPs loaded with nanoliposomes carrying small 

interfering RNA (siRNA) that leads to target mRNA degradation. In this study, 

degradation of silicon particles allowed for the long-term release of siRNA to the target 

site (Shen et al., 2013a, Tanaka et al., 2010).  

 

Another strategy to control the release of the payload can be using the environment of 

target site as a driving mechanism. Environment responsive nanocarriers offer a unique 

strategy, in particular, when the stimulus is specific to the disease pathology (Ganta et 

al., 2008). The approach seems promising since the stimuli trigger the payload to 

diffuse out of the particles through a controlled drug release. The biological stimuli 

include pH, temperature, and redox microenvironment (Shenoy et al., 2005), 

(Kommareddy and Amiji, 2005). Recently, Chen and colleagues have designed dual 

responsive- doxorubicin loaded polymeric micelles that release the payload in response 

to temperature and pH (Chen et al., 2012). In this study, drug release was analyzed at 

different pH conditions such as physiological condition (pH 7.4), endosomal (pH 6.6 and 

6.0), lysosomal (pH 5.4), and different temperature conditions. Doxorubicin release rate 

was associated with increased temperature and decreased pH. Furthermore, they have 

demonstrated enhanced antitumor activity in tumor bearing mice that were generated by 

subcutaneously injected HeLa cells. On the other hand, external stimuli can be used to 
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trigger the release such as magnetic field, mild temperature increase or ultrasound 

(MacEwan et al., 2010). For instance, ultrasound triggers the degradation of polymers, 

slightly increases the temperature and cell membrane permeability, ultimately resulting 

in the release of the drug at target site (Mitragotri, 2005). Cisplatin release upon low 

frequency ultrasound has been demonstrated by Schroeder and colleagues (Schroeder 

et al., 2009). In this study, cisplatin-loaded liposomes were intraperitoneally 

administered into tumor bearing mice and the release of cisplatin was triggered by 

ultrasound at tumor site. Despite the tremendous progress in the design and 

development of nanoparticles, further preclinical studies are still required to conduct 

clinical trials for cancer therapy.  

 

Advances in nanomedicine offer new opportunities to improve the anticancer 

armamentarium. Targeted and nontargeted nanoparticles are currently in preclinical and 

clinical phases indicating the impact of delivery systems on the field. Further studies in 

nanomedicine will improve therapeutic window of drugs with immensely reduced side 

effects leading to improved patient outcomes. 
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Ovarian Cancer 
 

Ovarian cancer (OC) has the highest mortality rate among gynecologic malignancies. In 

the United States in 2014, over 21,000 women will be diagnosed with OC, and more 

than 14,000 women will die (Siegel et al., 2014). The poor survival rate in patients is 

due to the late-stage presentation of the disease. Despite the ongoing studies on 

screening strategies, only 20% of ovarian cancers can be diagnosed at stage 1, in 

which the disease is still limited to ovaries. When it metastasizes to the pelvic organs 

(stage 2), the abdomen (stage 3) or the peritoneal cavity (stage 4), the five-year median 

survival rate decreases down to 40 % (Vaughan et al., 2011).  

 

Ovarian cancers are notably heterogeneous at cellular level and different ovarian 

tumors arise from distinct cell types. The normal ovary contains three major cell types: 

germ cells, endocrine and interstitial cells, and epithelial cells. Tumors that arise from 

germ cells constitute 3-5% of ovarian cancers whereas sex-cord-stromal tumors 

account for 7% of all ovarian malignancies. However, approximately 90% of the 

malignant ovarian tumors originate from the surface epithelium and in general, cancer 

develops after age 40 (Romero and Bast Jr, 2012). Number of ovulatory cycles and a 

family history of ovarian, breast, uterine, or colon cancer are major risk factors for 

patients.  

 

OC can be classified into two major groups based on histological grade, molecular 

phenotype, and genotype; Type II and I. Type I cancers are often diagnosed in early 
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stages (I and II) and grow slowly whereas Type II cancers usually characterized by its 

late stage presentation (III-IV) and aggressive growth (Romero and Bast Jr, 2012).  

 

The histotypes of OC are: serous, endometrioid, mucinous and clear cell (Figure 2). 

These histotypes are associated with HOXA9, HOXA10, and HOXA11 genes that 

control the normal gynecological differentiation (Cheng et al., 2005). Tumor histotypes 

and grades are critical factors in order to determine the diagnosis and the prognosis 

(Soslow, 2008),(Silverberg, 2000). Numerous invasive mucinous ovarian cancers are 

metastases to the ovary, often from the gastrointestinal tract, including the colon, 

appendix or stomach. Endometrioid and clear cell ovarian cancers originate in 

endometriosis, which is linked to menstruation from the endometrium (Figure 2) 

(Vaughan et al., 2011).  

 

The most common histological subtype is high-grade serous OC (HGSOC), and the 

poor survival rate associated with this subtype is primarily due to the advanced stage of 

disease and widespread metastases, at the time of diagnosis. The rapid spread of 

HGSOC is based on its propensity to seed the peritoneal cavity, leading to ascites 

formation and metastases (Naora and Montell, 2005) (Kipps et al., 2013). Ascites 

formation occurs through the blockage of diaphragmatic lymphatics that restrains the 

outflow of the fluid from the peritoneal cavity, leading to the accumulation of ascites fluid 

abdominal swelling in advanced stages (Romero and Bast Jr, 2012). 
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Figure 2. Origin and histotypes of ovarian cancer 
This figure is used with permission and originally published by Vaughan, S., Coward, J. I., Bast, R. C., Berchuck, A., 
Berek, J. S., Brenton, J. D., Coukos, G., Crum, C. C.,Drapkin, R. & Etemadmoghadam, D in 2011 in Nature Cancer 
Reviews 
	  

 

Molecular alterations are also critical in the development and progression of OC. TP53 

is mostly mutated in high-grade tumors whereas BRAF and KRAS mutations are more 

frequent in low-grade serous tumors. Clear cell and endometrioid tumors commonly 

exhibit mutations in PI3K pathway (PTEN, PIK3CA) and RAS mutations are mostly 
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assessed in mucinous OC (Coleman et al., 2013). Inherited BRCA1 and BRCA2 

mutation mostly lead to Type II tumors (Sessa and Del Conte, 2010). 

 

In the treatment of ovarian cancer, surgery has a pivotal role for the extended survival of 

the patient. It is then followed by a combination of carboplatin- and taxane-based 

therapy. Although 70 % of patients respond to the initial therapy at this stage, drug 

resistant cells can remain dormant in the peritoneal cavity and lead to recurrent disease 

(Bast et al., 2009). 

 

Carboplatin is an alkylating agent that binds covalently to DNA; thereby creating 

adducts that form intrachain or interchain crosslinks. Paclitaxel increases microtubule 

stability through non-covalent interaction and prevents the mitotic spindle formation. 

Platinum-based cancer therapy was first introduced in late 1970s with cisplatin. Then it 

was replaced with carboplatin that has lower toxic effects in combination with other 

agents such as taxanes (Figure 3) (Vaughan et al., 2011). The combination therapy can 

improve survival rather than single agent treatment. For instance, combination of 

carboplatin with paclitaxel (Parmar et al., 2003, Gonzalez-Martin et al., 2005), 

gemcitabine (Pfisterer et al., 2006), or liposomal doxorubicin (Pujade-Lauraine et al., 

2010) leads to better survival than single carboplatin treatment (Bast and Markman, 

2010). 
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Figure 3. Evolution of chemotherapy for ovarian cancer 
This figure is used with permission and originally published by Vaughan, S., Coward, J. I., Bast, R. C., Berchuck, A., 
Berek, J. S., Brenton, J. D., Coukos, G., Crum, C. C.,Drapkin, R. & Etemadmoghadam, D in 2011 in Nature Cancer 
Reviews 
 

Overall, chemotherapy improves the survival of patients however the tumor relapse in 

most cases and long-term survival rate is relatively low. The primary reason of the 

treatment failure is the development of drug resistance. Thus, identification of new 

targets and a better understanding of the biology behind the tumor growth and survival 

are required. 

 

Given the heterogeneity of OC at molecular level, extensive characterization of cancer 

specimens is required in order to find out the altered genes and/or proteins that can be 

targeted in patients. DNA sequencing of relevant genes, high-resolution comparative 

genomic hybridization, single nucleotide polymorphism analysis, expression arrays, 



 24 

reverse phase protein arrays can be carried out for further characterization of the 

tumors (Bast et al., 2009). In addition, The Cancer Genome Atlas (TCGA) database 

reveals the expression of relevant genes in a variety of tumor types and the correlation 

with survival in patients.  

 

RNAi-based screenings are carried out not only to find out new targets in ovarian 

cancer cells but also to knockdown the relevant genes in vitro and in vivo. RNAi based 

therapies offer a unique opportunity to knockdown specific genes and paves the way to 

personalized medicine in cancer therapy. In order to achieve sufficient delivery of RNAi, 

biological barriers have to be overcome. This emphasizes the crucial role of 

nanotechnology-based carriers in the development of novel strategies.  

Early-phase RNAi based therapy trials drew the attention to the feasibility of siRNA 

delivery into tumors and the selective knockdown of target of interest at tumor site 

(Tabernero et al., 2013, Davis et al., 2010). These studies showed the potential of 

RNAi-based therapy as a promising strategy in cancer management. However, there 

are still critical steps to be taken in the development of RNAi based therapeutics. These 

include the delivery (accumulation, uptake, and intracellular trafficking) and siRNA 

target selection and validation (Wu et al., 2014). 
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Figure 4. Overcoming obstacles in RNAi delivery  
This figure is used with permission and originally published by Wu, S. Y., Lopez-Berestein, G., Calin G. A., Sood A. 
K., in 2014 in Science Translational Medicine 

 

Wu and her colleagues summarize the overall strategy in five sub-aims (Figure 4). 

Target selection and validation are as critical as nanocarrier characterization. In 

addition, relevant toxicology, pharmacology, and pharmacokinetics should be 

considered and toxic immune mediated reactions should be assessed in the early steps 

of the development. In this study, we also aimed to take the initial steps of the 

development and characterization of a novel RNAi-based therapeutic agent. 

 

  



 26 

Metastasis 
 

Metastasis is a multistep process that requires the acquisition of genetic and epigenetic 

alterations within a tumor cell (Valastyan and Weinberg, 2011). Initially, tumor cells 

detach from the extracellular matrix and invade through the surrounding tissue. Next, 

the cells migrate towards a vascular supply and penetrate into the vessels, followed by 

gaining access to the systemic circulation. The last step is the extravasation of these 

tumor cells into organ parenchyma and their proliferation in the distant organs in an 

appropriate microenvironment (Figure 5) (Talmadge and Fidler, 2010). 

 
 
 
Figure 5. Invasion-metastasis cascade  
This figure is used with permission and originally published by Talmadge JE and Fidler IJ in 2010 
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Hence, the tumor cells can repeat the entire cascade that can lead to additional 

metastases (Langley and Fidler, 2011).  

