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Ductal carcinoma in situ (DCIS) is thought to be the earliest pre-invasive form of and non-

obligate precursor to invasive ductal carcinoma (IDC). There is an urgent need to identify predictive and 

prognostic biomarkers for breast cancers with a heightened risk of progression from DCIS to IDC. Our 

laboratory has previously discovered a novel TRIM family member, DEAR1 (Ductal Epithelium 

Associated Ring Chromosome 1, annotated as TRIM62) within chromosome 1p35.1, that is mutated and 

homozygously deleted in breast cancer and whose expression is downregulated/lost in DCIS. Previous 

work has shown that DEAR1 is a novel tumor suppressor that acts as a dominant regulator of polarity, 

tissue architecture, and TGFβ-driven epithelial-mesenchymal transition (EMT)
1,2

. Herein, I have shown 

by pan-cancer database analysis that chromosomal loss of DEAR1 is a moderately frequent event in 

multiple epithelial cancers and that targeted deletion of Dear1 in the mouse recapitulates the tumor 

spectrum of human tumor types undergoing DEAR1 copy number losses, including mammary tumors. 

Therefore, results indicate the relevance of the Dear1 mouse model to human disease and suggest that 

genomic alteration of DEAR1 could play a role in the etiology of multiple cancers, including breast 

cancer. Because DEAR1 is downregulated in DCIS and regulates polarity and EMT, I hypothesized 

DEAR1 mutations might be driver events in the progression of DCIS to IDC. Therefore I completed 

targeted ultra-deep sequencing of DEAR1 in FFPE samples of 17 Pure DCIS and 17 DCIS samples 

associated with invasive lesions. Deep sequencing of DCIS indicate DEAR1 is mutated in 71% of DCIS. 

Within these samples, multiple mutations within DEAR1, including exonic variants previously 

discovered in IDC and novel nonsense mutations were discovered and validated. Interestingly, variants 

in samples of DCIS associated with an invasive component indicate few variants shared between the two 



v 
 

components, possibly supporting an independent yet parallel evolution between DCIS and IDC. Further, 

functional screens were performed on a subset of mutations identified and demonstrated that indicated 

missense mutations can affect DEAR1’s regulation of tissue architecture and TGFβ signaling. 

Altogether, this data suggests that genomic alteration of DEAR1 is an important mechanism for its loss of 

function and may be of significance in early breast cancer. 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 



vi 
 

 

Table of Contents

List of Illustrations           x 

List of Tables            xi 

1. CHAPTER 1: INTRODUCTION 

1.1. Role of Genetic Alterations in the Progression of Cancer    Pg.11 

1.1.1.  Cancer as a Genetic Disease        Pg.11 

1.1.2.  Chromosomal Alterations Can Be Integral Players in Tumor Progression  Pg.15 

1.1.3.  The Cancer Genome Era Defines the Landscape of Cancer    Pg.17 

1.1.4.  Genetic Heterogeneity of Tumors Can Drive Tumor Progression and Can Have       Pg.19  

Major Implications in Therapeutic and Survival Outcomes   

1.2. The Proteosome Pathway is integral to the maintenance of cellular homeostasis  Pg.23 

1.3. The Role of the TRIM Family Proteins as Tumor Suppressors in Cancer  Pg.24 

1.3.1.  The TRIM Family of E3 Ligases Play Central Roles in Cell Cycle Regulation          Pg.25      

and Maintenance of Genomic Integrity 

1.3.2.  Regulation of Apoptosis by TRIM Family Members Can Promote Tumor                 Pg.27 

Suppression 

1.3.3.  TRIM Proteins’ Modulate Pro-Tumorigenic Inflammatory Response Driven            Pg.28            

by NFκB 

1.3.4.  TRIM Proteins’ Regulation of Differentiation and Migration are Integral to            Pg.30     

Tumor Suppression 

1.3.5.  Tumor Suppressor and TRIM Family Protein DEAR1 (TRIM62) is a Vital              Pg.32 

Regulator of Polarity and EMT, Whose Loss is Correlated with Important                

Clinical Parameters 



vii 
 

1.4. Investigation of Genomic Alterations in DEAR1 (TRIM62) Using Pan-Cancer              Pg.37                    

Analysis and Ultra-Deep Targeted Sequencing in Ductal Carcinoma In Situ (DCIS) 

2. CHAPTER 2: IDENTIFICATION OF DEAR1 ALTERATIONS ACROSS CANCERS USING 

PAN-CANCER DATABASE ANALYSIS 

2.1. Introduction          Pg.39 

2.2. Methods          Pg.42 

2.3. Results           

2.3.1.  DEAR1 Displays Chromosomal Loss and mRNA Downregulation in Humans    Pg.42                 

in a Similar Tumor Spectrum as Tumors Found in DEAR1 Knockout Mice 

2.3.2.  DEAR1 Exhibits Rare Mutation in Multiple Epithelial Cancers   Pg.48 

2.4. Discussion          Pg.50 

3. CHAPTER 3: DEVELOPMENT AND PERFORMANCE EVALUATION OF A DEAR1      

ULTRA DEEP TARGETED SEQUENCING ASSAY FOR ION TORRENT NEXT   

GENERATION SEQUENCING PLATFORM 

3.1. Introduction           

3.1.1.  Next Generation Sequencing and Precision Medicine in Oncology Care  Pg.56 

3.1.2.  Sensitivity of NGS Platforms is Essential for the Identification of Clinically         Pg.57 

Important Rare Variants 

3.2. Methods 

3.2.1.  Design of Custom DEAR1 Targeted Ampliseq Panel    Pg.58 

3.2.2.  Creation of Ampliseq Spike-In for determination of Accuracy   Pg.58 

3.2.3.  Ampliseq Library Construction and Sequencing      Pg.61 

3.2.4.  Sequence Analysis        Pg.63 

3.2.5.  Digital PCR         Pg.64 

3.2.6.  Read Count Accuracy        Pg.64 

3.2.7.  Sensitivity and Specificity       Pg.65 

3.3. Results 



viii 
 

3.3.1.  Determination of Appropriate NGS Platform for Experimental Procedure  Pg.66 

3.3.2.  Design of Ion Torrent Custom DEAR1 Targeted Ampliseq Panel   Pg.68 

3.3.3.  Control Artificial Spike-in       Pg.68 

3.3.4.  Determination of Read Count Accuracy      Pg.70 

3.3.5.  Sensitivity and Specificity of the Custom DEAR1 Ampliseq Panel   Pg.76 

3.4. Discussion          Pg.79 

4. CHAPTER 4:CHARACTERIZING DEAR1’S GENETIC ROLE IN DUCTAL CARCINOMA IN 

SITU PROGRESSION 

4.1. Introduction           

4.1.1.  Ductal Carcinoma In Situ and its Progression to Invasive Disease   Pg.86 

4.1.2.  DEAR1 is an Important Regulator of Polarity and EMT    Pg.88 

4.2. Methods 

4.2.1.  Human Specimens Collection       Pg.89 

4.2.2.  DNA Extraction and Quantification      Pg.91 

4.2.3.  Ampliseq Library Construction and Sequencing     Pg.93 

4.2.4.  Sequence Analysis        Pg.95 

4.2.5.  Digital PCR                                                                                                         Pg.96 

4.2.6.  Variant Functional Studies       Pg.97 

4.3. Results 

4.3.1.  Ultra-Deep Targeted Sequencing Reveals High Frequency of Alteration of               Pg.98 

DEAR1 in DCIS 

4.3.2.  Sequencing of Pure DCIS Indicated the Presence of DEAR1 Exonic and         Pg.102 

Regulatory Variants 

4.3.3.  Spectrum of Variants Found in DCIS with Invasive Components is More          Pg.113          

Complex than Pure DCIS and Share Relatively Few Variants between the                

Adjacent in Situ and Invasive Lesions 

4.3.4.  DEAR1 Exhibits Functional Mutations in DCIS as Shown by Functional Assays Pg.115 



ix 
 

4.4. Discussion          Pg.117 

5. CHAPTER 5: DISCUSSION 

5.1. Introduction          Pg.128 

5.2. Discussion          Pg.129 

5.3. Future Directions         Pg.135 

6. Appendix 

6.1. Spike-in Plasmid Sequence        Pg.139 

6.2. R Code to Extract Barcoded Reads from Unmapped BAM Files         Pg.140-141 

6.3. Differential Testing of Various Variant Filtering Stringencies    Pg.142 

6.4. R Code to Calculate Coverage By Amplicon           Pg.143-146 

6.5. R Code to Graph Digital PCR Data       Pg.147 

6.6. R Code for Determination of Sensitivity and Specificity     Pg.148 

6.7. Catalogue of Clinical Samples Sequenced      Pg.149 

6.8. R Code for Creation of Venn Diagram Using the VennDiagram R Package  Pg.150 

6.9. R Code for Variant Count Per Sample Boxplots      Pg.151 

6.10.  Full List of All Variants Harbored Within the 48kb Locus Encompassing DEAR1    Pg.152-184            

Found in Ductal Carcinoma in Situ 

6.11.  Detailed List of DEAR1Variants Shared Between the In Situ and Adjacent              Pg.185- 188 

Invasive Components of Ductal Carcinoma in Situ 

7. BIBLIOGRAPHY               Pg.189-238 

8. VITA           Pg.239



x 
 

List of Illustrations 

Figure 1- DEAR1 LOH in Various Cancer Cell Lines as Shown By CONAN-Copy                  Pg.44                 

Number Analysis (Sanger Institute) Software. 

Figure 2- DEAR1 Heterozygous Loss and SNAI2 Alterations Can Predict Overall Survival.     Pg.46 

Figure 3-Illustration of the Spike-in Plasmid.      Pg.59 

Figure 4- Illustration of Custom DEAR1 Ampliseq Design.     Pg.69 

Figure 5- Comparison of the Artificial Spike-In Frequency to Observed Allele     Pg.71                   

Frequency in Next Generation Sequencing. 

Figure 6- Coverage of the DEAR1 Ampliseq Panel Amplicons Within the DEAR1                  Pg.75 

Promoter and Exonic Regions. 

Figure 7- Variant Counts Per Sample in DEAR1 in DCIS.             Pg.100-101 

Figure 8- Distribution of Variants in DEAR1.      Pg.103        

Figure 9- Validation of DEAR1 Variants Found Through Ultra-Deep Targeted Next        Pg.110       

Generation Sequencing by Digital PCR. 

Figure 10- DEAR1 Experiences Exonic Variants in DCIS of Which Few are Shared        Pg.111              

Within Lesion Components. 

Figure 11- Mutation of DEAR1 Affects TGF-β and SMAD3 Signal Transduction.  Pg.118 

Figure 12-DEAR1 Variants Can Effect Acinar Morphology in SKBR3 in 3D Culture.  Pg.119 

Figure 13- Model of DEAR1 Variants Based on DCIS Progression Models   Pg.126 

 



xi 
 

List of Tables 

Table 1- DEAR1 Exhibits Heterozygous Loss in Multiple Human Tumor Types.  Pg.45 

Table 2- DEAR1’s Expression is Downregulated in Multiple Tumor Types.   Pg.47 

Table 3- DEAR1 Undergoes Rare Mutation in Multiple Tumor Types.   Pg.49 

Table 4- Correlation between DEAR1 Mutation and Clinical Outcome.   Pg.51 

Table 5- Accuracy of Sequencing Data as Determined by Comparison to Predicted Read     Pg.73      

Counts 

Table 6- Sensitivity and Specificity of Custom DEAR1 Ampliseq Panel.             Pg.77-78 

Table 7- Patient Characteristics of Sampled Pure DCIS and DCIS with IDC Components.   Pg.99 

Table 8- Full List of DEAR1 Variants in Pure DCIS FFPE Samples Within Exonic and       Pg.104 

Regulatory Regions.   

Table 9- Full List of DEAR1 Variants in DCIS FFPE Samples with Adjacent Invasive       Pg.105-107 

Components Within Exonic and Regulatory Regions.    

Table 10- List of High Variant Frequency (>10%) DEAR1 Variants in Exonic and             Pg.108-109 

Regulatory Regions. 

 



11 
 

 Chapter 1 

Introduction 

Role of Genetic Alterations in the Progression of Cancer 

Cancer as a Genetic Disease 

Cancer is in essence a genetic disease with genomic alterations being vital to the initiation and 

progression of cancer. The development of cancer is dependent on the accumulation of mutations and 

copy number changes across multiple years or decades, inducing changes which allow normal tissue to 

slowly progress to neoplastic disease, and in later stages to advanced metastatic disease
1
. Genetic 

alterations, which occur during tumor development and progression, can happen in either genes 

promoting tumorigenesis (oncogenes) or in genes that act to suppress cancer development and its 

progression (tumor suppressor genes). Oncogenes were first discovered through work with retroviruses. 

Peyton Rous described the first transforming retrovirus, Rous Sarcoma Virus (RSV), which caused the 

formation of sarcomas in chickens
3
. Subsequent molecular studies showed that the gene responsible for 

RSV’s transforming activity was v-Src, which was later identified as an integral oncogene in a variety of 

human solid tumors
4, 5

. This finding inspired the discovery of multiple other transforming genes, termed 

oncogenes by Huebner and Todaro, through gene transfer assays into NIH3T3 cells
6-8

. Oncogenes differ 

from their normal cellular counterparts through the acquisition of alterations such as point mutations, 

gene reduplication/amplification, or by translocation. These changes can alter the activity of an oncogene 

(point mutations/translocations) or increase its expression (gene reduplication/amplification)
9
. 

Oncogenes typically fall into four categories: growth factors and their receptors, signal transducers, 

transcription factors, and others, including anti-apoptotic cell death regulators, oncogenic miRNAs, as 

well as the newly described oncogenic role that members of the glycolytic pathway can play
9
. Genes 

which suppress oncogenic development and activity are called tumor suppressor genes. Tumor 

suppressor genes typically fall into five different categories: DNA repair genes, cell cycle regulators, 

inhibitors of growth factor receptors, pro-apoptotic genes, and intracellular proteins of which many 
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inhibit pro-tumorigenic cell signaling
9
. The concept of tumor suppressors came from the observation that 

non-tumorigenic clones resulted from the fusion of normal cells with tumor cells by somatic cell 

hybridization
10, 11

. The normal cells were hypothesized to be contributing genes which could suppress 

tumorigenesis and bring the cellular state back to homeostasis
11-17

. The first tumor suppressor gene 

identified was Retinoblastoma (Rb)
18, 19

. Rb was found to be mutated not only in the childhood eye 

cancer called by the same name, but also in lung, breast, esophageal, prostate and renal carcinomas, as 

well as sarcomas and leukemias
20

. Rb has been shown to be important in cell cycle regulation and in the 

suppression of tumorigenesis
20

.  Deregulation of the Rb pathway has been described as a quintessential 

mechanism in the acquisition of the insensitivity to anti-growth signals, a known hallmark of 

tumorigenesis
21

. After the identification of Rb, the second tumor suppressor identified was p53. p53 is 

known to play major roles in cellular stress mitigation through its regulation of the cell cycle, 

senescence, and apoptosis
22, 23

. Interestingly, p53 was originally identified as an oncogene, as the gene 

was first cloned from a cancer cell harboring a dominant negative mutation
24

. Later, studies using 

wildtype p53 revealed the tumor suppressive activities of the gene. p53 is mutated in up to 50% of all 

cancers and is also associated with the familial cancer syndrome Li Fraumeni, which has a very diverse 

tumor spectrum, including sarcomas, breast and brain cancers, as well as leukemias
22, 25

. The 

identification of Rb and p53 reflected major strides in understanding cellular mechanisms to prevent the 

onset of tumorigenesis. The formative work previously accomplished within the past century has not 

only informed of the general processes involved in cancer but has laid the groundwork for the current 

and future discoveries related to the complex nature of cancer genetics. 

Genes which undergo genetic alterations in cancer have been historically classified in one of 

three groups: caretakers, gatekeepers, and landscaper genes
26, 27

. Gatekeepers regulate the balance 

between cellular growth and death. This group is known to contain both tumor suppressor genes and 

oncogenes. One example of a gatekeeper gene is Retinoblastoma (Rb) which is vital to the regulation of 

the cell cycle. Caretakers are maintainers of genetic integrity with many members involved in the 

regulation of DNA damage response, such as the mismatch repair genes. Inactivation of caretaker genes 
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indirectly promotes tumorigenesis as loss of these genes can induce genetic instability leading to an 

increased mutation rate, causing further deregulation of pathways involved in cancer
27

. Another category, 

landscaper genes, are involved in processes related to the microenvironment conditions, especially in 

stromal-epithelial interactions
26

. Changes in these genes, like TGFβ, can upset homeostasis within the 

microenvironment and produce conditions conducive for tumor progression. The accumulation of 

mutations within each of these classes of genes are essential for cancer’s initiation and progression
27

.  

Besides these classifications, genetic mutations in cancer can also be classified as being either passenger 

and driver mutations
28

. Driver mutations are within genes which are known to be integral to growth 

processes and whose alterations can become fixed within the tumor population due to their strong nature 

in promoting tumor growth. Adult sporadic tumors have been found to contain, on average, alterations in 

3-6 driver genes
1
.  The overall effect of these driver mutations, however, is estimated to be small, on the 

order of a 0.4% increase in cellular growth over cell death for each gene mutated
1
. Passenger mutations 

were originally defined as mutations which do not confer a selective advantage for the tumor and may 

only be fixed within the tumor populations through their co-presence with other strong driver mutations, 

essentially hitchhiking with these drivers to become fixed during tumor progression. This paradigm, 

however, is starting to change as research has shown that the accumulation of passenger mutations with 

moderate deleterious nature, whom by themselves cannot drive cancer progression, may cooperate with 

other moderately deleterious passenger mutations to produce an overall damaging effect
28

. These 

deleterious “passenger” mutations have a higher probability of becoming fixed within the tumor 

population than their less deleterious counterparts and the accumulation of these variants can help to 

prolong progression leading for the ability of the tumor to acquire many more mutations. Moreover, 

some of these deleterious “passenger” mutations may in their own right act as drivers during certain 

times during tumor progression or act synergistically with the alteration of certain other pathways in 

order to drive tumorigenesis
29

. For examples, landscaper genes, in synergism with other alterations, can 

drive cancer progression, as they help to make the environment more permissible for tumor progression 

despite not necessarily affecting tumor growth themselves. No matter what category particular cancer 
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genes exist in, tumor progression relies on the combination and synergism of multiple alterations to 

provide a selective advantage to the tumor and drive its progression.  

Tumor suppressors genes can fit into any of the previously mentioned classic categories of 

cancer genes and in many respects, inactivation of these genes can act as strong drivers of tumor 

initiation and progression. Tumor suppressor genes can be inactivated in multiple ways, such as through 

mutations and deletions. Often in cancer, these alterations occur through defective DNA repair processes 

(mutations) or by aberrant mitotic recombination and nondisjunction (deletions). A major development 

in the understanding of the genetic mechanisms of tumorigenesis came through the study of 

retinoblastoma. The observation that sporadic forms of retinoblastoma developed later in life than 

familial forms led to the development of the groundbreaking definition of the “two-hit hypothesis” by 

Alfred Knudson
30

. The “two-hit” model described a mechanism for tumor initiation in which two alleles 

are required to be inactivated, whether by mutation or chromosomal loss, for the initiation of 

tumorigenesis. In familial cancer, one of the inactivating hits is inherited in the germline while the 

second hit occurs somatically; whereas for sporadic cancer, both inactivating hits are acquired 

somatically. The classical definition of tumor suppressors, defined by the “two hit” model, has been 

verified for many tumor suppressors genes.  In fact, a hallmark of tumor suppressor genes is the 

identification of deletions or mutations that completely knock-out the function of the gene, such as 

homozygous deletions and nonsense or frameshift mutations
31

. Of these, one of the more common 

mechanisms of tumor suppressor inactivation is through chromosomal deletion which has been shown to 

be important in tumorigenesis
32, 33

. However, as homozygous deletion is rare, often a combination of 

chromosomal deletion and gene mutation is needed in order to inactivate the tumor suppressor. For 

example, when the deletion of a wildtype allele occurs in a concomitant fashion with mutation of the 

other allele, the event is known as loss of heterozygosity (LOH) 
9
. As chromosomal deletions are a 

common event in cancer, LOH can be critical to the inactivation of classical tumor suppressors. Most 

tumor suppressor genes have been shown to follow the classic “two-hit” model, yet another class of 

genes have been found to exist in which the alteration of only one allele is sufficient to inactivate the 
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tumor suppressor
34, 35

. This condition is known as “haploinsufficiency”
34, 35

. Classic examples of 

haploinsufficient genes are Arf, p27
kip1

, and PTEN
36

. It has been hypothesized that strong acting 

haploinsufficient genes may be more frequently inactivated than classical tumor suppressors because 

they only require the alteration of a single allele to become inactivated
37

. These haploinsufficient genes, 

through their higher propensity to become inactivated, have been proposed to contribute to an increased 

rate of tumor development and progression
37

. Nonetheless, no matter the mechanism of inactivation, the 

loss of tumor suppressor genes is critical to the onset of cancer and the progression of the disease.  

Multiple studies have shown the clinical importance of inactivating mutations and 

chromosomal alterations in tumor suppressors to cancer progression. For example, heterozygous or 

homozygous loss of Pten causes greatly reduced survival in a prostate cancer mouse model
37

. Dramatic 

reductions in survival as well as promotion of tumor progression have also been found to be associated 

with LKB1 inactivation via mutation or chromosomal deletions in cervical cancer patients
38

. Moreover, 

it’s been shown that amplification of the chromosomal location containing the Androgen Receptor (AR) 

gene, occurring in about 30% of prostate cancers, can be acquired during androgen deprivation therapy, 

effectively allowing for the continuation of tumor growth in the presence of low androgen conditions
39

. 

Particular alterations can also be associated with the acquisition of other certain genetic deficiencies in 

cancer as is typified by carriers of germline BRCA1 or BRCA2 mutations being associated with multiple 

specific chromosomal alterations in breast cancers
40

. Further, BRCA2 mutations are correlated with 

increased stage/grade of prostate cancer as well as reduced survival rates
41

. Lastly, matrix 

metalloproteinase (MMP) family member, MMP8, which is a landscaper gene important 

microenvironment regulation through its proteinase activities within the extracellular matrix, has been 

shown to be a tumor suppressor in melanoma and loss of function mutations within this gene can 

promote melanoma metastasis in vivo
42

. It is clear that genetic alterations in various types of pathways 

can influence the progression of tumorigenesis and subsequent survival rates. 

Chromosomal Alterations Can Be Integral Players in Tumor Progression 
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As mentioned previously, chromosomal alterations can act as drivers in tumor progression and 

are common across the majority of tumor types
43

. Cancer genomes experience a multitude of different 

types of chromosome alterations including aneuploidy, amplifications, double minutes, deletions, 

inversions, and translocations
33

. Structural changes often result in the gain or loss of specific genomic 

loci
33

. Further, these structural changes may also be balanced, resulting from either equal exchange of 

genetic material, or neutral, in which a deletion or amplification of chromosomal material is followed by 

an equal but opposing structural change 
33

. Across cancers, the average number of chromosomal 

alterations can vary greatly, with some tumors known to contain dozens of different alterations while 

other cancers may exhibit only a few
33

. Moreover, the spectrum of chromosomal alterations can vary 

between inherited and sporadic tumors of the same tissue origin. For example, hereditary non-polyposis 

colorectal cancer is associated with a general diploid genome yet sporadic colorectal cancer often tends 

to exhibit aneuploidy
33

. As the areas encompassing recurrent karyotypic abnormalities can demarcate 

loci encompassing genes important for tumor progression, chromosomal alterations have often been used 

to identify new oncogenes and tumor suppressor genes in both solid and hematological tumors
44

. The 

first chromosome abnormality associated with cancer was the Philadelphia chromosome translocation 

t(9;22) in Chronic Myelogenous Leukemia (CML), in which a portion of chromosome 9 is translocated 

onto chromosome 22
45, 36

. This translocation creates the oncogenic fusion of genes Bcr and Abl. 

Imatinib, a specific inhibitor for the Bcr-Abl gene fusion, was one of the first successful targeted 

therapies created
46

. The description of the Philadelphia chromosome in CML provided the first support 

that chromosomal aberrations can be tumor initiating events. Since this discovery, many other oncogenes 

and tumor suppressors have been identified that occur at or near chromosomal translocations and within 

areas found to be amplified or deleted in cancer. Chromosomal alterations can be focal, involving one to 

two genes, or they can affect large areas of the chromosome, with loss of entire chromosome arms being 

more common than focal alterations in cancer
43

. The limited number of genes involved in focal 

alterations can allow for easier identification of genes important for tumor progression, whereas larger 

chromosomal aberrations often involve tens to hundreds of genes, which make it hard to determine 
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which particular gene or genes are driving tumor progression. However, recent research has suggested 

that alteration of multiple genes involved in large chromosomal alterations can potentially act 

synergistically to cause changes in the expression of multiple driver genes
33

. In support of this, it has 

been shown that the loss of a single copy of a chromosome locus containing multiple tumor suppressor 

genes can confer a selective advantage to the tumor
47, 48

. Large chromosomal alterations can occur either 

by the alteration of a single unified region or through the newly discovered mutational pattern of 

chromosome shattering, termed “chromothripsis”
49

. Chromothripsis is thought to occur via aberrations in 

chromosomal segregation, exposure to ionizing radiation, or micronuclear fragmentation
50, 51

. 

Chromosome shattering can contribute to rapid tumor evolution and has been shown to be associated 

with poor prognosis in acute myeloid leukemia (AML), multiple myeloma, and melanoma
49, 51

.  These 

large alterations, whether through loss or gain of a single chromosomal section or through chromosomal 

shattering, can be integral for tumor progression by their ability to effect gene expression of both 

oncogenes, such as ERBB and MYC, as well as in tumor suppressors, including PTEN and CDKN2A
9
. 

Changes in gene expression and inactivation of important tumor suppressors through these chromosomal 

alterations can increase oncogenic potential by promoting cellular changes consistent with the hallmarks 

of cancer
52

. As indicated, chromosomal alterations can play major roles in the deregulation of important 

genetic drivers in cancer and in the promotion of tumor progression.  

The Cancer Genome Era Defines the Landscape of Cancer 

As genetic aberrations are critical to cancer initiation and progression, more emphasis during 

this current era of genome sequencing has been placed on fully characterizing the genetic nature of 

cancer. Large consortium sequencing projects, such as The Cancer Genome Atlas (TCGA) and the 

International Cancer Genome Consortium (ICGC), have become prominent within the scientific 

community. These projects have been largely successful in their identification of novel cancer related 

genes and subsequent clinical biomarkers, as well as the establishment of new cancer subtypes based on 

molecular and genetic data
53

. Analysis of the large genomic data sets that have come out of these projects 

have also revealed the mutational frequencies and the prevalence of somatic mutations across human 



18 
 

tumor types. Pediatric tumors have been shown to experience the lowest mutation frequency, where as 

environmentally driven tumors, such as lung cancer and melanoma, are associated with the highest 

mutation rate
54

. Pan-cancer analysis has shown that some cancers unexpectedly share common 

alterations across tumor types. For example, p53 mutations, the most altered gene in cancer, have been 

found to be a driver of high-grade serous ovarian, serous endometrial, and basal breast cancer
53, 55

. 

PIK3CA is the second most common gene mutated in cancer with an incidental frequency greater than 

10% in most cancers
55

. HER2 (ERBB2) mutations and amplification, which are known driver events in 

breast cancer and for which a targeted therapy has already been developed for, has also been found to 

occur in glioblastoma multiforme, gastric, serous endometrial, bladder and lung cancer
53

. The 

determination that targetable alterations can occur across tumor types increases the range of patients able 

to benefit from a targeted drug originally developed for another tumor type. Pan cancer sequencing 

analysis has also shown that genes which are significantly mutated in cancer fall into 20 different 

pathways or functional groups, with the largest categories being transcription factors/regulators, histone 

modifiers, genome integrity, receptor tyrosine kinase signaling, and cell cycle, as well as, signaling 

pathways mitogen-activated protein kinases (MAPK), phosphatidylinositol-3-OH kinase (PI(3)K), 

transforming growth factor β (TGFβ), and Wnt/β-catenin
55

. Of these, significantly mutated gene 

categorized within the histone modifiers, PI(3)K signaling and genome integrity categories are found to 

be mutated across cancer types. Further, mutational signatures have also been described that occur across 

cancer types as well. Most cancer types have been found to exhibit 2-6 mutational signatures, with each 

individual tumor displaying more than one signature
54

. For example, mutations characterized by C>T 

transitions at NpCpG trinucleotides have been linked to increased cancer age of onset and was found to 

be almost ubiquitous in all cancer types
54

. Moreover, some mutational signatures are associated with 

transcription coupled repair which tend to be enriched in C>T and C>A mutations in environmentally 

driven cancers such as lung and head & neck cancers that are linked to smoking, as well as UV driven 

melanoma
54

.  Another mutation signature has been shown to be caused by defective DNA repair or 

overly active DNA editing by members of the APOBEC/AID family which are associated with mutation 

signatures characterized by either small deletions and C>T substitutions linked to mismatch repair 
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deficiencies or C>T/C>G substitutions which are connected to the cytosine deaminase activity of 

APOPECs
54

. A surprising find which has emerged from the sequencing efforts by the large consortiums 

is the “long tailed” nature of cancer mutations, in which few repetitively altered driver genes are found to 

be mutated and implicated in cancer
56

. In accordance, the cancer genome landscape has been described 

as a collection of “mountains” and “hills”
57

. With “mountains” defining genes indicated to have a high 

frequency of alterations in cancer and “hills” describing genes which are known to experience only few 

mutations. As shown by whole genome sequencing of many cancers, rare mutation “hills” dominate the 

cancer genome landscape. However, through aggregation of the data across tumor types by pan-cancer 

analysis, these rare alterations have been able to be implicated as drivers as well
53

. Sequencing of large 

cohorts of cancer samples have shown that most solid tumors, though they are estimated to be driven 

only by 2-6 dominant driver mutations, also carry, on average, mutations in 33-66 genes that are 

predicted to be deleterious
1, 55

. Ninety-five percent of these mutations are single base pair substitutions, 

with 91% of these substitutions being missense mutations
1
. Only 8% of the substitutions typically result 

in nonsense mutations, causing an inappropriate and early stop codon within the protein coding region. 

In all, these large studies have revealed the striking patterns seen across cancer, with unexpected cancers 

sharing similar genetic alterations and signatures, as well as the dominance of mutational “hills” across 

the landscape of cancer.  

Genetic Heterogeneity of Tumors Can Drive Tumor Progression and Can Have Major Clinical 

Implications in Therapeutic and Survival Outcomes 

One of the more surprising aspects to come out of the genome sequencing era, concerning 

cancer, is the degree of heterogeneity that exists in cancer. Four types of heterogeneity have been 

reported: intertumoral, intratumoral, intermetastatic, and intrametastatic
1
. Intertumoral heterogeneity 

describes the heterogeneity that exists among patients
1
. Most alterations within an individual’s tumor are 

distinct from alterations occurring within other individuals of the same cancer
53

. Those few mutations 

that are typically shared amongst patients tend to be in the significantly mutated genes that are classified 

as “mountains” within cancer. Intratumoral heterogeneity is defined as the heterogeneity that occurs 
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within an individual’s primary tumor
1
. Intratumor heterogeneity can exist in both a spatial and temporal 

manner and can develop as a result of newly acquired mutations that occur as the tumor progresses, with 

distinct and private mutations occurring in small subpopulations termed subclones. These subclones can 

be intermingled with each other or reside in distinct regions of the tumor
51

. Evidence for intratumor  

heterogeneity has been established in multiple tumor types including renal cell carcinoma, glioblastoma, 

and breast and pancreatic cancer
51, 58

. It has been noted that by the time of diagnosis, the vast majority of 

tumors consist of multiple different clones
59

. The degree of heterogeneity amongst these subclones can 

be rather extensive. A seminal paper by Gerlinger et al. found that only 34% of mutations within renal 

cell carcinoma patients were present throughout the entire tumor
58

. Further, Kandoth and colleagues 

determined that 35% of breast cancers and 44% of endometrial cancers contain the presence of 

subclones, though this is most likely an underestimate as only coding mutations were used in this 

particular study
55

. Moreover, there are times in which the intratumor heterogeneity is so profound that a 

single regional biopsy of tumor may be more similar to another patient than to biopsies of other regions 

within the same tumor
51

. The predominance of a particular individual subclone is dependent on 

principals similar to those found in evolutionary ecology, with the subclone exhibiting the greatest 

fitness establishing dominancy
60

. In respect to tumors, these principals establish that the dominant 

subclone will have acquired substantial phenotypic advantage compared to its surrounding subclones 

within a specific temporal and environmental context, and thus have outgrown the other tumor 

subpopulations
51

. The degree of heterogeneity as well as which individual subclone is predominant at a 

particular time, changes throughout the course of the disease
51

. Multiple theories have been proposed to 

account for the maintenance of intratumor heterogeneity throughout tumor progression. One theory 

suggests that each particular subclone exists due to its particular fitness within a given spatial niche in 

the tumor, whereby physical separation boundaries such as vasculature or  radial distance across the 

tumor can serve to induce its own version of  “allosteric speciation”
51

. Another theory has suggested that 

cancer stem cells can propagate heterogeneity as extensive heterogeneity has been reported in purported 

cancer stem cell populations
29

. Intratumor heterogeneity has been suggested to provide the seeds which 

may drive intermetastatic heterogeneity.  
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Metastatic lesions can exhibit heterogeneity in regards to the primary tumor, to other 

metastatic lesions within the same patient, as well as heterogeneity within the individual metastatic 

lesion
1
. Many times the primary and metastatic lesions show, to some degree, genetic similarities with 

additional mutations developing in the metastasis as well as enrichment of variant allele frequencies of 

shared mutations within the metastasis compared to the primary tumor. For example, ESR1 mutations, 

which can promote endocrine treatment resistance, have been found to be enriched, as assayed by variant 

allele frequencies, in metastatic lesions compared to the primary tumor
61

. Further, evidence has shown 

that, in many cases, the subclone which gave rise to the metastatic lesion often existed as a small 

population within the primary
29

. Intermetastatic heterogeneity describes the heterogeneity that occurs 

between multiple metastatic lesions occurring in an individual patient.  The presence of multiple 

metastatic lesions in advanced cancer patients tends to be quite common
1
. It is highly plausible that each 

metastatic lesion is founded by different subclonal cells with very dissimilar genetic alterations. In this 

case, curing the patient by chemotherapeutic agents would be impossible
1
. Individual metastatic lesions 

can also contain heterogeneity, which is called intrametastatic heterogeneity. Intrametastatic 

heterogeneity is similar to that which occurs in the primary tumor and, as such, develops similarly as 

intratumoral heterogeneity does. This is because the metastatic lesion is also under evolutionary pressure 

in its new environmental contexts. The acquired mutations which transpire after the seeding of the 

metastasis provide for the development of drug resistance
1
. The large degree to which heterogeneity 

exists across cancers, across patients, and within individual tumors have been found to play a large part 

in tumor progression, in adverse outcomes, as well as in treatment resistance in patients
62

. Subclonal 

mutations within genes, such as p53 mutations, have been found to be able to predict adverse clinical 

outcome in chronic lymphocytic leukemia and myelodysplastic syndromes
63-65

. Maley and colleagues 

found that the number of clones harbored within premalignant Barret’s esophagus lesions were able to 

predict relative risk to progression to esophageal adenocarcinoma
66

. Moreover, analysis completed 

retrospectively found progression of Ductal Carcinoma In Situ of the breast to invasive ductal carcinoma 

was associated with the presence of subclones harboring specific alterations, such as amplification of 

MYC, CCND1, and FGFR1
67

. Further, intratumor heterogeneity has been identified as one of the key 
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factors in primary drug resistance and relapse
67

. The degree of complexity as well as the presence of rare 

drug resistant mutations existing within the subclonal fractions of the tumor has been associated with the 

duration of treatment response and cancer progression
59, 60, 62

. Ding and colleagues showed that the 

majority of relapse tumors of acute myeloid leukemia (AML) resulted from the selection of a minor 

subclone harbored within the primary tumor
68

. Current clinical therapies have been found to often be a 

major driver in the clonal selection of subclones which harbor drug resistant mutations
60

. Further, it has 

been suggested that subclones with drug resistant mutations may not always drive clonal outgrowth of 

the particular subclone harboring the mutation but rather may act via paracrine signaling to promote the 

resistance of the bulk tumor to the treatment
59

. Better assessment and understanding of the nature of 

these subclones as well as their relationship to clinical outcomes and treatment will be able to help in the 

future to possibly circumvent drug resistance
59

. 

In accordance with alterations modulating tumor progression, a better understanding of the 

mutational landscape of cancer via cancer genome sequencing has been found to have major clinical 

implications by their ability to identify recurrent genetic alterations which can serve as prognostic or 

predictive biomarkers, or as therapeutic targets themselves
69

. One examples is the development of 

Herceptin, a monoclonal antibody against the HER2 receptor that is relatively quite effective in patients 

experiencing the recurrent chromosomal amplification of the HER2 locus in breast cancer, especially in 

combination with radiation
70

. Early results of targeted sequencing trials have revealed that an estimated 

40-60% of tumors contain at least one genetic alteration which may influence treatment decision 

making
56

. However, most targeted therapies against select genetic alterations have had varied response 

rates or tumors have shown a resurgence after initial successful response. This has led to multiple studies 

focusing on the discovery of mutations which have the ability to alter or predict sensitivity to particular 

targeted therapies
71

. Moreover, selective pressures like therapeutic treatments, as previously discussed, 

can cause tumors to acquire or select for mutations during the course of the treatment which can promote 

resistance to the targeted therapies and recurrence of the disease
70

. To this end, multiple sequencing 

efforts have begun to define the extensive nature of intra-tumor heterogeneity, as previously discussed, 
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which can have major implications for “precision” techniques focusing on targeted therapies, as the 

presence of sub-clones can moderate the degree of therapeutic efficacy or potentially can confer drug 

resistance and tumor relapse
56, 58

. It is of upmost importance for us to understand the acquisition of 

genetic alterations across various cancers, and at all tumor stages, to help with stratification of patients 

for prognosis and therapy, for the creation of new targeted therapies, and to create new strategies to treat 

and prevent tumor resurgence.  

The Proteasome Pathway is Integral to the Maintenance of Cellular Homeostasis 

Cellular homeostasis requires strict regulation of intracellular regulatory molecules, as altered 

protein levels of these molecules are common in pathological conditions. The ubiquitin-mediated 

proteolytic pathway is one mechanism of strict control of cellular short-lived regulatory molecules and is 

important to many cellular functions critical to normal cell physiology, including DNA repair, protein 

quality regulation, cell morphogenesis, signaling pathway modulation, and cell cycle control
72

. Central to 

the mechanism of this proteolytic pathway is the target molecule specificity that is mediated by E3 

ubiquitin ligases. The E3 ligases facilitate substrate specificity by binding to the molecule targeted for 

destruction with consequent complex formation with an ubiquitin bound E2 ligase, leading to the 

subsequent ubiquitination and degradation of the target molecule. There are three types of E3 ubiquitin 

ligases: RING, HECT, and RBR domain ligases 
73

. Of these three classes, the RING family is the most 

abundant type of E3 and is unique due to its ability of directly catalyze the transfer of ubiquitin from the 

E2 to the substrate
73, 74

. The other members require a two-step reaction, whereby the ubiquitin is 

transferred from the E2 to the HECT/RBR domain E3 ligase and then subsequently onto the targeted 

molecule
73

. Ubiquitination typically occurs on the canonical lysine (Lys-48) residue of the target 

molecule, leading to proteosomal degradation. However, non-canonical ubiquitination on the Lys-63 

residue can also occur which can be important in responses to stress, DNA repair, membrane trafficking, 

kinase activation, correct ribosomal functioning, and chromatin dynamics
72,75

.  
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The structures of these E3 ligases can exhibit great variance between the many different types 

of E3s, even within the same E3 class, and these multiple supplementary domains that exist in addition to 

the RING domain can help to recruit the target substrate protein. Moreover, E3 ligases can form 

homodimers or heterodimers, thus increasing the diversity of substrates that can be targeted by changing 

their associated binding partners
72

. One prominent family of RING E3 ligases, the TRIM family, is 

characterized by the addition of one or two B-box domains, a coiled coil domain, and alternative C-

terminal domains which are important for their diverse substrate binding specificity and the ability of 

TRIM proteins to either homodimerize or heterodimerize to other TRIM family proteins. More than 70 

TRIM proteins are now known to exist in humans and mice and are implicated in many diverse 

biological processes, including innate immunity, transcriptional regulation, cell death, and 

development
72

. Alteration of these TRIM family members, at the genetic, mRNA, or protein level, can 

lead to various pathological conditions; for example, developmental disorders, modified viral virulence, 

neurodegenerative diseases, and cancer can develop from modulation of these genes
72

.  

The Role of the TRIM Family Proteins as Tumor Suppressors in Cancer 

The role of the TRIM family in cancer has been shown to be complex, with their involvement 

being highly context dependent. Most of the activities currently described for the TRIM family genes are 

oncogenic. Functions for these TRIM family genes include, but are not limited to, mediating enhanced 

androgen receptor transcriptional activity (TRIM24), regulation of chromatin modification (TRIM24, 

TRIM28, PML-RARα fusion, and TRIM33), enhancing cell proliferation (TRIM25), promotion of p53 

degradation (TRIM24 and TRIM28) and cellular transformation (TRIM24-FGFR1 fusion)
72

. Despite the 

relatively reduced degree to which the tumor suppressive activities of this family have been described 

compared to their oncogenic counterparts, their activities in suppressing tumorigenesis are nonetheless 

just as highly potent. Many of the same cellular functions that TRIM proteins have been shown to use to 

promote tumorigenic potential, like regulation of proliferation, immune response, and migration, have 

also been reported as areas in which other TRIM proteins play large roles in suppressing in order to 

prevent tumorigenesis. Notable TRIM family members associated with tumor suppressive activities 
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include PML (TRIM19) and TRIM24. PML acts as a tumor suppressor through its recruitment of large 

protein complexes to form PML nuclear bodies, which are known to play critical roles in DNA repair, 

transcription, apoptosis, and stem cell self-renewal
76

. Loss of PML expression is found in multiple tumor 

types including central nervous system tumors, colorectal cancer, lung tumors, prostate adenocarcinoma, 

breast cancer, germ cell tumors, and non-Hodgkin’s Lymphoma
77

.  Its fellow TRIM family member, 

TRIM24, has also been described to have tumor suppressive functions. However, in contrast to PML, 

TRIM24’s tumor suppressive role is highly tissue-type dependent. TRIM24 has been well characterized 

as a tumor suppressor in hepatocellular carcinoma (HCC), with the formation of spontaneous liver 

tumors in Trim24 null mice
78

. TRIM family members play large roles in suppressing tumorigenesis, in 

manners both independent and dependent of their E3 ubiquitin ligase activity, through their integral 

activities in the maintenance of genomic integrity, cell cycle control, immune modulation, inhibition of 

migration, and promotion of differentiation and apoptosis
72, 79

. 

