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Cyclin E is altered or overexpressed in approximately one-third of tumors from patients 

with invasive breast cancer and is a powerful independent predictor for survival in 

women with stage I-III breast cancer.  Full-length cyclin E (EL) is post-translationally 

cleaved into two low-molecular-weight isoforms, LMW-E (T1) and LMW-E (T2).  LMW-

E have been shown to exhibit greater binding affinity for cyclin-dependent kinase 2 

(CDK2) , cyclin dependent kinase inhibitors (CKIs), p21 and p27, but are resistant to 

p21 and p27 inhibition.  In addition, transgenic mice expressing LMW-E have increased 

mammary tumor development and metastasis compared to EL transgenic mice.  

Therefore, LMW-E are more aggressive in cell cycle abrogation and mammary tumor 

development.  The LMW-E isoforms are tumor specific and accumulate in the 

cytoplasm due to lack of a nuclear localization sequence (NLS).  Therefore, we 

hypothesized that aberrant localization of LMW-E isoforms leads to molecular events 

that ultimately contribute to LMW-E breast cancer tumorigenicity.  To address this 

hypothesis, we used a retrovirus-based protein complementation assay (RePCA) to 

identify LMW-E (T1) protein-protein interactions in breast cancer.  Using this 

methodology, we found ATP-citrate lyase (ACLY) as a novel interacting protein of 

LMW-E (T1) in the cytoplasm.  ACLY is a 125kDa homotetrameric enzyme that 

catalyzes cytoplasmic citrate to acetyl-CoA and oxaloacetate in the de novo lipogenesis 
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pathway.  End products of this pathway consist of complex fatty acids that fuel 

membrane production of highly proliferating cells and lipid-based post-translational 

modifications that mediate protein-protein interactions.  Additionally, we found that 

LMW-E upregulates ACLY enzymatic activity which leads to lipid droplet formation; 

thereby providing cells with essential building blocks to support growth.  ACLY is also 

required for LMW-E mediated transformation, migration and invasion in vitro, as well as 

tumor growth in vivo.  Taken together these data suggest a novel interplay between 

LMW-E and ACLY and how metabolic pathways and the cell cycle are linked in breast 

cancer tumorigenesis. 
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 CHAPTER 1:  INTRODUCTION TO THE LINK BETWEEN BREAST CANCER AND 

THE CELL CYCLE 

 

1.1 OVERVIEW OF BREAST CANCER 

1.1a.  Breast cancer statistics 

 Breast cancer is the most frequently diagnosed cancer in women with 1 in 8 

women developing the disease over the course her lifetime and an estimated 231,840 

new cases in 2015 alone [1].  Moreover, breast cancer in women continues to be a 

leading cause of cancer death, falling second to cancer of the lung and broncus [1]. 

Breast cancer develops when normal, healthy mammary cells acquire mutations, or 

abnormal changes that lead to uncontrolled growth.  However, a genetic predisposition 

is responsible for only 5-10% of all breast cancers leaving 85-90% of breast cancers to 

arise sporadically [2].  Significant advances have been made in the identification of the 

genetic drivers of hereditary breast cancer, including BRCA1, BRCA2, CHEK2, ATM 

PALB2, p53 and PTEN mutations [2-5], but identification of the molecular mechanisms 

underlying sporadic breast cancer remain largely elusive for this complex disease.   

1.1b.  Molecular subtypes of breast cancer 

 Breast cancer is a heterogeneous disease composed of several molecular 

subtypes harboring distinct prognosis and outcomes.  Clinical variables, on their own, 

such as tumor grade, tumor size and lymph node status are not sufficient to determine 

prognosis, therefore, determination of the molecular state of the tumor is required to 

drive treatment decisions [6].  A patient’s overall prognosis is largely dependent on the 

molecular profile of the tumor itself.  Studies analyzing gene expression using DNA 
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microarrays were able to segregate and differentiate breast cancers based on their 

unique gene expression profile [7].  Data from this seminal paper lead to our current 

system in subtyping breast cancer.  At this time, there are six molecular subtypes of 

breast cancer: Luminal A, Luminal B, HER2-enriched, Basal-like (which includes triple-

negative breast cancer “TNBC” and its relative subtypes), Claudin-low and normal-like. 

Luminal A breast cancer originates in the inner (luminal) cells of the mammary 

ducts and is the most common breast cancer subtype [8, 9].  It is characterized by 

estrogen receptor positivity (ER+), and/or progesterone receptor positivity (PR+) and 

negative expression of human epidermal growth factor receptor 2 (HER2-) (Table 1).  

Luminal A tumors have a low proliferation rate as seen by Ki67-/low staining [7, 10].  The 

prevalence of luminal A breast cancer is 28-31% and while the relapse rate is 27.8%, 

overall, patients have a good prognosis with a 5-year survival rate of 95%, which is the 

highest of all the intrinsic subtypes [8, 11, 12].  Treatment for luminal A tumors usually 

requires only endocrine therapy.  Interruption of the estrogen-signaling pathway has 

proven to be the most effective treatment for luminal A breast cancer.  Selective 

estrogen receptor modulators (SERMs) such as tamoxifen; which inhibit the function of 

ER are given to premenopausal and postmenopausal patients and selective estrogen 

receptor down-regulators (SERDs) such as fulvestrant are given to postmenopausal 

patients [13, 14]. Additionally, postmenopausal patients may be given aromatase 

inhibitors such as anestrozole, exemestane or letrozole which block estrogen 

production or inactivate ER [8, 15].  However, luminal A tumors often become resistant 

to endocrine-based therapy and alternate treatment strategies are being developed 

[12]. The insulin-like growth factor-1 (IGF-1) and vascular endothelial growth factor  
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Table: 1 The six molecular subtypes of breast cancer 
   Subtype  Expression profile  Prognosis   Prevalence   Treatment 

 
 

Luminal A 

 
     ER+ and/or PR+ 
     HER2- 
     Low Ki67 

 
 
      Good 

 
 
        28-31% 

 
Hormone 
therapy 

 
 

Luminal B 

 
     ER+/or PR+ 
     HER2+/or HER2-       
     with Hi Ki67 

 
 
      Poor 

 
 
      19-23% 

 
Hormone 
therapy and/or 
chemotherapy 

 
 

HER2-
enriched 

 
     ER-/PR- 
     HER2+ 
     Hi KI67 

 
 
      Poor 

 
 
       12-21% 

 
Targeted 
therapy 
(Trastuzumab, 
Lapatinib) 

 
 

Basal-like 

 
     ER-/PR-HER2- 
     EGFR 
     Cytokeratin5/6 

 
 
     Poor 

 
 
      11-23% 

 
Combination 
of surgery, 
radiation and 
chemotherapy 

 
 
 

Claudin-low 

 
     ER-/PR-HER2- 
     Ki67 low 
     Claudin3,4,7 low 
     CD44+/CD24 /-low       
     EpCam-/low 

 
 
     Poor 

 
 
       7-14% 

 
 
Chemotherapy 

 
Normal-like 

 
N/A 

 
Good 

 
3-10% 

 
N/A 

(+): positive 
(-): negative 
Adapted from: 
1.  Perou, C.M., T. Sorlie, M.B. Eisen, M. van de Rijn, S.S. Jeffrey, C.A. Rees, J.R. Pollack, D.T. Ross, 
     H. Johnsen, L.A. Akslen, O. Fluge, A. Pergamenschikov, C. Williams, S.X. Zhu, P.E. Lonning, A.L. 
     Borresen-Dale, P.O. Brown, and D. Botstein, Molecular portraits of human breast tumours. Nature, 
     2000. 406(6797): p. 747-52. 
2.  Eroles, P.a.L., Ana et al., Molecular biology in breast cancer:  Intrinsic subtypes and signaling 
     pathways. Cancer Treatment Reviews, 2012. 38: p. 698-707. 
3.  Carey, L., Perou, CM and Millikan, RC et al., Race, breast cancer subtypes, and survival in the 
     Carolina breast cancer study. Journal of the American Medical Association, 2006. 295(21): p. 2492 
     2502. 
4.  Prat A, a.P.C., Deconstructing the molecular portraits of breast cancer. Molecular Oncology, 2011. 5:  
     p. 5-23. 
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 (VEGF) signaling pathways have been shown to contribute to resistance and 

treatments using an anti-VEGF antibody, bevacizumab, along with the 

chemotherapeutic, paclitaxel, has been effective [16-18].    Additional therapies 

targeting VEGFR1, VEGFR2, KIT and PDGFR combined with tamoxifen treatment 

have been shown to effectively reduce tumor volume [19]. 

Luminal B breast cancer is similar to luminal A breast cancer in that it originates 

from the luminal cells of the mammary duct and is ER+ and/or PR+.  However, luminal 

B breast tumors can either be HER2- or HER2+ and display an elevated proliferation 

rate as seen by high Ki67 staining [7, 8].  The prevalence of luminal B breast cancer is 

19-23% and has a higher recurrence rate than luminal A breast cancer [11].  Overall, 

luminal B breast cancer is more aggressive and leads to a worse prognosis for patients 

due to its high proliferative capacity and higher histological grade [8].   

Current treatment strategies for luminal B breast cancer rely on chemotherapy, 

endocrine therapy and aromatase inhibitors, but deciding on a treatment regimen can 

often be convoluted due to the heterogeneity of the tumor, innate chemotherapy 

insensitivity and resistance to endocrine therapy.  Therefore, there are a few diagnostic 

tools that have been developed over the years that are commercially available to help 

drive treatment decisions.  One type of diagnostic tool is Oncotype DX.  Oncotype DX 

was developed by Genomic Health, Inc. and is used for women with early stage ER+ 

breast cancer [20].  This test helps estimate the likelihood of disease recurrence and 

also helps define benefits from chemotherapy [20].  Oncotype DX analyzes gene 

expression levels from 16 cancer-related genes and normalizes their expression to five 

background genes in order to determine a Recurrence Score between 0-100 for the 
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patient [20].  For example, Paik et al. and colleagues found that node-negative ER+ 

breast cancer patients with a high Recurrence Score were likely to benefit from a 

chemotherapy regimen such as cyclophosphamide/methotrexate/fluorouracil (CMF), 

while a low Recurrence Score signified minimal benefit [21].  Therefore, diagnostic 

tools such as Oncotype DX provide valuable information for clinicians in designing 

treatment strategies for ER+ breast cancer patients.  

Luminal B tumors are also subject to becoming endocrine resistant [11].  Indeed, 

a study conducted by the Early Breast Cancer Trialists’ Collaborative Group (EBCTCG) 

found that 33% of breast cancer patients treated with tamoxifen over five years are 

likely to develop recurrent disease within 15 years [22, 23].  Endocrine resistance 

develops by multiple mechanisms including loss of ERα protein expression, expressing 

truncated forms of either ERα or ERβ, modifications made to ERα post-translationally, 

or degregulation of co-activator proteins [22].  For example, overexpression of nuclear 

receptor co-activator 3 (NCOA3), a co-activator of ERα, results in constitutive ERα 

transcription and leads to estrogen resistance in vitro as well as in vivo [22, 24, 25]. 

Since endocrine resistance is a challenge, there is a focus to identify other 

biomarkers and molecular pathways that drive luminal B tumors.  IGF-1R (Insulin 

growth factor 1 receptor) monoclonal antibodies are currently in phase I and II clinical 

trial either alone as a single agent or coupled with chemotherapy [26]. Other targets 

being investigated for luminal B breast cancer are FGF, PI3K and cyclin D1 [26].  

Cyclin D1 is an attractive target for luminal B tumors due to its ability to drive 

proliferation through interaction with CDK4/6 [27]. 
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Human epidermal growth factor receptor 2 or HER2 is a component of the 

epidermal growth factor receptor family [28].  HER2-enriched breast cancer is 

characterized by amplification of the HER2 gene located in the 17q12 chromosome and 

subsequent enrichment of the HER2 protein.   It is also characterized by negative 

expression of ER and PR, but presents positivity for Ki67 [7, 8].  The prevalence of 

HER2-enriched breast cancer is 12-21% and has a poor prognosis due to positive 

lymph node status, poor tumor grade, early and frequent recurrence of the tumor, as 

well as metastasis to the liver and lungs [11, 29].  Additionally, women are diagnosed at 

an earlier age compared to luminal A or luminal B breast cancer and up to 40% have 

p53 mutations [8, 9].   

Treatment for HER2 positive breast cancer relies mainly on chemotherapy and 

targeted therapies such as trastuzumab (Herceptin) and lapatinib (Tykerb).  

Trastuzumab is a humanized monoclonal antibody that targets domain IV in the 

extracellular domain of HER2 and prevents signal transduction [12, 30].  The 

combination of trastuzumab plus chemotherapy resulted in increased response and 

overall survival in HER2 positive metastatic breast cancer patients.  Specifically, the 

overall survival rate increased from 20.3 months to 25.1 months under combination 

treatment vs. chemotherapy alone [31].  These data along with increased overall 

response rates (ORR) and time to progression (TTP) rates made this regimen a first-

line treatment for HER2 positive metastatic breast cancer in 1998 [31].   

A derivative of trastuzumab, pertuzumab, is a monoclonal antibody that targets 

domain II of HER2 and prevents dimerization [31].  Presently, the first-line treatment for 

metastatic HER2 postive breast cancer resides from the results of the CLEOPATRA 
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trial which combined trastuzumab plus docetaxel with or without pertuzumab [31].  

Patients in the pertuzumab group displayed significant progression free survival and 

overall survival [31].  

Additional treatment strategies being used to target HER2+ breast cancer is the 

use of antibody-drug conjugates which specifically target tumor cells to deliver cytotoxic 

agents [12, 32].   Trastuzumab-emtansine (T-DM1) is currently being used in clinical 

trials and combines trastuzumab and DM1, a microtubule inhibitor [33, 34].  Patients 

given T-DM-1 showed an overall response rate of 25.9 to 34.5% [35].  

One of the on-going challenges with HER2+ breast cancer is resistance to 

HER2-targeted therapies, such as trastuzumab.  It has been shown that HER2+ breast 

cancer patients with metastatic disease do quite well initially with trastuzumab 

treatment, but exhibit progression of the disease within at least one year [36].  There 

are multiple mechanisms attributed to trastuzumab resistance, including increased 

activation of PI3K/Akt pathway either by activation of other growth factor receptors like 

IGF1R or by mutations in the tumor suppressor, PTEN [36].  Moreover, steric hindrance 

by mucin-4 (MUC4) potentially blocks trastuzumab and HER2 from interacting [36].  

Therefore, potential targets bring investigated to treat HER2 positive breast cancer with 

trastuzumab resistance include inhibitors toward mTOR and PI3K pathways [30]. 

Another treatment option for HER2+ breast cancer patients are anti-HER2 

vaccines [37].  Treating cancer with a vaccine has the potential to induce a long-lasting 

immune response that could be manufactured against multiple antigens.  Moreover, 

with the help of memory cells within the immune system, cancer vaccines would 

eliminate risk of recurrence [37].  HER2-based vaccines are currently in phase II clinical 
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trial [38].  A peptide-based method, called E75, targets amino acids 369-377 in the 

extracellular domain of HER2. In this trial, 195 patients were given up to six doses, with 

about half receiving additional immunizations [38].  In the end, although DFS was not 

statistically significant between treated and non-treated patients, risk of recurrence was 

down 48% in the treated group [38].  Moreover, in node-positive patients, the 

differences were greater.  Specifically, patients treated with the E75 vaccine had a 53% 

decrease in recurrence risk along with 24 month DFS rate of 90.2% compared to 

79.1% for untreated patients [38]. 

Basal-like breast cancer is a very aggressive subtype of breast cancer that 

arises from the basal cells or outer cells surrounding the mammary duct.  Basal-like 

breast tumors exhibit histological features of basal cells including positivity for high 

molecular weight cytokeratins such as cytokeratin 5, 6, and 17 [8, 39].  These tumors 

also express P-cadherin, caveolin 1 and 2, nestin, CD44, and EGFR, but do not 

express ER, PR or HER2 and are often referred to as “triple negative” [8, 29].  

However, basal-like breast cancer and triple-negative breast cancer (TNBC) are not 

synonymous due to a discordance rate of up to 30% [8, 40].  A basal-like IHC profile 

has been identified and has been coined the “Basal Core Group” and is based on the 

expression of five markers: ER, PR, HER2, EGFR, and CK5/6.  This group of markers 

has 100% specificity and 76% sensitivity when identifying basal-like breast tumors [8, 

41].   

TNBC, on the other hand, was subtyped in 2011 by Lehmann et al. by gene 

expression profiling from 21 breast cancer data sets and found that TNBC can be 

stratified into 6 subtypes: basal-like 1 (BL1), basal-like 2 (BL2), immunomodulatory 
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(IM), mesenchymal (M), mesenchymal stem-like (MSL), and luminal androgen receptor 

(LAR) [42].  The BL1 and BL2 subtype displayed a gene expression signature 

consisting of cell cycle and DNA damage response genes and the M and MSL subtype 

displayed a gene expression signature for genes involved in the epithelial-

mesenchymal transition and growth factor pathways.  The LAR subtype displayed 

expression of genes in the androgen receptor signaling pathway.  More recently, 

Berstein et al. also subtyped TNBC tumors from 198 patients and found only four 

subtypes: Luminal–AR (LAR), mesenchymal (MES), Basal-like immune suppressed 

(BLIS) and Basal-like Immune-Activated (BLIA) [43].  These two studies provide 

overlap for the LAR and MES TNBC subtypes, but lack agreement on the other four 

Lehmann subtypes.  Nevertheless, the ongoing efforts to classify TNBC provide a 

foundation for molecular-targeted therapies and treatment strategies for patients 

afflicted with TNBC. 

The prevalence of basal-like breast cancer is 11-23% and is more common in 

premenopausal women and women of African decent [9, 11].  Unfortunately, prognosis 

for basal-like breast cancer is poor due to large tumor size at presentation, high 

histological grade and proliferation rate, lymph node positivity, and lack of targeted 

treatment strategies [8, 44].  Surgery, chemotherapy and radiation are the main 

treatment strategies for basal-like breast tumors [45].  Basal-like tumors have a high 

rate of p53 mutations as well as BRCA1 mutations, both of which function in DNA 

damage repair [8].  Thus, these tumors initially respond very well to chemotherapy, 

however, the relapse rate is common within the first one to three years [46, 47].  In 

patients with BRCA1 mutations, inhibition of PARP-1 (poly-ADP-ribose-polymerase- 1), 
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which also aids in DNA repair, leads to cell death due to the accumulation of DNA 

damage; a concept known as synthetic lethality.  One study showed that 47% of breast 

cancer patients with BRCA1 and BRCA2 mutations responded to treatment using the 

PARP-1 inhibitor, Olaparib (AZD2281), and 63% showed clinical benefit from the drug 

[48].   

In addition to PARP inhibitors as a targeted therapy to treat basal-like breast 

cancer, inhibition of EGFR is also promising due to its overexpression in TNBC [45].  

However, the efficacy of the EGFR monoclonal antibody, cetuximab, is modest.  A 

randomized phase III trial evaluating cisplatin with and without cetuximab showed a 

response rate of 20% and progression free survival extended about 2 months [49].  

Other studies have investigated the efficacy of small molecule tyrosine kinase inhibitors 

toward EGFR as a monotherapy with little success and may be beneficial to combine 

these small molecule inhibitors with a chemotherapy regimen [50].  Lastly, other targets 

being evaluated for treatment of basal-like breast cancer include c-Kit, EGFR, VEGFR, 

mTOR, αβ-crystallin, Src, HDAC inhibitors, HSP90 and the JAK/STAT signaling 

pathway [51, 52]. 

The claudin-low subtype was first discovered in 2007 by Herschkowitz et al. and 

has a similar gene expression pattern to the basal-like subtype including negativity for 

ER, PR and HER2, but differs from the basal-like group in that claudin-low tumors  

display low expression of tight junction genes claudin 3, 4, 7 and occludin and the 

intercellular adhesion gene, E-cadherin [8].   Furthermore, genes involved in the 

immune response expressed by T- and B-lymphoid cells that infiltrate the tumor are 

unique to the claudin-low group [53, 54].  Additionally, claudin-low tumors express 
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genes related to the cancer stem cell (CSC) phenotype such as CD44+/high/CD24-/low 

along with mesenchymal features such as vimentin and N-cadherin expression [11].  

The prevalence of claudin-low breast cancer is 7-14% and, overall, has a poor 

prognosis [11, 29].  Generally, the poor prognosis of claudin-low tumors is due to 

radiation and chemotherapy insensitivity, and tumor relapse due to a residual CSC 

population [11].  Specifically, in vitro studies evaluated patient breast tumor biopsies 

before and after neoadjuvant chemotherapy and showed that chemotherapy increased 

the percentage of CD44+/high/CD24-/low cells and these cells were more capable of 

mammosphere formation; both characteristics of CSCs [55].  Therefore, identification of 

signaling pathways that regulate self-renewal and thus, compounds that target these 

pathways would provide a treatment strategy for claudin-low tumors.  Lastly, normal-

like tumors have a prevalence rate of 3-10%, a gene expression profile that resembles 

the normal breast and the prognosis overall is very good [11]. 

 

1.2 THE CELL CYCLE AND CANCER 

1.2a. The cell cycle 

 The mammalian cell cycle is a series of synchronized events a single cell must 

accomplish in order to divide into two daughter cells and consists of two major parts: 

interphase and mitosis [56].  Interphase encompasses G1, S and G2 phases of the cell 

cycle and is a period for cell growth (schematic of the mammalian cell cycle Figure 1).  

G1 is the gap phase between mitosis and DNA replication in which cells grow in  
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Figure 1. Schematic of the mammalian cell cycle 
 
The mammalian cell cycle consists of 5 phases: G0, G1, S, G2 and M.  Progression 
though one cycle first requires growth factor stimulation and subsequent activation of 
cyclin/CDK complexes.  At the restriction point, the cell is fully committed to the cell 
cycle and can proceed in the absence of growth factors.  G1 cyclin/CDK complexes are 
controlled by Cip/Kip and INK4 families of inhibitors, while cyclin B/CDK1 are tightly 
controlled by phosphorylation and dephosphorylation by Cdc25 and Wee1/Myt1, 
respectively.  
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volume, analyze growth signals and prepare for DNA replication [57].  DNA synthesis 

occurs in S phase and G2 is the gap phase between S phase and M phase in which 

the cell prepares for cell division.  Mitosis, or M phase, occurs just prior to cell division 

when chromosomes condense, align, sister chromatids separate and cytokinesis 

occurs to form two daughter cells [57].  Cells can reversibly exit the cell cycle at G0 

phase and enter a quiescent or non-proliferative state when nutrients are lacking or cell 

adhesion is inhibited.  When conditions become more favorable quiescent cells are 

able to re-enter the cell cycle [57-59].  In fact, the majority of the non-proliferating cells 

in the human body are in G0 [60]. 

