
Texas Medical Center Library
DigitalCommons@The Texas Medical Center

UT GSBS Dissertations and Theses (Open Access) Graduate School of Biomedical Sciences

5-2015

Oxidative protein folding pathways in Gram-
positive Actinobacteria
Melissa E. Robinson

Follow this and additional works at: http://digitalcommons.library.tmc.edu/utgsbs_dissertations

Part of the Medicine and Health Sciences Commons

This Dissertation (PhD) is brought to you for free and open access by the
Graduate School of Biomedical Sciences at DigitalCommons@The Texas
Medical Center. It has been accepted for inclusion in UT GSBS
Dissertations and Theses (Open Access) by an authorized administrator of
DigitalCommons@The Texas Medical Center. For more information,
please contact laurel.sanders@library.tmc.edu.

Recommended Citation
Robinson, Melissa E., "Oxidative protein folding pathways in Gram-positive Actinobacteria" (2015). UT GSBS Dissertations and Theses
(Open Access). Paper 565.

http://digitalcommons.library.tmc.edu?utm_source=digitalcommons.library.tmc.edu%2Futgsbs_dissertations%2F565&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.library.tmc.edu/utgsbs_dissertations?utm_source=digitalcommons.library.tmc.edu%2Futgsbs_dissertations%2F565&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.library.tmc.edu/uthgsbs?utm_source=digitalcommons.library.tmc.edu%2Futgsbs_dissertations%2F565&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.library.tmc.edu/utgsbs_dissertations?utm_source=digitalcommons.library.tmc.edu%2Futgsbs_dissertations%2F565&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/648?utm_source=digitalcommons.library.tmc.edu%2Futgsbs_dissertations%2F565&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.library.tmc.edu/utgsbs_dissertations/565?utm_source=digitalcommons.library.tmc.edu%2Futgsbs_dissertations%2F565&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:laurel.sanders@library.tmc.edu


iii 
 

OXIDATIVE PROTEIN FOLDING PATHWAYS IN GRAM-

POSITIVE ACTINOBACTERIA 

 

A DISSERTATION 

Presented to the Faculty of 

The University of Texas 

Health Science Center at Houston 

and 

The University of Texas 

M. D. Anderson Cancer Center 

Graduate School of Biomedical Sciences 

in Partial Fulfillment 

of the Requirements 

for the Degree of 

DOCTOR OF PHILOSOPHY 

 

By 

Melissa Elizabeth Robinson, B.S. 

Houston, Texas 

May 2015 



 
 

iii 
 

ACKNOWLEDGEMENTS 

First, I would like to thank my advisor and mentor Dr. Hung Ton-That for his patience 

and guidance in training. Dr. Ton-That and I first met in Connecticut when I was an 

undergraduate making the transition from humanities to science. At the time, I was an English 

major who had recently completed one Introduction to Microbiology course, and had zero 

laboratory experience. Still, he took a chance, and hired me to work as a research assistant for 

not one, but two summers. My positive experience inspired me to follow Dr. Ton-That to Texas 

for my graduate studies. I owe much of my success to his constant support and 

encouragement.  

It takes a village to raise scientists. With that, I would also like to thank my committee 

members Joseph Alcorn, Peter Christie, Danielle Garsin, Ziyin Li, John Putkey, William 

Margolin, and Kevin Morano for their guidance and constructive criticism throughout my 

dissertation research. In addition, credit must be given to the post-doctoral fellows Chungyu 

Chang, Bo Chen, I-Hsiu Huang, Ju Huck Lee, Arunima Mishra, Beth Rogers, and Chenggang 

Wu. These wonderful scientists have been instrumental in the success of my day-to-day 

laboratory endeavors. 

I would also like to thank my family. I am blessed to be surrounded with a supportive 

and loving network of parents, siblings, grandparents, uncles, aunts, cousins, and friends. 

Without you, none of this would be possible. Finally, I am grateful to my husband Caleb. You 

are, and continue to be my most favorite surprise in life.  

 

 



 
 

iv 
 

OXIDATIVE PROTEIN FOLDING PATHWAYS IN GRAM-POSITIVE ACTINOBACTERIA 

 

Melissa Elizabeth Robinson, B.S. 

Advisory Professor: Hung Ton-That, Ph.D. 

Disulfide bonds are important for the stability of many secreted proteins. These covalent 

linkages, which result from the oxidation of neighboring cysteine (Cys) residues, are often rate-

limiting steps for protein folding and maturation. Disulfide bond formation is restricted to 

extracellular oxidizing compartments like the eukaryotic endoplasmic reticulum and Gram-

negative bacterial periplasm. Protein oxidation has been well-studied in these organisms, but 

largely ignored in Gram-positive bacteria. Due to the absence of an outer membrane, these 

organisms are thought to lack compartments in which to catalyze oxidative protein folding.  

This thesis reveals that Gram-positive Actinobacteria use disulfide bond formation to 

help fold secreted proteins in the exoplasm. Using the assembly of adhesive pili as a marker for 

disulfide bond formation in A. oris and C. diphtheriae, we found that protein oxidation is 

catalyzed by the membrane-bound MdbA.  In A. oris, MdbA activity is maintained by VKOR, 

which is absent in C. diphtheriae.  MdbA-catalyzed disulfide bond formation is required for the 

production of multiple virulence factors including diphtheria toxin. Therefore, mutations 

targeting mdbA have profound consequences for pathogenesis.  A. oris mutants are defective 

in biofilm growth, while C. diphtheriae exhibits attenuated virulence in an animal model.  

A major difference between disulfide bond forming enzymes expressed by Gram-

negative and Actinobacteria is also revealed. Unlike the Gram-negative DsbA, MdbA is 

important for viability. The depletion of A. oris mdbA, and deletion of C. diphtheriae mdbA are 

associated with growth and division defects.  We provide evidence that these phenotypes result 

because secreted growth factors like PBPs fail to form disulfide bonds. Remarkably, the 
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deletion of C. diphtheriae mdbA selects for a suppressor mutation that causes the 

overexpression of an oxidoreductase named TsdA. 

In summary, this thesis shows that disulfide bond formation is a major pathway used by 

Gram-positive Actinobacteria to help fold secreted proteins. This work provides a better 

understanding of how proteins are folded within the Gram-positive exoplasm, and offers 

important considerations for developing antibacterial drugs that target oxidative folding 

pathways.  
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1.1 Anfinsen’s discovery of oxidative protein folding chaperones. 

Before the discovery of chaperones, it was generally accepted that protein folding was 

based on a primary amino acid sequence and the laws of thermodynamics. This notion was 

first challenged by Anfinsen’s classical Rnase A folding experiments in the 1960s. He 

denatured Rnase A with -mercaptoethanol and urea, and then measured the amount of time 

required for the protein to regain its activity. Rnase A refolded in the presence of oxygen, but 

the process was slow and error-prone. Under optimal conditions, Rnase A refolding took over 

20 minutes (Anfinsen et al., 1961). Anfinsen found that the formation of four disulfide bonds 

within Rnase A was a limiting factor for refolding. It was hypothesized that a factor was 

present in vivo to accelerate thiol oxidation. To test this, denatured Rnase A was incubated 

with endoplasmic reticulum (ER) fractions isolated from rat and beef livers (Givol, Goldberger 

& Anfinsen, 1964; Goldberger, Epstein & Anfinsen, 1963). Remarkably, the half-time for 

Rnase refolding was reduced four-fold. Protein Disulfide Isomerase (PDI) was later identified 

as the chaperone responsible for catalyzing the formation of disulfide bonds in this protein 

(Anfinsen, 1973).  

PDI is a thioredoxin-like protein that oxidizes Cys residues within nascent proteins in 

the extracellular ER compartment (Tian et al., 2006). PDI is a U-shaped homodimer 

comprised of the catalytic a and a’ domains, and the substrate-binding b and b’ domains. The 

a and a’ domains harbor canonical thioredoxin folds characterized by N-terminal  and C-

terminal  motifs (Martin, 1995). The N-terminal -helices contain a reactive disulfide bond 

formed between two Cys residues in a CxxC consensus sequence. This linkage is reduced to 

result in the formation of new disulfide bonds in unfolded substrates (Darby, Freedman & 

Creighton, 1994; Lyles & Gilbert, 1991). The reaction begins when a reduced Cys within a 

substrate attacks the disulfide bond within the CxxC linkage, which results in the formation of 

a mixed thiol intermediate (Fig. 1A). A new disulfide bond is formed when the intermediate is 
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resolved by another substrate Cys residue (Fig. 1B).  In turn, the PDI CxxC motif is converted 

to a reduced form that rearranges nonnative Cys-linkages in other proteins (Fig. 1C). Thus, 

this folding chaperone serves two functions; it catalyzes and isomerizes disulfide bonds.  
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Figure 1. Disulfide bond formation is catalyzed in extracellular compartments of 

eukaryotic and prokaryotic organisms.  (A) Eukaryotic PDI and E. coli DsbA donate 

reactive disulfide bonds within CxxC motifs to catalyze new thiol linkages in unfolded 

substrates. The reaction begins when a reduced substrate forms a mixed disulfide 

intermediate with the enzyme. (B) This intermediate is resolved by a second Cys residue 

within the substrate. (C) The substrate forms a disulfide bond, and the enzyme CxxC site is 

reduced. In its reduced form, PDI catalyzes disulfide bond isomerization in substrates with 

nonnative Cys-linkages (indicated by arrows).   
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Interestingly, although PDI is essential in yeast, its disulfide bond forming activity is 

not specifically required for cell viability. Laboissier et al. (1995) found that mutating the PDI 

CxxC sequence to SxxC was lethal, but a CxxS mutant was viable. Neither mutant could 

catalyze disulfide bond formation, but the CxxS variant retained a solvent-exposed Cys that 

still reduced nonnative disulfide bonds. Since the ER is an oxidizing environment, random 

disulfide bond formation can occur in the absence of PDI (Hwang, Sinskey & Lodish, 1992). 

However, spontaneous oxidation is not always accurate, so PDI may be more important for 

monitoring disulfide bond formation. It was concluded that the chaperone’s oxidase activity is 

dispensable, but its isomerase activity is essential.  

1.2 Oxidative protein folding in the Gram-negative bacterial periplasm 

Beckwith’s group identified the bacterial equivalent of PDI in E. coli nearly 30 years 

later (Bardwell, McGovern & Beckwith, 1991). This discovery was serendipitous since their 

experiments were originally designed to identify factors involved with inserting proteins into 

the bacterial membrane. To identify factors, -galactosidase (-gal) was fused to the N-

terminus of the transmembrane protein MalF. Normally, -gal is located in the cytoplasm, but 

its fusion to MalF causes it to be translocated into the periplasm.  The C-terminus of -gal 

attempts to re-enter the cytoplasm, but it becomes embedded in the membrane and is 

nonfunctional. It was reasoned that a mutation affecting protein translocation would trap -gal 

in the cytoplasm where it could catabolize X-gal. Surprisingly, a functional -gal mutant was 

found to harbor a mutation within a gene encoding a 21-kDa secreted thioredoxin-like protein. 

Under wild-type conditions, this factor oxidized the fusion protein in the periplasm. This 

caused it to misfold, thereby preventing the -gal region from crossing the membrane to re-

enter the cytoplasm. However, this mutant could not form disulfide bonds, so the MalF--gal 

fusion successfully translocated to the cytoplasm to metabolize X-gal.  Beckwith’s group 

named this factor Disulfide Bond Forming Protein A (DsbA). 
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 E. coli DsbA is a monomeric protein that catalyzes disulfide bonds in unfolded proteins 

as they are secreted into the periplasm. Although DsbA does not display a higher-ordered 

structure like PDI, it does harbors the canonical N-terminal  and C-terminal  motifs 

(Martin, Bardwell & Kuriyan, 1993). These folds are separated by an extended -helical 

region, which is not present in PDI. The DsbA active site is characterized by a CPHC 

consensus sequence that is surrounded by hydrophobic residues and abutted by a conserved 

cis-Proline (Martin et al., 1993). DsbA catalyzes oxidation in the same manner as PDI; it 

donates a disulfide bond within its CxxC motif to reduced substrates (Akiyama et al., 1992) 

(Fig. 1A). The reaction is initiated when a substrate Cys breaks the CxxC linkage resulting in 

a mixed disulfide with the DsbA N-terminal Cys (Darby & Creighton, 1995; Kadokura et al., 

2004). Biochemical analysis has revealed that DsbA serves as a placeholder while the 

substrate folds around it (Kosuri et al., 2012). DsbA releases its substrate when a second Cys 

is positioned to form a new disulfide bond in the substrate (Fig. 1B). In turn, the DsbA CxxC 

motif is converted to a reduced form (Fig. 1C).  

DsbA has an unusually high redox potential (-120 mV), which is defined as having a 

tendency to accept electrons (Zapun, Bardwell & Creighton, 1993). Due to this, oxidized DsbA 

is thermodynamically unstable, which makes the reduction of the CxxC motif highly favorable 

(Wunderlich, Jaenicke & Glockshuber, 1993). Bardwell and colleagues demonstrated that a 

His residue within the DsbA CPHC motif was required for this intrinsic property (Grauschopf 

et al., 1995). Upon its reduction, the N-terminal Cys residue becomes negatively-charged. 

This charge is stabilized by an electrostatic interaction with His (Guddat et al., 1997; Nelson & 

Creighton, 1994). Substituting this residue with a nonpolar or negatively-charged amino acid 

reduces the redox potential of DsbA (Grauschopf et al., 1995). The presence of vicinal His 

residues is a conserved feature of the CxxC motifs of disulfide bond forming enzymes. The 

positively charged amino acid is found in the CxxC motif of eukaryotic PDI and DsbA 
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equivalents in Salmonella, Shigella, Pseudomonas, and Neisseria (Kanehisa & Goto, 2000; 

Lu, Gilbert & Harper, 1992).  

The high redox potential of DsbA presents a biological problem.  Reduced DsbA must 

be re-oxidized before another disulfide bond can be catalyzed. However, the reduced form of 

the CxxC motif is more stable than the oxidized form (Wunderlich et al., 1993). Due to this, it 

is unlikely that this consensus sequence would spontaneously re-oxidize. How is DsbA 

activity recycled? E. coli DsbA is re-oxidized by DsbB, which was discovered simultaneously 

by Missiakas et al. (1993) and Bardwell et al. (1993). The first group found dsbB by screening 

a mutant library for increased sensitivity to DTT, while the latter used the MalF--gal fusion 

assay. DsbB is a 20 kDa integral membrane protein with two periplasmic loops that contain 

redox-active disulfide bonds (Cys41-Cys44 and Cys104-Cys130) (Inaba et al., 2006; Jander, 

Martin & Beckwith, 1994). DsbB-catalyzed oxidation is initiated when the N-terminal Cys of 

the DsbA CxxC motif (shown as a thiolate ion in Fig. 2A) breaks the thiol linkage in the DsbB 

C-terminal periplasmic loop (Cys104-Cys130). This results in a mixed disulfide intermediate 

between DsbA Cys30 and DsbB Cys104 (Inaba & Ito, 2008). In turn, electrons are passed to 

DsbB Cys130 (labeled with an asterisk) which attacks the DsbB N-terminal Cys41-Cys44 

linkage, resulting in a second mixed thiol intermediate between Cys130 and Cys41 (Fig. 2A). 

This event transforms DsbB Cys44 (labeled in green) into a thiolate ion, which becomes linked 

to a conjugated ubiquinone (Bader et al., 1999) (Fig. 2B).  A free Cys within DsbA then 

triggers the resolution of these intermediates by reforming the linkage with Cys30. This event 

releases Cys residues within DsbB to reform their native disulfide bonds (Fig. 2C). Ultimately, 

the electrons are deposited into the ubiquinone pool, and shuttled to the electron transport 

chain (Kobayashi et al., 1997).  

The model of electron transfer between DsbA and DsbB is logical, but the redox 

potentials of the DsbB redox-active centers make it seemingly impossible (Inaba & Ito, 2002). 
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The DsbB Cys104-Cys130 linkage has a lower redox potential than DsbA Cys30-Cys33. This 

makes the flow of electrons between these enzymes unfavorable. How does DsbB catalyze 

the up-hill oxidation of DsbA? The crystal structure for a DsbA-DsbB complex revealed that 

the initial disulfide intermediate formed between DsbA Cys30 and DsbB Cys104 shifts DsbB 

Cys130 towards the Cys41-Cys44 redox center (Inaba et al., 2006) (Figs. 2A and 2B). This 

conformational change prevents DsbB Cys130 from resolving the DsbA Cys30- DsbB Cys104 

intermediate, thus forcing electrons to flow towards ubiquinone. 
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Figure 2. DsbB re-oxidizes DsbA. (A) The negatively-charged DsbA Cys30 (shown as a 

thiolate ion) breaks a disulfide bond within the DsbB C-terminal periplasmic loop to form a 

mixed disulfide bond intermediate (DsbA Cys30-DsbB Cys104). This induces a conformational 

change, in which DsbB Cys130 (labeled with an asterisk) shifts towards the N-terminal loop. 

Cys130 breaks the Cys41-Cys44 linkage resulting in the formation of a second mixed 

intermediate between it and Cys41. Cys44 (shown in green) then links to ubiquinone (B) All 

three mixed intermediates are resolved upon reformation of the disulfide bond within the 

DsbA CxxC motif (Cys30-Cys33). (C) DsbA is re-oxidized, the native disulfide bonds within 

DsbB are reformed, and the electrons originating from DsbA are deposited with ubiquinone  

(Figure adapted from Kadokura and Beckwith, 2010). 
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1.3 Reductive pathways in the Gram-negative periplasm. 