The TRIM Family Play Central Roles in Cell Cycle Regulation and Maintenance of Genomic Integrity 

Maintenance of genomic integrity and cell cycle control is integral to the inhibition of 

tumorigenesis. Loss of a cell’s ability to sustain correct control of the cell cycle during replicative 

checkpoints as well as preserving critical pathways important for DNA repair are not only themselves 

hallmarks of cancer, but also can enable the acquisition of other hallmarks of cancer vital to the 

formation and progression of tumors
52

. One TRIM family protein integral to genomic integrity is also 

one of the most notable tumor suppressors of this family. PML (TRIM19) is vital for genomic integrity 

through its promotion of subnuclear structures called PML nuclear bodies (PML-NBs). Within these 

PML-NBs, PML has been found to sequester more than 100 proteins, including transcription cofactors 

and chromatin modifiers like DAXX and SP100
76

. It is thought that these PML-NBs are critical for DNA 

repair as the foci of the damaged DNA marker, γH2AX, have been found to co-localize with the nuclear 

bodies
80

. Moreover, gamma irradiation has also been shown to increase the number of PML-NBs
81

.  It is 

thought that its role in DNA damage through these PML-NBs is very important for its tumor suppressive 

activity as evidenced by the absence of PML-NBs in  solid tumor cells
72

. Further, the dowregulation of 
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PML has also associated with tumor progression
72

. Besides genomic integrity, PML also plays important 

roles in stem cell self-renewal capacity, inhibition of AKT signaling, and in innate viral 

immunity
72,82

.However, as stated previously, the roles of the TRIM family proteins are complex in 

cancer and in accordance with this, PML has been found to undergo translocation ( t(15;17) ) to the 

retinoic acid receptor alpha (RARα) to form a fusion protein that is thought to have a dominant negative 

effect on multiple proteins, including PML, RARα, and RXR. The PML-RARα fusion impedes correct 

localization of PML and inhibits promyelocytic maturation 
83

. In leukemia, PML has been shown to be 

important in the maintenance of leukemic stem cells and as such, Chronic Myeloid Leukemia (CML) 

patients who exhibited lower PML expression showed higher rates of complete response than patients 

with high PML expression
84

. Further, PML has been shown to be overexpressed in basal and triple 

negative breast cancer and this overexpression in breast cancer was shown to be correlated with mutant 

p53 status, reduced disease free survival, and poor prognosis
85,86

.  

Another manner in which TRIM members can suppress tumorigenesis is through their direct 

interaction with cell cycle regulators to inhbit cell proliferation. For example, Trim3 suppresses tumor 

growth via sequestration of p21 from cyclin-D1/cdk-4, thus reducing cell proliferation
87,88

. Heterozygous 

loss of chromosomal locus 11p15.5, encompassing TRIM3, is observed in about 24% of gliomas
87,89

. 

TRIM3 has also been reported to be homozygously deleted in gliomas and Glioblastoma Multiforme 

(GBM) 
87,89

. Mice harboring intracranial Trim3 expressing GBM cells showed significantly longer 

survival than mice injected with GBM cells lacking Trim3
90

. Trim3 can suppress Pdgf-induced GBM 

development in mice
87

. Besides regulating proliferation, overexpression of TRIM3 has also been found 

to reduce anchorage independent colony formation
90

. Further, expression of TRIM3 can induce 

differentiation by its promotion of asymmetrical stem cell division via suppression of the Musashi-

Numb-Notch signaling axis
90

. TRIM3 is significantly downregulated in hepatocellular carcinomas 

(HCC) and GBM
90,91

. Low expression of TRIM3 has been clinically associated with tumor size, 

histological grade, and TNM stage
91

. Moreover, TRIM3 is an independent prognostic factor for overall 

survival
91

.   
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Another TRIM protein able to directly interact with cell cycle regulators is TRIM8. TRIM8 

participates in a feed forward loop with p53, in which p53 induction of TRIM8 can potentiate p53 

expression through TRIM8-mediated stabilization, activating the growth arrest arm of the pathway 

only
92

. Moreover, TRIM8 has been shown to be important in p53-mediated anti-proliferative action after 

Nutlin or Cisplatin treatment.  TRIM8 is downregulated in clear cell Renal Cell Carcinoma (ccRCC) and 

its low expression correlates with larynx squamous cell carcinoma nodal metastasis and is a verified 

growth suppressor in this tissue
93,94

.  

Regulation of Apoptosis by TRIM Family Members Can Promote Tumor Suppression 

Cellular homeostasis requires a balance between proliferation and cell death. Inability to 

properly control these two functions are known hallmarks of cancer
52

. The TRIM family’s role in 

regulating proliferation and genomic integrity has already been described. However, their roles in the 

promotion of programmed cell death are just as important. TRIM proteins’ regulation of major survival 

pathways can play a critical role in their ability to regulate apoptosis. For example, TRIM31 is known to 

negatively regulates c-Src’s promotion of anchorage-independent survival via its binding to p52
shc95

. 

TRIM31 has been found to reduce clonogenicity of the colon cancer cell line, HCT-116
96

. Further, 

TRIM31 can inhibit proliferation and invasion of lung cancer cells and is associated with advanced TNM 

((T)umor  N(Lymph Node) (M)etastasis Classification of Malignant Tumors) stage as well as positive 

lymph node status in Non-Small Cell Lung Cancer
97

.  Another TRIM protein, TRIM13 (RFP2), can act 

as an E3 ubiquitin ligase for pro-survival genes MDM2 and AKT
98

. TRIM13’s proteosomal regulation of 

MDM2 stabilizes p53, activating the growth arrest/cell death arm of the pathway
99

. Its negative 

regulation of MDM2 and AKT can help to augment apoptosis rates following ionizing radiation
98

. 

TRIM13 has been shown to reduce clonogenicity levels through its negative regulation of NFκB’s pro-

survival arm
100

. TRIM proteins, like TRIM13, have been shown to regulate not only vital survival 

pathways often implicated in cancer but also the factors directly associated with the apoptotic pathway. 

For example, TRIM13 is a potent inducer of cell death upon endoplasmic reticulum stress through its 

transport of direct apoptosis activator, casapase-8, to the autophagolysosomes, leading to its activation 
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and subsequent initiation of the pro-cell death caspase cascade
101

. Its regulation of autophagic cell death 

has been shown to reduce clonogenicity of breast cancer cell line MCF7
102

. In accordance with its 

promotion of apoptosis, TRIM13 is downregulated and deleted in B-cell chronic lymphocytic 

leukemia
103

.  

TRIM17 (TERF) is another family member known to regulate direct cell death factors. 

TRIM17 is necessary for the induction of the mitochondrial associated intrinsic cell death pathway in 

cerebellar granule neurons (CGN)
104

. It regulates neural apoptosis through its ubquitination and 

subsequent degradation of major anti-apoptotic pathway member, Myeloid Cell Leukemia-1 (Mcl-1)
105

. 

TRIM17 can also promote apoptosis in CGN cells through its participation in a feed-forward loop with 

NFATc3, via its sumoylation activity
106

. Moreover, TRIM17 can negatively regulate breast cancer cell 

proliferation through its regulation of the mitotic spindle checkpoint, via its promotion of the degradation 

of the kinetochore complex member, ZWINT
107

. Lending to its tumor suppressive activities, focal 

deletion of TRIM17 has also been found in bladder and kidney cancer cell lines
108

.  

Other TRIM proteins shown to be important in the regulation of apoptosis factors include 

TRIM32 and TRIM39. TRIM32 has been shown to sensitize cells to TNF-α induced apoptosis via its E3 

activity against anti-apoptotic factor, X-linked Inhibitor of Apoptosis Protein (XIAP)
109

. Alternatively, 

TRIM proteins can also stabilize apoptosis promoter genes as exemplified by TRIM39’s ability to 

stabilize Modulator of Apoptosis-1 (MOAP-1) via competitive binding with MOAP-1’s inhibitor, 

APC/C
Cdh-1 110

. TRIM39’s facilitation of increased levels of MOAP-1 enhances etoposide-induced, BAX 

mediated apoptosis. The TRIM family’s pro-apoptotic regulation has been shown to be important in 

maintaining homeostatic levels of cellular growth and in doing so, play a vital role in the prevention of 

tumorigenesis.  

TRIM Proteins’ Modulate Pro-Tumorigenic Inflammatory Response Driven by NFκB  

Long standing evidence has already implicated the importance of TRIM proteins in the 

immune system and in viral response
111

. Recent evidence suggests that TRIM family proteins can 
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regulate the immune system via regulation of Nuclear Factor κ- B (NFKB) signaling, in roles that both 

stimulate and suppress this integral pathway. NFKB is an important immune modulator as well as a 

regulator of both proliferation and apoptosis through its effects on apoptotic factors, adhesion molecules, 

and cytokines
79,112

. Negative regulation of this pathway by TRIM family proteins has been noted to occur 

in both the cytoplasm and in the nucleus through the regulation of upstream cytoplasmic pathway 

members and direct interaction with nuclear NFKB. Two examples of TRIM family members that 

regulate the NFKB pathway via proteosomal degradation are TRIM13 and TRIM45. TRIM13’s poly-

ubquitination of NEMO, a member of the IKK complex that regulates NFKB’s release to the nucleus, 

can induce proteosomal degradation of NEMO, suppressing NFKB pathway activation
100

. TRIM45 has 

also been found to suppress TNF induced NFKB mediated proliferation via its RING domain
113

. Inability 

to restrain the activation of the NFKB pathway in tumor associated immune cells within the tumor 

microenvironment can lead to paracrine activation of proliferation and anti-apoptotic pathways in nearby 

tumor cells, thereby promoting tumorigenesis
112

.  

Besides regulation of the NFKB pathway by the TRIM family proteins through ubiquitin 

mediated proteosomal degradation, ubquitination of activating NFKB pathway members can also lead to 

their degradation in manners independent of the proteasome. For example, mono-ubquitination of critical 

pathway activator IKKβ by TRIM21 is know to induce autophagy mediated degradation
114

. Further, 

TRIM30a mediates endocytic lysosomal degradation of the TAB2-TAB3-TAK1 complex which 

suppresses Toll-like Receptor (TLR) induced NFKB activation 
115

. Regulation of the localization of 

NFKB is also a major mechanism of fine-tuning pathway activation as NFKB subunits p65 and p50 

require nuclear localization in order to enact their transcriptional regulation. PML suppresses NFKB 

mediated transcription by sequestering of NFKB in PML nuclear bodies
116

. Moreover, TRIM9 has been 

shown to stabilize IκBα through its competitive binding for the NFKB inhibitor with β-TrCP E3 ligase, 

thereby effectively restricting NFKB to the cytoplasm and inhibiting inflammatory cytokine 

production
117

. TRIM40 is also important in IκBα stabilization, however TRIM40 maintains the pathway 

inhibitor’s protein expression through its post-translational neddylation activity 
118

. Moreover, an inverse 
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correlation between TRIM40 and NFKB expression has been found in gastric tumors and their associated 

inflammation sites
118

. By playing large roles in the suppression of the NFKB pathway, TRIM family 

proteins restrict pro-tumorigenic inflammatory signals from stimulating important pro-survival and 

proliferative pathways. 

TRIM Proteins’ Regulation of Differentiation and Migration are Integral to Tumor Suppression  

Two important factors associated with increased tumor aggressiveness are the loss of 

differentiation and the gain of enhanced migratory capacity. Through multiple mechanisms, many TRIM 

family proteins are important for regulating differentiation and migration, which is vital to preventing 

tumor progression. TRIM24 (Tif1α) has been shown to promote differentiation by its interaction with 

RARα in a ligand dependent manner, leading to constrained RARα associated transcription and 

subsequent tumor suppression in hepatocellular carcinoma
72,119

. Trim24-knockout in mice can induce 

formation and stepwise progression of pre-neoplastic lesions (clear-cell foci of altered hepatocytes or 

FCA) to hepatocellular adenomas and carcinomas within one year at high incidence rates
78, 120

. 

Additionally, double mutation of Trim24 and its known major binding partner, Trim33 (Tif1γ), can 

synergize to potently enhance HCC formation in mice more than either single mutant alone
78

. Besides its 

regulation of differentiation, molecular analysis has shown that ectopic expression of TRIM24 can stall 

cells in the G0/G1 phase of the cell cycle, effectively reducing cell growth, as well as inhibiting 

anchorage-independent colony formation
119

. Moreover, human hepatic cellular carcinoma (HCC) have 

been found to exhibit chromosomal loss of the 7q32 locus harboring TRIM24
72

.  

Besides its synergism with TRIM24, TRIM family protein TRIM33, also known as 

Transcriptional Intermediary Factor 1γ (TIF-1 γ), has shown in its own right to have tumor suppressive 

abilities through the regulation of differentiation factors. TRIM33 is important for normal hematopoiesis 

via its regulation of hematopoietic progenitor differentiation in response to TGFβ and in its interaction 

with SMAD4
121

. Targeted deletion of Trim33 in mice hematopoietic tissue alters the hematopoietic 

differentiation cascade by selectively expanding the granulo-monocytic progenitors, leading to 
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progressive hyperleukocytosis and severe hepatosplenomegaly in knock-out mice after or by 6 months of 

age
122

. In human Chronic Myelo Monocyticleukemia (CMML) and pancreatic ductal adenocarcinoma, 

both TRIM33 mRNA and protein levels were found to be significantly decreased
122,123

. Moreover, 

conditional knockout of Trim33 in the pancreas was found to cooperate with mutant Kras to induce 

pancreatic cystic tumors at 100% incident rate
123

.  

Increased migratory and invasive capacities are vital steps in the Epithelial-Mesenchymal 

Transition (EMT), which can promote metastasis to distant sites. Loss of some of the TRIM family 

members are known to singularly effect migration (TRIM15 and TRIM16) whereas others are known to 

be involved in multiple steps of EMT (DEAR1 and TRIM29). Cellular movements are coordinated 

through actin dynamics and the regulation of the turnover of these related proteins are important to the 

control of migration of cells. In accordance with this, TRIM15 has been shown to be able to regulate 

migration through its interacts with adaptors or scaffold proteins involved in actin dynamics
124

. Notably, 

TRIM15 has been found to prevent the phosphorylation and subsequent activation of CTTN, a regulator 

of actin polymerization that has been shown to be important for cellular migration. TRIM15 is 

downregulated in colorectal and gastric cancer
124,125

. Its expression in colon cancer cell lines decreases 

clonogenicity and tumor burden in mice inoculated with colon cancer cell lines expressing TRIM15, 

compared to tumors formed by the same cell lines lacking TRIM15 expression 
124

. Another TRIM 

protein, TRIM16, can act to suppress tumorigenesis by regulating not only by migration but 

differentiation activities as well. TRIM16 has been shown to both bind and modulate the expression of 

EMT marker vimentin in neuroblastoma, squamous cell carcinoma, and lung cancer, thereby leading to 

reduced migration capabilities 
126,127

. TRIM16 has also been found to effect migration, along with 

proliferation rates, through Interferon Beta 1(IFNβ1) in melanoma
128

. Consequently, its expression is 

downregulated during the transition from normal skin to squamous cell carcinoma
126

. TRIM16 has also 

been found to be differentially expressed in neuroblastoma, in concordance with the degree of 

histological differentiation, i.e. higher expression correlated to more differentiated regions
127

. In 

accordance, TRIM16 has been found to be able to induce differentiation within neuroblastoma and 
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keratinocyte cells
127,129

. Moreover, TRIM16 was found to have reduced expression in melanoma cell 

lines and was correlated with lymph node metastasis and poor prognosis
128

. In melanoma, TRIM16 was 

also able to serve as one mechanism for BRAF inhibitor Vemurafenib’s induced growth arrest and 

subsequently, could act as a predictive marker for this clinical inhibitor
128

.  Besides migration and 

proliferation, TRIM16 also suppress proliferation through its regulation of cell cycle progression and in 

accordance, was shown to be able to reduce tumor growth in vivo
126,127

 
130

. 

Two TRIM proteins, DEAR1 (Ductal Epithelium Associated RING Chromosome 1) and 

TRIM29, have been identified uniquely as regulators of both early and late steps of EMT, with the loss 

of these two genes being associated with aberrant polarity as well as increased migration and invasion 

capacity.  Knockdown of DEAR1 in Human Mammary Epithelial Cells (HMECs) in 3D culture results in 

mislocalization of polarity marker alpha-6-integrin and diffuse cell death leading to luminal filling of the 

breast acini, a hallmark of early breast cancer, Ductal Carcinoma in Situ
131

. Moreover, DEAR1 is a 

dominant regulator of TGFβ driven EMT through its activity as an E3 ubiquitin ligase for downstream 

TGFβ effector SMAD3
2
. Loss of DEAR1 in the presence of TGFβ drives cellular migration and invasion 

in human mammary cells
2
. A more detailed discussion of DEAR1’s tumor suppressive activities are 

further described in the next section. Like DEAR1, TRIM29 (ATDC) also regulates both migration and 

invasion; however, its regulation of EMT is through its participation in a negative feedback loop 

regulating the prominent EMT promoter, TWIST1
132, 133

. Further, knockdown of TRIM29 identified this 

TRIM family member as a dominant regulator of acinar morphogenesis through its potent regulation of 

polarity and proliferation via inhibition of the Estrogen Receptor (ER) and Mitogen Activated Protein 

Kinase (MAPK) pathways
132

. TRIM29 is significantly downregulated in prostate and breast cancer and 

its lower expression levels are associated with larger breast tumors as well as lymph node spread
133,134,135

. 

Additionally, in early stage ER+ breast cancer without adjuvant therapy, TRIM29 expression was able to 

predict longer relapse free survival in women younger than 55
132

.  

Tumor Suppressor and TRIM Family Protein DEAR1 (TRIM62) is a Vital Regulator of Polarity and 

EMT, Whose Loss is Correlated with Important Clinical Parameters  
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As previously discussed, DEAR1 (TRIM62) is a TRIM protein that has been shown to be 

important in regulating both early and late steps of EMT, an integral process in tumor progression and 

metastasis. DEAR1 and TRIM29, despite being structurally different, are currently the only TRIM 

family proteins known to regulate EMT processes of polarity deregulation and migration/invasion, albeit 

through different mechanisms (see previous section for detailed discussion of TRIM29’s regulation of 

EMT). Knockdown of DEAR1 within Human Mammary Epithelial Cells (HMECs) in 3D culture 

resulted in loss of apical-basal polarity as well as diffuse and decreased cell death activity, leading to 

luminal filling of the acini
131

. Luminal filling within the breast ducts have been noted as a hallmark of 

Ductal Carcinoma in Situ (DCIS), one of the earliest forms of breast cancer
136

. Moreover, the importance 

of DEAR1’s regulation of acinar morphogenesis was shown by the reversion of the aberrant acinar 

morphology of metastatic breast cancer cell line 21MT to a smaller, more normal like morphology. 

Wildtype DEAR1 expression was shown to be able to restore apical-basal polarity and luminal cell death 

after genetic complementation of an inherent single nucleotide missense mutation in DEAR1 at codon 

187 
131

. DEAR1 has also been reported as an E3 ubiquitin ligase for downstream TGFβ effector, 

SMAD3
2
.  Knockdown of DEAR1 has been found not only to allow higher total and phosphorylated 

SMAD3 expression levels but higher nuclear expression of activated SMAD3 as well. Further, TGFβ-

SMAD3 dependent signaling was shown to be potentiated with DEAR1 loss of expression, including 

increased expression of downstream target genes and EMT effectors SNAIL1 and SNAIL2
2
. In HMECs 

and the normal mammary cell line MCF10A, the loss of DEAR1 in the presence of TGFβ prevented 

acini formation in 3D culture, upregulation of EMT markers, promotion of anoikis resistance, and drove 

migration and invasion of the cell lines
2
. DEAR1, however, is not the only TRIM family member known 

to be an E3 ligase for the TGFβ pathway. TRIM33 is also known to bind to TGFβ pathway members 

SMAD2/3 and SMAD4
137

. TRIM33’s binding to SMAD2/3 and SMAD4, unlike DEAR1’s binding to 

SMAD3, does not lead to degradation. TRIM33 acts in a dual manner in its interaction with SMAD 

proteins through its inhibitory mono-ubquitination of SMAD4 and its co-transduction of TGFβ signaling 

by complex formation with SMAD2/3
137

. These interactions have been found to be important in the 

differentiation axis of the TGFβ pathway, with no effect on TGFβ’s regulation of proliferation
137

. Like 
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TRIM33, DEAR1 does not effect the proliferation arm of the TGFβ pathway but rather is known only to 

modulate TGFβ induced migration and invasion
131

. Further, Dear1 loss can also synergize with mutant 

Kras to drive lung cancer cell migration and invasion through enhanced promotion of EMT, increasing 

metastatic potential in mice
138

. Previously reported results, as discussed here, have indicated that DEAR1 

is a dominant regulator of acinar morphogenesis and potent inhibitor of TGFβ-induced EMT, which are 

cellular functions that can be important in suppression of tumor progression. 

Loss of heterozygosity (LOH) has been found to be common amongst the TRIM family 

members who exhibit tumor suppressive activities and is a common mechanism of tumor suppressor 

inactivation 
2, 89, 103, 131, 139-141

. DEAR1 is localized to chromosome 1p35.1, a region which often undergoes 

chromosomal deletion in multiple epithelial cancers, including breast, lung, and colon cancer
142, 143

. As 

such, DEAR1 has been shown to be frequently heterozygously deleted as well as rarely homozygously 

deleted in many cancer types, including brain, breast, colorectal, lung, and endometrial carcinoma
2, 131

. 

Loss of Dear1 in mice resulted in late onset formation of multiple epithelial cancers comprising, but not 

limited, to lymphomas, sarcomas, lung adenocarcinomas, gastrointestinal carcinomas and breast 

adenocarcinoma
2
. Further, a few primary tumors were found to be associated with metastatic lesions. 

Dear1
-/-

 and Dear1
-/+

 mice formed tumors at similar rates, with evidence for Dear1 acting as a 

haploinsufficient tumor suppressor in lymphomas and a classical tumor suppressor, i.e. requiring two hits 

for inactivation, in epithelial tissues. The spectrum of human tumor types undergoing LOH at the DEAR1 

locus was able to be recapitulated by heterozygous and homozygous loss of Dear1 in a mouse model
2
.  

Moreover, DEAR1 undergoes rare mutation in multiple cancers in a spectrum similar to those tumor 

types which experienced LOH, including lung squamous, endometrial, colorectal, and breast cancer
2,131

. 

Currently, the highest frequency of mutation within DEAR1 is 13% (n=55) in invasive breast cancer, as 

identified by our lab
131

. Invasive breast cancer sequencing efforts by TCGA only report 1 mutation 

(frameshift) in 962 cases; however, sequencing coverage achieved by TCGA is typically low with a 

median of 20x coverage which has low sensitivity to find rare subclonal variants
144-146

. For example, 

TCGA failed to identify ESR1 mutations in invasive breast cancer, yet multiple investigators later 
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reported finding common mutation of the gene
147

.Pancreatic, stomach and colorectal cancer experience 

the next highest frequencies of mutation in DEAR1 at 3.6% (n=55), 1.8-3.3% (n=30,220,287), and 1.4-

1.9% (n=72,212,220) respectively
2, 145, 146

. Most of the mutations previously identified in DEAR1 are 

missense mutations; however, a small number of frameshift and nonsense mutations have been reported 

as well
2, 145, 146

. The DEAR1 missense mutation R187W that was identified within both an invasive breast 

cancer patient and in the metastatic breast cancer cell line 21MT, to our knowledge, represents the first 

identified loss of function missense mutation in TRIM family members in cancer, as confirmed by 

molecular analysis
131

. Many TRIM family genes have been found to be mutated in cancer, including the 

instances of nonsense and frameshift mutations, as shown by mutation catalogues COSMIC and cBIO; 

however, no TRIM family member, except for DEAR1, has been described by literature to have loss of 

function missense mutations in cancer 
145, 146, 148

. However, previously reported TRIM family loss of 

function missense mutations are associated with multiple developmental disorders including Limb girdle 

muscular dystrophy type 2I (TRIM32) and X-linked Opitz G/BBB syndrome (MID1)
149, 150

.   

Besides alteration at the genetic level, DEAR1 also is downregulated at the protein level. 

DEAR1 exhibits reduced expression in multiple epithelial cancers, including pancreatic cancer, acute 

myeloid leukemia (AML), lung cancer and breast carcinoma
2, 138, 151,131

. In pancreatic cancer, 62% of 

tumors showed downregulation of DEAR1, as assayed by immunohistochemistry
2
. In AML patients, 

DEAR1 showed reduced expression levels when compared to CD34+ cells from healthy controls
151

. 

DEAR1 was also found to show complete loss of expression in 64-87% of Non-Small Cell Lung Cancer 

(NSCLC), with a stepwise decrease in expression associated with progression of the disease from normal 

bronchial epithelium to NSCLC
138

. Similarly, in the transition from normal breast ductal epithelium to 

one of the earliest forms of breast cancer, DCIS, DEAR1was shown to be downregulated in 56% of early 

onset breast cancer lesions (ages 25-49 years) in premenopausal women
131

. Further, the frequent loss of 

expression of DEAR1 has been shown to be clinically important. DEAR1 has been reported as an 

independent marker of adverse prognosis in AML with low expression of DEAR1 associated with 

shorter complete remission and reduced overall survival
151

. Further, in early stage NSCLC, DEAR1 loss 
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of expression correlated with significantly shorter time to relapse
138

. DEAR1 also correlated with triple 

negative breast cancers with a strong family history and poor prognosis
131

. Moreover, DEAR1 was 

associated with reduced local recurrence free survival as well in early onset breast cancer
131

.  

Multiple classes of tumor suppressors have been proposed throughout the years which regulate 

different classes of cellular pathways critical to maintaining homeostasis, as previously discussed. One 

novel class of tumor suppressors that was proposed by Petersen and colleagues were described for their 

unique abilities to sense the microenvironment and thus regulate the organization of tissues in an 

appropriate manner
152

. Alterations leading to loss of function of these tumor suppressors would cause 

deregulation of spatial recognition through impeding proper cellular signaling and loss of spatially 

restricted localization of adhesion and polarity pathway members. Loss of polarity and weakening of 

cellular adhesion are early steps in EMT, and as such, tumor suppressors who sense the 

microenvironment and in accordance, regulate epithelial plasticity through correct spatial control would 

be important in suppressing tumor progression through EMT
153

. Examples of this type of tumor 

suppressor include p53, which has been reported to have gain of function mutations that can disrupt 

polarity, acinar morphogenesis and EMT, as well as polarity regulators LKB1 and SCRIBBLE which are 

noted to be downregulated in breast cancer and whose loss of function induces luminal filling, which is 

reminiscent of the luminal filling that occurs in DCIS 
154-159

. Similarly, DEAR1 has also been shown to 

be important in the regulation of acinar morphogenesis, polarity and EMT induced by extracellular 

signaling molecule, TGFβ. As such, it is plausible for DEAR1, as well as its fellow TRIM family 

member TRIM29, to be identified as the first two TRIM family proteins to fit within this novel class of 

tumor suppressors which sense factors from the microenvironment and regulate pathways involved in the 

control of cellular adhesions and polarity. Loss of DEAR1, through genetic aberrations or loss of 

expression in cancer, leading to the loss of a cell’s ability to sense the microenvironment and thus as a 

result, failure of the cell to regulate spatial control, can play a vital role in the progression of cancer and 

subsequently in determine patients’ prognosis.  
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Investigation of Genomic Alterations in DEAR1 Using Pan-Cancer Analysis and Ultra-Deep Targeted 

Sequencing in Ductal Carcinoma In Situ (DCIS) 

Given previous data supporting the importance of the loss of expression and function of 

DEAR1 in promoting tumorigenesis, the degree and potential functionality of genetic alterations within 

this gene were characterized.  I hypothesized that DEAR1 is mutated and chromosomally lost in multiple 

epithelial cancer types, consistent with a tumor spectrum associated with chromosome 1p loss, and that 

these alterations are genetic drivers in tumorigenesis. Further, it is important to specifically determine if 

DEAR1 is mutated in the earliest form of pre-invasive breast cancer, DCIS, as DEAR1 has been 

previously reported to be mutated in invasive breast cancer (IDC)
131

. Therefore, I hypothesized that 

mutations in the EMT regulator, DEAR1, not only exists but are functional and can act as genetic drivers 

in the progression from DCIS to IDC. To determine the validity of our hypothesis, the following aims 

were carried out:  

1. Characterization of DEAR1 as a 1p35 tumor suppressor 

1. Determine if DEAR1 undergoes copy number losses and mutation in cancers associated 

with chromosome 1p35 LOH.  

2. Determine if DEAR1 genetic alteration could be useful as a prognostic biomarker in 

breast cancer.  

2. Create a custom targeted Ampliseq panel for DEAR1 and characterize its analytical performance 

1. Design a DEAR1 ampliseq Panel and characterize its sequencing capacity 

2. Test DEAR1 ampliseq panel accuracy by novel spike-in assay 

3. Determine the sensitivity and specificity of DEAR1 targeted Ampliseq panel 

3. Determine if DEAR1 is mutated in DCIS and in DCIS associated with an Invasive Component 
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1. Complete ultra-deep targeted sequencing of DEAR1 on 17 Pure DCIS samples by next 

generation sequencing 

2. Microdissect 19 DCIS lesions and adjacent invasive component and complete ultra-deep 

targeted sequencing of DEAR1 on these components independently by next generation 

sequencing 

3. Analyze DEAR1 mutation spectrum in pure DCIS and compare to DCIS associated with 

Invasive components (DCIS/INV). 

4. Validate and functionally characterize variants found in DEAR1 in DCIS  

The results of the research herein, following these specific aims, describe a vast tumor 

spectrum associated with mutation or loss of the critical polarity and EMT regulator DEAR1 and how 

these alterations can act as functional drivers in tumorigenesis. The relevancy of the Dear1 knock-out 

mouse model has been validated for its ability to recapitulate the tumor types developed in humans that 

are associated with chromosome 1p loss. Heterozygous loss of DEAR1 has also shown the ability to 

synergize with amplification of EMT promoter SNAI2 to predict overall survival in IDC. Further, a 

highly sensitive, custom Ampliseq panel has been developed and used to complete ultra-deep targeted 

sequencing of DEAR1 in DCIS. Results indicated the high degree of frequency that DEAR1 is altered in 

these early lesions of breast cancer and evidence also supported a parallel yet independent model for 

tumor evolution for DCIS and IDC lesions. Future work is still needed to complete our understanding of 

the full role of DEAR1 in cancer, but our results hint at the importance of these alterations in driving 

tumorigenesis.  
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Chapter 2  

Identification of DEAR1 Alterations across Cancers Using Pan-Cancer Database Analysis 

This chapter is based upon Nanyue Chen, Seetharaman Balasenthil, Jacquelyn Reuther, Aileen Frayna, 

Ying Wang, Dawn S. Chandler, Lynne V. Abruzzo, Asif Rashid, Jaime Rodriguez, Guillermina Lozano, 

Yu Cao, Erica Lokken, Jinyun Chen, Marsha L. Frazier, Aysegul A. Sahin, Ignacio I. Wistuba, Subrata 

Sen, Steven T. Lott and Ann McNeill Killary. “DEAR1 Is a Chromosome 1p35 Tumor Suppressor and 

Master Regulator of TGF-β–Driven Epithelial–Mesenchymal Transition” Cancer Discovery 2013; 3: 

1172-1189. No permission is required for the reprinting of the article as Cancer Discovery states: 

“Authors of articles published in AACR journals are permitted to use their article or parts of their article 

in the following ways without requesting permission from the AACR. All such uses must include 

appropriate attribution to the original AACR publication. Authors may do the following as applicable: 

Submit a copy of the article to a doctoral candidate's university in support of a doctoral thesis or 

dissertation”. 

Introduction 

Tumor initiation and progression are processes dominated by the culmination of aberrant 

changes at the gene, transcript, and protein level. By understanding the aberrant landscape of the cancer 

at each of these levels, the possibilities for better assessment of cancer risk, improved earlier detection, 

and identification of new therapeutic targets are possible.  For solid tumors, elucidating a clear targetable 

pattern of genomic alterations has been difficult and only few success stories exist. Two examples of the 

relatively few targeted therapies in solid tumors that exist are Herceptin and Vemurafenib. A targeted 

therapy that has revolutionized treatment of breast cancer is Herceptin, a monoclonal antibody against 

HER-2 (ERBB2), a gene that is commonly amplified in breast cancer and marks an aggressive subtype 

of this disease. Herceptin has a 34% response rate as a single agent therapy in breast cancer patients 

experiencing HER2 amplification
160

. Moreover, Vemurafenib is a therapy that has been developed in 

recent years for metastatic melanoma as a selective mutant B-Raf inhibitor targeting cells exhibiting 
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mutations within codon 600 of the gene, with highest binding efficiency against mutant B-Raf V600E
161

. 

Vemurafenib has shown to be highly effective with greater than 50% of melanoma patients with mutant 

B-Raf responding to treatment with this targeted therapy
161

. Further, both Herceptin and Vemurafenib 

have shown the ability to synergize with other therapeutic treatments for even greater response rates
162, 

163
. The relative failure to find more targets which can be utilized for the treatment of solid tumor types is 

in part due to the complexity that exists at the genomic level in solid tumors that is unlike that which is 

found in sarcomas, leukemia, and lymphomas
33

.  Whereas sarcomas and liquid tumors have highly 

recurrent chromosomal arrangements and few mutations, solid tumors often have relatively low levels of 

recurrent chromosomal rearrangements and moderate to high frequencies of mutational alterations, with 

a mutational pattern that has been defined as “long tailed”, meaning that relatively few genes are altered 

at high frequencies in these cancer and rather the population is dominated by many genes mutated at low 

frequencies in these lesions
33,164,56

. Due to the complexity of genomic alterations observed in solid 

tumors, the relatively few recurrent chromosomal alterations and mutations which occur in these cancers 

signal important areas which may feature genes vital to tumor initiation and progression. For example, a 

fusion of the genes TMPRSS2 (21q22.3) and ERG (21q22.2) represent one of the most common 

chromosome rearrangements in human cancer and is associated with invasion in prostate cancer
165

. 

Moreover, another example includes the loss of the 1p chromosome arm, which is noted as a common 

feature of many epithelial cancers. Deletion resulting in loss of heterozygosity (LOH) has been known to 

occur at this chromosomal arm at a relatively high frequency in multiple epithelial tumor types (29-

72%), including stomach, breast, lung, kidney, and colorectal cancer, especially within regions 1p31 and 

1p34-35 which experience the highest frequency of chromosomal loss
143,142

. Moreover, LOH at the 1p 

locus has been associated with ER+ breast tumors and was linked to, in a multivariate analysis in breast 

cancer, with a 2.7 fold increase in relative risk of death 
142,166

. Often large scale deletions affecting the 

entire chromosome arm occur in cancer development and progression, suggesting a mechanism for the 

loss of multiple tumor suppressors at one time that reside within the genomic interval. For example, the 

chromosome 1p arm harbors p73 and CHD5 within 1p36, DEAR1 (TRIM62) at 1p35, and MUTYH at 

1p34. All of these genes exhibit important tumor suppressive activities. p73 and CDH5 are important 
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regulators of cell cycle control, apoptosis, and senescence
167-169

.  DEAR1 is a dominant regulator of 

acinar morphogenesis and polarity, as well as an inhibitor of TGFβ induced Epithelial to Mesenchymal 

Transition (EMT) and cellular invasion
2, 131, 138

. Lastly, MUTYH is a base excision repair gene important 

in DNA damage repair whose biallelic mutation is common in the inherited colorectal cancer syndrome 

MutYH Associated Polyposis
170

. The combined loss of important regulators of cell cycle control, 

apoptosis, polarity, invasion, and DNA repair can potentially greatly promote tumorigenesis via its 

allowance of uncontrolled cellular growth, increased mutation rate, and promotion of migration and 

invasion.  A better understanding is needed to fully comprehend the functional effect concerning the 

combinatorial loss of multiple important tumor suppressors in driving tumor progression.  

An indication of the importance of DEAR1 as a “bona fide” tumor suppressor as well as the 

critical nature of copy number alteration in DEAR1’s function as a tumor suppressor was discovered by 

targeted disruption of the Dear1 locus in the mouse
2, 131

.  TRIM family proteins have been noted to play 

significant roles in cancer and previous to this, our lab had shown that DEAR1 was mutated and 

homozygously deleted in breast cancer, indicating its potential importance in oncogenesis. Targeted 

disruption of the Dear1 locus in the mouse indicated that Dear1
-/-

 and Dear1
-/+

 mice developed late onset 

tumors with a frequency of 12.9% (8/62) and 17.7% (17/96), respectively
2
. The tumors that arose in the 

mice were diverse in spectrum and encompassed multiple epithelial tumor types; for example, they 

included hepatocellular, mammary, lung, and pancreatic tumors, as well as sarcomas and lymphomas
2
. 

Interestingly, Dear1
+/- 

mice developed tumors with similar frequencies as the Dear1
-/-

 mice. Moreover, 

many of the Dear1
+/- 

mice tumors exhibited further deletion of the wildtype allele, except tumors of the 

lymphatic system, which suggested that Dear1 is a classic tumor suppressor with the potential ability to 

act as a tissue dependent haploinsufficient tumor suppressor.  Therefore, loss of a single allele of DEAR1 

can potentially have significant effects upon gene dosage and function. Understanding the frequency of 

DEAR1’s loss in solid tumors and other types of alterations, including mutations and expression changes, 

is important for further elucidating the significance of the loss of the p arm of chromosome 1 in cancer. 
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Methods  

Databases including cBio (MSKCC), CONAN (Wellcome-Sanger), Catalogue of Somatic 

Mutations in Cancer (COSMIC) (Wellcome-Sanger), and Oncomine were investigated for information 

concerning genomic alterations and transcript expression in human tissue samples, The Cancer Genome 

Atlas (TCGA) cohorts, human cell lines, and other reported papers
145, 146, 148, 171

. Mutation functionality 

assessment was completed via PolyPhen2 software (V2.2.2) and SIFT
172, 173

. Survival curves were 

generated by cBio, using Kaplan-Meier analysis through querying complete tumor sets in the BRCA 

cohort for DEAR1 heterozygous loss and SNAI2 amplification
145, 146

. 

Results 

DEAR1 Displays Chromosomal Loss and mRNA Downregulation in Human Tumors Associated with 

Chromosome 1p Loss, in a Tumor Spectrum Similar to the Tumors Derived from the DEAR1 Knockout 

Mouse Model 

LOH of an important tumor suppressive chromosomal locus can greatly affect gene 

expression, especially if those genes involved are haploinsufficient, in which the loss of a single allele is 

enough to cause inactivation of the tumor suppressor and can thereby greatly potentiate tumor initiation 

and progression. Since previous data had hinted at the frequent recurrent loss of chromosome 1p and 

further, our lab had shown that loss of a single allele of Dear1 in the mouse model can potentiate tumor 

formation, it was determined if the tumor spectrum that was found in the Dear1 knockout mouse model 

recapitulated the human tumor spectrum associated with DEAR1 locus chromosomal loss. Large 

genomic characterization efforts from TCGA and the Broad Institute have led to an updated view of 

genomic alterations in many cancers. To determine if the Dear1 mouse model tumor spectrum was 

reflective of the spectrum found in human tumors associated with chromosome 1p loss, database analysis 

was conducted to ascertain the human tumor spectrum associated with DEAR1 chromosomal loss and 

gene mutation. DEAR1 was found to exhibit LOH in a similar tumor spectrum as the Dear1 knockout 

mice by analysis of human cell lines and tissues from the CONAN and cBIO databases, sharing an 
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association with intestinal, breast, lung, hepatocellular, pancreas, hematopoietic, and sarcoma tumors 

(Fig. 1). In the CONAN human cell line database, DEAR1 chromosomal loss was found in tissues 

including, soft tissue sarcomas (37%), pancreatic (31%), thyroid (50%), lung (32%), hepatocellular 

(33%), renal (33%), breast (18%), and gastrointestinal tumors (28%) (Fig. 1)
2, 148

. Further, the same 

tumor spectrum featuring LOH of the DEAR1 locus was found by analyzing data from human tumor 

samples in TCGA, accessed by cBio (Table 1) 
2, 145, 146

. Colorectal and hepatocellular cancer, as well as 

invasive breast cancer were found to have the highest frequency of LOH (Table 1; unpublished data) 
2
.  

Further, a putative homozygous deletion of DEAR1 was found in two samples of hepatocellular 

carcinoma and single samples of glioblastoma multiforme, low grade glioma, ovarian serous 

cystoadenocarcinoma, and breast carcinoma from the TCGA project, as accessed by cBio (unpublished 

data) 
2, 145, 146

. Previously, our lab had shown that the existence of a homozygous deletion in an invasive 

breast cancer sample, as well
131

.  Moreover, it was found that the heterozygous chromosomal loss of the 

DEAR1 locus, which occurs in about 32% of invasive breast cancer (IDC) patients, along with the 

genetic alteration of the Epithelial to Mesenchymal Transition (EMT) promoter SNAI2 which occurs in 

about 6% of IDC cases, significantly correlated with worse overall survival (p=0.016) (Fig. 2)
145, 146

. This 

data shows that chromosomal alterations of driver genes, even of a single allele, can potentially be 

important drivers in the progression of cancer.  

The concordance of downstream gene expression changes effected by chromosomal alterations 

is important to validate as this indicates the effectiveness of these alterations. Our group has 

demonstrated that, in multiple tissue types, DEAR1 chromosomal loss does correlate with mRNA 

expression via transcriptome sequencing in colorectal, lung adenocarcinoma, head and neck squamous 

cell carcinoma, hepatocellular, ovarian, serous cystadenocarinoma, prostate, stomach, and lung 

squamous cancer (unpublished data) 
2
 (Table 2). Besides these tumor types, DEAR1 also showed a 

general mRNA downregulation in glioblastoma and lymphoma, as well as protein downregulation in the 

transition of normal breast to DCIS, and DCIS to invasive breast cancer as our lab has previously shown. 