Our knowledge of the mammalian cell cycle stemmed from studies using single 

cell eukaryotes and marine invertebrates [57].  Progression through the mammalian cell 

cycle occurs mainly through phosphorylation events facilitated by cyclins and their 

partners; cyclin-dependent kinases (CDKs) [56].  Cyclins, as their name implies, 

oscillate in expression during the cell cycle and are synthesized and degraded in a 

highly orchestrated fashion, while CDK protein expression remains stable [61].  To 

date, there are as many as 29 cyclin or cyclin-related proteins (A1, A2, B1, B2, B3, C, 

D1, D2, D3, E1, E2, F, G1, G2, H, I, J, K, L1, L2, M1, M2, M3, M4, O, T1, T2, Cables 1, 

Cables 2) and are related to one another by 150 conserved amino acid residues called 

‘the cyclin box’.  In addition there are at least 13 CDKs (CDK1-13) [62, 63].  However, 

only specific cyclin/Cdk complexes have the required kinase activity to drive the cell 

cycle forward in a timely fashion (Table 2) [62, 63].   

 Unlike other cyclins, D-type cyclins levels do not oscillate and are controlled by 

the presence or absence of growth factors [57].  Mouse knockout studies of  
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Table: 2. Biological functions of cyclins and CDKs in the mammalian 
cell cycle	  

Cyclin 
or 

CDK 

Biological 
function 

Cell cycle 
binding 
partner 

Knockout  
phenotype 

 
Viability 

 
Cyclin A 

 
Cell cycle  

(G1-S) and  
(G2-M) 

 
CDK1  
and 

CDK2 

-A1: males are sterile due 
to arrest in meiotic 

prophase 
 

-A2:  Defective mitosis 

A1: Viable 
 
A2: 
Embryonic 
lethal before 
E5.5 

 
 

Cyclin B 

 
 

Cell cycle  
(G2-M) 

 
 

CDK1 

-B1: Embryonic lethal 
 
-B2: Develop normally, 
males and females are 
fertile. 
 

B1: Lethal at 
E10.5 
 
B2: Viable 

 
Cyclin C 

 
Cell cycle  

(G0-S) 
Transcription 

 
CDK3  
and  

CDK8 

 
ND* 

 
ND* 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Cyclin D 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Cell cycle 
 (G0-S) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

CDK4  
and 

CDK6 

-D1: Small body size, 
hypoplastic retinopathy, 
defective breast 
development during 
pregnancy, neuropathy 
 
-D2: Defective ovarian 
granulosa cell 
development and female 
sterility.  Males have 
hypoplastic testes but are 
fertile.  Impaired 
proliferation of peripheral 
B-lymphocytes. 
 
-D3: Hypoplastic thymus 
with loss of T-cell 
maturation from (CD4-
,CD8-) to (CD4+, CD8+) 
cells due to cytokine-
independent defects in 
pre-TCD signaling. 
 
-D2 and D3: Severe 
megaloblasticanemia 
 
-D1 and D3: Neuropathy 
leading to meconium 

 
 
 
 
 
D1: Viable 
 
D2: Viable 
 
D3: Viable 
 
D2 and D3:  
Embryonic 
lethal before 
E18.5 
 
D1 and D3: 
Death at P1, 
but few 
survive to 2 
months 
 
D1 and D2: 
Viable, but die 
within 3 
weeks 
 
D1, D2, D3: 
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aspiration.  Survivors fail to 
thrive and exhibit 
hypoplastic retinas. 
 
-D1 and D2: Retarded 
growth and impaired 
coordination.  Inhibited 
postnatal cerebellar 
development and 
hypoplastic retinas. 
 
-D1,D2,D3: Severe 
hematopoietic deficits and 
death due to anemia and 
defects of heart 
development. 
 

Embryonic 
lethal at 
E16.5 
 

 
 
 
 

Cyclin E 

 
 
 
 

Cell cycle  
(G1-S) 

 
 
 
 

CDK2 

-E1: Normal 
 
-E2: Hypoplastic testes, 
reduced sperm count, and 
male infertility 
 
-E1 and E2: Cardiac 
abnormalities, reduced 
endoduplication in 
megakaryocytes 

 
E1: Viable 
 
E2: Viable 
 
E1 and E2: 
Embryos 
dead by 
E11.5 

Cyclin F Cell cycle  
(S, G2, M) 

ND* Embryonic lethal due to 
defects in placental 
development. 

Lethal at 
E10.5 

Cyclin G DNA damage 
response 

CDK5 ND* ND* 

 
Cyclin H 

 
CDK7 

CDK activation, 
transcription, 
DNA repair 

ND* ND* 

 
Cyclin L 

CDK12 
and 

CDK13 

Transcription, 
splicing 

 
ND* 

 
ND* 

 
 

Cyclin K 

 
CDK12 

and 
CDK13 

 
 

 
Transcription, 

CDK activation 

 
ND* 

 
ND* 

Cyclin T CDK9 Transcription ND* ND* 
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CDK1 

 
Cell cycle  

(G2-M) 

 
Cyclin B 

Embryonic lethal due to 
defects in first cell divisions 

 
Lethal 

 
 

CDK2 

 
 

Cell cycle  
(G1-S) 

 
Cyclin E 

and  
Cyclin A 

Sterility in males and 
females due to defects in 
meiosis; no effect on 
mitotic cells 

 
 

Viable 

 
CDK3 

 
Cell cycle 

(interphase) 

 
Cyclin C 

Mutation inducing 
premature stop codon 
results in a normal 
phenotype; most 
laboratory strains carry this 
mutation 

 
Viable 

 
 
 
 
 
 
 

CDK4 

 
 
 
 
 
 
 

Cell cycle  
(G0-S) 

 
 
 
 
 
 
 

Cyclin D 

-CDK4: Small body size. 
Males are sterile due to 
hypoplastic tested and low 
sperm counts.  Female 
sterility due to defects in 
hypothalamus and 
pituitary, abnormal estrus 
and failure of corpus 
luteum.  Abnormal 
development of pancreatic 
β-islet cells and insulin-
dependent diabetes. 
 
-CDK4 and CDK6: Small 
embryos, partial failure of 
hematopoiesis resulting 
from multipotential 
progenitors and 
multilineage deficits. 

 
 
 
CDK4: Viable 

 
CDK4 and 
CDK6: 
Embryonic 
lethality at 
E14.5 and 
few live pups 
die soon after 
birth 

 
CDK5 

 
Neuronal cell 

cycle and 
differentiation 

 
Cyclin G 

Defective development 
and structure of the 
nevous system 

 
Perinatal 
lethality 

 
 
 
 

CDK6 

 
 
 
 

Cell cycle 
 (G0-S) 

 
 

 
 
 
 

Cyclin D 
 

 

-CDK6: Thymic and 
splenic hypoplasia.  Mild 
defects in hematopoiesis.  
T-lymphocytes have delay 
in S-phase entry. 
 
-CDK4 and CDK6: Small 
embryos, partial failure of 
hematopoiesis resulting 
from multipotential 

CDK6: Viable 
 
CDK4 and 
CDK6: 
Embryonic 
lethality at 
E14.5 and 
few live pups 
die soon after 
birth 
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progenitors and 
multilineage deficits. 

 
 

CDK7 

Phosphoylate 
and activate 
CDKs.  Controls 
transcription by 
phosphorylating 
TFIIH and CTD 
of RNA 
polymerase II 

 
 

Cyclin H 

 
 

ND* 

 
 

ND* 

CDK8 Transcription Cyclin C ND* ND* 
CDK9 Transcription Cyclin T ND* ND* 

 
CDK10 

Cell cycle  
(G2-M) 

and 
 transcription 

 
ND* 

 
ND* 

 
ND* 

 
 

CDK11 

 
 

Cell cycle  
(G2-M) 

and 
transcription 

 
 

Cyclin L 

Essential for peri-
implantation of embryos 
and defects in mitosis such 
as centrosome maturation, 
spindle formation, sister 
chromatid cohesion and 
cytokinesis 

 
 
 

Lethal at E3.5 
 

CDK12 Splicing 
regulation 

Cyclin K ND* ND* 

CDK13 Splicing 
regulation 

Cyclin K ND* ND* 

 
*Abbreviations: 
ND, Not Determined 
 
Adapted from: 
1.  Sherr, C.J. and Roberts, J.M. CDK inhibitors: positive and negative regulators of G1-phase 
progression. Genes and Dev. 1999 (13): 1501-1512.  
2.  Morgan, D.O. Cyclin-dependent kinases: Engines, clocks and microprocessors. Annu. Rev. Cell Dev. 
Biol. 1997. (13):261-91.  
3.  Johnson, D.G. and Walker, C.L. Cyclins and cell cycle checkpoints. Annu. Rev. Pharmacol. Toxicol. 
1999. (39):295- 312. 
4.  Sherr, C.J. and Roberts, J.M. Living with or without cyclins and cyclin-dependent kinases. Genes and 
Dev. 2004. (18):2699-2711.  
5.  Geng, Y., Q. Yu, W. Whoriskey, F. Dick, K.Y. Tsai, H.L. Ford, D.K. Biswas, A.B. Pardee, B. Amati, T. 
Jacks, A. Richardson, N. Dyson, and P. Sicinski, Expression of cyclins E1 and E2 during mouse 
development and in neoplasia. Proc Natl Acad Sci U S A, 2001. 98(23): p. 13138-43. 
6.  Malumbres, M aand Barbacid, M. Mammalian cyclin-dependent kinases. Trends in Biochemical Sci. 
2005. 30(11):630-641. 
7.  Malumbres, M. and Barbacid, M. Cell cycle, CDKs and cancer: a changing paradigm. Nat. Rev. 
Cancer. 2009. (9):153-166. 
8.  Hunter, T. and Pines, J. Cyclins and cancer II: cyclin D and CDK2 inhibitors come of age. Cell. 1994 
(79):573-582. 
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9.   Kalaszczynska, I., Y. Geng, T. Iino, S. Mizuno, Y. Choi, I. Kondratiuk, D.P. Silver, D.J. Wolgemuth, K. 
Akashi, and P. Sicinski, Cyclin A is redundant in fibroblasts but essential in hematopoietic and embryonic 
stem cells. Cell, 2009. 138(2): p. 352-65. 
10.   Brandeis, M., I. Rosewell, M. Carrington, T. Crompton, M.A. Jacobs, J. Kirk, J. Gannon, and T. Hunt, 
Cyclin B2-null mice develop normally and are fertile whereas cyclin B1-null mice die in utero. Proc Natl 
Acad Sci U S A, 1998. 95(8): p. 4344-9. 
11.  Tetzlaff, MT, Bai C, Finegold M, Wilson J, Harper JW, Mahon KA, Elledge, SJ. Cyclin F disruption 
compromises placental development and affects normal cell cycle execution. Mol. and Cell Biol. 2004. 
(24)6:2487-2498. 
12.  Kohoutek, J and Blazek, D. Cyclin K goes with CDK12 and CDK13. Cell Div. 2012. 7(12):1-10. 
13.  Li, T. Inoue, A, Lahi, JM, Kidd, VJ et al. Failure to proliferate and mitotic arrest od CDK11P110/P58-null 
mutant mice at the blastocyst stage of embryonic cell development. Mol. and Cell Biol. 2004. 24(8):3188-
3197. 
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cyclin D1, D2 and D3, collectively referred to as cyclin D, have been shown to be 

functionally redundant, but have tissue specificity.  Studies in mice revealed that 

knockout of any two D-type cyclins results in dealth, highlighting the functional 

importance this cyclin [57, 64].  Upon mitogenic stimulation cyclin D binds and activates 

CDK4 and CDK6 [57, 63].  The cyclin D/CDK4/6 complex partially phosphorylates 

pocket proteins Rb, p107 and p130.  Rb, retinoblastoma tumor suppressor protein, is 

the primary substrate of the cyclinD/CDK4/6 complex [57].  These pocket proteins are 

bound to transcription factors E2F1 and DP1 that positively regulate transcription of cell 

cycle genes cyclin A, cyclin E, CDK1 and cdc25 [57, 60].  The binding of Rb to E2F1 

and DP1 restricts E2F1 transcriptional activity and complete inhibition of Rb and  

dissociation from E2F1 is achieved by hyperphosphorylation by cyclin E/CDK2.  This 

results in a positive feedback loop and the ability of the cell to progress to S phase [57, 

63].  In late G1 the cell reaches the restriction point, “R” or “START”, in which the cell is 

no longer responsive to growth factors; and indicates that the cell is fully committed to 

the cell cycle [60, 65].   

Cyclin A1 and cyclin A2 (collectively referred to as cyclin A) function in S phase 

to promote DNA replication.  Upon entry into S phase, cyclin A first binds to CDK2 to 

phosphorylate substrates involved in DNA synthesis and to drive progression through S 

phase [66].  Then, cyclin A dissociates from CDK2 and binds CDK1 during G2 to 

promote entry to M phase.  Cyclin A degradation occurs at the end of G2 and the onset 

of mitosis begins [66]. 

 Cyclin B1 and B2 are both present in dividing mammalian cells, however cyclin 

B1 is referred to as the mitotic cyclin translocates to the nucleus and binds to CDK1 to 
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drive the cell through mitosis [63, 67, 68].  The stages of mitosis are prophase, 

prometaphase, metaphase, anaphase, telophase and cytokinesis.  Cyclin B/CDK1 aids 

the mitotic process by phosphorylating more than 70 substrates involved in initiating 

centrosome separation, nuclear envelope breakdown and chromosome condensation 

[63].  At first, in order to prevent premature cell division, Wee1 and Myt1 kinases 

phosphorylate CDK1 at tyrosine 15 and threonine 14 to inhibit its activity; then Cdc25C 

dephosphorylates CDK1 at these same sites leading to its activation and allowing the 

cell to progress through mitosis [60, 65].  A complete cell cycle ends with the 

ubiquitination of cyclin B by the anaphase-promoting complex/cyclosome (APC/C) 

leading to its degradation [57, 63].  Depending on mitogenic signals, the cell will either 

go through another cell cycle or enter quiescence. 

Regulation of cell cycle CDKs occurs by two families of CDK inhibitors (CKIs): 

INK4 and Cip/Kip.  The INK4 family consists of p15INK4b, p16INK4a, p18INK4c and p19INK4d 

and function by preventing CDK4 and CDK6 binding to cyclin D [57, 60].  The INK4 

proteins display approximately 40% sequence homology that comes from four 

sequential ankyrin motifs [57].  p16 was initially identified in SV40 T antigen 

transformed cells and found to be a  binding protein and inhibitor of CDK4, but can also 

inhibit CDK6 in a similar fashion [69].  Importantly, Rb can inhibit p16 gene expression 

via negative feedback inhibition thus controlling cell proliferation [57].  In contrast, p15 

expression is not related to Rb status, rather is induced by the growth inhibitory 

cytokine, transforming growth factor- β (TGF-β) [57]. 

The Cip/Kip family consists of p21Cip1, p27Kip1 and p57Kip2 and mainly function to 

inhibit cyclin/Cdk complexes, but also inhibit kinases not related to the cell cycle [57, 
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60, 65].  p21 inhibits cyclin D/CDK4, cyclin E/CDK2 and cyclin A/CDK2, and inhibition 

of cyclin/CDK complexes may require more than one p21 molecule [69].  Additionally, 

proliferating cell nuclear antigen (PCNA) and other components of the DNA replication 

machinery are inhibited by p21, and are therefore arrested prior to S phase to prevent 

premature DNA replication [69].  p21 is transcriptionally regulated by p53, a tumor 

suppressor protein, and is essential for p53-mediated arrest upon DNA damage [57, 

69].  

The other Cip/Kip proteins, p27 and p57, are similar to p21 in that they share a 

conserved N-terminus required for cyclin/CDK inhibition [57].  Specifically, p27 controls 

cell proliferation by facilitating anti-growth signals from TGF- β and proteins involved in 

cell contact [57].  Whereas p21 and p27 are ubiquitously expressed, p57 is tissue 

specific and plays a specialized role in controlling cell proliferation [57].  

The integrity of the mammalian cell cycle is maintained by two main cell cycle 

checkpoints: DNA damage checkpoint at G1/S and DNA damage checkpoint at G2/M  

[63].  Genotoxic agents or environmental factors that cause DNA damage are 

recognized and evaluated at the G1/S checkpoint.  Here, the cell induces cell cycle 

arrest in a p53-dependent manner to repair damage or if damage is too severe, 

progress to apoptosis [63, 70].  The induction of p53 causes the upregulation of genes 

involved in cell cycle arrest (p21), regulation of p53 (Mdm2) and apoptosis (Bax, Fas) 

[60].  There are also mechanisms in place if damage occurs during DNA replication, but 

these mechanisms are still being elucidated [60, 71].  Studies have shown that the 

replication fork stalls due to p21 sequestering PCNA or PCNA being degraded though 

ubiquitination by Rad6 [70].  The G2/M checkpoint monitors the cell for DNA damage 
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before mitosis.  Here, cell cycle arrest occurs through Wee1 and Myt1 kinase 

upregulation and well as downregulation of Cdc25C [63, 70].  In addition, cyclin 

B/CDK1 is sequestered in the cytoplasm by Cdc25A/14-3-3 proteins [70].  Lastly, there 

is a checkpoint during mitosis call the ‘spindle assembly checkpoint’ [60, 63].  The 

spindle assembly checkpoint ensures proper alignment and segregation of the 

chromosomes [60, 63].  Ultimately, loss of checkpoint control can lead to genetic 

abnormalities and overall contribute to tumorigenic processes in mammalian cells. 

1.2b. Cell cycle deregulation in cancer 

 Cancer is largely a disease of improper cellular proliferation, but the underlying 

mechanisms that permit aberrant proliferation in cancer cells are complex and 

encompass decades of research [72].  Observations that the cell cycle is deregulated in 

cancer resulted from the early work of Theodor Boveri.  In 1889, observed that 

complementary chromosomes within the nucleus are required for proper embryonic 

development and reasoned that aberrant chromosomes may lead to malignant 

transformtion [73].  Later, in 1971, Alfred Knudson demonstrated retinoblastoma could 

be caused by as little as one mutation in each of the alleles of the retinoblastoma gene 

(RB1) [74].  This important observation lead to the “two-hit hypothesis” which states 

that individuals would develop familial retinoblastoma if they first have a hereditary 

mutation in one RB1 allele and acquire an additional mutation in the second allele by 

an environmental source.  In cases of sporadic retinoblastoma, both mutations would 

be acquired.  Knudson’s studies were integral in establishing the idea that cancer 

arises from genetic changes in either oncogenes, which acquire gain-of-function 
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mutations, or tumor-suppressor genes, in the case of RB1, which acquire loss-of-

function mutations [72].  

Since then, molecular studies have shown that the cell cycle machinery is often 

deregulated in human cancers and alterations in genes encoding proteins involved in 

G1 and S phases of the cell cycle are the most common (Table 3) [75].  For example, 

cyclin D1, a G1 cyclin, is amplified and overexpressed in a wide variety of human 

neoplasias (Table 3).  Cyclin D1, originally called PRAD1, was first identified as playing 

a role in parathyroid tumorigenesis and thought to function during the cell cycle [76].  

The causative role for cyclin D1 came in 1994 when Wang et al. and colleagues 

overexpressed cyclin D1 in the mammary cells of transgenic mice.  They found that 

cyclin D1 overexpression in the mammary tissue resulted in increased proliferation and 

induced the development of mammary adenocarcinomas [77].  Additionally, cyclin D2 

and D3 are also overexpressed in some cancers, but their oncogenic role is not well 

established [69].  Other cyclins are overexpressed or amplified in human neoplasias as 

well.  For example, cyclin E is amplified, overexpressed or both, in carcinomas of the 

breast, colon, lung, and leukemia as well as a number of other cancers (Table 3), while 

cyclin A has been shown to be altered in liver cancer by providing an insertion site for 

hepatitis B virus (HBV) [57, 60, 69].  The integration of HBV at the CCNA locus 

produces a chimeric protein in which the N-terminal cyclin box is replaced by the virus.  

Consequently, cyclin A can no longer be degraded [69]. 

 Moreover, cyclin D kinase partners, CDK4 and CDK6, are overexpressed in 

many human cancers as a result of gene amplification, but also harbor mutations or  
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Table 3:  Cell cycle proteins deregulated in cancer 
Deregulated 

Protein 
 

Molecular Alteration 
 

Cancer Type 

 
 

cyclin D1 

 
 

Gene amplification, 
overexpression 

Breast, lung, pancreas, 
gastrointestinal, endometrium, 
bladder, bone marrow (leukemia), 
head and neck, lymphoma, 
melanoma, liver, pituitary, prostate, 
testis/ovary, other sarcomas  

cyclin D2 Overexpression Gastrointestinal, lymphoma, 
testis/ovary 

cyclin D3 Overexpression Pancreas, pituitary, lymphoma  
 
 

cyclin E1 

 
Gene amplification, 

overexpression 

Glioblastoma, breast, lung, 
gastointestinal, endometrium, 
bladder, bone marrow (leukemia), 
lymphoma, melanoma, liver, 
prostate, testis/ovary, bone, other 
sarcomas 

cyclin A Overexpression, altered Liver 

CDK2 Overexpression Gastrointestinal, liver 

 
CDK4 

 
Gene amplification, 

overexpression, mutations 
resulting in lack of CKI 

binding 
 

Glioblastoma, breast, lung, 
endometrium, bone marrow 
(leukemia), head and neck, liver, 
testis/ovary, bone 

 
CDK6 

 
Gene amplification, 

overexpression, 
mutations/translocation 
resulting in lack of CKI 

binding 
 

Glioblastoma, lymphoma, other 
sarcomas 

 
 

Rb 

 
Deletion, missense 

mutation 

Glioblastoma, breast, lung, 
endometrium, bladder, bone marrow 
(leukemia), lymphoma, liver, 
pituitary, prostate, testis/ovary, bone 

 
p15INK4B 

 
Deletion 

Glioblastoma, lung, bone marrow 
(leukemia), lymphoma, liver 

 
p16INK4A 

 
Deletion, mutation 

 
Glioblastoma, lung, pancreas, 
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gastrointestinal, endometrium, 
bladder, bone marrow (leukemia), 
head and neck, melanoma, 
lymphoma, liver, pituitary, prostate, 
testis/ovary, bone, other sarcomas 

 
 
 

p27KIP1 

 
 
 

Deletion 

Glioblastoma, breast, lung, 
pancreas, gastrointestinal, 
endometrium, bladder, bone marrow 
(leukemia), head and neck, 
lymphoma, liver, pituitary, prostate, 
testis/ovary, other sarcomas 

Cdc25B Overexpression 
 

Breast 

Adapted from: 
1.  Malumbres, M. and M. Barbacid, To cycle or not to cycle: a critical decision in cancer. Nat Rev. 
Cancer,2001. 1(3): p. 222-31. 
2.  Vermeulen, K., D.R. Van Bockstaele, and Z.N. Berneman, The cell cycle: a review of regulation,     
deregulation and therapeutic targets in cancer. Cell Prolif, 2003. 36(3): p. 131-49. 
3.  Schafer, K.A., The cell cycle: a review. Vet Pathol, 1998. 35(6): p. 461-78. 
4.  Johnson, D.G. and C.L. Walker, Cyclins and cell cycle checkpoints. Annu Rev Pharmacol Toxicol,  
1999. 39: p. 295-312. 
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translocations rendering them insensitive to inhibition by CKIs (Table 3) [57]. 