 

Historically, metastasis was thought to be a random case. However, in 1889, Stephen 

Paget declared that the organ distribution of metastases in breast cancer patients was 

not random and he suggested that some tumor cells (seed) tend to grow in the 

microenvironment of selected organs (soil) (Paget, 1889). Schackert and Fidler also 

demonstrated that some tumor cells metastasize to specific regions within an organ 

(Langley and Fidler, 2011, Schackert and Fidler, 1988). 

 

Ovarian cancer has the propensity to spread to the abdominal cavity and forms nodules 

on the surface of peritoneum including omentum. But the mechanism of spread was not 

known. However in a recent study, Sunila Pradeep and her colleagues demonstrated 

that circulating tumor cells localize and proliferate in the omentum and spread to the 

other peritoneal surfaces. They used a parabiosis model where the skins of two mice 

were surgically fused (Pradeep et al., 2014). The study showed that an increased level 

of ErbB3 in ovarian cancer cells and NRG1 in the omentum is responsible for the 

hematogenous omental metastasis.  
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Anoikis 

 

Anoikis is a form of cell death subsequent to loss of contact with extracellular matrix or 

neighboring cells. However cancer cells develop resistance to anoikis and survive in the 

absence of this contact. Therefore, disrupting the anoikis resistance in tumor cells may 

be an effective strategy to prevent metastasis (Young et al., 2013). 

 

Epithelial cells require adhesion to extracellular matrix through cell surface receptors 

known as integrins. Integrins are heterodimers that consists of α and β subunits. There 

are 18 α and 8 β subunits of integrins. The integrin ligation leads to cell adhesion, 

migration and survival through tranducing the signals whereas unligated integrins 

induce apoptosis and prevent non-tumorigenic cells to survive in an inappropriate 

environment (Desgrosellier and Cheresh, 2010). Integrins serve as a mechanosensor 

through monitoring the extracellular environment and become activated via tensional 

forces and mechanical stress (Nagano et al., 2012). The cytoplasmic β tail is essential 

in transducing the signaling that can be initiated either outside or inside the cell. 

Intracellular proteins that are known to bind this region include talin, kindlins and 

filamins (Harburger and Calderwood, 2009). 

 

Integrins activate multiple oncogenic pathway that also activates cell survival and 

motility (Guo and Giancotti, 2004). Integrin ligation activates Focal Adhesion Kinase 

(FAK) – a nonreceptor tyrosine kinase that can phosphorylate both itself at Y397 and 

other cellular proteins such as Src and p85 subunit of PI3K, mediating cell survival and 
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migration (Figure 6). In addition, integrin signaling can induce BCL2, which is anti-

apoptotic to prevent the cells from undergoing apoptosis (Zhang et al., 1995)  

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 6. Anoikis and integrins  
This figure is used with permission and originally published by Young, S. A., Graf, R. & Stupack, D. G. in 2013, in 
Neuroblastoma Integrins. 
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Hypothesis and Aims of The Study 
 

The poor survival of ovarian cancer patients is associated with advanced disease at the 

time of diagnosis. However, few effective strategies to target this metastatic process 

currently are known; this highlights the need for a deeper understanding of the 

molecular mechanisms that regulate OC growth and progression. To identify new 

therapeutic targets and strategies, we carried out an integrated analysis of The Cancer 

Genome Atlas (TCGA) HGSOC dataset and gene profiles of ovarian and breast tumors 

to identify genes that are important for cancer metastasis. Among the genes identified, 

zinc finger protein 304 (ZNF304) was found to be highly associated with overall survival 

in HGSOC patients. ZNF304 is a transcription factor that belongs to the C2H2 zinc 

finger family. The member genes of this family represent the largest class of 

transcription factors in humans and, indeed, one of the largest gene families in 

mammals (Tadepally et al., 2008). ZNF304 can be upregulated by activated Kirsten rat 

sarcoma viral oncogene homolog (KRAS) in KRAS-positive colorectal cancer cells and 

binds at the promoters of INK4-ARF and other CpG island methylator phenotype genes 

in colorectal cancer cells and in human embryonic stem cells (Serra et al., 2014). 

However, the role of ZNF304 in metastasis and its downstream effectors are not well 

understood.  

Synthetic siRNAs are an effective gene-silencing tool. However, its disadvantage is its 

rapid degradation by serum nucleases, poor cellular uptake and rapid renal clearance 

following systemic administration. Nanomedicine provides for safe and effective for the 

systemic administration of siRNA. In the nanotechnology component of the project, a 
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novel dual assembly nanoparticle system (DANP) is developed and characterized for 

the in vivo delivery of ZNF304 siRNA. The goal was to improve functional applications 

of DANP to maintain a constant siRNA level by releasing at a predetermined rate over 

an extended period of time with minimum side effects. Here, we aimed to unravel the 

mechanisms by which ZNF304 promotes cancer metastasis and to evaluate its role as a 

potential therapeutic target using siRNA and Dual Assembly Nanoparticles (DANP). 

 
Overall hypothesis of the present study is: 
 
Dual assembly nanoparticles (DANP) loaded with ZNF304 siRNA will lead to prolonged 
silencing of the target gene and antitumor activity in orthotopic models of OC. 
 
We tested this hypothesis with the following specific aims: 
 
Specific Aim 1. To identify a novel target gene and determine its mechanism of action 

in OC 

Specific Aim 2. To develop and characterize siRNA loaded DANP and to demonstrate 

that DANP-siRNA leads to sustained silencing of target genes in an orthotopic model of 

ovarian cancer. 

Specific Aim 3. To demonstrate the antitumor activity of DANP siRNA in orthotopic 

models of ovarian cancer.  
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Integrative computational analysis and patient data selection 

Clinical and expression data (Level 3 Illumina HiSeqv2) for 260 patients were 

downloaded from The Cancer Genome Atlas portal and were used to analyze the 

relationship between expression of ZNF304 and overall survival as well as between 

expressions of ZNF304 and ITGB1. The Spearman's rank-order correlation test was 

applied to measure the strength of the association between ZNF304 and ITGB1 levels 

in patient samples in TCGA dataset. 

 

Cell lines and culture. The immortalized non-transformed human ovarian surface 

epithelial cell line HIO-180 and the human epithelial OC cell lines HeyA8, MDAH 2774, 

SKOV3IP1, A2780PAR, and A2780CP20 were maintained as described previously 

(Kamat et al., 2007, Lu et al., 2007b, Lu et al., 2007a, Sood et al., 2001, Thaker et al., 

2004). Taxane resistant HeyA8MDR and SKOV3-TR cells were maintained in Roswell 

Park Memorial Institute 1640 medium supplemented with 10% fetal bovine serum and 

0.1% gentamicin sulfate (Gemini Bio-Products) with or without paclitaxel (300 ng/ml for 

HeyA8-MDR; 150 ng/ml for SKOV3-TR). The A2780CP20 cell line was developed by 

sequential exposure of the A2780 cell line to increasing concentrations of cisplatin. All 

of the cell lines are routinely screened for Mycoplasma species (Mycoalert Mycoplasma 

Detection Kit, Lonza). All in vitro and in vivo experiments were conducted when cells 

were 70% to 80% confluent. 
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Western blot analysis. Western blot analysis was performed as previously reported 

(Landen et al., 2005, Halder et al., 2006). All antibodies used in this study and vendors 

are listed in Appendix in Table 3. 

 

SiRNA constructs and delivery. SiRNAs were purchased from Qiagen or Sigma-Aldrich. 

A non-silencing siRNA that did not share sequence homology with any known human 

mRNA was used as a control for target siRNA. In vitro transient transfection was 

performed as described previously (Landen et al., 2005). The ZNF304 siRNA 

sequences are listed in Appendix in Table 2.  

 

Invasion and migration assays. Cell migration and invasion assays have been described 

previously (Spannuth et al., 2009). For migration assays, cells were treated with either 

control or ZNF304 siRNA for 72 hours. Then, cells were re-suspended in serum-free 

medium (5 × 104 cells/ml), and 1 ml of the cell solution was added to gelatin-coated 

inserts. The inserts were then transferred to wells filled with serum-containing medium. 

Cells were allowed to migrate for 6 hours at 37°C. Migrated cells on the bottom of the 

wells were collected, fixed, stained, and counted by light microscopy. Cells were 

counted in 10 random fields (× 200 final magnification), and the average number of 

migrated cells was calculated; the percentage of migration was determined by setting 

control siRNA-treated samples as 100% migration. 

For invasion assays, cells were treated with control or ZNF304 siRNA for 48 

hours. Then, cells were resuspended in serum-free medium (5 × 104 cells/ml), and 1 ml 

of the cell solution was added to inserts coated with a defined matrix consisting of 
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human laminin, type IV collagen, and gelatin (Kim et al., 2011). Inserts were then 

transferred to wells filled with serum-containing medium. Cells were then allowed to 

invade for 24 hours at 37°C. Migrated cells on the bottom of the wells were collected, 

fixed, stained, and counted by light microscopy. Cells were counted in 10 random fields 

(× 200 final magnification), and the average number of migrated cells was calculated; 

the percentage of migration was determined by setting the control siRNA-treated 

samples as 100% invasion. 

 

RPPA. This study was conducted in The University of Texas MD Anderson Cancer 

Center Institution RPPA Core Facility, and the method was described previously (Tibes 

et al., 2006). In brief, cellular proteins were denatured by 1% sodium dodecyl sulfate 

(with beta-mercaptoethanol) and were diluted in 5 2-fold serial dilutions in dilution buffer 

(lysis buffer containing 1% sodium dodecyl sulfate). Serial diluted lysates were arrayed 

on nitrocellulose-coated slides (Grace Bio-Labs) with an Aushon 2470 arrayer (Aushon 

BioSystems). A total of 5808 array spots were arranged on each slide, including the 

spots corresponding to positive and negative controls prepared from mixed cell lysates 

or dilution buffer, respectively. Each slide was probed with a validated primary antibody 

plus a biotin-conjugated secondary antibody. In the RPPA analysis, the antibodies were 

used if only the Pearson correlation coefficient between RPPA and Western blotting 

was greater than 0.7. Antibodies with a single or dominant band on Western blotting 

were further assessed by direct comparison to RPPA using cell lines with differential 

protein expression or modulated with ligands/inhibitors or siRNA for phospho- or 

structural proteins, respectively. The signal obtained was amplified using a Dako 
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Cytomation-catalyzed system and was visualized by diaminobenzidine colorimetric 

reaction. The slides were scanned, analyzed, and quantified using customized software 

(MicroVigene, VigeneTech Inc.) to generate spot intensity. Each dilution curve was fitted 

with a logistic model (“Supercurve Fitting” developed by the Department of 

Bioinformatics and Computational Biology in MD Anderson Cancer Center, 

“http://bioinformatics.mdanderson.org/OOMPA”). This model fits a single curve using all 

the samples (i.e., dilution series) on a slide, with the signal intensity as the response 

variable and the dilution steps as independent variables. The fitted curve was plotted 

with the signal intensities—both observed and fitted—on the y-axis, and the log2-

concentration of proteins plotted on the x-axis for diagnostic purposes. The protein 

concentrations of each set of slides were then normalized by Tukey’s median polish, 

which was corrected across samples by the linear expression values using the median 

expression levels of all antibody experiments to calculate a loading correction factor for 

each sample (Adapted from UT MD Anderson Cancer Center RPPA Core Facility 

website). 