All of these tumor types known to exhibit mRNA alteration in accordance with chromosomal alteration  
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Figure 1. DEAR1 LOH in Various Cancer Cell Lines as Shown By CONAN-Copy 

Number Analysis (Sanger Institute) software. (A) LOH within chromosome 1p31 to 

1p36 involving DEAR1 in CONAN cell lines with empty boxes corresponding to loss 

of alleles and colored boxes indicative of retention of alleles. The x axis indicates the 

genomic interval within the p arm that is deleted and the y axis indicates the tissue 

type. Each line represents an individual cell line. (B) Table summarizing data 

visualized in (A) and describing the percentage of LOH of DEAR1 in multiple cancer 

types in the CONAN database. 
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Table 1- DEAR1 Exhibits Heterozygous Loss in Multiple Human Tumor Types. DEAR1 

was found to undergo heterozygous chromosomal loss in many epithelial tissues and 

moderate to low frequencies. Often, loss of DEAR1 locus was encompassed in the loss of 

the entire p arm of chromosome 1, an area containing multiple tumor suppressors.  
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Figure 2- DEAR1 Heterozygous Loss and SNAI2 Alterations Can Predict Overall 

Survival. This figure shows the effect of DEAR1 heterozygous loss and SNAI1/2 gene 

upregulation on survival of patients with invasive breast cancer. Survival curves were 

generated by cBio, using Kaplan–Meier analysis through querying complete tumor sets 

in the BRCA cohort for DEAR1 heterozgyous loss, SNAI1, SNAI2, TWIST1, and 

TWIST2. Alteration of SNAI1/2 and TWIST1/2 includes amplification, upregulation of 

mRNA/protein expression (if applicable) greater than two SDs from the mean. Figure is 

taken from Chen et al. 2013 (Figure 7c)
2
. 
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Table 2- DEAR1’s Expression is Downregulated in Multiple Tumor Types. Using 

data from the TCGA project (colorectal and brain), Sun et al. 2006 (brain n=81), 

and Piccaluga et al. 2007 (lymphoma), along with analysis from the Oncomine 

database (oncomine.org), DEAR1 is found to have significant downregulation in 

multiple tissue types. Significance was assessed using a Bonferroni corrected p-

value of 2.45 E-6 for colorectal cancer, 3.96 E-6 (2.55 E-6 for Sun 2006) for brain 

cancer, and 2.55 E-6 for lymphoma due to multiple comparisons. It is important to 

note that the data from colorectal cancer and lymphoma also reached a significance 

level associated with genome wide significance (5 E-8)●. Other data was shown to 

be approach significance in cecum adenocarcinoma and brain cancer Δ. Figure is 

taken from Chen et al. 2013
2
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are also known to undergo chromosomal loss of the 1p35 region
2, 131

. Thus, DEAR1 alterations at the 

genetic and transcript level in human tumors occur in multiple tumor types, with a tumor spectrum 

similar to what is observed in the Dear1 mouse model, suggestive that these alterations can potentially 

drive tumor progression in cancer. 

DEAR1 Exhibits Rare Mutation in Multiple Epithelial Cancers 

In addition to chromosomal alterations, genetic mutations play a large role in altering gene 

function. By analysis of data from the TGCA project and other sequencing projects, as accessed by 

cBIO, and COSMIC as well as by sequencing data produced by our own lab, DEAR1 is mutated at rare 

frequencies in multiple tumor types  (Table 3) 
2, 131

. DEAR1 has been found to be mutated in Lung 

Squamous (2.4%), Uterine (1.8%), Stomach (1.8%), Colorectal (1.8%), Melanoma (1%), Renal Cell 

Carcinoma (0.5%), Breast (13% MD Anderson cohort/ 0.1% TCGA cohort), and Bladder cancer (0.8%). 

Moreover, the DEAR1 mutation tumor spectrum of human tissue samples also reflected the tumor 

spectrum of the Dear1 knockout mouse, including breast, lung, pancreatic, and colorectal cancer, similar 

to those tissues that developed LOH at the DEAR1 locus
2
. To date, most of the mutations reported in 

DEAR1 are within the coding region and predicted by tools like PolyPhen2, MutationTaster, and SIFT to 

be potentially deleterious
2, 131, 174

. Further, sequencing by the Broad Institute and the TCGA project has 

discovered the presence of multiple variants that are highly abundant within the tumor samples, 

including a V40M exonic variant found in a Head and Neck patient residing in 50% of the tumor as well 

as a E138K exonic variant found in a melanoma patient in which their normal allele was lost leading to 

100% allele frequency of the variant
145, 146, 175

. These sequencing efforts have also, and more importantly, 

found the presence of ultra-rare frameshift and nonsense mutations which presumably knockout 

DEAR1’s expression.  Moreover, since chromosome 1p35 is known to undergo frequent chromosomal 

loss as previously discussed, a mutation in the retained copy or even a copy neutral event (deletion 

followed by a duplication event) could induce a homozygous mutant condition, thereby potentially 

increasing the functional effect of the mutant. On this note, analysis of the TCGA data has also shown 

the rare co-occurrence in patients with mutation and copy number alteration of DEAR1. For example, 
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Table 3- DEAR1 Undergoes Rare Mutation in Multiple Tumor Types. Mutation 

frequencies of DEAR1 as detailed by Lott et al. 2009, Chen et al. 2013, and 

Memorial Sloan Kettering Cancer Center’s (MSKCC) cBio Portal.  
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in the TCGA cohort, the variant D421G in colorectal cancer is associated with a chromosomal gain
145, 146

.  

Moreover, a Y439H variant in a renal clear cell carcinoma patient and a P270* frameshift variant in an 

invasive breast cancer patient, also discovered through TCGA sequencing, was found to exhibit 

concomitant heterozygous loss of the other allele
145, 146

.  The co-occurrence of chromosomal gains or 

losses can alter mutation allele frequencies, thus promoting the deleterious effects of the driver 

mutations. The vast number of mutations in DEAR1 that are reported are missense mutations. Missense 

alterations can potentially play large roles in effecting the function of tumor suppressors if they are 

localized in areas known to be important for binding to other cell signaling regulators, thereby possibly 

effecting downstream signaling and resulting in large phenotypical changes.  For example, one of 

DEAR1’s exonic mutations, R187W, that was found in both an 87 year old breast cancer patient and the 

21MT breast cancer cell line series, has been shown to be functional, as the genetic complementation 

with wildtype DEAR1 into the mutant 21MT cell line restored acinar morphogenesis in 3D culture
131

. 

There is also potential for mutations to have the ability to stratify for recurrence, progression to invasive 

disease, or even therapeutic sensitivity. For instance, though only a small number of samples (n=10) 

were available with relevant clinical information, 70% of these mutations in DEAR1 were associated 

with lymph node involvement or metastasis (Table 4)
2
.   

Discussion 

Our lab has previously shown that DEAR1 is a pivotal tumor suppressor in breast cancer 

through its ability to regulate acinar morphogenesis and to suppress EMT, an important step for the 

dissemination of tumor cells to distant sites
2, 131

. DEAR1 loss of expression or loss of normal function 

leads to aberrant acinar polarity, luminal filling, and enhanced activation of downstream SMAD3 targets 

in the presence of the TGFβ ligand
2, 131

.  Heterozygous or homozygous loss of the DEAR1 allele has been 

shown in the mouse model to result in late onset tumor formation, at similar rates respectively, in 

multiple epithelial tumors including intestinal adenocarcinoma and lymphoma as well as other epithelial 

cancers like mammary, lung, and pancreas
2
. Results of database analysis indicate that the spectrum of 

tumors formed in the mice upon Dear1 allelic loss is similar to the tumor spectrum associated with 
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Table 4- Correlation between DEAR1 Mutation and Clinical Outcome. Clinical information 

included records detailed to us by Dr. Kelly Hunt and Dr. Aysegul Sahin as well as clinical 

information provided by MSKCC’s cBio Portal. *Cases with Accessible Clinical Information. 
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chromosome 1p LOH in humans, including lung, colorectal, lymphoma, and breast cancer, indicating the 

relevancy of the mouse model as well as the importance of Dear1 to tumor development. Moreover, 

human mutation in DEAR1, despite occurring at a relatively low incident rate, was also found to be 

associated with the spectrum of tumors formed in the Dear1 knockout mouse model including colorectal, 

stomach, and renal cell carcinoma
145, 146

. However, current methods to sequence DEAR1 within large 

consortium sequencing projects and even previously by our lab involved low sequencing coverage 

techniques, meaning that these technologies may not be have been able to detect DEAR1 mutations if the 

variant allele frequencies occurred at levels below the sequencing platforms’ threshold of detection. It is 

possible that the incident rate of DEAR1 mutations in human cancer reported herein may be 

underestimated. Therefore, ultra-deep sequencing may be required to detect DEAR1 mutations that can 

occur at lower variant allele frequencies within small subpopulations of the tumors. In all, the 

recapitulation of the human tumor spectrum by the Dear1 mouse model indicates the significance of the 

loss of the Dear1 locus as well as how LOH and homozygous deletion of DEAR1 in human tumors can 

act as a potential driver in cancer.   

Recently it has been shown that germline variants and somatic genomic alterations explain 

about only 39% of all expression changes 
176

. Moreover, copy number alterations do not always correlate 

with mRNA expression, with only about 20% of cis-acting copy number alterations having been shown 

to effect mRNA expression
176

. This discrepancy between copy number loss and expression, therefore, 

shows not only the ability of cells to compensate for gene expression after the loss of a chromosomal 

locus, but also the importance of particular genes whose chromosomal loss does correlate with mRNA 

downregulation, as these genes may have important functions within the tumor. In credence with this 

theory, our lab has shown that DEAR1 chromosomal loss is associated with reductions in gene 

expression in multiple tumor types, many of which are reflective of the tumor types that developed 

within the Dear1 knockout mouse model. This is important as DEAR1 was shown to exhibit a relatively 

high frequency of LOH in multiple epithelial human tumor tissues, with largest frequencies in colorectal, 

breast, and hepatocellular carcinoma. In fact, heterozygous loss of DEAR1 was found to be the most 
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common form of genetic alteration of the gene in cancer. Moreover, through database analysis of TCGA 

via cBIO, DEAR1 has also been found to be homozygously deleted in multiple tumor types including 

hepatocellular and breast cancer. Knudson’s description of classical tumor suppressor inactivation 

requires two separate events to affect gene function
30

. It is possible that one of these events may be 

inherited through the germline, making one more susceptible to cancer development
30

. However, in most 

cases, both inactivating events occur after birth and are typically a combination of mutation and/or 

deletions. As such, DEAR1 has been described as both a classical tumor suppressor as well as a 

haploinsufficient tumor suppressor in a tissue dependent manner. In support of DEAR1 acting as a classic 

tumor suppressor in cancer, our lab had previously described secondary loss of the wildtype allele in 

Dear1 heterozygous mice
2
. Herein, additional evidence for DEAR1 acting as a classical tumor suppressor 

in human cancer  is described with the report of tumors exhibiting combinatorial heterozygous loss of the 

DEAR1 locus as well as the presence of DEAR1 mutation. These alterations are important in cancer due 

to their ability to fully inactivate the gene and allow for singular expression of the mutant allele. 

Therefore, synergism of copy number changes of the DEAR1 locus and mutations may lead to alterations 

in gene dosage and function that can potentiate tumor progression. 

It is well known that malignancy results from the accumulation of a diverse array of genetic 

alterations including mutations followed by the subsequent expansion of particular cellular clones that 

possess the greatest advantage at that particular time in tumor progression. The temporal nature of clonal 

expansion can hint at the importance of a particular set of mutations at a particular time in the timeline 

for tumor progression
177

. For example, some mutations may be highly prevalent in the primary tumor, 

indicating that these mutations may be within founding clones and therefore important in tumor 

initiation. Other mutations may be more prevalent in the invasive leading edge of the primary or in the 

metastasis, indicating their importance in invasion or re-colonization of the metastatic lesion
178

. Evidence 

has shown that 56% (n= 10/18; range= 22-100%) of DEAR1 variants with known allele frequencies 

within TCGA cohorts including glioblastoma multiforme, melanoma, stomach adenocarcinoma, and 

uterine corpus endometrioid carcinoma have variant allele frequencies greater than 20% (unpublished 
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data)
145, 146

. The majority of these variants were predicted to be deleterious as shown by algorithms from 

MutationAssessor and PolyPhen2
172, 179, 180

. These variants, if functional as many of them are predicted to 

be, represent a large proportion of altered cells that may have been evolutionarily selected for and could 

be important in the progression of the tumor.  

Genetic alterations including copy number changes and mutations have a long history of being 

used to stratify for prognosis and therapy due to their relative ease of determination in clinical samples. 

One of the first to be developed was Imatinib which targets the BCR-ABL gene fusion caused by the 

t(9;22)(q34;q11) translocation
181

. Imatinib has been shown to be highly effective in Chronic Myeloid 

Leukemia (CML) with an overall 5 year survival rate at 89%
181

.  Other BCR-ABL inhibitors which have 

been developed are Dasatinib and Nilotinib
71

. Crizotinib is also a targeted therapy which was developed 

to treat Anaplastic Lymphoma Kinase (ALK) translocations which are common in inflammatory 

myofibroblastic and anaplastic large cell lymphoma as well as less frequently in breast, colon, and 

lung
182

. Moreover, Trastuzumab and Laptinib were developed for patients exhibiting Erbb2 

overexpression or amplificaiton
71, 183

. Vemurafinib has been created as a B-RAF mutant specific therapy 

for melanoma patients
71

. Other therapies known to be effective against activating mutations are Erlotinib 

and Gefitinib which target mutated Epidermal Growth Factor Receptor (EGFR) in Non-Small Cell Lung 

Cancer (NSCLC)
71

. Further, chromosomal loss of 9p21 and gains of 20q11 and 1q21 have been shown to 

stratify survival outcomes in patients with renal cell carcinoma
184

. These are just a few examples of the 

genetic alterations that have been used to stratify patients for prognosis and treatment. Since DEAR1 was 

associated with a relatively frequency of chromosomal loss in invasive breast cancer and is a known 

suppressor of TGFβ induced EMT, it was ascertained if DEAR1 heterozygous loss could cooperate with 

alteration of a downstream effector of the TGFβ pathway. DEAR1 heterozygous loss and SNAI2 

amplification was shown to be able to act synergistically to predict overall worse survival in a TCGA 

invasive breast cancer cohort of 889 patients
2
. Recent additions of patient samples into the TCGA 

invasive breast cancer cohort (n=959), has shown that not only is the combined heterozygous loss of 

DEAR1 and amplification of SNAI2 still significant (p=0.016), but heterozygous loss of DEAR1 alone is 
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now able to predict overall survival (p=0.042) (unpublished data)
145, 146

. This data suggests that DEAR1 

and SNAI2 can potentially act as a clinical marker panel to stratify patients for overall survival. The 

development of a FISH assay to determine if clinical samples harbor DEAR1 heterozygous loss and 

SNAI2 amplification could assist in the determination of prognosis for invasive breast cancer patients. 

Clinical validation of these tests as well as clinical trials are needed to verify the ability of these markers 

to stratify patients. Altogether, the evidence presented has shown that DEAR1 is a driver in cancer that is 

inactivated via mutation and copy number alterations. Thus, it is possible in the future that we can 

capitalize on these alterations in order to better stratify patients that harbor these alterations for clinical 

prognosis.  
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Chapter 3 

Development and Performance Evaluation of a DEAR1 Ultra Deep Targeted Sequencing Assay for 

Ion Torrent Next Generation Sequencing Platform 

Introduction 

Next Generation Sequencing and Precision Medicine in Oncology Care 

The advent of next generation sequencing (NGS) technology has revolutionized genomic 

science and molecular diagnostics, brought on by the highly sensitive, quantifiable, and high throughput 

nature of NGS. This technology allows for simultaneous detection of single nucleotide variants, copy 

number alterations, large structural changes like translocations and inversions, as well as the presence of 

small and large insertions/deletions (INDELS). Current sequencing applications that have been used on 

this platform include DNAseq via whole genome, exome, and targeted resequencing, as well as RNA-seq 

and miRNA-seq. It is believed that NGS will be a major enabler for the dawn of global “precision 

medicine”, which involves the selection of therapeutic strategies based on the individual molecular and 

genetic information of each patient 
185

. Currently it is recognized that targeted panel resequencing is the 

most clinic ready form of NGS technologies 
186

. Targeted NGS is more applicable for the clinic currently 

than other versions of DNAseq for multiple reasons including lower cost, faster output, better quality and 

coverage achievable via the locus enrichment strategy, and reduction in ethical issues connected with 

unsolicited findings of unanticipated germline inherited disease
187

.  Moreover, targeted resequencing 

panels have already been shown to be able to detect clinically relevant variants in multiple diseases and 

assist in the treatment of patients (see Rehm et al. 2013 for a comprehensive review
188

). For example, 

Sehn and colleagues showed that targeted NGS panels can help in the clarification of diagnosis of 

oncology cases with ambiguous histology and may assist in redefining therapeutic approaches
189

. 

Moreover, custom targeted panels have shown that 20% of castrate resistant prostate cancer harbor 

BRCA2 gene deletions and ATM point mutations which can be clinically important, as germline BRCA 

alterations have been shown to indicate sensitivity to PARP inhibitors in prostate, breast and ovarian 
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cancer
190

. A 384 gene panel using Illumina based NGS found about half of the 44 gastric cancer samples 

sequenced had variants in TRAPP, which can affect the efficacy of HDAC and CHK1 inhibitors
191

. 

These studies have shown the usefulness of targeted panel based NGS and how this application can have 

a real impact on making “precision medicine” a reality.  

Sensitivity of NGS Platforms is Essential for the Identification of Clinically Important Rare Variants 

One major challenge to “precision medicine” that has been revealed by NGS is the great extent 

of intra-tumor heterogeneity. Gerlinger et al. showed in a seminal paper the existence of extensive 

regional heterogeneity in tumors, using renal cell carcinoma as a model, with only 31-37% of mutations 

being shared throughout the primary and the metastatic lesions
58

. Similar evidence has been found for 

other tumors such as high grade serous ovarian cancer
192

. This regional heterogeneity can have large 

implications for clinical treatments. A study reported that relapsed Non-Small Cell Lung Cancer 

(NSCLC) lesions resistant to Epidermal Growth Factor Receptor (EGFR) tyrosine kinase inhibitors 

(TKI) due to MET amplifications were evolutionarily selected from a low frequency subclone (<1%) that 

existed prior to therapy
193

. Moreover, Su and colleagues have shown that an EFGR variant T790M 

present at low frequency (<5% of tumor variant frequency) in a pre-treatment primary biopsy of NSCLC 

was found to be enriched in a post-treatment biopsy after treatment with an EGFR TKI
194

. Rare variants, 

despite their low frequency within a tumor, can have deleterious functional effects on a gene product, 

and thus, given a particular time in the tumor’s developmental history, can play a potential role in tumor 

progression
195

.  

Next generation sequencing is unique in its ability to truly assess the extent of intra-tumor 

heterogeneity due to its high degree of sensitivity compared to other technologies and its quantifiable 

nature. For example, ABI’s SOLiD NGS platform was found to be able to achieve about 93% sensitivity 

and 100% specificity
196

. Sikkema-Raddatz and colleagues found that targeted NGS by Sure Select 

capture and sequencing on Illumina’s MiSeq achieved 100% sensitivity (95% confidence interval: 97.76-

100%) and a non-concordance rate of 0.00315% when compared to Sanger sequencing
187

. Further, they 
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suggested high quality variants with adequate coverage (>30) may not need secondary validation by 

Sanger sequencing, as NGS technology seems to be superior to the previous gold standard. The 

sensitivity of NGS targeted resequencing technology has also been compared to real-time PCR’s ability 

to detect variants. A high concordance between 96.3-100% was found to exist between the two 

technologies, with real-time PCR detecting an additional four known variants and NGS detecting eight 

novel variants not detected by real-time PCR in FFPE NSCLC tumor tissue
197

. Moreover, Peter 

Campbell’s group has shown the ability to detect down to a 0.02% minor allele frequency using a nested 

PCR approach followed by 454 sequencing
198

. These assays have not only shown the high degree of 

sensitivity of NGS assays but have also shown their clinical utility. To that degree, the FDA has recently 

granted marketing authorization for Illumin’a MiSeqDx and Ion Torrent’s Ion PGM Dx for clinical use 

based on its accuracy across the genome, along with its precision and reproducibility
199, 200

. Moreover, in 

response, the College of American Pathologists has recently released its standards for the use of next 

generation sequencing in clinical tests. Further, there are over 80 clinical trials currently ongoing across 

the nation using NGS for oncology studies to assess and confirm the utility of this technology in cancer 

care (www.clinical trials.gov). 

Methods 

Design of Custom DEAR1 Targeted Ampliseq Panel 

Ion Ampliseq Designer version 1.2.8 (https://www.ampliseq.com; Life Technologies) was 

used to design an Ampliseq panel to target the genomic region of chr1: 33,610,351-33,681,308 (hg19). 

The custom DEAR1 Ampliseq panel contained primers for a highly multiplexed amplification reaction to 

amplify 150bp fragments tiled across the genomic region of interest.  

Creation of Ampliseq Spike-In for determination of Accuracy 

To understand our ability to accurately detect allele frequencies of a known population, a spike-

in assay was completed using variants with known frequencies to determine the capability of our custom 

DEAR1 ampliseq panel to detect accurate variant frequencies. Dr. Steven Lott designed the novel spike-
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in assay used in this study. Four amplicons were selected for this validation test that resided in the linear 

phase of coverage during test sequencing of Human Mammary Epithelial Cell line-76NE6 (HMEC-

76NE6). Coverage of amplicons from the sequencing of HMEC-76NE6 was plotted from lowest to 

highest and amplicons residing within the median range of coverage were chosen for use in the plasmid 

spike-in. An oligo was created featuring the full sequence of these four amplicons with barcode adapters 

at each terminal. Within each amplicon, marked changes to the reference sequence were made to make 

the amplicons contain various different types of variants that are known to frequently occur in 

sequencing data (Fig. 3; Appendix I). These variants included single and multiple nucleotide variants, as 

well as INDELS. The pMA-RQ vector plasmid containing the full sequence of the four amplicons with 

the manufactured variants and barcode adapters were generated using Life Technology’s GeneArt gene 

synthesis.  

 

Figure 3-Illustration of the Spike-in Plasmid. The plasmid contains the sequence of four amplicons with 

distinct artificial nucleotide changes including nucleotide substitutions and INDELS. The nucleotide 

changes occurred in both high complexity and low complexity (homopolymer) regions.  

The artificial plasmid was then spiked into control CEPH (sample with Northern and Western 

European ancestry residing in Utah) DNA NA12878 (Coriell-NA12878) based on genome equivalents. 

Plasmid to cell line DNA ratios were determined as shown below:  

A single human diploid cell has about 6.5 pg of DNA; therefore in a 200ng solution, there 

would be about 30,769 genomes (cells).  

The quantity of total genomes took into account both plasmid and cell line DNA. Therefore, the 

quantity of total genomes for a 10% spike-in of the plasmid genomes also accounts for 90% of cell line 

genomes. Thus in this situation, 90% of the control NA12878 DNA accounts for 34,188 genomes and 
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10% of the artificial plasmid spike-in equates to 3,419 genomes for a total of 37,607 total genomes. 

However, the plasmid exists in a haploid condition and therefore needs to be doubled to reflect diploid 

conditions, as is represented in the control cell line DNA. Therefore, according to this, 6,838 genomes of 

the artificial plasmid is needed to equal 10% of the overall total genomes.  

Mass of the plasmid to add was calculated as follows: 

1894989.6𝑔

𝑚𝑜𝑙
∗ 

1 𝑚𝑜𝑙

6.02223
∗ 6838 𝑝𝑙𝑎𝑠𝑚𝑖𝑑𝑠 = 2.15−14𝑔 𝑜𝑟

21.5𝑓𝑔

100𝑢𝑙
 

Because the overall mass of the spike-in plasmid was miniscule, the mass of the plasmid in the 

solution was not figured into the dilution of the control DNA.  

Dilutions of artificial plasmid DNA into NA12878 control DNA were made for 10%, 5%, and 

1%. Additional dilutions were also made for 50%, 20%, and 0.5%. All dilutions were checked by 

PicoGreen Kit (Life Technology P7589) and TaqMan RNase P Detection Reagents Kit (Life Technology 

4316831) for validation of concentrations and then sequenced on either the Ion Torrent PGM or Proton 

sequencer. The PicoGreen assay was completed exactly as protocol stated 

(https://tools.lifetechnologies.com/content/ sfs/manuals/mp07581.pdf). TaqMan RNase P kit was 

preformed according to the protocol (“Measuring Template Efficiency” 

https://tools.lifetechnologies.com/content/sfs/brochures/ cms042785.pdf). Briefly, the standard Human 

genome DNA provided in the kit was serially diluted from 10ng/μl to 0.5ng/μl and each serial dilution 

was used to create a standard curve. For the 96 well PCR plate format, to each well was added: 3ul of 

FFPE DNA or diluted standards, 12.5ul 2 × Universal Master Mix (No AmpErase UNG) (Life 

Technologies 4364343), 1.25ul 20x RNAse P Probe/Primer Mix (from kit 4316831 Life Technologies), 

and 8.25ul RNase-free water. qPCR cycling was performed as follows: 50° Celsius (C) 2 min, 95°C 10 

min, and 40 cycles of 95°C 15 sec and 60°C 1 min. Using a standard curve amplification, quantities were 

determined for samples. Correlation of logarithmic best fit line of CT values of standards (Y axis) vs 

Concentration (X axis) was used to determine accuracy of quantities, with R
2
 typically being over 
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0.9900. Amplicon sequences were manually pulled out of bam files using the Extract Barcodes R script 

(Appendix II). 

Ampliseq Library Construction and Sequencing 

In order to amplify DEAR1 for sequencing, Ampliseq Designer version 1.2.8 (Life 

Technologies https://www.ampliseq.com) was used to design 150bp amplicons, spanning across a 48kb 

region on chromosome 1: 33,610,600-33,658,985 (hg19). The 184 amplicons, split into two pools, were 

used to complete library construction according to the Ion Torrent library construction protocol (Life 

Technologies MAN0006775 Revision 4.0 http://ioncommunity.lifetechnologies.com/docs/DOC-3254). 

Briefly, the Ampliseq panel was used to amplify DEAR1 in a highly multiplexed manner using 10ng of 

DNA for each primer pool as well as the Ion Ampliseq Library Kit 2.0 (Life Technologies 4475345). 

Specifically the FFPE DNA was added with 10ul of the 400nM 2x Ion Custom Ampliseq Primer 

Pool,and 4ul of 5x of the Ion Ampliseq HiFi Master Mix in each reaction. The following thermocycling 

protocol was used: 1 cycle at 99°C for two minutes followed by 19 cycles of 99°C for 15 seconds and 

60°C for four minutes. The primer sequences were then partially digested by the addition of 2μl of FuPa 

reagent to each samples that were then exposed to the following conditions: 50°C for 10 minutes, 55°C 

for 10 minutes, and then 60°C for 20 minutes. After the primer sequences were digested, the Ion Express 

Barcode Adapters were added (Life Technologies 4471250), in addition to Switch solution and DNA 

ligase, to the amplified library and subjected to the following temperature conditions: 22°C for 30 

minutes followed by 72°C for 10 minutes. The completed library was then purified with the Agencourt 

AMPureXP magnetic beads done according to Beckman Coulter protocol, with scaled volumes to fit the 

input volume (Beckman Coulter protocol # B37419AA).  

The purified libraries ran on the Ion Torrent PGM were amplified using a Platinum PCR 

SuperMix High Fidelity polymerase and a library amplification primer mix, using the following 

conditions: 98°C  for 2 minutes followed by 5 cycles of two steps including 98°C for 15 seconds and 

60°C for 1 minute. The amplified library was then re-purified with Agencourt AMPureXP magnetic 
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beads using the same conditions during the previous library purification as before (see above). For the 

samples ran on the Ion Torrent Proton, libraries were not amplified after purification. Once final purified 

libraries were created, the two libraries associated with the 2 different Ampliseq primer pools were added 

together in equal concentrations for each patient sample. Templates were then created with the 9x diluted 

pooled libraries by following the Ion PI and PGM Template OT2 200 Kit V2 protocol (Life 

Technologies 4480974 and 4485146; MAN0007624 

https://tools.lifetechnologies.com/content/sfs/manuals/MAN0007624.pdf). Briefly, the following 

reagents were added, at the specified amounts, to 65μl of the diluted library: Ion PI Reagent mix TL 

(750ul), Ion PI PCR Reagent B (450μl), Ion PI Enzyme Mix TL (75μl), Ion PI PCR Reagent X (60μl), 

and the Ion PI Ion Sphere Particles (100μl). Samples were then run on the Ion OneTouch 2 instrument. 

Template positive Ion Sphere Particles (ISPs) were recovered by centrifugation and then ~1.4mL of 

supernatant was removed. Beads were then washed twice with ~ 1.1mL of water and the pellet was 

resuspended in Ion PI ISP Resuspension Solution. Quality was assessed by Qubit 2.0 flourometer. The 

template-positive ISPs were then enriched on the Ion OneTouch ES by the attachment of ISPs to washed 

streptavidin C1 beads. The enrichment was completed by following the protocol as described in the Ion 

PI Template OT2 200 kit v2 manual: after the attachment of the ISPs to beads, subsequent washes as 

well as a melt-off reaction occurred on the OneTouch ES. Melt-off solution contained 40μl of 1M 

NaOH, 3 μl of 10% Tween 20 and 277μl of water.  

Enriched ISPs were then prepared for sequencing using the Ion PI or PGM Sequencing 200 Kit 

V2 (Life Technologies 4485149 and 4482006) as described by the Ion PI and PGM Sequencing 200 kit 

v2 protocol (MAN0007961 and MAN0007273 http://ioncommunity.lifetechnologies.com/docs/DOC-

7459 and http://ioncommunity.lifetechnologies.com/docs/DOC-6775). Briefly, the enriched ISPs were 

washed with water, followed by the addition of Ion PI Annealing buffer (15μl) and Ion PI Sequencing 

Primer (20μl) to the enriched ISPs and then amplified on a thermocycler with the following steps: 95°C 

for 2 minutes and 37°C for 2 minutes. After amplifying the ISPs, 10μl of the Ion PI Loading buffer was 

added and the final mixture was loaded onto a washed and calibrated Ion PGM 316 or Proton chip. The 



63 
 

chips were then washed with a foam created from 45μl of 50% Annealing buffer and 5μl of 2% TritonX-

100, followed by the loading of 55μl of 50% Annealing buffer. This was followed by the chips being 

centrifuged and flushed with Flushing solution and 100μl of 50% Annealing buffer. Ion PI Sequencing 

Polymerase was then flushed across the chip in a solution with 50% Annealing buffer. Upon completion, 

samples were then sequenced on Proton and PGM316 chips using the Ion PI and PGM 316 Chip Kit 

(Life Technologies 4482321 and 4483324). For samples barcoded on the Proton chips, Ion Torrent Suite 

was used to separate barcoded sequences and exported as individual BAM files.  

Sequence Analysis   

Sequencing bam files were analyzed by Torrent Variant Caller v.4.2 via customized DEAR1 

parameters, followed by its output as a Variant Calling Format (VCF) file
201

. The customized DEAR1 

parameters consisted of recommended Ion Torrent variant calling parameters with the following changes: 

Splice Site Size-20bp; Maximum Coverage-100,000; Data Quality Stringency- 8.5; Downsample to 

Coverage- 100,000; Snp Minimum Coverage Each Strand-7; Snp Minimum Allele Frequency-0.01; Snp 

Minimum Coverage-20; SNP strand bias-0.90; Mnp Minimum Coverage Each Strand-7; Mnp Minimum 

Variant Score-400; Mnp Min Allele Frequency- 0.01, Mnp Minimum Coverage-20; Mnp Strand bias-

0.90, Kmer length-19, Minimum Frequency of Variant Reported-0.15; Indel Minimum Variant Score-10; 

Indel Minimum Coverage Each Strand-3; Indel Minimum Allele Frequency- 0.05; Indel Minimum 

Coverage-20; and Indel Strand Bias-0.85. Sample VCF files were annotated by SnpEff/SnpSift using the 

tool’s inherent annotation as well as with Phase 1 Version 3 data from the 1000 Genomes project 
202-204

. 

SnpSift was also used to complete variant filtering in accordance with the following parameter 

requirements: quality score was required to have a greater than 30 phred score, as well as at least 1,000x 

overall locus coverage, 60x or greater coverage of the variant allele, and a minimum of 30x coverage on 

both forward and reverse strands. Stringency filters allowed for 13-66% reduction in incidental variants 

as well as the retention of noteworthy variants (Appendix III). Variants identified in both the tumor and 

normal samples were filtered out. However, a small number of potentially germline variants (allele 

frequencies around 50% or 100%) were found to exist in samples to which the matched normal sample 
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was unable to be sequenced. These unconfirmed potential germline variants were not filtered out of our 

analysis as there was no definitive proof these were in fact germline; therefore, our total variant count is 

slightly inflated by these variants. Genome Analysis ToolKit was used to determine overall coverage
205

. 

The R program for statistical computing packages’ ggplot2 were used to create figures detailing 

sequencing data, including coverage plots (Appendix IV)
202, 203, 206, 207

.  

Digital PCR 

Digital PCR was completed on either the QX200 Droplet Digital PCR System (Bio-Rad 186-

4001) or QuantStudio 3D  (Life Technologies 4489084) platform. Custom genotyping TaqMan 

(4331349) was ordered from Life Technologies using a dual reporter system with VIC fluorescence 

tagging the reference sequence and FAM tagging the mutant sequence. PCR reaction mix was created 

using dPCR master mix (Life Technologies 4482710), target probes, and diluted DNA (10-36ng) per 

manufacturer’s suggestion. TaqMan genotyping probes were first optimized for largest cycle separation 

between the VIC and FAM probes with at least 1.5x cycle difference using qPCR with the following 

conditions: 95°C for 10min with 40-50 cycles of 92°C for 15sec and 60-64°C for 1 min. For Bio-Rad, 

samples underwent droplet generation (Bio-Rad 186-4002) whereas the samples undergoing digital PCR 

on the Life Technologies platform were spread across a microchip featuring 20,000 wells using an 

autoloader (Life Technologies 4485507 and 4482592). PCR was preformed according to manufacturer’s 

protocol with specified cycle number and annealing temperatures as determined in preliminary qPCR 

optimization. Data was then analyzed by QX200 droplet reader (Bio-Rad 186-4003) or by QuantStudio 

3D (Life Technologies 4489084). Each variant was tested with 2-3 replicates. The R program for 

statistical computing packages’ ggplot2 were used to create figures detailing Digital PCR data (Appendix 

V)
202, 203, 206, 207

. 

Read Count Accuracy 

To determine the read count accuracy, the approximate number of cells present with a 

particular variant given a predicted allele frequency was determined. The model is based on assuming 
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diploid cell condition and extrapolated to 1,500 cells in the 10ng needed for Ion Torrent Ampliseq 

targeted sequencing based on the following calculations: 

3 million bp (human genome) * 2 (diploid) * 660g/mol (Avg MW dNTP) * 1.67*10-
12

 (weight 

of 1 dalton)= 6.6pg or 0.0066ng 

10ng input into Ampliseq amplification/0.006ng = 1,515 cells  

The percentage of cells with a variant was determined by the percentage of heterozygous cells 

needed to produce a given variant allele frequency based on the presence of 1,515 cells within the 10ng 

of input DNA. Further, the number of reads expected to be positive for a variant under a specified 

coverage was determined. For comparison to our actual sequencing data, examples of read counts for the 

particular allele frequency were given along with the experimental coverage received. Read coverage 

accuracy was calculated by the following equation: 

(𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑟𝑒𝑎𝑑 𝑐𝑜𝑢𝑛𝑡 𝑓𝑜𝑟 𝑎 𝑔𝑖𝑣𝑒𝑛 𝑎𝑙𝑙𝑒𝑙𝑒 𝑓𝑟𝑒𝑞 × 
𝐸𝑥𝑝𝑒𝑟𝑖𝑚𝑒𝑛𝑡𝑎𝑙 𝑐𝑜𝑣𝑒𝑟𝑎𝑔𝑒 𝑓𝑜𝑟 𝑔𝑖𝑣𝑒𝑛 𝑎𝑙𝑙𝑒𝑙𝑒 𝑓𝑟𝑒𝑞)

(𝐸𝑥𝑝𝑒𝑟𝑖𝑚𝑒𝑛𝑡𝑎𝑙 𝑟𝑒𝑎𝑑 𝑐𝑜𝑢𝑛𝑡 𝑓𝑜𝑟 𝑔𝑖𝑣𝑒𝑛 𝑎𝑙𝑒𝑙𝑒 𝑓𝑟𝑒𝑞 × 
𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑐𝑜𝑣𝑒𝑟𝑎𝑔𝑒 𝑓𝑜𝑟 𝑎 𝑔𝑖𝑣𝑒𝑛 𝑎𝑙𝑙𝑒𝑙𝑒 𝑓𝑟𝑒𝑞)

      ×  100 

Read counts and allele frequencies used to calculate read coverage accuracy originate from VCF files of 

the FFPE DCIS samples sequenced. VCF files were created through the use of the Torrent Variant Caller 

4.2 and the specific parameters mentioned in the previous method section detailing the sequence 

analysis. It is important to note that the read count accuracy was completed by manual determination and 

was not used as an empirical method to quantify the accuracy of the variant caller or sequencing 

platform. 

Sensitivity and Specificity 

To determine the sensitivity and specificity of the custom Ampliseq DEAR1 panel, VCF files 

of the lymphocyte DNA of normal Caucasian female NA12878 from the Coriell (Coriell NA12878) 

repository created using the DEAR1 Ampliseq panel on the Ion Torrent Proton and PGM platforms was 
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compared to the National Institute of Standards and Technology’s (NIST) highly confident integrated 

genotype calls of the same sample
208

. VCF files created from the Ion Torrent Proton and PGM platforms 

from our sequencing of NA12878 were generated via use of the automated Torrent Variant Caller 

according to parameters previously discussed in the sequence analysis section of the methods within this 

chapter. Moreover, the VCF files underwent additional variant filtration completed according to the 

protocols discussed within the sequence analysis section of the methods. Samples were noted for the 

absence or presence of variants (not including common single nucleotide polymorphisms) known to 

occur in the NIST’s NA12878 genotype calls as well as for variants in randomly chosen and randomly 

distributed nucleotides across the DEAR1 locus within areas covered by the Ampliseq. To determine if 

the degree of sensitivity and specificity was altered in homopolymers, samples were also noted for the 

absence or presence of variants within randomly chosen homopolymer areas across DEAR1. Using two 

by two contingency tables and the package “epiR” within the statistical software R, sensitivity and 

specificity was calculated as well as the 95% confidence interval for each factor (Appendix VI)
209, 210

.   

Results 

Determination of Appropriate NGS Platform for Experimental Procedure 

Multiple platforms exist for NGS applications, including Illumina’s MiSeq and HiSeq, 

Roche’s 454 GSJ system, ABI’s SOLiD platform, and the Ion Torrent system. The vast majority of these 

systems use labeled di-deoxy terminating nucleotides and imaging software to capture the incorporation 

of the labeled nucleotide. The Ion Torrent platform is unique in the way it detects nucleotide 

incorporation. This platform takes advantage of the natural chemistry that occurs upon the bonding of 

two nucleotides by detecting the release of proton molecules after the flow of specific nucleotides. This 

method bypasses some of the issues associated with image analysis many of the other NGS platforms 

have, like “dead” fluorophores and overlapping signals
211

.  Each platform has its own benefits and 

negatives, and each situation must be considered to determine which platform is best for the 

experimental design. Illumina platforms have higher throughput capability and thus lower sequencing 
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cost per gigabyte, but greater instrument costs and longer run times from 27hrs to 11 days on the MiSeq 

and HiSeq, respectively
212

. Their competitor, the Ion Torrent PGM sequencer platform is itself lower in 

cost and has a much lower run time, only 2 hours
212

. Further, each platform is associated with its own 

INDEL and substitution error rates
213, 214

. The 454’s GSJ and the Ion Torrent PGM (using the 200bp 

sequencing kit) exhibit primarily INDEL errors and have a similar INDEL error rates per 100 basepairs 

(bp) at 0.40. The MiSeq platform has the lowest INDEL error rate per 100 bp with a rate of only 0.0009. 

The MiSeq is known to exhibit mostly substitution errors with an error rate of 0.09 per 100 bp. On the 

other hand, the 454’s GSJ had the second lowest substitution rate at 0.05 and the Ion Torrent PGM (using 

200bp sequencing kit) had the lowest rate at 0.03. Depending on the type of variant that is most likely 

expected in the experiment, the variant specific error rate corresponding to each type of platform can be 

very important in choosing which platform is best for the experiment planned.  

Our lab was interested in finding novel variants and determining the variant frequency in an 

early stage of breast cancer.  Previous analysis of genetic alterations of DEAR1, described in chapter 2, 

has shown that the majority of reported variants harbored within the gene are substitutions. Deletions 

involving the gene in cancer tend to encompass not only the entire gene itself but large regions of the 1p 

chromosome arm as well. As these large deletions can be found easily by other less expensive techniques 

than NGS and has been extensively described in cancer, our lab decided to focus on characterizing the 

substitution variants within DEAR1 in early stage breast cancer using NGS technology. Further, current 

sequencing efforts of breast cancer have experienced reduced sensitivity due to intra-tumor 

heterogeneity, normal tissue contamination within the samples, and lower median coverage rates, all 

reducing the degree of sensitivity to find rare alleles. By completing ultra-deep sequencing of DEAR1, 

we can potentially achieve greater sensitivity to detect those rare variants for which previous lower 

coverage sequencing may not have been able to discover. Ultra deep sequencing has previously been 

shown to be effective in detecting low prevalence somatic variants, mostly through amplicon based 

sequencing
215, 216

. The Ion Torrent platform was determined to be the appropriate fit for our experiment 
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because of its low substitution error rate, low cost, quick processing time and the proven history of 

amplicon based sequencing being able to detect rare somatic variants.  