Specifically, in neuroblastoma cell lines, mutations found in CDK6 prevent p16INK4A  

interaction, but preserve its kinase activity, leading to unrestricted phosphorylation of 

pRb [78].   

 Cyclin dependent kinase inhibitors are an important class of tumor 

suppressors and are often either mutated or deleted entirely in human tumors (Table 

3).  Interestingly, the p16INK4A locus is a close second to p53 in terms of genetic 

aberrations [57, 60].  Mutated p16 is linked to familial melanoma syndrome and 

deletions have also been described in nearly 50% of gliomas and mesotheliomas, 40-

60% gastrointestinal cancers and 20-30% acute lymphoblastic leukemias [57, 60].  

Located in close proximity to the p16 locus, is p15 and is often deleted concurrently 

[60].  p27 is also found to be deleted or downregulated in many human cancers, 

including lung, breast and bladder and its loss is implicated with poor prognosis and 

aggressive disease [60].  On the other hand, in colorectal cancer, p27 loss is due to 

increased proteolysis by the proteasome [60].  Although p21 is not directly altered in 

tumors, p21 is a transcriptional target of p53 and p53 is the most common mutated 

gene in human cancer [57, 60].  Therefore, upon DNA damage, inactive p53 cannot 

activate p21 to induce cell cycle arrest, thus leading to genomic instability.  

The culmination of alterations in G1 and S phase proteins in human cancer 

highlights the importance of integrity of the cell cycle prior to the Restriction Point.  As 

previously mentioned, the Restriction Point is defined as the threshold in G1 in which 

cells can proliferate in the absence of growth factors.  Cells that lose function of G1 

inhibitors (CKIs) and/or gain of function of G1/S drivers such as cyclin D1 or cyclin E 
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have unrestricted access through this critical checkpoint.  Rb is the key regulator of the 

Restriction Point and is commonly deleted or mutated [65].  Upon inactivation of Rb by 

deletion, mutation or hyperphosphorylation by G1 cyclin/CDK complexes, Rb releases 

transcriptional repression of E2F leading to transcriptional activation of cell proliferation 

genes such as cyclin A, cyclin E, CDK1, Cdc25 and c-myc [57, 69].  Rb is kept in the 

hyperphosphorylated state by cyclin E/CDK2 creating a positive feedback loop and 

driving the cell through the Restriction Point and fully committing the cell to cell division 

[57]. 

1.3 CYCLIN E 

1.3a. Regulation of cyclin E levels 

 Human cyclin E was first discovered in 1991 through screening of human cDNA 

libraries for genes that would substitute for mutated G1 cyclins in yeast [79].  There are 

two E-type cyclins, cyclin E1 and cyclin E2, and display 47% sequence homology 

throughout the entire gene and 75% sequence homology within the cyclin box [80].  

The majority of studies on cyclin E are on cyclin E1 (generally referred to as cyclin E in 

this dissertation) and cyclin E2 will be addressed specifically as cyclin E2.  Full length 

cyclin E is found on chromosome 19q12-q13, is 409 amino acids in length, and 

contains numerous regulatory domains (Figure 2) [81, 82].  The MRAIL motif is a 

hydrophobic stretch of amino acids within the cyclin box that facilitates the recognition 

of RXL motif containing substrates or CKIs (Figure 2) [82].  The “cyclin box” as well as 

the last 50 amino acids of cyclin E aid in CDK2 binding and activation. The VDCLE 

motif is responsible for Rb binding as well as pocket proteins p107 and p130 (Figure 3) 

[82].   
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Figure 2.  Schematic of human cyclin E1 
 
The known phosphorylation sites of human cyclin E1 are shown in pink circles at their 
specific amino acid location along with its respective kinase.  Known regulatory motifs 
of cyclin E such as MRAIL and VDCLE are indicated as well as the conserved cyclin 
box and PEST domain.  (Figure adapted from Hwang, H.C. and B.E. Clurman, Cyclin 
E in normal and neoplastic cell cycles. Oncogene, 2005. 24(17): p. 2776-86). 
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Expression of cyclin E oscillates throughout the cell cycle and peaks at the G1/S 

transition [81, 82].  Transcriptional control of cyclin E is mediated by E2F.  As 

previously stated in section 1.2a, E2F transcriptional activity is repressed by pRb and  

pocket proteins p107 and p130.  Upon mitogenic signaling, cyclin D/CDK4/6 complexes 

partially phosphorylate Rb, therefore activating E2F [81].  E2F activation results in the 

transcription of S phase genes as well as the transcription of cyclin E.  The promoter of 

cyclin E contains an E2F binding site, and thus, cyclin E can positively regulate its own 

transcription through a positive feedback loop and reinforce Rb inactivation [81].  

Interestingly, cyclin E transcription independent of E2F activation has also been 

described [83].  However, this phenomenon may be cell type specific.  For example, in 

pancreatic and hepatic cells, cyclin E is transcribed by LRH-1 [84]. 

The degradation of cyclin E occurs by two different mechanisms and is based on 

whether cyclin E is bound to CDK2.  Proteolysis of monomeric cyclin E in mediated by 

Cul-3, however the exact mechanisms of degradation are still being elucidated [81, 82].  

The second method of cyclin E degradation is through the SCF-Fbw7 pathway and 

degrades the cyclin E when bound to CDK2.   The SCF-Fbw7 complex is comprised of 

SKP-1, CDC53/Cullin, Rbx1/Roc1, CDC34 and Fbw7 [82].  Ubiquitination of cyclin E 

occurs in the “PEST-box” or “destruction-box” [82].  For cyclin E to be degraded by the 

SCF complex, cyclin E must be phosphorylated at T380 and S384 (Figure 2).  The  

former is phosphorylated by GSK3β or CDK2, while the latter is an autophosphorylation 

site of cyclin E/CDK2 [81, 82].  Phosphorylation of T62 assists in binding Fbw7 to 

mediate degradation as well.  In vitro studies by Koepp et al. and collegues in 2001 

showed that mutation of T380 and T62 prevent Fbw7 binding to cyclin E resulting in its 
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stability [85].  S372 is also thought to play a role mediating cyclin E stability, but the 

exact mechanism is unknown and more investigation is required [81].   

Additional regulation of the cyclin E/CDK2 complex comes from the CKIs such 

as p21 or p27.  p21 and p27 inhibit the kinase activity of the cyclin E/CDK2 complex 

and therefore the cyclinE/CDK2 complex does not display the appropriate signal to 

SCF-Fbw7 for degradation [81].  Lastly, cyclin E is able to avoid degradation by 

localizing to alternative subcellular compartments (discussed in section 1.3d) [81].  

Although not completely understood, proteolysis of cyclin E2 occurs in a similar fashion 

as cyclin E.  Specifically, cyclin E2 is degraded by the proteasome and is stabilized by 

phosphorylation at T392 (T380 in cyclin E) [81].  

1.3b. Cyclin E function 

 The primary function of cyclin E/CDK2 is to promote cell cycle progression 

through the Restriction Point into S phase by further phosphorylating Rb.  As stated 

previously, full inactivation of pRb by cyclin E/CDK2 results in transcriptional activation 

of E2F and enables transcription of S phase related genes such as thymidine kinase, 

polymerase α, MCM, Cdc6, b-myb, cyclin E, cyclin A and Histone H1 [82].  Moreover, 

cyclin E/CDK2 is able to phosphorylate p21 and p27, thereby promoting their 

degradation by the proteasome pathway and releasing inhibition of cyclin A (Figure 3) 

[81, 82, 86, 87].   

For the cell to properly progress to S phase, cyclin E also participates in DNA 

replication origin licensing during DNA synthesis.  Cyclin E and Cdc6 work together 

along with PCNA and polymerase α to load MCM proteins and Cdc45 to the origins of 

replication (Figure 3) [81, 82].  However, these fundamental functions of cyclin E were  
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Figure 3. Functions of cyclin E and known substrates 
 
Cyclin E functions and known substrates are shown.  Cell cycle related functions are 
highlighted in green and non cell cycle related functions are highlighted in blue.  Cyclin 
E/CDK2 substrates known to be associated with each respective function are shown on 
the arrow.   (Figure adapted from:  Hwang, H.C. and B.E. Clurman, Cyclin E in normal 
and neoplastic cell cycles. Oncogene, 2005. 24(17): p. 2776-86; Moroy, T. and C. 
Geisen, Cyclin E. Int J Biochem Cell Biol, 2004. 36(8): p. 1424-39; Siu,K.T.,M.R. 
Rosner, and A.C. Minella, An integrated view of cyclin E function and regulation. Cell 
Cycle, 2012. 11(1): p. 57-64.) 
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challenged in 2003 when Geng et al. created a cyclin E knockout mouse [88]. 

Surprisingly, the authors showed that cyclin E is largely unnecessary for development 

in the mouse.  However, the authors did find that cyclin E is required for endoreplication 

of placental trophoblast giant cells and megakaryocytes [81].  Additionally, cyclin E null 

mice are deficient re-entering the cell cycle from quiescence as well as defective in 

loading MCM proteins at the origins of replication [88].   

Another function of cyclin E is centrosome duplication.  Specifically, cyclin 

E/CDK2 phosphorylates NPM/B23 (nucleophosmini B23) on T199 to facilitate the onset 

of centrosome duplication (Figure3) [81].  CP110 is also phosphorylated by cyclin 

E/CDK2 and is involved in duplication and separation of chromosomes [87].  Moreover, 

cyclin E participates in the regulation of the cell cycle transcriptional program.  

Transcription factors known to be regulated by cyclin E/CDK2 are Id2, Id3, BAF155 and 

SWI/SNF [82].  Cyclin E/CDK2 also phosphorylates CBP/p300, resulting in activation of 

its histone acetyltransferase activity, and E2F5 to promote transcriptional activation 

assisting in cell cycle progression [87].  

Cyclin E is also involved in non-cell cycle related functions.  Cyclin E/CDK2 

phosphorylates p220/NPAT which functions in histone biosynthesis in S-phase (Figure 

3) [82].  Specifically, cells deficient of p220/NPAT arrest late in G1 and are unable to 

progress to S-phase.  Another substrate of cyclin E/CDK2 is EZH2.  Cyclin E/CDK2 

phosphorylates EZH2 on T350 to facilitate targeting to specific loci and promote EZH2 

transcriptional repression by H3K27 tri-methtylation [87].  Lastly, cyclin E is involved in 

the apoptotic response.  Cyclin E/CDK2 phosphorylates FOXO1, a transcription factor 

that controls expression of pro-apoptotic genes such as Fas and Bim [87].  Specifically, 
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cyclin E/CDK2 phosphorylates FOXO1 on S249, thereby signaling its cytoplasmic 

translocation.  Since cyclin E performs many cell cycle dependent and independent 

functions inside the cell, deregulation of any of these functions sets the stage for 

genomic instability and oncogenic transformation. 

1.3c.  The role of cyclin E in cancer  

 One of the first studies examining the oncogenicity of cyclin E found that 

overexpression of cyclin E in combination with constitutively active H-Ras in rat 

embryonic fibroblasts (REFs) resulted in foci that had been malignantly transformed 

[89].  The capability of cyclin E along with active H-Ras to transform REFs puts cyclin E 

in a elite group of oncogenes whose members also include Myc, SV 40 T-antigen and 

E1A [81].   Moreover, examination of human cyclin E in transgenic mice revealed that 

lactating mammary glands contained regions of hyperplasia and over 10% of the cyclin 

E transgenic mice developed mammary carcinomas [90].  Furthermore, in the cyclin E 

null mouse, Geng et al. and colleagues found that cyclin E was absolutely required for 

oncogenic transformation [57]. 

 Many cancer types have been shown to overexpress cyclin E protein or 

amplify its mRNA transcript by as much as 64 fold including glioblastoma, breast, lung, 

cervical, endometrium, gastrointestinal tract, bladder, melanoma, liver, prostate, 

testis/ovary, bone, lymphoma, leukemia, sarcomas and adrenocortical tumors (Table 3) 

[75, 81, 91, 92].  However, cyclin E and its role in breast cancer has been extensively 

studied [93-97].  For example, patients displaying high levels of cyclin E have a worse 

outcome compared to patients with low levels of cyclin E and this was shown to be 

irrespective of the proliferation index by Ki67 staining [97].  Moreover, Keyomarsi and 
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colleagues analyzed cyclin E expression and survival in 395 women with stage I-IV 

breast cancer and found that high expression of cyclin E was an independent predictor 

of survival; stronger than hormone receptor status and lymph node involvement [98]. 

 There are multiple mechanisms that lead to deregulation of cyclin E 

expression.  First, mutations in the signaling pathways that converge upon Rb increase 

cyclin E levels through E2F activation and although not as common, 2-20% of 

endometrial, ovarian, colorectal, breast and gastric cancers contain cyclin E gene 

amplification that may lead to increased mRNA levels [81].  Furthermore, defects in 

cyclin E degradation have also been shown to lead to cyclin E overexpression.  For 

example, mutations in Fbw7 have been found in endometrial, pancreatic and colon 

cancers as well as several human cancer cell lines [81].   

 The consequences of cyclin E overexpression include genomic instability 

and centrosome amplification.  One of the first studies examining overexpression of 

cyclin E and genomic instability showed that constitutive overexpression of cyclin E, but 

not cyclin D1 or cyclin A in murine and human cancer cell lines caused genetic 

instability, specifically, defects during chromosomal duplication and segregation [99].  

Genetic instability mediated by cyclin E overexpression is often linked with prolonged 

S-phase.  During replication excess cyclin E may result in defects of MCM proteins 

loading at the replication fork and stalled replication forks are vulnerable to breakage 

[81].  Moreover, defects in the replication process may result in premature mitosis entry 

and chromosomes that have not been properly replicated leading to inappropriate 

pairing and segregation [81]. 
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Centrosome amplification is also a consequence of cyclin E overexpression.  

Studies in Xenopus laevis confirmed the requirement of cyclin E/CDK2 in centrosome 

duplication during S-phase as well as multiple studies from mammalian systems [100-

102].  Faithful chromosome segregation during mitosis requires the two centrosomes to 

form at the spindle poles.  Centrosome amplification results in a multipolar spindles and 

vast chromosome segregation errors.  In vitro studies have shown that cyclin E 

overexpression with concomitant p53 loss resulted in centrosome amplification and 

aneuploidy [103].  Therefore, deregulation of cyclin E causes multiple defects in the 

genomic integrity of the cell leading to neoplastic formation. 

1.4 LOW MOLECULAR WEIGHT CYCLIN E 

1.4a Generation and function of low molecular weight cyclin E 

 In addition to cyclin E gene amplification and protein overexpression in human 

cancers, cyclin E is post-translationally cleaved into low molecular weight isoforms 

(LMW-E) that range in size from 33-45kDa, compared to the 50kDa full length form of 

cyclin E (EL1) (Figure 4) [104].  LMW-E are generated from N-terminal elastase 

cleavage of EL at amino acids Q40-E45 to form the first isoform, LMW-E (T1), or A69-

D70 to form the second isoform, LMW-E(T2) [104].  In all, there are six isoforms of 

cyclin E either resulting from post-translational cleavage (EL3 and EL6), alternative 

translational start sites (EL4) or phosphorylation events (EL2 and EL5) (Figure 4) [105].    

 LMW-E are present in multiple tumor types including breast, ovarian, colorectal 

cancers and melanomas [92, 106-108].  For example, a prospective study of 340 

breast cancer patients with stage I or II disease showed tumor-specific expression of  
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Figure 4. Schematic of the cyclin E isoforms 
 
Schematic of the cyclin E isoforms.  Full length cyclin E (EL1) is 50kDa.  Upon elastase 
cleavage, the first truncation of LMW-E is formed LMW-E(T1) or EL3 and is 44kDa.  
EL2 is a phosphorylated form of EL3.  EL4 is a rare alternatively translated isoform of 
cyclin E and is 40 kDa.  Elastase further leaves EL2/3 giving rise to EL5/6.  EL6 is 
33kDa and EL5 is the phosphorylated form of EL5 and is 35kDa.  The immunoblot is 
expression of the cyclin E isoforms in MDA-MB-436 cells and the stars denote the 
phosphorylated forms of LMW-E.  (Figure adapted from: Mull, B.B., J. Cox, T. Bui, and 
K. Keyomarsi, Post-translational modification and stability of low molecular weight 
cyclin E. Oncogene, 2009. 28(35): p. 3167-76). 
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metaphases with polyploidy or tetraploidy was also
increased (Akli et al., 2004). This observation is
consistent with the increase in polyploid nuclei seen in
breast cancer tissue samples, which are positive for the
LMW forms of cyclin E. The transforming potential of
the cyclin E LMW forms has also been demonstrated in
non-metastatic melanoma cells (Bales et al., 2005).
Overexpression of the LMW cyclin E isoforms in these
cells generated invasive, angiogenic tumors, unlike cells
expressing only the full length cyclin E. The LMW-
expressing cells also exhibited a dramatic increase in lung
metastases. The oncogenic potential of LMW cyclin E
has also recently been demonstrated in vivo. Transgenic
mice expressing the LMW isoforms of cyclin E in their
mammary gland were susceptible to metastatic mam-
mary carcinoma, whereas the full length overexpressing
transgenic mice did not (Akli et al., 2007). A restrospec-
tive study of 395 breast cancer patients demonstrated
that overall expression of cyclin E and expression of the
LMW forms of cyclin E were better prognostic
indicators than nodal status (nodal status had been the
best indicator up to this point) (Keyomarsi et al., 2002).
Lastly, we recently determined the specificity of LMW
cyclin E to cancer cells by measuring cyclin E expression
in tumor and non-tumor tissues from 340 breast cancer
patients. Our results reveal the LMW isoforms were
detected significantly more frequent in breast tumor
tissues than in adjacent non-tumor breast tissues
(Po0.0001) (Wingate et al., 2009).

Although it is clear that the LMW forms of cyclin E
can have an important part in tumor growth and
metastasis, a complete understanding of their genesis is
still needed. We have previously shown that the elastase-
mediated cleavage of full length cyclin E is sufficient to

give rise to two sets of doublet LMW cyclin E we termed
EL2/3 and EL5/6. However, as only two elastase
cleavage sites generated four different LMW cyclin E,
it posed the question whether each of the doublets were
the result of post-translational modification. Uncover-
ing the mechanism by which all the LMW isoforms are
created and elucidating their function is the purpose of
our study here.

Results

Low molecular weight forms of cyclin E seen in tumor
cells at 45 and 35 kDa are due to phosphorylation of
elastase-cleaved 44 and 33 kDa cyclin E
The low molecular weight forms of cyclin E observed in
tumor cells are formed by elastase cleavage of full length
cyclin E (producing EL2/3, and EL5/6; see Figure 1a).
EL4 is formed by an alternative start site at methionine
46 and is found mainly in tumor cells; however, normal
cells can also generate this form. The origin of the EL2/3
and EL5/6 doublets is not currently known. Cyclin E is
post-translationally modified by phosphorylation on at
least seven known sites: serines 73, 90, 103, 387 and 399
and threonines 77 and 395. Cyclin E was originally
thought to be a 396 amino acid protein; however, mass
spectrometry analysis of cyclin E in our laboratory has
demonstrated that the predominant form of cyclin E
found in both normal and tumor cell lines is indeed 15
amino acids longer on the amino terminus (mass
spectrometry of tryptic peptides demonstrated the
presence of an internal 16 methionine at position 16)
(Porter et al., 2001). Therefore, the numbering used in
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LMW-E, while normal adjacent breast tissue showed only full-length cyclin E [109].  A 

causal role for LMW-E mediating tumorigenesis came from two important studies.  

First, generation of LMW-E transgenic mice display enhanced mammary tumor 

formation and metastasis compared to EL transgenic mice [110].  Specifically, 27% (34 

of 124) LMW-E transgenic mice developed mammary tumors compared to 10.4% (7 of 

67) EL transgenic mice [110].  Moreover, 25% of tumors from LMW-E transgenic mice 

presented lung metastasis compared to 8.3% of tumors from EL transgenic mice [110].  

Additionally, expression of LMW-E in non-tumorigenic human mammary epithelial cells 

(hMECs) implanted into mice formed tumors in 74% (23 of 31) of animals, while only 

7% (1 of 15) of mice formed tumors when implanted with EL expressing hMECs and 

LMW-E tumorigenicity was further enhanced by in vivo passaging [111].  

 LMW-E have significant biological effects with respect to the tumorigenic 

process.  One function of the LMW-E isoforms is the deregulation of the G1/S transition 

[112].  Specifically, expression of LMW-E in 76NE6 cells (non-tumorigenic human 

mammary epithelial cells that have been immortalized by transfection of the 16E6 gene 

of HPV) display a shortened G1 phase paired with a 2-fold increase in time spent in S-

phase compared to EL or vector expression [112].  Additionally, these cells exhibit a 

decreased doubling time, 28.3 to 31.1 hours for LMW-E expressing cells and 35.9-45.2 

hours for EL and vector expressing cells [112]. 

 Moreover, LMW-E are biologically hyperactive.  It has been shown that LMW-

E/CDK2 complexes have increased kinase activity; more than EL/CDK2 complexes 

and efficiently phosphorylate common cyclin E substrates such as histone H1 and Rb  

[112-114].  Of note, LMW-E bind as efficiently to CDK2, p21 and p27 as EL and the 
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increased kinase activity observed is not due to increased binding to CDK2 and/or 

decreased binding to the CKIs [109, 112-114]. 

 Overexpression of LMW-E also causes resistance to anti-estrogens.  

Specifically, estrogen positive MCF7 cells overexpressing either EL or LMW-E have a 

significantly greater percentage of cells in S-phase after treatment with the pure anti-

estrogen, ICI 182,780 [113].  While vector control cells displayed only 10% of cells in S-

phase after anti-estrogen treatment, EL and LMW-E cells displayed 31% for EL, 40% 

for LMW-E(T1) and 48% for LMW-E(T2) of cells in S-phase after treatment [113].  