 

Cell-cycle analysis. Cells were transfected with either control siRNA or ZNF304 siRNA, 

trypsinized and collected 72 hours post transfection. Samples were washed in 

phosphate-buffered saline solution (PBS) and were fixed in 75% ethanol overnight. 

Cells were then centrifuged, washed twice in PBS, and reconstituted in PBS with 

propidium iodide (PI; 50 µg/ml), as previously described (Landen et al., 2010). PI 

fluorescence was assessed by flow cytometry, and the percentage of cells in each cycle 

was analyzed by FlowJo software. 
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Chromatin immunoprecipitation assay. HeyA8 cells were cultured in 10% fetal bovine 

serum to ~75% confluence, and cells were cross-linked with 37% formaldehyde for 20 

minutes and were incubated with glycine (0.125 M) for 5 minutes to stop the cross-

linking, as previously described (Cheema et al., 2003). Cells were lysed, and chromatin 

was sonicated according to the protocol provided by the kit (EZ ChIP, Upstate 

Biotechnology; cat #17-371). Possible binding sites of ZNF304 in the ITGB1 promoter 

were predicted using an online tool (http://compbio.cs.princeton.edu/zf/). Six primer pair 

sets were designed using basic local alignment search tool software (National Center 

for Biotechnology Information). Primers used for amplification of the DNA in quantitative 

PCR are shown in Appendix Table 6. Anti-ZNF304 antibody (Table 3) was used for the 

chromatin immunoprecipitation assays. The Bio-Rad DNA Engine Dyad Thermal Cycler 

was used with the following cycling conditions: 2 minutes at 94°C, followed by 35 cycles 

of 30 seconds at 94°C, 30 seconds at 58°C, and 1 minute at 68°C, followed by 1 minute 

at 68°C. 

 

Plasmid construction and luciferase reporter assay. Fragments containing the predicted 

binding sites (BS1, BS2, and BS3) were amplified from HeyA8 cell genomic DNA by 

PCR using primers containing SacI or HindIII restriction enzyme sites. The PCR 

products were purified, digested, and subsequently cloned into the same restriction site 

of the pGL3 control vector (Promega) downstream of the firefly luciferase reporter gene. 

Sequences were analyzed with a DNA BigDye Terminator sequencing kit, version 3.1 

(Life Technologies) HeyA8 cells were plated in 24-well plates (60,000 cells per well) 24 
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hours prior to transfection with either ZNF304 siRNA or ZNF304-expressing vector 

(Promega). Twenty-four hours after the first transfection, cells were transfected with the 

luciferase reporter vectors containing BS1, BS2, or BS3 together with Renilla luciferase 

construct, which was used as a normalization reference. Transfections were performed 

with Attractene transfection reagent (Qiagen) according to the manufacturer’s 

instructions. Cells were lysed 48 hours after luciferase vector transfection, and activity 

was measured using a dual-luciferase reporter assay system (Promega) in the Veritas 

microplate luminometer (Turner BioSystems). Two independent experiments were 

performed in triplicate.  

 

In vitro anoikis. Cells were transfected with control or ZNF304 siRNA and transferred to 

6-well tissue culture plates that were coated with polyhydroxyethylmethacrylate, and 

cells were cultured in these plates for 72 hours at 37°C in a 5% carbon dioxide 

atmosphere. After incubation, cells were detached with 0.5% trypsin/0.1% 

ethylenediaminetetraacetic acid in PBS. Cells were suspended in Roswell Park 

Memorial Institute 1640 medium and were centrifuged at 500 g for 10 minutes. Pellets 

were washed with PBS and were stained with PI solution (50 µg/ml) containing RNase 

A (25 µg/ml). After incubating the pellets for 30 minutes at 37°C, we analyzed cell 

viability by flow cytometry. 

 

Preparation of DANP. DANPs were prepared via ionic gelation of anionic 

tripolyphosphate and siRNA. Briefly, predetermined tripolyphosphate (0.25% 

weight/volume) and siRNA (1 µg/µl) were added to chitosan solution, and the 



 39 

siRNA/chitosan nanoparticles spontaneously formed under constant stirring at room 

temperature. After incubating the nanoparticles at 4°C for 40 minutes, we collected the 

siRNA/DANP by centrifugation (Thermo Biofuge) at 13,000 rpm for 40 minutes at 4°C. 

Chitosan nanoparticles were coated with polylactic acid polymer under probe 

sonication, and the organic solvent was evaporated. The pellet was washed in sterile 

water 3 times to isolate siRNA/DANP, which was stored at 4°C until used. For the 

biodistribution study, DANPs were labeled with rhodamine 6G (Sigma-Aldrich). 

Rhodamine 6G (0.1% weight/volume) was added to the polymer solution (chloroform) in 

the simple emulsion. The particles were collected and were washed 3 times to eliminate 

the nonencapsulated marker. 

 

Orthotopic in vivo models of OC and tissue processing. Female athymic nude mice 

(NCr-nu) (8-12 weeks old) were purchased from the National Cancer Institute-Frederick 

Cancer Research and Development Center (Frederick, MD) and were maintained as 

previously described (Landen et al., 2005). The MD Anderson Cancer Center 

Institutional Animal Care and Use Committee approved and supervised all animal 

studies. Mice were cared for in accordance with guidelines set forth by the American 

Association for Accreditation of Laboratory Animal Care and the United States Public 

Health Service Policy on Human Care and Use of Laboratory Animals. To generate 

tumors, SKOV3IP1 cells (1 × 106) or HeyA8 cells (2.5 × 105) were injected into the 

peritoneal cavity, as previously described (Lu et al., 2008). For therapy experiments, 10 

mice were assigned randomly to each group. This sample size was sufficient to provide 

80% power for a test at significance level of 0.05. As part of preliminary analysis, we 

validated the normality assumption and proceeded with a non-parametric test as 
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appropriate. Treatments with control or ZNF304 siRNA incorporated in DANP were 

intravenously administered either weekly (150 µg/kg body weight) or biweekly (300 

µg/kg body weight). Paclitaxel (100 µg/mouse for the HeyA8 model and 75 µg/mouse 

for the SKOV3 model) was injected intraperitoneally once weekly. Mice were euthanized 

6 weeks after first administration in SKOV3 model and 4 weeks after first administration 

in HeyA8 model. After euthanasia, we recorded mouse and tumor weight, number of 

nodules, and distribution of tumors. Individuals who performed the necropsies were 

blinded to the treatment group assignments. Tissue specimens were fixed with either 

formalin or optimal cutting temperature medium (Miles) or were snap-frozen in liquid 

nitrogen.  

For the biodistribution study of DANP, mice were injected intraperitoneally with 

HeyA8 cells (2.5 × 105) for tumor inoculation. When tumors were palpable, rhodamine 

6G–labeled particles that contained control siRNA (150 µg/kg) were administered 

intravenously. After 24 hours, mice were euthanized; tumors and the major organs 

(brain, heart, kidney, spleen, liver, and lungs) were removed and fixed in optimal cutting 

temperature medium and sectioned. The organ and tumor distribution of particles was 

assessed by fluorescence microscopy. 

For the toxicity study of DANP-siRNA, C57 mice were treated: DANP alone 

(n=6), DANP-Control siRNA (n=6), DANP-ZNF304 siRNA (n=6). Two mice were kept 

without any treatment. 72 hours after the single iv administration mice were 

anesthetized and blood samples were taken through cardiac puncture. Samples (n=3 

mice/group) were analyzed to determine Blood Urea Nitrogen (BUN), Creatinine, 

Alanine Transaminase (ALT), alkaline phosphatase levels and cytokine levels (n=6 
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mice/ group) in blood. Furthermore, 4 organs (brain, spleen, kidney and liver) were 

removed from each mouse. Our pathologist analyzed the hematoxylin and eosin (H&E) 

stained slide of sectioned paraffin tissue specimens in order to determine whether the 

organs exhibit any treatment-related clinical signs of toxicity. 

 

In vivo anoikis. Viability of tumor cells from ascites fluid was determined by dual staining 

with PI and epithelial cell adhesion molecule tagged with fluorescein isothiocyanate. 

MDAH 2774 cells (2 × 106) were injected intraperitoneally into nude mice, and 

treatments started when mice developed detectable ascites. Mice were divided into 2 

groups, (n=3/group) receiving a single administration of either DANP-control siRNA or 

DANP-ZNF304 siRNA (300 µg/kg). After 7 days, ascites fluid was drawn from the 

peritoneal cavity and rapidly centrifuged at 500 g for 10 minutes. Pellets were washed 

with a red blood cell lysis buffer and reconstituted in PBS. Suspended cells were then 

incubated with excited state absorption-fluorescein isothiocyanate (1:30 dilution) for 30 

minutes at room temperature. After incubation, cells were washed and stained with a PI 

solution (50 µg/ml). Cells were then incubated for 30 minutes at 37°C and analyzed on a 

Gallios flow cytometer (Beckman Coulter). 

 

Immunohistochemical analysis. Analyses of tumors cell proliferation and microvessel 

density were conducted by following procedures described previously (Landen et al., 

2006, Langley et al., 2003, Lu et al., 2010). Two investigators quantified the number of 

positive cells in a blinded fashion. The antibodies used and the vendors are listed in 

Appendix Table 3. 
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Statistical analysis. Unless specified otherwise, all data are presented as the mean 

values ± the standard error of the mean from at least 3 independent experiments. Two-

sided t tests were used to test the relationships between the means of data sets, and P 

values indicate the probability of the means compared, being equal with *P < 0.05, **P < 

0.01 and ***P < 0.001. Student’s t tests and analysis of variance were calculated with 

GraphPad software. Statistical analyses were performed in R (version 3.0.1) 

(http:///www.r-project.org/), and P values less than 0.05 were considered statistically 

significant. For the analysis of RPPA results, we used the Benjamini-Hochberg multiple 

testing correction (Benjamini and Hochberg, 1995) to estimate the false discovery rate. 
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Discovery of ZNF304 and its role in human HGSOC  
 

We first carried out an integrative computational analysis to identify genes that are 

important for cancer metastasis and that are upregulated in ovarian cancer (OC). Since 

N-cadherin has been reported to play a critical role in invasion and anoikis resistance of 

cancer cells (Suyama et al., 2002, Abdul Azis, 2013), we first identified gene signatures 

in tumors with high N-cadherin expression in The Cancer Genome Atlas (TCGA) 

HGSOC dataset. Of 16,869 genes that were upregulated in OC, 493 genes had a 

positive correlation with tumoral N-cadherin expression (Figure 7A). Of these 493 

genes, ciliary neurotrophic factor receptor (CNTFR); melanoma antigen family D, 1 

(MAGED1); nuclear receptor subfamily 2, group F, member 2 (NR2F2), and ZNF304 

were upregulated in invasive ovarian and breast tumor epithelium compared with 

normal ovarian (Bowen et al., 2009) and breast epithelium (Casey et al., 2009), 

respectively.  