Design of Ion Torrent Custom DEAR1 Targeted Ampliseq Panel 

The Ion Torrent System as described above is centered on an amplicon based strategy in which 

a large number of primers are designed to amplify small 150-200bp regions across an area of interest, 

thereby amplifying a large region in a tiled based manner. Due to the complexity of designing primers 

for large multiplexing reactions as required for the Ampliseq panel, it is best to use computer based 

algorithms that take into account GC-content, melting temperatures, primer-primer interactions, etc. 

ThermoFisher Life Technologies offers a free web-based Ampliseq design service that uses as input 

either a specified genomic range or a genes list. Using Ampliseq Designer version 1.2.8, a custom 

Ampliseq panel was designed to amplify a 71kb genomic region that included the reading frame of 

DEAR1 as well as a 33kb region upstream of the canonical promoter of DEAR1 to include variants that 

might influence the expression of the gene (Fig. 4). However, due to low complexity of the locus, a final 

184 amplicon panel was designed to cover a 48kb region which includes the DEAR1 locus. In general, 

there is a high concordance between the areas that were unable to be included in the coverage by the 

Ampliseq panel and the areas that are known to be genetically repetitive.  In fact, the vast majority of the 

33kb region upstream, as well as much of the intronic regions of DEAR1, were unable to be amplified 

due to their highly repetitive nature (Fig. 4b). When focusing on the DEAR1 locus, including intronic 

regions and a 11kb region upstream of DEAR1, 47% coverage longitudinal coverage was achieved. Of 

the non-repetitive areas, 100% coverage of the canonical promoter of DEAR1 as well as the exonic 

regions and 75% coverage of the 3’UTR was achieved. Areas able to be amplified by the DEAR1 custom 

Ampliseq panel include regions known to harbor variants previously identified in various cancers and 

catalogued in the COSMIC depository and cBIO
145, 146, 148

. These variants include the D421G mutation 

found in a TCGA stage IIIC rectal cancer patient who is listed by the project as having progressed and a 

frameshift at P270fs in a stage 2 breast cancer patient with positive lymph node involvement
145, 146

.  

Control Artificial Spike-in  
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Interpretation of NGS data relies on the idea that a variant frequency is accurately represented 

in the NGS reads to the same extent the variant is represented in the sample itself. Understanding this 

degree of accuracy and having empirical data to bolster this idea is very important for one to have 

confidence in the variant data that the Ampliseq panel accrues. For this reason, a novel spike-in assay 

was designed to determine the precision of our variant frequency read outs. This was completed by the 

designing of an artificial plasmid containing 4 amplicons from our DEAR1 custom Ampliseq panel 

featuring inserted synthetic variants within these amplicons reflecting nucleotide variants as well as 

INDELS (Fig. 3). This plasmid was then spiked into control normal DNA NA12878 at various 

frequencies and sequenced. The results showed that for most of the amplicons, the sequencing data was 

able to accurately recapitulate the variant frequencies spiked into the control DNA (Fig. 5). Some 

amplicons were able to outperform others. For example, control C amplicon had 100% accuracy for the 

1% and 5% spike-in and less than 0.5% deviation for the 10% spike-in. Control A and control B 

amplicons had approximately 100% accuracy for the 1% spike in, whereas control D amplicon exhibited 

about a 1% deviation for the 1% spike-in. Control A and control D amplicons showed slight deviation 

from expected allele frequencies, within 1.5% frequency, for the 5% spike in. Moreover, control B 

amplicon showed significant deviations from expected variant frequencies in the 5% (2.5-4%) and 10% 

spike-ins (5-8%), despite no relatively reduced coverage of the amplicon in relation to the other 

amplicons. Control A and control D amplicons showed a 2-2.5% deviation from expected frequency for 

the 10% spike in. In support of our findings, library construction processing of DNA samples used in 

NGS sequencing have been shown to have a slight effect on variant frequency read-outs in sequencing 

data (personal communication from BioRad).  Overall, these data reflect the variability of the accuracy 

of sequencing data and how this may affect the precision regarding variant allele frequencies.  

Determination of Read Count Accuracy 

An important innovation of NGS technology is its ability to be quantitative regarding allele 

frequencies of a variant within a sample. This is accomplished by determining the ratio of the read count 

of the variant to the total coverage of the locus. The use of this innovative approach has recently revealed  
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Figure 5- Comparison of the Artificial Spike-In Frequency to Observed Allele Frequency in Next 

Generation Sequencing. The artificial plasmid detailed in Figure 2 was spiked in at 1%, 5%, and 10% (x-

axis). Figure details the correlation of the spiked-in frequency to the observed fraction of sequence reads. 

Figure was created with help from Dr. Steven Lott, Ph.D. 
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the large degree of intra-tumor heterogeneity within cancer samples, which can have major implications 

for therapeutic approaches
217

. Heterogeneity is often identified by the presence of variants within small 

sub-clonal populations. The sub-clonal populations can be quantified by the determination of variant 

allele frequencies of specific variants marking these populations. Allele frequencies of these variants are 

determined by the fraction of supporting read counts carrying the variant in relation to the total 

sequencing read counts of the locus. Therefore it is important to determine the accuracy of the read 

counts achieved by the targeted sequencing panel per given variant allele frequencies. Thus, in order to 

determine the read count accuracy of the sequencing Ampliseq panel, achieved sequencing read counts 

were compared to the number of read counts that would be predicted based on a given allele frequency in 

a diploid model (Table 5).  Further, determining the number of cells carrying a variant based on NGS 

allele frequency can be very important clinically if clinicians base therapeutic strategies on the potential 

sensitivity of a patients’ tumor to a therapy against that particular genetic alteration, and important to this 

discussion, the variant frequency within the tumor based on the read out by NGS technology. As an 

example to show how allele frequencies can relate to the number of cells positive for a variant for a 

given sampled population, the frequency of cell populations harboring a variant based on different 

sequencing allele frequencies was modeled (Table 5).  

As shown by Table 5, a heterozygous variant detected by NGS at an allele frequency of 25%, 

is actually harbored within 50% of the population sampled. Further, extrapolating that about 1,515 cells 

are contained within the 10ng sampled by the Ampliseq procedure, approximately 758 cells within the 

sampled population are carrying the variant. In the previously given example, the allele frequency given 

from the NGS read count determined that the variant was present in about a quarter of the sampled 

population of cells. However, with knowledge that the variant existed in a heterozygous state and at a 

loci that is diploid, it can be extrapolated that the variant actually is harbored in half the cells, a point that 

can be important clinically as this can affect the percentage of the tumor that may be affected if an 

oncologist were treating with a targeted therapy against this particular variant. Therefore, zygosity of the 

variant as well as copy number of the loci carrying the variant are very important determinants of the  
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abundance of a particular variant in terms of determining the number of cells positive for a variant in a 

given sampled population.  

Allele frequencies, as previously mentioned, are a determinant of the ratio of the number of 

unique reads of the alternative allele to the total number of unique reads of the locus (coverage). The 

coverage of the locus helps to determine the sensitivity of the sequencing in detecting rare alleles as 

these rare alleles will only be represented in a very small proportion of reads. Using our model, for 

instance, sequencing of a rare 1% variant in a NGS sequencing reaction that obtained about 200x 

coverage of the locus, will only attain 2 supporting reads for the variant. A 5% variant, also sequenced at 

200x coverage, will be detected in 10 reads. In contrast, a 1% variant sequenced under 9,000x coverage 

will be represented in 90 reads, giving large support for this rare allele. Variants receiving low supportive 

reads may be potential errors as library creation and next generation sequencing have inherent error rates 

which can induce false positive nucleotide changes that can be identified in sequencing data at various 

frequencies, including low frequencies which may be misinterpreted as a rare alleles. Thus, strict 

filtering methods need to be developed in order to identify potential errors which can be based on 

multiple factors including the sequencing platform error rate, sequencing depth, coverage of alternative 

allele, and quality score.   

To determine the precision of our read counts using our custom Ampliseq panel, the accuracy 

of the read counts in accordance with the predicted read counts for a given allele frequency was 

determined. The mean sample coverage across the Ampliseq panel was 29,054x. Results indicate that the 

sequencing coverage was detected at frequencies higher than above clinical 1000x standards and all 

variants were supported by at least 60 reads (Fig. 6). Across the DEAR1 locus, consistency of overall 

coverage varied, with amplicons in exon 3 exhibiting the lowest degree of variation and amplicons in 

exon 1 and the promoter exhibiting the highest degree of variation (Fig. 6).  However, variant read 

counts within our sequencing data, when compared to the expected reads for a given allele frequency and 

locus coverage, reflected high degrees of accuracy with a median accuracy of 99.08% (range 96.33%- 
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Figure 6- Coverage of the DEAR1 Ampliseq Panel Amplicons Within the DEAR1 Promoter 

and Exonic Regions. Figure represents the coverage obtained by the DEAR1 ampliseq panel 

within the 5’UTR and exonic regions of the gene. Each bar represents a single amplicon. 

Figure was created with help from Dr. Steven Lott, Ph.D. 
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99.97) (Table 5). Strong accuracy was even shown for variants reflective of 1% of the population, 

indicating the efficacy of our Ampliseq panel to detect rare variants.  

Sensitivity and Specificity of the Custom DEAR1Ampliseq Panel  

In order to fully understand the capacity of what is captured within ones sequencing data, it is 

important understand the sensitivity and specificity of the targeted sequencing panel. This helps to 

understand the degree of false-positive variants that may occur within the data as well as the number of 

true variants that may not be reflected in the sequencing data, also known as “false-negatives”.  To 

determine the sensitivity and specificity of the DEAR1 targeted Ampliseq panel, sequencing data of the 

normal control DNA NA12878 completed on our Ion Torrent PGM and Proton platforms was compared 

to the NIST’s highly confident integrated genotype calls for the same sample (Table 6). Using the 

NIST’s data set as “truth”, sequencing on the PGM platform showed a high degree of overall sensitivity 

and specificity, with a sensitivity of 0.92 (CI:0.73-0.99) and specificity of 0.93 (CI:0.81-0.99). The Ion 

Proton platform preformed similarly with an overall sensitivity of 0.96 (CI:0.71-1.00) and specificity of 

0.86 (CI:0.71-0.95). Both platforms showed low sensitivity to detect INDELs, as is well known not only 

for the Ion Torrent platforms but for other NGS platforms as well [sensitivity 0.5 (CI: 0.01-0.99) and 

specificity 0.95 (CI: 0.74-1.00)]
212

. When focusing on the performance of the sequencing platforms in 

their detection of substitutions, the main type of variant expected to be harbored in DEAR1 based on 

previous sequencing data, the platforms showed high sensitivity and specificity to accurately detect these 

type of variants [PGM: sensitivity 0.95 (CI: 0.77-1.00) and specificity 0.91 (CI: 0.72-0.99); Proton: 

sensitivity 1.00 (CI: 0.78-1.00) and specificity 0.78 (CI: 0.56-0.93)]. Both platforms also showed a high 

degree of sensitivity in their abilities to detect substitutions in homopolymer regions [sensitivity 1.00 

(CI: 0.28-1.00); PGM specificity 0.88 (CI: 0.62-0.98), Proton specificity 0.75 (CI: 0.56-0.93)]. The 

platforms both performed very well in FFPE tissue in a similar way to the cell line NA12878 DNA, 

indicative of the custom DEAR1 ampliseq panel’s ability to have a high degree of precision in clinical 

samples [PGM: sensitivity 0.95 (CI: 0.92-0.98) and specificity 0.92 (CI: 0.89-0.94); Proton: sensitivity  
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Samples “Truth” “Test” Variant Type Sensitivity 

(95% CI) 

Specificity 

(95% CI) 

NA12878 v. 

NA12878 

NIST Ion 

Torrent 

Proton 

All combined 

variants 

0.96 (0.79, 1.00) 0.86 (0.71, 0.95) 

   Indels 0.50 (0.01, 0.99) 0.95 (0.74, 1.00) 

   Indels in 

homopolymers 

0.50 (0.01, 0.99) 1.00 (0.64, 1.00) 

   Substitutions 1.00 (0.78, 1.00) 0.78 (0.56, 0.93) 

   Substitutions in 

homopolymers 

1.00 (0.28, 1.00) 0.75 (0.48, 0.93) 

NA12878 v. 

NA12878 

NIST Ion 

Torrent 

PGM 

All combined 

variants 

0.92 (0.73, 0.99) 0.93 (0.81, 0.99) 

   Indels 0.50 (0.01, 0.99) 0.95 (0.74, 1.00) 

   Indels in 

homopolymers 

0.50 (0.01, 0.99) 1.00 (0.64, 1.00) 

   Substitutions 0.95 (0.77, 1.00) 0.91 (0.72, 0.99) 

   Substitutions in 

homopolymers 

1.00 (0.28, 1.00) 0.88 (0.62, 0.98) 

NA12878 v. 

NA12878 

Ion 

Torrent 

Proton  

Ion 

Torrent 

PGM 

All combined 

variants 

0.86 (0.68, 0.96) 1.00 (0.86, 1.00) 

 Ion 

Torrent 

PGM 

Ion 

Torrent 

Proton 

All combined 

variants 

1.00 (0.80, 1.00) 0.90 (0.77, 0.97) 

 Ion 

Torrent 

Proton  

Ion 

Torrent 

PGM 

Indels* 1.00 (0.09, 1.00) 1.00 (0.75, 1.00) 

 Ion 

Torrent 

Proton  

Ion 

Torrent 

PGM 

Indels in 

homopolymers* 

1.00 (0.01, 1.00) 1.00 (0.66, 1.00) 

 Ion 

Torrent 

Proton  

Ion 

Torrent 

PGM 

Substitutions 0.85 (0.66, 0.96) 1.00 (0.74, 1.00) 

 Ion 

Torrent 

PGM 

Ion 

Torrent 

Proton 

Substitutions 1.00 (0.79, 1.00) 0.82 (0.60, 0.95) 

 Ion 

Torrent 

Proton  

Ion 

Torrent 

PGM 

Substitutions in 

homopolymers 

0.75 (0.35, 0.97) 1.00 (0.64, 1.00) 

 Ion 

Torrent 

PGM 

Ion 

Torrent 

Proton 

Substitutions in 

homopolymers 

1.00 (0.42, 1.00) 0.86 (0.57, 0.98) 

FFPE Breast 

Tumors v. 

NA12878 

NIST Ion 

Torrent 

PGM 

All combined 

variants 

0.90 (0.87, 0.93) 0.92 (0.90, 0.94) 
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Samples “Truth” “Test” Variant Type Sensitivity 

(95% CI) 

Specificity 

(95% CI) 

FFPE Breast 

Tumors v. 

NA12878 

NIST Ion 

Torrent 

PGM 

Indels 0.50 (0.32, 0.68) 0.95 (0.92, 0.97) 

   Indels in 

homopolymers 

0.50 (0.32, 0.68) 1.00 (0.97, 1.00) 

FFPE Breast 

Tumors v. 

NA12878 

NIST Ion 

Torrent 

PGM 

Substitutions 0.94 (0.91, 0.96) 0.90 (0.87, 0.93) 

   Substitutions in 

homopolymers 

0.91 (0.82, 0.97)   0.86 (0.81, 

0.90) 

FFPE Breast 

Tumors v. 

NA12878 

NIST Ion 

Torrent 

Proton 

All combined 

variants 

0.95 (0.92, 0.98) 0.92 (0.89, 0.94) 

   Indels 0.50 (0.27, 0.73) 0.95 (0.91, 0.98) 

   Indels in 

homopolymers 

0.50 (0.27, 0.73) 1.00 (0.95, 1.00) 

   Substitutions 1.00 (0.97, 1.00) 0.89 (0.84, 0.92) 

   Substitutions in 

homopolymers 

1.00 (0.87, 1.00) 0.86 (0.79, 0.91) 

 

 

 

 

 

 

 

 

 

 

 

Table 6- Sensitivity and Specificity of Custom DEAR1 Ampliseq Panel. Sequencing data of CEPH 

control cell line NA12878 from the Ion Torrent Proton and PGM sequencing platforms were compared 

to the NIST’s highly confident integrated genotype calls in order to determine the sensitivity and 

specificity of the Ampliseq panel. The data from the PGM and Proton platforms were also compared to 

each other in order to determine differences in sensitivity and specificity of each platform. *Indicates 

the sensitivity and specificity remained the same independent of which Ion Torrent platform was used 

as “truth”. PGM data used the 1st generation of the 200bp Ion Torrent Sequencing Kit whereas Proton 

data used the 2nd generation version of the sequencing kit. To note, library construction protocols with 

the Proton sequencing platform were slightly changed upon noticing one primer pool acted 

inconsistently. The following changes were implemented: the reactions were completed in half reaction 

volumes and the amplification of the final library was removed from the protocol. 



79 
 

0.90(CI: 0.87-9.93) and specificity 0.92 (CI: 0.90-0.94)]. It is important to note that the variants 

identified in the sequencing of NA12878 on the Ion Torrent PGM and Proton platforms underwent 

stringent variant calling parameters and filtration methods. Many low quality variants as defined by low 

quality scores, those exhibiting strand bias, or those in low coverage areas were removed during these 

variant calling and filtration steps, thus possibly removing potential spurious variant calls and improving 

the sensitivity and specificity of the data. As these variant filtration methods were used to determine the 

presence of variants in our clinical samples, the achieved sensitivity and specificity of the sequencing 

panel in FFPE samples has made us highly confident in our ability to detect true variants harbored within 

our clinical samples.  

Discussion 

NGS technology has shown its potential to revolutionize clinical medicine and has helped the 

field to begin to understand the molecular mechanisms behind therapeutic resistance. In order for NGS to 

be truly effective, the technology must show a high degree of accuracy, sensitivity, and specificity, 

especially over previous gold standard methods. Many studies have shown NGS’s ability to be as 

sensitive or more sensitive than Sanger sequencing or real time PCR, while also showing its ability to be 

more discovery based as well
189, 196, 197, 213, 218

. Multiple platforms exist for completing NGS, each with 

their own benefits and pitfalls. One must determine which platform best fits the specific experimental 

conditions one is planning. We determined that the Ion Torrent platform was most applicable platform 

for our experiment, as the Ion Torrent sequencing platform is known for its quick turn-around time and 

low substitution error rates.  

The Ion Torrent platform uses a highly multiplexed PCR reaction to target specific loci for 

sequencing. As reactions with hundreds of amplicons can have multiple off target and undesirable effects 

if the primers are not designed with great care, Life Technologies have created an Ampliseq designer to 

help in the process of designing the amplicons for a desired locus. The Ampliseq designer was used to 

design amplicons to amplify the DEAR1 locus, including the exonic and regulatory regions of the gene. 
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Moreover, in order to capture upstream regulatory regions, an 11 kb region upstream of the gene locus 

was included in the design. All non-repetitive areas were able to be captured in the design, as low genetic 

complexity was a major issue in amplicon primer design. Amplification by Ampliseq primer panels are 

affected by many of the traditional factors known to effect PCR efficiency, like GC content, primer-

primer interactions, issues with low complex areas, and amplification bias. Due to some of these 

difficulties, one will see variances in the performance of amplicons across the loci. Despite these 

challenges inherent with PCR based systems, our Ampliseq panel was able to achieve sequencing depths 

at the DEAR1 locus that have never been previously described in breast cancer as well as cover areas 

known to be harbor previously described variants aby COSMIC and cBIO.  

The inherent challenges associated with the PCR based Ampliseq reaction as mentioned 

previously can lead to variances in the quality of sequencing and its accuracy in detecting variant 

frequencies across the panel. As such, it’s important to understand the limitations along with the 

sensitivity and specificity of one’s system. This can be done in multiple ways. One popular method is 

population mixing, in which a population with a known variant is spiked-in at a particular percentage in 

relation to another population. However, one possible issue with this method is potential sub-clonal 

ploidy differences in the two sequenced populations that can change the variant frequencies, especially if 

the population harboring the variant is cancerous as tumor cells often exhibit ploidy differences.  One 

way to subvert this is to use an artificial plasmid harboring an amplicon with the variant and to spike this 

plasmid into a cytogenetically normal DNA sample. This novel method was used to determine the 

accuracy of our sequencing to detect known variant frequencies. The data presented herein show that, for 

the most part, the amplicons tested were able to recapitulate the variant frequencies that were expected, 

giving confidence to the variant allele frequencies represented in our sequencing data. Some observed 

variances were present compared to the variant allele frequencies expected; however, this could be due to 

difficulties associated with PCR reactions, as discussed above, since Ampliseq sequencing is a PCR 

based method. However, it is important to note that variants represented in the spike-in assay required 

variant calling by manual extraction of the amplicons that contained the variant as many of the variants 
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within the spike-ins were not called by automatic variant callers or identified after variant call filtration. 

The exclusion of present variants by the automated variant callers warns against the sole reliance on 

these automated sequencing pipelines and exemplifies the importance of manually checking the 

sequencing data in viewers like Integrative Genome Viewer (IGV). For example, the variants present as 

part of the spike-in could be seen when viewing the data in IGV but were not represented in the resultant 

VCF files from the automated Torrent Variant Caller. Loss of the representation of particular variants 

may be due to issues with sequencing alignment to the reference sequence, low coverage of the particular 

locus, poor quality calculations, or the presence of the variant in genetically low complex areas like 

homopolymer regions. Therefore, a combination of automated variant callers with manual overview of 

the data in sequencing data viewers is important for ensuring complete and correct calling of the present 

variants. Overall, through the combined use of manual and automated variant calling, the novel spike-in 

assay created to determine accuracy regarding variant allele frequencies indicated that we can have 

confidence in our variant frequencies given by the NGS read out, even at the rare 1% variant frequency.  

This confidence is further exemplified by the accuracy shown by the high concordance 

between our observed read counts and the predicted read counts within our model, given a specified 

variant frequency and overall locus coverage depth. Modeling of predicted read counts allows for a clear 

observation of the number of cell needed to carry a variant within a population in order to detect a 

specific variant allele frequency. This model can also help to demonstrate how certain variants may be 

filtered from the data due to lack of sufficient observations. Typical NGS practices require a minimum 

number of reads supporting the presence of a variant in order to reduce the chance that a particular 

variant could potentially be a sequencing error. Depending on the coverage achieved and stringency of 

variant filtering that is desired, rare variants may be filtered out due to not obtaining enough supporting 

reads to be determined a true variant rather than a sequencing error. However, as the DEAR1 Ampliseq 

panel achieved high coverage within our sequencing, we were able to attain large support for rare alleles. 

As determined by the comparison of the empirical read counts achieved in our sequencing to the 

predicted read count model, it was determined that the sequencing read counts had accuracies between 
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96-100%, giving us further confidence in our variant frequencies given by NGS read counts and 

increased assurances that the high coverage achieved for the variants were not representative of biases 

within the data. However, it is important to note that as higher coverage is obtained in order to increase 

the sensitivity to detect potential rare alleles within the samples, increased stringency of the variant 

filtering may be needed to reduce artifacts that occur during library construction or sequencing.  This 

issue was specifically addressed through stringent variant quality filtering to reduce potential false 

positives associated with ultra-deep sequencing (see methods for detailed filtering procedures).   

It is also important to note that there are limitations to our modeling of variant allele 

frequencies and expected read counts. Our model assumes very simple conditions, including diploid 

status, known zygosity of the variant, and no intra-sample heterogeneity. Clinical samples exhibit a high 

degree of complexity that is not recapitulated in our modeling. Tumor intra-heterogeneity has been 

shown to be highly common across cancers with very few variants being represented in the majority of 

the tumor population
58, 217, 219

. Both variants and chromosomal alterations can exhibit intra-sample 

heterogeneity with mixes of both wildtype and variant allele populations, as well as the presence of 

diploid and haploid/2n+ populations. Chromosomal alterations are common in tumors, with 

amplifications, copy number gains, and deletions all potentially causing modulations in variant allele 

frequencies. For example, if a diploid tumor population existed harboring a heterozygous variant in 20% 

of the bulk tumor cells within a sample, NGS of the entire sampled tumor population would indicate that 

the variant allele frequency of the particular variant is 10%. Given the estimate that about 1,500 cells are 

sequenced in 10ng of DNA, an estimated 300 tumor cells at this stage harbor the variant. As the tumor 

evolves and progresses, a cell from the original 20% of tumor cells harboring the variant may undergo 

loss of heterozygosity of the wildtype allele. After clonal evolution, the tumor population may now 

exhibit the variant in 40% of the entire tumor mass sampled, with 30% still being diploid at the variant 

locus and 10% of the cells now demonstrating loss of heterozygosity. In this condition, though 40% of 

the tumor mass sequenced harbors the variant, the variant allele frequency as shown by NGS is actually 

25%, with 600 of the 1,500 cells sequenced demonstrating the variant. This shows the importance of the 
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knowledge of zygosity status throughout the tumor population, specifically within the sub-clonal 

populations harboring variants of interests, and how intra-tumor heterogeneity of variants and copy 

number can play a large factor complicating the interpretation of NGS data. Furthermore, tumor purity 

can also affect variant allele frequency interpretation. Tumors, especially those of an invasive nature, are 

often marbled with multiple different types of normal cell populations, including stromal tissue and 

normal epithelium. The inclusion of these cell types within the sequenced sample can have profound 

effects on the ability to detect variants within the tumor cells, depending on the extent of normal cell 

contamination, simply due to reducing the number of cells of tumor origin being sequenced. For 

example, a 10ng tumor DNA sample sequenced which is noted for having 70% tumor purity is estimated 

to have around 1,050 tumor cells in the approximate 1,500 cells sequenced. Now, if a variant is present 

in only 30% of the tumor cells sequenced, it is predicted that only 315 cells of the 1,500 cells harbor the 

variant, or 21% of the cells sequenced.  If the variant is a heterozygous variant carried in a diploid 

condition, and further the sequencing coverage received at this locus is approximately 1,000x, it can be 

expected to receive about 105 supporting sequencing reads for the variant. Variant filtration under the 

methods performed during out filtration would still have called the variant as we required at least 60 

supporting reads for each variant. However, if tumor purity of the sample was only 35%, the variant 

would only be present in 157 cells within the sequenced population and, given about 1,000x sequencing 

coverage of the heterozygous variant, would only be present in 52 reads; thus, this variant would have 

been filtered out using our stringent variant filtration methods due to tumor purity alone. It is important 

to note that currently 1,000x coverage is typically only achievable via targeted sequencing methods. 

Therefore, using sequencing methods that are only capable of lower coverage presently, like whole 

genome sequencing, will further reduce that ability to detect these types of variants in heterogeneous 

populations. For example, given a sequencing coverage of 100x in the previous examples of 70% and 

35% tumor purity, only about 10 and 5 reads supporting the variant would be present, respectively. Other 

factors that can affect final variant allele frequencies are biased-amplification or allelic dropout, which 

are known issues associated with library construction, as well as the natural structure of the genomic loci 

of interests like GC content and chromatin structure, which can as mentioned previously affect targeted 
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amplification and sequencing capabilities. All of these factors can have potentially large impacts on 

coverage uniformity and the accuracy of variant allele frequencies.  

Due to these variances that can occur across the amplicons within the loci, it is imperative to 

quantify the degree to which one is capturing a true assessment of the data. This is often done by 

computation of the targeted sequencing panel’s sensitivity and specificity to determine the capacity of 

the sequencing data to detect all variants, with limited false positives.  Sensitivity and specificity was 

ascertained by comparing the sequence data of the CEPH normal control DNA NA12878 sequenced on 

our Ion Torrent platforms to the NIST’s highly confident, integrated genotype calls for the same sample. 

The results showed a high degree of sensitivity and specificity for both Ion Torrent platforms, with the 

Ion Torrent Proton showing slightly greater sensitivity and the Ion Torrent PGM having slightly greater 

specificity. When specifically looking at the custom Ampliseq panel’s abilities in FFPE clinical samples, 

the PGM platform preformed similarly to the performance of intact cell line genomic DNA; however, the 

Proton platform showed specificity improvements within these samples. Both of the Ion Torrent 

platforms struggled with INDELS, a known weakness for the Ion Torrent Variant Caller
212, 214

. It is due 

to this that all INDEL calls were disregarded in further contemplation of sequencing data. The degree of 

sensitivity and specificity able to be achieved on the platforms may have been slightly enhanced due to 

the use of pre-filtered genotype calls to compute these measures. Through stringent variant calling and 

filtration, low quality variants or variants within low coverage areas were removed before sensitivity and 

specificity was calculated. Inclusion of these poorer quality genotype calls which can represent 

sequencing or library construction errors would have led to a higher degree of false positive variant calls 

and reduced sensitivity performance of the DEAR1 ampliseq panel. The same variant calling and 

filtration methods used prior to sensitivity and specificity analysis performed herein were also used in the 

processing of the sequencing data of the clinical samples. Therefore, the sensitivity and specificity 

calculated reflects the performance of the complete processing of the final variant calls within the 

clinical samples, thus giving us assurance of the quality of final data produced. Overall, the Ion 
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Platforms showed great sensitivity and specificity in both the control NA12878 and FFPE data, giving us 

high confidence in the variants called by our Ampliseq panel.  

As described herein, a highly sensitive and specific custom Ampliseq panel was generated to 

detect variants within the DEAR1 locus, including upstream regulatory regions. DEAR1 is a novel tumor 

suppressor, which plays important roles in acinar morphogenesis and TGFβ driven EMT
2, 131, 220

.  

Understanding the spectrum of genetic alterations encompassed in DEAR1 within cancer can give further 

insight into the mechanism of DEAR1’s tumor suppressive actions as well as in understanding tumor 

progression in general. NGS technology is a major tool currently being used to describe the genomic 

landscape of cancer due to its highly sensitive and quantitative nature. However, it is important when 

using targeted sequencing panels with this technology, that the method for targeted capture allows for 

highly sensitive detection of variants. The custom DEAR1 Ampliseq panel that was generated has been 

shown to be capable of the highly sensitive detection of rare variants as well as the ability to make highly 

accurate genotype and variant frequency calls.  
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Chapter 4 

Characterizing DEAR1’s (TRIM62) Genetic Role in Ductal Carcinoma in Situ Progression 

Introduction 

Ductal Carcinoma In Situ and Its Progression to Invasive Disease 

Breast cancer is the number one diagnosed cancer in women
221

. It is estimated by the 

American Cancer Society that about 1 in 8 women will be diagnosed with invasive breast cancer (IDC) 

within their lifetime
221

. In 2014, 232,670 women were projected to be newly diagnosed with breast 

cancer, with 20-24% diagnosed with ductal carcinoma in situ (DCIS) 
221,222

. DCIS is defined as the 

presence of abnormal neoplastic cells filling the ductal lumen. As it is an in situ disease, the abnormal 

cells have not invaded through the basement membrane at this stage. DCIS accounted for 83% of in situ 

breast cancer, making it the most commonly diagnosed in situ breast lesion
221

.  

DCIS is the earliest form of breast cancer and is currently considered as a non-obligate 

precursor to its invasive form
223

. One of the single most important questions surrounding DCIS is why 

some lesions remain indolent and other lesions recur. Population-based studies have suggested that about 

18-20% of DCIS lesions recur as a local recurrence in patients who received surgical resection
224, 225

. 

Fifty percent of local recurrences are diagnosed as IDC 
226

. The lack of biomarkers to stratify these 

patients with a higher risk of invasive recurrence have led to variance in how these lesions are treated in 

the clinic. Twenty-four percent of patients with DCIS elect to undergo unilateral mastectomy, a 

procedure that recent studies have indicated is linked to high rates of overtreatment as mastectomy has 

shown no significant difference in recurrence rates when compared to the less stringent treatment of 

lumpectomy plus radiation 
227, 228

. Other studies have also indicated that lumpectomy plus radiation is a 

superior treatment modality as it is associated with a 50% decrease in invasive recurrence and higher 

overall event free survival (81% versus 91%), when compared to lumpectomy alone
225,229

. This has led to 

the American College of Radiation to release the Appropriateness Criteria on DCIS stating breast 

conservation therapy (breast conserving surgery (lumpectomy) with negative margins followed by whole 
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breast radiation) as an acceptable treatment and an alternative to mastectomy
230

. Due to this 

recommendation, there has been a large increase in the number of patients receiving breast conservation 

therapy, which now accounts for 43% of current chosen treatment modalities
227

. However, a portion of 

the women treated with the more stringent treatment modality will have harbored an intrinsically 

indolent lesion that would have never progressed, even without further radiation treatment
225

. This 

highlights the need for molecular and genetic factors that are able to stratify women for tailored 

treatment options according to their risk for invasive recurrence in order to reduce both over-treatment 

and under-treatment rates. The current recommended treatment option of lumpectomy plus radiation, 

though as mentioned previously is indicated to a have a higher overall event free survival and reduced 

invasive recurrence rate, is also associated with a high degree of over-treatment as 14 DCIS patients 

would need to be treated with lumpectomy plus radiation in order to prevent one local recurrence
231

. 

Further, under-treatment is also of clinical concern as more women are opting for lumpectomy alone
227

.  

For example, Van Leeuwen et al. 2011 has shown that patients undergoing surgery alone experienced a 

significant decrease in local recurrence free survival
232

. Due to the uncertainty of the progression of 

DCIS lesions, surgical oncologist have difficulty in determining the best methods of treatment to reduce 

recurrence but limit the occurrence of over-treatment.  

Many have attempted to determine the molecular mechanisms of DCIS progression in an effort 

to establish clinical biomarkers. The majority of studies have tried to understand the progression through 

determining distinctions between DCIS and IDC. Surprisingly, many of these comparison studies of 

DCIS and IDC have indicated that the lesions are very similar, molecularly. Hwang et al. 2004 showed 

chromosomal alterations tend to be synchronous between Pure DCIS and IDC, though the Pure DCIS 

lesions did show significant enrichment of particular chromosomal alteration differences associated with 

tumor grade
233

. Moreover, it has been shown that nuclear grade and the molecular subtypes associated 

with IDC (ER, PR, HER2, etc.) as well as cytokeratin 5/6 markers often corresponded between adjacent 

in situ and invasive lesions
223, 234

. Similarities between the two lesions have also been seen at the 

epigenetic level with multiple studies indicating comparable rates of promoter hypermethylation during 
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the progression of DCIS to IDC
223

. The high degree of synchrony between the early, non-invasive lesion 

and the invasive counterpart have led to the proposed “branched” model of progression of DCIS to 

IDC
235

. The “branched” model describes a linear progression of DCIS to IDC, with different branches off 

the linear model describing the restriction of DCIS lesions progressing to IDC based on nuclear grade 

correspondence between the lesions, i.e. a low grade DCIS can only progress to a low grade IDC and 

visa-versa. This model indicates that differences exhibited during DCIS progression are not necessarily 

between the in situ and invasive tumors but are potentially associated more with differential grades of 

DCIS. Contrary to this model, another model, often called the “parallel” model has been described which 

proposes a common cell of origin but with subsequent independent yet synchronous progression of DCIS 

and IDC lesions
235

. Support for this model, also known as the “Sontag-Axelrod” model, is indicated by 

continued existence of progressed DCIS and IDC adjacent to one another as well as the possible limited 

chromosomal alterations that are confined to either the DCIS or IDC components reported by Johnson et 

al. 2012
233, 235-237

. Due to the convoluted nature of the relationship between DCIS and IDC, much more 

work is still needed in order to better understand the molecular mechanism of DCIS progression and to 

help in the development of biomarkers for the stratification of treatment for this disease.    

DEAR1 is an Important Regulator of Polarity and EMT 

To better understand the progression of breast cancer, our lab has studied the novel tumor 

suppressor gene, Ductal Epithelium Associated Ring chromosome 1 (DEAR1), also annotated as 

TRIM62, which is an E3 ubiquitin ligase often downregulated in breast cancer
2, 131

. DEAR1 is part of the 

TRIM family of proteins, which are known to play important roles in immunity, differentiation, cell 

death, and proliferation. The important roles TRIM family members play in normal homeostasis, upon 

deregulation, can be integral to cancer progression
72, 238

. DEAR1 has been shown to be a major regulator 

of polarity and acinar morphogenesis
131

. In breast cancer, DEAR1 is downregulated during the transition 

from normal epithelium to DCIS and the invasive lesion
131

. Knockdown of DEAR1 in human mammary 

epithelial cells (HMECs) grown in 3D culture was shown to be associated with luminal filling, a 

hallmark of DCIS
131, 136

. Moreover, we have shown that DEAR1 is a master regulator of TGFβ mediated 
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Epithelial to Mesenchymal Transition (EMT) through its ubiquitination of SMAD3 in mammary cells
2, 

220
. DEAR1, located at chromosome 1p35.1, resides in an area often hemizygously deleted in epithelial 

cancer and is mutated in a wide spectrum of tumors including breast, colon, and stomach cancer
2, 131

. We 

have shown that a subset of these mutations can be functional, exemplified by the ability of wild-type 

DEAR1 to correct, by genetic complementation, the aberrant acinar morphogenesis within the DEAR1 

mutated metastatic breast cancer cell line, 21MT
131

. DEAR1 has also been found to undergo nonsense 

(N) and frameshift (FS) mutations in tissues including bladder (N), melanoma (N), breast (FS) and lung 

(FS) cancer
145, 146

.  

Since DEAR1 has shown to be pivotal for the maintenance of correct acinar morphogenesis 

and prevention of TGFβ induced EMT, and with the knowledge that DEAR1 undergoes functional 

mutations that can promote aberrant acini formation in breast cancer, it was determine if DEAR1 is 

mutated in the earliest form of breast cancer, DCIS, and if these mutations can inform us about DCIS 

progression to IDC. A custom next generation sequencing panel was developed to complete targeted 

ultra-deep sequencing of DEAR1 that exhibited strong sensitivity and specificity. Using this DEAR1 

sequencing panel, Pure DCIS and DCIS adjacent to IDC were sequenced and found to contain DEAR1 

somatic variants in 71% of these lesions, including many predicted to be deleterious by PolyPhen2 and 

SIFT prediction tools as well as functional evidence for a subset of these variants. Excitingly, evidence 

for a potential germline variant in an early onset case of Pure DCIS was found. Lastly, data from the 

sequencing of DCIS lesions associated with IDC seem to support a parallel model of evolution for DCIS 

and IDC. Our work has described the ultra-deep targeted sequencing of an important tumor suppressor, 

DEAR1, which indicated the importance of variants within this gene in the earliest form of breast cancer, 

DCIS.  

Methods 

Human Specimen Collection  

All human tissues were identified by Dr. Aysegul Sahin (MDACC) and obtained without 
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Figure 7- Histological Representation of DCIS FFPE Samples Used in Sequencing. Serial H&E 

sections were taken prior to sample sections, followed by digital annotation for both Pure DCIS 

(A) and DCIS with invasive components (B). The in situ lesions were marked digitally in a 

green outline where the invasive lesions were marked in a yellow outline. Laser capture 

microdissection (LCM) was completed on DCIS with invasive component samples. 

Representation of the capture of the tissues is shown in C, where the remaining tissue after 

LCM is shown in D. 

A B 

C D 
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identifiers from the MD Anderson Cancer Center tumor bank according to the approved IRB protocol. 

Samples were chosen based on identification of sufficient amounts of DCIS and/or invasive components 

to acquire at least 10 nanograms of DNA. Cases were also selected on presence of recurrence follow up 

data as well as age of disease onset as equal numbers of early and typical age of onset was requested. For 

a list of samples sequenced for each patient see Appendix VII. 

DNA Extraction and Quantification 

One to three 10um of DCIS and matched normal FFPE tissue were sectioned and mounted on 

either positively charged glass slides (Pure DCIS: VWR  48312-013) or PEN membrane slides (DCIS 

adjacent to IDC: Life Technologies LCM0521). Before tissues were sectioned onto the PEN membrane 

slides, the slides was exposed for 30 minutes to UV light in order to help with tissue adherence. A serial 

tissue section was taken prior to each sample collection for hematoxylin and eosin (H&E) staining. H&E 

slides were digitally scanned on the Aperio AT Turbo whole slide scanner and tumor area were digitally 

annotated on Aperio eSlideManager/Aperio ScanScope by pathologist, Dr. Fei Yang (MDACC). Tissue 

for DNA extraction was collected by either scraping whole slide sections  (Pure DCIS/Normal) or by 

Laser Capture Microdissection (LCM) (DCIS adjacent to INV) on the Arcturus XT LCM system. For 

Pure DCIS and normal lymph node tissue undergoing extraction by scraping, samples were 

deparrafinized for two 5 minute 100% xylene washes followed by collection of tissue by scraping with a 

fresh scalpel. For DCIS with invasive component (DCIS/INV) cases collected by LCM, samples on PEN 

membrane slides underwent a 2 hour 65° Celsius (C) incubation to help with tissue adherence followed 

by a pre-staining procedure, completed as described by the Arcturus Paradise Plus staining protocol with 

a few modifications (Life Technologies KIT0312J; manual 1287200 

https://tools.lifetechnologies.com/content/sfs/manuals/1287200.pdf). Briefly, samples were hydrated by 

exposure to 100% xylene followed by decreasing concentration of ethanol, from 100% to 75%, and 

water for the duration and manner as stated in manual. This was then followed by staining with the 

Paradise Plus stain (Life Technologies KIT0312J) for 7 seconds and then dehydration of the samples by 

incubation with increasing concentrations of ethanol, from 75% to 95% for two 30 second exposure, 
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followed by two 1 minute 100% ethanol incubation and 10 minute 100% xylene exposure. All tissues 

were then subject to a 5-10 drying time after final xylene incubation. Discrete lesion components were 

isolated by LCM and processed independently after staining. LCM collection was managed by 

pathologist, Dr. Fei Yang.  

After tissue collection, DNA was extracted by PicoPure DNA Extraction kit (LifeTechnologies 

KIT0103), using the protocol for fixed tissue sections. Briefly, 150 μl or 30 μl of Proteinase K suspended 

in supplied reconsitution buffer was added to either scrapped tissue sections or LCM caps, respectively. 

The samples were then incubated at 65°C for 22-24 hours followed by an exposure to 95°C for 10 

minutes to inactivate the Proteinase K. For the LCM samples, after proteinase K inactivation, extracted 

DNA was pooled from the LCM caps originating from a single lesion component of a single sample.  