E. coli DsbA oxidizes Cys residues in the order that they emerge from the SecYEG 

translocon (Kadokura & Beckwith, 2009). This strategy for disulfide bond formation is flawed 

because not every secreted protein has consecutive disulfide bonds. In vitro, DsbA cannot 

reshuffle non-native Cys linkages in proteins (Zapun & Creighton, 1994). This suggested that 

DsbA is error-prone and unable to correct mistakes. Since the isomerase activity of PDI is 

important for protein folding in yeast, it was hypothesized that Gram-negative bacteria 

express an additional Dsb protein that reduces nonnative disulfide bonds. To identify this 

factor, an E. coli dsbA mutant was transformed with an overexpression library, and screened 

for clones with restored disulfide bond formation (Missiakas, Georgopoulos & Raina, 1994). 

The overexpression of a gene called dsbC rescued oxidative protein folding in the dsbA 

mutant. DsbC is a 26 kDa protein with a CGYC motif and C-terminal dimerization domain 

(McCarthy et al., 2000). Endogenous expression of dsbC is required for the stability of 

proteins with non-consecutive disulfide bonds, and resistance against oxidative stress 

(Hiniker & Bardwell, 2004; Hiniker, Collet & Bardwell, 2005). Unlike DsbA, DsbC also 

rearranges disulfide bonds in misfolded proteins in vitro (Zapun et al., 1995). Thus, the role of 

eukaryotic PDI is divided between two proteins in bacteria. DsbA catalyzes disulfide bond 

formation, while DsbC corrects Cys mispairing. 

 DsbC-driven reduction is essentially the reverse of DsbA. In its active form, the 

dimer’s reactive CxxC motifs are reduced (Rietsch et al., 1997). An N-terminal Cys (shown as 

a thiolate ion in Fig. 3A) breaks nonnative disulfide bonds in substrates. This results in the 

formation of a mixed intermediate, which is resolved by the C-terminal Cys residue of the 

DsbC CxxC motif, or another Cys within the substrate (Kadokura & Beckwith, 2010). In the 

first scenario, the substrate is released in a reduced form, which is re-oxidized by DsbA. In 
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turn, the DsbC CxxC motif is oxidized. Re-reduction is catalyzed by the integral membrane 

protein DsbD. DsbD harbors three thioredoxin-like domains (, ,  that participate in the 

transfer of electrons (Stewart, Katzen & Beckwith, 1999). Electrons derived from cytoplasmic 

thioredoxin are transported through these domains, and finally delivered to DsbC (Rietsch et 

al., 1996). If the DsbC substrate forms a new disulfide bond independent of DsbA, DsbC is 

released in an active, reduced state. 

Similar to eukaryotic PDI, DsbC forms a dimer. This higher-ordered conformation 

prevents cross-talk between oxidative and reductive pathways in the periplasm. Specifically, 

the purpose of DsbC dimerization is to avoid oxidation by DsbB. Attempts to model an 

interaction between these two proteins revealed a steric clash between one DsbC protomer 

and the cytoplasmic membrane (Pan, Sliskovic & Bardwell, 2008). In vivo, DsbC mutants 

unable to form dimers rescue dsbA null phenotypes (Bader et al., 2001). As a monomer, the 

DsbC CxxC motif is oxidized by DsbB, which then allows it to catalyze disulfide bond 

formation.  
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Figure 3. Disulfide bond isomerization is catalyzed by DsbC.   (A) The N-terminal  Cys 

residue (indicated by a thiolate ion) of the DsbC CxxC motif breaks nonnative Cys-linkages in 

proteins. (B) This results in a mixed disulfide intermediate, which is resolved by the C-terminal 

Cys of the CxxC motif. (C) This results in the formation of a disulfide bond between residues 

of the CxxC motif, and the release of the substrate in a reduced form. DsbC is then re-

reduced by DsbD. Electrons are transmitted from cytoplasmic thioredoxin A (TrxA), to each 

DsbD redox domain ), and finally to DsbC. (D) DsbC is reduced and the substrate is re-

oxidized to form its native Cys-linkages (Figure adapted from Kadokura and Beckwith, 2010). 
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DsbD also shuttles electrons to the periplasmic proteins DsbG and DsbE (Bessette et al., 

1999; Reid, Cole & Eaves, 2001). Similar to DsbC, DsbG was identified by screening an 

overexpression library for factors that rescued disulfide bond formation in a dsbA mutant 

(Andersen et al., 1997). DsbG also forms a dimer, and exhibits disulfide bond isomerase 

activity in vitro (Bessette et al., 1999). However, the function of this enzyme in vivo is not 

known. It is proposed that DsbG targets specific substrates, or that it is expressed during 

certain conditions (Bessette et al., 1999; Hiniker & Bardwell, 2004). dsbG is encoded 

immediately upstream of the antioxidant alkyl hydroperoxide reductase (aphC), so it is 

possible that its expression is activated in response to oxidative stress (Zhou & Rudd, 2013).  

Unlike other Dsb proteins, DsbE is not involved with protein folding in the periplasm. DsbE, 

also known as CcmG, is required for synthesis of cytochrome c, a component of the electron 

transport chain (Fabianek, Hennecke & Thony-Meyer, 1998). DsbE reduces Cys residues in 

apocytochrome to allow for heme attachment.  

1.4 Oxidative protein folding is required for bacterial virulence. 

Unlike in eukaryotic cells, bacterial oxidative folding pathways do not appear to be 

essential. E. coli dsbA mutants exhibit a slow growth phenotype if they are cultured in minimal 

media, but this may result from decreased uptake of glucose because the corresponding 

sugar transporters require disulfide bonds (Bessette et al., 2001). Disulfide isomerase 

pathways are also nonessential since dsbC null mutants display no growth defect 

(Vertommen et al., 2008). This is not due to redundancy between oxidative folding factors as 

a triple dsbA- dsbC- dsbG- mutant is still viable (Vertommen et al., 2008). dsbD null mutants 

are temperature-sensitive, but this is caused by the disruption in cytochrome c synthesis 

because DsbD is required to reduce DsbE (Missiakas, Schwager & Raina, 1995).    

Although Dsb proteins are not required for survival, they are essential for 

pathogenesis (Heras et al., 2009). Bacteria secrete an arsenal of disulfide bond-containing 
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virulence factors that promote host colonization, dissemination, and death. dsbA mutants are 

often attenuated in virulence because these factors are misfolded and degraded (Heras et al., 

2009). Type I fimbriae expressed by uropathogenic E. coli type I fimbriae is one well-studied 

example of a virulence factor requiring oxidative protein folding (Totsika et al., 2009). Type I 

fimbriae promote virulence by mediating adherence to the host uroepithelial lining. They are 

comprised of multiple subunits that are assembled by the periplasmic chaperone FimC and 

outer-membrane usher FimD (Busch, Phan & Waksman, 2015). These subunits are not 

assembled into fimbriae in a dsbA mutant (Heras et al., 2009).  Crespo et al. (2012) reported 

that the formation of disulfide bonds within fimbrial subunits was a prerequisite for their 

assembly. In vitro, FimC only folded subunits with disulfide bonds. The inability of FimC to 

interact with reduced subunits was proposed to serve as a measure of quality control. FimC 

may not fold, and subsequently deliver reduced subunits to FimD because they cannot form 

stable fimbriae. 

Following colonization, many bacteria secrete toxins to manipulate their hosts. DsbA 

catalyzes disulfide bond formation in toxins secreted by E. coli, Bordetella pertussis, 

Pseudomonas aeruginosa, and Vibrio cholerae (Heras et al., 2009). Secretin proteins of Type 

III secretion systems expressed by E. coli, Salmonella enterica, and Yersinia pestis also 

require disulfide bond formation (Jackson & Plano, 1999; Miki, Okada & Danbara, 2004; Miki 

et al., 2008). Secretin, which forms the outer membrane component of the Type III secretion 

systems, is required for the translocation of virulence factors into hosts. In the absence of 

dsbA, they are unstable. As a consequence, bacteria cannot translocate toxins to their cell 

targets. Finally, motility is important for pathogens to survive and disseminate within a host. 

DsbA is required for flagellar synthesis in E. coli (Dailey & Berg, 1993). FlgI, which forms the 

peptidoglycan layer or P-ring of the flagellar basal body, contains a disulfide bond. In the 

absence of dsbA, FlgI becomes degraded, which inhibits flagellar synthesis (Hizukuri et al., 

2006).  
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Targeting bacterial pathogenesis is an attractive alternative for the development of 

new antimicrobials (Cascioferro, Totsika & Schillaci, 2014). Since dsbA is important for 

virulence, but not growth, inhibitors of disulfide bond formation could allow a host to clear an 

infection without providing a selective pressure to mutate. Adams et al. (2014) recently 

screened a chemical library for inhibitors of E. coli DsbA. One compound inhibited both DsbA 

activity in vitro, and E. coli motility in vivo. Importantly, it did not affect bacterial growth. 

Structural analysis revealed that this compound blocks substrate access to DsbA by binding 

to a hydrophobic groove near the active site. Although it is not clear whether this potential 

drug can inhibit disulfide bond forming proteins in other  pathogens, it is an important first step 

towards the development of new antimicrobials.  

1.5 Gaps in Understanding: Disulfide bond formation in Gram-positive bacteria. 

Disulfide bond forming pathways are not understood in Gram-positive bacteria, which 

lack periplasmic spaces. Gram-positive cell envelopes are comprised of a single membrane 

surrounded by a thick layer of peptidoglycan. Although a space between these regions has 

been observed by Cryo-EM, it is not considered to be equivalent to the Gram-negative 

periplasm (Matias & Beveridge, 2005; Matias & Beveridge, 2006). Due to the diffusive nature 

of peptidoglycan, it is possible that this space is exposed to the extracellular milieu. 

Therefore, secreted unfolded proteins with multiple Cys residues could be damaged by 

environmental stress.  It was proposed that Gram-positives prevent this potential folding 

stress by avoiding disulfide bond formation in the exoplasm (Daniels et al., 2010).  

A survey of Gram-positive secreted proteomes partially supported this conjecture 

(Daniels et al., 2010; Dutton et al., 2008). The low GC Firmicutes, including Bacillus, 

Staphylococcus, Lactobacillus, and Streptococcus were found to secrete few, if any proteins 

with multiple Cys residues indicating that they lack disulfide bonds. Dsb-like enzymes have 



 
 

16 
 

been identified in some of these organisms, but, unlike Gram-negative bacteria, their genes 

are arranged in operons with specific substrates. B. subtilis harbors two gene clusters with the 

putative oxidoreductase enzymes bdbA-D. bdbA and bdbB belong to an operon that encodes 

sublancin, an antibiotic that harbors disulfide bonds (Dorenbos et al., 2002). bdbC and bdbD, 

which are contained in a competence gene cluster, are required for the stability of the 

disulfide bond-containing ComCG pseudopilus (Meima et al., 2002). In vivo, Bdb proteins are 

not fully interchangeable suggesting that their activity is limited to substrates within their 

respective operons (Dorenbos et al., 2002). Furthermore, bdbCD are regulated by comX, so it 

is unlikely that they are constitutively expressed (Meima et al., 2002). Together, these data 

suggested that Bdb proteins do not have a housekeeping role in oxidative protein folding.   

In contrast to Firmicutes, Gram-positive Actinobacteria including Corynebacterium, 

Streptomyces, and Mycobacterium secrete an abundance of Cys-containing proteins, and 

encode Dsb-like enzymes (Daniels et al., 2010; Dutton et al., 2008). Disulfide bond forming 

pathways are yet to be explored in these organisms. The discovery of a novel redox protein 

Vitamin K epoxide reductase (VKOR) expressed by M. tuberculosis was recently reported 

(Dutton et al., 2008). VKOR is a transmembrane protein with two periplasmic loops containing 

redox-active disulfide bonds. Although expression of this enzyme can restore disulfide bond 

formation in an E. coli dsbB mutant, it is not a DsbB homolog (Wang et al., 2011). VKOR is 

related to mammalian VKOR, an enzyme involved in vitamin K recycling. In addition to VKOR, 

several other Dsb-like proteins have been identified in M. tuberculosis (Chim et al., 2010; 

Goulding et al., 2004).  These proteins have been crystallized, and their redox activity has 

been examined in vitro, but cellular functions are unknown. To date, M. tuberculosis is the 

only established model to study oxidative protein folding in Actinobacteria. Although structural 

analyses of these proteins have been extensive, in vivo work is lacking. Do the identified 

oxidoreductases form or reduce disulfide bonds? From where do they receive this oxidizing, 
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or reducing power? Are these proteins involved in protein folding like DsbA and DsbC, or are 

they required for the synthesis of co-factor-containing proteins like DsbE? Do they target 

specific or multiple substrates? Finally, are they important for virulence? Better tools are 

needed to elucidate oxidative folding pathways in Actinobacteria.  

1.6 Pilus assembly,  a tool to study oxidative protein folding in Actinobacteria. 

The Ton-That laboratory investigates the assembly of pili in Gram-positive bacteria 

using the Actinobacterial oral pathogens Actinomyces oris and Corynebacterium diphtheriae 

as models. Pili are important virulence factors that mediate adherence to host tissues, 

promote biofilm formation, and induce inflammation (Danne & Dramsi, 2012; Mandlik et al., 

2008). Gram-positive pili are comprised of individual subunits that are covalently linked and 

anchored to the cell wall (Ton-That & Schneewind, 2004). The precursors of pilus subunits 

are characterized by an N-terminal signal peptide and pilin motif, and a C-terminal cell wall 

sorting signal (CWSS) that is comprised of an LPxTG motif, hydrophobic patch, and 

positively-charged tail (Ton-That, Marraffini & Schneewind, 2004). The N-terminal signal 

peptide targets pilus precursors for translocation via the SecYEG machinery. Unfolded 

precursors are secreted into the exoplasm where they are tethered to the membrane by the 

CWSS’s hydrophobic patch. Here pilus subunits become folded and are assembled into pili 

by transpeptidase sortase enzymes (Fig. 4). A pilus-dedicated sortase cleaves its substrates 

at the LPxTG motif resulting in the formation of an acyl-enzyme intermediate between a 

substrate Thr and sortase Cys (Guttilla et al., 2009). This linkage is resolved by a nucleophilic 

lysine within the N-terminal pilin motif of a neighboring pilin-sortase complex (Ton-That et al., 

2004). This results in the formation of an isopeptide bond between the Thr of one pilin and 

Lys of another (Budzik et al., 2008). This reaction occurs repeatedly to synthesize a pilus fiber 

in a bottom-up fashion. When assembly is complete, the pilus is transferred to a 
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housekeeping sortase, which links it to Lipid II precursor for incorporation into the cell wall 

(Swaminathan et al., 2007).     

A. oris, a pioneer colonizer of the oral cavity, uses pili to facilitate the formation of 

dental plaque. This bacterium expresses two varieties of pili called type I and 2 fimbriae 

(Mishra et al., 2007). The majority of genes encoding pilus subunits and their pilus-specific 

sortases are arranged in operons. Type 1 fimbriae, which are comprised of the major subunit 

FimP and minor tip protein FimQ, are assembled by sortase C1 (SrtC1) (Mishra et al., 2007). 

These pili are required for the initial colonization of the oral cavity. Specifically, FimQ 

mediates this attachment by binding to proline-rich saliva deposits on the tooth surface (Wu et 

al., 2011). Type 2 fimbriae, which are comprised of the major subunit FimA and minor 

subunits FimB and CafA, promote the development of biofilm by mediating interactions with 

host cells and oral cavity co-colonizers (Mishra et al., 2007). SrtC2 is the designated sortase 

for assembly of these pili. The transpeptidase polymerizes FimA to form the fimbrial shaft, 

and cross-links CafA or FimB to the tip. CafA is a recently discovered component of the type 

2 fimbriae (Reardon-Robinson et al., 2014). Unlike most genes that encode pilus subunits, 

cafA is not found in the type 2 fimbrial gene cluster. CafA specifically mediates interspecies 

interactions by binding to lactose moieties on surface of oral streptococci, and host epithelial 

and blood cells (Reardon-Robinson et al., 2014). FimB is proposed to mediate interbacterial 

interactions that promote oral biofilm development, but its binding partner(s) have yet to be 

identified.   

C. diphtheriae, the causative agent of diphtheria disease, expresses three types of 

heterotrimeric pili called SpaA-, SpaD-, and SpaH-type pili (Gaspar & Ton-That, 2006; Ton-

That & Schneewind, 2003). Out of the three, SpaA-type pili are well-studied.  These adhesive 

factors, which are comprised of the major subunit SpaA and minor pilins SpaB, and SpaC, are 

assembled by SrtA. SpaA is polymerized to form the pilus shaft, while SpaB is positioned at 
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the base, and SpaC is cross-linked to the tip (Ton-That & Schneewind, 2003). The minor 

pilins SpaB and SpaC serve as adhesions to facilitate colonization of the pharyngeal epithelial 

lining, where symptoms of diphtheria disease first develop (Mandlik et al., 2007).  