We then assessed the effect of tumoral expression on patient survival for these 4 genes 

using TCGA HGSOC dataset. For each gene, we randomly split the entire OC patient 

population into training (2/3 of cases) and validation cohorts (1/3 of cases). In both 

cohorts, patients were divided into sextiles according to mRNA expression, and the first 

and last sextiles were contrasted. Importantly, the relationships between overall survival 

and known prognostic factors such as age or residual disease were examined in both 

the training and the validation cohorts using a Cox proportional hazards model. Only 

ZNF304 was a significant factor in this analysis (Figure 7B and 7C). In contrast, 

CNTFR, MAGED1, and NR2F2 expression levels were not correlated with patient 

survival (Figure 8). Patients with high tumoral ZNF304 expression had significantly 
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lower median overall survival than patients with low tumoral ZNF304 expression (Figure 

7B [training set, 22.2 versus 48.7 months, P = 0.031]; and Figure 7C [validation set, 

40.4 versus 26.9 months, P = 0.039]). Therefore, ZNF304 was selected for additional 

studies.   

 
 
 
 

 
 
 

Figure 7. Increased ZNF304 expression is associated with poor survival in 
HGSOC patients  
(A) Graphical representation of computational analysis using TCGA dataset 
(B) Kaplan- Meier curves for ovarian carcinoma patients based on ZNF304 expression 
in Training set and (C) Validation set. Kaplan- Meier curves indicate that high ZNF304 
expression is a predictor of poor overall survival in OC patients. (n =88, P= 0.03) 
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Figure 1. Significance of ZNF304 expression in human ovarian carcinoma. 

(A) Graphical representation of computatitonal analysis using TCGA dataset
(B) Kaplan- Meier curves for ovarian carcinoma patients based on ZNF304 expression in Training set and (C) Validation set.
Kaplan- Meier curves indicate that high ZNF304 expression is a predictor of poor overall survival in OC patients. (n =88, P= 0.03)
(D) Western Blot analysis of ZNF304 protein expression and (E) RT-PCR analysis of ZNF304 mRNA levels in 7 ovarian cell lines
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(A) Graphical representation of computatitonal analysis using TCGA dataset
(B) Kaplan- Meier curves for ovarian carcinoma patients based on ZNF304 expression in Training set and (C) Validation set.
Kaplan- Meier curves indicate that high ZNF304 expression is a predictor of poor overall survival in OC patients. (n =88, P= 0.03)
(D) Western Blot analysis of ZNF304 protein expression and (E) RT-PCR analysis of ZNF304 mRNA levels in 7 ovarian cell lines
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Figure 8. CNTFR, MAGED1, and NR2F2 expression levels are not correlated with 
patient survival in HGSOC patients  
 
(A) CNTFR expression in Training set (left), and (B) Validation set (right); (C) MAGED1 
expression in Training set (left), and (D) Validation set (right); (E) NR2F2 expression in 
Training set(left), and (F) Validation set (right) 
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Next, we examined protein expression levels of ZNF304 (75 kDa) by Western blot 

analysis in 6 OC tumor cell lines and in HIO180 non-transformed ovarian epithelial cells 

(Figure 9A). ZNF304 protein was highly expressed in all OC cells tested, but a lower 

expression was observed in the HIO180 cells. ZNF304 mRNA basal levels were high in 

4 of the 6 OC cell lines  

(Figure 9B). 

 

 

 

Figure 9. ZNF304 is expressed in ovarian cell lines 
(A) Western Blot analysis of ZNF304 protein expression and (B) RT-PCR analysis of 
ZNF304 mRNA levels in 7 ovarian cell lines 
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Figure 1. Significance of ZNF304 expression in human ovarian carcinoma. 

(A) Graphical representation of computational analysis using TCGA dataset
(B) Kaplan- Meier curves for ovarian carcinoma patients based on ZNF304 expression in Training set and (C) Validation set.
Kaplan- Meier curves indicate that high ZNF304 expression is a predictor of poor overall survival in OC patients. (n =88, P= 0.03)
(D) Western Blot analysis of ZNF304 protein expression and (E) RT-PCR analysis of ZNF304 mRNA levels in 7 ovarian cell lines
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Downregulation of ZNF304 inhibits invasion, migration, and proliferation of OC cells 

 

Given the potential role of ZNF304 in cancer metastasis, we next investigated whether 

silencing this target would affect invasion and migration. We first tested the knockdown 

efficiency of 3 siRNA sequences of ZNF304 in HeyA8 cells (Figure 10). Two of the 3 

siRNA sequences tested (ZNF304 siRNA-1 and ZNF304 siRNA-3) showed more than 

65% inhibition of ZNF304 in HeyA8 cells. Therefore, these 2 siRNA sequences were 

selected for further studies.  

 

 

 

 

 

 

 
 
Figure 10.  ZNF304 siRNA decreases the ZNF304 levels in HeyA8 cells 
 
Western Blot analysis of ZNF304 protein expression 72 hours after Control siRNA or 
ZNF304 siRNA transfection in HeyA8 cells. 
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Next, we performed invasion and migration assays in HeyA8 and SKOV3IP1 cell lines 

with the selected siRNA sequences, resulting in 40% inhibition of invasion and 45% 

inhibition of migration in HeyA8 cells (Figure 11, A and B, respectively) and 27% 

inhibition of migration in SKOV3IP1 cells (Figure 11C).  

 

 

 

 

 

 

 

 

 

 

Figure 11. Silencing ZNF304 inhibits invasion and migration 
 
(A) Invasion %, B) migration % of HeyA8 cells, and (C) migration % of SKOV3IP1 cells. 
Migration and invasion percentages in ZNF304 siRNA treated samples were calculated 
after normalization with control siRNA treated samples. Data presented as mean ± 
SEM. 
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To determine the potential signaling pathways in which ZNF304 is involved, we 

performed a reverse phase protein array (RPPA) analysis of control siRNA-treated and 

ZNF304 siRNA-treated HeyA8 cells. Samples were probed with 214 proteins, including 

total and phospho-proteins. Silencing ZNF304 led to reduced expression of caveolin-1, 

fibronectin, MYH9 (myosin II), and the effectors of the Ras signaling pathway (BRAF, 

RAF1) (Figure 12). Focal adhesion and integrin signaling pathways were significantly 

deregulated in ZNF304-silenced HeyA8 cells. This last finding guided us to further 

analyze the link between ZNF304 and integrin signaling. In addition, ZNF304 mRNA 

expression was highly correlated with β1 integrin expression in HGSOC patient samples 

(r = 0.20, P = 0.0015; Figure 13).  

To further understand the role of ZNF304, we validated the RPPA data and determined 

the levels of focal adhesion complex members after ZNF304 siRNA transfection in 

HeyA8 cells. Silencing ZNF304 decreased phosphorylation of Src and FAK, which are 

adaptor proteins of focal adhesion and major markers of cell migration (Figure 14, A and 

B, respectively). To further analyze pathways related to migration and invasion, we 

investigated the effects of ZNF304 silencing on paxillin and β1 integrin (Figure 14C). 

ZNF304 silencing inhibited both paxillin phosphorylation at tyrosine sites 31 and 118 

and β1 integrin expression in the cell lines tested.  
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Database PATHWAY Count GENES P Value FDR 

KEGG Focal 
adhesion 7 

CAV1, BRAF, PAK4, MET, 
RAF1, ITGA2, MAPK8, 

FN1 
9.72E-

04 1.0069 

KEGG Insulin 
signaling 7 

EIF4EBP1, BRAF, TSC2, 
RAF1, MAPK8, RPS6KB1, 

RPS6 

8.41E-
05 0.0875 

PANTHER PDGF 
signaling 7 

BRAF, STAT5A, RAB11B, 
RAF1, RAB11A, MAPK8, 

RPS6KB1 
0.0026 2.3630 

PANTHER Integrin 
signaling 6 CAV1, BRAF, RAF1, 

ITGA2, MAPK8, FN1 0.0275 22.5233 

KEGG Actin 
cytoskeleton 6 BRAF, PAK4, RAF1, 

ITGA2, MYH9, FN1 0.0069 6.9846 

PANTHER Interleukin 
signaling 6 CDKN1B, BRAF, FOXM1, 

STAT5A, RAF1, FOXO3 0.0238 19.8068 

REACTOME 
 

Insulin 
receptor 
signaling 

6 EIF4EBP1, TSC2, EEF2K, 
RAF1, RPS6KB1, RPS6 

4.80E-
07 

3.76E-
04 

KEGG p53 signaling 6 
CCNB1, BID, CCNE1, 
TSC2, CASP8, TP53, 

CHEK1 

1.42E-
05 0.0148 

KEGG Cell cycle 6 
CCNB1, CCNE1, CDKN1B, 

SMAD4, TP53, CHEK1, 
RB1 

4.35E-
04 0.4514 

 

Figure 12. RPPA analysis revealed the link between ZNF304 and integrin signaling 
 
Integrated function and pathway analysis were performed using DAVID bioinformatics 
resources (http://david.abcc.ncifcrf.gov/), and significant features were clustered 
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Figure 13. ZNF304 and β1 integrin mRNA levels highly correlates in HGSOC 
patients 
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Figure 14. Silencing ZNF304 leads to reduction in focal adhesion complex 
members 
 
(A) p-src (Y416) and total src levels, (B) Western Blot analysis of FAK phosphorylation 

(C) β1 integrin levels and paxillin phosphorylation levels at tyrosine 31 and tyrosine 118 
sites upon 72 hours ZNF304 siRNA treatment. 
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In the RPPA results, forkhead box M1 (FOXM1) and cyclin B1 levels were also 

decreased in ZNF304-silenced samples, suggesting that ZNF304 might play a role in 

the cell cycle. To determine the effects of ZNF304 silencing on proliferation, we 

performed cell-cycle analysis in HeyA8, SKOV3IP1, A2780PAR, and A2780CP20 cell 

lines after 72 hours of ZNF304 siRNA transfection (Figure 15, A–D, respectively). All 

cell lines treated with ZNF304 siRNA showed significant arrest in the G2 phase, 

confirming the decreases in cyclin B1 and FOXM1 levels found in the RPPA analysis.  