The extracted DNA samples were then purified by either Agencourt AmpPure XP (Beckman 

Coulter A63880) for the Pure DCIS samples or by a specialized ethanol purification technique for the 

DCIS/INV samples isolated by LCM. The Pure DCIS samples collected by scrapping were purified by 

AmpPureXP, according to the protocol. Briefly, the samples were incubated with 1.8x AmpPureXP 

beads for 5 minutes followed by magnetic separation. The beads were then washed twice with 600 μl of 

freshly prepared 75% ethanol and then dried before suspending in 20 μl of water. For the DCIS/INV 

samples isolated by LCM and scrapped normal samples, the DNA was purified by a modified ethanol 

purification protocol in which the samples were combined with 2 μl of Pellet Paint (EMD Millipore 

70748), 10% 3M Na Acetate pH 5.2, 1 μl GenElute LPA (Sigma 56575-1ML), and 2.5x of 100% EtOH 

and then incubated for 20 minutes at room temp. Afterwards, samples were centrifuged at 14,000rpm for 

5min and the pellet was then washed with freshly made 70% and then 100% ethanol with centrifugation 

followed by supernatant removal after each washing. The final pellet, collected after the two ethanol 

washes, was dried at 90°C for 5min. Pellet was then eluted with 10 μl of water. Lastly, DNA was 

quantified by qPCR using TaqMan RNAse P Detection kit (4316831 Life Technologies) using specified 

protocol (“Measuring Template Efficiency” https://tools.lifetechnologies.com/content/sfs/brochures/ 

cms042785.pdf). Briefly, the standard human genome DNA provided in kit was serially diluted from 
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10ng/μl to 0.5ng/μl to form a standard curve. For the 96 well PCR plate format, to each well was added: 

3 μl of FFPE DNA or diluted standards, 12.5 μl 2 × Universal Master Mix (No AmpErase UNG) (Life 

Technologies 4364343), 1.25 μl 20x RNAse P Probe/Primer Mix (from kit 4316831 Life Technologies), 

and 8.25 μl RNase-free water. For the 384 well format, added to each well was 2.5 μl of each diluted 

standard (from kit 4316831 Life Technologies) or 0.2x diluted FFPE DNA (1.5ul of DNA into 6ul of 

dH20), 5 μl 2 × Universal Master Mix (No AmpErase UNG) (Life Technologies 4364343), 0.5 μl 20x 

RNAse P Probe/Primer Mix (from kit 4316831 Life Technologies), and 2 μl RNase-free water. qPCR 

cycling was performed as follows: 50°C 2 min, 95°C 10 min, and 40 cycles of 95°C 15 sec and 60°C 1 

min. Using standard curve amplification, quantities were determined for FFPE samples. Correlation of 

logarithmic best fit line of CT values of standards (Y axis) vs Concentration (X axis) was used to 

determine accuracy of quantities, with R
2
 typically being over 0.9900. For samples quantified by 384 

well format, which underwent sample dilution, quantities based on RNAse P curve were then multiplied 

by dilution factor to receive final sample quantity.  

Ampliseq Library Construction and Sequencing 

In order to amplify DEAR1 for sequencing, Ampliseq Designer version 1.2.8 (Life 

Technologies https://www.ampliseq.com) was used to design 150bp amplicons, spanning across a 48kb 

region on chromosome 1: 33,610,600-33,658,985 (hg19). The 184 amplicons, split into two pools, were 

used to complete library construction according to the Ion Torrent library construction protocol (Life 

Technologies MAN0006775 Revision 4.0 http://ioncommunity.lifetechnologies.com/docs/DOC-3254). 

Briefly, the Ampliseq panel was used to amplify DEAR1 in a highly multiplexed manner using 10ng of 

DNA per primer pool with the Ion Ampliseq Library Kit 2.0 (Life Technologies 4475345). Specifically 

the FFPE DNA was added with 10ul of the 400nM 2x Ion Custom Ampliseq Primer Pool, and 4ul of 5x 

of the Ion Ampliseq HiFi Master Mix in each reaction. The following thermocycling protocol was used: 

1 cycle at 99°C for two minutes followed by 19 cycles of 99°C for 15 seconds and 60°C for four 

minutes. The primer sequences were then partially digested by the addition of 2μl of FuPa reagent to 

each samples that were then exposed to the following conditions: 50°C for 10 minutes, 55°C for 10 
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minutes, and then 60°C for 20 minutes. After the primer sequences were digested, the Ion Express 

Barcode Adapters were added (Life Technologies 4471250), in addition to Switch solution and DNA 

ligase, to the amplified library and subjected to the following temperature conditions: 22°C for 30 

minutes followed by 72°C for 10 minutes. The completed library was then purified with the Agencourt 

AMPureXP magnetic beads done according to Beckman Coulter protocol, with scaled volumes to fit the 

input volume (Beckman Coulter protocol # B37419AA).  

The purified libraries ran on the Ion Torrent PGM were amplified using a Platinum PCR 

SuperMix High Fidelity polymerase and a library amplification primer mix, using the following 

conditions: 98°C  for 2 minutes followed by 5 cycles of two steps including 98°C for 15 seconds and 

60°C for 1 minute. The amplified library was then re-purified with Agencourt AMPureXP magnetic 

beads using the same conditions during the previous library purification as before (see above). For the 

samples ran on the Ion Torrent Proton, libraries were not amplified after purification to prevent unequal 

amplification of the two primer pools. Once final purified libraries were created, the libraries associated 

with the two different Ampliseq primer pools were added together by sample accodingly. Templates 

were then created with the 9x diluted pooled libraries by following the Ion PI and PGM Template OT2 

200 Kit V2 protocol (Life Technologies 4480974 and 4485146; MAN0007624 

https://tools.lifetechnologies.com/content/sfs/manuals/MAN0007624.pdf). Briefly, the following 

reagents were added, at the specified amounts, to 65μl of the diluted library: Ion PI Reagent mix TL (750 

μl), Ion PI PCR Reagent B (450μl), Ion PI Enzyme Mix TL (75μl), Ion PI PCR Reagent X (60μl), and 

the Ion PI Ion Sphere Particles (100μl). Samples were then ran on the Ion OneTouch 2 instrument. 

Template positive Ion Sphere Particles (ISPs) were recovered from the One Touch 2 by centrifugation 

and then ~1.4mL of supernatant was removed. Beads were then washed twice with ~ 1.1mL of water and 

the pellet resuspended in Ion PI ISP Resuspension Solution. Quality was assessed by Qubit 2.0 

flourometer. The template-positive ISPs were then enriched on the Ion OneTouch ES by the attachment 

of ISPs to washed streptavidin C1 beads. The enrichment was completed by following the protocol as 

described in the Ion PI Template OT2 200 kit v2 manual: after the attachment of the ISPs to beads, 
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subsequent washes as well as a melt-off reaction occurred on the OneTouch ES. Melt-off solution 

contained 40μl of 1M NaOH, 3 μl of 10% Tween 20 and 277μl of water.  

Enriched ISPs were then prepared for sequencing using the Ion PI or PGM Sequencing 200 Kit 

V2 (Life Technologies 4485149 and 4482006) as described by the Ion PI and PGM Sequencing 200 kit 

v2 protocol (MAN0007961 and MAN0007273 http://ioncommunity.lifetechnologies.com/docs/DOC-

7459 and http://ioncommunity.lifetechnologies.com/docs/DOC-6775). Briefly, the enriched ISPs were 

washed with water, followed by the addition of Ion PI Annealing buffer (15μl) and Ion PI Sequencing 

Primer (20μl) to the enriched ISPs and then amplified on a thermocycler with the following steps: 95°C 

for 2 minutes and 37°C for 2 minutes. After amplifying the ISPs, 10μl of the Ion PI Loading buffer was 

added and the final mixture was loaded onto a washed and calibrated Ion PGM 316 or Proton chip. The 

chips were then washed with a foam created from 45μl of 50% Annealing buffer and 5μl of 2% TritonX-

100, followed by the loading of 55μl of 50% Annealing buffer. This was followed by the chips being 

centrifuged and flushed with Flushing solution and 100μl of 50% Annealing buffer. Ion PI Sequencing 

Polymerase was then flushed across the chip in a solution with 50% Annealing buffer. Upon completion, 

samples were then sequenced on the Proton and PGM 316 chips using the Ion PI and PGM 316 Chip Kit 

(Life Technologies 4482321 and 4483324). Pure DCIS samples were sequenced each on one PGM 316 

chip and DCIS microdissected samples as well as normal samples were barcoded and sequenced 10 

samples per proton chip. For samples barcoded on the Proton chips, Ion Torrent Suite was used to 

separate barcoded sequences and exported as individual BAM files.  

Sequence Analysis   

Sequencing bam files were analyzed by Torrent Variant Caller v.4.2 via customized DEAR1 

parameters, followed by its output as a Variant Calling Format (VCF) file
201

. The customized DEAR1 

parameters consisted of recommended Ion Torrent variant calling parameters with the following changes: 

Splice Site Size-20bp; Maximum Coverage-100,000; Data Quality Stringency- 8.5; Downsample to 

Coverage- 100,000; Snp Minimum Coverage Each Strand-7; Snp Minimum Allele Frequency-0.01; Snp 
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Minimum Coverage-20; SNP strand bias-0.90; Mnp Minimum Coverage Each Strand-7; Mnp Minimum 

Variant Score-400; Mnp Min Allele Frequency- 0.01, Mnp Minimum Coverage-20; Mnp Strand bias-

0.90, Kmer length-19, Minimum Frequency of Variant Reported-0.15; Indel Minimum Variant Score-10; 

Indel Minimum Coverage Each Strand-3; Indel Minimum Allele Frequency- 0.05; Indel Minimum 

Coverage-20; and Indel Strand Bias-0.85. Sample VCF files were annotated by SnpEff/SnpSift using the 

tool’s inherent annotation as well as with Phase 1 Version 3 data from the 1000 Genomes project 
202-204

. 

SnpSift was also used to complete variant filtering in accordance with the following parameter 

requirements: quality score was required to have a greater than 30 Phred score, as well as at least 1,000x 

overall locus coverage, 60x or greater coverage of the variant allele, and a minimum of 30x coverage on 

both forward and reverse strands. Stringency filters allowed for 13-66% reduction in incidental variants 

as well as the retention of noteworthy variants (Appendix III). Variants identified in both the tumor and 

normal samples were filtered out. However, a small number of potentially germline variants (allele 

frequencies around 50% or 100%) were found to exist in samples to which the matched normal sample 

was unable to be sequenced. These unconfirmed potential germline variants were not filtered out of our 

analysis as there was no definitive proof these were in fact germline; therefore, our total variant count is 

slightly inflated by these variants. Genome Analysis ToolKit was used to determine overall coverage
205

. 

The R program for statistical computing packages’ ggplot2 were used to create figures detailing 

sequencing data, including coverage plots (Appendix IV)
202, 203, 206, 207

. Mutation mapper was used to form 

figures detailing position of variants in DEAR1
145, 146

.  

Digital PCR 

Digital PCR was completed on either the QX200 Droplet Digital PCR System (Bio-Rad 186-

4001) or QuantStudio 3D  (Life Technologies 4489084) platform. Custom genotyping TaqMan 

(4331349) was ordered from Life Technologies using a dual reporter system with VIC fluorescence 

tagging the reference sequence and FAM tagging the mutant sequence. PCR reaction mix was created 

using dPCR master mix (Life Technologies 4482710), target probes, and diluted DNA (10-36ng). 

TaqMan genotyping probes were first optimized for largest cycle separation between the VIC and FAM 
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probes with at least 1.5x cycle difference using qPCR with the following conditions: 95°C for 10min 

with 40-50 cycles of 92°C for 15sec and 60-64°C for 1 min. For Bio-Rad, samples underwent droplet 

generation (Bio-Rad 186-4002) whereas the samples undergoing digital PCR on the Life Technologies 

platform were spread across a microchip featuring 20,000 wells using an autoloader (Life Technologies 

4485507 and 4482592). PCR was performed according to protocol with specified cycle number and 

annealing temperatures as determined in preliminary qPCR optimization. Data was then analyzed by 

QX200 droplet reader (Bio-Rad 186-4003) or by QuantStudio 3D (Life Technologies 4489084). Each 

variant was tested in 2-3 replicates. The R program for statistical computing packages’ ggplot2 were 

used to create figures detailing Digital PCR data (Appendix V)
202, 203, 206, 207

. 

Variant Functional Studies  

Luciferase reporter assays were completed in HEK293T by Dr. Nanyue Chen, as described 

previously
2
. Mutation primers and constructs of DEAR1 in pcDNA vectors were created using Stratagene 

Quickchange Lightning Site Directed Mutagenesis according to manufacturer’s protocol (Agilent 210518 

Primer Design Program: http://www.genomics.agilent.com/primerDesignProgram.jsp ; Mutagenesis 

Protocol: http://www.chem.agilent.com/library/usermanuals/Public/210518.pdf ). Wildtype and mutant 

DEAR1 with TGFβ Signal Transduction reporter luciferase plasmids were transfected into 293T cells 

with FuGENE HD according to manufacturer’s protocol (Promega E2311; TM328 

https://www.promega. 

com/~/media/files/resources/protcards/fugene%20hd%20transfection%20reagent%20quick%20protocol.

pdf) . At 24 h after transfection, the cells were lysed in lysis buffer (Promega E1910; https://www. 

promega.com/~/media/files/resources/protcards/dual-luciferase%20reporter%20assay%20and%20dual-

luciferase%20reporter%201000%20assay%20systems%20quick%20protocol.pdf) according to 

manufacturer’s protocol and luciferase activity was measured using a Monolight 2010 luminometer 

(Turner BioSystems). For the 3D culture assays, SKBR3 breast cancer cell lines were transfected with 

the same empty pcDNA or pcDNA plasmid containing wildtype DEAR1 or mutant DEAR1 (R187W or 

R254Q) as used for the luciferase asssays. After transfection and expression of the plasmids were 
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established, the cells were selected by Puromycin exposure for stable expression of the plasmids. Pooled 

stable clones were verified by western and cDNA sequencing. Pooled clones were then grown on 

Matrigel Growth Factor Reduced (GFR) Basement Membrane Matrix (Corning 354230) according to 

Debnath et al. 2003 method
239

. Cultures were grown with 5% FBS in RPMI for 10 days. Acini cultures 

were then fixed and immunostained according to Debnath et al. 2003 protocol using an antibody against 

alpha 6 integrin (EMD Millipore CBL458 ), Alexa Fluor 488 Donkey Anti-Rat Secondary Antibody 

(Life Technologies A-21208) and DAPI stain (Life Technologies D1306)
239

. Immunostained cultures 

were then imaged using Nikon 80i Microscope System. 

Results 

Ultra-Deep Targeted Sequencing Reveals High Frequency of Alteration of DEAR1 in DCIS 

Maintenance of polarity and constriction of migration are important in suppressing invasive 

capabilities
153, 240

. Our previous data has indicated an important role for DEAR1 in maintaining polarity 

and restricting TGFβ-mediated EMT
2, 131, 220

. Moreover, genetic alterations of DEAR1 has been shown to 

be able to alter DEAR1’s ability to regulate these tumor suppressive activities
2, 131, 220

. Therefore, DEAR1 

variants may play an important role in the progression from DCIS to IDC by their deregulation of 

DEAR1’s regulation of polarity and migration. To better understand DEAR1’s role in DCIS progression, 

ultra-deep targeted sequencing of the DEAR1 locus was completed in 17 Pure DCIS and 17 DCIS/INV 

using the ampliseq panel previously described in chapter 3. Patient characteristics used in this study are 

described in table 7. For the DCIS/INV, the individual lesion components were microdissected and 

sequenced separately in order to understand the concordance rate of genetic variants between the lesions, 

which can potentially provide insight to DCIS’s progression to IDC. Sequencing of Pure DCIS and 

DCIS/INV indicated that 71% of both Pure DCIS as well as DCIS/IDC lesions exhibited variants within 

DEAR1 following stringent filtering (please see methods for details and explanation of variant filtration). 

Sequencing of a 48kb locus encompassing DEAR1 identified of a median of 8.25, 15.3, and 35.9 variants 

per FFPE sample in the Pure DCIS, DCIS component of DCIS/INV, and the invasive component of  
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Clinical Characteristics Lesion Type Characteristic 
Information 

Median Age Pure DCIS  53 years old 
(range 34-85) 

 DCIS with IDC 55 years old 
(range 37-72) 

ER+ Pure DCIS  71% (12/17) 

 DCIS with IDC 94% (16/17) 

PR+ Pure DCIS  59% (10/17) 

 DCIS with IDC 94% (16/17) 

ER-/PR- Pure DCIS  29% (5/17) 

 DCIS with IDC 0% (0/17) 

Grade Status: Grade 1 Pure DCIS  0% (0/17) 

 DCIS with IDC 11% (2/17) 

                           Grade 2 Pure DCIS  35% (6/17) 

 DCIS with IDC 65% (11/17) 

                           Grade 3 Pure DCIS  65% (11/17) 

 DCIS with IDC 24% (4/17) 

  

 

Table 7- Patient Characteristics of Sampled Pure DCIS and DCIS with IDC Components. Table 

contains the information of age, hormone status, and nuclear grade for those samples sequenced 

with the targeted DEAR1 sequencing panel.  
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Figure 7- Variant Counts Per Sample in DEAR1 in DCIS.  A-E) Figures indicates the range and 

median of variants within the (A) 48kb locus sequenced, (B) 48kb locus sequenced zoom, (C) 

37kb locus of DEAR1, (D) 37kb locus of DEAR1 zoom , and (E) when C>T and G>A variants, 

often associated with formalin fixation in FFPE samples, are removed. F-H) Figures indicates 

the range and median of variants within the variants within Pure DCIS (F), DCIS component of 

DCIS/INV samples (G), Invasive component of DCIS/INV (H) when comparing the 48kb locus 

sequenced, the 37kb locus of DEAR1, and when C>T and G>A variants are removed. Statistical 

significance was established by a one-way Analysis of Variance (ANOVA). 
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DCIS/INV, respectively (no statistical difference between groups) (Fig. 7a and b). When focusing solely 

on the 37kb DEAR1 gene through the exclusion of the 11kb  intergenic region 5’ to DEAR1, the median 

variant count per sample was 7.6, 12.6, and 30.8 in the Pure DCIS, DCIS component of DCIS/INV, and 

the invasive component of DCIS/INV, respectively (no statistical difference between groups) (Fig. 7c 

and d). However, a large degree of the variants in the FFPE samples were transitions consisting of C<T 

or G>A alterations (52 variants in Pure DCIS, 187 and 465 variants in the DCIS and invasive lesions, 

respectively, in DCIS/INV samples). C>T and G>A transitions are known to be enriched in samples 

undergoing formalin fixation as this process can cause cytosine deamination, inducing the transition
218

. 

When C<T and G>A alterations were removed from the variant count, the median number of variants per 

sample was quite reduced. Specifically, the median variant count per sample in the 37kb DEAR1 gene 

was 4.6, 1.2, and 3.5 in the Pure DCIS, DCIS component of DCIS/INV, and the invasive component of 

DCIS/INV, respectively (Fig. 7e). Statistically significant or near significant reductions in variant counts 

per sample after the removal of C>T and G>A were seen for all lesion types (Fig.7f-h). Interestingly, 

after removal of the C>T and G>A variants, there was a statistically significant difference in the variant 

count per sample between the pure DCIS and the DCIS component of the DCIS/INV samples (p=0.0009) 

(Fig.7e). Analysis by one-way ANOVA showed no statistical difference in variant counts per sample 

between the full 48kb locus sequenced and the 37kb region encompassing DEAR1 for the pure DCIS as 

well as the DCIS and invasive components of samples with concurrent adjacent lesions (Fig.7f-h). 

DEAR1 exhibited variants in all protein domains as well as the regulatory UTR regions (Fig. 8, Table 8 

& 9; Appendix X). Some of these variants did occur at a moderate to high variant frequency (Table 10; 

see further discussion on pg 115). However, most of the variants across sample types were of intronic 

origin (80-88.5%) as expected. Digital PCR was used to validate a selection of exonic variants. 

Validation of 9 variants showed a 78% validation rate (7/9) and a 0.962 correlation rate between the 

variant allele frequencies observed from sequencing and those shown by digital PCR (Fig. 9).  

Sequencing of Pure DCIS Indicated the Presence of DEAR1 Exonic and Regulatory Variants  
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Figure 8- Distribution of Variants in DEAR1. A) Figure shows the frequency of variants within 

each region of DEAR1. B) Representation to functional classification of the variants in DEAR1. 

A 
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Sample Mutation % Allele 

frequency 

Validated Area Within 

DEAR1 

PD03 D421G 4%  SPRY domain 

PD04 D240N 7%  Coiled coil 

domain 

PD05 D106V 4% Yes B-box domain 

 D421G 7% Yes SPRY domain 

PD06 D421G 6%  SPRY domain 

PD07 D106V 4% Yes B-box domain 

PD08 D106V 4% Yes B-box domain 

PD12 R187W 13% Yes Coiled coil 

domain 

 D240N 81% Yes Coiled coil 

domain 

 

 

 

 

 

 

 

 

 

Table 8- Full List of DEAR1 Variants in Pure DCIS FFPE Samples Within Exonic and Regulatory 

Regions. Table contains the list of variants in each Pure DCIS sample occurring in the exonic or regulatory 

regions of the gene, indicating the allele frequency, validation status, and region of DEAR1 variant is 

contained in.  
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Sample Mutation Lesion Type % Allele 

frequency 

Validated Area Within DEAR1 

DCIS of 

DCIS/ 

INV 

Invasive 

of DCIS/ 

INV 

D01 G349G X  4%  SPRY domain 

 T>C 

Chr1:33648206 

 X 16%  Upstream; 

GATA3/KAP1  

Binding site 

D04 R384C  X 3%  SPRY domain 

D05 T>C 

Chr1:33612419 

X X 3%DCIS 

15%INV 

 Upstream; 

GATA3/KAP1  

Binding site 

 E183K  X 4%  Coiled coil domain 

 

 L185L  X 3%  Coiled coil domain 

 A202A  X 4%  Coiled coil domain 

 Q233K  X 3%  Coiled coil domain 

 

 L255F  X 4%  Exonic 

 V356M  X 6%  SPRY domain 

 T361S  X 9%  SPRY domain 

 R374C  X 5%  SPRY domain 

 G376D  X 4%  SPRY domain 

 F386F  X 7%  SPRY domain 

 W404*  X 3%  SPRY domain 

 R410Q  X 3%  SPRY domain 

 c.*676AGGG> 

TCCC 

 X 43%  3’UTR (mir10b) 
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Sample Mutation Lesion Type % Allele 

frequency 

Validated Area Within DEAR1 

DCIS of 

DCIS/ 

INV 

Invasive 

of DCIS/ 

INV 

D06 R184R X  3%  Coiled coil domain 

 

 E370K X  4%  SPRY domain 

 S23S  X 4%  RING domain 

 G179D  X 4%  Coiled coil domain 

 

 V364M  X 4%  SPRY domain 

 G376S  X 3%  SPRY domain 

 I378M  X 3%  SPRY domain 

D08 G>A 

Chr1:33648250 

X  15%  Upstream; 

GATA3/KAP1  

Binding site 

D10 c.*676AGGG> 

TCCC 

 X 22%  3’UTR (mir10b) 

D11 E77E X  3%  Exonic 

 G257E X  3%  Exonic 

 N395N X  3%  SPRY domain 

 I128I  X 3%  Coiled coil domain 

 D130D  X 16%  Coiled coil domain 

 V336M  X 3%  PRY domain 

 R374H  X 5%  SPRY domain 

 G376D  X 4%  SPRY domain 

 S383N  X 3%  SPRY domain 
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Sample Mutation Lesion Type % Allele 

frequency 

Validated Area Within DEAR1 

DCIS of 

DCIS/ 

INV 

Invasive of 

DCIS/ INV 

D11 R410W  X 3%  SPRY domain 

D12 G>A 

Chr1:33648250 

X X 80%DCIS 

6%INV 

 Upstream; 

GATA3/KAP1  

Binding site 

 Q19* X  4%  RING domain 

 L208L  X 5%  Coiled coil domain 

 L420L  X 3%  SPRY domain 

D13 T>C 

Chr1:33648206 

 X 29%  Upstream; 

GATA3/KAP1  

Binding site 

 D130D  X 6%  Coiled coil domain 

  

c.*676AGGG> 

TCCC 

 X 68%  3’UTR (mir10b) 

D14 V364V X  3%  SPRY domain 

 

 

 

Table 9- Full List of DEAR1 Variants in DCIS FFPE Samples with Adjacent Invasive Components in 

Exonic and Regulatory Regions. Table contains the list of variants in each sample, indicating the lesion 

type each variant was found in as well as the allele frequency, validation status, and functional region.  
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Sample Mutation Lesion Type % Allele 

frequency 

Validated Area of 

DEAR1 Pure  

DCIS 

DCIS of 

DCIS/ 

INV 

Invasive  

of DCIS/ 

INV 

PD12 R187W X   13% Yes Coiled coil 

domain 

 D240N X   81% Yes Coiled coil 

domain 

D01 T>C 

Chr1:33648206 

  X 16%  Upstream; 

GATA3/KAP1  

Binding site 

D05 T>C 

Chr1:33612419 

 X X 3%DCIS 

15%INV 

 Upstream; 

GATA3/KAP1  

Binding site 

 c.*676AGGG> 

TCCC 

  X 43%  3’UTR 

(mir10b) 

D08 G>A 

Chr1:33648250 

 X  15%  Upstream; 

GATA3/KAP1  

Binding site 

D10 c.*676AGGG> 

TCCC 

  X 22%  3’UTR 

(mir10b) 

D11 D130D   X 16%  Coiled coil 

domain 

D12 G>A 

Chr1:33648250 

 X X 80%DCIS 

6%INV 

 Upstream; 

GATA3/KAP1  

Binding site 
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Sample Mutation Lesion Type % Allele 

frequency 

Validated Area Within 
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Binding site 
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(mir10b) 

 

 

 

 

 

 

 

Table 10- List of High Variant Frequency (>10%) DEAR1 Variants in Functionally Important Areas. Table 

contains the list of variants in each sample that occurred at a higher allele frequency greater than 10%, 

indicating the lesion type each variant was found in as well as the validation status and functional region.  
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Figure 9- Validation of DEAR1 Variants Found Through Ultra-Deep Targeted Next 

Generation Sequencing by Digital PCR. A number of exonic variants found in sequencing 

were verified through the use of a TaqMan based digital PCR assay. Figure details the 

correlation of the observed frequency of the spike-in to the observed frequency detected by 

digital PCR. 
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Figure 10- DEAR1 Experiences Exonic Variants in DCIS of Which Few are Shared 

Within Lesion Components. Mutations mapper from cBio was used to visualize exonic 

variants from A) Pure DCIS and matched B) DCIS and C) Invasive components. D) Venn 

Diagram indicated the number of shared and private variants within samples. 
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BBC 

BBC 
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For those variants not harbored in the intron, Pure DCIS samples exhibited a frequency of 12% of 

variants within the 3’ UTR region and 8% of variants contained in the exons. The exonic variants within 

the pure DCIS samples tended to be repetitive in nature with multiple samples exhibiting missense 

variants at the same codon. Moreover, the missense variants were overwhelmingly predicted to be 

deleterious by PolyPhen2 and/or SIFT, with most (64%) showing a consensus by both functional 

prediction tools (Fig. 8b). Interestingly, no synonymous or benign variants were found in the pure DCIS 

samples. However, these samples contained notable exonic variants previously found by sequencing 

efforts completed by our lab and by The Cancer Genome Atlas (TCGA) project. These include missense 

variants D106V, R187W, D240N and D421G (Fig. 10a). Variants introducing the D106V missense 

mutation (c.317A>T), which is localized to the zinc finger domain in exon 1, were confirmed to be found 

in 3 Pure DCIS samples and was formally found in an invasive breast tumor from another cohort
2
. The 

D106V variant existed sub-clonally manner within the samples as the variant allele frequency within the 

tumors was about 4%. Another variant, the D421G c.1262A>G variant within the exon 5 Spry domain, 

was discovered and confirmed as another sub-clonal variant (variant allele frequency of 4-7%) in 3 Pure 

DCIS samples. The D421G variant was previously reported by TCGA (as accessed by cBIO) to also 

have existed in a CIMP-high, stage IIIC rectal cancer patient who also exhibited a low level gain of 

DEAR1
131, 145, 146, 241

. Further, a R187W (c.559C>T) confirmed somatic variant was discovered at a 

variant allele frequency of 13% in a luminal early onset (47 years old at time of diagnosis) patient from 

the Pure DCIS cohort. This same variant was also previously found in a metastatic breast cancer cell line 

(21MT) derived from an early onset patient as well as an invasive breast cancer tumor from another 

cohort 
2, 131

. The R187W mutation, harbored within the B-Boxed Coiled coil (BBC) domain of exon 3, 

was earlier reported by our lab to be important for abnormal acinar morphogenesis in the 21MT cell 

line
131

. Excitingly, the early onset patient who exhibited the R187W variant also contained a potential 

germline missense variant, c.718G>A D240N, which resided in the same domain as the R187W variant. 

Presence of the germline status of the variant was confirmed by droplet digital PCR from a matched 

normal adjacent breast tissue. Further, the D240N variant was also found to occur as a somatic variant in 

another pure DCIS patient who exhibited a more typical age of onset (60 years of age). The identification 
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of germline variants, especially exonic variants, with DCIS further supports the role of DEAR1 as a 

classic tumor suppressor that is important in breast cancer.  

Spectrum of Variants Found in DCIS with Invasive Components is More Complex than Pure DCIS and 

Share Relatively Few Variants between the Adjacent in Situ and Invasive Lesions 

Sequencing of DCIS lesions associated with IDC components revealed a much more complex 

spectrum of variants (Fig. 10b/c). Strikingly, the DCIS/INV samples showed a great reduction in the 

frequency of variants within repetitive codons (13%; 4/30 codons) in comparison to the pure DCIS 

samples (75%; 3/4 codons) (Fig. 10a/b). Interestingly, these repetitive codon variants happened to be 

private only to the invasive components of the DCIS/INV samples. Variants within the DCIS/IDC 

samples also had a greater diversity in the type of mutation and in their location within the gene. For 

example, the DCIS/INV samples contained variants in all domains of DEAR1 and included missense, 

nonsense and synonymous variants, whereas the Pure DCIS samples were not found to contain variants 

in the RING and PRY domains of DEAR1, and only consisted of missense variants (Fig 8b). Further, no 

single variant was found to coexist in both Pure DCIS and in DCIS/INV samples. 

When focusing only on the DCIS samples with an adjacent invasive lesion, these variants were 

for the most part, surprisingly, private to the individual components of the lesions. Only 25 of 712 

variants found to be shared between the DCIS and invasive components within the DCIS/INV samples 

(Fig 10d; Appendix XI). The vast majority of the variants common between the two lesion components 

were variants deep within the intronic region of the gene (17/25). These intronic variants were not 

centered in any one area but rather spread throughout the gene’s non-coding sequence.  The other 

variants shared between the lesions (8/25) were in areas upstream of the promoter of DEAR1. 

Interestingly, no exonic or regulatory UTR variants were shared between the two components. In 

comparing the variants private to each lesion component, variants harbored within the DCIS component 

were largely synonymous (63%), whereas synonymous variants played a much smaller role in the variant 

distribution of the invasive component (32%) (Fig. 7d). Further, the invasive component of the DCIS 
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lesions exhibited a larger frequency of missense variants within the exonic region featuring the SPRY 

domain as well as in the region between the BBC and PRY domains compared to the DCIS component. 

Overall, variants predicted to be deleterious occurred at a much higher frequency with the invasive 

components (54%) when compared to the matched DCIS components (37%) (Fig. 8b).  Sequencing of 

the invasive lesions indicated that 64% of the total variants resulted in missense changes, of which 78% 

of these missense variants (50% of total) were predicted to be deleterious by at least one of the 

deleterious prediction tools tested. In contrast, only 24% percent of the DCIS component variants were 

missense variants, yet a 100% of these missense variants were predicted to be deleterious. Therefore, 

though the adjacent invasive lesion showed a higher frequency of missense variants in DEAR1 in 

general, these variants displayed a varied ability to be tolerated, in contrast to missense variants in the 

DCIS component of the samples, of which all were predicted to be deleterious. Two codons found to be 

mutated in the sequencing of DCIS with invasive components were previously reported in Catalogue Of 

Somatic Mutations In Cancer (COSMIC). The mutation E370K, which was discovered as a private 

variant with the DCIS component, was also previously reported in endometrial cancer by the TCGA. 

Further, our sequencing indicated variance at codon 383 inducing a serine to asparagine codon change 

that was restricted to the invasive component of the particular sample. This codon is the same DEAR1 

residue shown to undergo a missense mutation by Abaan OD et al. (S383I) in the large intestine cell line 

HCT-15
242

. Further, the first reported DEAR1 nonsense variants described in breast cancer were 

discovered. These nonsense variants were restricted to DCIS/INV samples (Fig 10 b/c). The two 

nonsense variants were found in two different samples and occurred as small sub-clonal fractions (3-4% 

variant allele frequency), with both being private to either the DCIS or invasive component of the 

lesions. The nonsense variant harbored in the DCIS component occurred in an early onset patient (age 48 

years old at diagnosis) at codon 19 in the RING finger domain of exon 1. The nonsense variant within 

the IDC component of another sample, occurred in an early onset patient (age 44 years old at diagnosis) 

at codon 404 in the SPRY domain of exon 5. The restriction of the nonsense variants to only early onset 

samples may hint at a higher propensity for these types of variants to occur in early onset patients. The 

sequencing of more early onset samples are needed in order to determine if there is a statistical 
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association between DEAR1 nonsense variants and age of onset. Moreover, sequencing data of the 

DCIS/INV samples showed four DEAR1 residues exhibiting alteration in more than one sample, with all 

four residues being restricted to the invasive portion of the tumors. Three of the four codons repetitively 

altered were missense variants shown to occur at 3-5% variant allele frequency. All three variants 

(R374C, G376D/S, R410Q) were predicted to be of deleterious nature 
172, 173

. Variants in the c.376 and 

c.410 amino acids were indicated as having the strongest deleterious scores of the codons exhibiting 

variants in multiple samples (PolyPhen2: 1.00 and SIFT: 0.00) 
172, 173

.  Further, three samples showed the 

presence of a c.*676AGGG>TCCC variant in the 3’UTR of DEAR1, in a putative binding site of 

miR10b. All c.*676AGGG>TCCC variants were restricted to the invasive component of their samples 

and occurred at a relatively high variant allele frequency (22-68%). Additionally, variants that occurred 

upstream of DEAR1’s 5’UTR showed a slight enrichment in areas shown by the ENCODE project to be 

binding sites for the GATA3 (5/17 samples) and KAP1 (also annotated as TRIM28) (4/17 samples) 

transcription factors. These variants within the transcription factor binding sites existed at higher variant 

allele frequencies (8-29%).  These variants may indicate the importance of GATA3 and KAP1 in 

regulating DEAR1. GATA3 and KAP1 have both been associated with the regulation of migration and 

therefore, alteration of the transcriptional regulation of DEAR1 by these transcription factors may 

mediate GATA3 and KAP1’s pro-migratory capacity seen in breast cancer
243, 244

. The invasive 

components of the DCIS lesions were shown to exhibit multiple variants in both the coding and 

regulatory regions of DEAR1, many of which were predicted to be functionally important as well as 

restricted to the invasive component of the DCIS/INV samples. Therefore, the presence of these 

deleterious variants restricted to invasive lesions may indicate the significance of these particular 

variants within DEAR1 to the invasive phenotype exhibited by these lesions.  

DEAR1 Exhibits Functional Mutations in DCIS as Shown by Functional Assays 

In order to understand the role that the variants found in DEAR1 play in DCIS and how they 

may functionally affect the cell, functional assays to assess the deleterious nature of particular mutations 

were completed.  As mentioned previously, a missense variant in 3 Pure DCIS samples (c.317A>T), 
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which induced a codon change at codon 106 from Aspartic Acid to Valine (D106V) was identified. This 

variant was located within exon 1, proximal to the RING finger domain. RING finger domains are 

known to be often critical to the E3 ligase activity exhibited by TRIM family proteins. As such, the 

RING finger has been shown to be pivotal for the DEAR1 E3 ubiquitin ligase activity against TGFβ 

pathway member SMAD3
2
. Due to the proximity of the D106V variant to the RING finger (40 amino 

acids downstream from the 3’ end of the RING finger), it was determined if this missense variant could 

affect DEAR1’s ability to regulate TGFβ signaling. To assess this, a D106V mutant DEAR1 plasmid was 

produced through site directed mutagenesis and transient transfected with a plasmid containing the 

luciferase response element reporter for TGFβ signaling into 293T cells. In the presence of TGFβ, the 

D106V variant was found to greatly reduce DEAR1’s known ability to negatively regulate SMAD3 

dependent TGFβ signaling by increasing SMAD3 transcription factor activity over 4-fold, compared to 

wild-type DEAR1 (p=.04) (Fig. 11)
2
. The effect seen on TGFβ signaling transduction by D106V was 

similar to the effect seen upon deletion of the entire exon 1 of DEAR1. In contrast, a pancreatic cancer 

variant, R254Q, harbored with the BBC domain of DEAR1 was not shown to have any effect upon 

DEAR1’s regulation of TGFβ signaling. Therefore, the D106V variant may be important in mediating 

increased TGFβ induced signaling, which can be potentially important in promoting migration and 

invasion in DCIS in the presence of TGFβ.  

Further, sequencing efforts also revealed the presence of a confirmed somatic missense variant 

introducing a codon change from arginine to tryptophan at codon187 (R187W c.559C>T), harbored 

within the BBC domain of exon 3 in a luminal early onset patient from the Pure DCIS cohort. As 

previously stated, this variant occurred at a relatively higher allele frequency and was also previously 

implicated in IDC 
2, 131

. The R187W mutation has been shown to be important for the deregulation of 

acinar morphogenesis in the 21MT cell line, through genetic complementation
131

. To further confirm 

R187W’s ability to affect DEAR1’s regulation of acinar morphogenesis, SKBR3 breast cancer (HER2 

positive) cells stably expressing mutant DEAR1 were used for further assessment in 3D culture. The 

R187W mutation construct was created by site directed mutagenesis. Pooled stably expressing SKBR3 



117 
 

cell lines were generated through transfection of the mutant plasmid and G418 selection. SKBR3 cell 

line was chosen due to the absence of detectable protein expression of DEAR1 as well as DEAR1 

mutation, as determine by Western and Sanger sequencing, respectively. Moreover, this cell line is 

known to exhibit altered polarity and abnormal acinar morphogenesis in 3D culture
245

. Upon culturing 

the SKBR3 mutant DEAR1 cell lines in 3D culture, the clone exhibiting the R187W variant failed to 

revert the abnormal acinar morphology of SKBR3 breast cancer cell lines in contrast to the ability of 

wild-type DEAR1 to organize the SKBR3 acini (Fig. 12). The minimal degree of acinar organization 

resulting from the expression of R187W was similar to the degree seen in those cells expressing an 

empty vector plasmid. Further, in comparison, another variant construct reflecting the pancreatic cancer 

DEAR1 mutation R254Q that occurs in the same DEAR1 domain as R187W, was stably expressed in 

SKBR3 and showed comparable minimal abilities to revert abnormal acinar organization. The ability of 

two variants in the BBC domain to subvert DEAR1’s regulation of acinar morphology may potentially 

indicate the importance of the BBC domain in maintaining normal acinar morphology. In all, results 

indicated that a subset of the variants found in DEAR1 during the sequencing of DCIS samples are 

functional and can have profound effects on DEAR1’s regulatory capacity of important signaling events 

and cellular phenotypes. 

 Discussion 

Diagnosis of DCIS has greatly increased in recent years due to the upsurge of mammographic 

findings
221

. The lack of biomarkers able to stratify DCIS patients at greater risk for progression has led to 

a large variance in the methods used to treat these patients, leading to the possibility of both over-

treatment and under-treatment. One of the most important clinically relevant questions regarding breast 

cancer is deciphering the molecular relationship between DCIS and IDC as well as identifying drivers of 

DCIS progression which are able to predict invasive recurrence. Currently, no reliable and clinically 

validated biomarkers are available that predict an invasive recurrence after surgical treatment. Multiple 

histological markers have been proposed to be potential recurrence markers, including tumor size,  
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Figure 11- Mutation of DEAR1 Affects TGF-β and SMAD3 Signal Transduction. This figure shows the 

effect of tumor-derived mutation of DEAR1 on TGF-β signal transduction. Various DEAR1 mutations found 

by sequencing of breast and pancreatic cancer (D106V, R254Q) along with artificial deletion of the 1
st
 exon 

of DEAR1 (ΔE1) were co-transfected into HEK293T cells with CAGA12 reporter. After 24 hours, cells were 

treated with or without TGF-β (1 ng/mL) for 24 hours and luciferase activity was measured. Figure taken 

from Chen et al. 2013
2
. 
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Figure 12- DEAR1 Variants Can Effect Acinar Morphology in SKBR3 in 3D Culture. 

SKBR3 cells stable expressing empty plasmid control, wildtype or mutant DEAR1 in a 

pooled manner were grown in 3D culture and immunostained with Alpha-6-integrin (red) 

and DAPI (blue). Example of disorganized, grape cluster like nature of SKBR3 cells grown 

in 3D culture shown in A. A proportion of the cultures exhibited a more organized 

morphology shown in B. C) Quantification of organized population of SKBR3 stable cells.  
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nuclear grade, and surgical margins
246

. One of the more promising molecular biomarker studies, the 

DCIS Score, a derivative of the OncoType-DX predictive biomarker test, was shown to be able to use the 

gene expression signature of 7 cancer genes to predict recurrence in the non-randomized, prospective, 

multi-center trial ECOG E5194
247

. It is important to note that the DCIS Score was tested in a relatively 

small trial and under specific patient selection criteria. This gene expression biomarker panel study is 

promising but does have its limitations and has not been currently validated in a large clinical trial. 

Moreover, the gene expression signature used in the DCIS Score has not resulted in a better understand 

of the biology of the disease. Therefore, it is important to continue to search for biomarkers which not 

only inform on recurrence potential but also on the mechanisms of recurrence, of which can be important 

for future therapeutic developments.  In accordance with this, our lab has sought to understand the 

molecular and genetic role of DEAR1 in DCIS progression as well as its possible ability to act as a 

prognostic marker for DCIS. DEAR1, a dominant regulator of polarity and acinar morphogenesis, is 

known to undergo downregulation at the protein level during the transition from normal breast ductal 

tissue to DCIS
131

. Moreover, DEAR1 is an E3 ubiquitin ligase for SMAD3, a key signaling molecule in 

TGFβ pathway driven EMT
2, 220

. As loss of polarity and acquisition of invasive capacity are known 

hallmarks in tumor acquired EMT, it is possible that DEAR1 can play a role in the progression of DCIS 

and recurrence of the disease. As such, the expression of DEAR1 was found in a cohort of early onset 

breast cancer to be associated with a significantly higher rate of recurrence free survival
131

. It is plausible 

that alteration of DEAR1 expression or loss of its normal function via mutations may act as a driver in 

recurrence. In accordance, DEAR1 has been shown previously to be mutated and chromosomally loss, by 

both heterozygous and homozygous deletions, in multiple epithelial cancers including invasive breast 

cancer
2, 131

. With this knowledge, it was proposed that genetic alterations of DEAR1 may play an 

important role in DCIS progression. To determine this, a custom Ampliseq panel was designed to target 

the genomic locus encompassing DEAR1. This panel was used to complete ultra-deep targeted 

sequencing of DEAR1 on the Ion Torrent PGM and Proton platforms. Sequencing of Pure DCIS and 

DCIS/INV samples with this custom Ampliseq panel found that DEAR1 is mutated in 71% of DCIS. 