Prior to sortase-mediated assembly, pilins expressed by A. oris and C. diphtheriae are 

translocated across the cytoplasmic membrane in unfolded states. How are these precursors 

folded correctly in the Gram-positive exoplasm? A clue was revealed when the crystal 

structures for the major pilus subunits FimA, FimP, and SpaA were solved (Kang et al., 2009; 

Mishra et al., 2011; Persson et al., 2012). All three proteins contained typical elements of 

Gram-positive pilins including tandem Ig-like domains and intramolecular isopeptide bonds 

(Vengadesan & Narayana, 2011). However, unlike pilus proteins secreted by Firmicutes, 

these subunits also contained disulfide bonds. A. oris FimA and FimP were predicted to 

possess disulfide bonds in both the N- and C-termini, while C. diphtheriae SpaA was 

predicted to harbor a single linkage in its C-terminus.  We hypothesized that these bonds 

formed in vivo, and that they were important for protein folding. Similar to Gram-negative 

bacteria, it appeared that Actinobacteria use disulfide bond formation to help fold secreted 

virulence factors. We proposed to use pilus assembly as a model to study disulfide bond 

formation in A. oris and C. diphtheriae. 
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Figure 4. Sortase-mediated pilus assembly in Gram-positive bacteria. Precursors of pilus 

subunits (shown in blue) are characterized by an N-terminal signal peptide and pilin motif, and 

a C-terminal cell wall sorting motif (CWSS). The pilus precursors are translocated into the 

exoplasmic space where they are folded, and tethered to the cytoplasmic membrane by the 

CWSS hydrophobic segment and positively charged tail.  The subunits are cleaved by a pilin 

specific sortase (shown in red) at the LPxTG motif resulting in the formation of an enzyme-

acyl intermediate between the sortase and Thr of the LPxTG motif. Two pilins become cross-

linked when a Lys residue within the pilin motif resolves the enzyme-acyl linkage of a 

neighboring pilin-sortase complex. This reaction occurs repeatedly to form the pilus fiber. 

When pilus assembly is complete, the fiber is transferred to a housekeeping sortase (shown 

in yellow), which anchors it to the cell wall.  
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1.7 Summary and significance 

Gram-negative pathogens secrete proteins to colonize, manipulate, and kill host cells. 

In the absence of dsbA, many of these proteins are degraded, which causes virulence to 

become attenuated (Heras et al., 2009). Due to these observed phenotypes, it is proposed 

that Dsb proteins are excellent candidates for the development of new antimicrobial drugs. 

Since disulfide bond formation is not required for growth, it is proposed that bacteria would be 

less likely to develop resistance against drugs targeting this pathway (Cascioferro et al., 

2014).  

Gram-positive bacteria also secrete virulence factors. Unlike Gram-negatives, they are 

thought to lack periplasmic compartments in which to fold these proteins. Oxidative forms of 

stress present in the extracellular milieu could mis-oxidize Cys residues. As a consequence, 

many Gram-positives are believed to avoid this stress by not utilizing disulfide bond formation 

(Daniels et al., 2010; Dutton et al., 2008). However, Gram-positive Actinobacteria may be an 

exception. Elucidating disulfide bond forming pathways in these organisms will further our 

understanding of how secreted proteins are processed in the exoplasm, as well as expand 

the repertoire of available targets for drug development.  

This thesis elucidates Actinobacterial oxidative folding pathways in A. oris and C. 

diphtheriae using pilus proteins as model substrates. MdbA, a membrane-bound 

oxidoreductase, catalyzes disulfide bond formation within secreted virulence factors like pili 

and diphtheria toxin. In A. oris, MdbA activity is dependent on VKOR, which is absent in C. 

diphtheriae. Remarkably, unlike Gram-negative DsbA, MdbA is also required for growth and 

division. The C. diphtheriae mdbA mutant selects for a suppressor mutation that induces 

overexpression of the oxidoreductase named tsdA, which restores disulfide bond formation.  
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This study highlights several important considerations for the development of 

antimicrobial agents against Gram-positive pathogens. First, oxidative protein folding 

pathways are not conserved among bacteria. The in vivo functions of newly identified 

oxidoreductases have been elucidated in this work. This can contribute to the development of 

disulfide bond forming inhibitors that target a broader spectrum of bacteria. Second, unlike 

Gram-negative Dsb proteins, MdbA is important for growth. We suspect that the essentiality 

of disulfide bond forming pathways in Actinobacteria is a common trait since the deletion of M. 

tuberculosis vkor also confers a growth defect (Dutton et al., 2008). Although drugs targeting 

these pathways in Actinobacteria would make powerful bactericides, they will provide a 

selective pressure to gain resistance. Future studies can circumvent this by investigating 

mechanisms by which Actinobacteria may acquire resistance.  

In summary, due to the lack of a recognizable periplasm, it was once thought that 

Gram-positive bacteria did not rely on the formation of disulfide bonds to help fold secreted 

proteins. Here we demonstrate that Actinobacteria represent a special class of Gram-

positives that utilize disulfide bond formation as a general folding tool. This work expands our 

understanding of how proteins fold in the exoplasm, and provides insight for the development 

of antimicrobial agents to target important Gram-positive pathogens.  
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2.1 Bacterial strains, primers, plasmids, and media 

Bacterial strains, primers, and plasmids used in this study are listed in Tables 2.1 and 

2.2. Actinomyces and Corynebacterium strains were grown in Heart Infusion (HI) broth or on 

HI agar plates. Streptococci were grown in HI broth supplemented with 1% glucose. E. coli 

DH5 BL21, and S17 used for molecular cloning, protein purification, and gene deletions, 

respectively, were grown in Luria Broth (LB). Kanamycin (Kan) or ampicillin (AMP) was added 

at 50 µg mL-1 or 100 µg mL-1, respectively, when required.  Polyclonal antibodies were raised 

against recombinant pilus proteins MdbA and TsdA in rabbits as previously described (Mishra 

et al., 2007).   

2.2 Construction of recombinant plasmids- 

pVKOR – To construct pVKOR, primers vkor_F_Ndel and vkor_R_KpnI were used to PCR 

amplify the promoter and coding regions of A. oris vkor along with flanking Ndel and KpnI 

sites.  The resulting PCR product was digested within these enzymes, cloned into pJRD215 

precut with NdeI and KpnI, and then used to transform E. coli DH5The resulting plasmid 

was electroporated into MR107 and MR108. 

pMdbAAo – The promoter and open-reading-frame (ORF) of A. oris mdbA were PCR amplified 

using primers mdbAAO_F_Xbal  and mdbAAO_R_Ecorl designed with XbaI and EcorI cut sites. 

The PCR product was digested with XbaI and EcorI , and cloned into pJRD215 precut with 

the same enzymes. The resulting plasmid was electroporated into MR108. 

pAraC-MdbAAo- Using the primers mdbAA0_F_ATG  and mdbAAO_R_Ecorl, the ribosome 

binding site (RBS) and ORF of A. oris mdbA was PCR-amplified using Phusion polymerase ® 

(NEB) to generate blunt ends. The resulting product was 5’ phosphorylated with 

Polynucleotide Kinase (NEB) and then digested with EcorI. Using pBad33 as a template, the 
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primers  araC_F_KpnI and araC_R amplified araC and the corresponding arabinose-inducible 

promoter, which was then digested with KpnI. Finally, the PCR fragments were cloned into 

pJRD215 precut with EcorI and KpnI, and the resulting plasmid was electroporated into 

MR111.   

pMdbACd – Primers mdbAcd_BamHl_F and mdbAcd_BamHl_R were designed to PCR-amplify 

the promoter and coding regions of C. diphtheriae mdbA with appending BamHI sites. The 

DNA fragment was digested with the appropriate restriction enzyme, and cloned into 

pCGL0243 pretreated with alkaline phosphatase and BamHI. The resulting plasmid was 

electroporated into NJ2.  

pMtbDsbA- The primers dsbAMtb_F and dsbAMtb_R_HindIII were used to PCR amplify the 

ORF for the putative M. tuberculosis dsbA using Phusion DNA polymerase ® (NEB) to 

generate blunt ends. This product was 5’ phosphorylated and then cut with HindIII. The 

promoter and RBS for A. oris mdbA was amplified with primers PmdbAAO_F_KpnI and 

PmdbAAo_R, and then digested with KpnI. Both DNA fragments then were ligated with 

pJRD215 precut with KpnI and HindIII to construct the recombinant plasmid, which was 

electroporated into MR108. 

pEcDsbAAo- Using primers dsbAEc_F and dsbAEc_R_EcoRI, the regions encoding 

extracellular portions of E. coli dsbA was PCR amplified using Phusion DNA polymerase ® 

(NEB) to generate blunt ends. The PCR product was 5’ phosphorylated and cut with EcoRI. 

Segments encoding the promoter, RBS, and cytoplasmic and transmembrane domains for A. 

oris mdbA was amplified with primers PmdbAAO_F_KpnI and PmdbAAoTM_R, and then 

digested with KpnI. Both DNA fragments then were ligated with pJRD215 precut with KpnI 

and HindIII to construct the recombinant plasmid which was electroporated into MR108. 
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pEcDsbACdi- The primers dsbAEc_F and dsbAEc_R_BamHI were used to PCR amplify the 

extracellular regions of E. coli dsbA using Phusion DNA polymerase ® (NEB) to generate 

blunt ends. The resulting product was 5’ phosphorylated and cut with BamHI. The segments 

encoding the promoter, RBS, and cytoplasmic and transmembrane domains for C. 

diphtheriae mdbA was amplified with primers PmdbACd_F_BamHI and PmdbACdTM_R, and 

then digested with BamHI. Both DNA fragments then were ligated with pCGL0243 precut with 

BamHI and treated with alkaline phosphatase (NEB) to generate the recombinant plasmid, 

which was electroporated into NJ2. 

pJRD-MdbACd- Using primers mdbACd_F and mdbACd_R_HindIII, the ORF for C. diphtheriae 

mdbA was PCR amplified using Phusion DNA polymerase ® (NEB) to generate blunt ends. 

The resulting product was 5’ phosphorylated and cut with HindIII. The promoter and RBS of 

A. oris mdbA was amplified with primers PmdbAAO_F_KpnI and PmdbAAO_R, and then 

digested with KpnI. Both DNA fragments then were ligated with pJRD215 precut with KpnI 

and HindIII to construct the recombinant plasmid for electroporation into MR108. 

pAraC-TsdA- The ribosome binding site and ORF for C. diphtheriae tsdA was PCR amplified 

with Phusion ® polymerase using tsdA_RBS_F and tsdA_R_HindIII, and the resulting product 

was digested with HindIII and 5’ phosphorylated.  An arabinose-inducible promoter was PCR-

amplified from pBad33 using primers araC_F_PstI and araC_R. The resulting product was 

digested with PstI. The two fragments were then incubated with pCGL0243 pretreated with 

PstI and HindIII to form pAraC-TsdA, which was electroporated into NJ2.  

Recombinant vectors using pMCSG7- To generate recombinant, His-tagged MdbA 

proteins, primers (See Table 2-2) were designed to amplify the extracellular-coding regions of 

mdbA within A. oris and C. diphtheriae. The resulting PCR products were cloned into 

pMCSG7 using ligation-independent cloning (Stols et al., 2002). Purified DNA fragments were 
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treated with LIC-competent T4 DNA polymerase (Novagen) and 2.5 μM dCTP. Meanwhile, 

pMCSG7, precut with SspI, was treated with LIC-competent T4 polymerase and dGTP to 

generate complementary overhangs between the linearized vector and mdbA genes. The 

products were then incubated over a gradient of temperatures (3 min at 70⁰C, 2 min at 65⁰C, 

2 min at 60⁰C, 2 min at 55⁰C, 1 min at 50⁰C, 1 min at 45⁰C, 1 min at 40⁰C, 1 min at 35⁰C, 1 

min at 30⁰C, 5 min at 25⁰C) to promote annealing. The resulting plasmids were used to 

transform E. coli DH5 and the insert was confirmed by DNA sequencing. The plasmids were 

then introduced into E. coli BL21 (DE3) for protein expression.  

2.3 Site-directed mutagenesis of recombinant plasmids 

To construct cysteine-to-alanine mutations within FimA, overlapping primers (Table 2-

2) carrying the target mutations were used in PCR-amplification using pCR2.1-FimA (Mishra 

et al., 2011) as a template. The PCR products were digested overnight at 37⁰C with Dpn1 to 

remove the parental template, and the resulting DNA samples were used to transform DH5. 

The generated mutations were confirmed by sequencing, and fimA was removed from 

pCR2.1 by digestion with XbaI and EcorI. The DNA fragment was cloned into pJRD508FimB 

precut with similar restriction enzymes. The resulting plasmids were electroporated into AR4 

(Mishra et al., 2011). 

To generate cysteine-to-alanine mutations within SpaA, VKOR, MdbACd, and MdbAAo, 

inverse PCR was utilized using recombinant plasmids as templates (Table 2-1). Appropriate 

primers (Table S3) carrying the desired mutations were 5’ phosphorylated and used to PCR 

the plasmid templates with Phusion HF DNA polymerase (NEB). The resulting linear products 

were purified products, treated with ligase to reform the circular plasmids, and used to 

transform E. coli DH5. DNA sequencing confirmed the desired mutations, and the plasmids 

were introduced to the appropriate strains (Table 2-1).  
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2.5 Gene deletions 

For A. oris, nonpolar, in-frame deletion mutants were generated using the GalK 

counter-selection method previously established by Mishra et al. (2010). Briefly, 

approximately 1Kb-fragments up- and downstream of a target gene were amplified, fused, 

and then cloned into pCWU2, an integrative plasmid expressing Kan resistance and galK 

genes (Mishra et al., 2010). The resulting plasmid was electroporated into A. oris CW1, which 

lacks a functional galK. Co-integrants resulting from a single crossover event were selected 

for growth on Kan. To promote a recombination event, cells were grown in HI broth without 

Kan. The loss of the integrative plasmid was selected for growth on HI agar plates containing 

0.2% 2-deoxygalactose (2-DG), which is converted to a toxic intermediate when the plasmid-

derived galK is present. The generated mutants were identified by PCR and subsequently 

analyzed by western blotting and EM.   

For C. diphtheriae, nonpolar, in-frame deletion mutants were generated using the 

SacB counter-selection protocol as reported by Ton-That and Schneewind (2003). Similar to 

A. oris, approximately 1Kb-fragments up- and downstream of the genes of interest were 

cloned into the integration plasmid pK19mobsacB expressing Kan resistance and sacB genes 

(Schafer et al., 1994). The resulting plasmid was introduced into E. coli S17-1 for conjugation 

with C. diphtheriae. Integration clones were selected for growth on Kan and nalidixic acid (to 

kill E. coli). To induce a double-crossover event leading to plasmid excision, C. diphtheriae 

were grown overnight without antibiotics.  Loss of the integrated plasmid was selected for 

growth on HI agar plates containing 1% sucrose, which is toxic to cells expressing sacB. 

Gene deletions were identified by PCR and analyzed by western blotting.  
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2.4 Tn5 transposon mutagenesis of A. oris 

  A library of roughly 3,000 Tn5 mutants was created using  the Tn5 transposon system 

recently developed for A. oris (Wu et al., 2014). To identify factors required for fimbrial 

assembly and bacterial coaggregation, we set up a cell-based screen that is dependent on 

type 2 fimbriae-mediated interaction with S. oralis. In this screen, Actinomyces Tn5 mutants 

grown in 96-well plates were mixed with equal cell numbers of S. oralis 34 in coaggregation 

buffer (Mishra et al., 2010). Coaggregation was visualized using an inverted microscope, and 

scored by comparing the strains to positive (A. oris MG-1 and S. oralis 34) and negative 

controls (S. oralis OC1 lacking RPS receptors or A. oris fimA). Four coaggregation-deficient 

mutants obtained from this screen were confirmed by further coaggregation and fimbrial 

assembly assays. Chromosomal DNA of these mutants was isolated, and the genes disrupted 

by Tn5 were identified by TAIL PCR (Liu & Whittier, 1995) and DNA sequencing. 

2.6 Protein purification 

Cultures of E. coli BL21 (DE3) harboring individual recombinant plasmids (Table 2.1; 

pMCSG7s) were grown at 37⁰C in LB until an OD600 of approximately 0.7. Protein expression 

was induced by the addition of 1mM IPTG at 30⁰C for 3 hours. Cell pellets were harvested by 

centrifugation and re-suspended in EQ buffer (50mM Tris-HCl pH 7.5, 100mM NaCl). Cell 

lysis was achieved by using a French Press cell. Clear lysates obtained by centrifugation 

were subject to affinity chromatography, and purified His-tagged proteins were dialyzed in 

dialysis buffer (50mM Tris-HCl pH 7.5, 100mM NaCl, 10% glycerol) at 4⁰C and stored at -

20⁰C. 

2.7 Cell fractionation and western blotting- 

Overnight cultures of A. oris and C. diphtheriae strains were used to inoculate fresh 

cultures (1:50 dilution). When appropriate, 50 g mL-1 Kan was added. Cells grown to early- 
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or mid-log phase, at 37⁰C for A. oris and 30⁰C or 37⁰C for C. diphtheriae, were normalized to 

an OD600 of 1.0, and subject to centrifugation to separate the medium (S) and cell fractions. A. 

oris were washed and re-suspended in SMM buffer (0.5M sucrose, 10mM MgCl2, 10mM 

maleate pH 6.8), and treated with Mutanolysin (Sigma), a cell wall hydrolase, at 37⁰C for 4 

hours. C. diphtheriae were washed and re-suspended in hydrolase buffer (0.5M sucrose, 10 

mm MgCl2, phosphate buffered saline (PBS) pH 7.4), and then incubated with Dip0218, a C. 

diphtheriae prophage encoded cell wall hydrolase isolated by our lab, at 37°C for 3 hours.  