 

 

 

 

 

 

 

 

 

Figure 15. Silencing ZNF304 reduces proliferation through cell cycle arrest 
(A) Cell cycle analysis after 72 hours transfection with Control siRNA or ZNF304 siRNA 
in HeyA8 (B). SKOV3IP1 (C), A2780PAR (D), and A2780CP20 cells (n=3, *P < 0.05, 
**P < 0.01, ***P < 0.001).  
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ZNF304 transcriptionally regulates β1 integrin 

 

The ZNF304 gene is located at chromosome 19q13.43 (www.genome.ucsc.edu). The 

ZNF304 protein consists of a Kruppel-associated box domain and 16 zinc finger 

proteins (UniProt) (Figure 16). To explore the mechanism by which ZNF304 silencing 

downregulates migration, we determined protein and mRNA levels of β1 integrin upon 

ZNF304 siRNA treatment in HeyA8 and SKOV3IP1 cells. Silencing ZNF304 reduced β1 

integrin mRNA levels in these cells (Figure 17). We determined the basal protein levels 

of β1 integrin and observed that it was expressed in the cell lines tested (Figure 18).  

 

 

 

 

 

 

 

 

 

 
 
Figure 16. ZNF304 gene is located at chromosome 19q13.43 and ZNF304 protein 
consists of 16 zinc fingers. 
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Figure 17. Silencing ZNF304 decreases β1 integrin mRNA levels 
Quantification of mRNA levels by Real Time RT-PCR in Control siRNA and ZNF304 
siRNA transfected HeyA8 cells (n=2). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 18. β1 integrin is expressed in all cell lines tested 
Western Blot analysis of basal protein expression of ZNF304 and Integrin β-1  
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We next investigated whether ZNF304 transcriptionally regulates β1 integrin. ZNF304-

DNA binding sites were predicted on the basis of support vector machines (Persikov et 

al., 2009). We identified ten possible ZNF304 binding sites in the β1 integrin promoter 

by using support vector machine scores that ranged from 24.25 to 18.9 (Figure 19A). 

The transcription start site was predicted by the ensemble and was compared with the 

β1 integrin transcript sequence and the binding locations in the β1 integrin promoter 

region (Figure 19B). Six primer sets containing the segments for the 10 binding sites 

were designed (Figure 19C). DNA segments were amplified, cloned, sequenced, and 

confirmed with a standard nucleotide-nucleotide basic local alignment search tool 

(National Center for Biotechnology Information). To determine whether ZNF304 binds to 

the β1 integrin promoter, we performed chromatin immunoprecipitation assays (ChIP) in 

HeyA8 cells with ZNF304 antibody. Subsequent polymerase chain reaction (PCR) 

results confirmed the interaction of β1 integrin promoter and 5 of the 6 predicted 

ZNF304 binding sites (BS1, BS2, BS3, BS5, and BS6) (Figure 19D). A densitometric 

analysis of input and immunoprecipitation results for each binding site revealed that 

BS1, BS2, and BS3 had an affinity of > 50% (Figure 19E). Owing to their affinity, BS1, 

BS2, and BS3 were selected for further studies. 
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Figure 19. ZNF304 binds to β1 integrin promoter 
 
(A) Predicted binding sites of ZNF304 in ITGB1 promoter based on SVM scores using 
an online tool, which is available at http://compbio.cs.princeton.edu/zf/ 
(B) ITGB1 promoter with 10 predicted binding sites, 
(C) Six primer sets that were designed for ten predicted sites 
(D) ChIP analyses with ZNF304 antibody from HeyA8 cells. Relevant sequences were 
quantified by PCR with pre-designed six sets of primers subsequent to ChIP assay, (E) 
densitometric analysis of ChIP analysis. Sequence and antibody specificity controls are 
included. Data are presented as percentage of input. 
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To identify the role of ZNF304 in the regulation of β1 integrin gene transcription, we 

developed 3 constructs that each contained one of the binding sites and inserted them 

into pGL3-basic vector. HeyA8 cells were transfected with the constructs, and the 

activity of each binding site was determined by a dual-luciferase reporter assay in cells 

with basal ZNF304 expression and in cells in which ZNF304 had been knocked down by 

siRNA. As shown in Figure 20A, overall luciferase activity increased in cells transfected 

with the binding site constructs compared with cells transfected with empty vector. Cells 

transfected with BS1-vector had 2 times more luciferase expression than empty vector 

cells, whereas BS2-vector–transfected cells had 6 times more luciferase expression 

than did the empty vector cells. Cells transfected with BS3-vector showed the highest 

luciferase activity (approximately 70 times more expression than empty vector cells). 

ZNF304 silencing led to a decrease in luciferase activity in all 3 binding sites. The most 

significant was BS2-transfected cells, which had a 40.3% inhibition of luciferase activity 

(P = 0.02). We found a 13.8% decrease in luciferase activity for cells transfected with 

BS1-vector and a 7.8% decrease for cells transfected with BS3-vector, compared with 

control cells (P = 0.0173 and P = 0.2630, respectively). Co-transfection of ZNF304-

expressing vector significantly induced the luciferase activity of BS1-, BS2-, and BS3-

vector–transfected cells (Figure 20B). These results indicate that ZNF304 is a positive 

regulator of the active β1 integrin promoter and that ZNF304 increases its transcription 

by binding to BS2.  
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Figure 20. ZNF304 regulates β1 integrin 
 

(A) Luciferase activity upon control siRNA (black) or ZNF304 siRNA (grey) treatment in 
HeyA8 cells. Fold of induction was calculated after normalization with empty vector. 
Data presented as mean ± SEM. 

(B) Luciferase activity upon ZNF304-expressing vector transfection in BS-1, BS2, and 
BS-3 vector transfected HeyA8 cells. Data presented as mean ± SEM. 
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ZNF304 protects tumor cells from anoikis  

 

β1 integrin confers a survival advantage to tumor cells (Vachon, 2011). As a regulator of 

β1 integrin, ZNF304 can also inhibit anoikis through β1 integrin downregulation. 

Therefore, we examined detached HeyA8 cells in vitro using 

polyhydroxyethylmethacrylate (poly-HEMA)-coated tissue culture plates that promote 

anchorage-independent cell growth (Sood et al., 2010). Cells transfected with either of 

the ZNF304 siRNAs for 72 hours had a significantly higher ([ZNF304 siRNA-1, P 

<0.0001]; [ZNF304 siRNA-3, P <0.0005]) rate of anoikis (75%-80%), than control 

untreated or control siRNA-treated cells (60%) (Figure 21A). Consistent with these 

results, immunoblotting from these samples showed that silencing ZNF304 also 

increased poly ADP ribose polymerase (PARP) cleavage (Figure 21B), which supports 

our observation of increased anoikis in cells transfected with ZNF304 siRNA. 

To determine the link between ZNF304-mediated β1 integrin and anoikis, we also 

performed a rescue experiment. HeyA8 and SKOV3IP1 cells were transfected with 

either control siRNA or ZNF304 siRNA. Next, cells were transiently transfected with 

either empty vector or β1 integrin–expressing vector and transferred to anoikis plates. 

Both HeyA8 and SKOV3IP1 cells that were transfected with β1 integrin–expressing 

vector showed increased survival and decreased anoikis rates  (Figure 21C). 

Furthermore, silencing ZNF304 increased the anoikis sensitivity and death rate of 

HeyA8 cells even in the presence of high β1 integrin expression. 
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Figure 21. ZNF304 mediates inside-out signaling 
 
(A) The anoikis rate of HeyA8 cells in suspension condition at 24, 48, and 72 hours in 
vitro (n=3) 
(B) PARP cleavage in ZNF304 siRNA and control siRNA (72 hours) treated samples in 
suspension condition. 
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Figure 21 (continued). ZNF304 mediates inside-out signaling 
(C) The anoikis rate of HeyA8 and SKOV3IP1 cells in suspension condition after 
ZNF304 silencing and β1 integrin overexpression (n=2) 
 
  

C

PARP cleavage

HeyA8 SKOV3IP1



 64 

Development and characterization of DANP 
 

Size, charge and morphology 

On the basis of our in vitro findings, we next investigated whether ZNF304 gene 

silencing would be effective in treating orthotopic murine models of OC. For the in vivo 

experiments, we developed and characterized a novel delivery system designed for 

sustained and prolonged gene silencing. Dual assembly nanoparticles (DANP) were 

prepared by using a chitosan core coated with polylactic acid (PLA). These particles 

had a diameter of 150-200 nm and a zeta potential of -10 mV, which corresponded to a 

neutral range (Figure 22, A and B, respectively). Atomic force microscopy images 

demonstrated the spherical morphology and size distribution of the DANP (Figure 23). 

This optimized nanoparticle formulation was used for all subsequent experiments owing 

to their small size, slight negative charge, and high efficiency at incorporating siRNA. 

We incorporated siRNA in the chitosan core by using chitosan/tripolyphosphate at a 3:1 

ratio, which yielded more than 75% loading efficiency, as previously described (Lu et al., 

2010).  

Biodistribution 

We next determined the tissue distribution of the DANP by labeling the particles with 

rhodamine 6G and administering these red fluorescence–labeled particles as a single 

dose intravenously to HeyA8 tumor–bearing mice. Twenty-four hours later, the mice 

were euthanized, and their major organs and the tumors were removed, processed, and 

sectioned. The number of particles in each field was assessed by fluorescence 

microscopy (Figure 24). 
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Figure 22. Size and and zeta potential characteristics of DANP 
 

(A) Size and (B) zeta potential of DANP determined by Zeta Sizer (Dynamic Light 
Scattering). 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 23. DANP exhibits spherical morphology 
 

C) Atomic Force Microscopy images of DANP showing the morphology and size 
distribution of particles 
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Figure 24. DANP accumulates in tumor 
Biodistribution of rhodamine 6G-labeled DANP in vivo. Tumor and the major organs 
were removed 24 hours after a single administration of rhodamine 6G labeled DANP. 
The nanoparticles were monitored using fluorescent microscopy and representative 
images were taken at 10X (left) and 20X magnification (right). Number of nanoparticles 
was counted at 5 fields per slide (center). Data are presented as means ± standard 
error of the mean (SEM). 
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Duration of in vivo gene silencing 

In our first set of experiments, we determined the duration of in vivo DANP-mediated 

ZNF304 silencing in an orthotopic HeyA8 mouse model. ZNF304-siRNA-DANP (300 

µg/Kg body weight) was administered as a single intravenous injection 2 weeks after 

tumor inoculation. Groups of mice were euthanized on day 3, 7, and 14 after injection. 

Tumors were collected and analyzed by immunoblotting to determine ZNF304 protein 

expression levels. We demonstrated that ZNF304 protein silencing started at day 3 and 

continued up to 14 days after a single administration of ZNF304-siRNA-DANP (Figure 

25).  