Other genetic drivers known to be mutated in DCIS, however at lower frequencies, include PI3KCA 
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(50%, n=12), p53 (21.6%, n=70), BRCA1 (0.8%, n=369), and BRCA2 (2.4%, n=369)
248-250

. The degree to 

which DEAR1 is altered in DCIS highlights the potential importance of genetic alterations in this tumor 

suppressor in early breast cancer. It is important to note, however, that the techniques utilized in these 

studies did not have the high sensitivity that the ultra-deep targeted next generation sequencing (NGS) 

method used in this study had. The application of ultra-deep NGS allows one to see rare sub-clonal 

populations that may be missed by other sequencing platforms, like Sanger, or other lower coverage 

applications of NGS, like whole genome or exome sequencing, due to the high depth of coverage able to 

be achieved. This is also a potential reason for the DEAR1 genetic alteration frequency being 

significantly higher in our cohort versus sequencing data of IDC from the TCGA cohort (0.1%; n=981) 

as well as our own previous sequencing data of IDC (13%; n=55)
131, 145, 146

.  

The high degree of sensitivity able to be achieved by ultra-deep targeted sequencing can be 

important for identifying potentially clinically relevant sub-clonal variants. The use of ultra-deep NGS 

for sequencing DEAR1 has revealed that many of the variants harbored within the gene occur as rare 

(<10% variant allele frequency) sub-clonal events. Current debate exists concerning the clinical and 

functional importance these rare sub-clone variants. It has been suggested that the high degree of intra-

tumor heterogeneity and presence of rare sub-clonal populations can serve as a method to increase tumor 

survival by making the tumor able to withstand different environmental and therapeutic assaults via its 

high degree of genetic diversity, a known population based survival mechanism within ecology
195

. 

Further, evidence has shown that genetically demarcated sub-clones can have differential functional and 

morphological features
251

. Multiple factors can influence the determination of which sub-clone acquires 

dominancy, including therapeutic applications and the acquisition of other genetic drivers that give the 

clone a large functional advantage. It is the ability of the tumor, by the presence of these sub-clonal 

populations, to be in a constant state of flux that allows the tumor to have a large advantage towards 

survival and progression.  

Though ultra-deep NGS represents a novel method for detecting these rare sub-clones, a trade-

off exists as the high degree of sensitivity able to be achieved by this method can allow errors to appear 
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to be valid variants which may be introduced during library construction or sequencing. Therefore, due 

to the use of ultra-deep targeted sequencing to find rare sub-clonal mutations within DEAR1, stringent 

variant filtering techniques was utilized to reduce the degree of errors that exist within the data (see 

methods for detailed filtering techniques). Multiple techniques for variant filtering stringency were tested 

in order to find the technique that minimized the degree of possible erroneous variant calls while still, in 

keeping with the discovery nature of the project, maximized the inclusion of variants than can be 

potentially deleterious (see Appendix III for differential filtering strategies tested and their effect on 

variant counts). Use of the clinically applicable requirement of at least 1,000x coverage at the variant 

locus reduced the possibility of spurious variant calls due to areas of low coverage while the requirement 

that the variant needed to obtain at least 60 supporting reads allowed for a high degree of substantiation 

of the variant yet still permitting the identification of sub-clonal variants that could be potentially 

clinically important. Further, variant calls were filtered against data compiled by the 1000 Genome’s 

project to remove any catalogued Single Nucleotide Polymorphisms (SNP) from the final variant list as 

common polymorphisms are less likely to be pathogenic
204

. Use of the population variation data 

assembled by the 1000 Genome’s project to assess the pathogenicity based on the variant frequency in a 

control population has been encouraged by the American College of Medical Genetics and Genomics 

(ACMG) and the Association for Molecular Pathology (AMP)
252

. The 1000 Genome’s project 

theoretically accounts for all SNPs that occur in at least 1% of the populations studied, as stated by the 

project (www.1000genomes.org). However, a small number of variants that are known to occur in less 

than 1% of the population are still harbored within the data. Therefore, variant filtration to remove 

common population variants from the sequencing data by filtering against variants catalogued by the 

1000 Genomes data will not only remove common SNPs but also may remove rare variants that could 

possibly be pathogenic. Due to this, variant files were also assessed to determine the presence of variants 

annotated by the 1000 genomes project which were known to occur in less than 1% of the matched 

ethnic population of the clinical sample. Variants matching these criteria were retained in the final 

variant table. Further, half of the clinical samples used in this sequencing study also had matched normal 

samples, either normal adjacent breast or lymph tissue, sequenced as well. Germline variants were 
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removed from the final variant table for clinical samples in which the matched normal was able to be 

sequenced. For those clinical samples for which a matched normal quality DNA sample was unable to 

acquired, suspected potential germline variants were unable to be removed due to the lack of 

confirmatory evidence to their germline status. Suspected germline variants were identified by allele 

frequencies around 50% (heterozygous) or 100%. These potential germline variants have been marked in 

the full variant table within the appendix (Appendix X). However, other potential germline variants may 

exist that cannot be identified by the canonical heterozygous and homozygous allele frequencies, as 

variances in ploidy and heterogeneity within tumors can affect the variant allele frequencies identified by 

sequencing. For example, if a germline heterozygous variant undergoes loss of heterozygosity in 30% of 

tumor cells sequenced, the variant will be present in 65% of sequencing reads of the tumor bulk rather 

than the previous 50% variant allele frequency that was present at the germline. Therefore, for those 

samples in which a normal was unable to be sequenced, variants identified in these samples may include 

germline variants that were unable to be extracted.  

The variant spectrum found in Pure DCIS and DCIS with invasive components showed that 

the nature of the variants found in the lesion types are quite different. Pure DCIS lesions exhibited few 

exonic variants and of those that existed, the variants seemed to affect a limited number of sites. 

However, the DCIS associated with an adjacent invasive lesion showed a high degree of variability not 

only in the functionality of the variants but also in the degree of sites affected by variation. The increase 

in the number of exonic variants in the samples of DCIS with an invasive component compared to the 

Pure DCIS could be due to multiple factors. It is possible that DCIS lesions associated with invasive 

components experience different mutational processes. Both the DCIS and the invasive component of the 

DCIS/INV samples exhibited an 89-91% reduction in mean variant counts after the removal of C>T and 

G>A variants versus 40% reduction in the Pure DCIS. A larger enrichment of the C>T transition in the 

DCIS with invasive component may indicate a role in mutational mechanisms that enrich for these 

transitions in the pathogenesis of DCIS and its associated invasive lesion. In support of this idea, 

multiple proposed mutational signatures, many of which are associated with C>T transitions, have been 
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linked to different mutational mechanism like aging, APOBEC editing, UV radiation, Temozolomide 

treatment, and mismatch repair defects
253, 254

. Some of these signatures have been associated with certain 

subgroups of cancer, like the Signature B single-nucleotide substitution processes as described by 

Stephens et al. 2012 and its association with ER+ breast tumors 
255

. Moreover, these samples also 

underwent LCM, which utilizes a UV laser to assist in the removal of the tissue. The use of the UV laser 

may have induced C>T variants in DEAR1 in those cells exposed to the laser and the small fraction of 

these  associated variants could have been detected due to the use of highly sensitive ultra-deep 

sequencing. This is supported, as previously mentioned, by the reduction of variant counts per sample 

when C>T variants are removed, which are also known to be the predominant substitution associated 

with UV A exposure (Fig 7b). Further, it is important to note that the median rate of follow-up for our 

Pure DCIS samples was about 5 years. Recent evidence suggests that the rate of recurrence is twice as 

high within 15 years post-primary tumor development than at 5 years
256

. Therefore the possibility cannot 

be ruled out that the Pure DCIS lesions used in this study were later diagnosed with an invasive 

recurrence.  

For those variants that were found by our ultra-deep targeted sequencing of DEAR1, many of 

these discovered were predicted by PolyPhen2 and SIFT functional prediction tools to be deleterious. 

The potential functionality of these variants was also supported by molecular functional studies 

completed with these variants showing their importance in maintaining acinar morphology and 

regulation of TGFβ-induced signaling. As previously mentioned, our lab has identified DEAR1 as an E3 

ubiquitin ligase for TGFβ pathway member SMAD3, promoting SMAD3’s proteosomal degradation
2
. 

Multiple TGFβ antagonists are currently in various phases of development, such as the TGF-β 

neutralizing antibody, 2G7, and antisense TGFβ oligonucleotide, AP 12009, which are in phase III 

clinical trials
257

. DEAR1 mutation, such as the D106V variant, or deletion of the locus, which is known to 

be common in multiple cancers including invasive breast cancer, may be able to act as a predictive 

biomarker and thus stratify patients for the efficacy of therapies targeting the TGFβ pathway.  
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Our sequencing efforts of DCIS have uncovered not only novel variants, but also variants that 

have been previously described by other sequencing efforts to occur in cancer, including breast cancer. 

The first nonsense variants in DEAR1 in breast cancer were also described herein. Interestingly, the 

nonsense variants were restricted to those DCIS samples associated with an invasive component. 

Nonsense variants are essentially considered to be loss of function variants as they produce a codon 

change that instills a premature coding stop. The vast majority of transcript products containing nonsense 

variants are degraded via nonsense-mediated mRNA decay as a quality control method employed by the 

cell. These variants are one example of how the tumor cell can cause loss of DEAR1 expression, thereby 

allowing for deregulation of the pathways that DEAR1 regulates. Further, the detection of repetitively 

altered codons in DEAR1, occurring in both Pure DCIS and DCIS associated with invasive components, 

has been described. The recurring nature of these variants could indicate their importance in breast 

cancer. The repetitive variants found in our Pure DCIS samples excitingly had been previously described 

in past sequencing efforts in cancer, including two that are known to occur in breast cancer. Moreover, 

the incidence of recurring variants in DCIS associated with an adjacent invasive component were found 

to be, interestingly, restricted only to the invasive portion of the lesion and were all within the SPRY 

domain of exon 5. This data could suggest not only the significance of these particular variants in 

invasive breast tumors but also the importance of the SPRY domain in regulating essential pathways in 

IDC. Further work is needed to understand the detrimental effects of these variants and the role they play 

in DCIS.  

Contrary to expectation, the DCIS samples associated with an invasive component shared very 

few variants in common between the in situ and invasive components. If the DCIS progressed according 

to the “branched” model of progression, as described in Kaur et al. 2013, it would be expected to find 

that the vast majority of variants would be shared between the DCIS and invasive components, as has 

been found for copy number alterations in a number of studies
195, 235, 248

 (Fig. 13a). However, our data 

supports a model in which the DCIS and invasive components share a very early ancestor and then  
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Figure 13- Model of DEAR1 Variants Based on DCIS Progression Models. Both branched and 

parallel models of DCIS progression have been proposed. The * indicates where DEAR1 

mutations would be expected in DCIS within each model. As previous work has shown by other 

labs, most chromosomal changes are common between both lesions and are therefore an early 

event in DCIS progression A) This model is representative of the branched model of progression 

with invasive components (IDC) being a direct lineage from DCIS. Our data is unsupportive of 

this model as DEAR1 variants were found to mostly exist as private changes in both DCIS and 

IDC, which is unable to occur if DCIS is a direct ancestor of IDC. B) This model is representative 

of the parallel model of progression with an earlier lesions acting as the common ancestor for both 

the in situ and invasive lesions. In this model, the common ancestor splits off to form both DCIS 

and IDC. Very little variation is expected to be shared between these lesions in this model as the 

DCIS and the IDC continue to progress in independent yet parallel mechanisms, both 

accumulating different genetic alterations after the split. Our data supports this parallel model as 

very few variants in DEAR1 were shared between the two components.   

B A 
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evolve independently. Due to the minute degree to which DEAR1 variants were shared between the 

DCIS and invasive lesions, the data indicate that the DEAR1 variants mostly occurred after the split from 

the ancestral clone (Fig. 13b). Due to the few number of variants shared between the lesions, conclusions 

regarding DEAR1’s role in progression from DCIS to invasive disease is unable to be determined. 

However, our data seems to support the “parallel” model that was first described by Sontag and Axelrod 

in 2005 describing independent yet parallel evolution of the DCIS and invasive lesions
237

. Their model 

has been empirically supported by data from Newburger et al. 2013, in which they found evidence for 

“parallel” evolution in 2 of the 3 DCIS lesions sequenced, with the DCIS and invasive tumors sharing 

more in common with an earlier neoplasia lesion than with each other
258

. Therefore, future ultra-deep 

sequencing and molecular studies of earlier neoplasia lesions may reveal sub-clones which distinct 

genetic alterations that exhibit an increased invasive potential. The clinical implications of the “parallel” 

model may alter the way that DCIS lesions are currently treated, as the evidence purports that the DCIS 

lesions are not always the lesion of origin that progresses to invasive carcinoma but rather, the potential 

for invasion capacity may exist within a sub-clone of a much earlier cell of origin.  

Our study has described the high rate of existence of sub-clonal variants within an important 

tumor suppressor, DEAR1, including the identification of loss of function variants, in the earliest form of 

breast cancer through the use of ultra-deep targeted sequencing. Sequencing with our targeted 48kb 

Ampliseq panel has also provided evidence for the “parallel” model of the relationship between DCIS 

and IDC. Further studies are needed to definitively identify and empirically show the presence of rare 

sub-clones within an earlier cell of origin, potentially in a very early neoplastic lesion, which may give 

rise to a population with an increased propensity to be invasive. Understanding the nature and 

mechanisms of the sub-clonal populations known to harbor variants in genes important in polarity and 

invasion, which are critical attributes of cells undergoing EMT, may help us to better understand breast 

cancer progression and decipher better way of treating this disease.  
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Chapter 5 

Discussion 

Introduction 

Normal cellular homeostasis is dependent on a delicate balance between the expression of 

genes regulating growth, cell death, and polarity. Interruptions to the balance of these factors can lead to 

dysplasia and potentially the formation of a carcinoma. The importance of these factors are reflected in 

their inclusion as components of the hallmarks of cancer
52

. Combination of genetic alterations including 

deletions and/or loss of function mutations in genes that suppress tumor formation or amplifications 

and/or translocations in genes which promote oncogenesis can act as integral drivers of tumorigenesis. 

The cell has multiple mechanisms to inhibit the process of tumor formation. Broadly, genes important to 

maintaining critical pathways involved in inhibiting growth promotion and invasive capacity are called 

tumor suppressors.  

The classical method of tumor suppressor inactivation was first described by Alfred Knudson 

in 1971
30

. Knudson’s two hit model based on Retinoblastoma inactivation describes the requirement of 

alteration to both alleles of a tumor suppressor gene in order to complete its full inactivation and the 

potentiation of tumorigenesis. Twenty-seven years after the description of the two hit model, the 

discovery of haploinsufficient genes, in which loss of only one allele of the tumor suppressor is required 

to inactivate the gene, was reported, changing the paradigm of how tumor suppressors are described
259, 

260
. Tumor suppressor genes can be disabled by multiple mechanisms including chromosomal deletion of 

one or both alleles or inactivating mutations like nonsense or frameshift alterations. Further, epigenetic 

alterations and overexpression of targeting microRNAs have also been described as mechanisms, beyond 

altering the genetic sequence, which can lead to the loss of expression of tumor suppressor genes. 

Besides altering expression of these critical tumor suppressors, another method to modify the regulatory 

nature of these genes is through the existence of single nucleotide changes inducing missense mutations, 

which may alter the ability of tumor suppressor genes to bind to the gene they regulate. No matter the 
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mechanism of inactivating the gene, alteration of tumor suppressors can lead to large cellular changes 

and may affect clinical outcome, as typified by germline mutations in tumor suppressors TAp53, PTEN, 

and BRCA1/2 which can greatly increase the lifetime risk of cancer for these individuals
261-263

. 

The TRIM family of annotated E3 ubiquitin ligases, though mostly known for their tumor 

promoting activities, contain noted tumor suppressors, like PML (TRIM19) which has been shown to be 

important for the promotion of DNA fidelity by its recruitment of vital DNA repair factors to nuclear 

bodies after DNA damage and cellular stress
264

. Examples of other members associated with tumor 

suppressive activities in cancer are TRIM13 in chronic lymphocytic leukemia, TRIM33 in chronic 

myelomonocytic leukemia, TRIM24 in hepatocellular carcinoma, and TRIM40 in colorectal cancer (see 

chapter 1 for further descriptions) 
72

. Our lab has previously implicated another important TRIM family 

protein, DEAR1 (TRIM62), as having strong tumor suppressive activities. In invasive breast cancer 

(IDC), DEAR1 expression was significantly associated with local recurrence free survival and was also 

found to be mutated and homozygously deleted
131

. Moreover, Dear1
-/-

 and Dear1
-/+

 mice exhibited late 

onset tumor formation in multiple tissues, including lung, mammary, and lymph, indicating the 

importance of bi-allelic expression of Dear1
2
. Our lab has further elucidate two of the significant 

molecular mechanisms behind DEAR1’s tumor suppressive activities including its role as a master 

regulator of acinar morphogenesis and negative regulator of TGFβ mediated migration in breast cancer
2, 

131, 220
  

Discussion 

The work presented herein further implicates DEAR1 as a tumor suppressor through its 

characterization of the genetic mechanisms of DEAR1 inactivation. Our work has described the 

occurrence of chromosomal loss and mutation of the DEAR1 locus in multiple cancers including breast, 

lung, and colorectal adenocarcinomas
2
. Lending support for the clinical importance of chromosomal 

alterations involving the DEAR1 locus in these tumor types was the ability of the Dear1 mouse model to 

recapitulate the tumor spectrum associated with chromosome 1p loss in humans
2
. Loss of chromosome 
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arm 1p is a frequent event in epithelial tumors and has been shown to be clinically relevant, as 1p loss is 

associated with reduced overall survival in breast cancer
142, 143

. As cancer progression occurs by an 

accumulation of multiple genetic alterations, the ability for DEAR1 loss to cooperate with other 

alterations to affect survival was ascertained. Through database analysis, it was shown that the 

heterozygous deletion of the DEAR1 locus could cooperate with amplification of a known epithelial to 

mesenchymal transition (EMT) driver, SNAI2, to predict overall survival in Invasive Breast Cancer 

(IDC), further highlighting the clinical utility of DEAR1 chromosomal alterations
2
. As migration and 

invasion are important steps in late tumor progression, understanding the aberrant genetic changes which 

promote the movement of cells beyond the basement membrane can help unravel the underlying 

mechanisms regulating these processes. SLUG (SNAI2) has been identified as a prominent regulator of 

EMT, known to cooperate with other drivers of migration such as Twist to promote tumorigenesis
265

. 

SNAI2 is amplified and overexpressed in a variety of tumors and its expression has been shown to 

promote tumor formation in mice
266

.  Combination of alterations effecting different pathways but driving 

the same cellular process of migration can be powerful mechanisms in the progression of tumorigenesis. 

This is supported by the strong and significant synergistic effect of the chromosomal heterozygous loss 

of DEAR1 and the alteration of SNAI2 on predicting IDC survival rates. This association has leant to the 

possibility for future development of the use of chromosomal alterations of these two genes, DEAR1 and 

SNAI2, to act as a prognostic indicator for IDC to help in the stratification of patients for prognosis.  

As DEAR1 has been shown to be important for migration and invasion as well as a possible 

prognostic indicator in IDC, a better understanding of DEAR1’s role in the early in situ form of breast 

cancer is needed. To begin to understand if DEAR1 is genetically altered in in situ breast cancer, ultra-

deep targeted sequencing of a 48kb locus encompassing DEAR1 was completed in Pure Ductal 

Carcinoma in Situ (DCIS) and DCIS associated with invasive components. For this project, a custom 

targeted DEAR1 Ampliseq panel was generated, which exhibited strong precision capabilities, as well as 

a high degree of sensitivity and specificity. The DEAR1 Ampliseq panel showed a high degree of 

sensitivity and specificity in regards to single nucleotide variants. The sensitivity and specificity data 
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also showed our inability to be confident in Insertion/Deletions (INDEL) calls from the Ion Torrent 

platforms. The low sensitivity of Ion Torrent sequencing platforms to call INDELs has been shown in a 

variety of publications
212, 213

. This, however, did not affect our ability to understand the variation in 

DEAR1 in DCIS as previous analysis has shown that majority of variants seen in the DEAR1 locus, 

besides loss of the entire p arm of chromosome 1, are single base-pair substitutions(described in chapter 

2). Due to the high frequency to which chromosome 1p is lost in epithelial cancer as well as data 

showing that chromosomal alterations in DCIS are often conserved in its invasive counterpart, it was 

hypothesized that the vast majority of informative information concerning how DEAR1 variants evolve 

during breast cancer progression could be found in looking solely at nucleotide alterations
2, 142, 143, 233

. 

Further, the analytical performance of the custom sequencing panel generated was characterized by a 

novel spike in assay designed to assess the accuracy of the allele frequencies of the variants identified in 

the sequencing data. The novel spike-in assay showed a relatively high rate of recapitulation for the 

experimental variant allele frequencies in regards to the expected spiked-in allele frequencies. Moreover, 

our development of this method for determining the accuracy of variant allele frequencies for a 

sequencing panel can be utilized as an important analytical metric for any targeted sequencing approach. 

We hope that future research studies as well as potential clinical assays featuring targeted sequencing 

panels will employ this performance measurement to help researchers fully understand the capabilities of 

their sequencing panels.  

Ultra-deep targeted sequencing of DEAR1 revealed the high frequency (71%) to which the 

gene is altered in DCIS. Few noted genes have been shown to exhibit mutations at this degree in DCIS, 

such as Tp53, PIK3CA, and BRCA1 (as previously discussed in chapter 4). The high frequency of 

DEAR1 mutations in combination with the frequent loss of chromosomal 1p may cooperate to fully 

inactivate DEAR1 in these tumors. Variants discovered during sequencing contained notable exonic 

variants that were found during previous sequencing completed by our lab and other large sequencing 

efforts like The Cancer Genome Atlas (TCGA) in epithelial cancers, including breast cancer. Moreover, 

the presence of the first known nonsense alterations in DEAR1 in breast cancer was described as well as 
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a potential germline mutation. Potential functionality for many of these variants were suggested by 

deleterious prediction tools, SIFT and PolyPhen2, as well as by functional assays completed by our lab. 

It is important to note that particular factors, such as environmental cues, may modify the deleterious 

nature of some of the DEAR1 variants. For example, the D106V mutation, found both in DCIS and IDC, 

was shown to potentiate TGFβ signaling in the presence of the TGFβ ligand, in comparison to wild-type 

DEAR1
2
. Variants in DEAR1 that modulate DEAR1’s inhibitory nature regarding the TGFβ pathway may 

be able to intensify downstream phenotypic effects such as increasing motility and invasive capacity. 

Further, DEAR1 loss of function mutations may be able to synergize with other genetic defects in cancer 

to further promote tumorigenesis. For example, it has been shown that heterozygous loss of DEAR1 can 

cooperate with mutant Kras can promote tumorigenesis and metastasis in a Non-Small Cell Lung Cancer 

mouse model
138

. Moreover, the identification of nonsense and germline mutations in DEAR1 represent 

hallmarks of classical mechanisms for tumor suppressor inactivation and provide further evidence for the 

important role that DEAR1 plays in cancer. Additionally, the identification of germline mutations within 

DEAR1 hint at the potential for DEAR1 to act as a potential stratifier for inherited breast cancer cases. 

Future work in deciphering DEAR1’s roles in hereditary breast cancer need to be completed to better 

understand the frequency of DEAR1 alterations at the germline level. Sequencing for DEAR1 in large 

cohorts of breast cancer patients with strong family histories and whose genetic predisposition is 

currently unsolved may help in the molecular diagnosis of these patients. Altogether, this data indicates 

the significance of DEAR1 variants contributing to the loss of function of this important tumor 

suppressor in an early stage of breast disease. 

Currently, the American Cancer Society has identified a small number of genes known to 

increase the lifetime risk of breast cancer
221

. This list includes BRCA1, BRCA2, ATM, TP53, CHEK2, 

PTEN, CHD1, STK11, and PALB2. Most notable on this list are in BRCA1 and BRCA2 as defects in these 

genes are known to carry the highest risk of breast cancer estimated to be on average between 55-65%
221

. 

Despite the known increased risk of breast cancer associated with alterations in these genes, much 

discussion still exists in the field regarding how these variants should be used clinically. BRCA1 and 
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BRCA2 mutation catalogues, family case studies, and experimental in vitro testing have been able to 

identify over a 1000 variants within these genes that are classified as pathogenic and come with the 

recommendation of increased surveillance and/or potential prophylactic surgery. However, 10-15% of 

variants discovered during full gene sequencing of BRCA1 and BRCA2 are classified as variants of 

unknown significance (VUS)
267

. VUS variants are defined as a change in the DNA sequence with 

unknown effects on the gene product and disease risk
268

. These variants pose a challenge clinically as 

there is a possibility that these variants can be deleterious and alter disease risk but yet no clinical action 

can be recommended as there is no current substantiated evidence for their pathogenicity. 

Reclassification of these variants can occur as more information is gleaned from large population variant 

catalogues and as future additional family case studies, pathological profiles, and functional assays are 

completed
269

. Moreover, molecular studies have shown that the location of the variants within BRCA1 

and BRCA2 can inform on pathogenicity, with the highest levels of pathogenicity being associated with 

variants within the RING, BRCT, and DNA binding domains
269

. These domain structures are known to 

be important for BCRA1 and BRCA2’s functional roles in DNA repair and cell cycle regulation. These 

cases exemplify the use of molecular based knowledge to inform on the possible deleterious nature and 

clinical relevance of variants within cancer-related genes. As our study has identified variants in DEAR1 

in early stage breast cancer as well as a possible germline variant, understanding how these variants 

could be important clinically is critical. DEAR1 has been found previously to be a dominant regulator of 

polarity, acinar morphogenesis and EMT
2, 131

. Through these studies, the RING finger and the B-Box 

Coiled Coil (BBC) domains have been found to be integral to the regulation of these pathways. The 

RING finger has been shown to be necessary for DEAR1’s regulation of SMAD3 and TGFβ induced 

EMT
2
. Moreover, genetic complementation studies of a variant in the BBC domain have shown that this 

domain of DEAR1 can act in a dominant manner in the regulation of acinar morphogenesis
131

. Thus, 

variants within these domains may be more likely to be exert pathogenic effects. Sequencing of DEAR1 

in DCIS revealed multiple variants within these two domain structures. Mutations in codons 187 and 240 

not only occur in the BBC domain but are predicted to be deleterious by prediction tools PolyPhen2 and 

SIFT, which use amino acid conservation and structural analysis to predict the deleterious nature of 
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variants. These BBC domain variants have also been found in both IDC and DCIS samples of multiple 

breast cancer patients. Moreover, variants at codon 240 have been found to occur within the germline of 

2 breast cancer patients and molecular analysis has shown that variance at codon 187 can effect acinar 

morphogenesis, further giving credence to the pathogenicity of these variants. Another example of a 

variant with a high probability of pathogenicity is the occurrence of a nonsense variant at codon 19 in the 

RING domain. Nonsense variant are typically identified as loss of function variants as truncated 

transcripts which result from nonsense variants are often degraded through nonsense mediated decay. 

Variants in breast cancer patients occurring in DEAR1 at these codons or possibly within these domains 

may stratify patients for therapies targeting TGFβ or polarity pathways as well as designate the need for 

increased surveillance for patients who exhibit these variants within the germline. More research 

however is required to fully grasp the potential ability of DEAR1 variants in informing on clinical 

aspects, including therapy and breast cancer risk. As more knowledge is gained into how DEAR1 

regulates vital cellular processes and how these processes are abrogated in cancer, as well as a continued 

effort to catalogue variants in DEAR1, reclassification of these variants from VUS to clinically 

actionable may occur.  

Many of the somatic variants found in DEAR1 in DCIS were often sub-clonal yet private to 

either the matched in situ or invasive lesions within DCIS samples associated with invasive components. 

This was an unexpected finding as many studies have hinted at the similar profiles of DCIS and invasive 

lesions
223, 233, 236,235

. The sequencing of DCIS samples associated with invasive lesions indicated that 

DEAR1 mutations occur after both the major chromosomal alterations and the evolutionary split from the 

ancestral clone, thereby giving rise to both the DCIS and the IDC.  The private nature of these variants 

supports the less-heralded “parallel” model of DCIS progression, which described the independent yet 

parallel evolution of breast tumors that is supported by a few studies
237, 258

. The study of chromosomal 

alterations in DCIS and matched IDC has so far proven unfruitful in producing markers of DCIS 

progression. Recent evidence, including our work, has shown that the study of nucleotide variants may 

prove to be more beneficial in the search for progression biomarkers. More work, including whole 
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genome sequencing studies of many DCIS and IDC samples, as well as earlier lesions of breast 

hyperplasia, are need to fully elucidate the evolutionary nature of DCIS progression. However, if future 

studies give further support for an independent evolutionary model for DCIS and IDC, this can have 

large implications within the clinic. For example, lesions which have been thoroughly vetted to contain 

no evidence of histological invasiveness may be candidates for lumpectomy only or long-term 

surveillance as the risk of the development of an invasive lesion in pure DCIS, given the independent 

evolutionary model, is very low. Further, lesions in which any invasive component exists will require 

much more extensive treatment like lumpectomy plus radiation as there is a high possibility that the 

invasive component can develop into a full IDC. It is important to note that there exists a chance that 

small sub-clonal populations with invasive features may be missed during histological evaluation of the 

lesions as current practices only include the observation of a few representative histological slides, 

possibly leading to misdiagnosis of the lesions. If future practices stratify the intensiveness of the 

treatment options based on the presence or absence of diagnosed invasive components, misdiagnoses of 

DCIS/INV as pure DCIS in combination with positive surgical margins can increase the risk of 

recurrence in these patients. Therefore, better and more sensitive histological and molecular markers as 

well as more intensive histological practices are needed in order to fully vet DCIS lesions for the 

presence of invasiveness. In all, our work has provided demonstrated the presence of variants in DEAR1, 

a tumor suppressor integral in regulating polarity and migration, in the earliest form of breast cancer 

which may act as drivers in the progression of this disease as well as providing evidence for a “parallel” 

based evolution model for DCIS and IDC. 

Future Directions 

Further work to understand the comprehensive effects of DEAR1 variants in DCIS, however, is 

needed. RNAseq and immunohistochemistry on matched DNA sequencing samples will help to provide 

knowledge about the expression status of the variants, especially to determine if these variants induce a 

novel loss or gain of function. Dogma suggests that the nonsense variants found in our DCIS samples 

associated with invasive components induce a loss of function in DEAR1 as nonsense mutations are 
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typically thought to induce mRNA decay, leading to decreased gene expression and complete loss of 

function of the gene in those alleles. Further, evidence supporting the possibility that some of these 

variants are associated with a novel gain of function has been shown by previous studies completed by 

the TCGA in which some DEAR1 variants can coincide with chromosomal aberrations or increased gene 

expression of the variants
145, 146

. One possible advantage of missense mutations associated with moderate 

to high gene expression is the possibility that these variants fall in areas important for protein-protein 

interactions which can potentially disrupt DEAR1’s critical negative regulation of tumor promoting 

pathways, like the TGFβ pathway. Moreover, further sequencing analysis of important tumor suppressors 

and oncogenes can help to define new pathways that DEAR1 is associated with by delineating whether 

these genes exhibit a co-occurring or mutually exclusive nature with DEAR1 variants.  

Determining if DEAR1 variants have the ability to stratify populations at higher risk is also a 

critical undertaking. Most of the samples within the current study showed hormone receptor status 

associated with luminal breast cancer. Luminal type breast cancer is the most common subtype of breast 

cancer, accounting for 60% of all tumors, with luminal A subtype being more prevalent than luminal 

B
270

. A large sample population representing equal numbers of the breast cancer subtypes would be 

helpful in understanding if DEAR1 experiences differential mutation rate or spectrum in the different 

subtypes. This is especially important to understand if DEAR1 variants showed a different mutation 

pattern in the more aggressive breast cancer subtypes, like HER2 and basal, and therefore could be used 

to potentially further stratify these populations for prognosis 
271

. Further, racial disparity is a known 

epidemiological risk factor in breast cancer. African American women show a somewhat similar incident 

rates of breast cancer as Caucasians; however, breast cancer within the African American community 

tends to be more aggressive and incur higher mortality rates than Caucasians
272

. Determining the 

disparate molecular and genetic drivers unique to breast cancer in African American women will be very 

important to understanding what factors lead to a more aggressive behavior of these tumors. The current 

study is limited in this scope due to its inclusion of mostly Caucasians. As mutation or loss of DEAR1 

expression has been shown to allow for an increased propensity for migration and invasion, describing 
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DEAR1’s potential role in the more aggressive phenotype of African American breast cancer will be 

important. Defining new molecular markers for sub-groups of breast cancer can be vital for future 

therapeutic and prognosis stratification efforts. 

The interplay between the tumor and the microenvironment surrounding it may also be 

important to understanding why invasive lesions associated with a DCIS counterpart tend to be less 

aggressive than pure IDC lesions. Wong et al. 2010 has shown that the nuclear grade and degree of 

proliferation is significantly reduced in IDC associated with DCIS in comparison to pure IDC
273

. Further, 

the same group found an inverse relationship between the size of the DCIS component and 

aggressiveness of its matched adjacent IDC. Pure IDC has also been associated with larger tumors and 

earlier onset of metastasis than DCIS-IDC
274

. These studies suggest a large degree of interaction between 

the DCIS and IDC components and their potential to regulate each other. Understanding how the DCIS 

component can limit the aggressiveness of the invasive lesion may help us to uncover new, targetable 

areas important to inhibiting the aggressive phenotype.   

The field as a whole has much to learn in order for us to fully grasp the mechanism of 

progression of breast cancer, as fully comprehending the pathway taken by these lesions can have large 

effects on how these tumors are clinically treated. A study conducted by Newburger et al. 2013 

suggested that some invasive breast cancers have more in common with their very early neoplastic lesion 

counterpart than with a matched DCIS lesion
258

. Though the sequencing efforts within this study focused 

on a single gene, DEAR1, in matched DCIS and invasive tumors, the limited number of shared variants 

between the lesions may give some credence to the independent “parallel” progression model. If a 

“parallel” model of breast cancer progression exists, with atypical ductal hyperplasia or even earlier 

lesions hosting the common cells of origins for both DCIS and IDC, this may indicate the need to 

identify factors within these very early, benign states of breast disease that may predispose the lesions to 

spurring off independent DCIS and/or invasive lesions.  Moreover, Newburger et al 2013 also identified 

a subset of invasive lesions which showed a high degree of commonality with their matched DCIS 

neoplasia. This idea is supported by other molecular and cytogenetic based studies which have indicated 
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a preservation of chromosomal aberrations, degree of nuclear atypia, and immunohistochemical 

expression of hormone receptor status between the DCIS and IDC tumors
233, 275

. Understanding what 

intrinsic features are differentially associated with clonal or independent, parallel evolution are important 

to comprehend the underlying mechanisms of breast tumor progression as well as for stratifying patients 

for differential treatment strategies. Recently, it has been suggested that the tumor microenvironment can 

play a role in DCIS progression
276, 277

 Further work in this area to delineate the potential ability of 

stromal and immunological factors to influence breast cancer progression, and how these pathways 

interplay with inherent genetic alterations within these lesions, is greatly needed.  

It is obvious that multiple factors are critical in breast cancer progression and our knowledge 

of this area is still in its infancy. How genetic and immune factors, along with tumor microenvironment 

signals, integrate to drive the mechanisms behind distinct evolutionary patterns seen in breast cancer is a 

major question in this field which can have huge clinical implications. Much more work is needed in this 

area in order to fully comprehend the molecular mechanisms driving tumor progression in breast cancer. 

Defining these pathways can potentially lead to better prognostic methods and new strategies for treating 

this disease. Our work has discovered novel variants in DCIS in the DEAR1 tumor suppressor which is 

important in the regulation of polarity and migration, early essential steps in EMT. The pattern of these 

variants have also revealed the distinct independent evolution of DCIS and their adjacent invasive 

components. Future larger studies are needed to fully comprehend the ability of DEAR1 to act as a 

predictive marker for breast cancer progression as well as to understand the factors important to 

determining the evolutionary pathway central to DCIS and IDC progression. Despite this, the current 

study described herein provides the first step to understanding the possible effects of DEAR1 genetic 

alterations in breast cancer and how these variants potentially evolve during the progression of DCIS.  
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Appendix 1. Spike-In Plasmid Sequence 

FASTA sequenced of the plasmid spiked into NA12878 for determination of allele frequency sensitivity. 

Substitutions and insertions deviant from the reference sequence are bolded/underlined while deletions 

are highlighted by underlined spaces. Original plasmid design created by Dr. Steven Lott. 

 

>13AAT37P_1351815 

CACTATAGGGCGAATTGGCGGAAGGCCGTCAAGGCCGCATTTTTAGGCTAATGGGCTCTGC

ATCTAAGGTAACGATCAGCTTTGGGTATACCCTCACCCTGTCCCCCAGCCTGTGGGCAGGA

AGGTGGTGGCACATGACTATAATGTGTGGACTCACCGACTACCAGGTGCCTTCCACAGGCT

CCAGCATCATCACTGACCAGATCGTTACCTTAGCAGATCAGTGGGAGAAGTAGGAACAGGA

GCCAGACTGACTTCACACTAAGGTAACGATGGCCCCACAGACAAAAAAAGGGGCCCAGCC

AACCAGGCTGCTGCTCTCTGAACTCCCCAGGGG_CTCTGCTCTGGGCAGGACGTTGGAGCAC

AGTCTGTTCCTCCCGCAGCTCCTCTCTGGCATCGTTACCTTAGAGGCAGCTTTCTCTAGAGC

AGGGGTTTCAGGAAGTCTTGGAGATAACTAAGGTAACGATTCATTATACCATCTGC_ 

_GGTGAAGAAGACAGGGAGCTTTTCCAATGTGTCTGCGGATG 

CACAGCACTCAGCACACAGTAAAGGTGTGTAGCTGAATAACGCGCATCAACGCCCTGGATC

GTTACCTTAGGTTGCAGGAGGAAGGAAAGACTCCAGGCTCACCTTGGTCTCTAAGGTAACG

ATCCGCCAGTTGTCGCTTGAGCAGCTGCAGCGC_ _ _ 

GGTGTGTTCCCGCTCGCTGTCTTGAAGGGCCTGTAGTTGGTCCTTCAGCTCCCTCTATCGTTA

CCTTAG 

GAAACACACACAGGGCCGCTGGGCCTCATGGGCCTTCCGCTCACTGCCCGCTTTCCAG 
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Appendix II. R Code to Extract Barcoded Reads from Unmapped BAM Files 

Novel spike-in assay for determination of the accuracy of variant allele frequencies required the 

extraction of barcoded reads representing the presence of the artificial variants spiked into normal control 

DNA NA12878. R programming code represents the method used to extract these barcoded reads from 

unmapped BAM files. R programming code originally written by Dr. Steven Lott.  
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Appendix III- Differential Testing of Various Variant Filtering Stringencies. Table details the reduction 

of variant counts through various variant filtering strategies. Variant filtering occurred after the use of the 

automated variant calling by the Torrent Variant Caller using parameters listed in the methods in chapter 

3. Multiple strategies were tested in order to reduce spurious variants with low levels of evidence per 

variant. Ultimately, coverage depth of at least 1000x with greater or equal to 60 reads representing the 

variant with at least 30 supporting reads on each forward and reverse strands. Acronyms: DP=Coverage 

Depth; AO=Alternative allele observations; SAF/SAR=alternative allele observations on the Forward 

and Reverse strands, respectively; FDP= Flow evaluator Coverage Depth; FAO= Flow evaluator 

Alternative allele observations; FSAF/FSAR= flow evaluator alternative allele observations on the 

Forward and Reverse strands 

 
Sample PD3 

Pure DCIS 

D05 

INV 

PD9 

Pure DCIS 

D11 

INV 

DP>200, AO>20, 

SAF/SAR>5 

32 303 33 229 

FDP>1000, 

FAO>20, 

FSAF/FSAR>10 

16 262 30 204 

FDP>1000, 

FAO>40, 

FSAF/FSAR>10 

16 262 27 204 

FDP>1000, 

FAO>50, 

FSAF/FSAR>10 

14 262 26 202 

FDP>1000, 

FAO>40, 

FSAF/FSAR>20 

12 256 21 199 

FDP>1000, 

FAO>80, 

FSAF/FSAR>20 

10 254 18 197 

FDP>1000, 

FAO>60, 

FSAF/FSAR>30 

11 

66% reduction 

249 

18% reduction 

18 

46% reduction 

197 

14% reduction 

FDP>1000, 

FAO>130, 

FSAF/FSAR>30 

9 238 14 189 

FDP>1000, 

FAO>100, 

FSAF/FSAR>50 

8 235 15 182 

FDP>1000, 

FAO>200, 

FSAF/FSAR>50 

6 212 10 162 

        71% reduction           30% reduction        70% reduction         29% reduction  
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Appendix IV. R Code to Calculate Coverage By Amplicon. 

As designed sequencing amplicons often produced slightly overlapping fragments, calculation of 

sequencing coverage by amplicon required manual determination via R programming code. R 

programming code originally written by Dr. Steven Lott. 
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Appendix V. R Code to Graph Digital PCR Data. 

Variants found by sequencing for both control and clinical samples on the Ion Torrent Sequencing 

platforms were verified by digital PCR for the presence and allele frequencies. Figure shows the R 

programming code written for the creation of scatter plot plotting sequencing allele frequencies versus 

digital PCR allele frequencies of the same sample. 95% confidence interval as well as Pearson’s 

correlation coefficient was calculated.  
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Appendix VI. R Code for Determination of Sensitivity and Specificity. 