After treatment, the soluble cell wall fractions (W) were separated from the protoplasts (P) by 

centrifugation. P fractions were then washed in SMM buffer, re-suspended in PBS containing 

0.1% Triton-114, and subjected to three freeze/thaw cycles using dry ice-ethanol and 100⁰C 

water baths. When needed, the cytoplasmic fraction (C) was isolated by ultracentrifugation of 

lysed protoplasts prior to TCA precipitation. The S, W, and C fractions were TCA precipitated 

and acetone washed. Protein samples were re-suspended in reducing or non-reducing SDS-

loading buffer, heated at 60⁰C for 10 minutes, and separated on Tris-glycine gels. Proteins 

were detected with rabbit antisera diluted in 5% milk (1:5000 -FimA, 1:20,000 -SpaA, 

1:20,000 -MdbACd, 1:20,000  -MdbAAO, 1:1000 -DT, 1:10,000 -FimP) followed by 

horseradish peroxidase (HRP) (1:10,000) conjugated goat anti-rabbit IgG for detection by 

chemiluminescence.  

2.8 Electron microcopy 

  Bacteria grown on HIA plates or liquid media were suspended and washed in 0.1M 

NaCl, and then re-suspended in PBS. To view the cells by electron microscopy, 7L of culture 

were placed onto carbon-coated nickel grids (Electron Microscopy Sciences) for 1 minute, 

washed 3 times with sterile water, and then stained with 1% uranyl-acetate for another 

minute. For immunogold labeling, 7L of culture were placed onto the grids for 1 minute, and 

then washed in PBS 1% BSA three times. The grids were subsequently blocked in PBS 1% 
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BSA with 0.1% gelatin for 1 hour at room temperature. Pili were stained with primary 

antibodies diluted in PBS 1% BSA (1:100 -FimA, 1:25 -FimB, 1:100 -FimP, 1:25 -FimQ, 

or undiluted depleted -SpaA) for 1 hour, and then washed 3 times in PBS 1% BSA. Grids 

were blocked again in gelatin for 30 minutes, washed once, and then stained with secondary 

antibody conjugated to 12 or 18nm gold particles diluted 1:20 in PBS 1% BSA for 1 hour. 

Finally, the samples were washed 5 times with sterile water, and stained with 1% uranyl-

acetate for 1 minute.  All samples were viewed using a Jeol Jem-1400 electron microscope.  

2.9 Alkylation of pilus proteins 

For A. oris, FimA monomers were isolated from A. oris AR4 pFimA-K198A, a mutant 

strain that expresses cell wall-anchored monomeric FimA (Mishra et al., 2011). Bacteria 

grown overnight on HI agar plates were washed and re-suspended in SMM buffer (500mM 

sucrose, 10mM MgCl2, 10mM maleate, pH 6.8), and treated with 300UmL-1 Mutanolysin for 3 

hours at 37⁰C. The soluble cell wall fractions were isolated by centrifugation, TCA 

precipitated, and acetone washed. For C. diphtheriae, SpaA monomers were collected from 

the medium fraction of C. diphtheriae HT3, a mutant that secretes monomeric SpaA pilins into 

the culture medium because it lacks sortases (Swaminathan et al., 2007). SpaA were isolated 

from the medium fraction of mid-log phase grown bacteria by centrifugation, TCA precipitated, 

and acetone washed.  

FimA and SpaA proteins were alkylated by similar methods. The proteins were 

reduced in DTT-containing buffer (100mM Tris-HCl, 1% SDS, 100mM DTT, pH 8) at room 

temperature for 1 h, followed by TCA precipitation and acetone wash to remove the DTT. The 

resulting pellets were treated with Methoxypolyethylene glycol maleimide (Mal-PEG) in 

alkylation buffer (100mM Tris-HCl pH 6.8, 1% SDS, 20mM Mal-PEG 2Kdal) at room 

temperature for 1 h, followed by TCA precipitation and acetone wash. Protein samples were 
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then dissolved in SDS-loading buffer and separated by 3-20% Tris-glycine gradient gels for 

immunoblotting with -FimA or -SpaA.  

2.10 Alkylation of diphtheria toxin 

Overnight cultures of C. diphtheriae were diluted 1:50 and grown at 30⁰C until 

reaching an OD600 between 0.2 and 0.3. At this point, 10 gmL-1 of iron chelator 

ethylenediamine-di-(o-hydroxyphenylacetic) acid (EDDA) was added to the cell cultures to 

induce DT production for 2 h. DT was isolated from the culture medium by centrifugation, and 

then TCA precipitated and acetone-washed. Alkylation of DT by Mal-PEG was then 

performed as described in the previous section. DT protein was detected by immunoblotting 

with a monoclonal antibody generated against the A fragment of DT (Santa Cruz 

Biotechnology). 

2.11 Coaggregation assays 

 Overnight cultures of A. oris and S. oralis were normalized to an OD600 of 1.5, 

harvested by centrifugation, washed 3 times in TBS buffer (200mM Tris-HCl pH 7.4, 150mM 

NaCl, 0.1mM CaCl2), and re-suspended in 500μL of TBS. Equal cell volumes of A. oris and S. 

oralis suspensions were mixed in 12-well plates until co-aggregation was visible in the 

positive in control (WT A. oris mixed with S. oralis). Coaggregation was recorded using an 

Alpha Imager.   

2.12 Biofilm assays 

 For biofilm growth, equivalent overnight cultures of A. oris were used to inoculate 

fresh cultures (1:100 dilution) in 24-well plates containing 1% sucrose at 37°C with 5% CO2 for 

48 h. The resulting biofilms were washed gently 3 times with PBS, air-dried overnight, and 

then stained with 0.5% crystal violet for 30 minutes. Cell growth was quantified by optical 
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density (OD580) of crystal violet extracted by 80% ethanol. The results are presented as an 

average of three independent experiments performed in triplicate.  

2.13 MdbA in vitro activity assays 

Recombinant FimA was reduced overnight at room temperature in reduction buffer 

(100mM DTT in 50 mM Tris-HCl, pH 8.0). The next day, free thiols were acid-trapped by the 

addition of HCl, DTT was removed by centrifugation using 3-KDa Amicon centrifugal filters 

and exchanged with 50mM Tris-HCl, pH 3.5. 3M of reduced FimA was incubated in redox 

buffer (100mM Tris-HCl, pH 8.0, 2mM EDTA, 0.2mM GSSG, 1mM GSH) in the presence of 

1.8M of wild-type or mutant MdbA at 37°C. Similar reactions without enzymes were used as 

controls. The reactions were stopped at time intervals 0, 5, 10, 15, and 30 minutes by the 

addition of Mal-PEG buffer (20mM Mal-PEG, 1% SDS, 100mM Tris-HCl, pH 6.8). After 

incubation at room temperature for 1 h, glycerol was added to a final concentration of 20% 

before SDS-PAGE using 3-20% Tris-glycine gels. FimA and MdbA were detected by 

Coomassie staining.  

2.14 Animal model of infection 

Mid-log phase cultures of C. diphtheriae cells grown in HI broth at 30°C were collected 

by centrifugation, washed and re-suspended in PBS. Groups of six Hartley guinea pigs (4-5 

week-old) were infected via intraperitonal injections with 2.5 X 107 CFUs of each bacterial 

strain. Animal survival was monitored for seven days. Over the course of the experiment, 

animals that were severely moribund were humanly euthanized. The survival curves were 

analyzed using Mantel-Cox and chi-square tests. 
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2.6 Isolation of C. diphtheriae mdbA suppressor strains 

Overnight cultures of WT and C. diphtheriae mdbA grown at 30°C were diluted 1:50, 

and shifted to 37°C for 24 hours. Serial dilutions of both strains were plated onto HI agar and 

incubated overnight at 37°C. To identify suppressors, plates were screened for mdbA 

colonies similar in size to WT as mdbA colonies are not normally visible at this temperature. 

Three colonies were isolated, and PCR analysis confirmed that these strains were C. 

diphtheriae mdbA.  Genomic DNA of the suppressor mutants was isolated and sent for 

whole genome sequencing (Genome Research and Systems Biology Center for 

Biotechnology, Bielefeld University). 

2.14 q-RT PCR 

To prepare RNA, C. diphtheriae grown to log-phase was normalized to an OD600 of 

1.0, collected by centrifugation, re-suspended in 1mL Trizole ®, and lysed with glass beads. 

To extract nucleic acid from the cell lysates, chloroform was added to the samples, and RNA 

was precipitated using cold isopropanol and 100mM sodium acetate. The RNA preparations 

were then incubated at -80°C for 20 minutes, and centrifuged at 12,000xg for 30 minutes. The 

resulting pellet was washed in cold 70% ethanol, dried, re-suspended in water, and treated 

with Dnase at 37°C for 1.5 hours.  RNA was then extracted using phenol:chloroform:isoamyl 

alcohol (PCA), and then precipitated using cold ethanol, 0.5% glycogen, and 75mM sodium 

acetate. The RNA samples were incubated at -80°C for 20 minutes, spun at 12,000xg for 30 

minutes, washed in 70% cold ethanol, dried, and then re-suspended in water. The 

SuperScript ® III First-Strand Synthesis System (Invitrogen) was used to generate cDNA. 

First, a 10 L solution of prepared RNA (1g), Random Hexamer (50ng), and dNTP (1mM) 

was heated to 65°C for 5 minutes to denature the RNA, and then placed on ice for 1 minute. 

The samples were then diluted to a 20L reaction volume by adding 5X RT buffer, DTT 
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(2.5mM), and SuperScript ® III (200 U).  To anneal the random hexamer primers, the samples 

were incubated at 25°C for 25 minutes, followed by cDNA synthesis at 50°C for 1 hour. The 

reaction was then terminated by incubating the samples at 70°C for 15 minutes, which were 

then stored at -20°C.   

Quantitative RT-PCR was performed using iTaq Universal Sybro®Green Supermix and 

primers designed to amplify a 163-base region inside the tsdA ORF. Transcriptional analysis 

was performed in 10uL reaction volumes containing 4uL cDNA (diluted 1:200), 0.5 uL of both 

primers (100pM), and 5uL of 2X Sybro®Green Supermix. The RT-PCR program consisted of 

95°C for 30 seconds, and 40 cycles of 95°C for 10 seconds, and 53°C for 30 seconds. The 

amplification of 16S rRNA was used as a loading control. The relative mRNA levels were 

calculated using the 2e-CT method. An unpaired T-test was used to measure significance. 

The results are presented as an average of three independent experiments performed in 

triplicate.  

2.16 Van-FL Fluorescence microscopy 

Overnight cultures of C. diphtheriae were diluted 1:50 and then grown at 30°C or 37°C 

until reaching log phase. A 1:1 mixture of vancomycin (Van) and Van-FL was added to 

cultures at a concentration of 1g/mL, and incubated for 10 minutes with agitation at 37°C. 

The samples were then placed on agar pads and viewed by a fluorescence microscope using 

excitation/emission wavelengths 504nm/510nm. 

2.17 Spot dilution assays 

Spot dilutions of C. diphtheriae were performed using overnight cultures grown at 

30°C. To test for temperature sensitivity, C. diphtheriae cultures were spotted (10-3-10-6) onto 

HI agar plates, and then incubated at 37°C for 24 hours or 30°C for 48 hours. To test for 
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antibiotic sensitivity, C. diphtheriae were spotted (10-3-10-6) into HI agar plates containing 

various concentrations of Ampicillin or Penicillin, and incubated at 30°C for 48 hours. The 

concentrations of antibiotics chosen were based on previous calculations of antimicrobial 

MICs for C. diphtheriae (Soriano, Zapardiel & Nieto, 1995). 
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Table 2-1: Bacterial strains and plasmids used in these studies 

Strain or plasmid Description Reference 

A. oris Strains   

MG-1 Parental Strain (WT) (Mishra et al., 2007) 

 
CW1 ∆galK; an isogenic derivative of MG1 (Mishra et al., 2007) 

 
AR4 ∆fimA; an isogenic derivative of CW1 (Mishra et al., 2010) 

 
AR4 pFimA AR4; fimA complement (Mishra et al., 2010) 

 
AR4 pK198A AR4 containing pFimAK198A (Mishra et al., 2010) 

 
MR100 AR4 containing pFimA C116A This Study 

 
MR101 AR4 containing pFimA C157A This Study 

 
MR102 AR4 containing pFimA C394A This Study 

 
MR103 AR4 containing pFimA C445A This Study 

 
CWa fimPQA; an isogenic derivative of CW1 This Study 

 
MR104 CWa containing pFimA This Study 

 
MR105 CWa containing pFimA C394A This Study 

 
MR106 CWa containing pFimA C445A This Study 

 
MR107 MG1 vkor::Tn5 This Study 

 
MR108 vkor; an isogenic derivative of CW1 This Study 

 
MR109 MR108 containing pVKOR This Study 

 
MR110 MR108 containing pVKORC175A This Study 

 
MR111 MR108 containing pMdbAAo This Study 

 
MR112 MR108 containing pMdbAAo C136A This Study 

 
MR113 mdbAAo pAraC-MdbAAo This Study 

 
MR114 MR108 containing pMtnDsbA This Study 

 
MR115 MR108 containing pEcDsbAAo This Study 
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MR116 MR108 containing pJRD-MdbACd This Study 
 
C. diphtheriae Strains 
 

  

NCTC13129 Parental Strain (WT) (Ton-That & 
Schneewind, 2003) 
 

HT11 spaA (Ton-That & 
Schneewind, 2003) 
 

HT11 pSpaA HT11 containing pSpaA (Ton-That & 
Schneewind, 2003) 
 

HT11 pC383A HT11 containing pSpaA C383A This Study 
 

HT11 pC483A HT11 containing pSpaA C443A This Study 
 

MR117 HT11 containing pSpaA C383A, C443A This Study 
 

NJ2 mdbACd This Study 
 

NJ6 NJ2 containing pMdbACd This Study 
 

NJ7 NJ2 containing pSpaA This Study 
 

NJ8 NCTC13129 containing pSpaA This Study 
 

MR118 NJ2 containing pEcDsbACd This Study 
 

HT3 srtAsrtF (Swaminathan et al.,  
2007) 

 
HT28 



tox 

 
This Study 
 

XM5 spaA-I This Study 
 

MR119 NJ2 suppressor 1 This Study 
 

MR120 NJ2 suppressor 2 This Study 
 

MR121 NJ2 suppressor 3 This Study 
 

MR122 tsdA This Study 
 

MR123 HT11 containing pAraC-TsdA This Study 
 
 
 

 
 

  
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S. oralis Strains 
 
So34 Parental Strain (Yoshida et al., 2006) 

 
OC1 ∆wchA; an isogenic derivative of 34 (Yoshida et al., 2006) 
 
E. coli Strains 
 

  

MR126 BL21 containing pMCSG7-MdbAAo This Study 
 

MR127 BL21 containing pMCSG7-MdbAAo C216A This Study 
 

MR128 BL21 containing pMCSG7-MdbACd This Study 
 

MR129 BL21 containing pMCSG7-MdbACd C91A This Study 
 

ARU60 BL21 containing pMCSG7-FimA (Mishra et al., 2010) 
 
Plasmids 
 

  

pJRD215 Actinomyces/E. coli shuttle vector,  
Kan® 

(Yeung & Kozelsky, 
1994) 
 

pCGL0243 Corynebacterium/E. coli shuttle vector, 
Kan ® 
 

(Ankri et al., 1996) 

pK19MobsacB Corynebacterium integration plasmid (Schafer et al., 1994) 
 

pMCSG7 Ligation-independent cloning for protein 
expression 
 

(Stols et al., 2002) 

pCWU2 Integrative plasmid expressing galK (Mishra et al., 2010) 
 

pJRD508FimB pJRD215 containing the fimB promoter (Mishra et al., 2010) 
 

pCR2.1_FimA pCR2.1 containing fimA ORF (Mishra et al., 2010) 
 

pFimA pJRD215 containing fimA under control 
of the fimB promoter 
 

(Mishra et al., 2010) 
 

pFimA C116A pFimA harboring a C116A mutation This Study 
 

pFimA C157A pFimA harboring a C157A mutation This Study 
 

pFimA C394A pFimA harboring a C394A mutation This Study 
 

pFimA C445A pFimA harboring a C445A mutation This Study 
 

pVKOR pJRD215 expressing WT vkor This Study 
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pVKORC175A pVKOR harboring a C175A mutation This Study 
 

pMdbAAo pJRD215 expressing wild-type mdbAAo This Study 
 

pMdbAAo C136A pJRD215 expressing mdbAAo C136A 
 

This Study 

pAraC-MdbAAo 

 

 

pJRD215 expressing mdbAAo under 
control of an arabinose-inducible 
promoter 
 

This Study 

pMtnDsbA pJRD215 expressing a putative M.  
tuberculosis dsbA under control of the  
mdbAAo promoter 
 

This Study 

pEcDsbA pJRD215 expressing E. coli dsbA under  
control of the mdbAAo promoter 
 

This Study 
 

pJRD-MdbACdi pJRD215 expressing C. diphtheriae 
mdbA under control of the mdbAAo  

promoter 
 

This Study 

pSpaA pCGL0243 expressing WT spaA (Ton-That & 
 Schneewind, 2003)  
 

pSpaA C383A pSpaA harboring a C383A mutation (Ton-That & 
 Schneewind, 2003) 
 

pSpaA C443A pSpaA harboring a C443A mutation (Ton-That & 
 Schneewind, 2003) 
 

pSpaA C383A C443A pSpaA harboring C383A, C443A  
mutations 
 

This Study 

pMdbACd pCGL0243 expressing WT mdbACd This Study 
 

   
pAraC_TsdA pCGL0243 expressing WT tsdA  

under control of AraC 
 

This Study 

pK19mobsacB-MdbACd pK19mobsacB  allelic replacement of  
mdbACd 

 

This Study 

pK19mobsacB-TsdA pK19mobsacB  allelic replacement of  
tsdA 
 

This Study 

pCWU2-VKOR pCWU2 allelic replacement of vkor This Study 
 

pMCSG7-FimA For recombinant FimA expression (Mishra et al., 2010) 
 

pMCSG7-MdbAAo For expression of recombinant MdbAAo This Study 
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pMCSG7-MdbAAo C216A For expression of recombinant MdbAAo  

harboring a AxxC mutation 
 

This Study 

pMCSG7-MdbACd For expression of recombinant MdbACd This Study 
 

pMCSG7-MdbACd C91A For expression of recombinant cMdbA  
harboring a AxxC mutation 
 

This Study 
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Table 2-2 Primers used in this study (Restriction sites are underlined). 