 One of the mechanisms by which LMW-E mediates tumorigenesis is through 

genomic instability.  LMW-E overexpressing breast cancer cells have more polyploidy 

and chromosomal aberrations such as chromosomal fragments, chromosomal breaks, 

chromosomal fusions and subtelomeric chromatid breaks [109, 113].  The presence of 

polyploidy is not only found in vitro, but in vivo as well.  Analysis of 331 stage I-III 

breast cancer patients show a significant correlation between cyclin E levels and 

polyploidy [113].  Specifically, patients with high levels of cyclin E and polyploidy have a 

lower 5-year DSS (Disease Specific Survival) than breast cancer patients with diploid 

tumors [113]. 

 LMW-E mediated chromosomal abnormalities are due to multiple defects during 

mitosis.  First, LMW-E overexpression leads to centrosome amplification [115].  Using 

an inducible model system, Bagheri-Yarmand et. al and colleagues found that inducible 

expression of LMW-E lead to a 2.5-fold increase in cells presenting more than two 

centrosomes [115].  Additionally, these cells display defective spindle formation and a 

number of other mitotic errors such as micronuclei, chromosome missegregation, 
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anaphase bridges and cytokinesis failure [115].  These mitotic abnormalities were 

found to be the result of deregulation of Cdc25C by cyclin E/CDK2 [116]. 

 Another characteristic of LMW-E expression is the acquisition of a cancer stem 

cell (CSC) phenotype along with the ability to undergo epithelial-to-mesenchymal 

transition (EMT) [117].  LMW-E expressing hMECs, especially ones that have 

undergone in vivo passaging also known as TDCs (tumor derived cells), activate an 

EMT associated gene expression profile [117].  Epithelial genes such as E-cadherin 

were decreased, while mesenchymal associated genes such as Vimentin, N-cadherin, 

Twist and Slug all increased expression compared to EL expressing hMECs [117].  

Additionally, LMW-E expressing hMECs and TDCs exhibited significantly higher levels 

of CD44+/high/CD24-/low expressing cells, a characteristic marker of CSCs [117].  

Interestingly, the CSC population in LMW-E expressing cells is mediated, at least in 

part, by a histone acetyltransferase, Hbo1.  Specifically, stable knockdown of Hbo1 in 

cyclin E expressing hMECs significantly reduced the CSC population [117]. 

1.4b Low molecular weight cyclin E subcellular localization 

 Cyclin E has a classical nuclear localization sequence (NLS) that targets it to the 

nucleus via the well characterized importin-α/importin-β import pathway [118].  

However, the NLS in the LMW-E isoforms is lost post-translationally due to proteolytic 

processing by elastase [104].  To examine the subcellular localization of LMW-E, Delk 

et.al and colleagues first analyzed multiple immortalized mammary epithelial cell lines 

as well as cancer cell lines of the breast, ovary and osteosarcoma [119].  Fractionation 

of whole cell lysates followed by western blot analysis for cyclin E expression revealed  

cytoplasmic localization of the LMW-E isoforms.  Furthermore, to examine whether 
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LMW-E/CDK2 complexes localized to the cytoplasm, green fluorescent protein (GFP) 

was rationally bisected and each half was either fused to the cyclin E isoforms or 

CDK2.  In concordance with the western blot results, LMW-E/CDK2 complexes 

preferentially localized to the cytoplasm, while EL/CDK2 complexes were found in the 

nucleus of 98% of cells examined [119].  Interestingly, while in the cytoplasm, LMW-

E/CDK2 complexes were less sensitive to Fbw7 mediated degradation [119] . 

 Cytoplasmic localization of the LMW-E isoforms is correlated to cyclin E 

biological deregulation.  For example, the LMW-E isoforms are linked to cells with 

centrosome abnormalities.  Specifically, in 30 invasive breast carcinoma tissue 

samples, those that present high levels of cytoplasmic LMW-E also show increased 

levels of abnormal centrosomes with an r2=0.35 [115].  Moreover, in 118 breast cancer 

patient tissue samples, patients with cytoplasmic LMW-E expression also display a 

significantly increased population of CD44+/high/CD24-/low cells [117].  Together, these 

findings indicate that the LMW-E isoforms are biologically and spatially different from 

their full-length counterpart and their deregulation implies a functional role in the 

tumorigenic process. 

1.5 GAP IN KNOWLEDGE 

 Deregulation of cyclin E, especially the LMW-E isoforms, leads to molecular 

events that are correlated with the tumorigenic process.  Moreover, LMW-E expression 

in women with stage I-III breast cancer is an independent predictor of survival.  

However, understanding the mechanisms by which LMW-E predisposes the mammary 

gland to tumorigenesis is still required and the following questions remain:  

• Do the LMW-E isoforms have protein-binding partner(s) in the cytoplasm?  
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• Are the function(s) of the LMW-E cytoplasmic binding partner(s) enhanced 

and/or suppressed? 

• Are cytoplasmic LMW-E binding partners required for LMW-E mediated 

transformation, invasive capabilities and tumor growth?  

These are the primary objectives of this dissertation and the following chapters include 

research data to answer these questions.  The overall hypothesis of this work is that 

aberrant localization of the LMW-E isoforms leads to molecular interactions that 

ultimately contribute to LMW-E breast cancer tumorigenicity.  This dissertation 

and future studies will continue to expose tumor-specific signaling pathways in breast 

cancer that will help define appropriate treatment strategies and enable targeted drug 

design for cancer therapies. 
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CHAPTER 2:  RETROVIRUS-BASED PROTEIN COMPLEMENTATION ASSAY 

(REPCA) REVEALS NOVEL LMW-E BINDING PROTEINS 

2.1 INTRODUCTION 

2.1a.  Methods used to identify protein-protein interactions  

	    The study of proteomics involves an understanding how protein 

structures, modifications, localization and interactions with other proteins affect how the 

cell functions [120].  Two categories of proteomics research dominate the field, 

expression proteomics and functional proteomics.  Expression proteomics evaluates 

changes in protein expression from normal cells under different conditions such as 

exposure to drugs or disease state [121].  Functional proteomics, however, strives to 

understand protein function and evaluate their role within the cell [121].   

 One of the most informative methods to understand protein function is through 

identification of protein-protein interactions.  Protein-protein interactions, either 

transient or stable, are essential for every biological process including building enzyme-

substrate complexes for signal transduction pathways, mediating ion channels, and 

constructing the machinery for the cellular cytoskeleton [122].  One method to identify 

protein-protein interactions is through affinity purification of proteins coupled to mass 

spectrometry (AP-MS) (Table 4) [121, 123].  Specifically, the protein of interest is 

tagged with peptides such as hemagglutinin (HA), FLAG, TAP (consisting of a 

calmodulin-binding domain, a protease cleavage site, TEV, and a protein A tag) or 

glutathione-S-transferase (GST) and purified from the protein mixture by an 

immobilized solid support specific to the tag and/or by an antibody [121]. After binding, 

the protein complex is then eluted, digested into small peptides and identified by mass  
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Table 4: Common methods for identifying protein-protein interactions 
 

Method 
 

Abbreviation 
 

Advantages 
 

Disadvantages 
High 

through-put 
capacity 

 
Affinity 

purification 
followed by 

mass 
spectroscopy 

or  
Co-immuno-
precipitation 

 
 

AP-MS 
or 

Co-IP 

• Specific 
• Simple and 

cost effective 
 

 
 

• Limited to more 
stable 
interactions and 
high abundance 
proteins 

• Tag interference 

 
 
 

yes 

 
 
 
 
 

Yeast 2 
hybrid 

 
 
 
 

Y2H 

• Time efficient 
• Cost effective 

• High false 
positive rate 

• Dependent on 
subcellular 
localization 

• Interactions 
dependent on 
post-translational 
modifications not 
present in yeast 

         
 
 
 
 

yes 

 
Split ubiquitin 

system 

 
SUS 

• Suitable to 
identify 
membrane 
proteins 

• Time consuming 
cloning 

• Protein structure 
must be taken 
into 
consideration 

• False positive 
readout due to 
unknown 
protease 
cleavage of Cub 

            
yes 

 
Fluorescence 

resonance 
energy 
transfer 

 
 

FRET 

• Live cell 
imaging 

• Quantitative 
measurement 
between 
molecules 

• Localization 
of protein 
complexes 

• Insufficient on its 
own to prove 
protein complex 
formation 

• Photo-bleaching 
• Expensive 

equipment 
• Auto-

fluorescence of 
cells 

 
 

no 
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Bimolecular 
fluorescence 

or  
protein 

complement-
ation 

assays 

 
BiF 
or 

PCA 

• Live cell 
imaging 

• Localization 
of protein 
complex 

• Non-biological 
levels of protein 
and tag 
interference 

• Expensive 
equipment 

 
 

no 
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spectroscopy; which measures the abundance of the peptides in the sample and the 

mass-to-charge ratio [121].  AP-MS is amendable for high-throughput methods and has 

high specificity, however, screening is often limited by subcellular localization and is 

ineffective at isolating low copy number proteins or transient interactions [124, 125].  

Furthermore, the tag added to the protein of interest may affect protein structure and 

thus, limit protein interactions; but the use of smaller tags and varying the location of 

the tag between the N- and C- terminal ends of the protein may alleviate this issue 

[121]. 

 Another method used to identify protein-protein interactions, though less 

common, is a yeast two-hybrid (Y2H) assay and was developed in 1989 by Stanley 

Fields and Ok-Kyu Song to confirm the interaction between two known interacting 

proteins in yeast; SNF1 and SNF4 [126].  The premise behind the Y2H assay relies on 

the activation of a downstream reporter gene by a transcription factor binding to an 

upstream activation sequence (Table 4) (Figure 5) [127, 128].  Essentially, the protein 

of interest or bait ‘X’ is fused to the DNA-binding domain (DBD), usually GAL4 or LEXA.  

Then a cDNA library of prey proteins ‘Y’ are fused to the transcriptional activation 

domain (TAD), usually GAL4 or B42 (Figure 5) [122].  The binding of ‘X’ to ‘Y’ 

reconstitutes a functional transcription factor and activates transcription of the reporter 

gene in the nucleus [122, 127].  The Y2H assay is an attractive system to study protein-

protein interactions because it is time efficient and relatively inexpensive, however, the 

Y2H assay has several limitations [129].  First, screening from a Y2H assay results in a 

high false positive rate and is dependent on nuclear subcellular localization [125, 126].  

The high false positive rate due to spontaneous transcriptional activation has been 
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Figure 5. Schematic of the yeast-2-hybrid assay 
 
The yeast-2-hybrid assay is a high-throughput method that is able to identify protein-
protein interactions in the nucleus.  Activation of a reporter gene occurs when the bait 
protein; which is fused to the DNA binding domain (DBD) of either GAL4 or LEXA, 
binds to the prey protein; which is fused to the transcriptional activation domain (TAD) 
of either GAL4 or B42. (Figure adapted from: Wodak, S.J., J. Vlasblom, A.L. Turinsky, 
and S. Pu, Protein-protein interaction networks: the puzzling riches. Curr Opin Struct 
Biol, 2013. 23(6): p. 941-53. 
 
  

TAD$

TAD$

Reporter 

Reporter 

DBD 

DBD 
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reported when some proteins are fused to the DNA-binding domain without activation 

by the interaction partner [130].  Moreover, protein interactions dependent on post-

translational modifications not present in the yeast system will be left unidentified [127].  

 The split ubiquitin system (SUS) is similar to the Y2H assay in that upon 

protein interaction the reporter protein becomes functional (Table 4) [131].  The SUS, 

as the name implies, utilizes a rationally bisected ubiquitin molecule:  the N-terminal 

half (Nub) and the C-terminal half (Cub) [122, 131].  Nub is fused to protein ‘X’ and Cub 

is fused to protein ‘Y’ along with a transcription factor, PLV.  Upon interaction of protein 

‘X’ and protein ‘Y’ the ubiquitin molecule is reconstituted and ubiquitin-specific 

proteases cleave the fused proteins from the ubiquitin molecule thereby liberating PLV 

to act on target genes in the nucleus (Figure 6) [122, 131].  Recently, SUS was used to 

identify NCX1; a novel interacting protein of Anoctamin6 (Ano6), required for bone 

calcification [132].  The major advantage to SUS is that it is able to identify interactions 

between membrane proteins.  However, cloning membrane protein ORFs in E. Coli 

often results in toxicity, but can be circumvented by cloning directly into yeast or using 

specialized E. Coli expression vectors [122].  Additionally, SUS is susceptible to false 

positive readouts due to cleavage of Cub by unknown proteases [122]. 

 A fluorescence-based technique to identify protein-protein interactions is 

fluorescence resonance energy transfer (FRET) [122].  Essentially, protein ‘X’ and 

protein ‘Y’ are fused to a fluorescent donor and fluorescent acceptor, respectively, and   

excitation of the donor results in energy transfer to the acceptor leading to dipole-dipole  
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Figure 6. Schematic of the split ubiquitin system 
 
The split ubiquitin system relies on the reconstitution of a rationally bisected ubiquitin 
molecule, when reconstituted, activates transcription through the cleavage and 
liberation of PLV into the nucleus.  Specifically, the bait protein is fused to C-terminal 
half of ubiquitin (Cub) and the prey protein is fused to the N-terminal half of ubiquitin 
(Nub).  Upon interaction of bait and prey proteins, Nub and Cub bind and reconstitute a 
full ubiquitin molecule and liberates transcription factor PLV to act on target genes in 
the nucleus.  (Figure adapted from: Wodak, S.J., J. Vlasblom, A.L. Turinsky, and S. Pu, 
Protein-protein interaction networks: the puzzling riches. Curr Opin Struct Biol, 2013. 
23(6): p. 941-53. 
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coupling [133].  FRET was recently used to identify a sumoylation modification by 

SUMO2 on p35; which alters CDK5 activity under oxidative stress conditions in 

neurons [134].  The energy transfer, E, can be quantitatively measured by the energy 

absorbed by the donor and energy emitted by the acceptor.  FRET is often described 

as a molecular measuring tool due to a measuring range of 1-10nm, the distance of 

molecules during protein complex formation, however, FRET is insufficient on its own 

to prove protein-protein interactions and other methods are required [122].  

Additionally, FRET is subject to false signals due to autofluorescence of cells or re-

absorption of emission by donor [122]. 

 Bimolecular fluorescence (BiF), also known as protein complementation 

assay (PCA), is another method used to identify protein-protein interactions, but is also 

used mainly to validate protein-protein interactions [122].  Similar to previous methods 

described, a fluorescent reporter protein, such as GFP, is split into N- and C- terminal 

fragments and each half is fused to one of the proteins of interest [135].  The 

interaction between the proteins brings the two halves of the reporter protein together 

reconstituting fluorescence [135].  This method is a powerful tool to analyze localization 

of protein complexes and visualize protein-protein interactions in vivo, but similar to AP-

MS, the size and localization of the reporter protein may result in binding interference 

[122].   

2.1b Retrovirus-based protein complementation assay  

The Retrovirus-based protein complementation assay (RePCA) is a high 

throughput method first utilized to identify protein-binding partners of Akt [125].  Using 
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RePCA, Ding et al. and colleagues found 24 protein-binding partners of Akt; one of 

which is ACTN4.  ACTN4 was found to mediate Akt translocation to the membrane and 

effect cellular proliferation [125].   

 RePCA combines PCA strategies with enhanced retroviral mutagenesis.  The 

enhanced retroviral mutagen (ERM) vector is superior to other retroviral-mutagenesis 

techniques due to its high efficiency rate, ability to infect all mammalian cell types and 

its available three ORFs to achieve in-frame integration sequences [136].  Furthermore, 

the ERM vector provides efficient and regulated mutagenesis through several 

engineered sequences.  These sequences include a splice donor (SD) site and a 

mutagenesis tag controlled by a tetracycline-responsive promoter, enabling the system 

to be completely inducible [125].  

 As shown in Figure 7 the RePCA vector contains a tetracycline-

responsive promoter controlling the C-terminal half of intensely fluorescent protein 

(IFPC) adjacent to the splice donor site.  This SD site uses the endogenous splice 

acceptor (SA) site within the host to generate in-frame fusions.  For our purposes, since 

Tet-on MCF7 cells were already established [137], we fused LMW-E(T1)- N-terminal 

half to intensely fluorescent protein (IFPN) and transduced with the RePCA vector.  

Upon induction with doxycycline, fluorescent cells, indicative of an LMW-E(T1)/Protein 

‘X’ interaction, are sorted by fluorescence-activated cell sorting (FACS) to obtain clones 

from a single cell.  Fluorescent cells are expanded and Protein ‘X’ is identified by RNA 

extraction followed by rt-PCR using primers specific to the RePCA vector.  Finally, the 

PCR product is gel purified, sequenced, and identified using a Genbank blast. 

RePCA has a numerous advantages and are summarized in Table 5.  First,   
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Figure 7. Schematic of RePCA screen. 
 
(A) Creation of RePCA retrovirus.  The RePCA vector contains a tetracycline 
responsive promoter, IFPC sequence and splice donor site.  RePCA retrovirus is made 
in packaging cells.  Inside the host genome, the RePCA vector integrates to generate 
IFPC-tagged “Protein X” fusions.  (B) Flow chart of the RePCA screen.  Stable LMW 
E(T1)-IFPN expressing cells were generated in a tet-on MCF7 background and infected 
with RePCA retrovirus.  LMW-E(T1)/ “Protein X” interaction reconstitute fluorescence.  
Single fluorescent cells were sorted by FACS and “Protein X” is identified by RNA 
extraction from the fluorescent clone, followed by rt-PCR, sequencing, and a Genbank 
blast. (Figure adapted from: Ding, Z., J. Liang, Y. Lu, Q. Yu, Z. Songyang, S.Y. Lin, and 
G.B. Mills, A retrovirus-based protein complementation assay screen reveals functional 
AKT1-binding partners. Proc Natl Acad Sci U S A, 2006. 103(41): p. 15014-9). 
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Table 5: Advantages and disadvantages of RePCA 
Advantages Disadvantages 

• In vivo high-throughput screening 
allows for native protein folding and 
post-translational modifications 

• Does not require generation of cell-
line specific cDNA libraries 

• Context-dependent interactions 
such as drug treatment or genetic 
manipulation 

• Employs endogenous splicing 
machinery generating full length or 
near-full length transcripts 

• Inducible system 
• Limited background fluorescence 

when the PCA fusion proteins 
interact 

• Visualization of localization of the 
protein complex 

• The reconstituted IFP molecule is 
highly stable and enables transient 
interactions to be identified 

• Membrane interactions are easily 
identified 

• Molecular interactions are directly 
identified  

• The ERM vector cannot capture 
intron-less genes 

• Genes only available for virus 
integration are targeted 

• Fluorescent tag may interfere with 
some protein interactions 

• False positive interactions may be 
identified 

Adapted from: 
Ding, Z., J. Liang, Y. Lu, Q. Yu, Z. Songyang, S.Y. Lin, and G.B. Mills, A retrovirus-based protein 
complementation assay screen reveals functional AKT1-binding partners. Proc Natl Acad Sci U S A,  
2006. 103(41): p. 15014-9. 
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RePCA is performed in an endogenous environment and permits native protein folding 

and post-translational modifications [125].  RePCA is amendable to any cell  

type and generates full length or near-full length fusion transcripts due to the retroviral 

vector integrating at or near transcriptional start sites [125].  Furthermore, the RePCA 

vector contains a Tet-responsive promoter, which allows for inducible expression of 

target genes.  Finally, RePCA is powerful enough to identify transient interactions such 

as enzyme-substrate interactions and can stabilize low affinity interactions [125]. 

 Although RePCA has many advantages, there are disadvantages to 

RePCA technology as well.  Similar to AP-MS, the fluorescent tag may inhibit the 

formation of select protein-protein interactions (Table 5).  Also, intron-less genes, which 

comprise 3% of the human genome, are unable to be discovered by RePCA [125, 138]. 

Nevertheless, RePCA is a suitable method to identify a wide range of protein-protein 

interactions in any subcellular compartment that might otherwise go undiscovered by 

classical methods. 

2.1c Hypothesis and specific aims 

 LMW-E are void of an NLS and thus, LMW-E/Cdk2 complexes accumulate in the 

cytoplasm with reduced levels in the nucleus [119].  Therefore, we hypothesize that 

aberrant localization of tumor-specific LMW-E in the cytoplasm leads to 

oncogenic protein interactions ultimately contributing to LMW-E tumorigenicity 

in breast cancer.   

The hypothesis will be addressed with the following specific aims: 

• Generate Tet-on MCF7 cells stably expressing EL-IFPN, T1-IFPN and T2-IFPN 

fusion proteins. 
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• Identify LMW-E(T1) binding proteins in the cytoplasm utilizing the retrovirus-

based protein complementation assay. 

• Validate novel interactions by co-immunoprecipitation. 

Briefly, results presented in this chapter reveal 11 novel interacting proteins of 

LMW-E(T1).  The proteins identified range in function from metabolism and signal 

transduction to protein trafficking and stress response.  Among the novel LMW-E(T1) 

interacting proteins identified, ATP-citrate lyase, the primary enzyme responsible for 

synthesis of acetyl-CoA and oxaloacetate in the cytoplasm, is a novel discovery 

implicating a possible link between the cell cycle machinery and cellular metabolism in 

breast cancer. 