Sensitivity and specificity of the DEAR1 Ampiseq panel was determined by the R program epiR using 

the following R programming code. A 95% confidence interval was determined for the performance 

measures using epiR as well.  
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Appendix VII –Catalogue of Clinical Samples Sequenced. Table contains a detailed list of sample and 

sample type/components sequenced for each patient. 

 Sample Path. Normal 

Lymph or 

Adjacent 

DCIS Invasive 

1 PD1 Pure DCIS  X n/a 

2 PD2 Pure DCIS  X n/a 

3 PD3 Pure DCIS  X n/a 

4 PD4 Pure DCIS X-Lymph X n/a 

5 PD5 Pure DCIS X-Lymph X n/a 

6 PD6 Pure DCIS  X n/a 

7 PD7 Pure DCIS  X n/a 

8 PD8 Pure DCIS X-Lymph X n/a 

9 PD9 Pure DCIS  X n/a 

10 PD10 Pure DCIS  X n/a 

11 PD11 Pure DCIS  X n/a 

12 PD12 Pure DCIS  X n/a 

13 PD13 Pure DCIS  X n/a 

14 PD14 Pure DCIS  X n/a 

15 PD15 Pure DCIS X- -Lymph X n/a 

16 
PD16 

Pure DCIS X-Adjacent 

Breast 

X n/a 

17 PD17 Pure DCIS X-Lymph X n/a 

1 D01 DCIS/ INV X-Lymph X X 

2 D02 DCIS/ INV X-Lymph X X 

3 D03 DCIS/ INV X-Lymph X X 

4 D04 DCIS/ INV X-Lymph X X 

5 D05 DCIS/ INV X-Lymph X X 

6 D06 DCIS/ INV X-Lymph X X 

7 D07 DCIS/ INV X-Lymph X X 

8 D08 DCIS/ INV X-Lymph X X 

9 D09 DCIS/ INV  X X 

10 D10 DCIS/ INV X-Lymph X X 

11 D11 DCIS/ INV  X X 

12 D12 DCIS/ INV  X X 

13 D13  DCIS/ INV  X X 

14 D14 DCIS/ INV  X X 

15 D15 DCIS/ INV  X X 

16 D16 DCIS/ INV X-Lymph X X 

17 D17 DCIS/ INV X-Lymph X X 

18 D18 DCIS/ INV  Unable to 

complete 

Variant Calling 

X 

19 D19 DCIS/ INV  Unable to 

complete 

Variant Calling 

X 
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Appendix IIX. R Code for Creation of Venn Diagram Using the VennDiagram R Program 

A Venn diagram was created with R package VennDiagram to visualize the degree of shared 

variants between the adjacent DCIS and invasive components of matched samples. The following 

R code was used within the VennDiagram package to complete the graph. 
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Appendix IX. R Code for Variant Count Per Sample Boxplots. 

Visualization of variant counts per sample were created using ggplot2 R package. R programming code 

used to create the box-plots are shown below as well as the code to determine the mean of each value set.  
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Appendix 10 - Detailed List of All Variants Harbored Within the 48kb Locus Involving DEAR1 Found in Ductal Carcinoma In Situ. This table contains 

all variants that were found via sequencing within the 48kb locus harboring DEAR1 and regulatory regions upstream of the gene. Variants that may be 

associated with formalin fixation are in bold. The criteria for possible fixation induced variants were that the nucleotide change was associated with 

C>T/G>A nucleotide changes and variant allele frequencies were shown to be at 0.04 or less. C>T/G>A variants have been previously reported to be 

enriched in formalin fixed samples due to the process causing cytosine deamination. The chosen variant frequency of 0.04 or less for the possible 

formalin induced changes was used due to the very low possibility that a particular nucleotide would undergo cytosine deamination and having shown 

that variants at 0.05 variant frequencies were able to be verified by orthogonal methods. Potential germline variants not excluded due to lack of 

sequenced matched normal sample are italicized.  

Sample Lesion 

Type 

Chromosome 1  

Hg19 location 

Nucleotide 

Change 

Variant  Variant 

Frequency 

Validated Area within DEAR1 

PD1 Pure DCIS 33629668 TC> CA c.504+1404 GA>TG 0.93  Intronic 

  33644798 AA> GC c.408+1828 TT>GC 1.00  Intronic 

  33645661 GCT> G c.408+963_408+964 delAG 0.56  Intronic 

  33645665 AA> CT c.408+961 TT>AG 0.56  Intronic 

  33648859 T> C Upstream 0.08  Upstream 

PD2 Pure DCIS 33644798 AA> GC c.408+1828 TT>GC 1.00  Intronic 

  33645661 GCT> G c.408+963_408+964 delAG 1.00  Intronic 

  33645665 AA> CT c.408+961 TT>AG 1.00  Intronic 

PD3 Pure DCIS 33612040 C> G c.*738 G>C 0.16  3’UTR 

  33612944 T> C p.Asp421Gly c.1262A>G 0.04  Exonic 

  33613286 C> T p.Arg307His  

c.920G>A 

0.03 Failed to 

validate 

Exonic 

  33613337 G> C c.878-9 C>G 0.03  Intronic 

  33614654 C> T c.878-1326 G>A 0.13  Intronic 

  33626451 A> T c.505-906 T>A 0.05  Intronic 

  33629610 A> G c.504+1462 T>C 0.06  Intronic 

  33630031 A> G c.504+1041 T>C 0.05  Intronic 

  33633168 A> T c.409-2001 T>A 0.06  Intronic 

  33634506 C> T c.409-3339 G>A 0.04  Intronic 

  33638079 A> T c.409-6912 T>A 0.14  Intronic 

PD4 Pure DCIS 33625332 C> T p.Asp240Asn  

c.718G>A 

0.07  Exonic 

  33633168 A> T c.409-2001 T>A 0.07  Intronic 
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Sample Lesion 

Type 

Chromosome 1  

Hg19 location 

Nucleotide 

Change 

Variant  Variant 

Frequency 

Validated Area within DEAR1 

PD5 Pure DCIS 33636180 G> A c.409-5013 C>T 0.05  Intronic 

  33638079 A> T c.409-6912 T>A 0.25  Intronic 

  33611279 C> T c.*1499 G>A 0.05  3’UTR 

  33612510 A> G c.*268 T>C 0.05  3’UTR 

  33612944 T> C p.Asp421Gly c.1262A>G 0.68 Yes Exonic 

  33623802 T> G c.877+52 A>C 0.03  Intronic 

  33638079 A> T c.409-6912 T>A 0.06  Intronic 

  33641976 C> T c.408+4650 G>A 0.04  Intronic 

  33642042 C> T c.408+4584 G>A 0.04  Intronic 

  33645209 C> T c.408+1417 G>A 0.03  Intronic 

  33646717 T> A p.Asp106Val c.317A>T 0.04  Exonic 

  33648831 A> T Upstream 0.04  Upstream 

PD6 Pure DCIS 33612040 C> G c.*738 G>C 0.10  3'UTR 

  33612944 T> C p.Asp421Gly 

c.1262A>G 

0.06 Yes Exonic 

  33625571 A> G c.505-26 T>C 0.06  Intronic 

  33625581 G> C c.505-36 C>G 0.04  Intronic 

  33633168 A> T c.409-2001 T>A 0.08  Intronic 

  33638074 A> G c.409-6907 T>C 0.03  Intronic 

  33638079 A> T c.409-6912 T>A 0.19  Intronic 

  33641731 C> G c.408+4895 G>C 0.08  Intronic 

  33651167 A> G Upstream 0.03  Upstream 

PD7 Pure DCIS 33611279 C> T c.*1499 G>A 0.05  3'UTR 

  33641485 G> A c.408+5141 C>T 0.03  Intronic 

  33641976 C> T c.408+4650 G>A 0.03  Intronic 

  33646717 T> A p.Asp106Val 

c.317A>T 

0.04  Exonic 

  33648235 G> A Upstream 0.05  Upstream 

PD8 Pure DCIS 33611279 C> T c.*1499 G>A 0.03  3'UTR 

  33611936 C> T c.*842 G>A 0.03  3'UTR 

  33614654 C> T c.878-1326 G>A 0.07  Intronic 

  33616024 C> T c.878-2696 G>A 0.03  Intronic 

  33617588 G> A c.878-4260 C>T 0.03  Intronic 
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Sample Lesion 

Type 

Chromosome 1  

Hg19 location 

Nucleotide 

Change 

Variant  Variant 

Frequency 

Validated Area within DEAR1 

PD8 Pure DCIS 33623802 T> G c.877+52 A>C 0.07  Intronic 

  33625332 C> T p.Asp240Asn 

c.718G>A 

0.04 Failed to 

validate 

Exonic 

  33626876 G> T c.505-1331 C>A 0.06  Intronic 

  33627151 G> A  c.505-1606 C>T 0.03  Intronic 

  33627310 C> T c.505-1765 G>A 0.04  Intronic 

  33633167 C> T c.409-2000 G>A 0.03  Intronic 

  33634758 G> A c.409-3591 C>T 0.03  Intronic 

  33634770 G> A c.409-3603 C>T 0.05  Intronic 

  33639129 T> A c.408+7497 A>T 0.04  Intronic 

  33642042 C> T c.408+4584 G>A 0.05  Intronic 

  33644997 G> T c.408+1629 C>A 0.04  Intronic 

  33645290 G> A c.408+1336 C>T 0.04  Intronic 

  33645659 A> T c.408+967 T>A 0.03  Intronic 

  33645665 AA> CT c.408+961 TT>AG 1.00  Intronic 

  33646717 T> A p.Asp106Val c.317A>T 0.04 Yes Exonic 

  33647348 G> A Upstream 0.05  Upstream 

  33648831 A> T Upstream 0.14  Upstream 

PD9 Pure DCIS 33612520 C> T c.*258 G>A 0.04  3'UTR 

  33621086 T> C c.877+2768 A>G 0.05  Intronic 

  33623802 T> G c.877+52 A>C 0.05  Intronic 

  33626876 G> T c.505-1331 C>A 0.09  Intronic 

  33626913 A> G c.505-1368 T>C 0.05  Intronic 

  33638079 A> T c.409-6912 T>A 0.17  Intronic 

  33639129 T> A c.408+7497 A>T 0.05  Intronic 

  33639131 C> T c.408+7495 G>A 0.05  Intronic 

  33642042 C> T c.408+4584 G>A 0.05  Intronic 

  33644798 AA> GC c.408+1828 TT>GC 1.00  Intronic 

  33645659 A> T c.408+967 T>A 0.04  Intronic 

  33645661 GCT> G c.408+963_408+964 delAG 1.00  Intronic 

  33645665 AA> CT c.408+961 TT>AG 1.00  Intronic 

  33645916 C> T c.408+710 G>A 0.03  Intronic 
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Sample Lesion 

Type 

Chromosome 1  

Hg19 location 

Nucleotide 

Change 

Variant  Variant 

Frequency 

Validated Area within DEAR1 

PD9 Pure DCIS 33645918 C> G c.408+708 G>C 0.08  Intronic 

  33646083 C> T c.408+543 G>A 0.04  Intronic 

  33648831 A> T Upstream 0.12  Upstream 

  33649303 A> C Upstream 0.04  Upstream 

PD10 Pure DCIS 33618680 G> T c.877+5174C>A 0.07  Intronic 

  33629668 TC> CA c.504+1404GA>TG 0.36  Intronic 

  33636199 C> A c.409-5032G>T 0.09  Intronic 

PD11 Pure DCIS 33612419 G> A c.*359 C>T 0.03  3’ UTR 

  33618738 G> A c.877+5116 C>T 0.04  Intronic 

  33623802 T> G c.877+52 A>C 0.05  Intronic 

  33629668 TC>CA c.504+1404 GA>TG 0.06  Intronic 

  33639129 T> A c.408+7497 A>T 0.05  Intronic 

  33642042 C> T c.408+4584 G>A 0.04  Intronic 

  33642082 G> A c.408+4544 C>T 0.07  Intronic 

  33648831 A> T Upstream 0.15  Upstream 

PD12 Pure DCIS 33618680 G> T c.877+5174 C>A 0.09  Intronic 

  33618799 A> T c.877+5055 T>A 0.04  Intronic 

  33625332 C> T p.Asp240Asn 

c.718G>A 

0.81 Yes (germline) Exonic 

  33625491 G> A p.Arg187Trp 

c.559C>T 

0.13 Yes Exonic 

PD13 Pure DCIS 33644798 AA>GC c.408+1828  

TT>GC 

1.00  Intronic 

  33645661 GCT> G c.408+963_408+964 

delAG 

1.00  Intronic 

  33645665 AA>CT c.408+961 TT>AG 1.00  Intronic 

  33648859 T> C Upstream 0.05  Upstream 

PD14 Pure DCIS 33621086 T> C c.877+2768 A>G 0.04  Intronic 

  33623802 T> G c.877+52 A>C 0.04  Intronic 

  33626876 G> T c.505-1331 C>A 0.11  Intronic 

  33628265 T> C c.505-2720 A>G 0.03  Intronic 

  33644798 AA> GC c.408+1828 TT>GC 0.97  Intronic 
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Sample Lesion 

Type 

Chromosome 1  

Hg19 location 

Nucleotide 

Change 

Variant  Variant 

Frequency 

Validated Area within DEAR1 

PD14 Pure DCIS 33645120 A> G c.408+1506 T>C 0.05  Intronic 

  33645661 GCT> G c.408+963_408+964 delAG 0.48  Intronic 

  33645665 AA> CT c.408+961 TT>AG 0.48  Intronic 

PD15 Pure DCIS 33611941 G>A c.*837C>T 0.99  3’ UTR 

  33645278 G>A c.408+1348C>T 0.98  Intronic 

PD16 Pure DCIS 33612362 A> G c.*416 T>C 0.05  3’ UTR 

  33625581 G> C c.505-36 C>G 0.04  Intronic 

  33633168 A> T c.409-2001 T>A 0.04  Intronic 

PD17 Pure DCIS 33611279 C> T c.*1499 G>A 0.10  3’ UTR 

  33612132 G> A c.*646 C>T 0.03  3’ UTR 

  33612419 G> A c.*359 C>T 0.04  3’ UTR 

  33612422 C> T c.*356 G>A 0.05  3’ UTR 

  33613346 G> A c.878-18 C>T 0.03  Intronic 

  33616298 G> C c.878-2970 C>G 0.03  Intronic 

  33616750 G> A c.878-3422 C>T 0.03  Intronic 

  33617411 G> T c.878-4083 C>A 0.03  Intronic 

  33627170 C> T c.505-1625 G>A 0.03  Intronic 

  33627359 C> T c.505-1814 G>A 0.03  Intronic 

  33629796 G> A c.504+1276 C>T 0.03  Intronic 

  33631379 C> T c.409-212 G>A 0.05  Intronic 

  33636180 G> A c.409-5013 C>T 0.08  Intronic 

  33638079 A> T c.409-6912 T>A 0.14  Intronic 

  33638577 G> A c.409-7410 C>T 0.06  Intronic 

  33638745 C> T c.409-7578 G>A 0.04  Intronic 

  33638780 T> C c.409-7613 A>G 0.06  Intronic 

  33641731 C> G c.408+4895 G>C 0.05  Intronic 

  33641905 C> T c.408+4721 G>A 0.03  Intronic 

D01 DCIS 33611230 A> G c.*1548 T>C 0.09  3'UTR 

  33612117 G> A c.*661 C>T 0.03  3'UTR 

  33613159 G> A p.Gly349Gly 

c.1047C>T 

0.04  Exonic 

  33629577 G> A c.505-1682 C>T 0.03  Intronic 

  33630773 G> A c.504+1495 C>T 0.04  Intronic 
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Sample Lesion 

Type 

Chromosome 1  

Hg19 location 

Nucleotide 

Change 

Variant  Variant 

Frequency 

Validated Area within DEAR1 

D01 DCIS 33630780 G> A c.504+299 C>T 0.05  Intronic 

  33630813 G> A c.504+259 C>T 0.03  Intronic 

  33631291 C> T c.409-124 G>A 0.04  Intronic 

  33633418 C> T c.409-2251 G>A 0.04  Intronic 

  33638005 G> A c.409-6838 C>T 0.05  Intronic 

  33638013 G> A c.409-6846 C>T 0.04  Intronic 

  33638085 G> A c.409-6918 C>T 0.03  Intronic 

  33638937 C> T c.408+7689 G>A 0.03  Intronic 

  33639060 G> A c.408+7566 C>T 0.06  Intronic 

  33639129 T> A c.408+7497A>T 0.03  Intronic 

  33641447 C> T c.408+5179 G>A 0.04  Intronic 

  33645853 C> T c.408+773 G>A 0.03  Intronic 

  33646036 T> C c.408+590 A>G 0.05  Intronic 

  33647588 C> T Upstream 0.03  Upstream 

  33649491 C> T Upstream 0.04  Upstream 

  33649569 G> A Upstream 0.04  Upstream 

  33649571 G> A Upstream 0.04  Upstream 

  33653042 G> A Upstream 0.03  Upstream 

  33681449 G> A Upstream 0.03  Upstream 

 INV 33639129 T> A c.408+7497 A>T 0.07  Intronic 

  33648206 T> C Upstream 0.16  Upstream 

  33648250 G> A Upstream 0.04  Upstream 

D02 DCIS 33639129  T >A c.408+7497 A>T 0.04  Intronic 

  33648237 

 

A> G Upstream 0.05  Upstream 

 INV  33639129  T >A c.408+7497 A>T 0.04  Intronic 

D03 INV 33638085 G> A c.409-6918 C>T 0.04  Intronic 

  33639129 T> A c.408+7497 A>T 0.03  Intronic 

  33646036 T> C c.408+590 A>G 0.03  Intronic 

D04 DCIS 33611114 G> A c.*1664 C>T 0.03  3'UTR 

  33630779 G >A c.504+293 C>T 0.03  Intronic 

  33630928 C> T c.504+144 G>A 0.03  Intronic 

  33638086 G> A c.409-6919 C>T 0.04  Intronic 
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Sample Lesion 

Type 

Chromosome 1  

Hg19 location 

Nucleotide 

Change 

Variant  Variant 

Frequency 

Validated Area within DEAR1 

D04 DCIS 33638087 G> A c.409-6920 C>T 0.04  Intronic 

  33641958 C> T c.408+4668 G>A 0.02  Intronic 

  33648250 G> A Upstream 0.10  Upstream 

  33648859 T> C Upstream 0.04  Upstream 

  33658110 G> A Upstream 0.05  Upstream 

 INV 33611115 G> A c.*1663 C>T 0.03  3'UTR 

  33612419 G> A c.*359 C>T 0.04  3'UTR 

  33613056 G> A p.Arg384Cys 

c.1150C>T 

0.03  Exonic 

  33616887 G> A c.878-3559 C>T 0.03  Intronic 

  33619885 C> T c.877+3969 G>A 0.03  Intronic 

  33630779 G >A c.504+293 C>T 0.03  Intronic 

  33648250 G> A Upstream 0.05  Upstream 

  33658110 G> A Upstream 0.04  Upstream 

D05 DCIS 33612172 T> A c.*606 A>T 0.04  3'UTR 

  33612419 G> A c.*359 C>T 0.04  3'UTR 

  33616711 G> A c.878-3383 C>T 0.03  Intronic 

  33616870 G> A c.878-3542 C>T 0.04  Intronic 

  33616875 G> A c.878-3547 C>T 0.04  Intronic 

  33617291 C> T c.878-3963 G>A 0.04  Intronic 

  33618447 G> A c.878-5119 C>T 0.03  Intronic 

  33618473 G> A c.878-5145 C>T 0.04  Intronic 

  33618913 G> A c.877+4941 C>T 0.03  Intronic 

  33628228 G> A c.505-2683 C>T 0.03  Intronic 

  33629192 C> T c.504+1880 G>A 0.04  Intronic 

  33629215 C> T c.504+1857 G>A 0.03  Intronic 

  33629313 G> A c.504+1759 C>T 0.04  Intronic 

  33630776 C> T c.504+296 G>A 0.03  Intronic 

  33630850 C> T c.504+222 G>A 0.04  Intronic 

  33630908 C> T c.504+164 G>A 0.03  Intronic 

  33630924 C> T c.504+148 G>A 0.05  Intronic 

  33630930 C> T c.504+142 G>A 0.06  Intronic 
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Sample Lesion 

Type 

Chromosome 1  

Hg19 location 

Nucleotide 

Change 

Variant  Variant 

Frequency 

Validated Area within DEAR1 

D05 DCIS 33633418 C> T c.409-2251 G>A 0.05  Intronic 

  33634348 C> T c.409-3181 G>A 0.03  Intronic 

  33634759 G> A c.409-3592 C>T 0.03  Intronic 

  33636288 G> A c.409-5121 C>T 0.03  Intronic 

  33637967 G> A c.409-6800 C>T 0.03  Intronic 

  33638016 G> A c.409-6849 C>T 0.05  Intronic 

  33638082 G> A c.409-6915 C>T 0.04  Intronic 

  33638391 G> A c.409-7224 C>T 0.05  Intronic 

  33638864 C> T c.409-7697 G>A 0.06  Intronic 

  33638955 C> T c.408+7671 G>A 0.05  Intronic 

  33640229 C> T c.408+6397 G>A 0.03  Intronic 

  33641723 C> T c.408+4903 G>A 0.03  Intronic 

  33641954 C> T c.408+4672 G>A 0.05  Intronic 

  33643863 G> A c.408+2763 C>T 0.04  Intronic 

  33644807 C> T c.408+1819 G>A 0.03  Intronic 

  33645245 G> A c.408+1381 C>T 0.04  Intronic 

  33645855 C> T c.408+771 G>A 0.02  Intronic 

  33645870 C> T c.408+756 G>A 0.04  Intronic 

  33645977 T> C c.408+649 A>G 0.03  Intronic 

  33646036 T> C c.408+590 A>G 0.09  Intronic 

  33647350 G> A Upstream 0.05  Upstream 

  33648206 T> C Upstream 0.03  Upstream 

  33648250 G> A Upstream 0.09  Upstream 

  33649483 G> A Upstream 0.03  Upstream 

  33653025 G> A Upstream 0.03  Upstream 

  33653135 G> A Upstream 0.03  Upstream 

 INV 33611942 G> A c.*836 C>T 0.03  3'UTR 

  33612099 CCCT>GGGA  c.*676 AGGG>TCCC 0.43  3'UTR 

  33612922 G> A p.Ile428Ile 

c.1284C>T 

0.04  Exonic 

  33612977 C> T p.Arg410Gln 

c.1229G>A 

 

0.03  Exonic 
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Sample Lesion 

Type 

Chromosome 1  

Hg19 location 

Nucleotide 

Change 

Variant  Variant 

Frequency 

Validated Area within DEAR1 

D05 INV 33612994 C> T p.Trp404* 

c.1212G>A 

0.03  Exonic 

  33613048 G> A p.Phe386Phe 

c.1158C>T 

 

0.07  Exonic 

  33613079 C> T p.Gly376Asp 

c.1127G>A 

0.04  Exonic 

  33613086 G> A p.Arg374Cys 

c.1120C>T 

0.05  Exonic 

  33613124 G> C p.Thr361Ser 

c.1082C>G 

0.09  Exonic 

  33613140 C> T p.Val356Met 

c.1066G>A 

0.06  Exonic 

  33615544 C> T c.878-2216 G>A 0.03  Intronic 

  33615553 C> T c.878-2225 G>A 0.03  Intronic 

  33615721 C> T c.878-2393 G>A 0.04  Intronic 

  33615741 C> T c.878-2413 G>A 0.03  Intronic 

  33616139 C> G c.878-2811 G>C 0.08  Intronic 

  33616143 G> A c.878-2815 C>T 0.16  Intronic 

  33616177 G> A c.878-2849 C>T 0.09  Intronic 

  33616199 G> A c.878-2871 C>T 0.04  Intronic 

  33616214 G> A c.878-2886 C>T 0.09  Intronic 

  33616247 G> A c.878-2919 C>T 0.07  Intronic 

  33616252 C> T c.878-2924 G>A 0.03  Intronic 

  33616495 C> G c.878-3167 G>C 0.03  Intronic 

  33616610 G> A c.878-3282 C>T 0.03  Intronic 

  33616615 G> A c.878-3287 C>T 0.05  Intronic 

  33616667 C> T c.878-3339 G>A 0.05  Intronic 

  33616672 G> A c.878-3344 C>T 0.05  Intronic 

  33616704 G> A c.878-3376 C>T 0.03  Intronic 

  33616712 G> A c.878-3384 C>T 0.05  Intronic 

  33616739 G> A c.878-3411 C>T 0.04  Intronic 

  33616752 G> A c.878-3424 C>T 0.06  Intronic 
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Sample Lesion 

Type 

Chromosome 1  

Hg19 location 

Nucleotide 

Change 

Variant  Variant 

Frequency 

Validated Area within DEAR1 

D05 INV 33616805 A> G c.878-3477 T>C 0.04  Intronic 

  33616808 G> A c.878-3480 C>T 0.03  Intronic 

  33616822 G> A c.878-3494 C>T 0.03  Intronic 

  33616829 G> A c.878-3501 C>T 0.07  Intronic 

  33616871 G> A c.878-3543 C>T 0.06  Intronic 

  33616890 G> A c.878-3562 C>T 0.07  Intronic 

  33616897 G> A c.878-3569 C>T 0.06  Intronic 

  33616903 G> A c.878-3575 C>T 0.06  Intronic 

  33616908 G> A c.878-3580 C>T 0.06  Intronic 

  33616994 G> A c.878-3666 C>T 0.03  Intronic 

  33617168 C> T c.878-3840 G>A 0.04  Intronic 

  33617287 G> A c.878-3959 C>T 0.04  Intronic 

  33617289 C> T  c.878-3961 G>A 0.03  Intronic 

  33617296 G> A c.878-3968 C>T 0.04  Intronic 

  33617325 C> G c.878-3997 G>C 0.03  Intronic 

  33617378 C> T c.878-4050 G>A 0.06  Intronic 

  33617393 T> C c.878-4065 A>G 0.03  Intronic 

  33617396 C> T c.878-4068 G>A 0.06  Intronic 

  33617416 C> T c.878-4088 G>A 0.05  Intronic 

  33617428 C> G c.878-4100 G>C 0.09  Intronic 

  33617605 C> T c.878-4277 G>A 0.03  Intronic 

  33617613 C> T c.878-4285 G>A 0.04  Intronic 

  33617617 G> A c.878-4289 C>T 0.03  Intronic 

  33618734 G> A c.877+5120 C>T 0.04  Intronic 

  33618849 C> T c.877+5005 G>A 0.04  Intronic 

  33618852 G> A c.877+5002 C>T 0.07  Intronic 

  33618876 C> T  c.877+4978 G>A 0.06  Intronic 

  33618907 C> T c.877+4947 G>A 0.06  Intronic 

  33618961 C> T c.877+4893 G>A 0.05  Intronic 

  33618964 C> T c.877+4890 G>A 0.05  Intronic 

  33618968 C> T c.877+4886 G>A 0.07  Intronic 

  33621043 G> A c.877+2811 C>T 0.04  Intronic 
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  33621066 G> A c.877+2788 C>T 0.04  Intronic 

Sample Lesion 

Type 

Chromosome 1  

Hg19 location 

Nucleotide 

Change 

Variant  Variant 

Frequency 

Validated Area within DEAR1 

D05 INV 33621087 C> T c.877+2767 G>A 0.03  Intronic 

  33621105 C> T c.877+2749 G>A 0.05  Intronic 

  33623968 G> A p.Leu255Phe 

c.763C>T 

0.04  Exonic 

  33623984 G> A c.762-15 C>T 0.04  Intronic 

  33624019 C> T c.762-50 G>A 0.05  Intronic 

  33625353 G> T p.Gln233Lys 

c.697C>A 

0.03  Exonic 

  33625444 C> T p.Ala202Ala 

c.606G>A 

0.04  Exonic 

  33625495 C> T p.Leu185Leu 

c.555G>A 

0.03  Exonic 

  33625503 C> T p.Glu183Lys 

c.547G>A 

0.04  Exonic 

  33626859 G> A c.505-1314 C>T 0.04  Intronic 

  33627078 G> A c.505-1533 C>T 0.03  Intronic 

  33627136 G> A c.505-1591 C>T 0.04  Intronic 

  33627170 C> T  c.505-1625 G>A 0.03  Intronic 

  33627283 G> A c.505-1738 C>T 0.04  Intronic 

  33627339 C> T c.505-1794 G>A 0.03  Intronic 

  33627370 C> T c.505-1825 G>A 0.03  Intronic 

  33627375 G> A c.505-1830 C>T 0.04  Intronic 

  33627387 C> A c.505-1842 G>T 0.03  Intronic 

  33627405 C> T c.505-1860 G>A 0.03  Intronic 

  33627445 C> T c.505-1900 G>A 0.03  Intronic 

  33628205 G> A c.505-2660 C>T 0.06  Intronic 

  33628224 G> A c.505-2679 C>T 0.03  Intronic 

  33628238 G> A c.505-2693 C>T 0.05  Intronic 

  33629313 G> A c.504+1759C>T 0.05  Intronic 

  33629340 G> T c.504+1732 C>A 0.07  Intronic 

  33629363 G> A c.504+1709 C>T 0.06  Intronic 

  33629494 G> A c.504+1578 C>T 0.04  Intronic 
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  33629572 G> A c.504+1500 C>T 0.05  Intronic 

Sample Lesion 

Type 

Chromosome 1  

Hg19 location 

Nucleotide 

Change 

Variant  Variant 

Frequency 

Validated Area within DEAR1 

D05 INV 33629715 G> A c.504+1357 C>T 0.04  Intronic 

  33629773 C> T c.504+1299 G>A 0.04  Intronic 

  33629776 G> A c.504+1296 C>T 0.04  Intronic 

  33629777 C> T c.504+1295 G>A 0.05  Intronic 

  33629778 C> T c.504+1294 G>A 0.04  Intronic 

  33629801 G> A c.504+1271 C>T 0.04  Intronic 

  33629843 G> A c.504+1229 C>T 0.03  Intronic 

  33629844 G> A c.504+1228 C>T 0.05  Intronic 

  33629857 C> T c.504+1215 G>A 0.04  Intronic 

  33629872 GG>AA c.504+1200 CC>TT 0.03  Intronic 

  33629897 C> T c.504+1175 G>A 0.04  Intronic 

  33630292 G> A c.504+780 C>T 0.03  Intronic 

  33630716 G> A c.504+356 C>T 0.04  Intronic 

  33630759 G> A c.504+313 C>T 0.04  Intronic 

  33630775 C> T c.504+297 G>A 0.1  Intronic 

  33630778 G> A c.504+294 C>T 0.09  Intronic 

  33630843 C> T c.504+229 G>A 0.05  Intronic 

  33630850 C> T c.504+222 G>A 0.04  Intronic 

  33630881 G> A c.504+191 C>T 0.05  Intronic 

  33630900 C> T c.504+172 G>A 0.06  Intronic 

  33630906 C> T c.504+166 G>A 0.06  Intronic 

  33630913 C> T c.504+159 G>A 0.03  Intronic 

  33631195 G> A c.409-28 C>T 0.03  Intronic 

  33631232 C> T c.409-65 G>A 0.04  Intronic 

  33631277 C> T c.409-110 G>A 0.05  Intronic 

  33631302 C> T c.409-135 G>A 0.05  Intronic 

  33631305 C> T c.409-1897 G>A 0.06  Intronic 

  33633064 C> T c.409-2116 C>T 0.03  Intronic 

  33633283 G> A c.409-2138 G>A 0.06  Intronic 

  33633305 C> T c.409-3128 C>T 0.09  Intronic 

  33634295 G> A c.409-3191 G>A 0.05  Intronic 
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  33634358 C> T c.409-3128 C>T 0.05  Intronic 

  33634373 C> G c.409-3206 G>C 0.03  Intronic 

Sample Lesion 

Type 

Chromosome 1  

Hg19 location 

Nucleotide 

Change 

Variant  Variant 

Frequency 

Validated Area within DEAR1 

D05 INV 33634375 G> A c.409-3208 C>T 0.05  Intronic 

  33634646 C> T  c.409-3479 G>A 0.04  Intronic 

  33634651 C> T c.409-3484 G>A 0.05  Intronic 

  33634691 G> A c.409-3524 C>T 0.03  Intronic 

  33634693 G> A c.409-3526 C>T 0.04  Intronic 

  33634756 G> A c.409-3589 C>T 0.06  Intronic 

  33634793 G> A c.409-3626 C>T 0.03  Intronic 

  33634798 G> A c.409-3631 C>T 0.03  Intronic 

  33636146 G> A c.409-4979 C>T 0.03  Intronic 

  33636276 G> A c.409-5109 C>T 0.05  Intronic 

  33636287 A> G c.409-5120 T>C 0.05  Intronic 

  33636289 G> A c.409-5122 C>T 0.05  Intronic 

  33636668 C> T  c.409-5501 G>A 0.03  Intronic 

  33636691 G> A c.409-5524 C>T 0.04  Intronic 

  33636713 C> T c.409-5546 G>A 0.03  Intronic 

  33636721 G> C c.409-5554 C>G 0.03  Intronic 

  33636725 C> T c.409-5558 G>A 0.03  Intronic 

  33636738 G> A c.409-5571 C>T 0.03  Intronic 

  33637943 G> A c.409-6776 C>T 0.05  Intronic 

  33637946 G> A c.409-6779 C>T 0.05  Intronic 

  33638005 G> A c.409-6838 C>T 0.03  Intronic 

  33638086 G> A c.409-6919 C>T 0.05  Intronic 

  33638194 C> G c.409-7027 G>C 0.06  Intronic 

  33638199 G> A c.409-7032 C>T 0.06  Intronic 

  33638242 C> T c.409-7075 G>A 0.08  Intronic 

  33638251 C> T c.409-7084 G>A 0.03  Intronic 

  33638258 G> A c.409-7091 C>T 0.06  Intronic 

  33638290 G> A c.409-7123 C>T 0.06  Intronic 

  33638302 G> T c.409-7135 C>A 0.04  Intronic 

  33638370 G> A c.409-7203 C>T 0.04  Intronic 
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  33638393 C> T  c.409-7226 G>A 0.04  Intronic 

  33638472 C> T c.409-7305 G>A 0.05  Intronic 

  33638475 G> A c.409-7308 C>T 0.04  Intronic 

Sample Lesion 

Type 

Chromosome 1  

Hg19 location 

Nucleotide 

Change 

Variant  Variant 

Frequency 

Validated Area within DEAR1 

D05 INV 33638518 C> T c.409-7351 G>A 0.08  Intronic 

  33638547 G> A c.409-7380 C>T 0.07  Intronic 

  33638551 CC> TT c.409-7384 GG>AA 0.07  Intronic 

  33638558 C> T c.409-7391 G>A 0.07  Intronic 

  33638608 C> T c.409-7441 G>A 0.08  Intronic 

  33638611 C> T c.409-7444 G>A 0.04  Intronic 

  33638647 C> T c.409-7480 G>A 0.04  Intronic 

  33638744 C> T c.409-7577 G>A 0.04  Intronic 

  33638757 A> C c.409-7590 T>G 0.05  Intronic 

  33638758 C> T   c.409-7591 G>A 0.04  Intronic 

  33638762 C> T c.409-7595 G>A 0.04  Intronic 

  33638860 C> T c.409-7693 G>A 0.05  Intronic 

  33638864 C> T c.409-7697G>A 0.05  Intronic 

  33638875 G> A c.409-7708 C>T 0.04  Intronic 

  33638918 C> T  c.408+7708 G>A 0.04  Intronic 

  33638982 C> T c.408+7644 G>A 0.08  Intronic 

  33638990 G> C c.408+7636 C>G 0.08  Intronic 

  33639069 C> T  c.408+7557 G>A 0.09  Intronic 

  33639083 C> A c.408+7543 G>T 0.09  Intronic 

  33640324 C> T c.408+6302 G>A 0.04  Intronic 

  33640342 G> A c.408+6284 C>T 0.04  Intronic 

  33641453 C> T c.408+5173 G>A 0.03  Intronic 

  33641656 C> G c.408+4970 G>C 0.03  Intronic 

  33641668 C> T c.408+4958 G>A 0.04  Intronic 

  33641874 C> T c.408+4752 G>A 0.04  Intronic 

  33641909 C> T c.408+4717 G>A 0.04  Intronic 

  33641923 C> T c.408+4703 G>A 0.05  Intronic 

  33641994 C> T c.408+4632 G>A 0.04  Intronic 

  33642018 C> T c.408+4608 G>A 0.04  Intronic 
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  33642063 C> T c.408+4563 G>A 0.03  Intronic 

  33642109 G> A c.408+4517 C>T 0.04  Intronic 

  33643885 G> A c.408+2741 C>T 0.04  Intronic 

  33643944 G> A c.408+2682 C>T 0.03  Intronic 

Sample Lesion 

Type 

Chromosome 1  

Hg19 location 

Nucleotide 

Change 

Variant  Variant 

Frequency 

Validated Area within DEAR1 

D05 INV 33644402 C> T  c.408+2224 G>A 0.04  Intronic 

  33644432 G> A c.408+2194 C>T 0.04  Intronic 

  33644439 C> T c.408+2187 G>A 0.05  Intronic 

  33644451 C> T c.408+2175 G>A 0.03  Intronic 

  33644474 G> A c.408+2152 C>T 0.04  Intronic 

  33644863 C> T c.408+1763 G>A 0.04  Intronic 

  33644894 G> A c.408+1732 C>T 0.04  Intronic 

  33645020 G> A c.408+1606 C>T 0.04  Intronic 

  33645027 G> A c.408+1599 C>T 0.04  Intronic 

  33645040 C> A c.408+1586 G>T 0.04  Intronic 

  33645090 G> A c.408+1536 C>T 0.03  Intronic 

  33645128 C> T  c.408+1498 G>A 0.07  Intronic 

  33645151 C> T c.408+1475 G>A 0.03  Intronic 

  33645183 G> A c.408+1443 C>T 0.06  Intronic 

  33645290 G> A c.408+1336 C>T 0.04  Intronic 

  33645303 C> T  c.408+1323 G>A 0.04  Intronic 

  33645307 C> T c.408+1319 G>A 0.04  Intronic 

  33645675 G> A c.408+951 C>T 0.03  Intronic 

  33645696 G> A c.408+930 C>T 0.04  Intronic 

  33645855 C> T c.408+771G>A 0.04  Intronic 

  33645856 C> T  c.408+770 G>A 0.05  Intronic 

  33645912 C> T  c.408+714 G>A 0.04  Intronic 

  33645932 C> T c.408+694 G>A 0.04  Intronic 

  33645955 C> T c.408+671 G>A 0.04  Intronic 

  33645964 G> C c.408+662 C>G 0.04  Intronic 

  33646035 C> T  c.408+591 G>A 0.03  Intronic 

  33646036 T> C c.408+590A>G 0.06  Intronic 

  33646094 C> T  c.408+532 G>A 0.04  Intronic 
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  33646110 C> T c.408+516 G>A 0.07  Intronic 

  33646271 C> T c.408+355 G>A 0.03  Intronic 

  33647517 G> A Upstream 0.04  Upstream 

  33647526 G> A Upstream 0.04  Upstream 

Sample Lesion 

Type 

Chromosome 1  

Hg19 location 

Nucleotide 

Change 

Variant  Variant 

Frequency 

Validated Area within DEAR1 

D05 INV 33647595 C> T  Upstream 0.04  Upstream 

  33647631 C> A  Upstream 0.06  Upstream 

  33648206 T> C Upstream 0.15  Upstream 

  33648250 G> A Upstream 0.09  Upstream 

  33648829 G> A Upstream 0.04  Upstream 

  33649473 C> T  Upstream 0.06  Upstream 

  33649476 G> A Upstream 0.06  Upstream 

  33649564 C> T  Upstream 0.05  Upstream 

  33649574 C> G Upstream 0.07  Upstream 

  33651320 C> T Upstream 0.05  Upstream 

  33651330 C> T Upstream 0.07  Upstream 

  33651397 G> T Upstream 0.04  Upstream 

  33651410 G> A Upstream 0.06  Upstream 

  33653008 C> G Upstream 0.05  Upstream 

  33653022 G> A Upstream 0.06  Upstream 

  33653028 G> A Upstream 0.07  Upstream 

  33653059 G> A Upstream 0.04  Upstream 

  33657843 C> T Upstream 0.04  Upstream 

  33657845 C> T Upstream 0.06  Upstream 

  33657853 C> T Upstream 0.06  Upstream 

  33657922 C> T Upstream 0.07  Upstream 

  33658110 G> A Upstream 0.03  Upstream 

  33658670 G> A Upstream 0.05  Upstream 

  33658796 G> A Upstream 0.04  Upstream 

  33681361 C> T  Upstream 0.04  Upstream 

  33681404 C> T  Upstream 0.04  Upstream 

  33681418 G> A Upstream 0.03  Upstream 

  33681433 C> T Upstream 0.04  Upstream 
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D06 DCIS 33613098 C> T p.Glu370Lys      

 c.1108G>A 

0.04  Exonic 

  33625498 C> T p.Arg184Arg 

c.552G>A 

0.03  Exonic 

  33616812 G> A c.878-3484 C>T 0.03  Intronic 

Sample Lesion 

Type 

Chromosome 1  

Hg19 location 

Nucleotide 

Change 

Variant  Variant 

Frequency 

Validated Area within DEAR1 

D06 DCIS 33638087 G> A c.409-6920 C>T 0.03  Intronic 

  33638582 C> T c.409-7415 G>A 0.03  Intronic 

  33644801 C> T c.408+1825 G>A 0.04  Intronic 

 INV 33611108 G> A c.*1670 C>T 0.06  3'UTR 

  33611283 G> A c.*1495 C>T 0.05  3'UTR 

  33611323 C> T c.*1455 G>A 0.03  3'UTR 

  33612181 C> T c.*597 G>A 0.03  3'UTR 

  33612370 G> A c.*408 C>T 0.04  3'UTR 

  33612419 G> A c.*359 C>T 0.03  3'UTR 

  33613072 G> C p.Ile378Met 

c.1134C>G 

0.03  Exonic 

  33613080 C> T p.Gly376Ser 

c.1126G>A 

0.03  Exonic 

  33613116 C> T p.Val364Met 

c.1090G>A 

0.03  Exonic 

  33616206 G> A c.878-2878 C>T 0.03  Intronic 

  33616478 G> A c.878-3150 C>T 0.03  Intronic 

  33616729 G> A c.878-3401 C>T 0.04  Intronic 

  33616839 G> A c.878-3511 C>T 0.03  Intronic 

  33616870 G> A c.878-3542 C>T 0.03  Intronic 

  33616875 G> A c.878-3547 C>T 0.03  Intronic 

  33616890 G> A c.878-3562 C>T 0.03  Intronic 

  33616898 G> A c.878-3570 C>T 0.06  Intronic 

  33616902 G> A c.878-3574 C>T 0.04  Intronic 

  33619899 C> T c.877+3955 G>A 0.03  Intronic 

  33623976 G> A c.762-7 C>T 0.03  Intronic 

  33625263 G> A c.761+26 C>T 0.03  Intronic 

  33625514 C> T p.Gly179Asp 0.04  Exonic 
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c.536G>A 

  33629315 G> A c.504+1757 C>T 0.07  Intronic 

  33629321 G> A c.504+1751 C>T 0.04  Intronic 

  33629360 G> A c.504+1712 C>T 

 