Primer Sequence(a) 
 
Used for: 
 

 
fimA_F_C116A 

 
GGTGTGCCGGACAGCGCCGCTGCCAACCCCG 
CGCCCCC 
 

pFimA C116A 

fimA _R_C116A GGGGGCGGCGGGGTTGGCAGCGGCGCTGTC 
CGGCACACC 
 

pFimA C116A 

fimA _F_C157A GTTCAGGCCTACCTCGTGGCTGAGACCACGAC 
CCCTGGT 
 

pFimA C157A 

fimA _R_C157A ACCAGGGGTCGTGGTCTCAGCCACGAGGTAG 
GCCTGAAC 
 

pFimA C157A 

fimA _F_C394A AACGCCTACGCCAACACCGCTTCCAACGAGAA 
GGAGGGC 
 

pFimA C394A 

fimA _R_C394A GCCCTCCTTCTCGTTGGAAGCGGTGTTGGCGT 
AGGCGTT 
 

pFimA C394A 

fimA _F_C445A GTGAATGCCATGGAGCGCGCTTACGTCCTGGT 
TGAGACC       
                              

pFimA C445A 

fimA _R_C445A GGTCTCAACCAGGACGTAAGCGCGCTCCATGG 
CATTCAC 
 

pFimA C445A 

spaA_F_C383A GCCGAGGCCGACGGCAGCCTAGTCAAGTCCG
AC 
 

pSpaA C383A 

spaA _R_C383A ACGATGCAGCTGGAACGTCGCGGTGCGATCG 
GC 
 

pSpaA C383A 

spaA _F_C443A GGCAAGGGAACCGAATTCGCCCTGGTAGAAAC 
A 
 

pSpaA C443A 

spaA _R_C443A GGCCCACGCGTCGGTATATTTCATAACATTGG 
A 
 

pSpaA C443A 

vkor_A_Hindlll_F AAAAGCTTACTGCAACCTCGATGTCATCGCC pCWU2-VKOR 
 

vkor _B_R GAAGAGCCTGGCCAGATCTGTGGGCATGCGC 
GACAT 
 

pCWU2-VKOR 

vkor _C_F CGCATGCCCACAGATCTGGCCAGGCTCTTCGG 
GTGA 
 

pCWU2-VKOR 
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vkor _D_Xbal_R AATCTAGACGTCGGTGTGCGGCTCAATGG pCWU2-VKOR 
 

vkor _F_Ndel AACATATGACGCCTCGGTAACGGTGG pVKOR 
 

vkor _R_Xbal AATCTAGATTCCTTGGGCGCAGTCACC pVKOR 
 

vkor _F_C175A GCTCCCTTCTGCATGGTCATCTGGTCCGTC pVKORC175A 

 
vkor _R_C175A GAGCTTGCCGAAGGTCATGATGGACACGGA pVKORC175A 

 
mdbAAo_F_Xbal AATCTAGACCACCCATCGGCCCATCCATCATG pMdbAAo 

 
mdbAAo _R_Ecorl AAGAATTCTCAGCCTTGCTGAGTCGGCTGAGG pMdbAAo 

 
mdbAA0_F_ATG   ATGGTCGTCCGCTCGTCA pAraC-MdbAAo 

 

mdbAAo _C216A_F GCCTCTCACTGCGCCCAGTTCGAG pMdbAAo C216A, 
pMCSG7-MdbAAo C216A 

 
mdbAAo _C216A_R GGAGTAGTCGAAGTAGATGTCGAGAACGGG pMdbAAo C216A, 

pMCSG7- MdbAAo C216A 

 
araC_F_KpnI AAGGTACCCTACTGTTTCTCCATACCCGTTT pAraC-MdbAAo 

 
araC_R TACCAATTATGACAACTTGAC pAraC-MdbAAo, pAraC- 

TsdA 
 

dsbAMtn_F GTGGCCGACAAATCCAAACGC pMtnDsbA 
 

dsbAMtn_R_HindIII AA AAGCTTTCAGGATGTCGCGGTAGCAGCG pMtnDsbA 
 

PmdbAAo_F_KpnI AAGGTACCCCACCCATCGGCCCATCCATCATG pMtnDsbA, pEcDsbAAo,  
pJRD-MdbACd 

 
PmdbAAo_R GCGGTGCTCCTTGTGATGCGGTGAC pMtnDsbA 

 
dsbAEc_F 

GCGCAGTATGAAGATGGTAAACAG 
pEcDsbAAo,  
pEcDsbACd 

 
dsbAEc _R_EcoRI AAGAATCCGCCCGTGAA TATTCA CGGGCTT  pEcDsbAAo 

 
PmdbAAoTM_R 

GCCGAGGTAGACCAGGTAGCC 
pEcDsbAAo,  
pJRDMdbACd 

 
mdbACd _A_F_Hindlll AAGCTTAATGGCACCGTATGGTCGACT  pK19mobsacB-  

MdbACd 

 
mdbACd _B_R CCCATCCACTAAACTTAAACACCTAGAACCAGC 

GTTTTTACT 
pK19mobsacB-  
MdbACd 
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mdbACd _C_F TGTTTAAGTTTAGTGGATGGGTGGGTTGAGCA 
AGCAACC 

pK19mobsacB-  
MdbACd 

 
 

mdbACd _D_R_Xbal TCTAGAAGAACTCACTGACACAAGCCC pK19mobsacB-  
MdbACd 

 
mdbACd _BamHl_F AAAGGATCCCGCCTTCGCACGGTTCTTCAT 

 
pMdbACd, pEcDsbAcd 

mdbACd _BamHl_R AAAGGATCCTTAGTGATGGTG pMdbACd 

 
mdbACd _C91A_F TCGGCACCACATTGCGCCGAGCTTGGC pMCSG7- MdbACd C91A 

 
mdbACd _C91A_R GAAGTCCTCGTAGAAGTCGATCTTCTT pMCSG7-MdbACd C91A 

 
PmdbACd_TM_R 

CACAACAACATAGGTCACAAC 
pEcDsbACdi 

mdbACd_F CAGGGCAAAGCACACCAAGCTAA pJRD-MdbACd 

 
mdbACd_R_HindIII AAAAAGCTTTTAGTGATGGTG pJRD-MdbACd 

 
tsdA_F_BamHI AAGGATCCAGAGTGTCTCGTTGGGTCGC pAca-TsdA 

 
RTPCR_ tsdA _F TAGCGGTAAGGCGGGTTCG RT PCR 

 
RTPCR_ tsdA _R GATCTTTCGCGTTACGACGGTG RT PCR 

 
tsdA_A_XbaI AAATCTAGAGTTTGAGGAAAGCGGTTT pK19mobsacB-TsdA 

 
tsdA _B_R CCCATCCACTAAACTTAAACACTTCTGCATGAA 

GTACAT 
 

pK19mobsacB-TsdA 

tsdA _C_F TGTTTAAGTTTAGTGGATGGGTGATTGAGTCG 
GAGCTGA 
 

pK19mobsacB-TsdA 

tsdA _D_ XbaI AAATCTAGAGAACTCGCCGCCAGCGAA pK19mobsacB-TsdA 
 

ParaC_F_PstI AAACTGCAGTTATGACAACTTGACGGCTACATC
ATTCAC 
 

pAraC-TsdA 

Lic_mdbAAo_DAK_F TACTTCCAATCCAATGCAGACGCCAAGAAGAA 
CCCCA 
 

pMCSG7- MdbAAo 

 

Lic_mdbAAo_VQG_R TTATCCACTTCCAATGTCAGCCTTGCTGAGTCG 
GC 
 

pMCSG7-MdbAAo 

Lic_ mdbACd _ANK_F TACTTCCAATCCAATGCAGTGCAGGGCAAAGC
ACAC 
 
 
 

pMCSG7- MdbACd 
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Lic_ mdbACd _ATS_R TTATCCACTTCCAATGTTAAGAGGTTGCTTGCT

CAACCC 
 

pMCSG7- MdbACd 
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Chapter III: 

Gram-positive pilus assembly requires disulfide 

bond formation  
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3.1 Introduction 

Bacterial pathogens secrete an arsenal of virulence factors to colonize and manipulate 

hosts. Among these are adhesive pili or fimbriae, which mediate attachment, promote biofilm 

formation, and modulate host immunity (Hendrickx et al., 2011; Proft & Baker, 2009). Pili 

expressed by Gram-positive bacteria are comprised of covalently-linked subunits that are 

anchored to the surface peptidoglycan. The assembly pathway for these virulence factors was 

first elucidated using C. diphtheriae SpaA-type pili, and later found to be conserved among 

Gram-positive bacteria (Danne & Dramsi, 2012; Ton-That et al., 2004; Ton-That & 

Schneewind, 2003) 

Pilus subunits harbor a number of conserved features including an N-terminal signal 

peptide and pilin motif, and C-terminal CWSS, which is comprised of an LPxTG motif, 

hydrophobic patch, and positively-charged tail. The N-terminal signal peptide targets the 

subunits for secretion via the Sec machinery. When they reach the exoplasm, the proteins are 

tethered to the membrane by the C-terminal hydrophobic patch and positively-charge 

cytoplasmic tail. Here, a series of transpeptidase sortase enzymes assemble the subunits into 

pili (Fig. 4). A pilus-specific sortase cleaves a subunit at its LPxTG motif, which results in the 

formation of an acyl-enzyme intermediate between the substrate Thr and sortase Cys 

(Mazmanian et al., 1999). The complex is resolved by a nucleophilic lysine in the pilin motif of 

a neighboring sortase-subunit complex. This results in two subunits becoming cross-linked by 

a Lys-Thr isopeptide bond (Ton-That et al., 2004) (Fig. 4). This transpeptidase reaction 

occurs repeatedly to form a pilus polymer by a bottom-up mechanism. Upon completion, the 

pilus is transferred to a housekeeping sortase, which anchors it to lipid II precursor (Perry et 

al., 2002; Swaminathan et al., 2007). 

SecYEG substrates are translocated into the exoplasm in unfolded states. How are 

Gram-positive pilins properly folded outside the cell if these organisms lack periplasmic 
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spaces? The crystal structures of the major pilus subunits FimA and SpaA expressed by 

Actinobacterial oral pathogens Actinomyces oris and Corynebacterium diphtheriae, 

respectively, revealed a clue. Both pilins were predicted to contain disulfide bonds suggesting 

that they undergo oxidative folding (Kang et al., 2009; Mishra et al., 2011). A. oris FimA, 

which forms the shaft of type 2 fimbriae, was predicted to harbor Cys linkages in both the N- 

and C-termini. The crystal structure for C. diphtheriae SpaA, the major subunit of SpaA-type 

pili, was shown to containe a  disulfide bond in its C-terminus (Kang et al., 2009). 

Disulfide bond formation is important for the proper folding of many secreted proteins. 

These linkages stabilize protein structure and protect against degradation. For example, 

bovine pancreatic trypsin inhibitor (BPTI) requires disulfide bond formation to maintain its 

tertiary structure. This protein can be denatured by simply exposing it to reducing agents 

(Braakman & Bulleid, 2011). Inhibiting disulfide bond formation often leads to increased 

susceptibility to proteolysis (Heras et al., 2009). E. coli FlgI, a component of the bacterial 

flagellar motor, requires a single disulfide bond in its C-terminus. Reduced FlgI is heavily 

degraded, thereby preventing the flagellar synthesis (Hizukuri et al., 2006). Disulfide bonds 

have also been shown to guide protein folding pathways. For example, patterns of non-native 

disulfide bond formation have been detected in folding intermediates of Rnase A and LDL 

receptor (Jansens, van Duijn & Braakman, 2002; Ruoppolo et al., 1996). In other cases, 

disulfide bond formation is a prerequisite for folding. Uropathogenic E. coli FimC, a specific 

chaperone for type 1 fimbriae, will not catalyze substrate folding unless its targets have 

formed native disulfide bonds (Crespo et al., 2012).  

Here, we show that FimA and SpaA Cys residues are oxidized to form thiol linkages in 

vivo. The formation of these disulfide bonds is important for protein folding and stability. Cys-

to-Ala mutations targeting these regions abolishes assembly of type 2 fimbriae and SpaA-type 

pili on cell surfaces. Instead, an abundance of low molecular weight (LMW) FimA and SpaA 
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products are secreted into the culture medium. In A. oris, we found that the failure to form 

type 2 fimbriae is associated with the absence of biofilm growth and co-aggregation with its 

oral cavity co-colonizer S. oralis. This work expands our understanding of how pilus assembly 

occurs in Gram-positive bacteria, and reveals a potential folding pathway for virulence factors 

secreted into the exoplasm. We hypothesize that A. oris and C. diphtheriae possess 

machinery to catalyze disulfide bond formation in proteins like pili, and have identified putative 

oxidoreductase enzymes in both organisms.  

3.2 Results  

3.2.1 A. oris FimA and C. diphtheriae SpaA form disulfide bonds in vivo. 

Structural studies predicted that Cys residues within pilus subunits like FimA and 

SpaA are oxidized to form disulfide bonds (Kang et al., 2009; Mishra et al., 2011; Persson et 

al., 2012). FimA is predicted to form the disulfide bonds C116-C157 in the N-terminus and 

C394-C445 in the C-terminus, while SpaA is predicted to harbor a single C383-C443 linkage 

in its C-terminus (Fig. 5). To test if these bonds form in vivo, we turned to alkylation using 

Mal-PEG, a 2 kDa agent that reacts with free sulfhydryl groups to form stable thioether bonds 

(Makmura et al., 2001).  FimA was collected from A. oris by muramidase treatment, TCA 

precipitated, and acetone washed. The resulting pellets were re-suspended in buffer with or 

without DTT, and then incubated with Mal-PEG.  Mal-PEG was then removed by TCA 

precipitation, and FimA was detected by western blotting. The migration of FimA incubated 

with Mal-PEG was unchanged when compared to the untreated samples (Fig. 5A; compare 

lanes 1 and 3). However, pretreatment with reducing DTT produced a visible up-shift 

signifying the modification of free sulfhydryl groups (lane 4). Similar to FimA, Mal-PEG 

modification of SpaA occurred following DTT treatment (Fig. 5B; compare lanes 3 and 4). 

Since DTT treatment was required prior to MAL-PEG modification in both proteins, we 

conclude that disulfide bonds are present within FimA and SpaA in vivo. 
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Figure 5. A. oris FimA and C. diphtheriae SpaA contain disulfide bonds. (A) The FimA 

crystal structure (Mishra et al., 2011) revealed a possible disulfide bond between residues 

C394 and C445. The modeled IgG-fold domain (yellow) at the N-terminus, absent from the 

original structure, contained two Cys residues (C116 and C157).  FimA monomers isolated 

from the cell wall were treated or mock-treated with DTT, followed by Mal-PEG. The protein 

samples were analyzed by immunoblotting with antibodies against FimA (-FimA). The 

reduced and oxidized forms of FimA are indicated. (B) The SpaA crystal structure predicts the 

formation of a single disulfide bond formed between residues C383 and C443 within the C-

terminal IgG-like domain (Kang et al., 2009). The presence of the C-terminal disulfide bond in 

SpaA monomers was demonstrated by Mal-PEG alkylation as described (A). The reduced 

and oxidized forms of SpaA are indicated. 
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3.2.2 Disulfide bond formation is required for A. oris pilus assembly, biofilm formation, 

and interbacterial interactions. 

We wondered if disulfide bonds were important for pilus assembly. Using pFimA as a 

template, Cys residues were mutated to alanine and the resulting plasmids were used to 

transform A. oris fimA. Medium (M) and cell wall (W) fractions were isolated, boiled in SDS, 

separated using a 3-12% Tris-glycine gel, and blotted with -FimA. Polymerized FimA (P) 

was detected in both M and W fractions collected from the parental MG1 (WT) along with the 

FimA monomer (60 kDa) (Fig. 6; lanes 1-2). No protein was detected in fimA (lanes 3-4). 

Fimbrial assembly was restored upon complementation with pFimA, pC116A, or pC157A 

(lanes 5-10). Remarkably, cells expressing pC394 and pC445A produced no fimbriae. 

Instead, traces of FimA dimers, along with an abundance of low-molecular-weight (LMW) 

products were detected in the M fractions (lanes 11 and 13). To examine pilus assembly on 

the cell surface we turned to immunogold electron microscopy (IEM). To identify type 2 

fimbriae, bacteria were blotted with -FimA or -FimB, followed by secondary antibodies 

conjugated to gold particles. FimA polymers were visible on the surface of bacteria 

expressing pFimA (Fig. 6C). FimB, which cross-links to the tip of FimA polymers, was 

detected around the cell surface (Fig. 6G). No fimbriae were observed on the surface of 

fimA, pC394A or pC445A mutants, but FimB was present on the cell surface (Fig. 6D-I).  