 

 

 

 

 

 

Figure 25. DANP-ZNF304 siRNA downregulates ZNF304 in vivo up to 14 days after 
a single IV injection 
 

Tumors were removed and analyzed by immunoblotting at 3, 7, and 14 days after a 
single administration of ZNF304 siRNA-DANP. 
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Toxicity 

 

To determine whether DANP particles alone or containing siRNA will cause toxicity, we 

assessed the blood chemistries 72 hours after a single IV administration of DANP with 

or without siRNA incorporation. The groups were: NT (n=1), DANP alone (n=3), DANP-

Control siRNA (n=3), DANP-ZNF304 siRNA (n=3). The levels of Alanine Transaminase 

(ALT), Blood Urea Nitrogen (BUN), Creatinine and Alkaline Phosphatase were and 

hematologic parameters in normal range at 72 hours after a single intravenous 

administration of DANP, DANP-Control siRNA, and ZNF304 siRNA (Figure 26, Table 1 

respectively) (Schnell et al., 2002). Plasma samples were also analyzed in order to 

determine whether the treatment caused an inflammatory response. No significant 

difference was observed in cytokine levels at 72 hours after a single systemic 

administration (Figure 27). 

 

Additionally, we removed the major organs (liver, kidney, spleen and brain) in order to 

assess the potential toxicity 72 hours after a single systemic administration. 

Hematoxylin and eosin stained tissues were analyzed by our pathologist and no sign of 

toxicity was observed in any of the groups during the analyses (Figure 28). No clinical 

findings/ abnormalities were observed during animal studies 
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Table 1. Summary data of hematology parameters after administration of Empty DANP, DANP-Control siRNA, DANP-
ZNF304 siRNA 	  

  NT (n=1) Empty DANP 
(n=4) 

  DANP- ControL 
siRNA  (n=4) 

  DANP- ZNF304 siRNA  
(n=4) 

  

Parameter Units Mean Mean Min Max SD Mean Min Max SD Mean Min Max SD  

White Blood Cell 
Count 

 10.e3/uL 1.0 2.8 2.0 4.0 0.9 4.1 2.0 5.6 1.5 4.3 2.3 5.8 1.5  

Red Blood Cell Count  10.e6/uL 10.7 10.1 9.7 10.4 0.4 10.5 10.0 11.0 0.5 10.1 9.7 10.7 0.5  

Hemoglobin  g/dL 15.4 14.8 14.1 15.5 0.6 15.1 14.3 15.5 0.6 14.5 14.0 15.2 0.5  

Hematocrit  % 52.9 50.4 49.4 52.0 1.3 51.9 49.6 54.4 2.2 49.8 48.7 52.6 49.8  

MCV  fL 49.5 49.7 49.1 51.0 49.7 49.2 48.0 50.1 0.8 49.3 48.4 50.1 0.7  

MCH  pg 14.4 14.6 14.4 14.9 0.2 14.4 14.2 14.6 0.2 14.4 14.1 14.9 0.4  

MCHC  g/dL 29.0 29.3 29.2 29.9 29.3 29.2 28.6 29.6 0.4 29.2 28.7 29.1 0.5  

RDW   % 13.3 13.5 13.0 13.9 0.5 13.0 12.7 13.2 0.2 13.4 13.2 13.6 0.2  

Platelet Count  10.e3/uL 582.0 705.0 425.0 833.0 188.3 889.6 834.0 1094.0 889.6 981.3 990.0 1047.0 60.7  

MPV  fL 6.3 6.7 6.1 7.4 0.5 6.3 6.1 6.6 0.2 6.2 6.1 6.3 0.1  

Segs   % 17.2 12.7 11.6 14.0 1.0 9.2 7.4 12.3 2.0 13.7 9.7 16.5 3.2  

Lymphs  % 71.7 78.6 72.0 83.0 4.9 86.3 83.0 88.7 2.1 82.2 79.0 86.3 3.6  

Monos  % 1.7 4.2 1.6 9.0 3.4 1.9 1.1 3.1 0.8 1.5 1.0 1.9 0.4  

Eos   % 8.3 3.5 3.0 5.0 1.1 1.5 1.6 2.6 0.7 1.4 0.9 1.8 0.5  

Basos  % 0.5 0.8 0.2 2.0 1.1 0.2 0.1 0.3 0.1 0.4 0.1 0.6 0.2  

LUC  % 0.7 0.9   0.0 0.8 0.5 1.0 0.2 1.0 0.6 1.6 0.4  
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Figure 26. BUN, Creatinine, ALT and alkaline phosphatase levels remain in normal 
range in blood after DANP-ZNF304 siRNA administration 
  



 71 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 27. No sign of inflammatory response in plasma after DANP-ZNF304 siRNA 
administration 
 

  

Supplementary Figure 7

Supplementary Figure 7. Effect of DANP, DANP-Control siRNA and DANP-ZNF304 siRNA on cytokine levels in plasma,
 72 hours after a single intravenous administration.

No Treatment
DANP
DANP-Control siRNA
DANP-ZNF304 siRNA

1000

2000

3000

4000

5000

6000

7000

8000

0

G-CSF
GM-CSF TNFȬ

M-CSF IL-1Ȭ
IL-1ß IL-2 IL-6 IL-10 KC

MIP-2 LIX

pg
/m

L 
pl

as
m

a



72 
 

 

 
 
 
 
 
 
 
 
 
 
 
 
Figure 28. No sign of toxicity in liver, kidney, spleen and brain tissues after 
DANP-ZNF304 siRNA administration 
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Effects of ZNF304 gene silencing on antitumor activity in orthotopic models of OC 

 
On the basis of these findings, we examined the antitumor activity of weekly or biweekly 

ZNF304 silencing in 2 orthotopic OC mouse models, HeyA8 and SKOV3IP1. In the first 

model, mice were injected with HeyA8 cells to induce tumors and 1 week later were 

randomly assigned to 6 treatment groups (10 mice in each group): DANP alone, control 

siRNA-DANP, ZNF304-siRNA-DANP (150 µg/Kg body weight) administered weekly, 

and ZNF304-siRNA-DANP (300 µg/Kg body weight) administered biweekly, or, since 

paclitaxel is commonly used for OC treatment and combines effectively with many 

biologically targeted agents, paclitaxel only or a combination of paclitaxel plus ZNF304 

siRNA-DANP (300 µg/Kg body weight, biweekly administration) (Figure 29). Significant 

reductions in tumor weight were observed in the groups treated with ZNF304 siRNA-

DANP weekly or biweekly. Mice treated with ZNF304 siRNA-DANP had a significantly 

lower tumor burden (62% reduction in tumor weight; P < 0.01) (Figure 29, first panel) 

and had 50% fewer nodules than did mice treated with control siRNA-DANP (P < 0.05) 

(Figure 29, second panel). Moreover, the ZNF304 siRNA-DANP treatment group had 

significantly fewer nodules than did the control group (P=0.0001, weekly administration; 

P=0.0001, biweekly administration; student’s t-test).  
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Figure 29. Silencing ZNF304 leads to increased antitumor activity in HeyA8 
orthotopic murine model of OC  
Data presented as mean ± SEM (n=10 mice/group) 
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Figure 6. Effects of in vivo ZNF304 gene silencing on tumor growth and vasculature
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In the second orthotopic model (SKOV3IP1), the treatment groups were (1) control 

siRNA-DANP, (2) ZNF304 siRNA-DANP, (3) control siRNA-DANP plus paclitaxel, and 

(4) ZNF304 siRNA-DANP plus paclitaxel (n=10/group). siRNA-DANP was administered 

intravenously every 2 weeks in all treatment groups. Tumors removed from mice treated 

with ZNF304 siRNA-DANP alone weighed 60% less than those of mice treated with 

DANP-control siRNA. (Figure 30, first row). Number of nodules was dramatically 

reduced in mice treated with either ZNF304 siRNA-DANP or ZNF304 siRNA-DANP plus 

paclitaxel (Figure 30, below). The greatest reduction was observed in the group treated 

with both DANP-ZNF304 siRNA and paclitaxel. None of the groups in either mouse 

model showed decreased body weight, which indicates that the treatments were not 

toxic (Figure 31). These data indicate that inhibiting ZNF304 results in antitumor activity 

in mouse models of OC and that the DANP delivery system is an efficient tool for in vivo 

gene silencing.  

Given the in vitro effects of ZNF304 silencing, we performed Ki67 and CD31 

staining to examine the biological effects of silencing ZNF304 on tumor cell proliferation 

and angiogenesis, respectively. Mice treated with ZNF304 siRNA-DANP showed 

significant reduction in cell proliferation compared to control group (P<0.0001) (Figure 

32, first panel). Given that ZNF304 transcriptionally regulates β1 integrin, which is 

required for endothelial cell adhesion, migration, and survival (Carlson et al., 2008, Weis 

and Cheresh, 2011), we also examined the effects of ZNF304 siRNA treatment on 

angiogenesis. The ZNF304 siRNA-DANP treatment group had significantly reduced 

microvessel density compared with the control (P=0.0252) (Figure 32, second panel). 
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These data showed that downregulation of ZNF304 was highly associated with 

decreased cell proliferation and decreased microvessel density. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 30. Targeting ZNF304 leads to increased antitumor activity in SKOV3 
orthotopic murine model of OC  
Data presented as mean ± SEM (n=10 mice/group) 
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Figure 31. DANP-siRNA treatment does not affect body weight indicating no 
toxicity  
Data presented as mean ± SEM (n=10 mice/group) 
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Figure 32. Silencing ZNF304 decreases proliferation and angiogenesis in vivo 
Data presented as mean ±SEM (n=5 slides /group) 
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Next, we addressed whether ZNF304 silencing could directly increase the rates of 

anoikis in vivo. For this question, we use the OC MDAH 2774 cell line since it causes 

mice to develop ascites (Sood et al., 2010). MDAH 2774 cells were implanted into the 

peritoneal cavity of nude mice, and ascites production was observed 4-6 weeks post-

inoculation. Next, we analyzed the ascites for viable tumor epithelial cells using 

fluorescein isothiocyanate (FITC)-labeled anti-epithelial cellular adhesion molecule 

antibody followed by flow cytometry analysis (Figure 33). The control group showed 

40% epithelial cell death in ascites, whereas mice treated with intravenous ZNF304 

siRNA-DANP had up to 80% epithelial cell death. These results show that silencing 

ZNF304 significantly decreased the ability of OC cells to survive in ascites (P=0.0001, 

Student’s t-test). 

 

 

 

 

 

 

 

Figure 33. Silencing ZNF304 culminate in enhanced anoikis in vivo 
Data presented as mean ±SEM (n=3 mice/group) 
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CHAPTER IV: Discussion 
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Summary 

 

Ovarian cancer (OC) is lethal. According to statistical estimations, 21980 women will be 

newly diagnosed in 2014 and 14270 women will die due to OC (Siegel et al., 2014). 

Primary reason of elevated death rate is the late-stage presentation of the disease with 

multiple tumor nodules. Hence, more than 70 % of patients with advanced disease 

develop resistance to chemotherapy and experience disease recurrence, which 

generates the second limitation (Romero and Bast Jr, 2012, Bast and Markman, 2010).   