 

2.2 MATERIALS AND METHODS 

2.2a. Cell culture and constructs 

Breast cancer MCF7 Tet-On cells were purchased from BD Clontech (Palo Alto, 

CA) and cultured as previously described [139].  The LMW-E (T1) intensely fluorescent 

protein N terminus (IFPN) construct was generated previously [119] and used to create 

MCF7 Tet-On cells stably expressing the LMW-E (T1)-IFPN construct by selection with 

80 µg/mL zeocin (Invitrogen, Grand Island, NY).  Embryonic kidney HEK 293T/17 cells 

from ATCC (Manassas, VA) were cultured in Dulbecco’s modified Eagle’s medium 

supplemented with 10% FBS and used to produce retrovirus.  Retroviral RePCA 

plasmids IC1, IC2 and IC3 and packaging plasmids pcGP and pVSVG were a kind gift 

from Gordon Mills (The University of Texas MD Anderson Cancer Center). 
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2.2b.  Retrovirus-based protein complementation assay 

 RePCA was performed as previously described [125].  Briefly, IC1, IC2 or IC3 

retrovirus was produced in HEK 293T/17 cells and subsequently used to transduce a 

total of 10 x 106 MCF7 Tet-On cells stably expressing the LMW-E (T1)-IFPN construct 

on 6-well p150 plates.  Infected cells were grown for 1 week with 2 µg/mL puromycin 

(Invitrogen).  Puromycin-resistant cells were subjected to fluorescence-activated cell 

sorting for green fluorescent protein (GFP) expression using a BD FACSAria II cell 

sorter (BD Biosciences, San Jose, CA).  Single cells were grown at a very low density 

in minimal essential medium α containing 2 µg/mL puromycin to form clones.  The 

clones were expanded, and RNA was extracted using RNAeasy mini kits (Qiagen, 

Valencia, CA).  Reverse transcription was performed with a random primer (RT-1) as 

previously described using a Transcriptor First Strand cDNA synthesis kit (Roche, 

Indianapolis, IN).  A T7 primer sequence is embedded within the 5’ end of the RT-1 

primer.  The cDNA was amplified by PCR with an intensely fluorescent protein C 

terminus (IFPC)-specific primer and a T7 primer using HotStarTaq DNA polymerase 

(Qiagen).  PCR products were gel purified using a QIAEX II gel extraction kit (Qiagen) 

and sequenced at the Sequencing and Microarray Facility at the MD Anderson Cancer 

Center.  Sequences were identified using GenBank BLAST. 

2.2c Immunocytochemical analysis 

 RePCA clones were cultured on coverslips in the presence of 2 µg/mL 

doxycycline for 48 hours.  The cells were then fixed with 4% paraformaldehyde, and 

nuclei were counterstained with 4,6-diamidino-2-phenylindole (DAPI) (Sigma, St. Louis, 

MO).   
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2.2d Cell lysis, immunoblotting, and co-immunoprecipitation 

 Cell lysates were prepared and subjected to Western blot analysis as previously 

described [139].  Western blots were incubated with primary antibodies against Flag 

M2, Flag produced in rabbit (Sigma), myc-Tag 9B11, glutathione S-transferase (GST), 

ACLY (Cell Signaling, Danvers, MA), cyclin E HE12, Cdk2 (Santa Cruz Biotechnology, 

Dallas, TX).  All antibodies were used according to the manufacturer’s instructions.  

The blots were washed and probed with horseradish peroxidase-labeled secondary 

antibody and detected using enhanced chemiluminescence.  Co-immunoprecipitation 

was performed with anti-Flag M2 antibody in lysis buffer (50 mM Tris [pH7.5], 250 mM 

NaCl, 0.1% NP40, and a protease inhibitor cocktail).  The protein/antibody mixture was 

incubated with Protein G Sepharose 4 Fast Flow (GE Healthcare, Pittsburg, PA) at 4°C 

overnight.  Beads were washed four times with lysis buffer without protease inhibitors 

and subjected to SDS-PAGE. 

2.2e GST pull-down, GST-ACLY protein truncations and kinase assay 

 GST-ACLY fusion protein and GST-ACLY protein truncations were constructed 

using the Gateway cloning method from Invitrogen.  Recombinant GST-ACLY fusion 

protein was expressed in Escherichia coli BL-21 cells and induced with 0.5 mM 

Isopropyl β-D-1-thiogalactopyranoside (IPTG).  Cells were lysed in NETN buffer (150 

mM NaCl, 1 mM EDTA, 20 mM Tris [pH8.0], and 0.5% NP-40) plus 1 mM 

phenylmethylsulfonyl fluoride (PMSF), 1 mM DL-dithiothreitol (DTT), 50 µg/mL 

lysozyme, and protease inhibitors.  GST-ACLY fusion protein was purified using 

Glutathione Sepharose 4B beads from GE Healthcare.  In vitro transcription and 

translation of cyclin E isoforms and Cdk2 were performed using the TNT-coupled 
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reticulocyte lysate system (Promega, Madison, WI), and these proteins were added to 

the mixture of GST-ACLY and glutathione beads.  Purified SFB-cyclin E isoforms were 

expressed in 293T cells and isolated using Flag M2 antibody (Sigma) and subsequently 

eluted using Flag M2 peptide from Sigma.  For the GST-ACLY kinase assay, lysates 

from Sf9 cells expressing either EL, T1 or in combination with CDK2 were 

immunoprecipitated using CDK2 antibody.  GST-ACLY aa426-486 were incubated with 

Sf9 immunoprecipiates or purified AKT1 (Millipore, Billerica, MA) in kinase buffer 

containing 60 µM cold ATP and 5 µCi [32P] ATP to a final volume of 30 µl at 37°C for 30 

min.  The products of the reactions were then analyzed on a 7% SDS-PAGE gel. The 

gel was then stained, destained, dried, and exposed to X-ray film. 

 

2.3 RESULTS 

2.3a.  RePCA reveals novel LMW-E(T1) binding proteins 

To identify LMW-E(T1) binding proteins in the cytoplasm we utilized RePCA 

technology.  We first created Tet-on MCF7 cells that stably express EL-, T1- or T2-

IFPN vectors and picked clones for expression.  We obtained correct expression from 

both T1- and T2-IFPN clones, however, EL-IFPN clones showed expression at a 

reduced molecular weight and were not used as part of the screen (Figure 8A).  The 

second step of RePCA is infection of the host cell line with the RePCA retrovirus.  We 

chose to infect LMW-E(T1)-IFPN clone 5, due to its high expression, with all three 

ORFs of the RePCA retrovirus.  After one week of 2 µg/mL puromycin selection, the 

infected cell population was subjected to fluorescence activated cell sorting (FACS) to 

isolate fluorescent cells that are indicative of an LMW-E(T1)/Protein ‘X’ interaction.  For 
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Figure 8. RePCA screening process for LMW-E(T1) interacting proteins 
 
(A) Identification of IFPN clones.  EL-IFPN, T1-IFPN and T2-IFPN clone lysates were  
subjected to western blot analysis for cyclin E expression using cyclin E antibodies.  
(B) IC1 RePCA infected cells were sorted and fluorescent cells were isolated.  (C) RNA 
from IC1 sorted clones were analyzed on an agarose gel.  (D) PCR products were 
analyzed on an agarose gel to examine size of LMW-E(T1) interacting partners.  
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example, from 10 x 106 cells infected with IC1 RePCA retrovirus, we isolated 0.8% 

(approximately 80,000 single cells) fluorescent cells (Figure 8B).  The 80,000 cells 

were plated at a very low density and we obtained 204 colonies that were further 

isolated and transferred to a 12-well plate.  Upon induction of doxycycline, 61 of the 

204 (29.9%) colonies retained fluorescence and were further expanded.  Next, we 

extracted RNA from the expanded clones (Figure 8C) and analyzed this for purity or 

degradation.  Lastly, we reverse-transcribed the RNA and amplified the RePCA region 

of interest by PCR using primers located within the RePCA vector.  The PCR products 

were gel purified (Figure 8D) and sequenced. 

We identified 11 independent LMW-E (T1)–binding proteins in MCF7 cells 

(Table 6).  The IFPC fusion transcript integrated at or near the transcriptional start site 

in 6 of the 11 transcripts, indicating that full-length or near-full-length proteins were 

generated.  We found that the majority of the interacting proteins identified (8 of 11, 

73%) were known to be localized to the cytoplasm (Table 6).  YWHAQ (14-3-3β) 

mediates protein signaling by binding to phosphoserine-containing proteins [140].  

HSP27 (heat shock protein 27) is a chaperone protein induced upon environmental 

stress [141].  HSP90 (heatshock protein 90), another chaperone protein, facilitates 

proper protein folding and protects against promiscuous protein-protein interactions 

[142].  VAMP8 (vesicle-associated membrane protein 8) is a component of a complex 

of proteins involved in the docking of synaptic vesicles with the presynaptic membrane 

[143].  COG4 (component of oligomeric golgi complex 4) is involved with protein 

trafficking at the Golgi apparatus [144].  RPL41 (ribosomal protein L41) is a component 

of the 60S subunit of the ribosome and important for mitosis and centrosome integrity  
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Table 6:  Interacting proteins of LMW-E (T1) identified from RePCA  
 

Protein  
name 

 

 
Protein  
symbol 

 

 
Function 

 

Retroviral 
reading 
frame 

 

Amino  
acid 

insertion  
site 

 

 
Known 

localization 

 
trans-2,3-enoyl- 
CoA reductase 

 
TECR 

Fatty acid 
synthesis 

 
IC1 

 
+4 

Endoplasmic 
reticulum 

 
Aldolase-A 

 
ALDO-A 

 
Glycolysis 

 
IC1 

 
-7 

 
Cytoplasm 

 
ATP-citrate lyase 

 
ACLY 

Fatty acid 
synthesis 

 
IC1 

 
-8 

Cytoplasm; 
nucleus 

Tyrosine 3-
monooxygenase/ 

tryptophan 5-
monooxygenase 
activation protein, 

 beta 
polypeptide 

 
 

YWHAB 

 
 

Signaling 

 
 

IC1 

 
 

-4 

 
 

Cytoplasm 
 

 
Heat shock  
protein 27 

 
HSP27 

Stress 
Response 

 
IC1 

 
-37 

Cytoplasm; 
nucleus 

 
Heat shock 
 protein 90 

 
HSP90 

 
Stabilization 

 
IC1 

 
+1 

 
Cytoplasm 

 
Vesicle-associated 

membrane protein 8 

 
VAMP8 

 
Protein 
docking 

 
IC1 

 
+57 

 
Plasma 

membrane 

 
Component of  

oligomeric 
complex 4 

 
COG4 

 
Transport 

 
IC2 

 
+649 

Golgi 
apparatus 

 
RAN binding  

protein 1 

 
RANBP1 

 
Transport 

 
IC1 

 
+5 

Cytoplasm; 
nucleus 

 
Ribosomal  
protein L41 

 
RPL41 

Protein 
synthesis 

 
IC2 

 
+11 

 
Cytoplasm 

Eukaryotic 
translation initiation 

factor, subunit J 

 
eIF3J 

Protein 
synthesis 

 
IC1 

 
+49 

 

 
Cytoplasm 
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[145].  RANBP1 is a GTPase that facilitates protein transport across the nuclear 

membrane [146].  Eukaryotic translation initiation factor 3J (eIF3J) is the 13th subunit of 

the eIF3 complex and aids in the initiation of transcription [147].  The three remaining 

novel interacting proteins of LMW-E (T1) identified constituted the largest functional 

group (3 of 11, 27%) of proteins discovered from the screen; these proteins are 

involved in metabolism.  trans-2,3-enoyl-CoA reductase (TECR) catalyzes the final step 

in synthesizing long and very long chain fatty acids [148].  Aldolase A (ALDO-A), also 

known as fructose-bisphosphate, plays a key role in glycolysis and gluconeogenesis 

[149].  ACLY, catalyzes the first step of the de novo lipogenesis pathway and converts 

cytoplasmic citrate to acetyl-CoA and oxaloacetate [150].  The end products of this 

lipogenesis pathway are fatty acids and other metabolic intermediates needed by 

proliferating cells [151].  Elevated ACLY protein and activity levels correlate with tumor 

growth and progression in breast carcinoma, lung adenocarcinoma, and glioblastoma 

[152-154], and ACLY inhibition by genetic or pharmacologic methods suppresses tumor 

growth [155].  On the basis of its role in promoting tumor growth and its novel 

interaction with cyclin E, we selected ACLY for further investigation. 

2.3b. Cyclin E and ACLY are interacting proteins 

To examine the localization of the LMW-E (T1) protein complexes, we subjected 

several RePCA clones to fluorescence microscopy.  The LMW-E(T1)/ACLY interaction 

was identified in clones #18 and #46 (Figure 9A) and the LMW-E(T1)/ACLY complex 

localized primarily to the cytoplasm.  In another clone, #16, we identified a interaction 

between LMW-E(T1) and VAMP8 (Figure 9A).  This interaction localizes to the plasma  
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Figure 9.  Validation of RePCA clones.   
 
(A) RePCA clone #46, #18 and #16 were fixed and counterstained with Dapi.  
Fluorescence shows localization of the LMW-E (T1)/ Protein ‘X’ interaction.  (B) 293T 
cell lysates expressing SFB-tagged cyclin E isoforms and myc-ACLY were 
immunoprecipitated using an anti-Flag antibody.  (C) Recombinant GST-ACLY protein 
was incubated with in vitro transcribed and translated (TnT) cyclin E isoforms or Cdk2 
and isolated using Glutathione sepharose beads.  (D) In vitro kinase assay using 
recombinant GST-ACLY aa 426-486 and recombinant Cyclin E isoforms alone or in 
complex with CDK2 were isolated by Cdk2 immunoprecipitation and incubated with 
GST-ACLY in the presence of 32P-γ-ATP.  The samples were run on an SDS-PAGE gel 
and the autoradiography film is shown.  Akt1 was used as a positive control. 
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membrane.  The LMW-E (T1)- ACLY interaction was confirmed by co-

immunoprecipitation.  Lysates expressing myc-ACLY and either EL- or T1- N-terminally 

tagged with SFB (S-tag, Flag epitope tag, and streptavidin-binding peptide tag) showed 

that both full-length EL and LMW-E (T1) were able to bind ACLY (Figure 9B).   

Since Cdk2 is the primary binding partner of cyclin E, we examined whether 

cyclin E or Cdk2 directly binds ACLY.  A GST pull-down assay revealed cyclin E as the 

direct binding partner of ACLY and the interaction is not mediated by other proteins 

including CDK2 (Figure 9C).  Furthermore, ACLY is phosphorylated post-translationally 

by multiple proteins, including cAMP-dependent protein kinase, GSK3β, nucleoside 

diphosphate kinase (NDPK) and protein kinase B (Akt) [156-158].  Therefore, we 

examined whether ACLY is a substrate of the cyclin E/Cdk2 complex.  An in vitro 

kinase assay revealed that ACLY is not a substrate of EL/Cdk2 or T1/Cdk2.  Akt1, 

known to phosphorylate was used as a positive control [153].  Together, these results 

indicate that ACLY directly binds cyclin E and protein binding does not result in 

phosphorylation of ACLY.   

2.3c. Identification of the ACLY domain that binds to cyclin E 

 ACLY, a member of the acyl-CoA synthetase (NDP-forming) superfamily [159], 

is similar in structure to succinyl-CoA synthetase (SCS) and consists of five domains 

shared by all members of this superfamily [160].  The domains are numbered  

corresponding to their order in Escherichia coli SCS [161].  As shown in figure 10A 

domain 1 binds CoA and domain 2 binds the catalytic phosphohistidine residue.  

Together, domains 3 and 4 form an ATP grasp fold and bind nucleotide.  Domain 5 

binds domain 2, creating one of two “power helices”.  The region of ACLY between 5 
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Figure 10. Analysis of interaction between cyclin E and ACLY 
 
(A) Schematic of ACLY protein.  An N-terminal GST tag was added to ACLY protein.   
ACLY consists of five domains followed by a citrate synthase homology domain 
(adapted from [160]). Six truncations of GST-ACLY were generated to study the 
interaction between cyclin E and ACLY. (B) Coomassie stained gel showing purification 
of SFB-tagged cyclin E isoforms from HEK 293T cells.  (C) Recombinant GST-ACLY 
protein truncations were incubated with purified SFB-LMW-E(T2) and complex 
formation was isolated using Glutathione sepharose beads.  (D) SFB-LMW-E(T2) alone 
or SFB-LMW-E(T2) + GST-ACLY WT were incubated in the presence of glutathione 
beads and complex formation was assessed. 
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 and 1 is the highly phosphorylated region of the protein [160].  The C-terminal end of 

ACLY displays high sequence homology to the large domain of citrate synthase [160].   

To identify which region of ACLY interacts with cyclin E we generated six GST-ACLY 

fusion protein truncations utilizing the Gateway cloning system and expressed these 

recombinant proteins in E coli (Figure 10A).  Additionally, we overexpressed SFB- 

tagged isoforms of cyclin E in HEK 293T cells and purified the cyclin E complexes by 

Flag pull-down and elution with Flag peptide (Figure 10B).  Purification resulted in 

isolation of all three isoforms of cyclin E.  

  We performed a GST pull-down assay using our purified cyclin E isoforms and 

GST-ACLY protein truncations.  Expression of GST-ACLY truncations was variable, 

with aa 2-243, aa 244-425 and aa 426-624 showing very high expression, while GST-

ACLY WT was the least expressed, probably due to the size of the fusion protein (over 

150kDa).  Surprisingly, pull-down analysis showed that all truncations of ACLY bound 

very effectively to LMW-E(T2) (Figure 10C).  This result was also seen in the other 

isoforms of cyclin E (EL and LMW-E(T1)) (data not shown) and was suspicious 

because every truncation created should not be able to bind to cyclin E.  Therefore, we 

suspected non-specific binding could be due to something that each of the truncations 

has in common, the SFB-tag or the glutathione beads.  To examine non-specific 

binding to the beads, we incubated SFB-T2 alone or in combination with the glutathione 

beads and as suspected, SFB-T2 was able to bind without the requirement of the GST 

tag (Figure 10D).  In our hands, the use of GST and SFB tags on ACLY and LMW-

E(T2), respectively, did not result in identification of the region of binding and future 
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studies will require creation of a different cyclin E fusion protein that minimizes non-

specific binding. 

 

2.4 CONCLUSIONS 

 In the age of proteomics, methods to identify protein-protein interactions are 

essential to understanding protein function.  The methods to identify protein-protein 

interactions have become increasingly more reliable by reducing false positive rates 

and enhancing specificity.  In this chapter we have shown that RePCA is an effective, 

high throughput method to identify protein-protein interactions in an endogenous 

environment.  RePCA was first utilized to identify protein binding partners of Akt1 and 

we confirm that RePCA is a useful tool to identify protein-protein interactions [125].  We 

created a host cell line, MCF7, containing IFPN-tagged forms of cyclin E and 

subsequently transduced LMW-E(T1) with the RePCA vector.  From 10 x 106 cells 

originally infected, we obtained 61 colonies from which to extract RNA.  Of the 61 

colonies, we identified 11 novel interacting proteins of LMW-E(T1) and most proteins 

identified localized to the cytoplasm (Table 6).  Ding and colleagues found 24 

independent binding partners of Akt from all three RePCA ORFs [125].  Specifically, 

from the IC2 ORF, 2 x 107 cells were infected and subsequently formed 384 colonies.  

Furthermore, 14% of colonies retained fluorescence after doxycycline induction.  These 

results are similar to what we found using RePCA screening methodology in that 

RePCA yields tens of candidates, not hundreds like AP-MS. 

To validate our results from the RePCA screen, we first subjected several clones 

to fluorescence microscopy to investigate subcellular localization of the LMW-E(T1) 
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protein complex.  The localization of the LMW-E(T1)/ACLY protein complex from 

RePCA clones #46 and #18 were localized primarily to the cytoplasm with a small 

percentage of cells showing nuclear localization (Figure 9A).  Moreover, we confirmed 

the interaction between LMW-E(T1) and ACLY by co-immunoprecipitation and 

identified the interaction is direct and not mediated by other proteins (Figure 9B,C) 

Regulation of ACLY, in part, occurs through multiple phosphorylation events 

[156-158].  For example, an antibody raised against an Akt substrate consensus 

sequence proved ACLY to be a substrate of Akt in rat primary adipocytes in an insulin-

dependent manner [158].  Therefore, we investigated whether ACLY could be a 

substrate of cyclin E/Cdk2 and our results revealed that cyclin E/Cdk2 does not 

phosphorylate ACLY (Figure 9D). 

 To gain insight to function of the cyclin E/ACLY protein complex, we investigated 

which domain of ACLY bound to cyclin E.  We created six truncations of a GST-ACLY 

fusion protein and created purified isoforms of cyclin E to examine binding (Figure 

10A,B).  However, our binding analysis revealed that our SFB-cyclin E fusion protein 

was non-specifically binding to the glutathione beads, thus preventing the identification 

of the region that binds to cyclin E (Figure 10D).  Future experimental designs will avoid 

SFB-tagged proteins and glutathione beads and will utilize other tags such as MBP 

(maltose binding protein) for purification.  Nevertheless, the use of RePCA technology 

to identify LMW-E(T1) binding protein in the cytoplasm was successful and the 

identification of ACLY as a cyclin E binding protein sheds new light on how the cell 

cycle and cellular metabolism are coupled in breast cancer. 
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CHAPTER 3: ATP-CITRATE LYASE LINKS LOW MOLECULAR WEIGHT CYCLIN E 

TO CELLULAR METABOLISM IN BREAST CANCER 

 

3.1 INTRODUCTION 

3.1a.  Overview of cancer cell metabolism 

 In 2000, Douglas Hanahan and Robert Weinberg published the seminal paper, 

“The Hallmarks of Cancer” describing six characteristics of human cancers that allow 

cancer cells to proliferate, survive and metastasize throughout the body [72].  These 

characteristics include: growth signal self-sufficiency, insensitivity to antigrowth signals, 

evasion of apoptosis, limitless replicative potential, maintained angiogenesis, and 

tissue invasion and metastasis [72].  A decade later, they revised the hallmarks to 

include emerging hallmarks of cancer such as deregulated cellular energetics and 

evasion from immune destruction [162].   

The idea that cancer cells display defects in metabolic regulation was first 

described almost 100 years earlier by Otto Warburg [163].  Under normal conditions, 

non-proliferating cells undergo aerobic respiration; a process in which glucose is 

converted to pyruvate via glycolysis, then to carbon dioxide following oxidative 

phosphorylation (OXPHOS) in the mitochondria yielding a net total of 36 ATP from one 

glucose molecule [162, 164].  On the other hand, proliferating cells undergo anaerobic 

respiration either when oxygen levels are limited or to meet the demands of 

macromolecular synthesis (DNA, membrane or protein synthesis) and primarily utilizes 

glycolysis for energy yielding a total of 2 ATP molecules [162].  However, many cancer 

cells, even under conditions when oxygen is present, primarily exploit glycolysis for 
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energy production; an event coined the ‘glycolytic switch’,  ‘aerobic glycolysis’ or 

‘Warburg effect’ [163, 165].   

The Warburg effect, on its own, is a highly inefficient method to produce the 

energy required to fuel a proliferating cell population and therefore, to keep up with 

demand, the cancer cell increases glucose uptake which in turn results in lactate 

excretion [165, 166].  The elevated level of glucose uptake by cancer cells is exploited 

clinically through the use of [18F] fluorodeoxyglucose positron emission tomography 

(FDG-PET) imaging [163, 165-167].  Specifically, FDG-PET uses a radiolabeled 

glucose analogue to expose regions of high glucose consumption and has been shown 

to be efficacious in diagnosing and monitoring tumors [165].  