 We also tested whether the Cys-to-Ala mutations affected A. oris biofilm formation 

and co-aggregation with Streptococcus oralis, two processes known to require type 2 fimbriae 

(Mishra et al., 2010).  To grow biofilm, A. oris were grown in rich media supplemented with 

1% sucrose at 37ºC with 5% CO2. After 48 hours, the resulting biofilms were washed with 

PBS, dried, and stained with crystal violet. A. oris MG1 formed a robust biofilm, while fimA 

produced nothing (Fig. 6J).  Complementation with pFimA, pC116A, or pC157A restored 

growth, but pC394A and pC445A did not. Finally, co-aggregation between A. oris and S. 
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oralis was tested (Fig. 6K). Stationary phase cultures of A. oris and S. oralis were collected, 

washed in TBS, and mixed together. Co-aggregation between MG1 and S. oralis So34 was 

visible, but not detected when MG1 was combined with S. oralis OC1, a mutant that lacks the 

receptor for type 2 fimbriae (Mishra et al., 2010). The fimA mutant did not co-aggregate with 

So34, but complementation with pFimA, pC116A, or p157A restored the interaction. Identical 

to fimA, pC394A and pC445A also failed to co-aggregate. Altogether, these data show that 

the C-terminal C394-C445 disulfide bond is essential for the assembly and function of type 2 

fimbriae, while the N-terminal C116-C157 linkage is dispensable. 
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Figure 6. Disulfide bond formation is required for FimA polymerization, biofilm 

formation, and interbacterial interactions in A. oris. (A) Culture medium (M) and cell wall 

(W) fractions were collected from the A. oris parental strain (MG1) and its isogenic 

derivatives. Equivalent protein samples harvested by TCA precipitation were analyzed by 

immunoblotting with -FimA. Monomeric and polymeric forms of FimA, as well as molecular 

mass markers (kDa) are indicated. (B-I) Overnight cultures of A. oris were immobilized on 

nickel grids, and stained with -FimA (D-G) or -FimB (H-K) followed by secondary 
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antibodies conjugated to 12 or 18nm gold particles, respectively. The samples were stained 

with 1% uranyl acetate and viewed by a transmission electron microscope. Scale bars 

indicate 0.5μm. Note that A. oris lack type 1 fimbriae to eliminate background. (J)  A. oris 

biofilms were cultivated in 12-well plates at 37⁰C with 5% CO2 for 48 hours. The resulting 

biofilms were stained with crystal violet, and quantified by measuring absorbance at 580nm. 

(K) To assay an interspecies interaction, A. oris and RPS-positive S. oralis (So34) cells were 

mixed in equal numbers and imaged. S. oralis OC1 strain lacking RPS was used as a 

negative control.  
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3.2.3 C. diphtheriae SpaA-type pilus assembly requires disulfide bond formation. 

To test if the SpaA C383-C443 linkage is also important for pilus assembly, Cys-to-Ala 

mutations were generated within pSpaA, and the resulting plasmids were used to transform 

C. diphtheriae spaA. M and W fractions were isolated, boiled in SDS, separated by SDS-

PAGE, and blotted with -SpaA. SpaA polymers were readily detected in the W fraction of 

wild-type cells with some secreted into the M fraction (Fig 7A; lanes 1-2). Protein detection 

was abolished in spa (lanes 3-4), but restored upon plasmid complementation (lane 6). 

Similar to A. oris, SpaA polymers were not detected in pC383A or pC443A, but LMW SpaA 

products were secreted into the culture media, along with a potential SpaA dimer in the M 

fraction of pC383A (lanes 7 and 9). SpaA assembly was also examined using IEM. C. 

diphtheriae was immobilized on nickel grids, and blotted with -SpaA, followed by secondary 

antibody conjugated to gold particles. The complementation of spaA with pSpaA produced 

long pili that covered the bacterial surface. Similar to western blotting, SpaA polymers were 

not found on the surfaces of cells expressing pC383A or pC443A (Fig. 7C-D). Pilus assembly 

was also defective in a double Cys mutant, but one or two short pili were visible on the cell 

surface (Fig. 7E).  Together, these results show that the C383-C443 linkage is essential for 

pilus assembly. 
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Figure 7. C. diphtheriae SpaA-type pilus assembly requires disulfide bonds. (A)  M and 

W fractions were collected from C. diphtheriae, separated on a 3-12% Tis-Glycine gel, and 

immunoblotted with -SpaA. (D) C. diphtheriae were prepared as described in Fig. 6, but cells 

were stained with -SpaA followed by secondary antibody conjugated to 12nm gold particles. 

Scale bars indicate 0.5μm.  
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3.2.4 A. oris and C. diphtheriae encode putative oxidoreductase enzymes. 

In Gram-negative bacteria, disulfide bond formation is catalyzed in the extracellular 

periplasm by Dsb enzymes (Kadokura & Beckwith, 2010). Due to the lack of an outer 

membrane, it is generally accepted that Gram-positives do not possess similar compartments. 

Interestingly, this correlates with a trend in which many Gram-positives secrete little, if any, 

proteins with multiple Cys residues (Daniels et al., 2010; Dutton et al., 2008). It was 

suggested that the avoidance of disulfide bond formation is an adaptation to lacking a 

periplasmic space. Recently, it was revealed that Gram-positive Actinobacteria may be 

exceptions to this rule (Daniels et al., 2010; Dutton et al., 2008).   

 We wondered if oxidoreductases were present in the exoplasm to catalyze 

intramolecular disulfide bonds in the A. oris and C. diphtheriae pilus subunits.  All known 

disulfide bond forming enzymes are members of the thioredoxin superfamily (Kadokura & 

Beckwith, 2010). To identify potential Dsb-like proteins, E. coli thioredoxin was BLASTed 

against the A. oris and C. diphtheriae proteomes. Four candidates in A. oris and five in C. 

diphtheriae were identified (Chen et al., 2005; Kanehisa & Goto, 2000) (Fig. 8). All nine 

proteins were predicted to be membrane-bound and harbor extracellular CxxC motifs. 

Interestingly, although A. oris Ana_1994 and C. diphtheriae Dip_1880 share only 15% and 

23% sequence similarity to E. coli DsbA, respectively, all three proteins harbor a His residue 

in their CxxC motifs. This positively-charged residue contributes to the high redox potential of 

many known disulfide bond forming proteins (Grauschopf et al., 1995; Lundstrom, Krause & 

Holmgren, 1992). It is possible that some or all of these candidates regulate FimA and SpaA 

oxidation in the exoplasm.  
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Figure 8. Putative thiol-oxidoreductases in A. oris and C. diphtheriae. BLAST analysis 

revealed potential disulfide bond forming proteins in A. oris (A) and C. diphtheriae (B). All 

proteins are membrane-bound and possess extracellular CxxC motifs typical of thioredoxin-

like enzymes.  
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3.3 Discussion  

Adhesive pili are valuable virulence determinants for bacteria because they promote 

host colonization, inflammation, and biofilm formation (Danne & Dramsi, 2012).  A. oris FimA 

and C. diphtheriae SpaA are major subunits of cell wall-anchored pili required for initial 

colonization of the oral cavity (Mandlik et al., 2007; Mishra et al., 2010). Prior to their 

assembly, FimA and SpaA are synthesized in the cytoplasm, and transported in unfolded 

states to the exoplasm (Mazmanian, Ton-That & Schneewind, 2001). Since Gram-positive 

bacteria lack periplasmic compartments, we wondered how these virulence factors are folded 

in a seemingly unregulated environment. A clue was provided upon solving the crystal 

structures for the proteins, which predicted the formation of disulfide bonds (Kang et al., 2009; 

Mishra et al., 2011). Using alkylation, we confirmed that these bonds were present in vivo 

(Fig. 5). Mutational analysis revealed that disulfide bonds in the C-termini of FimA and SpaA 

were essential for pilus assembly (Figs. 6 and 7). The failure to form these linkages was 

associated with the secretion of LMW FimA and SpaA products into the culture media.  

It is unlikely that the FimA and SpaA Cys mutants formed pili, which then collapsed 

into the observed LMW products that were secreted into the culture medium. Pilus subunits 

are held together by isopeptide bonds that link the N-terminus of one pilin to the C-terminus of 

another (Budzik et al., 2008) (Fig. 4). These linkages should be sufficient to hold the subunits 

together with or without disulfide bonds. If disrupting disulfide bond formation caused FimA or 

SpaA polymers to fall apart, multiple lengths of pili should have been detected in the M 

fractions. However, only one HMW band of Cys-mutated FimA and SpaA (around 120 kDa) 

was dominant in these fractions. Since monomeric FimA and SpaA are approximately 60 kDa, 

we predict that these species represent dimers formed by intermolecular disulfide bonds.  In 

support of this, the HMW bands were not detected when -mercaptoethanol was added to the 

samples prior to separation by SDS-PAGE (data not shown).  



 
 

60 
 

It is more likely that the FimA and SpaA mutants were degraded before they could be 

assembled into pili. Many bacterial virulence factors are susceptible to proteolysis when 

oxidative protein folding is disrupted (Heras et al., 2009). For example, E. coli FlgI, which 

makes up the flagellar P-ring, requires a disulfide bond in its C-terminus (Dailey & Berg, 

1993). Hizukuri et al. (2006) showed that reduced FlgI was still functional, but highly 

susceptible to proteolysis. In support of this, overexpressing FlgI harboring Cys-to-Ala 

mutations partially restored P-ring synthesis. This may explain why a few SpaA fibers were 

visible on the surface of C. diphtheriae expressing a double Cys mutant (Fig. 7E). It is 

possible that the substituted Ala residues formed a nonpolar interaction that is absent in pilins 

harboring single Cys mutations. This interaction may have conferred some proteolytic stability 

to permitted low levels of SpaA polymerization.  

It is interesting that the C-terminal FimA disulfide bond was required for type 2 

fimbriae assembly, while the N-terminal linkage was dispensable. Since sortase processes 

pilus subunits via the C-terminus, it is conceivable that pilus assembly is dependent on the 

proper folding of this region (Mazmanian et al., 1999; Ton-That et al., 2004). Many Gram-

positive pilins contain a C-terminal folding element called the E box (Mandlik et al., 2008).  

The E-box contains a conserved Glu residue that catalyzes an intramolecular isopeptide bond 

between Lys and Asn residues (Kang et al., 2007; Mishra et al., 2011). This linkage is 

essential for protein stability. Cozzi et al. (2012) examined the role of the E box in pili 

expressed by Group B Streptococcus using NMR spectrometry and computer simulations. 

NMR spectrometry showed that a Glu-to-Ala mutation within this region caused pilus subunits 

to unfold. Furthermore, a molecular dynamics simulation predicted that more water molecules 

were present in the interior of the pilin mutant compared to wild-type indicating that the 

integrity of the hydrophobic core was lost. Thus, it was concluded that the E-box is required 

for the proper folding of the C-terminus of the tested pilins.  Disulfide bonds within similar 

regions of FimA and SpaA may serve a similar purpose. We predict that sortase cannot 
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recognize subunits lacking their disulfide bonds. As a consequence, FimA and SpaA are 

discarded into the culture media. Crystal structures of the FimA and SpaA Cys mutants would 

be beneficial for investigating how these thiol linkages contribute to protein folding.  

Protein oxidation has not been well-explored in Gram-positives, which lack periplasmic 

spaces. It has been suggested these bacteria avoid disulfide bond formation to protect 

secreted proteins from aberrant oxidation (Daniels et al., 2010). Recently, Actinobacteria have 

been identified as a subset of Gram-positive bacteria that may use thiol oxidation (Daniels et 

al., 2010; Dutton et al., 2008). Pilus assembly in A. oris and C. diphtheriae will serve as a 

useful model to study disulfide bond formation in these organisms. We have identified several 

putative oxidoreductases that could be involved with disulfide bond catalysis. Future 

experiments will focus on determining if FimA and SpaA oxidation is dependent on any these 

factors.  

In summary, the virulence factors FimA and SpaA expressed by A. oris and C. 

diphtheriae, respectively, contain disulfide bonds. The formation of C-terminal Cys linkages 

within these subunits is essential for pilus assembly. This work adds another layer to our 

understanding of pilus assembly in Gram-positive bacteria, and provides a useful tool to study 

disulfide bond formation in Actinobacteria.  
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Chapter IV:  

Oxidative folding of virulence determinants in Gram-

positive bacteria  
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4.1 Introduction 

Disulfide bonds are important for protein stability and function. These linkages, formed 

when cysteine (Cys) residues in nascent polypeptides become oxidized, are often rate-limiting 

steps for folding and maturation (Creighton, Zapun & Darby, 1995; Molinari & Helenius, 

1999). With the exception of Archaea, disulfide bond formation is limited to extracytoplasmic 

compartments like the eukaryotic endoplasmic reticulum (ER), inner membrane space of 

mitochondria, and bacterial periplasm (Pedone, Limauro & Bartolucci, 2008). Eukaryotic 

protein disulfide isomerase (PDI) was the first disulfide bond forming enzyme identified by 

Anfinsen and colleagues during the 1960s (Goldberger et al., 1963; Goldberger, Epstein & 

Anfinsen, 1964). This multi-domain chaperone possesses two redox-active CxxC motifs, 

which catalyze disulfide bond formation, and reduce aberrant Cys-linkages in nascent 

proteins.  

Beckwith’s group discovered Escherichia coli DsbA, the archetype of Gram-negative 

disulfide bond forming proteins, nearly 30 years later (Bardwell et al., 1991). DsbA is a 

periplasmic protein that, similar to PDI, harbors a reactive disulfide bond in a CxxC motif. 

DsbA donates this bond to reduced Cys residues in nascent polypeptides secreted into the 

periplasm by SecYEG (Kadokura & Beckwith, 2009).  In turn, DsbA is reduced and requires 

re-oxidation by the membrane-bound DsbB (Bardwell et al., 1993; Missiakas, Georgopoulos & 

Raina, 1993).  DsbB resets the oxidative folding pathway by shuttling electrons from DsbA to 

quinone, a component of the electron transport chain (Kobayashi & Ito, 1999).  Disulfide bond 

isomerization is catalyzed by the redox pair DsbC/DsbD, which reduce nonnative disulfide 

bonds in the periplasm (Missiakas et al., 1994; Missiakas et al., 1995). Although Dsb proteins 

expressed by Gram-negative bacteria are not required for growth, they are essential for 

virulence. Pathogens E. coli, Shigella flexneri, Pseudomonas aeruginosa, Bordetella 

pertussis, Neisseria meningitidis, and Salmonella enterica secrete an arsenal of disulfide-
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bond containing virulence factors like flagella, adhesive pili, and toxins (Heras et al., 2009). 

Thus, DsbA is an important virulence factor.   

Oxidative protein folding pathways in Gram-positive bacteria have not been well-

explored. The Gram-positive cell envelope is comprised of a single cytoplasmic membrane 

that is surrounded by a thick layer of peptidoglycan. Although inner wall zones (IWZ) between 

these layers have been observed in Bacillus subtilis and Staphylococcus aureus, these 

organisms are not predicted to possess periplasmic spaces (Matias & Beveridge, 2005; 

Matias & Beveridge, 2006). Peptidoglycan is considered to be porous, so it is possible that 

Sec machinery secretes nascent proteins into an environment that is exposed to the 

extracellular milieu. The translocation of unfolded, Cys-containing proteins to this region may 

be hazardous because exposure to oxygen can cause aberrant oxidation (Anfinsen et al., 

1961). Therefore, oxidative protein folding pathways within these organisms could be 

deleterious. Many Gram-positive bacteria appear to prevent misfolding of secreted proteins by 

avoiding disulfide bond formation. Recent bioinformatics analysis of the Cys-content of Gram-

positive proteomes partially supported this conjecture (Daniels et al., 2010; Dutton et al., 

2008). It was revealed that Firmicutes, including B. subtilis and S. aureus, tend to exclude 

Cys residues from secreted proteins. Dsb-like proteins have been identified in these 

organisms, but, unlike the Gram-negative bacteria, their genes are arranged in operons with 

specific substrates (Dorenbos et al., 2002; Meima et al., 2002; van der Kooi-Pol et al., 2012). 

This suggests that they do not participate in general oxidative folding. In contrast, 

Actinobacteria, such as Corynebacterium, Streptomyces, and Mycobacterium, secrete many 

proteins with multiple Cys residues, and encode extracellular thiol-oxidoreductase enzymes 

(Daniels et al., 2010). Intriguingly, in Mycobacterium tuberculosis, a membrane protein 

annotated as Vitamin K epoxide reductase (VKOR) is proposed to be a DsbB analog since its 

expression rescues disulfide bond formation in an E. coli dsbB mutant (Dutton et al., 2008). In 
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addition, several secreted DsbA-like proteins have been identified in M. tuberculosis and 

crystallized (Chim et al., 2013; Chim et al., 2010; Goulding et al., 2004). The current data 

suggest Actinobacteria use disulfide bond formation to help fold secreted proteins, but 

oxidative folding pathways have not been elucidated in vivo. 

We previously reported that pilus proteins FimA and SpaA, expressed by Actinomyces 

oris and Corynebacterium diphtheriae, respectively, contain disulfide bonds (Kang et al., 

2009; Mishra et al., 2011). Using FimA and SpaA as model substrates, this study elucidates 

disulfide bond forming pathways in two Actinobacterial models. We reveal that oxidative 

protein folding is catalyzed by a membrane-bound thiol-oxidoreductase enzyme named MdbA 

(mdb for monoderm disulfide bond-forming). Re-oxidation of MdbA in A. oris requires a 

second membrane-spanning thiol-oxidoreductase called VKOR. Importantly, MdbA is not 

limited to pilins. We show that it is required for production and stability of diphtheria toxin 

secreted by C. diphtheriae. Given that the majority of signal peptide-containing proteins (more 

than 60%) expressed by these bacteria have two or more Cys residues; we propose that 

disulfide bond formation is a major folding pathway for Actinobacteria (Chen et al., 2005; 

Kanehisa & Goto, 2000). This work provides the most comprehensive analysis of an oxidative 

protein folding pathway in Gram-positive bacteria to date. Importantly, our results have 

important implications for the development of new antimicrobials targeting important 

Actinobacterial pathogens including Mycobacterium tuberculosis.  