 

Personalized cancer therapy gives the hope of enabling tailored therapies to ameliorate 

survival rates, overcome resistance and decrease toxicity through administration of the 

right drug combination for individuals (Meric-Bernstam and Mills, 2012). It requires 

detailed molecular characterization of patient tumor and its microenvironment that can 

be achieved by rapid identification of novel targets and generation of databases for 

extensive information about markers that predict prognosis, treatment response and 

resistance.  

 

In this current study, we combined the opportunities that were provided by high-

throughput screening technologies supported with bioinformatics, proteomic technology, 

and nanotechnology. We identified ZNF304, through an extensive computational 

analysis and validated its functional significance in OC using Reverse Phase Protein 

Array (RPPA) with subsequent analysis of the potential pathways and downstream 

effectors. We also developed an RNAi delivery system that carry RNAi safely, 
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accumulate at tumor site and release RNAi in a sustained manner leading to decreased 

administration frequency. One of the key findings from this study is that ZNF304 is a 

novel transcriptional regulator of β1 integrin. Silencing ZNF304 with siRNA that is 

incorporated in our delivery system DANP resulted in antitumor activity in orthotopic 

models of OC.  

 

Overall, we have identified a novel zinc finger protein as a contribution in the biology of 

cancer that could open up new avenues not only for OC, but also in a broad range of 

other types of cancer. We also developed and characterized a novel RNAi delivery 

system that will move forward to translational applications in the near future. 

 

Discovery of ZNF304 

 

Elevated metastatic rate and the resistance to chemotherapy are two major issues that 

require improvement for better outcomes in OC patients. The ability for the prediction of 

clinical response should be advanced in order to identify the right combination of drugs 

for individuals. Given the heterogeneity of OC at molecular level, tumors should be 

screened in details using high-resolution comparative genomic hybridization, single 

nucleotide polymorphism analysis, gene and protein expression arrays, and 

immunohistochemistry of relevant markers for an appropriate individually designed 

therapy selection (Meric-Bernstam and Mills, 2012). Besides overcoming the logistic 

challenges, further understanding of the biology is essential that can be only achieved 

by identifying novel targets that have a critical role in survival and metastasis.  
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Therefore, we embarked on a study of identifying a novel target that is significant in 

survival and metastasis. We mined The Cancer Genome Atlas (TCGA), which was 

generated using extensive information and comprehensive analyses of all somatic 

alterations in the cancer genomes (Chin et al., 2011a, Chin et al., 2011b). We identified 

16,869 upregulated genes in OC, and found out the ones that were positively correlated 

with tumoral N-cadherin expression since N-cadherin is crucial in metastasis (Suyama 

et al., 2002, Cavallaro and Christofori, 2004). We were guided to study ZNF304 since 

out of four target genes; only ZNF304 was associated with overall survival in  OC 

patients. The inhibition of invasion and migration of cells after ZNF304 silencing in vitro, 

strengthen the potential of our target selection and led us to perform a protein analysis 

using RPPA technology. RPPA is a fast and sensitive platform that provided us the 

proteomic analysis to understand the potential role of ZNF304 in vitro after silencing 

ZNF304 (Tibes et al., 2006, Stemke-Hale et al., 2008). The comprehensive analysis of 

the RPPA data unraveled the link between ZNF304 and integrin signaling.  

 

Functional Significance of ZNF304 in OC 

 

Integrins are crucial for normal functions of multicellular organisms and critical at each 

step of cancer: tumorigenesis, progression, and metastasis (Desgrosellier and Cheresh, 

2010). Integrins are regulated and activated by conformational changes, clustering, and 

trafficking (Margadant et al., 2011). These transmembrane proteins are an essential link 
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between the extracellular matrix (ECM) and cytoplasm, and the signaling can be in 2 

directions: outside-in or inside-out through the cytoplasmic β tail (Margadant et al., 

2011).  

 

Outside-in signaling. β1 integrin is a subunit of heterodimeric membrane adhesion 

receptors, and it can form heterodimers with integrin α subunits and interact with 

extracellular matrix proteins. For example, α4β1, α8β1, and αvβ1 are fibronectin-binding 

integrins; α3β1, α6β1, and α7β1 interact with laminin and nectin; and α1β1, α2β1, 

α10β1, and α11β1 bind to collagens (Brakebusch and Fässler, 2005, Giancotti, 2000). 

Integrin promotes cell survival and regulates focal adhesion through β1 tail, leading to 

tumor metastasis in many types of cancer including OC (Caccavari et al., 2010, Guo 

and Giancotti, 2004, Grzesiak et al., 2011, Mitra et al., 2011). Furthermore, Schiller and 

colleagues demonstrated that expression of α5β1 integrins is essential to sense the 

stiffness of fibronectin-based ECM via acting as a mechano-sensor in metastasis 

(Minton, 2013, Schiller et al., 2013). Additionally, several β1 integrin-targeting 

strategies, such as monoclonal antibodies and peptide inhibitors, showed activity in 

clinical trials for cancer therapy (Desgrosellier and Cheresh, 2010, Barkan and 

Chambers, 2011, Jahangiri et al., 2014). However, targeting ZNF304—the regulator of 

β1 integrin expression—may offer greater efficacy than targeting only activation of β1 

integrin. 

 

Inside-out signaling. The first study showing the inside-out regulation of β1 integrin 

unraveled the control by R-Ras of the ligand-binding affinity of β1 integrin and 
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fibronectin (Zhang et al., 1996). Thus, the regulation of integrin activation and affinity 

was known as a transcription-independent function of the Ras-linked mitogen-activated 

protein kinase pathway (Hughes et al., 1997, Kinbara et al., 2003). However, the 

transcriptional regulation of β1 integrin remained unknown. Here, we elucidated that the 

regulation of β1integrin expression through ZNF304 at the transcriptional level.  

RPPA analysis revealed that ZNF304 regulates integrin signaling through inhibiting the 

expression of caveolin-1, fibronectin, myosin II, and the effectors of the Ras signaling 

pathway (BRAF, and RAF1). The reduction in β1 integrin and the phosphorylated levels 

of focal adhesion–associated adaptor proteins indicated that ZNF304 may be a master 

regulator of migration (Huttenlocher and Horwitz, 2011). Previous studies showed that 

fibronectin and β1 integrin ligation, followed by activation of cytoplasmic β subunit, 

promotes the invasive migration of OC cells through the ECM (Caswell et al., 2007). 

Myosin II and FAK mediate the phosphorylation of paxillin, reinforcing the cytoskeletal 

ECM linkage and driving focal adhesion maturation (Pasapera et al., 2010). Additionally, 

β1 integrin-FAK signaling directs the initial proliferation of micrometastatic cancer cells 

disseminated in the lungs, which indicates the role of integrin-FAK signaling in the 

metastatic cascade (Shibue and Weinberg, 2009). Thus, ZNF304 may be a regulator of 

this metastatic process. Correspondingly, we provide evidence that silencing the key 

regulator ZNF304 decreased nodule formation and tumor growth in orthotopic mouse 

models of OC. 
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The functional crosstalk between cell adhesion receptors and receptor tyrosine kinases 

contributes to cancer cell survival (Guo and Giancotti, 2004). The interaction between 

ErbB1 and β1 integrin induces tumor cell detachment, migration and metastatic 

potential. β1 integrin was also shown to regulate epidermal growth factor receptor 

signaling in lung cancer cells (Morello et al., 2011) and to mediate epidermal growth 

factor-induced cell invasion in OC cells (Lau et al., 2012). Morello and colleagues 

demonstrated that silencing β1 integrin 

led to decreased proliferation, impaired migration and invasive behavior. Hence, 

silencing β1 integrin leads to a defective activation of EGFR signaling cascade and 

increases EGFR on the surface of the cell, indicating that β1 integrin is essential for 

EGFR turnover on the cell membrane. Therefore silencing ZNF304—the regulator of β1 

integrin—may also inhibit epidermal growth factor receptor signaling, inhibiting cancer 

cell survival and slowing tumor progression. 

 

 

The interaction between ECM and integrins play a critical role in cell migration by 

providing an essential step for cell motility. Adherent cells require anchorage of the cell 

for survival (Meredith et al., 1993, Frisch and Francis, 1994). All communications within 

the microenvironment are in most cases mutually beneficial. Thus, its combination with 

ECM provide life support for the cells (Liotta and Kohn, 2004). Dr. Steven Frisch 

discovered and named this phenomenon as the term “anoikis,” that means 

“homelessness,” and refers to a form of programmed cell death as a result of 

inadequate cell-ECM interaction or absence of cell-ECM attachment (Meredith et al., 
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1993, Frisch and Francis, 1994, Liotta and Kohn, 2004). However, malignant cells 

develop resistance to anoikis, and survive in absence in these signals, leading to an 

elevated metastatic spread (Simpson et al., 2008, Jenning et al., 2013). A recent study 

showed that activated integrins enhance the metastatic potential of prostate cancer cells 

by decreasing their sensitivity to anoikis during tumor dissemination and by increasing 

their interactions with ECM ligands during extravasation (Lee et al., 2013). This study 

suggested that in prostate cancer cells, β1 integrin is activated through an inside-out 

signaling, which also enhances its affinity for ligand binding. The interaction of β1 

integrin with ECM ligands further activates β1 integrin through outside-in signaling, 

suggesting the bidirectional interactions can follow each other leading to further 

activation of integrins, subsequently followed by growth signals. Our in vitro and in vivo 

anoikis results showed that silencing ZNF304 enhances the anoikis rate through 

inhibiting inside-out integrin signaling and accordingly blocking outside-in signaling. 

 

Development and characterization of Dual Assembly Nanoparticles for RNAi 

delivery and sustained down-regulation of targets 

 

In recent years, there has been an explosion in knowledge regarding non-coding RNAs. 