Ultimately, the metabolic reprogramming of cancer cells to aerobic glycolysis is 

advantageous to fuel growth since aerobic glycolysis consumes glucose; one of the 

most plentiful extracellular nutrients, and uses it for ATP production [165].  Additionally, 

elevated influx of glucose provides the substrates required for macromolecular 

biosynthetic pathways [165, 166].  For example, ribose sugars are used during 

nucleotide synthesis, and citrate, from a truncated tricarboxylic acid cycle (TCA), 

provides substrates required for fatty acids production, and nonessential amino acids 

for protein production [166, 167]. 

3.1b.  Deregulated metabolic pathways in cancer 

 The PI3K/Akt signaling pathway serves as a hub for multiple downstream 

pathways required for cell survival, proliferation and protein synthesis (Figure 11) [168].  

Consequently, this pathway is also one of the most frequently mutated pathways in 
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Figure 11. Molecular pathways that induce the Warburg effect 
 
The Warburg effect can be induced by oncogenic pathways to confer a glycolytic 
phenotype.  The PI3K/Akt/mTOR pathway enhances the glycolytic phenotype by 
regulating enzymes directly involved in glycolysis or by activating key transcription 
factors and can be negatively regulated by the AMPK pathway.  p53 also plays an 
important role in regulating the expression of key metabolic enzymes including HK2 
and TIGAR as well as influencing PI3K pathway through inhibition of tumor suppressor, 
PTEN.  (Figure adapted from Cairns, R.A., I.S. Harris, and T.W. Mak, Regulation of 
cancer cell metabolism. Nat Rev Cancer, 2011. 11(2): p. 85-95.) 
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human cancer (Table 7) [165].  Mutations in the tumor suppressor, phosphatase and 

tensin homolog (PTEN), mutations in the PI3K complex or inappropriate signaling from  

receptor tyrosine kinases (RTKs) all confer a growth and survival phenotype in cancer 

cells through constitutively activating Akt and promoting the Warburg effect through 

multiple mechanisms [165].  First, Akt can facilitate glucose transporters such as 

GLUT1, to translocate to the membrane to increase glucose uptake [165, 166, 169].  

Additionally, Akt influences transcriptional changes that result in elevated glycolytic 

function through inhibition of the forkhead box subfamily O (FOXO) family of 

transcription factors [165, 170].   Lastly, Akt is responsible for promoting signaling 

through mammalian target of rapamycin (mTOR) by inhibition of its negative regulator, 

tuberous sclerosis 2 (TSC2) [165].  The mTOR pathway acts as a sensor of nutrient 

availability and if growth conditions are sufficient, can promote protein synthesis, 

specifically, mRNA translation and ribosome biogenesis [165, 171].  Furthermore, the 

mTOR pathway in tumor cells can promote transcriptional changes through activation 

and stabilization of hypoxia-inducible factor 1 alpha (HIF1α) even when oxygen 

conditions are normal [165]. 

 Another pathway often deregulated in cancer cells is the AMPK pathway (Figure 

11).  AMPK (AMP-activated protein kinase) acts a checkpoint for energy stress [165].  

Under conditions of energy stress such as a low AMP/ATP ratio, AMPK becomes 

activated and signals the cell to switch from glycolytic metabolism to oxidative 

metabolism; thus, abrogating cellular proliferation [165, 172, 173].  Tumor cells are able 

to bypass this checkpoint pathway by mutating the tumor suppressor, LKB1 (liver 

kinase B1) (Table 7).  LKB1 mutations are responsible for Peutz-Jeghers syndrome; a 
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Table 7:  Molecular alterations that affect metabolic circuits  
 

Molecule 
 

Activity in cancer 
 

Consequence in 
cancer 

 
Refs 

 
 

PI3K 

 
 

Mutation; gain-of-function 

Activation of Akt and 
facilitates 

upregulation of 
glucose transporters, 
transcription factors 

and mTOR 

  165, 
166, 
169, 
170 

 
 

PTEN 

 
 

Mutation; loss-of-function 

Activation of Akt and 
facilitates 

upregulation of 
glucose transporters, 
transcription factors 

and mTOR 

 
 

165 

 
LKB1 

 
Mutation; loss-of-function 

Increased glycolytic 
flux; activation of 
mTOR and HIF1α 

165, 
173- 
175 

 
 

HIF1α 

 
 

Constitutive expression; gain-
of-function 

Increases expression 
of genes encoding 
glycolytic enzymes, 

VEGF and other 
proteins involved in 

the hypoxic response 

165, 
166, 
176 

 
Myc 

 
Constitutive expression; gain-

of-function 

Increases expression 
of LDH-A; increases 
glycolysis and lactate 

production 

165 

 
Ras 

 
Mutation; gain-of function 

Increases glycolysis 
and VEGF 
expression 

165 

 
 

p53 

 
 

Mutation; loss-of-function 

Stabilized by HIF1α; 
activates HK2; 

induces apoptosis 
under hypoxic and 
acidic conditions 
through TIGAR 

expression 

165, 
179, 
180 

 
VHL 

 
Mutation; loss-of-function 

Destabilizes hypoxia 
induced transcripts; 
VEGF and GLUT1 

165, 
177, 
178 

 
PKM2 

Alternative splice variant; lower 
activity 

Guides carbon 
sources away from 

165, 
182- 
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OXPHOS 185 
IDH1/2 Mutation; loss-of-function; gain-

of-alternative function 
Creates onco-

metabolite  
165, 
190, 
191 

 
 

SDH 

 
 

Mutation; loss-of-function 

Elevated levels of 
succinate; 

impairment of PHD3; 
elevated levels of 

HIF 

166, 
192 

 
 
 
 

FH 

 
 
 
 

Mutation; loss of function 

Elevated levels of 
fumarate; 

modification of 
cysteine residues 

leading to negative 
regulation of Nrf2; 

upregulation of anti-
oxidant response 

genes 

166, 
192 
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disease which starts out as benign lesions of the gastrointestinal tract and oral cavity, 

but shifts to increase the risk of a wide range of other malignancies [165].  Moreover, 

LKB1 is mutated in 15-35% of non-small cell lung cancer (NSCLC) cases and 20% of 

cervical carcinomas [173-175].  Ultimately, loss of AMPK signaling can lead to 

activation of mTOR and HIF1, both leading to an increased glycolytic phenotype [165]. 

 HIF1α, as previously mentioned, can be induced through transcriptional 

activation downstream of PI3K, Akt and mTOR (Figure 11) [165].  Under normal 

oxygen conditions, HIF1α is posttranslationally modified by prolyl hydroxylation and this 

modification signals von Hippel-Lindau (VHL) tumor suppressor, a ubiquitin ligase, 

ultimately leading to HIF1α degradation [165, 166].  However, under hypoxic 

conditions, HIF1α is stabilized and transcriptionally activated to increase expression of 

glucose transporters and glycolytic enzymes [166, 176].  Of note, HIF1α can be 

activated under normoxic conditions in tumor cells by the inactivation of VHL or 

mutations in the PI3K pathway (Table 7) [165].  For example, in renal-cell carcinoma, 

mutations in VHL lead to constitutively active HIF1α and re-expression of VHL is able 

to rescue HIF1α function and decrease the aerobic glycolysis phenotype [177, 178].   

 Lastly, although primarily known for its essential role in regulating DNA damage 

and the apoptosis response, p53 is also a player in regulating key metabolic genes 

(Figure 11) [165].  First, p53 can induce the expression of HK2 (hexokinase 2), the first 

enzyme in glycolysis and produces glucose-6-phosphate (Figure 11) (Table 7) [165, 

179].  Glucose-6-phosphate is an important molecule and is present at the crossroads 

of two metabolic pathways: glycolysis and the pentose phosphate pathway (PPP).  

Glycolysis produces ATP and synthesizes pyruvate for the tricarboxylic acid cycle 
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(TCA) and the PPP produces NADPH and ribose sugars, both important for nucleotide 

synthesis [165].  Furthermore, p53 regulates expression of TIGAR (TP-53 induced 

glycolysis and apoptosis regulator), an enzyme that controls the levels of a key 

glycolysis enzyme, fructose-2,6-bisphosphate [165, 180].  Lastly, it is well known that 

p53 is a regulator of PTEN, a key inhibitor of the PI3K pathway [165, 181]. 

3.1c. Onco-enzymes and onco-metabolites in metabolic pathways 

 Pyruvate kinase (PK) functions in the final irreversible step of glycolysis 

converting phosphoenolpyruvate (PEP) to pyruvate (Figure 11) [165, 182].  In 

mammals, there are multiple isoforms of PK including type L, type R, type M1 and type 

M2 [165, 183].  Type L is expressed in the liver and kidney; type R is found in 

erythrocytes; type M1 is expressed in the muscle cells and brain; and type M2 is found 

in embryonic stem cells, adult stem cells and tumor cells [165, 183].  PK is found either 

as an inactive monomer, low activity dimers or as active tetramers [182].  The low 

activity dimer is what is most often found in many cancers and although 

counterintuitive, its low enzymatic activity decreases the rate of glycolysis and thus, 

increases metabolic flux required for macromolecular biosynthesis through PPP for 

nucleotide synthesis and other pathways for phospholipid and amino acid synthesis 

[165, 167, 183-185].  Indeed, expression of PKM2 in lung cancer cells is more 

conducive to tumor growth than the PKM1 isoform [184]. 

 The expression of PKM2 over PKM1 in cancer cells is due to preferential 

expression by myc coupled with unique splicing events [165].  Specifically, myc induces 

the expression of heterogeneous nuclear ribonucleoproteins (hnRNPs) that bind and 

inhibit exon 9, which encodes PKM1 and liberates exon 10, which encodes PKM2 [165, 
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186].  At the enzymatic level, negative regulation of PKM2 occurs by growth factor-

derived phosphotyrosine signaling by FGFR1, Bcr-Abl and JAK2 [187].   

PKM2 is primarily a cytoplasmic enzyme, but has recently been shown to 

localize to the nucleus as well [188].  This translocation is due to apoptotic signals, 

response to IL-3, acetylation on Lys 433 or by phosphorylation by extracellular signal-

related kinase 2 (ERK2) [182].  Specifically, upon EGFR stimulation, ERK2 interacts 

with and phosphorylates PKM2 at serine 37 [188].  This phosphorylation recruits PIN1 

for cis-trans isomerization leading to exposure of its NLS and interaction with importin 

5α [188, 189].  Nuclear PKM2 in concert with β-catenin induces myc expression, 

eventually resulting in GLUT1 and LDH-A expression forming a positive feedback loop 

[188, 189].  Ultimately, PKM2 expression in tumor cells has the ability to guide carbon 

precursors away from pyruvate production and into pathways responsible for 

macromolecular biosynthesis required for growth and proliferation.   

 Additional onco-enzymes are isocitrate dehydrogenases (IDH1 and IDH2) 

that function in the TCA cycle to produce α-ketoglutarate (αKG) from isocitrate [165].  

In 2008, Parsons et al. and colleagues sequenced 20,661 protein-coding genes in 

glioblastoma multiforme (GBM) and found a number of genetic aberrations not 

previously known to be present in GBM [190].  Of particular interest was a mutation in 

the active site of IDH1 [190].  Studies have now shown that either IDH1 or IDH2 is 

mutated in almost 80% of grade II and III glioblastomas and acute myeloid leukemias 

(AML) [165].  Mutations in IDH1 are heterozygous; an indication that this mutation is a 

gain-of-function event [165].  A year later, in 2009, Dang et al. and colleagues 

discovered a single mutation at arginine 132 and instead of synthesizing αKG, mutated 
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IDH1 is responsible for production of a completely new metabolite, R (-)-2-

hydroxyglutarate (2HG) [191].  Moreover, this onco-metabolite, in excess, results in a 

higher risk of formation and progression of glioblastoma and AML [165, 191].   Thus, 

the presence of a tumor-specific metabolic alterations such as a mutations in IDH1 

yields a valuable screening protocol for patients as well as a providing a plausible 

treatment strategy, inhibiting 2HG production. 

Lastly, although rare, mutations in succinate dehydrogenase (SDH) and 

fumarate hydratase (FH) occur in pheochromocytoma, paraganglioma, leiomyoma, and 

renal carcinoma [166, 192].  Elevated levels of succinate and fumarate are the results 

of SDH and FH mutations and succinate specifically deregulates PHD3, an αKG-

dependent enzyme responsible for regulating HIF1α stability [192].  Similarly, fumarate 

can deregulate PH2, but is also responsible for negative regulation of the transcription 

factor, Nrf2, leading to anti-oxidant gene upregulation [192]. 

3.1d. Therapeutic targets in metabolic pathways 

 Eradicating tumor cells and leaving normal cells unharmed is the challenge of 

modern cancer therapy.  Indeed, tumor cells undergo a ‘metabolic transformation’ that 

aids in proliferation and survival; and consequently, renders altered metabolic 

pathways susceptible to inhibition (Figure 12) [193].  About 20 years after Otto Warburg 

described aberrant glycolysis in cancer cells, the first antimetabolites were used in 

cancer therapy [193, 194].  Farber et al. and colleagues used a folic acid antagonist 

and observed temporary remission of acute leukemia in children [194].  Since then a 

number of inhibitors of either metabolic enzymes or inhibitors of metabolic pathways 

have been generated to target these ‘metabolically transformed’ cells (Table 8) [193].  
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Figure 12.  Therapeutic targets in metabolic pathways 

Metabolic pathways that control growth and proliferation or provide macromolecular 
intermediates are attractive targets for intervention.  PI3K/Akt/mTOR inhibitors 
indirectly impact metabolic pathways by inhibiting cell growth, proliferation and survival.  
Direct targets of metabolic enzymes reduce the yield of pathway output leading to a 
reduction in macromolecular intermediates required for cell proliferation. (Adapted from: 
Tennant, D.A., R.V. Duran, and E. Gottlieb, Targeting metabolic transformation for 
cancer therapy. Nat Rev Cancer, 2010. 10(4): p. 267-77.) 
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Table 8:  Inhibitors of metabolic enzymes or effectors of common 
pathways 

 
Compound 

 
Target 

 
Effect 

 
Stage of 
approval 

 
Types of 
cancers 

 
Study number(s) 

 
 

2-
deoxyglucose 

 
 

Hexokinase 

 
 

Inhibits 
glycolysis 

 
 

Phase 
 I&II 

Lung, 
breast, 
prostate, 
gastic, 
head and 
neck 

• NCT00633087 
• NCT00096707 
• NCT00247403 

 

 
Lonidamine 

 
Hexokinase 

Inhibits 
glycolysis 

 
Phase  

III 

Benign 
prostatic 
hyper-
plasia 

• NCT00435448 
• NCT00237536 

3-
bromopyruvat

e 

Hexokinase Inhibits 
glycolysis 

Pre-
clinical 

N/A N/A 

 
 

TLN-232 

 
Pyruvate 
Kinase 

 
Inhibits 

glycolysis 

 
 

Phase II 

Metastatic 
melanoma 
and renal 
cell 
carcinoma 

• NCT00735332 

Anti- 
metabolites 
(i.e. 5-FU, 
cytarabine, 

methotrexate) 

Nucleotide 
biosynthetic 

pathway 

Inhibits  
cell 

proliferation 

FDA 
approve

d 

Multiple 
cancer 
types 

>100 

 
MK-0646 

 
IGF1R 

Blocks IGF 
signaling 

Phase  
I&II 

Lung, 
pancreas, 
liver, 
breast 

• NCT00799240 

 
BIIB022 

 
IGF1R 

Blocks IGF 
signaling 

Phase  
I&II 

Lung, 
pancreas, 
liver, 
breast 

• NCT00555724 

 
AVE1642 

 
IGF1R 

Blocks IGF 
signaling 

Phase  
I&II 

Lung, 
pancreas, 
liver, 
breast 

• NCT00791544 

GDC-0941 PI3K Inhibits 
PI3K 

signaling 

Phase 
I&II 

Breast, 
lymphoma 

• NCT00876109 

PX866 PI3K Inhibits 
PI3K 

Phase 
I&II 

Breast, 
lymphoma 

• NCT00726583 
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signaling 
 
 
 

BEZ235 

 
 
 

PI3K/mTOR 

Inhibits 
signaling 
from PI3K 

and 
mTORC1 

and 
mTORC2 

 
 

Phase 
I&II 

Advanced 
solid 
tumors 
(i.e. lung, 
brain) 

• NCT00485719 

 
 

XL765 

 
 

PI3K/mTOR 

Inhibits 
signaling 
from PI3K 

and 
mTORC1 

and 
mTORC2 

 
 

Phase 
I&II 

Advanced 
solid 
tumors 
(i.e. lung, 
brain 

• NCT00777699 

 
 

SF1126 

 
 

PI3K/mTOR 

Inhibits 
signaling 
from PI3K 

and 
mTORC1 

and 
mTORC2 

 
 

Phase 
I&II 

Advanced 
solid 
tumors 
(i.e. lung, 
brain 

• NCT00704080 
• NCT00907205 

 
 
 

BGT226 

 
 
 

PI3K/mTOR 

Inhibits 
signaling 
from PI3K 

and 
mTORC1 

and 
mTORC2 

 
 

Phase 
I&II 

Advanced 
solid 
tumors 
(i.e. lung, 
brain 

• NCT00600275 

 
Torin1 

mTORC1 
and 

mTORC2 

Inhibits 
mTORC1 

and 
mTORC2 

Pre-
clinical 

 
N/A 

 
N/A 

 
PP242 

mTORC1 
and 

mTORC2 

Inhibits 
mTORC1 

and 
mTORC2 

Pre-
clinical 

 
N/A 

 
N/A 

 
Periforsine 

 
Akt 

Inhibits Akt Phase 
I&II 

Renal 
cancer, 
lung, 
lymphoma 

• NCT00399789 
• NCT00399152 

 
GSK690693 

 
Akt 

Inhibits Akt Phase  
I&II 

Renal 
cancer, 
lung, 
lymphoma 

• NCT00493818 

PX-478 HIF1α Inhibits HIF Phase I Advanced • NCT00522652 
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signaling solid 
tumors 
and 
lymphoma 

Acriflavine HIF1α Inhibits HIF 
signaling 

Pre- 
clinical 

N/A N/A 

Metformin AMPK 
complex and 
Complex I of 
mitochondria 

Activates 
AMPK 

Phase 
I&II 

Solid 
tumors 

and 
lymphoma 

• NCT00659568 
• NCT00881725 
• NCT00984490 
• NCT00909506 
	  

SB-204990 ATP-citrate 
lyase 

Inhibits fatty 
acid 

synthesis 

Pre-
clinical 

N/A N/A 

 
Orlistat 

 
FASN 

Inhibits fatty 
acid 

synthesis 

Pre-
clinical 

N/A N/A 

 
GSK837149A 

 
FASN 

Inhibits fatty 
acid 

synthesis 

Pre-
clinical 

N/A N/A 

 
C75 

 
FASN 

Inhibits fatty 
acid 

synthesis 

Pre-
clinical 

N/A N/A 

Adapted from: 
Tennant, D.A., R.V. Duran, and E. Gottlieb, Targeting metabolic transformation for cancer 
therapy. Nat Rev Cancer, 2010. 10(4): p. 267-77. 
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Growth signaling pathway inhibitors such as those targeting IGF1R, PI3K and 

Akt are used as an indirect method to target tumor cell metabolism and have had 

success in decreasing cancer cell progression [195].  One of the most well known 

metabolic drugs identified that is clinically used is metformin, an AMPK activator.  

Metformin was first used in patients with type 2 diabetes; however, a study found that 

diabetes patients that were treated with metformin had a higher probability of being 

cancer-free after an 8-year follow-up compared to patients treated with other regimens 

[193, 196].  These results were corroborated in preclinical mouse models as well as in 

diabetes patients with breast cancer and found that metformin has a profound anti-

tumor effect [193, 197, 198].   

Another attractive target for intervention is glycolysis.  As previously stated, 

many tumor cells display elevated levels of glycolysis and greatly uptake glucose 

regardless of bioenergetic requirement [165].  However, many inhibitors of glycolysis 

used as a monotherapy, such as 2-deoxyglucose (a glucose mimetic which targets 

hexokinase 2), are unsuccessful in osteosarcoma and NSCLC and require combination 

treatment with either chemotherapy and/or radiotherapy [193, 199, 200].  For example, 

2-deoxyglucose is synergistic when combined with adriamycin and paclitaxel in both 

osteosarcoma and non-small cell lung cancer [199].   

Moreover, the conversion of phosphoenolpyruvate to pyruvate by pyruvate 

kinase is an important rate-limiting step of glycolysis and the PK inhibitor, TLN-232, is 

currently in Phase II clinical trial [193].  However, TLN-232 is a PKM1 specific inhibitor 

and as previously mentioned in chapter 3.1c, PKM2 is the predominant isoform of PK in 

cancer cells.  Recently, a PKM2 knockdown in a mouse model showed that PKM2 is 
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not required for tumor growth in vivo and that other growth pathways may become 

activated following its removal [201].   

 Another mode of intervention includes agents developed to reduce HIF1 levels 

either by targeting effector molecules or by inhibiting HIF1 dimerization (Table 8) [193].  

For example, acriflavine prevents dimerization between HIF1α and HIF1β subunits and 

has been shown to be effective at inhibiting xenograft prostate cancer growth [193, 

202].  Similarly, PX-478 has been shown to decrease HIF1α levels leading to a 

profound inhibition of tumor growth both in vitro and in vivo in multiple cancer types 

[193, 203]. 

 Inhibition of the mTOR pathway is also an attractive target due to its overactivity 

in multiple types of cancers [193].  Unfortunately, the mTOR inhibitor, rapamycin, and 

its many rapalogues have had limited success as a monotherapy due to additional 

activation of PI3K/Akt [193, 204].  Therefore, the creation of compounds targeting the 

combination of mTORC1, mTORC2 and PI3K such as BEZ235 and XL765 have been 

developed for lung and brain cancers and are currently in Phase I and II clinical trial 

[193]. 

 Lastly, cancer cells are largely dependent on de novo fatty acid synthesis for 

their supply of fatty acids rather than from exogenous accumulation and as a 

consequence, upregulate the de novo lipogenesis pathway [205].  The de novo 

lipogenesis pathway will be described in more detail in Chapter 3.1e, however, agents 

have been developed that target enzymes in this pathway; mainly inhibitors of fatty acid 

synthase (FASN) and ATP-citrate lyase (ACLY) [193, 205].  FASN is overexpressed in 

a variety of cancers, including cancers of the breast, colon and endometrium and the 
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inhibition of FASN using C75, orlistat and GSK837149A, are very effective in vitro and 

in vivo [206-208].  Additionally, FASN inhibitors have been used in combination with 5-

FU and traztuzumab to synergistically induce cell death [209, 210].   Likewise, ACLY is 

overexpressed at the mRNA, protein and enzymatic level in lung adenocarcinoma 

[153].  Inhibition of ACLY by either genetic or pharmacologic means, reduces glucose-

dependent lipid synthesis, proliferation and survival in vitro and in vivo [211].  ACLY will 

be discussed in further detail in Chapter 3.1f and 3.1g.  Ultimately, targeting metabolic 

pathways and enzymes as a monotherapy or in combination in transformed cells 

provides an effective avenue to target tumor-specific alterations and prevent toxicity to 

normal tissues. 