4.2 Results  

4.2.1 Identification of a disulfide bond-forming machine in A. oris. 

Since A. oris co-aggregation with oral co-colonizer S. oralis is linked to FimA 

assembly, we aimed to identify factors involved with disulfide bond formation by screening a 

Tn5 transposon library of ~ 3,000 clones for co-aggregation mutants. Four mutants were 
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identified and mapped by TAIL-PCR (Liu & Whittier, 1995) and DNA sequencing. We 

revealed insertions within fimA and srtC2 of the type 2 fimbrial gene locus, which validated 

the screen. An insertion was also identified in a gene encoding vitamin K epoxide reductase 

(VKOR). First identified in Mycobacterium tuberculosis, VKOR is hypothesized to serve as a 

DsbB analogue for some Gram-positive bacteria (Dutton et al., 2008). A. oris VKOR is a 27 

kDa protein predicted to have five transmembrane helices, and a CxxC motif in an N-terminal 

exoplasmic loop. To confirm the phenotype of the Tn5::vkor mutant, an unmarked, non-polar 

deletion mutant of vkor was generated. This mutant also failed to co-aggregate with S. oralis, 

but the defect was rescued by expressing vkor from a plasmid (Fig. 9A).  

To determine whether the coaggregation defect of the vkor mutant is a result of a 

defect in pilus assembly, type 2 fimbriae was examined by IEM using antibodies against the 

shaft FimA and tip FimB fimbrillins.  Compared to the parental MG1, the detection of type 2 

fimbriae was severely diminished in the vkor mutant, but restored upon expression of vkor 

from a plasmid (Fig. 9B-G). The vkor mutant harboring a plasmid expressing VKOR with one 

of the Cys residues of the CXXC motif changed to Ala (C175A) remained defective in pilus 

assembly suggesting that VKOR is an oxidoreductase (Fig. 9H-I). To confirm this, vkor 

cultures were supplemented with cystine, an exogenous oxidizing agent (Hizukuri et al., 

2006). Remarkably, cystine restored type 2 fimbriae to wild-type levels (Fig. 9J-K). Together, 

these results demonstrate that VKOR contributes to pilus assembly via disulfide bond 

formation.       
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Figure 9. A. oris VKOR is required for type 2 

fimbrial assembly. (A) For interspecies 

interaction, A. oris and RPS-positive S. oralis 

(So34) cells were mixed in equal numbers and 

imaged. (B-K) Overnight cultures of A. oris were 

immobilized on nickel grids, and stained with -

FimA (left column) or -FimB (right column) 

followed by secondary antibodies conjugated to 

12 or 18nm gold particles, respectively. The 

samples were stained with 1% uranyl acetate and 

viewed by a transmission electron microscope. 

Scale bars indicate 0.5μm.  
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4.2.2 VKOR is required for type 1 fimbrial assembly. 

FimB was detected on the surface of fimA cells (Fig. 6F), but rarely observed on the 

surface of the vkor mutant (Fig. 9E). This suggests that FimB, which contains 12 Cys 

residues, may also require disulfide bonds.  This is consistent with our recent finding that a 

pilus-associated coaggregation factor named CafA requires Cys residues for stability 

(Reardon-Robinson et al., 2014). We predicted that VKOR targets multiple pilus substrates. 

To explore this, we examined the assembly of type 1 fimbriae by IEM.  Similar to type 2 

fimbriae, type 1 fimbrial structures were barely visible on the vkor mutant, but the defects 

were rescued by vkor complementation (Fig.10). Altogether, these results support that 

oxidoreductase activity of VKOR is important for general pilus assembly.      
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Figure 10. A. oris VKOR is required for type 1 fimbrial assembly. (A-F) A. oris were 

immobilized on nickel grids and stained with -FimP or -FimQ followed by a secondary 

antibody conjugated to 12 or 18nm gold particles, respectively. Note that unstained type 2 

fimbriae are visible on some bacteria. Scale bars indicate 0.2μm. 
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4.2.3 Thiol-oxidoreductase MdbA rescues type 2 fimbrial assembly in a vkor mutant 

and oxidizes FimA in vitro. 

Since expression of M. tuberculosis vkor rescues an E. coli dsbB mutant, we 

suspected that A. oris VKOR does not directly catalyze disulfide bond formation (Dutton et al., 

2008).  Instead, the observed pilus-defect phenotype may result because VKOR is required to 

maintain the activity of another thiol-oxidoreductase. We hypothesized that VKOR oxidizes 

the CxxC active site of a DsbA-like enzyme. To identify putative thiol-oxidoreductases, we 

surveyed the A. oris genome for secreted thioredoxins (http://genome.brop.org/). We 

identified ANA_1994, a 32 kDa membrane-bound protein (Fig. 8A). Although MdbA is only 

15.4% identical to E. coli DsbA, it shares the conserved N-terminal CxxC motif (Fig. 11). We 

proposed to name this factor MdbA for Monoderm disulfide bond forming protein A. 
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Figure 11. Sequence alignment of E. coli DsbA and MdbA enzymes. The primary amino 

acid sequences for E. coli DsbA (Ec DsbA), A. oris MdbA (Ao MdbA) and C. diphtheriae 

MdbA (Cd MdbA) were aligned. Black represents absolutely conserved residues, dark grey 

represents conserved residues, and light grey denotes similar residues.  
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Unfortunately, multiple attempts to delete mdbA were unsuccessful. To circumvent 

this, vkor was transformed with a multi-copy plasmid carrying mdbA. If mdbA functions 

downstream of vkor, we hypothesized that MdbA overproduction would rescue pilus 

assembly. Remarkably, the assembly of type 2 fimbriae was restored to wild-type levels (Fig. 

12C). In contrast, transforming vkor with mdbA harboring a C139A mutation within the 

CXXC motif did not rescue assembly (Fig. 12D). This suggested that polymerization of FimA 

is dependent on the redox activity of MdbA. 

 We also tested the ability of MdbA to oxidize FimA in vitro. To reduce disulfide bonds, 

recombinant FimA was incubated overnight with DTT. The next day, free sulfhydryl groups 

were acid-trapped, and DTT was removed by filter centrifugation. FimA was then incubated 

with A. oris MdbA, no enzyme, or catalytically inactive MdbA (C139A) in glutathione redox 

buffer at 37°C for 30 min. At specific time points, the reactions were stopped by addition of 

Mal-PEG. The samples were then separated with 3-20% Tris-glycine gels, and FimA and 

MdbA were detected by Coomassie staining. When reduced FimA was incubated with wild-

type A. oris MdbA, a faster migrating species of FimA (i.e. not modified by Mal-PEG), was 

visible within five minutes (Fig. 12E; lane 2). This signified that FimA Cys residues had 

become oxidized. After 30 min, the faster migrating species represented the majority of 

detected FimA (lane 5). Significantly, FimA remained reduced (i.e. modified by Mal-PEG) in 

the reactions containing MdbA C139A, or no enzyme (lanes 6-13). We concluded that A. oris 

MdbA possess oxidoreductase activity.  
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Figure 12.  A. oris MdbA rescues type 2 fimbrial assembly in a vkor mutant and 

oxidizes FimA in vitro. (A-D) Overnight cultures of A. oris were immobilized on nickel grids, 

and stained with -FimA followed by secondary antibodies conjugated to 12nm gold particles. 

The samples were stained with 1% uranyl acetate and viewed by a transmission electron 

microscope. Scale bars indicate 0.1μm. (E) Recombinant FimA was reduced overnight in 

100mM DTT. Free thiol groups were acid-trapped, and DTT was removed by filter 

centrifugation. FimA was left untreated or combined with wild-type, or mutant A. oris MdbA. 

The reactions were stopped by the addition of Mal-PEG, samples were separated on 3-20% 
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Tris-glycine gels, and proteins were detected by Coomassie blue staining. Oxidized and 

reduced forms of FimA and MdbA are indicated.  
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4.2.4 A. oris VKOR is required to oxidize the MdbA CxxC site. 

We hypothesized that VKOR recycles MdbA activity by oxidizing its CxxC catalytic 

site. To investigate this, we examined the redox status of MdbA within wild-type and vkor 

backgrounds. Whole cell lysates of A. oris were prepared by mechanical disruption with glass 

beads, and the protein samples were collected by TCA precipitation. The resulting pellets 

were re-suspended in buffer containing Mal-PEG, followed by TCA precipitation for SDS-

PAGE analysis, and immunoblotting with A. oris MdbA antibodies (-MdbAAo). In wild-type 

samples, alkylation with Mal-PEG resulted in slight up-shift in MdbA migration due likely to the 

modification of the nonreactive C169 (Fig.13A). However, Mal-PEG treatment of the vkor 

lysates caused a greater up-shift (Fig. 13B), indicating that Cys residues within the CxxC 

motif of MdbA were modified (i.e. present in a reduced state). These data support that VKOR 

is required for oxidation of the MdbA catalytic site. We conclude that A. oris MdbA and VKOR 

form a redox pair to catalyze disulfide bond formation. 
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Figure 13. A. oris VKOR is required for oxidation of the MdbA CxxC motif (A) The 

primary sequence for MdbA contains 3 Cys residues. Since C139 and C142 are predicted to 

form a disulfide bond, alkylation with Mal-PEG should only result in the modification of C169 

under WT conditions. (B) Whole cell lysates of wild-type A. oris and vkor were treated with 

Mal-PEG, boiled in SDS, separated on a 3-20% Tris-Glycine gradient gel, and detected by 

immunoblotting with -MdbAAo. Reduced and oxidized forms of MdbA are indicated. 

Molecular mass markers are indicated.  

 

 

 

 

 

 

 

 



 
 

77 
 

4.2.5 Disulfide bond-forming machinery is conserved in Actinobacteria. 

Previous bioinformatics suggested that Gram-positive Actinobacteria employ oxidative 

protein folding, while Firmicutes may not (Daniels et al., 2010; Dutton et al., 2008). We 

wondered if disulfide bond formation is a general tool to oxidize pilus precursors within the 

Gram-positive exoplasm. We chose C. diphtheriae SpaA, which contains a disulfide bond in 

its C-terminus (Chapter 3), as an additional model. Using bioinformatics analysis, we 

identified a potential thiol-oxidoreductase (DIP_1880; see Fig. 8B), which we also named 

mdbA. C. diphtheriae mdbA encodes a 27 kDa extracellular protein with an N-terminal 

membrane anchor. Similar to A. oris MdbA, C. diphtheriae MdbA displays low sequence 

identity to E. coli DsbA (23%), but harbors the CxxC consensus sequence (Fig. 11). Cell 

fractionation using antibodies generated against MdbA (-MdbACd) confirmed that the protein 

was membrane localized (Fig. 14A). Unlike A. oris, a C. diphtheriae mdbA deletion mutant 

was successfully generated. Pilus polymerization was examined by immunoblotting culture 

medium (M) and cell wall (W) fractions with -SpaA. Compared to wild-type corynebacteria, 

the mdbA mutant was not able to produce SpaA polymers, but complementation with 

plasmid-borne mdbA rescued this defect (Fig. 14B). Pilus polymerization was also examined 

using immuno-gold labeling EM. To visualize pili, wild-type and mdbA strains were 

transformed with a multi-copy plasmid carrying spaA. Overexpression of spaA in wild-type C. 

diphtheriae produced long pili that covered the cell surface, but few were detected on mdbA 

(Fig. 14C-D). To test whether C. diphtheriae MdbA functions as an oxidoreductase, we 

assayed its ability to oxidize A. oris FimA in vitro (Fig. 14E).   Reduced FimA was incubated 

with wild-type C. diphtheriae MdbA, no enzyme, or MdbA C91A. Remarkably, a faster 

migrating species of FimA was detected after only 5 minutes of incubation with wild-type 

MdbA indicating that Cys residues had become oxidized (i.e.  inaccessible to Mal-PEG) (lane 

2).  FimA remained reduced (i.e. modified by Mal-PEG) throughout the course of the 
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experiment if it was incubated with the catalytically inactive MdbA C91A or no enzyme (lanes 

6-13).   Together, these data show that SpaA pilus assembly is dependent on disulfide bond 

formation catalyzed by C. diphtheriae MdbA. 
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Figure 14. C. diphtheriae MdbA is required for pili assembly and exhibits 

oxidoreductase activity in vitro. (A) C. diphtheriae S, W, M, and C fractions were separated 

by SDS-PAGE, and immunoblotted with -MdbACd  (B) C. diphtheriae M and W fractions were 

separated on a 3-12% gradient gel, and then immunoblotted with -SpaA.  (C-D) Immuno-

electron microscopy of C. diphtheriae  SpaA pilus assembly were performed as described in 

Fig. 7 using antibodies against SpaA and IgG-conjugated gold particles of 12nm. Scale bars 
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indicate 0.5μm. (E) Reduced A. oris FimA was left untreated or treated with recombinant wild-

type or catalytically inactive MdbACd. At timed intervals, the reactions were stopped by 

addition of Mal-PEG, and the samples were analyzed SDS-PAGE, followed by Coomassie 

staining. Oxidized and reduced forms of FimA and MdbA are indicated. 
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4.2.5 C. diphtheriae MdbA is required for disulfide bond formation in diphtheria toxin. 

Since more than 60% of proteins secreted by A. oris and C. diphtheriae contain two or 

more Cys residues (Chen et al., 2005; Kanehisa & Goto, 2000), we hypothesized that MdbA 

targets additional secreted virulence factors. To investigate this possibility, we chose 

diphtheria toxin (DT) as a non-pilus protein model. DT, a 60 kDa A-B toxin secreted by C. 

diphtheriae upon encountering low iron conditions, contains two disulfide bonds (Boquet & 

Pappenheimer, 1976) (Fig. 15A). DT was induced by adding a metal chelator to the culture 

medium, collected by centrifugation, and then detected by western blotting.  Wild-type DT was 

detected as a single band that ran near the 64 kDa marker (Fig. 15B). Overall less DT and 

more LMW products were secreted by the mdbA deletion mutant. However, complementation 

with mdbA on a plasmid rescued the defect.  

To test whether mdbA is required for disulfide bond formation in DT, we again turned 

to alkylation by Mal-PEG. DT was isolated by TCA precipitation, suspended in buffer with or 

without DTT, and then treated with Mal-PEG. The toxin was then detected by western blotting 

analysis using antibodies derived against the DT A domain. DT obtained from WT cells 

showed no change in mobility unless samples were first treated with DTT (Fig. 15C; first 4 

lanes). This demonstrated that the protein is released from bacteria with disulfide bonds. DT 

secreted by the mdbA mutant was readily modified by Mal-PEG indicating that it was 

secreted in a reduced state (lane 6). We also noted that the level of secreted DT in the 

mdbA mutant was significantly reduced, consistent with the observation described in Fig. 

15C. These results support that MdbA is required for disulfide bond formation in both 

Actinobacterial pilus and non-pilus virulence factors.  
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Figure 15. C. diphtheriae MdbA is required for disulfide bond formation in Diphtheria 

toxin. (A) A graphic presentation DT is shown highlighting its disulfide bonds. (B) DT 

production was induced by addition of the iron chelator EDDA to culture media. Secreted DT 

was separated from cells by centrifugation, and protein samples were analyzed by western 

blotting with monoclonal antibodies against domain A (-DT). (C) DT collected from the 

culture medium of C. diphtheriae expressing or lacking MdbA was treated or mock-treated 

with DTT, followed by Mal-PEG alkylation. The protein samples were analyzed by 

immunoblotting with -DT. 
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4.2.6. C. diphtheriae MdbA is required for virulence in vivo. 

C. diphtheriae MdbA is required for assembly of SpaA-type pili and secretion of DT. 

Therefore, we hypothesized that MdbA is an important virulence factor. To examine this in 

vivo, we employed a guinea pig model of diphtheritic toxemia (Pappenheimer, Uhr & Yoneda, 

1957). Groups of six animals were injected via the intraperitonal route (IP) with 2.5x107 CFU 

of wild-type, tox (no DT), spaA-I (no pili), or mdbA, and animal survival was monitored 

over seven days (Fig. 16). Within two days, 80% of guinea pigs inoculated with wild-type 

corynebacteria succumbed to infection. The tox mutant, which does not produce diphtheria 

toxin, did not cause a lethal infection. Remarkably, strains that were devoid of MdbA or pili 

were significantly attenuated in virulence as most of the animals survived. Of note, compared 

to the non-virulence phenotype of the tox mutant, there was no significant difference 

between this strain and the former two. The data supports that MdbA is an important virulence 

factor for C. diphtheriae.  
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Figure 16: C. diphtheriae MdbA is required for virulence in a guinea pig model of acute 

toxemia. Six 4-week old guinea pigs were injected via IP with ~ 2.5x107 corynebacteria of the 

wild-type (filled circles), pilus-less spaA-I (filled diamonds), toxin-less tox (filled squares) or 

mdbA (open diamonds) strains. Animal survival was monitored for 7 days; ns denotes not 

significant (n= 6).  
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4.2.6 Bacterial disulfide bond forming proteins are interchangeable. 