At present, there are several small and long coding RNAs including siRNA, microRNA, 

pyknons, long non-coding RNAs and others (Rigoutsos, 2010, Hansji et al., 2014, Sana 

et al., 2012). We currently know that protein-coding genes represent less than 2% of the 

total genome and non-coding RNAs can regulate DNA, RNA and protein expression 

governing multiple pathways.  
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Given the fact that RNAi based therapies offer a unique opportunity to knockdown 

specific genes and paves the way to personalized medicine in cancer therapy, sufficient 

RNAi delivery is essential. However, a number of pharmacological, physiological and 

biological barriers have to be overcome. This emphasizes the crucial role of 

nanotechnology-based delivery in the development of novel strategies. Early-phase 

RNAi based therapy trials drew the attention to the feasibility of siRNA delivery into 

tumors and the selective knockdown of target of interest at tumor site (Tabernero et al., 

2013, Davis et al., 2010). These studies showed the potential of RNAi-based therapy as 

a promising strategy. However, there are still critical steps to be taken in the 

development of RNAi based therapeutics including the delivery, relevant toxicology, 

pharmacology, and pharmacokinetics that should be assessed in the early steps of the 

development (Wu et al., 2014). In this study, we took the initial steps of the development 

and characterization of DANP-siRNA therapeutic agent. Our group has previously 

developed and characterized chitosan nanoparticles for systemic delivery of siRNA (Lu 

et al., 2010, Han et al., 2010). Although chitosan nanoparticles is an efficient RNA 

interference delivery system, weekly administration is required since the target 

downregulation lasts only for 7 days after a single administration. Our results 

demonstrate that DANP, a combination of 2 biocompatible and biodegradable polymers, 

led to sustained silencing of ZNF304 and antitumor activity with a single administration 

every 2 weeks. Furthermore, according to the level of silencing at 14 days after a single 

DANP-siRNA administration; we expect the silencing of the gene of interest, beyond 14 

days. Thus, DANP is a powerful therapeutic tool that leads to long-term silencing of 

genes and could enhance the use of siRNA and patient compliance. 
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There have been similar attempts in the development of nanoparticles for sustained 

release of the drugs. Ferrari and colleagues designed multistage vector system (MSV) 

that is composed of porous silicon particles loaded with nanoparticles that leads to the 

slow-rate release of siRNA in murine orthotopic models of OC (Tanaka et al., 2010). 

MSV/EphA2 siRNA was administered biweekly for 6 week leading to remarkable tumor 

reduction in vivo (Shen et al., 2013b). They also showed that the carriers highly 

accumulate at tumor site with biodistribution studies and demonstrated that no 

inflammatory response was created after systemic administration (Tanaka et al., 2010).  

 

The toxicity of nanoparticles is crucial in evaluating the potential of carriers at 

development stages of drug delivery systems (Wu et al., 2014). However, there are no 

standards in order to determine the toxicity of nanocarriers. In this study, we studied the 

potential toxicity of DANP in serum 72 hours after a single systemic administration and 

no clinical abnormality was found (Schnell et al., 2002). In addition, following a single 

administration of DANP; no sign of toxicity was observed in the liver, kidney, brain, and 

spleen after a single iv administration, in compliance with no significant difference in 

inflammatory cytokine levels. We similarly observed no significant difference in 

inflammatory cytokines. These data indicate that DANP is a safe and non-toxic. 

 

In vivo validation of target selection and DANP 

 

The treatment of ovarian cancer is still limited to surgery followed by chemotherapy 

especially with platinum and taxane based regimens (Romero and Bast Jr, 2012). 
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Cisplatin is an alkylating agent that leads to inter- or intrachain crosslinks through 

covalently binding to DNA. Paclitaxel increases microtubule stability through non-

covalent interaction and prevents the mitotic spindle formation. Given the fact that 

ZNF304 silencing leads to remarkable reduction in focal adhesion members such as 

FAK and Src, we combined our ZNF304 siRNA treatment with weekly intraperitoneal 

paclitaxel administration in our in vivo antitumor activity studies since focal adhesion 

kinase (FAK) and Src inhibition are shown to be critical for chemotherapy sensitivity, 

previously. FAK inhibition has been shown to sensitize ovarian cancer cells to taxanes 

in vitro and in vivo (Kang et al., 2013). In addition, Huang and his colleagues showed 

that Src inhibitor dasatinib in combination with paclitaxel is sufficient in reduction of 

tumor weight and number of nodules in orthotopic in vivo models of uterine cancer 

(Huang et al., 2014). Additionally, this combination showed its feasibility in Phase I 

studies in breast cancer patients (Gil et al., 2014, Cadoo et al., 2013, Huang et al., 

2014). However; since ZNF304 is a transcription factor and platinum based drugs lead 

to the crosslink of DNA, a combination treatment of ZNF304 siRNA and carboplatin can 

also show enhanced antitumor activity in vivo. Additionally, our data demonstrated that 

ZNF304 silencing caused cell cycle arrest in four ovarian cancer cell lines. Therefore, a 

combination treatment with ZNF304 siRNA and carboplatin may extent the DNA 

damage and increase the chemo sensitivity of cells in vitro. Therefore, the effects of 

ZNF304 silencing with or without carboplatin treatment can be studied in future studies 

in order to unravel whether ZNF304 is linked to platinum resistance. 
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CHAPTER V: Future Directions 
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Translational Application of Dual Assembly Nanoparticles 

This project provided basis for a number of future studies. In particular, we 

demonstrated that DANP is a safe and sufficient delivery system for siRNA. Hence, the 

particles are currently under evaluation by the Nanotechnology Characterization 

Laboratory (NCL). NCL works with the National Institute of Standards and Technology 

(NIST) and the U.S. Food and Drug Administration (FDA), serving as a national 

resource to facilitate the regulatory review for nanotechnology applications. Long-term 

goal of this project is to take DANP-siRNA to clinic and further characterization is 

required for the transition to clinical trials. 

In addition, given the fact that DANP is a polymeric particle, surface chemistries can be 

studied in order to chemically conjugate specific ligands on the surface of DANP for 

active targeting purposes. DANP passively accumulates at tumor site owing to the 

Enhanced Permeability and Retention (EPR) effect; however the presence of specific 

ligands on the nanoparticle will lead to selective uptake of nanoparticles by only tumor 

cells. 

 

Further investigation of the mechanism of ZNF304 

In this study, we showed that ZNF304 regulates β1 integrin, however since it is a novel 

transcription factor, its alternative downstream effectors are currently not known. 

Therefore ChIP sequencing can be performed and effectively analyzed in order to 

identify its additional targets and uncover the biological mechanisms that ZNF304 is 

involved in; not only for OC, but also in other types of cancer. A recent study has shown 
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the link between KRAS and ZNF304 in colorectal cancer, suggesting that KRAS 

promotes silencing through up-regulation of ZNF304, which also regulates 

transcriptional silencing of INK4A-ARF in human embryonic stem cells (Serra et al., 

2014). Further investigation should be performed for the effects of ZNF304 silencing in 

KRAS-driven cancers such as lung and pancreatic cancer.  

 
Determining the role of ZNF304 in chemotherapy resistance 

The worse survival in OC patients is highly associated with chemo-resistance since 

more than 70 % of patients with advanced disease develop resistance to chemotherapy 

and experience disease recurrence, which generates the second limitation (Romero and 

Bast Jr, 2012, Bast and Markman, 2010).  We have examined the effect of combination 

treatment with paclitaxel and ZNF304 silencing in our antitumor activity studies, 

however we have not studied the effect of platinum drugs in combination with ZNF304 

silencing. Proliferation assays can be performed and followed by RPPA array within 

samples that are treated with platinum alone and platinum in combination with ZNF304 

siRNA to find out the relevant downstream targets that ZNF304 might be regulating in 

the resistance mechanism. This project can contribute to the field in terms of identifying 

targets that are significant in chemotherapy resistance. 
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Table 2. siRNA sequences used in zinc finger protein 304 (ZNF304) transfection 
experiments 
 

Name Target Sequence  Source Cat # 

ZNF304 

siRNA-1 

5′-GAUCACACCUUACACAGAA-3′ Sigma-

Aldrich 

SASI_HS01_

00189770 

ZNF304 

siRNA-2 
5′-CUUAUUGAGCACUGGAGAA -3′ Sigma-

Aldrich 

SASI_HS01_

00189771 

ZNF304 

siRNA-3 

5′-GCAACAUAAUGGAGAGAAU-3′ Sigma-

Aldrich 

SASI_HS01_

00189772 

Control 

siRNA 

5′-UUCUCCGAACGUGUCACGUUU-3′ Sigma-

Aldrich 

WD00909801 
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Table 3. Antibodies used in the Western blotting, chromatin immunoprecipitation, 
and immunohistochemical analyses 
 
 

Target Protein Source Cat # Applications  

Actin-beta Sigma-Aldrich A5316 WB 

ZNF304 Sigma-Aldrich SAB2106472 WB, ChIP 

β1 integrin 

Cell Signaling 

Technology 4706S WB 

Akt (pS473) 

Cell Signaling 

Technology 4060S WB 

Akt 

Cell Signaling 

Technology 9272 WB 

FAK (pY397) BD Biosciences 611722 WB 

FAK BD Biosciences 610087 WB 

PARP 

Cell Signaling 

Technology 9542 WB 

Src (p416) 

Cell Signaling 

Technology 6943 WB 

Src 

Cell Signaling 

Technology 2123 WB 

Paxillin (pY118) 

Cell Signaling 

Technology 2541 WB 

Paxillin (pY31) Epitomics 1228-1 WB 

Paxillin  

Cell Signaling 

Technology 2542 WB 

Ki67 Thermo Scientific RB9043-P IHC 

CD31 BD Biosciences 53370 IHC 
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Table 4. Oligonucleotide sequences for quantitative reverse transcription 
polymerase chain reaction 
 

Target  
Gene              Forward Sequence                               Reverse Sequence 

ZNF304
-set 1 

5′-GCACAGAGATTCCTGTACCGT-

3′ 

5′-

TTTCAAGAGTGGGTCACACATC-

3′ 

ZNF304
-set 2 

5′-GTGTGACCCACTCTTGAAAGAC-

3′ 
5′-

CCCTCTGAAGCAATTCTCTCCA

T-3′ 

ZNF304
-set 3 

5′-TGGAGGGGCCTCATTTGTG-3′ 5′-

CTCCCTGCACGTAAAGGATCT-

3′ 

ITGB1-

set 1 
5′-CCTACTTCTGCACGATGTGATG-

3′ 
5′-

CCTTTGCTACGGTTGGTTACAT

T-3′ 

ITGB1-

set 2 
5′-GTAACCAACCGTAGCAAAGGA-

3′ 
5′-

TCCCCTGATCTTAATCGCAAAA

C-3′ 

ITGB1-

set 3 
5′-

CAAGAGAGCTGAAGACTATCCCA-

3′ 

5′-

TGAAGTCCGAAGTAATCCTCCT-

3′ 
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Table 5. Oligonucleotide sequences for quantitative polymerase chain reaction 
analysis of chromatin immunoprecipitation assays 
 

Gene 
Amplicon 

location 
Forward sequence Reverse sequence 

ITGB1 3775-

3725 

GGGTTGAGGAGAGGGAAGGTA TGCCTTTCAGTTGCTGTCCTAA 

ITGB1 3392-

3297 

AAGGCCAGCAGCATTGAAAG AGAACACAGAAGAGCTACAGGAC 

ITGB1 3155-

3108 

TCTGTTTCTTGCCAGTGCCC CCTTCTGAAACCCTTGTGCC 

ITGB1 1989-

1939 

TTTGCCTTGAGAAAGTCACG TCCTGTAATCCCAGCTTCTCA 

ITGB1 1546-

1496 

TGTGTGTGTATATGTGTGTCACCTT TGCGAGAAACCAACTGGTAG 

ITGB1 784-613 TCCCAGGTTCAAGCAGTTCTC GCTCACGCCTGGAATCTCA 
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