3.1e. The de novo lipogenesis pathway 

 In order to promote growth and proliferation, tumor cells are required to 

synthesize macromolecular building blocks such as nucleotides, amino acids and fatty 

acids.  Fatty acids are derived from two sources: exogenously via dietary means and 

endogenously via de novo synthesis [212].  The de novo lipogenesis pathway 

synthesizes complex fatty acids such as phospholipids, triglycerides and 

cholesterylesters that are important for synthesis of cell membranes and lipid-based 

post-translational modifications on proteins [212].  In contrast to normal cells, tumor 

cells obtain almost 93% of triacylglycerols from de novo synthesis [212].  Therefore, 

enzymes of this pathway are commonly upregulated in a variety of cancers including 

cancers of the ovary, breast, stomach, colorectum, lung, bladder and prostate among 

others [212]. 
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Figure 13.  The de novo lipogenesis pathway 
 
The de novo lipogenesis pathway is downstream of glycolysis and a truncated citric 
acid cycle.  Citrate is exported from the mitochondria into the cytoplasm and converted 
to acetyl-CoA and oxaloacetate by ATP-citrate lyase (ACLY).  Acetyl-CoA is used as a 
substrate for Acetyl-CoA carboxylase (ACC) and synthesizes malonyl-CoA.  Fatty acid 
synthase (FASN) condenses malonyl-CoA and acetyl-CoA to form palmitate and other 
complex fatty acids such as phospholipids, triglycerides, cholesterol esters.  (Adapted 
from: Menendez, J.A. and R. Lupu, Fatty acid synthase and the lipogenic phenotype in 
cancer pathogenesis. Nat Rev Cancer, 2007. 7(10): p. 763-77.) 
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The first enzyme of the lipogenesis pathway is ATP-citrate lyase (ACLY).  ACLY 

catalyzes the conversion of cytoplasmic citrate to acetyl-CoA and oxaloacetate 

downstream of a truncated citric acid cycle (Figure 13) [205, 212].  Next, acetyl-CoA 

carboxylase (ACC) synthesizes malonyl-CoA in a rate-limiting fashion [212].  In breast 

carcinomas, ACC is overexpressed at the mRNA and protein level with its inhibition 

resulting in decreased cell proliferation and cell viability [213-215].  The last reaction of 

the pathway is the condensation of malonyl-CoA and acetyl-CoA by FASN to palmitate 

and other complex fatty acids (Figure 13) [212].  Elevated levels of FASN are found in 

over 20 types of cancer including breast, colorectal, bladder, ovary and lung [212].  

Moreover, high FASN expression is also correlated with increased risk of disease 

recurrence and death in breast cancer patients [208, 216]. 

3.1f.  ATP-citrate lyase 

 As previously stated, ATP-citrate lyase (ACLY) catalyzes cytoplasmic citrate into 

acetyl-CoA and oxaloacetate in the de novo lipogenesis pathway.  In 2004, Beigneux et 

al. and colleagues attempted to generate an ACLY knockout mouse by crossing ACLY 

heterozygous mice [217].  However, no ACLY -/- mice were obtained from at least 60 

litters and therefore, ACLY is required for embryonic development.  Interestingly, 

heterozygous mice were completely normal in spite of displaying only 50% of ACLY 

mRNA and protein expression [217].   

In mammals, ACLY is highly expressed in white adipose tissue and liver cells, 

whereas brain, heart, small intestine and muscle cells display low levels of ACLY [218, 

219].  Moreover, ACLY is localized primarily in the cytoplasm of cells to synthesize 

acetyl-CoA in the de novo lipogenesis pathway, but recently has been found to be in 
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the nucleus in murine embryonic fibroblasts, murine pro-B-cell lymphoid cells, 

glioblastomas and in colorectal carcinomas [220].  In the nucleus, it has been proposed 

that ACLY is responsible for acetyl-CoA production required for histone acetylation 

[220]. 

Sterol regulatory element binding protein-1 (SREBP-1) is a lipogenic 

transcription factor suggested to regulate the expression of lipogenic enzymes, 

including ACLY, however, it found that ACLY mRNA levels do not correlate with 

SREBP-1 levels [153].  Therefore, it was suggested that ACLY might be regulated not 

at the transcriptional level, but post-translationally by phosphorylation and that the 

phosphorylation may lead to enzyme activity and protein stability [153].  Indeed, ACLY 

is phosphorylated by Akt on Ser454 in primary adipocytes as well as Thr 446 and Ser 

450 by GSK3β in an insulin dependent manner [158].  However, Migita et al. and 

collegues noted that ACLY phosphorylation and enzymatic activity were not completely 

abolished and only exhibited a modest reduction when lung adenocarcinoma cells were 

treated with the PI3K inhibitor, LY294002 [153].  Therefore, these data indicate that 

ACLY activity may be regulated in part by another pathway. 

3.1g.  ATP-citrate lyase and cancer 

 ACLY has shown to be upregulated either at the protein level or the enzymatic 

level in multiple cancer types including cancers of the lung, prostate, bladder, breast, 

liver, stomach and colon [218].  Specifically in breast cancer, ACLY activity is 160 fold 

higher in breast carcinoma compared to normal breast tissue [152].  Moreover, in lung 

adenocarcinoma, ACLY is elevated at both mRNA and protein levels with high levels of 

activated ACLY correlating with stage, grade and poor survival.   In contrast, inhibition 
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of ACLY at both genetic and pharmacologic levels has been effective at suppressing 

proliferation and tumor growth in both in vitro and in vivo [211, 221].  These data 

support the notion that increased ACLY expression and activity provide tumor cells with 

selective growth advantages in order to support the tumorigenesis program. 

3.1f.  Hypothesis and specific aims 

 Metabolic transformation is a common feature of many tumor cells.  

Upregulation of lipid synthesis as well as upregulation of lipogenic enzymes provide 

tumor cells with essential building blocks required to maintain growth and survival in 

unfavorable conditions.  In the previous chapter, we found ACLY, a lipogenic enzyme, 

to be a novel interacting protein of LMW-E in the cytoplasm.  Therefore, we 

hypothesize that LMW-E mediated tumorigenesis requires ACLY.  The following 

specific aims will address this hypothesis:  

• Examine LMW-E mediated changes of ACLY enzymatic activity. 

• Analyze lipid synthesis in an LMW-E inducible model system.  

• Determine the affects of ACLY knockdown on anchorage-independent growth, 

migration and invasion of LMW-E expressing cells. 

• Examine the requirement of ACLY in xenograft tumor growth in LMW-E 

expressing breast cancer cells. 

Briefly, results presented in this chapter reveal that ACLY is regulated at the enzymatic 

level by LMW-E.  In addition to total ACLY activity increases, ACLY enzymatic activity 

in the cytoplasm is elevated upon the induction of LMW-E and correlates with lipid 

droplet formation; which is indicative of activation of the de novo lipogenesis pathway.  

Moreover, ACLY is required for anchorage-independent growth, migration and invasion 
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in LMW-E expressing cells.  Lastly, ACLY is required for xenograft tumor growth of 

MCF7 cells expressing LMW-E.  Taken together, these data provide a unique insight of 

how metabolic pathways and the cell cycle are intrinsically linked and will help 

delineate treatment strategies for LMW-E expressing breast cancer patients.  

 

3.2 MATERIALS AND METHODS 

3.2a. Cell culture and plasmids 

 Human breast cancer MCF cells stably overexpressing cyclin E isoforms were 

cultured as previously described [113].  The immortalized non-tumorigenic human 

mammary epithelial cell line, 76NE6, which ectopically express cyclin E isoforms under 

a doxycycline-inducible promoter were cultured as previously described [111, 112].  

76NE6-tumor derived cells (TDCs) were generated and cultured as previously 

described [111].  The shRNA constructs were purchased from the shRNA and 

ORFeome core at the University of Texas MD Anderson Cancer Center (Houston, TX) 

and were generated in a lentiviral packaging system as previously described [117].  

Briefly, HEK293T cells were co-transfected with packaging vectors, pCMVΔR8.2 and 

pMD2.G, along with either pGIPZ scrambled shRNA sequence or shACLY using 

LipoD293T transfection reagent.  Lentiviral supernatant was filtered through a 0.45µm 

filter and transduced target cells for 48 hrs.  Infected cells were selected with 0.5 µg/ml 

(76NE6) or 2 µg/ml (MCF7) puromycin. 

3.2b. Cell lysis, immunoblotting and kinase assays 

 Cell lysates were prepared and subjected to western blot analysis as previously 

described in Chapter 2.2d. Western blots were incubated with primary antibodies 
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against ACLY, Parp and β-tubulin (Cell signaling, Danvers, MA), cyclin E HE12 and 

CDK2 were obtained from Santa Cruz Biotechnology (Dallas, TX), and β-actin was 

obtained from EMB Millipore (Billerica, MA).  For the kinase assay, lysates from MCF7 

cells expressing the cyclin E isoforms and shRNA toward ACLY were 

immunoprecipitated using a CDK2 antibody.  Lysates were incubated with Histone H1 

in kinase buffer containing 60 µM cold ATP and 5 µCi of [32P] ATP to a final volume of 

30 µl at 37°C for 30 min.  The products of the reactions were then analyzed on a 7% 

SDS-PAGE gel. The gel was then stained, destained, dried, and exposed to X-ray film. 

3.2c. In vitro transcription and translation (TnT) 

 Cyclin E isoforms and CDK2 proteins were generated according to the 

manufacturers instructions using the TnT T7 Quick Coupled Transcription/Translation 

System from Promega (Madison, WI). 

3.2d. ACLY activity 

 ACLY activity was measured by the malate dehydrogenase-coupled method as 

previously described [153].  Briefly, cell lysates were extracted from MCF7 and 76NE6 

cell lines and incubated with the reaction mixture (200mM Tris Hcl pH 8.7, 20mM 

MgCL2, 20mM potassium citrate, 1mM DTT, 0.2mM NADH, 1U/mL MDH, 0.5mM CoA) 

with and without ATP and subjected to the assay.  ACLY activity was measured every 3 

minutes for 30 minutes using a NanoDrop 2000c spectrophotometer from Thermo 

Scientific (Wilmington, DE).  ACLY specific activity was calculated as the change in 

absorbance with ATP minus the change in absorbance without ATP normalized to 

protein concentration, however, 25ng was used in in vitro assays from utilizing purified 

recombinant ACLY enzyme (US Biological, Salem, MA). 
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3.2e. Cell fractionation 

 2 x 106 cells were plated on p150 tissue culture plates for 48 hours before 

harvesting.  To harvest cell lysates, cells were washed twice with PBS and removed 

from the plate using a cell scraper in ice cold PBS.  Cells were centrifuged at 2500rpm 

for 5 minutes at 4°C.  Cells were resuspended in RSB buffer (10mM Tris-HCl, pH 7.4, 

10mM NaCl, 3mM MgCl2) and centrifuged at 2500rpm for 5 minutes at 4°C.  Cells were 

again resuspended in RSB buffer and homogenized using a loose fitting glass 

homogenizer then passed through a 25-gauge syringe to break the cell membrane.  

Lysate was incubated on ice for 10 minutes and centrifuged at 2500rpm for 5 minutes 

at 4°C.  The pellet is the nuclear fraction and the supernatant is the cytosol.  The 

supernatant was removed and placed in a clean tube.  The pellet was washed with 

RSB buffer and centrifuged again.  The pellet was resuspended in 50µl Nuclear 

Extraction Buffer (Cell Biolabs, San Diego, CA) along with 0.5µl of DL-dithiothreitol 

(DTT) and 5µl protease inhibitors.  The pellet was kept on ice for 30 minutes and 

vortexed at the highest setting every 10 minutes.  The pellet was centrifuged for 30 

minutes at 14,000 x g at 4°C with the supernatant being the soluble nuclear fraction. 

3.2f. Lipid staining 

 Lipid staining was conducted using the LipidTox reagent according to the 

manufacturers instructions (Invitrogen, Grand Island, NY).  Briefly, cells were fixed 

using 4% paraformaldehyde and permeabilized with 0.1% saponin for 60 minutes at 

room temperature.  LipidTox reagent was diluted 1:200 in PBS and incubated with cells 

for 45-60 minutes and imaged on an Olympus Epi-fluorescence microscope with a 60X 

objective and Hamamatsu Orca camera. 
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3.2g. Anchorage-independent growth assay 

 Anchorage-independent growth assays were performed as previously described 

with the following modifications [222].  Briefly, MCF7 cells were plated at a density 

of 2,500 cells/well on 12-well plates in 0.35% Seaplaque Agarose (Lonza, 

Rockland, ME).  Cells were grown for 10 to 30 days in their recommended 

media and fed every 3-4 days.  Colonies were measured by using the GelCount 

system (Oxford Optronix, Abingdon, UK) with colonies greater than 50µm in 

diameter scored.  Three biological replicates were conducted in duplicate, with 

results reported as average number ± SD. 

3.2h. Migration assay 

 A total of 300,000 cells were plated on a 6-well tissue culture plate and allowed 

to grow until confluent.  The plate was then scratched with a pipet tip.  Pictures were 

taken at 0 and 24 hours using an EVOS XL Core light microscope with a 10X objective 

(Life Technologies, Grand Island, NY) and scratch opening was measured using Adobe 

Photoshop (San Jose, CA). 

3.2i. Transwell invasion assay 

The transwell invasion assay was performed as previously described [111].  

Briefly, for each sample, 100 µl of 1 mg/ml Matrigel in serum-free cold MEM media was 

placed into the upper chamber of 24-well transwell plate (Corning, Corning, NY) and 

incubated at 37°C for 4–5 hours.  Trypsinized cells were washed and suspended in 

serum-free medium at a concentration of 1×106 cells/ml.  100µl of cell suspension was 

transferred onto the upper chamber, while the lower chamber contains 600 µl of 

complete media containing 10µg/ml fibronectin.  After 24 hours, the cells were fixed 
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and permeabilized with 4% formaldehyde for 15 minutes, rinsed with PBS three times, 

incubated with 100% methanol for 20 minutes and washed again.  The wells were 

stained with 0.2% crystal violet for 15 minutes. The crystal violet was removed and the 

invaded cells were photographed with an EVOS XL Core light microscope.  Cells were 

quantified by trypsinizing the cells and counted using a BioRad TC20 cell counter 

(Hercules, CA).  Each sample was repeated 3 times independently. 

3.2j. Cell proliferation assay 

 Cells were seeded at a density of 1000 cells/well in a 96-well plate and 

harvested every 24 hours for 96 hours.  On day of harvest, 50µl per well of 2.5 mg/mL 

MTT (3-(4,5-Dimethylthiazol-2-yl)-2,5-diphentltetrazolium bromide) (Sigma) was added 

to serum-free media and allowed to incubate at 37°C for 3 hours.  After incubation, 

media was removed and 100µl solubilization solution (0.04M HCl, 1%SDS, in 

isopropanol) was added to each well.  Plates were incubated with shaking for 1 hour 

before reading on a plate reader (Epoch Microplate Spectrophotometer Gen 5 

software, BioTek, Winooski, VT) at 590nm.  Doubling time was calculated in Graphpad 

Prism software (La Jolla, CA). 

3.2k.  Real-time PCR 

Total RNA was isolated from cell culture with RNAeasy kit with DNase treatment 

according to the manufacture's protocol (Qiagen).  2 µg of the RNA samples was 

reverse-transcribed using cDNA synthesis kit (Applied Biosystems).  Realtime PCR 

was done with aliquots of the cDNA samples mixed with SYBR Green Master Mix 

(Sigma).  Reactions were carried out in triplicate. The fold difference in transcripts was 

calculated by the ΔΔCT method using GAPDH as a control.  E-cadherin forward 5’- 
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TGCCCAGAAAATGAAAAA GG, reverse 3’-GTGTATGTGGCAATGCGTTC Twist 

forward 5’-GGAGTCCGCAGTCTTA CGAG, reverse 3’-TCTGGAGGACCTGGTAGAG 

G; Slug forward 5’- GGGGAGAAGCCTTT TTCTTG, reverse 3’-

TCCTCATGTTTGTGCAGG AG; and GAPDH forward 5’- ACCCAGAA 

GACTGTGGATGG-3’, reverse 5’-CTGGACTGG ACGGCAGATCT-3’ 

3.2l. In vivo xenograft model 

 Nude mice were obtained from the department of Experimental Radiation 

Oncology at The University of Texas MD Anderson Cancer Center (Houston, TX).  

MCF7 cells were injected in a 50:50 ratio of cells:Matrigel at a density of 2.5 x 106 

cells/mL in the mammary fat pad.  Tumors were measured twice per week with caliper 

starting at 3 weeks for 12 weeks.  

3.2m. Statistical analysis 

 Experiments were performed in at least duplicate with at least three technical 

replicates per experiment.  All error bars are representative of standard deviation from 

the mean Statistical analyses were performed using the Student’s t-test (two sample 

equal variance; two-tailed distribution) using Graphpad Software, La Jolla, CA). 

 

3.3 RESULTS 

3.3a. LMW-E isoforms affects ACLY enzymatic activity 

 ACLY enzymatic activity has shown to be elevated in breast carcinoma and lung 

adenocarcinoma compared to normal tissue [152, 153].  Therefore, we examined the 

effect of cyclin E expression on ACLY enzymatic activity using the malate 

dehydrogenase in human breast cancer cells that ectopically express the cyclin E 
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isoforms.  Expression of LMW-E(T1) and LMW-E(T2) significantly increased ACLY 

enzymatic activity by 25-60% , while EL expression resulted in no change (Figure 14A).  

Moreover, increased ACLY enzymatic activity was only detected upon doxycycline 

induction of the LMW-E isoforms using the non-tumorigenic human mammary epithelial 

cell line (hMEC), 76NE6; that contains inducible expression of cyclin E (Figure 14C).  

The phosphorylation of ACLY on Ser454 by Akt is thought to regulate ACLY enzymatic 

activity, however, the increase in ACLY enzymatic activity observed upon expression of 

the LMW-E isoforms did not result in changes of total or phosphorylated ACLY protein 

levels, indicating the increase in activity is independent of Akt (Figure 14B,D) [153].  

Furthermore, examination of the LMW-E isoforms revealed that LMW-E(T1) and LMW-

E(T2) directly upregulate ACLY enzymatic activity 35-50%, while addition of EL or 

CDK2 did not result in a significant increase of ACLY enzymatic activity (Figure 14E).  

3.3b. Cytoplasmic ACLY activity results in lipid droplet accumulation 

 ACLY is primarily found in the cytoplasm, but has also been found to localize to 

the nucleus in murine embryonic fibroblasts, murine pro-B-cell lymphoid cells, 

glioblastomas and in colorectal carcinomas [220].  To examine whether the LMW-E 

isoforms specifically upregulate cytoplasmic ACLY activity, 76NE6 cells with inducible 

expression of cyclin E were fractionated and enzymatic activity was measured by the 

malate dehydrogenase coupled method.  ACLY enzymatic activity was higher in the 

cytoplasm compared to the nucleus of all conditions examined, however, ACLY 

enzymatic activity was increased by 40% in the cytoplasmic fraction of cells containing 

LMW-E(T1) and LMW-E(T2) expression compared to uninduced conditions (Figure  
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Figure 14. LMW-E isoforms affects ACLY enzymatic activity  
 
(A) Stable expression of LMW-E isoforms increases ACLY enzymatic activity.  ACLY 
activity was determined by the malate dehydrogenase coupled method for 3 
independent replicates.  Error bars= SEM (Student’s t-test,**p<0.007).  (B) Western 
blot analysis showing protein expression.  (C) Inducible expression of the LMW-E 
isoforms increases ACLY enzymatic activity.  ACLY activity was determined by the 
malate dehydrogenase coupled method for 3 independent replicates.  Error bars= SEM 
(Student’s t-test,**p<0.004 and *p<0.03).  (D) Western blot analysis showing protein 
expression.  (E) ACLY activity is shown from 2 independent replicates generated from 
in vitro transcribed and translated proteins incubated with recombinant ACLY.  Error 
bars= SEM (Student’s t-test,**p<0.03).  
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15B).  Importantly, EL had no effect on activity, while nuclear LMW-E isoforms only 

increase ACLY activity about 10% (Figure15B).  

 End products of the de novo lipogenesis pathway include phospholipids and 

complex fatty acids resulting in lipid droplet formation [212]. Lipid droplets (LDs) are 

intracellular structures comprised of a phospholipid and sterol outer layer and 

hydrophobic core containing neutral lipids such as triacylglycerides and 

cholesterylesters [223, 224].  Thus, lipid droplet stores provide building blocks for 

membrane production, protein degradation, substrates for lipid-based post-translational 

modifications and viral replication [224].  Therefore, to investigate lipid accumulation, 

76NE6 cells containing inducible expression of the cyclin E isoforms were stained with 

a neutral lipid dye.  Neutral lipid staining under uninduced conditions showed a diffuse 

pattern in all cyclin E isoforms, however, upon doxycycline induction, only LMW-E 

expressing cells revealed a punctate pattern of neutral lipid staining indicating lipid 

droplet formation (Figure 15C,D).  LMW-E expression increased LD formation from  

20% to 60% in LMW-E(T1) and from 20% to 45% in LMW-E(T2) expressing cells 

(Figure 15 D).   

 Moreover, lipid droplet accumulation in LMW-E expressing cells requires ACLY.  