0.03  Intronic 

Sample Lesion 

Type 

Chromosome 1  

Hg19 location 

Nucleotide 

Change 

Variant  Variant 

Frequency 

Validated Area within DEAR1 

D06 INV 33630778 G> A c.504+294 C>T 0.09  Intronic 

  33630913 C> T c.504+159 G>A 0.03  Intronic 

  33630919 C> T c.504+153 G>A 0.06  Intronic 

  33630920 C> T c.504+152 G>A 0.05  Intronic 

  33630930 C> G c.504+142 G>C 0.03  Intronic 

  33633308 C> G c.409-2141 G>C 0.05  Intronic 

  33634282 G> A c.409-3115 C>T 0.04  Intronic 

  33634288 G> A c.409-3121 C>T 0.04  Intronic 

  33634294 G> A c.409-3127 C>T 0.04  Intronic 

  33636640 G> A c.409-5473 C>T 0.07  Intronic 

  33636663 G> A c.409-5496 C>T 0.03  Intronic 

  33638086 G> A c.409-6919 C>T 0.03  Intronic 

  33638217 G> A c.409-7050 C>T 0.03  Intronic 

  33638393 C> T c.409-7226 G>A 0.03  Intronic 

  33638506 C> T c.409-7339 G>A 0.05  Intronic 

  33638844 C> T c.409-7677 G>A 0.03  Intronic 

  33638868 C> T c.409-7701 G>A 0.03  Intronic 

  33638932 C> T c.408+7694 G>A 0.03  Intronic 

  33639142 C> T c.408+7484 G>A 0.04  Intronic 

  33641558 C> T c.408+5068 G>A 0.04  Intronic 

  33641940 C> T c.408+4686 G>A 0.03  Intronic 

  33642164 C> G c.408+4462 G>C 0.02  Intronic 

  33645318 G> A c.408+1308 C>T 0.03  Intronic 

  33645919 C> T c.408+707 G>A 0.03  Intronic 

  33646965 G> A p.Ser23Ser 

c.69C>T 

0.04  Exonic 

  33648722 G> A Upstream 0.04  Upstream 

  33649476 G> A Upstream 0.04  Upstream 
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  33649511 G> A Upstream 0.04  Upstream 

  33657845 C> T Upstream 0.03  Upstream 

  33657889 C> T Upstream 0.03  Upstream 

D07 DCIS 33639129 T> A c.408+7497 A>T 

 

0.04  Intronic 

Sample Lesion 

Type 

Chromosome 1  

Hg19 location 

Nucleotide 

Change 

Variant  Variant 

Frequency 

Validated Area within DEAR1 

D07 INV 33648237 A> G Upstream 0.05  Upstream 

D08 DCIS 33639129 T> A Upstream 0.05  Upstream 

  33648250 G> A Upstream 0.15  Upstream 

 INV 33611230 A> G c.*1548 T>C 0.04  3'UTR 

  33616852 G> A c.878-3524 C>T 0.04  Intronic 

  33629318 C> T c.504+1754 G>A 0.03  Intronic 

  33638876 G> C c.409-7709 C>G 0.03  Intronic 

  33639129 T> A Upstream 0.05  Upstream 

  33657915 A> G Upstream 0.03  Upstream 

D09 DCIS 33612473 T> C c.*305 A>G 0.14  3'UTR 

  33629668 TC> CA c.504+1404 GA>TG 0.46  Intronic 

  33644798 AA> GC  c.408+1828 TT>GC 1  Intronic 

  33645661 GCT> G c.408+963_408+964 delAG 0.51  Intronic 

 INV 33629668 TC> CA c.504+1404 GA>TG 0.49  Intronic 

  33639129 T> A c.408+7497 A>T 0.05  Intronic 

  33644798 AA> GC  c.408+1828  TT>GC 1  Intronic 

  33645661 GCT> G c.408+963_408+964 delAG 0.52  Intronic 

  33648859 T> C Upstream 0.05  Upstream 

D10 DCIS 33639129 T> A c.408+7497 A>T 0.04  Intronic 

 INV 33644798 AA> GC c.408+1828 TT>GC 1  Intronic 

  33645661 GCT> G c.408+963_408+964 delAG 1  Intronic 

D11 DCIS 33612419 G> A c.*359 C>T 0.04  3'UTR 

  33612452 G> A c.*326 C>T 0.03  3'UTR 

  33613021 G> A p.Asn395Asn 

c.1185C>T 

0.03  Exonic 

  33613415 G> A c.878-87 C>T 0.04  Intronic 

  33616060 C> T c.878-2732 G>A 0.03  Intronic 

  33616104 C> T c.878-2732 G>A 0.03  Intronic 
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  33616166 C> T c.878-2776 G>A 0.03  Intronic 

  33616221 G> A c.878-2838 G>A 

 

0.03  Intronic 

  33616233 G> A c.878-2893 C>T 0.03  Intronic 

  33616342 G> A c.878-2905 C>T 0.03  Intronic 

Sample Lesion 

Type 

Chromosome 1  

Hg19 location 

Nucleotide 

Change 

Variant  Variant 

Frequency 

Validated Area within DEAR1 

D11 DCIS 33616344 G> A c.878-3016 C>T 0.04  Intronic 

  33616397 G> A c.878-3069 C>T 0.03  Intronic 

  33616513 G> A c.878-3185 C>T 0.03  Intronic 

  33616666 G> A c.878-3338 C>T 0.05  Intronic 

  33616684 G> A c.878-3356 C>T 0.03  Intronic 

  33616712 G> A c.878-3384 C>T 0.04  Intronic 

  33616808 G> A c.878-3480 C>T 0.04  Intronic 

  33616864 G> A c.878-3536 C>T 0.03  Intronic 

  33616887 G> A c.878-3559 C>T 0.04  Intronic 

  33616891 G> A c.878-3563 C>T 0.04  Intronic 

  33618646 G> A c.877+5208 C>T 0.11  Intronic 

  33618721 G> A c.877+5133 C>T 0.03  Intronic 

  33618922 C> T c.877+4932 G>A 0.03  Intronic 

  33621020 C> T c.877+2834 G>A 0.03  Intronic 

  33623961 C> T p.Gly257Glu 

c.770G>A 

0.03  Exonic 

  33623985 G> A c.762-16 C>T 0.03  Intronic 

  33625122 C> T c.761+167 G>A 0.03  Intronic 

  33625142 C> T c.761+147 G>A 0.04  Intronic 

  33625456 C> T p.Glu77Glu 

c.231G>A 

0.03  Exonic 

  33625665 G> A c.505-120 C>T 0.04  Intronic 

  33627101 C> T c.142-1556 G>A 0.02  Intronic 

  33627241 C> T c.505-1696 G>A 0.04  Intronic 

  33627263 G> A c.505-1718 C>T 0.04  Intronic 

  33627291 C> T c.505-1746 G>A 0.03  Intronic 

  33628207 G> A c.505-2662 C>T 0.04  Intronic 

  33629578 G> A c.504+1494 C>T 0.03  Intronic 
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  33630772 G> A c.504+300 C>T 0.08  Intronic 

  33630775 C> T c.504+297 G>A 0.05  Intronic 

  33630908 C> T c.504+164 G>A 0.04  Intronic 

  33630925 C> T c.504+147 G>A 0.05  Intronic 

  33633303 C> T c.409-2136 G>A 0.05  Intronic 

Sample Lesion 

Type 

Chromosome 1  

Hg19 location 

Nucleotide 

Change 

Variant  Variant 

Frequency 

Validated Area within DEAR1 

D11 DCIS 33633416 G> A c.409-2249 C>T 0.03  Intronic 

  33634282 G> A c.409-3115 C>T 0.03  Intronic 

  33634785 C> T c.409-3618 G>A 0.03  Intronic 

  33636295 G> A c.409-5128 C>T 0.05  Intronic 

  33637997 G> A c.409-6830 C>T 0.03  Intronic 

  33638004 G> A c.409-6837 C>T 0.09  Intronic 

  33638021 G> A c.409-6854 C>T 0.04  Intronic 

  33638048 G> A c.409-6881 C>T 0.03  Intronic 

  33638086 G> A c.409-6919 C>T 0.05  Intronic 

  33638087 G> A c.409-6920 C>T 0.04  Intronic 

  33638181 G> A c.409-7014 C>T 0.03  Intronic 

  33638182 G> A c.409-7015 C>T 0.03  Intronic 

  33638210 G> A c.409-7043 C>T 0.03  Intronic 

  33638360 C> T c.409-7193 G>A 0.04  Intronic 

  33638535 C> T c.409-7368 G>A 0.03  Intronic 

  33639014 G> A c.408+7612 C>T 0.05  Intronic 

  33641603 C> T c.408+5023 G>A 0.03  Intronic 

  33641922 C> T c.408+4704 G>A 0.04  Intronic 

  33641929 C> T c.408+4697 G>A 0.03  Intronic 

  33641956 C> T c.408+4670 G>A 0.05  Intronic 

  33641976 C> T c.408+4650 G>A 0.03  Intronic 

  33643945 G> A c.408+2681 C>T 0.05  Intronic 

  33644794 C> T c.408+1832 G>A 0.04  Intronic 

  33644798 AA> GC c.408+1828 TT>GC 1.00  Intronic 

  33644941 G> A c.408+1685 C>T 0.03  Intronic 

  33645037 G> A c.408+1589 C>T 0.03  Intronic 

  33645055 G> A c.408+1571 C>T 0.04  Intronic 
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  33645109 C> T c.408+1517 G>A 0.03  Intronic 

  33645179 C> T c.408+1447 G>A 0.03  Intronic 

  33645185 G> A c.408+1441 C>T 0.04  Intronic 

  33645644 G> A c.408+982 C>T 0.03  Intronic 

  33645661 GCT> G c.408+963_408+964 delAG 1.00  Intronic 

  33645856 C> T c.408+770 G>A 0.03  Intronic 

Sample Lesion 

Type 

Chromosome 1  

Hg19 location 

Nucleotide 

Change 

Variant  Variant 

Frequency 

Validated Area within DEAR1 

D11 DCIS 33645897 C> T c.408+729 G>A 0.04  Intronic 

  33645931 C> T c.408+695 G>A 0.04  Intronic 

  33645937 C> T c.408+689 G>A 0.04  Intronic 

  33645997 C> T c.408+629 G>A 0.03  Intronic 

  33646001 C> T c.408+625 G>A 0.04  Intronic 

  33646103 C> T c.408+523 G>A 0.04  Intronic 

  33646143 C> T c.408+483 G>A 0.03  Intronic 

  33646165 C> T c.408+461 G>A 0.03  Intronic 

  33646181 C> T c.408+445 G>A 0.04  Intronic 

  33646186 C> T c.408+440 G>A 0.04  Intronic 

  33646330 C> T c.408+296 G>A 0.03  Intronic 

  33646333 C> T c.408+293 G>A 0.04  Intronic 

  33646347 C> T c.408+279 G>A 0.03  Intronic 

  33647195 G> A c.-162 C>T 0.03  5'UTR 

  33648206 T> C Upstream 0.14  Upstream 

  33649525 C> T Upstream 0.04  Upstream 

  33649543 C> T Upstream 0.04  Upstream 

  33649577 C> T Upstream 0.03  Upstream 

  33651364 C> T Upstream 0.04  Upstream 

  33651366 G> A Upstream 0.04  Upstream 

  33653032 G> A Upstream 0.05  Upstream 

  33656997 C> T Upstream 0.03  Upstream 

  33657853 C> T Upstream 0.03  Upstream 

  33657888 C> T Upstream 0.04  Upstream 

  33657910 C> T Upstream 0.04  Upstream 

  33657918 C> T Upstream 0.03  Upstream 
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 INV 33611118 G> A c.*1660 C>T 0.03  3'UTR 

  33611332 G> A c.*1446 C>T 0.03  3'UTR 

  33611892 G> A c.*886 C>T 0.03  3'UTR 

  33612122 G> A c.*656 C>T 0.03  3'UTR 

  33612384 G> A c.*394 C>T 0.05  3'UTR 

  33612468 GGTA> CCAT c.*307 TACC>ATGG 0.06  3'UTR 

  33612547 G> A c.*231 C>T 0.03  3'UTR 

Sample Lesion 

Type 

Chromosome 1  

Hg19 location 

Nucleotide 

Change 

Variant  Variant 

Frequency 

Validated Area within DEAR1 

D11 INV 33612978 G> A p.Arg410Trp 

c.1228C>T 

0.03  Exonic 

  33613058 C> T p.Ser383Asn 

c.1148G>A 

0.03  Exonic 

  33613079 C> T p.Gly376Asp 

c.1127G>A 

0.04  Exonic 

  33613085 C> T p.Arg374His 

c.1121G>A 

0.05  Exonic 

  33613200 C> T p.Val336Met 

c.1006G>A 

0.03  Exonic 

  33613362 G> A c.878-34 C>T 0.04  Intronic 

  33615571 G> A c.878-2243 C>T 0.04  Intronic 

  33615678 C> T c.878-2350 G>A 0.03  Intronic 

  33616092 C> T c.878-2764 G>A 0.05  Intronic 

  33616105 C> T c.878-2777 G>A 0.04  Intronic 

  33616197 G> A c.878-2869 C>T 0.05  Intronic 

  33616324 G> A c.878-2996 C>T 0.05  Intronic 

  33616726 G> A c.878-3398 C>T 0.04  Intronic 

  33616740 G> A c.878-3412 C>T 0.04  Intronic 

  33616897 G> A c.878-3569 C>T 0.03  Intronic 

  33617358 C> T c.878-4030 G>A 0.04  Intronic 

  33618710 G> A c.877+5144 C>T 0.05  Intronic 

  33618712 G> A c.877+5142 C>T 0.05  Intronic 

  33618734 G> A c.877+5120 C>T 0.04  Intronic 

  33619828 G> A c.877+4026 C>T 0.05  Intronic 

  33623981 G> A c.762-12 C>T 0.04  Intronic 
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  33623997 C> T c.762-28 G>A 0.03  Intronic 

  33624003 G> A c.762-34 C>T 0.04  Intronic 

  33624016 G> A c.762-47 C>T 0.03  Intronic 

  33624033 C> T c.762-64 G>A 0.05  Intronic 

  33624036 G> A c.762-67 C>T 0.03  Intronic 

  33624050 G> A c.762-81 C>T 0.03  Intronic 

  33625077 C> T c.761+212 G>A 0.04  Intronic 

Sample Lesion 

Type 

Chromosome 1  

Hg19 location 

Nucleotide 

Change 

Variant  Variant 

Frequency 

Validated Area within DEAR1 

D11 INV 33625655 G> A c.505-110 C>T 0.03  Intronic 

  33625663 G> A c.505-118 C>T 0.04  Intronic 

  33626868 G> A c.505-1323 C>T 0.03  Intronic 

  33626885 G> A c.505-1340 C>T 0.04  Intronic 

  33626928 G> A c.505-1383 C>T 0.04  Intronic 

  33627271 G> A c.505-1726 C>T 0.07  Intronic 

  33627411 C> T c.505-1866 G>A 0.03  Intronic 

  33627448 C> T c.505-1903 G>A 0.03  Intronic 

  33628224 G> A c.142-2679 C>T 0.03  Intronic 

  33628228 G> A c.505-2683 C>T 0.03  Intronic 

  33628249 G> A c.505-2704 C>T 0.03  Intronic 

  33628254 G> A c.505-2709 C>T 0.03  Intronic 

  33628264 G> A c.505-2719 C>T 0.07  Intronic 

  33629174 C> T c.504+1898 G>A 0.04  Intronic 

  33629225 C> T c.504+1847 G>A 0.05  Intronic 

  33629389 C> T c.504+1683 G>A 0.03  Intronic 

  33629399 G> A c.504+1673 C>T 0.04  Intronic 

  33629408 G> A c.504+1664 C>T 0.03  Intronic 

  33629429 C> T c.504+1643 G>A 0.03  Intronic 

  33629544 G> A c.504+1528 C>T 0.03  Intronic 

  33629741 G> A c.504+1331 C>T 0.04  Intronic 

  33629784 G> A c.504+1288 C>T 0.03  Intronic 

  33629829 G> A c.504+1243 C>T 0.04  Intronic 

  33629870 C> T c.504+1202 G>A 0.03  Intronic 

  33630756 C> T c.504+316 G>A 0.03  Intronic 
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  33630782 C> T c.504+290 G>A 0.04  Intronic 

  33630846 C> T c.504+226 G>A 0.03  Intronic 

  33630900 C> T c.504+172 G>A 0.04  Intronic 

  33630928 C> T c.504+144 G>A 0.09  Intronic 

  33630929 C> T c.504+143 G>A 0.06  Intronic 

  33631385 C> T c.409-218 G>A 0.04  Intronic 

  33633128 C> T c.409-1961 G>A 0.04  Intronic 

  33633231 C> T c.409-2064 G>A 0.05  Intronic 

Sample Lesion 

Type 

Chromosome 1  

Hg19 location 

Nucleotide 

Change 

Variant  Variant 

Frequency 

Validated Area within DEAR1 

D11 INV 33633241 C> T c.409-2074 G>A 0.04  Intronic 

  33634280 C> T c.409-3113 G>A 0.03  Intronic 

  33634288 G> A c.409-3121 C>T 0.03  Intronic 

  33634320 G> A c.409-3153 C>T 0.04  Intronic 

  33634322 G> A c.409-3155 C>T 0.06  Intronic 

  33634343 G> A c.409-3176  C>T 0.04  Intronic 

  33634391 G> A c.409-3224 C>T 0.04  Intronic 

  33634592 C> T c.409-3425 G>A 0.03  Intronic 

  33634609 C> T c.409-3442 G>A 0.04  Intronic 

  33634699 G> A c.409-3532 C>T 0.03  Intronic 

  33634705 G> A c.409-3538 C>T 0.05  Intronic 

  33636128 G> A c.409-4961 C>T 0.04  Intronic 

  33636180 G> A c.409-5013 C>T 0.03  Intronic 

  33636640 G> A c.409-5473 C>T 0.03  Intronic 

  33636654 G> A c.409-5487 C>T 0.04  Intronic 

  33636661 C> T c.409-5494 G>A 0.03  Intronic 

  33637967 G> A c.409-6800 C>T 0.03  Intronic 

  33638000 G> A c.409-6833 C>T 0.06  Intronic 

  33638005 G> A c.409-6838 C>T 0.08  Intronic 

  33638065 G> A c.409-6898 C>T 0.04  Intronic 

  33638081 G> A c.409-6914 C>T 0.07  Intronic 

  33638180 G> A c.409-7013 C>T 0.03  Intronic 

  33638199 G> A c.409-7032 C>T 0.05  Intronic 

  33638200 G> A c.409-7033 C>T 0.03  Intronic 
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  33638349 C> T c.409-7182 G>A 0.04  Intronic 

  33638384 C> T c.409-7217 G>A 0.03  Intronic 

  33638462 G> A c.409-7295 C>T 0.04  Intronic 

  33638480 C> T c.409-7313 G>A 0.04  Intronic 

  33638575 C> T c.409-7408 G>A 0.04  Intronic 

  33638591 C> T c.409-7424 G>A 0.05  Intronic 

  33638623 C> T c.409-7456 G>A 0.03  Intronic 

  33638637 C> T c.409-7470 G>A 0.03  Intronic 

  33638753 C> T c.409-7586 G>A 0.04  Intronic 

Sample Lesion 

Type 

Chromosome 1  

Hg19 location 

Nucleotide 

Change 

Variant  Variant 

Frequency 

Validated Area within DEAR1 

D11 INV 33638762 C> T c.409-7595 G>A 0.04  Intronic 

  33638803 C> T c.409-7636 G>A 0.03  Intronic 

  33638808 C> T c.409-7641 G>A 0.06  Intronic 

  33638828 C> T c.409-7661 G>A 0.04  Intronic 

  33638848 C> T c.409-7681 G>A 0.03  Intronic 

  33638864 C> T c.409-7697 G>A 0.03  Intronic 

  33638872 C> T c.409-7705 G>A 0.03  Intronic 

  33638884 C> T c.409-7717 G>A 0.07  Intronic 

  33638889 C> T c.409-7722 G>A 0.03  Intronic 

  33639002 G> A c.408+7624 C>T 0.03  Intronic 

  33639010 G> A c.408+7616 C>T 0.06  Intronic 

  33639044 G> A c.408+7582 C>T 0.03  Intronic 

  33639046 G> A c.408+7580 C>T 0.04  Intronic 

  33639056 G> A c.408+7570 C>T 0.03  Intronic 

  33640222 C> T c.408+6404 G>A 0.04  Intronic 

  33640229 C> T c.408+6397 G>A 0.04  Intronic 

  33640366 C> T c.408+6260 G>A 0.03  Intronic 

  33641447 C> T c.408+5179 G>A 0.03  Intronic 

  33641481 C> T c.408+5145 G>A 0.04  Intronic 

  33641528 C> T c.408+5098 G>A 0.05  Intronic 

  33641543 G> A c.408+5083 C>T 0.04  Intronic 

  33641565 G> A c.408+5061 C>T 0.04  Intronic 

  33641599 C> T c.408+5027 G>A 0.04  Intronic 
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  33641650 G> A c.408+4976 C>T 0.04  Intronic 

  33641707 C> T c.408+4919 G>A 0.04  Intronic 

  33641767 C> T c.408+4859 G>A 0.03  Intronic 

  33641874 C> T c.408+4752 G>A 0.07  Intronic 

  33641923 C> T c.408+4703 G>A 0.04  Intronic 

  33641959 C> T c.408+4667 G>A 0.06  Intronic 

  33641962 C> T c.408+4664 G>A 0.05  Intronic 

  33643862 G> A c.408+2764 C>T 0.03  Intronic 

  33643874 G> A c.408+2752 C>T 0.04  Intronic 

  33643882 G> A c.408+2744 C>T 0.03  Intronic 

Sample Lesion 

Type 

Chromosome 1  

Hg19 location 

Nucleotide 

Change 

Variant  Variant 

Frequency 

Validated Area within DEAR1 

D11 INV 33643887 G> A c.408+2739 C>T 0.03  Intronic 

  33644006 G> A c.408+2620 C>T 0.03  Intronic 

  33644084 G> A c.408+2542 C>T 0.03  Intronic 

  33644433 G> A c.408+2193 C>T 0.04  Intronic 

  33644439 C> T c.408+2187 G>A 0.03  Intronic 

  33644442 G> A c.408+2184 C>T 0.05  Intronic 

  33644467 G> A c.408+2159 C>T 0.06  Intronic 

  33644798 AA> GC c.408+1828 TT>GC 1.00  Intronic 

  33644908 G> A c.408+1718 C>T 0.04  Intronic 

  33644917 G> A c.408+1709 C>T 0.04  Intronic 

  33645017 C> T c.408+1609 G>A 0.06  Intronic 

  33645020 G> A c.408+1606 C>T 0.05  Intronic 

  33645036 G> A c.408+1590 C>T 0.03  Intronic 

  33645110 C> T c.408+1516 G>A 0.03  Intronic 

  33645161 C> T c.408+1465 G>A 0.05  Intronic 

  33645176 C> T c.408+1450 G>A 0.03  Intronic 

  33645203 G> A c.408+1423 C>T 0.04  Intronic 

  33645207 G> A c.408+1419 C>T 0.04  Intronic 

  33645240 G> A c.408+1386 C>T 0.03  Intronic 

  33645285 G> A c.408+1341 C>T 0.09  Intronic 

  33645318 G> A c.408+1308 C>T 0.03  Intronic 

  33645597 G> A c.408+1029 C>T 0.05  Intronic 
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  33645661 GCT> G c.408+963_408+964 delAG 1.00  Intronic 

  33645771 C> T c.408+855 G>A 0.03  Intronic 

  33645897 C> T c.408+729 G>A 0.03  Intronic 

  33645934 C> T c.408+692 G>A 0.03  Intronic 

  33646036 T> C c.408+590 A>G 0.06  Intronic 

  33646277 C> T c.408+349 G>A 0.03  Intronic 

  33646304 C> T c.408+322 G>A 0.04  Intronic 

  33646644 G> A p.Asp130Asp 

c.390C>T 

0.16  Exonic 

  33646650 G> A p.Ile128Ile 

c.384C>T 

0.03  Exonic 

Sample Lesion 

Type 

Chromosome 1  

Hg19 location 

Nucleotide 

Change 

Variant  Variant 

Frequency 

Validated Area within DEAR1 

D11 INV 33647177 G> A c.-144 C>T 0.03  5'UTR 

  33647232 G> A c.-199 C>T 0.03  5'UTR 

  33647319 G> A Upstream 0.04  Upstream 

  33647348 G> A Upstream 0.05  Upstream 

  33647350 G> A Upstream 0.06  Upstream 

  33647588 C> T Upstream 0.04  Upstream 

  33648237 A> G Upstream 0.03  Upstream 

  33648765 G> A Upstream 0.03  Upstream 

  33649376 G> A Upstream 0.03  Upstream 

  33649414 G> A Upstream 0.03  Upstream 

  33649463 G> A Upstream 0.04  Upstream 

  33649470 C> T Upstream 0.04  Upstream 

  33649489 G> A Upstream 0.03  Upstream 

  33649491 C> T Upstream 0.04  Upstream 

  33649492 C> T Upstream 0.07  Upstream 

  33649495 C> T Upstream 0.04  Upstream 

  33649529 G> A Upstream 0.03  Upstream 

  33649588 G> A Upstream 0.04  Upstream 

  33651192 C> T Upstream 0.05  Upstream 

  33651312 C> T Upstream 0.03  Upstream 

  33651315 G> A Upstream 0.05  Upstream 

  33651406 G> A Upstream 0.05  Upstream 
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  33651475 C> T Upstream 0.03  Upstream 

  33653001 G> A Upstream 0.05  Upstream 

  33653032 G> A Upstream 0.05  Upstream 

  33653057 G> A Upstream 0.05  Upstream 

  33653093 G> A Upstream 0.04  Upstream 

  33657851 C> T Upstream 0.04  Upstream 

  33657912 C> T Upstream 0.03  Upstream 

  33657981 C> T Upstream 0.04  Upstream 

  33657990 C> T Upstream 0.03  Upstream 

  33658118 G> A Upstream 0.03  Upstream 

D12 DCIS 33612422 C> T c.*356 G>A 0.04  3'UTR 

Sample Lesion 

Type 

Chromosome 1  

Hg19 location 

Nucleotide 

Change 

Variant  Variant 

Frequency 

Validated Area within DEAR1 

D12 DCIS 33612446 G> A c.*332 C>T 0.04  3'UTR 

  33628228 G> A c.505-2683 C>T 0.03  Intronic 

  33629305 G> A c.504+1767 C>T 0.02  Intronic 

  33629323 G> A c.504+1749 C>T 0.04  Intronic 

  33629668 TC> CA c.504+1404 GA>TG 0.50  Intronic 

  33630843 C> T c.504+229 G>A 0.04  Intronic 

  33638065 G> A c.409-6898 C>T 0.03  Intronic 

  33638085 G> A c.409-6918 C>T 0.04  Intronic 

  33638086 G> A c.409-6919 C>T 0.05  Intronic 

  33644798 AA> GC c.408+1828 TT>GC 1.00  Intronic 

  33645661 GCT> G c.408+963_408+964 delAG 0.50  Intronic 

  33645855 C> T c.408+771 G>A 0.03  Intronic 

  33646979 G> A p.Gln19* 

c.55C>T 

0.04  Exonic 

  33647350 G> A Upstream 0.04  Upstream 

  33648250 G> A Upstream 0.80  Upstream 

  33648859 T> C Upstream 0.06  Upstream 

  33658110 G> A Upstream 0.06  Upstream 

  33612448 G> A c.*330 C>T 0.04  3'UTR 

  33612452 G> A c.*326 C>T 0.03  3'UTR 

  33612948 G> A p.Leu420Leu 

c.1258C>T 

0.03  Exonic 
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 INV 33616704 G> A c.878-3376 C>T 0.03  Intronic 

  33616716 G> A c.878-3376 C>T 0.03  Intronic 

  33616791 G> A c.878-3463 C>T 0.04  Intronic 

  33616897 G> A c.878-3569 C>T 0.08  Intronic 

  33625426 C> T p.Leu208Leu 

c.624G>A 

0.05  Exonic 

  33627317 C> T c.505-1772 G>A 0.04  Intronic 

  33629293 G> A c.504+1779 C>T 0.03  Intronic 

  33629364 G> A c.504+1708 C>T 0.04  Intronic 

  33629486 G> A c.504+1586 C>T 0.03  Intronic 

  33629668 TC> CA c.504+1404 GA>TG 0.5  Intronic 

Sample Lesion 

Type 

Chromosome 1  

Hg19 location 

Nucleotide 

Change 

Variant  Variant 

Frequency 

Validated Area within DEAR1 

D12 INV 33630854 C> T c.504+218 G>A 0.05  Intronic 

  33636289 G> A c.409-5122 C>T 0.03  Intronic 

  33638552 C> T c.409-7385 G>A 0.03  Intronic 

  33638564 C> T c.409-7397 G>A 0.06  Intronic 

  33644798 AA> GC c.408+1828 TT>GC 1.00  Intronic 

  33645661 GCT> G c.408+963_408+964 delAG 0.5  Intronic 

  33646088 C> T c.408+538 G>A 0.04  Intronic 

  33646330 C> T c.408+296 G>A 0.03  Intronic 

  33648250 G> A Upstream 0.06  Upstream 

  33648859 T> C Upstream 0.08  Upstream 

  33658110 G> A Upstream 0.06  Upstream 

D13 DCIS 33644798 AA> GC c.408+1828 TT>GC 1.00  Intronic 

  33645661 GCT> G c.409_410 delGA 1.00  Intronic 

  33647350 G> A Upstream 0.04  Upstream 

  33647595 C> T Upstream 0.03  Upstream 

  33648237 A> G Upstream 0.03  Upstream 

 INV 33612099 CCCT>GGGA c.*676 AGGG>TCCC 0.68  3'UTR 

  33612473 T> C c.*305 A>G 0.64  3'UTR 

  33616851 G> A c.878-3523 C>T 0.03  Intronic 

  33618447 G> A c.878-5119 C>T 0.03  Intronic 

  33618956 C> T c.877+4898 G>A 

 

0.04  Intronic 



182 

 

  33628201 G> A c.505-2656 C>T 0.04  Intronic 

  33630834 C> T c.504+238 G>A 0.03  Intronic 

  33630919 C> T c.504+153 G>A 0.04  Intronic 

  33638087 G> A c.409-6920 C>T 0.04  Intronic 

  33644798 AA> GC c.408+1828 TT>GC 1.00  Intronic 

  33645661 GCT> G c.409_410 delAG 1.00  Intronic 

  33645977 T> C c.408+649 A>G 0.05  Intronic 

  33646036 T> C c.408+590 A>G 0.10  Intronic 

  33646374 G> A c.408+252 C>T 0.04  Intronic 

  33646644 G> A p.Asp130Asp 

c.390C>T 

0.06  Exonic 

Sample Lesion 

Type 

Chromosome 1  

Hg19 location 

Nucleotide 

Change 

Variant  Variant 

Frequency 

Validated Area within DEAR1 

D13 INV 33648206 T> C Upstream 0.29  Upstream 

  33648210 T> C Upstream 0.02  Upstream 

  33648234 T> A Upstream 0.03  Upstream 

  33658110 G> A Upstream 0.03  Upstream 

D14 DCIS 33611109 G> A c.*1669 C>T 0.06  3'UTR 

  33612172 T> A c.*606 A>T 0.04  3'UTR 

  33613114 C> T p.Val364Val 

c.1092G>A 

0.03  Exonic 

  33616864 G> A c.878-3536 C>T 0.05  Intronic 

  33618915 C> T c.877+4939 G>A 0.04  Intronic 

  33623992 G> A c.762-23 C>T 0.05  Intronic 

  33625665 G> A c.505-120 C>T 0.02  Intronic 

  33627255 C>  T c.505-1710 G>A 0.03  Intronic 

  33627263 G> A c.505-1718 C>T 0.03  Intronic 

  33627382 C> T c.505-1837 G>A 0.04  Intronic 

  33629315 G> A c.504+1757 C>T 0.05  Intronic 

  33629316 G> A c.504+1756 C>T 0.04  Intronic 

  33629860 G> A c.504+1212 C>T 0.03  Intronic 

  33629867 G> A c.504+1205 C>T 0.04  Intronic 

  33630777 C> T c.504+295 G>C 0.08  Intronic 

  33638081 G> A c.409-6914 C>T 0.04  Intronic 

  33638087 G> A c.409-6920 C>T 0.04  Intronic 
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  33638177 G> A c.409-7010 C>T 0.03  Intronic 

  33638270 C> T c.409-7103 G>A 0.04  Intronic 

  33638793 C> T c.409-7626 G>A 0.03  Intronic 

  33644798 AA> GC c.408+1828 TT>GC 1.00  Intronic 

  33645661 GCT> G c.408+963_408+964 delAG 1.00  Intronic 

  33648237 A> G Upstream 0.03  Upstream 

  33648760 G> A Upstream 0.04  Upstream 

  33653022 G> A Upstream 0.04  Upstream 

  33657846 C> T Upstream 0.04  Upstream 

  33658110 G>A Upstream 0.03  Upstream 

  33681433 C> T Upstream 0.03  Upstream 

Sample Lesion 

Type 

Chromosome 1  

Hg19 location 

Nucleotide 

Change 

Variant  Variant 

Frequency 

Validated Area within DEAR1 

D14 INV 33611113 G> A c.*1665 C>T 0.04  3'UTR 

  33612422 C> T c.*356 G>A 0.06  3'UTR 

  33629305 G> A c.504+1767 C>T 0.02  Intronic 

  33638005 G> A c.409-6838 C>T 0.04  Intronic 

  33638085 G> A c.409-6918 C>T 0.05  Intronic 

  33638086 G> A c.409-6919 C>T 0.04  Intronic 

  33638753 C> T c.409-7586 G>A 0.04  Intronic 

  33638879 C> T c.409-7712 G>A 0.04  Intronic 

  33644798 AA> GC c.408+1828 TT>GC 1.00  Intronic 

  33645661 GCT> G c.408+963_408+964 delAG 1.00  Intronic 

  33648234 T> A Upstream 0.03  Upstream 

D15 DCIS 33612419 G> A c.*359 C>T 0.04  3'UTR 

  33616155 G> A c.878-2827 C>T 0.04  Intronic 

  33616467 G> A c.878-3139 C>T 0.04  Intronic 

  33616858 G> A c.878-3530 C>T 0.04  Intronic 

  33627372 C> T c.505-1827 G>A 0.53  Intronic 

  33629316 G> A c.504+1756 C>T 0.06  Intronic 

  33630847 C> T c.504+225 G>A 0.05  Intronic 

  33643872 G> A c.408+2754 C>T 0.03  Intronic 

  33644798 AA> GC c.408+1828 TT>GC 1.00  Intronic 

  33645661 GCT> G c.408+963_408+964 delAG 1.00  Intronic 
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  33646036 T> A c.408+590 A>G 0.04  Intronic 

  33648206 T> A Upstream 0.09  Upstream 

 INV 33616482 G> A c.878-3154 C>T 0.04  Intronic 

  33627236 G> A c.505-1691 C>T 0.09  Intronic 

  33627372 C> T c.505-1827 G>A 0.40  Intronic 

  33629305 G> A c.504+1767 C>T 0.02  Intronic 

  33630714 G> A c.504+358 C>T 0.03  Intronic 

  33630924 C> T c.504+148 G>A 0.05  Intronic 

  33638081 G> A c.409-6914 C>T 0.04  Intronic 

  33638082 G> A c.409-6915 C>T 0.03  Intronic 

  33638083 G> A c.409-6916 C>T 0.04  Intronic 

  33638352 G> A c.409-7185 C>T 0.04  Intronic 

Sample Lesion 

Type 

Chromosome 1  

Hg19 location 

Nucleotide 

Change 

Variant  Variant 

Frequency 

Validated Area within DEAR1 

D15 INV 33638568 C> T c.409-7401 G>A 0.03  Intronic 

  33638868 C> T c.409-7701 G>A 0.03  Intronic 

  33639129 T> A c.408+7497 A>T 0.04  Intronic 

  33641960 C> T c.45+49 G>A 0.03  Intronic 

  33642121 G> A c.408+4505 C>T 0.02  Intronic 

  33644798 AA> GC c.408+1828 TT>GC 1.00  Intronic 

  33645661 GCT> G c.408+963_408+964 delAG 1.00  Intronic 

  33645977 T> A c.408+649A>G 0.03  Intronic 

  33647354 G> A Upstream 0.03  Upstream 

  33648250 G> A Upstream 0.05  Upstream 

  33658110 G> A Upstream 0.04  Upstream 

D16 DCIS 33639129 T> A c.408+7497 A>T 0.03  Intronic 

  33648859 T> C Upstream 0.05  Upstream 

 INV 33612040 C> G c.*738 G>C 0.03  3'UTR 

  33639129 T> A c.408+7497 A>T 0.04  Intronic 

  33656988 T> C Upstream 0.02  Upstream 

D17 DCIS 33639129 T> A c.408+7497 A>T 0.03  Intronic 

  33648237 A> G Upstream 0.03  Upstream 

 INV 33648859 T> C Upstream 0.04  Upstream 
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Appendix XI- Detailed List of DEAR1 Variants Shared Between the In Situ and Invasive Components of Ductal Carcinoma In Situ. This table describes 

the variants that shared between the in situ and invasive components of adjacent DCIS lesions. The vast majority of these variants were within DEAR1’s 

introns. Shared variants with stable variant frequencies at or around 50% or 100% within both lesion components are contained in samples for which the 

normal breast tissue was unable to be sequenced, and most likely reflect germline variants.  

Sample Chromosome1 Hg19 location Lesion Type Nucleotide Change Variant % Variant Frequency Area within DEAR1 

D01 33639129 DCIS T> A c.408+7497A>T 0.03 Intronic 

  INV   0.07  

D02 33639129  DCIS T >A c.408+7497 A>T 0.04 Intronic 

  INV   0.04  

D04 33630779 DCIS G >A c.504+293 C>T 0.03 Intronic 

  INV   0.03  

 33648250 DCIS G> A Upstream 0.10 Upstream 

  INV   0.05  

 33658110 DCIS G> A Upstream 0.05 Upstream 

  INV   0.04  

D05 33629313 DCIS G> A c.504+1759 C>T 0.04 Intronic 

  INV   0.05  

 33630850 DCIS C> T c.504+222 G>A 0.04 Intronic 

  INV   0.04  

 33638864 DCIS C> T c.409-7697 G>A 0.06 Intronic 
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  INV   0.04  

Sample Chromosome1 Hg19 location Lesion Type Nucleotide Change Variant % Variant Frequency Area within DEAR1 

D05 33645855 DCIS C> T c.408+771 G>A 0.02 Intronic 

  INV   0.04  

 33646036 DCIS T> C c.408+590 A>G 0.09 Intronic 

  INV   0.06  

 33648206 DCIS T> C Upstream 0.03 Upstream 

  INV   0.15  

 33648250 DCIS G> A Upstream 0.09 Upstream 

  INV   0.09  

 33639129 DCIS T> A Upstream 0.05 Upstream 

  INV   0.05  

D09 33629668 DCIS TC> CA c.504+1404 GA>TG 0.46 Intronic 

  INV   0.49  

 33644798 DCIS AA> GC  c.408+1828 TT>GC 1.00 Intronic 

  INV   1.00  

 33645661 DCIS GCT> G c.408+963_408+964 delAG 0.51 Intronic 

  INV   0.52  

D11 33644798 DCIS AA> GC c.408+1828 TT>GC 1.00 Intronic 
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  INV   1.00  

 33645661 DCIS GCT> G c.408+963_408+964 delAG 1.00 Intronic 

Sample Chromosome1 Hg19 location Lesion Type Nucleotide Change Variant % Variant Frequency Area within DEAR1 

D11 33645661 INV   1.00  

 33645897 DCIS C> T c.408+729 G>A 0.04 Intronic 

  INV   0.03  

 33653032 DCIS G> A Upstream 0.05 Upstream 

  INV   0.05  

D12 33629668 DCIS TC> CA c.504+1404 GA>TG 0.50 Intronic 

  INV   0.50  

 33644798 DCIS AA> GC c.408+1828 TT>GC 1.00 Intronic 

  INV   1.00  

 33645661 DCIS GCT> G c.408+963_408+964 delAG 0.50 Intronic 

  INV   0.50  

 33648250 DCIS G> A Upstream 0.80 Upstream 

  INV   0.06  

 33648859 DCIS T> C Upstream 0.06 Upstream 

  INV   0.08  

 33658110 DCIS G> A Upstream 0.06 Upstream 
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  INV   0.06  

D13 33644798 DCIS AA> GC c.408+1828 TT>GC 1.00 Intronic 

  INV   1.00  

Sample Chromosome1 Hg19 location Lesion Type Nucleotide Change Variant Variant Frequency Area within DEAR1 

D13 33645661 DCIS GCT> G c.409_410 delGA 1.00 Intronic 

  INV   1.00  

D14 33644798 DCIS AA> GC c.408+1828 TT>GC 1.00 Intronic 

  INV   1.00  

 33645661 DCIS GCT> G c.408+963_408+964 delAG 1.00 Intronic 

  INV   1.00  

D15 33627372 DCIS C> T c.505-1827 G>A 0.53 Intronic 

  INV   0.40  

 33644798 DCIS AA> GC c.408+1828 TT>GC 1.00 Intronic 

  INV   1.00  

 33645661 DCIS GCT> G c.408+963_408+964 delAG 1.00 Intronic 

  INV   1.00  

D16 33639129 DCIS T> A c.408+7497 A>T 0.03 Intronic 

  INV   0.04  
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