Specifically, lipid droplets were present in only 20-30% of cells when ACLY is knocked 

down, compared to 40-60% in control shRNA and indicates that expression of LMW-

E(T2) does not independently induce lipid droplet formation (Figure 15G,H).  Together, 

these data show that ACLY is highly active in the cytoplasm due to the presence of 

LMW-E and results in lipid droplet formation in human mammary epithelial cells. 
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Figure 15. Cytoplasmic ACLY activity results in lipid droplet accumulation  
 
(A) Western blot showing protein expression from fractionated cells.  (B) ACLY activity 
is shown for 3 independent replicates from fractionated 76NE6 cells.  Statistical 
analysis was conducted using the student’s t-test.  Error bars= SEM (**p<0.008 and 
*p<0.04).  (C) Intracellular lipid accumulation was measured using fluorescent dyes.  
(D) Cells were counted for the formation of lipid droplets before and after addition of 
doxycycline (n=100).  Statistical analysis was performed using the student’s t-test 
(*p<0.05).  (E) Western blot showing protein expression.  (F) ACLY activity is shown for 
3 independent replicates.  Error bars=SEM (**p<0.002).  (G) Intracellular lipid 
accumulation was measured using fluorescent dyes.  (H) Cells were counted for the 
formation of lipid droplets before and after addition of doxycycline (n=100).  Statistical 
analysis was performed using the student’s t-test (*p<0.05).   
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3.3c. ACLY is required for LMW-E mediated transformation 

 The LMW-E isoforms are biologically hyperactive and display increased 

tumorigenic potential compared to EL [113].  Therefore, to examine the requirement of  

ACLY in LMW-E mediated tumorigenesis, an anchorage-independent growth assay 

was performed in MCF7 cells containing knockdown of ACLY.  Knockdown of ACLY 

had no effect on vector cells and a slight reduction was observed in EL cells at 10 days, 

but was rescued by 30 days (Figure 16D).  Knockdown of ACLY in LMW-E expressing 

cells resulted in colony formation being reduced up to 50% (Figure 16D).  Moreover, 

the average colony diameter was reduced by 20-40% in LMW-E expressing cells with 

knockdown of ACLY (Figure 16E).  Importantly, knockdown of ACLY did not affect 

CDK2 associated kinase activity in cyclin E expressing cells, indicating that reduced 

growth is not due to reduced proliferation in LMW-E expressing cells (Figure 16C).  

Together, these data suggest that ACLY contributes to LMW-E mediated 

transformation in the context of anchorage-independent growth. 

3.3d. Inhibition of ACLY reduces migratory and invasive capabilities of HMECs 

 ACLY has been implicated in playing a role during migration in glioblastoma 

[225].  In addition, it has been shown that LMW-E expression in non-tumorigenic 

human mammary epithelial cells (76NE6-HMECs) that have been serially passaged 

through mice; called tumor derived cells (TDCs), have an increased propensity to 

invade using a transwell invasion assay [111].  Therefore, to examine whether ACLY is 

required for LMW-E mediated migration and invasion in TDCs, ACLY was knocked-

down using shRNA (Figure 17A,B).  The wound healing assay showed that migration of 

LMW-E expressing TDCs was significantly inhibited within 24 hours in the ACLY  
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Figure 16. ACLY is required for LMW-E mediated anchorage-independent growth 

(A) Western blot showing protein expression.  (B) ACLY enzymatic activity in MCF7 
cells containing shACLY.  Error bars=SEM, **p<0.005. (C) CDK2 associated kinase 
activity in knockdown cells. (D) Quantitation of colonies formed after 10 days and 30 
days in anchorage-independent growth conditions.  Statistical analysis was performed 
using the student’s t-test.  For 10 days *p<0.04,**p<0.009, ***p,0.0002.  For 30 days 
*p<0.04 and **p<0.0025.  The assay was performed in triplicate with images from 
whole wells from one representative experiment are shown.  (E) Average colony 
diameter.  Statistical analysis was performed using the student’s t-test with **p<0.0085 
and performed in triplicate with images from representative colonies are shown.   
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Figure 17. Inhibition of ACLY reduces migration and invasion in HMECs 
(A) Western blot analysis showing protein expression.  (B) ACLY enzymatic activity in 
76NE6 and TDCs containing shACLY.  Error bars=SEM, *p<0.05, **p<0.009.  (C)  
Proliferation was assessed by MTT assay and read at 590nm.  Doubling time was 
calculated in GraphPad Prism software.  (D) 76NE6 and TDCs containing either 
scrambled shRNA or shRNA toward ACLY were allowed to reach confluency and 
scratched.  Images were taken at 0 and 24 hours post-scratch.  (E) Quantitation of 
migration assay.  Statistical analysis was conducted using the student’s t-test from 3 
independent replicates for each condition.  Error bars=SEM; *p<0.05, **p<0.008. (F) 
Cells were plated on a transwell chamber containing Matrigel and incubated on top of 
fibronectin-containing media for 24 hours and invaded cells were stained with crystal 
violet.  Images of 20X magnification were taken with a light microscope.  (G) 
Quantitation of transwell invasion assay.  Cells on the bottom of the transwell were 
collected at 24 hours and counted. Statistical analysis was conducted using the 
student’s t-test from 3 independent replicates for each condition.  Error bars=SEM, 
p<0.05,**p<0.005.  (H) qRT-PCR for selected EMT related genes.  Reactions were 
carried out in triplicate with the fold difference in transcripts was calculated by the 
ΔΔCT method using GAPDH as a control.   
 
 

 

 

 

 

 

 

 

 

 

 

 



	   107	  

knockdown cells, while vector control and EL had no effect (Figure 17C,D).  

Specifically, migration was reduced in 76NE6-T1 shACLY cells by 50% and up to 30% 

in ACLY knockdown TDCs.  Importantly, reduced migration was not due to changes in 

the proliferative capacity of the ACLY knockdown cells, as no changes were observed 

in doubling time (Figure 17E).  Moreover, using the transwell invasion method, indeed, 

ACLY is required for LMW-E TDC mediated invasion.  The invasive capacity of LMW-E 

TDCs was reduced up to 60%, with minimal or no effect in vector or EL cells containing 

knockdown ACLY (Figure 17F,G).  LMW-E TDCs have also been reported to undergo 

EMT, however, ACLY is not required for this process.  Examination of EMT related 

genes such as E-cadherin, Twist, Slug and Zeb1 displayed no change when ACLY was 

inhibited (Figure 17H).  Together, these data demonstrate that ACLY is required for 

migration and invasion of LMW-E expressing TDCs and that proliferation and the EMT 

process are unaffected.   

3.3e. ACLY is required for LMW-E mediated tumor growth 

 To further examine the requirement of ACLY in LMW-E mediated tumorigenesis, 

we performed an in vivo xenograft tumor assay and injected MCF7 cells containing 

both stable expression of the cyclin E isoforms and stable knockdown of ACLY into the 

mammary fat pad of nude mice.  Knockdown in MCF7 vector cells displayed a modest 

reduction in tumor growth, while knockdown of ACLY in EL expressing cells were 

uninhibited (Figure 18A).  Knockdown of ACLY in LMW-E expressing cells, however, 

displayed substantial inhibition of tumor growth (Figure 18A).  Specifically, on average, 

vector expressing cells increased in volume about 3-fold and EL expressing cells 

increased in volume about 6-fold, however, LMW-E expressing cells containing  
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Figure 18. ACLY is required for LMW-E mediated tumor growth 
(A) Inhibition of tumor growth in MCF7 cells containing stable overexpression of the 
cyclin E isoforms and either scrambled shRNA or shRNA targeted to ACLY.  Cells were 
injected at a concentration of 2.5x106cells/100µL into the mammary fat pad of nude 
mice.  Tumors were measured for 12 weeks starting at 3 weeks.  Statistical analysis 
was conducted using the student’s t-test.  N=5; error bars=SEM; **p<0.008 and 
***p<0.0007.  (B) Representative pictures of #12shACLY tumors and quantitation of 
tumor weights.  .  Statistical analysis was conducted using the student’s t-test.  Error 
bars=SEM; *p<0.05, ***<0.0002 and ****p<0.0001. (C) Propensity of tumor growth.  
LMW-E expressing cells containing knockdown of ACLY have delayed tumor latency. 
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knockdown of ACLY exhibited virtually no change in tumor volume over the 12 week 

period (Figure18A).  These changes were corroborated with examination of tumor 

weight, in that LMW-E expressing cells with knockdown of ACLY were extremely small 

with weights ranging in size from 6mg-65mg (Figure 18B).  Moreover, knockdown of 

ACLY in LMW-E expressing cells delays tumor latency.  Specifically, transcript #12 

delayed tumor formation to 6 weeks in LMW-E(T1) and up to 9 weeks in LMW-E(T2) 

expressing cells.  Similarly, tumor formation was delayed in transcript #13, with only 

40% of tumors forming after 12 weeks (Figure 18C).  Taken together, these data show 

that ACLY is required for LMW-E mediated tumor formation and tumor growth. 

 

3.4 CONCLUSIONS 

 Energy deregulation is now recognized as a hallmark of cancer cells and a 

characteristic of the transformed phenotype [162].  Indeed, metabolic enzymes have 

been shown to be deregulated in cancer cells including deregulation of enzymes in the 

de novo lipogenesis pathway [223].  Specifically, lipogenesis enzymes, ACC and 

FASN, have shown to have elevated expression in breast and prostate cancers [223].  

Moreover, ACLY has shown to be upregulated either at the protein level or the 

enzymatic level in multiple cancer types including cancers of the lung, prostate, 

bladder, breast, liver, stomach and colon [218]. 

This study demonstrates, for the first time, a direct link between the metabolic 

enzyme, ACLY, with cell cycle protein, cyclin E.  Specifically, the LMW-E isoforms 

significantly increased ACLY enzymatic activity in human breast cancer, MCF7 cells, 

and non-tumorigenic human mammary epithelial cells.  Other studies have shown that 
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ACLY enzymatic activity is mediated by phosphorylation by Akt [153].  However, in lung 

adenocarcinoma A549 cells treated with the PI3K inhibitor, LY294002, showed only 

partial inactivation of ACLY enzymatic activity, suggesting additional mechanisms of 

ACLY activation [153].  We propose that ACLY is also enzymatically regulated by the 

LMW-E isoforms.   

Moreover, LMW-E mediated activation of ACLY is specific to cytoplasmic ACLY 

and results in lipid droplet formation.  Lipid droplets are energy reservoirs that provide 

cells with the substrates required to support cell growth, proliferation, energy 

homeostasis, resistance to oxidative stress and function in signaling [223].  Therefore, 

these data indicate that LMW-E activation of ACLY and subsequent formation of lipid 

droplets provides LMW-E expressing cells the necessary building blocks to sustain 

growth.   

Additionally, ACLY has been implicated in playing a role during migration in 

glioblastoma [225].  In 76NE6-TDCs with LMW-E expression, knockdown of ACLY 

significantly reduced migration and invasion with migration reduced up to 30% and 

invasion reduced up to 60%.  Changes in EMT related gene expression where not 

detected, therefore, the reduced migratory and invasive phenotype may be due to 

changes in lipid-based signals.  Indeed, eicosanoids, phosphoinositides and 

sphingolipids are signaling lipids shown to mediate multiple cellular processes such as 

cell proliferation and migration [226].  It would be interesting to determine whether 

changes in migratory behavior of LMW-E TDCs with ACLY expression was due to 

depletion of these key lipid signaling molecules. 
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Lastly, ACLY is required for LMW-E mediated tumor growth in vitro and in vivo.  

Knockdown of ACLY in MCF7 cells expressing the LMW-E isoforms significantly 

reduced anchorage-independent growth as early as 10 days with colony diameter after 

30 days being reduced up to 40%.  Moreover, reduced colony formation was 

irrespective of CDK2-associated kinase activity, as kinase activity was only moderately 

inhibited in vector cells containing knockdown of ACLY.  Moreover, inhibition of ACLY 

in LMW-E expressing cells significantly reduced tumor formation in vitro.  Nude mice 

bearing xenograft tumors expressing the LMW-E isoforms and containing knockdown 

of ACLY exhibited substantial inhibition of tumor formation and tumor growth, while 

knockdown of ACLY in vector cells had minimal reduction in tumor growth.  No 

inhibition of tumor growth was observed in EL expressing cells containing knockdown 

of ACLY.  These data indicate that LMW-E expressing tumors rely on ACLY and 

presumably through the de novo lipogenesis pathway to support tumor growth and 

formation.  Taken together, LMW-E mediated activation of ACLY serves as a 

mechanism of LMW-E mediated tumorigenesis and inhibition of ACLY may serve as a 

viable target in breast cancers and other cancers with LMW-E expression. 
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CHAPTER 4: CONCLUSIONS AND FUTURE DIRECTIONS 

 

4.1 CONCLUSIONS AND MAJOR FINDINGS 

 Deregulation of the LMW-E isoforms leads to tumorigenesis and research 

provided in this dissertation has addressed the primary hypothesis that aberrant 

localization the LMW-E isoforms leads to molecular interactions that ultimately 

contribute to LMW-E breast cancer tumorigenicity.  The evidence delineated in this 

dissertation has provided answers to the key questions outlined in chapter 1.  

1.  Does LMW-E have protein-binding partner(s) in the cytoplasm?  

• Indeed, using a retrovirus-based protein complementation assay, we found 

11 novel interacting proteins of LMW-E.  One of the interacting proteins 

identified, ATP-citrate lyase (ACLY), is capable of directly binding all cyclin E 

isoforms, but is not a substrate of cyclin E/CDK2. 

2.  Are the function(s) of the LMW-E cytoplasmic binding partner(s) 

enhanced and/or suppressed? 

• Expression of the LMW-E isoforms elevates ACLY enzymatic activity in 

breast cancer cells and non-tumorigenic human mammary epithelial cells.  

Moreover, in cyclin E inducible cells, we found that activation of ACLY by 

LMW-E occurs in the cytoplasm and results in lipid droplet formation, a 

cellular energy reservoir important for providing lipid/energy substrates 

required to fuel many cellular processes. 

3.  Are cytoplasmic LMW-E binding partners required for LMW-E mediated 

transformation, invasive capabilities and tumor growth?  
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• Downregulation of ACLY impairs anchorage-independent growth in MCF7 

cells expressing LMW-E, but not in control cells or EL expressing cells.  

Migration and invasion are also diminished when ACLY is downregulated, 

that is irrespective of the EMT program.  In vivo, we found that 

downregulation of ACLY in LMW-E expressing cells is required for tumor 

growth and well as tumor formation. 

 

4.2 FUTURE DIRECTIONS 

Research provided in this dissertation contributes to the body of work 

addressing the mechanisms of LMW-E induced tumorigenesis.  While data presented 

here advanced our knowledge by identifying cytoplasmic LMW-E binding proteins, due 

to the number of binding protein identified, it is clear that LMW-E mediated 

tumorigenesis is multifocal with many pathways and/or proteins contributing to LMW-E 

mediated tumorigenicity.  Therefore, further investigation is required; particularly 

examination of the metabolic requirements of LMW-E expressing breast cancer cells.   

 From the RePCA screen, three metabolic proteins where identified as 

cytoplasmic binding partners of LMW-E (T1): trans, 2,3-enoyl-CoA reductase (TECR), 

Aldolase A (ALDO-A) and ATP-citrate lyase (ACLY).  TECR functions in lipogenesis to 

reduce long chain and very long chain fatty acids [148].  Exome sequencing revealed a 

mutation that converts a leucine residue to a proline residue that is implicated in 

autosomal recessive non-syndromic mental retardation (NSMR), but no known link to 

cancer has been established [227].  ALDO-A, on the other hand, has been linked to 

human neoplasias.  ALDO-A functions in glycolysis to catalyze the conversion of 
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fructose-1,6-bisphosphate to glyceraldehyde-3-phosphate and dihydroxyacetone 

phosphate [228].  For example, in Ras transformed NIH-3T3 cells, ALDO-A inhibition 

by siRNA resulted in a reduction in cell proliferation upwards of 90% [229].  Moreover, 

malignant adrenocortical tumors exhibit high expression of ALDO-A compared to 

benign tumors and high expression of ALDO-A in lung squamous cell carcinoma 

(LSCC) correlates with poor prognosis, reduced differentiation and increased tumor 

grade [228, 230].   

Since multiple metabolic enzymes from different pathways were identified in the 

RePCA screen, it is plausible that LMW-E expressing cells broadly deregulate cellular 

metabolism and exploit flux through glycolysis and the de novo lipogenesis pathway.  

Glucose uptake is a characteristic of a more aggressive breast cancer phenotype and 

in general, MCF7 cells are less aggressive [177].  However, it can be hypothesized that 

breast cancer cells containing LMW-E expression shift to a more glycolytic phenotype 

since LMW-E expression renders breast cancer cells more aggressive and have a poor 

prognosis compared to breast cancer cells only containing expression of full-length 

cyclin E (EL) [98, 109, 111, 231].  Therefore, examination of glucose uptake in LMW-E 

expressing cell would provide additional insight regarding the metabolic alterations in 

LMW-E expressing breast cancer cells.  

We also found that LMW-E expression results in lipid droplet formation.  Lipid 

droplets (LDs) are intracellular energy reservoirs composed of triacylglycerides and 

cholesterylesters surrounded by a phospholipid monolayer [223].  LDs and increased 

fatty acid synthesis have shown to be involved in many areas of cancer progression 

[223].  In general, fatty acids promote membrane synthesis important for cell growth 
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and proliferation, but also exhibit non-proliferative roles.  For example, fatty acids lead 

to membrane saturation important for resistance to oxidative stress and survival under 

energy stress [223].  Additionally, metabolic intermediates such as NADPH provide 

redox balance and fatty acid derived lipids facilitate signaling through membrane 

receptors or lipid-based posttranslational modifications [223].  Since knockdown of 

ACLY did not affect proliferation in LMW-E expressing 76NE6 human mammary 

epithelial cells, LDs with respect to LMW-E may play a non-proliferative role.  We 

showed that knockdown of ACLY resulted in reduced migration and invasion that may 

be due to decreased fatty acids that regulate these functions.  For example, water-

soluble phospholipid, lyosophosphatidic acid (LPA), has shown to promote migration 

through G-protein-coupled receptors and the PI3K pathway [223, 232].  Furthermore, 

prostaglandins derived from cyclooxygenase 2 (COX2), also promote migration and 

support tumor-microenvironment interactions [233].  Preliminary examination of these 

lipid signaling molecules may prove to be involved in LMW-E mediated migration and 

invasion. 

Another function of LDs is resistance to oxidative stress [223].  Activation of de 

novo lipogenesis results in an intracellular increase of saturated and mono-unsaturated 

phospholipids that are more resistant to peroxidation while decreasing poly-unsaturated 

phospholipids [234].  Therefore, inhibition of de novo fatty acid synthesis or inhibition of 

lipogenic enzymes has been shown to sensitize cells to oxidative stress causing cell 

death [234].  Moreover, decreased membrane saturation enables diffusion of 

chemotherapeutic agents such as doxorubicin; thereby providing rationale for the 

combination of lipogenesis inhibitors with chemotherapeutic agents [234]. 
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In addition to investigating the broad scope of metabolic deregulation in LMW-E 

expressing breast cancer cells, the mechanism behind the LMW-E/ACLY interaction 

has yet to be established.  It can be hypothesized that ACLY binds cyclin E in the 

MRAIL motif; which facilitates recognition of RXL containing proteins [81].  ACLY 

contains three RXL regions of interest.  The first RXL motif is located at the N-terminus 

of ACLY, but is unlikely the site of cyclin E binding due steric hindrance by the ATP 

grasp fold between domains 3 and 4 of ACLY [235].  The next RXL motif and the most 

likely site of cyclin E binding, is found in the highly variable region of ACLY (aa426-

486).  It is within this region ACLY is phosphorylated by multiple kinases including Akt 

and GSK3β [158].   This RXL motif lies just 27 amino acids downstream of S454, the 

site of phosphorylation by Akt [158].  The final RXL motif in ACLY is located within 

domain 1 which binds CoA [235].  Due to the power helices fold between domains 2 

and 5, domain 1 is probably not easily accessible to a large protein such as cyclin E 

and can also be ruled out due to steric hindrance. 

Since ACLY binds all isoforms of cyclin E (EL, LMW-E(T1) and LMW-E(T2)), it is 

logical that ACLY would bind in a common region of all cyclin E isoforms and not the N-

terminus; which LMW-E are lacking.  CDK2 binds cyclin E through the cyclin box motif 

and the last 50 amino acids [82].  It is possible that ACLY requires multiple regions on 

cyclin E to bind as well.  Therefore, truncations of cyclin E can be generated to 

examine this possibility.  Lastly, if ACLY binds cyclin E in the cyclin box, it is possible 

that ACLY has affinity to other cyclins as well since the cyclin box is a conserved region 

shared among all cyclins [75].  To examine this possibility, co-immunoprecipitation 
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assays can be performed to investigate interaction between ACLY and other cyclins 

involved in the cell cycle such as cyclin D, cyclin A or cyclin B. 

Finally, we found that genetic downregulation of ACLY resulted in reduced 

anchorage-independent growth in vitro and xenograft tumor growth in vivo that was 

specific to LMW-E expressing breast cancer cells.  Thus, in order to utilize this anti-

tumor affect clinically, it would be imperative to examine whether pharmacologic 

inhibition was equally effective.  There are several competitive and non-competitive 

inhibitors of ACLY [236].  Hydroxycitrate, one of the most studied competitive inhibitors, 

has shown modest success [225, 237, 238].  Hydroxycitrate is derived from Garcinia 

fruits and/or flowers and is commonly added to diet supplements, however, studies with 

mice have shown no differences in regards to weight [158, 236].  The anti-neoplastic 

effect of hydroxycitrate has been shown in bladder and colon carcinoma cell lines with 

growth inhibition ranging from 5-60% [238].   

Butanedioic acid derivatives are another type of competitive inhibitor of ACLY 

[236].  Specifically, SB-204990, the pro-drug of SB-201076, has shown to be effective 

at reducing glucose-dependent lipid synthesis in vitro and tumor growth in vivo [211, 

221].  Hatzivassiliou et al. and collegues report SB-204990 reduces lipid synthesis in a 

dose-dependent manner in a murine pro-B-cell lymphoid cell line as well as a 

significant reduction in xenograft tumor growth from mouse pancreatic ductal cell lines 

containing K-RasG12D mutations [221].  Finally, non-competitive inhibitors of ACLY are 

effective at inhibiting ACLY in vitro, with only a few examining the inhibitory effect in 

vivo, but their toxicity is problematic and there is no evidence relating to their anti-

neoplastic properties [236]. 
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4.3 SIGNIFICANCE 

 Breast cancer continues to be among the leading causes of cancer death in 

women in the United States and the identification of the molecular mechanisms of 

sporadic breast cancer remain largely elusive for this complex disease [1].  Breast 

cancer patients that express high levels of LMW-E have a poor prognosis and this 

dissertation identified ACLY, a cytoplasmic LMW-E binding protein, that mediates 

breast cancer tumorigenicity [98].  Genetic inhibition of ACLY in LMW-E expressing 

breast cancer cells attenuates tumor growth.  Pharmacologic inhibition of ACLY in 

LMW-E positive breast cancer patients has the potential to be a viable treatment 

strategy to combat sporadic breast cancer.  Moreover, inhibition of ACLY may prove to 

be beneficial in targeting other cancer types that display LMW-E expression such as 

ovarian, colorectal cancers and melanomas. 
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