To provide further evidence that MdbA proteins catalyze disulfide bond formation in 

vivo, we performed thiol- oxidoreductase swapping experiments. Since overexpression of A. 

oris mdbA rescues pilus assembly in a vkor mutant (Fig. 12), we reasoned that other 

disulfide bond forming proteins could produce a similar effect. A. oris vkor was transformed 

with plasmid constructs carrying the ORFs of C. diphtheriae mdbA, a dsbA-like gene encoded 

downstream of M. tuberculosis vkor, or E. coli dsbA. Since E. coli is a soluble periplasmic 

protein, it was fused to the N-terminal membrane anchor of A. oris MdbA. These strains were 

examined for FimA assembly using immunogold-EM. The overexpression of C. diphtheriae 

mdbA restored FimA polymers on the vkor cell surface (Fig. 17D).  Pili were also detected 

on bacteria expressing M. tuberculosis and E. coli dsbA, but their levels appeared to be lower 

than vkor expressing A. oris or C. diphtheriae mdbA (Fig. 17E-F). 

To investigate whether these strains could grow biofilm, A. oris were grown in rich 

media supplemented with 1% sucrose at 37ºC with 5% CO2. After 48 hours, the resulting 

biofilms were washed with PBS, dried, and stained with crystal violet (Fig. 17H). A. oris MG1 

formed a robust biofilm, while fimA failed to grow on its solid surface. The deletion of vkor 

severely diminished growth, while the overexpression A. oris and C. diphtheriae mdbA 

restored biofilm. Surprisingly, although relatively fewer pili were produced by vkor cells 

expressing E. coli or M. tuberculosis dsbA, these strains produced sufficient biofilm.  

We also tested whether non-native oxidoreductases could restore pilus assembly in C. 

diphtheriae mdbA. This mutant was transformed with a multi-copy plasmid carrying E. coli 

dsbA fused to the C. diphtheriae mdbA promoter and N-terminal membrane anchor. Pilus 

assembly was examined by immunoblotting M and W fractions with -SpaA. Remarkably, 

expression of the known disulfide bond forming enzyme restored pilus assembly to wild-type 
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levels (Fig. 17I; lanes 5-6). The observation that E. coli DsbA rescued pilus assembly in both 

A. oris vkor and C. diphtheriae mdbA provides strong evidence that both proteins are 

required for protein oxidation in vivo. These data also show that disulfide bond forming 

proteins are interchangeable between species.   
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Figure 17. Disulfide bond forming proteins are interchangeable between bacterial 

species. (A-F) Immunogold EM of A. oris FimA pilus assembly were performed as described 

in Fig. 11 using antibodies against FimA and IgG-conjugated 12nm gold particles. Scale bars 

indicate 0.5μm. (G) A. oris biofilms were cultivated in 12-well plates at 37⁰C with 5% CO2 for 
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48 hours. The biofilms were washed with PBS, dried, and stained with crystal violet. Pictured 

are representative images of three-independent experiments performed in triplicate.  Growth 

was quantified by measuring absorbance at 580nm. (H) Polymerization of C. diphtheriae 

SpaA was analyzed by immunoblotting M and W fractions with -SpaA.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

89 
 

4.3 Discussion 

Disulfide bond formation is often a rate limiting step for protein folding (Creighton et 

al., 1995). Although oxygen can induce random thiol oxidation, the rate at which this occurs is 

not sufficient to meet cellular demands (Givol et al., 1964). Therefore, it was hypothesized 

that oxidative protein folding was an active cell process. Investigations led by Anfinsen and 

colleagues led to the discovery of eukaryotic PDI, which catalyzes disulfide bond formation in 

the ER (Goldberger et al., 1963; Goldberger et al., 1964). Thiol oxidation was later found to 

be catalyzed in the Gram-negative periplasm by DsbA (Bardwell et al., 1991).  

Gram-positive disulfide bond forming pathways have not been well- explored because 

they are thought to lack extracellular compartments to regulate the folding of secreted 

proteins. Recent bioinformatics analysis of Gram-positive proteomes revealed that 

Actinobacteria may represent a subset of these organisms that use oxidative protein folding in 

the exoplasm (Daniels et al., 2010; Dutton et al., 2008). This work has elucidated disulfide 

bond forming pathways in the Actinobacterial pathogens A. oris and C. diphtheriae. Disulfide 

bond formation is catalyzed within Sec-translocated proteins by the membrane-bound MdbA, 

which requires re-oxidation by VKOR in A. oris, and an unidentified factor in C. diphtheriae 

(Fig. 18).  
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Figure 18. A model for disulfide bond formation in A. oris and C. diphtheriae. Disulfide 

bond formation is catalyzed within Sec-translocated proteins by the membrane-bound MdbA. 

Following catalysis, the CxxC active site of MdbA is re-oxidized by VKOR in A. oris and an 

unidentified factor (shown as MdbB) in C. diphtheriae.  
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We previously showed that the pilus subunits FimA and SpaA expressed by A. oris 

and C. diphtheriae, respectively, require disulfide bonds (Chapter 3). Since our lab has 

established tools to study pilus assembly, we proposed to use these virulence factors as 

models to study disulfide bond formation in Actinobacteria. To identify factors involved with 

FimA oxidation, we screened an A. oris transposon library for mutants that were defective in 

co-aggregation with S. oralis. This identified VKOR, which was first reported in M. 

tuberculosis (Dutton et al., 2008). We showed that the deletion of vkor abolished the 

assembly of type 2 fimbriae (Fig.9). In line with this, the vkor mutant was defective in co-

aggregation with S. oralis, and biofilm formation (Fig. 17) indicating that it may have 

diminished capability to colonize the oral cavity. Until now, a role for bacterial VKOR in vivo 

had not been demonstrated. The addition of cystine, an exogenous oxidizing agent, restored 

assembly demonstrating that VKOR has a role in disulfide bond formation. Excitingly, deletion 

of vkor also produced defects in the synthesis of type 1 fimbriae suggesting that it is required 

for the oxidation of multiple virulence factors (Fig. 10).  

The expression of M. tuberculosis vkor rescues an E. coli dsbB mutant (Dutton et al., 

2008). Therefore, we hypothesized that phenotypes associated with vkor resulted from the 

failure to recycle the activity of a disulfide bond forming enzyme.  A survey of the A. oris 

genome revealed mdbA, (Fig. 8) but multiple attempts to delete it were unsuccessful. To 

study mdbA activity in vivo, the vkor mutant was transformed with an extra copy of the gene 

on a plasmid. Overexpression of mdbA strain restored the FimA polymerization demonstrating 

that it functioned downstream of vkor  (Bardwell et al., 1993) (Fig. 12). To test if this 

phenotype was dependent on MdbA redox activity, vkor was also transformed with a 

construct of mdbA harboring a mutation within its CxxC motif. As expected, this mutant failed 

to restore FimA assembly (Fig. 12D).  The overexpression of E. coli dsbA, a known disulfide 

bond forming enzyme, also restored pilus assembly in A. oris vkor. This further supported 
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the enzyme’s role in disulfide bond formation (Fig. 17F and G). Finally, MdbA protein was 

shown to oxidize Cys residues within FimA in vitro (Fig. 12E). Altogether, these results 

demonstrate that A. oris MdbA catalyzes disulfide bonds.  

It was hypothesized that A. oris MdbA and VKOR work in concert to catalyze disulfide 

bonds in secreted proteins. To show that VKOR maintained oxidized (i.e. active) MdbA, the 

protein was subjected to alkylation in the presence and absence of vkor (Fig. 13). Mal-PEG 

failed to modify the MdbA CxxC motif isolated from MG1 indicating that the Cys residues were 

linked by a disulfide bond. In contrast, the same residues were alkylated in vkor lysates. 

These results directly showed that VKOR is required to recycle MdbA.  

Multiple failed attempts to delete A. oris mdbA lead us to suspect the gene is 

essential. These observations suggest that the importance of MdbA extends beyond the 

proper folding of secreted virulence factors. An A. oris mdbA depletion mutant will need to be 

constructed to test what affect, if any, this protein has on bacterial growth or survival. Since 

VKOR is required for MdbA activity, it is unusual that we were able to delete vkor, but not 

mdbA. Under laboratory conditions (i.e. grown in rich medium with oxygen), it is possible that 

some MdbA can become randomly oxidized without VKOR. In support of this, a small portion 

of MdbA isolated from the vkor mutant was not alkylated by Mal-PEG indicating some protein 

harbored an oxidized CxxC motif (Fig. 13; lane 4). In Gram-negative bacteria, DsbA activity is 

not completely inhibited by the deletion of dsbB.  A recent study of disulfide bond forming 

proteins in Francisella tulerancis detected mixed populations of reduced and oxidized DsbA in 

a dsbB mutant (Ren, Champion & Huntley, 2014). This indicates that DsbA is at least partially 

functional without DsbB. Therefore, we speculate that enough MdbA is oxidized in A. oris 

vkor to keep bacteria viable. It would be interesting to test if the vkor mutant can survive in 

growth conditions that do not favor random oxidation of MdbA (i.e. minimal medium and/or no 
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oxygen). It is also possible that A. oris expresses a second factor that re-oxidizes MdbA at 

lower levels, or that MdbA possesses an essential function that is independent of VKOR.  

To explore the conservation of oxidative folding in Actinobacteria, we expanded our 

studies to C. diphtheriae SpaA, which requires the formation of a disulfide bond in its C-

terminus. The deletion of C. diphtheriae mdbA abolished SpaA-type pilus assembly (Fig. 14). 

However, SpaA polymerization was restored if the mutant was complemented with 

endogenous mdbA, or E. coli dsbA, a known disulfide bond-forming enzyme (Fig. 17).  

Furthermore, purified C. diphtheriae MdbA oxidized FimA in vitro (Fig. 14). Altogether, this is 

strong evidence that C. diphtheriae MdbA catalyzes thiol oxidation.  

More than 60% of proteins secreted through the A. oris and C. diphtheriae Sec 

translocon harbor two or more Cys residues (Kanehisa & Goto, 2000). Therefore, we 

hypothesized that MdbA targets multiple substrates. DT, a secreted virulence factor  with two 

disulfide bonds, was chosen as an additional model of study (Choe et al., 1992). The 

production of full-length DT was significantly reduced in the mdbA mutant with increased 

levels of LMW products (Fig.15). An alkylation assay demonstrated that mdbA mutants 

secrete reduced DT, irrefutable evidence that it requires MdbA-catalyzed oxidation. Since C. 

diphtheriae mdbA is defective in the production of virulence factors like adhesive pili and DT, 

we hypothesized that MdbA is required for pathogenesis. A survival assay using a guinea pig 

model of acute toxemia showed that C. diphtheriae mdbA is attenuated in virulence (Fig. 

16). Together with A. oris, the data demonstrates that disulfide bond formation is a conserved 

tool to help fold secreted virulence factors in the Actinobacterial exoplasm.   

We were not successful in identifying a factor that was required for C. diphtheriae 

MdbA recycling. BLAST analysis revealed several extracellular proteins with CxxC motifs 

(Fig. 8), but only deletion of mdbA was associated with a pilus assembly defect. To date, we 

have not identified additional candidates. Interestingly, a DsbA-like protein found in S. aureus 
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was found not to possess a DsbB-like partner (Dutton et al., 2008). In vitro analysis revealed 

that this protein exhibits a low redox potential, and is equally stable in oxidized and reduced 

forms (Heras et al., 2008). Although it is possible that C. diphtheriae also lacks an enzyme to 

re-oxidize MdbA, we doubt this is the case. S. aureus is not predicted to utilize oxidative 

protein folding within the exoplasm (Daniels et al., 2010; Dutton et al., 2008). Therefore, 

maintaining its DsbA-like enzyme in an oxidized state (i.e. primed to catalyze disulfide bond 

formation) may not be important if it does not have many (if any) substrates to oxidize. Due to 

the presence of a His residue in its CxxC motif, and its observed oxidoreductase activity, we 

predict that MdbA exhibits a high redox potential. This would prevent the enzyme from 

spontaneously re-oxidizing after catalysis (Grauschopf et al., 1995; Wunderlich et al., 1993). It 

is more likely C. diphtheriae MdbA’s redox partner has not yet been found, or that its CxxC 

motif is oxidized by multiple oxidoreductases.  

In summary, this work has elucidated disulfide bond forming pathways in 

Actinobacteria using A. oris and C. diphtheriae as models. To our knowledge, this is the first 

description of oxidative protein folding pathways in Actinobacteria. We showed that MdbA 

enzymes are required for the production of important secreted virulence factors like adhesive 

pili and toxin. Given the high number of Cys residues within secreted proteins, we predict that 

MdbA targets other substrates, and thus may serve a housekeeping role in protein folding. 

This study has significant implications for the development of antimicrobial drugs against 

important Actinobacterial pathogens.  
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Chapter V: 

Deletion of Actinobacterial MdbA confers a growth 

defect and selects for a suppressor mutation that 

restores disulfide bond formation.  
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5.1 Introduction 

Protein disulfide bonds in proteins result when neighboring Cys residues are oxidized.  

With the exception of Archaea, disulfide bond formation is restricted to extracytoplasmic 

compartments like the eukaryotic ER and bacterial periplasm. Disulfide bonds are catalyzed 

by oxidoreductase enzymes that donate a thiol linkage found in a conserved CxxC sequence 

to reduced substrates  (Kadokura & Beckwith, 2010). The archetype of disulfide bond forming 

proteins in eukaryotes is PDI. In Gram-negative bacteria this task is performed by DsbA. 

Although these enzymes are functionally similar, they are not identical. PDI also reduces non-

native Cys linkages in proteins, while DsbA is limited to disulfide bond formation (Zapun & 

Creighton, 1994). The ability of PDI to unscramble disulfide bonds is required for cell viability 

(Laboissiere, Sturley & Raines, 1995). Protein oxidation can occur randomly without PDI, but 

it is required to monitor the accuracy of Cys pairings. Since DsbA does not share this 

function, it is not surprising that it is nonessential. However, in general, bacterial viability does 

not appear to be dependent on Dsb enzymes. In Gram-negatives, disulfide bond 

isomerization is catalyzed by DsbC and DsbG (Kadokura & Beckwith, 2010).  The genes 

encoding these enzymes are also not essential (Bessette et al., 1999; Missiakas et al., 1994; 

Rietsch et al., 1996). This is not due to redundancy because a triple dsbA dsbC dsbG null 

mutant is still viable (Vertommen et al., 2008). Recent attempts to identify additional factors 

that contribute to disulfide bond formation in a similar background have not revealed new Dsb 

proteins (Chng et al., 2012a).  

Although disulfide bond formation is not important for growth, DsbA is required for 

pathogenesis. This functional characteristic makes the oxidoreductase an attractive target for 

new antimicrobial drugs. Numerous secreted virulence factors including adhesive pili, 

components of secretion systems, toxins, and flagella require disulfide bonds for proper 

folding and stability (Heras et al., 2009). Bacterial pathogens harboring dsbA mutations are 
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often attenuated in virulence because these factors are misfolded and/or degraded. It is 

proposed that drugs designed to target DsbA will not generate a selective pressure to mutate 

because they will target pathogenesis rather than growth (Adams et al., 2014; Cegelski et al., 

2008; Halili et al., 2015).     

Disulfide bond forming pathways in Gram-positive bacteria have been largely ignored. 

Since these organisms lack outer membranes, they are not thought to possess protective 

outer compartments for regulating protein oxidation.  Therefore, it is possible that their 

exoplasm is exposed to the outer milieu. This makes the secretion of proteins with reduced 

Cys residues hazardous because extracellular forms of stress can cause aberrant oxidation. It 

has been suggested that many Gram-positives avoid this potential stress by excluding Cys 

residues from translocated polypeptides (Daniels et al., 2010). However, bioinformatics have 

revealed that Gram-positive Actinobacteria may be exceptions (Daniels et al., 2010; Dutton et 

al., 2008).  

Using the oral pathogens Actinomyces oris and Corynebacterium diphtheriae as 

models, we recently elucidated oxidative folding pathways in Actinobacteria (Chapter 4). 

Disulfide bond formation is catalyzed by an exoplasmic, membrane-bound oxidoreductase 

called MdbA. Similar to other thioredoxin-like proteins, MdbA donates a disulfide bond found 

in a CxxC motif to form new linkages in unfolded substrates. In A. oris, MdbA activity is 

recycled by VKOR, while C. diphtheriae MdbA is re-oxidized by an unidentified factor. Since 

MdbA is important for the production of virulence factors like adhesive pili and toxin, it is 

important for pathogenesis in both organisms.  

This work reveals a major difference between Gram-negative and Gram-positive 

disulfide bond forming pathways. Unlike DsbA, MdbA is important for viability. The depletion 

of A. oris mdbA and deletion of C. diphtheriae mdbA are associated with severe 

morphological defects. This suggests that growth factors secreted by these bacteria require 
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disulfide bonds. In support of this, we provide evidence that Penicillin binding proteins (PBPs) 

are MdbA substrates. Remarkably, the phenotypes associated with C. diphtheriae mdbA 

select for a suppressor mutation that restores disulfide bond formation to wild-type levels. A 

single T-to-G substitution results in the overproduction of an oxidoreductase we have named 

TsdA. Our results reveal a unique function for bacterial disulfide bond forming proteins, and 

provide important considerations for the development of antimicrobials that target oxidative 

protein folding in Actinobacteria.  

5.2 Results 

5.2.1 Depletion of A. oris mdbA causes a division defect. 

We suspected that A. oris mdbA is essential because we failed to excise the gene 

from the chromosome unless a second copy was provided on a plasmid. To study mdbA in 

vivo, we generated a depletion mutant by placing the plasmid-derived mdbA under control of 

an arabinose-inducible promoter. To test mdbA depletion, overnight cultures of the conditional 

mutant grown in 2% arabinose was washed in HIB, diluted in fresh media with or without 

inducer, and then incubated at 37°C until mid-log phase. Equal numbers of bacteria were 

harvested, and the medium (S), cell wall (W), membrane (M), and cytoplasmic (C) fractions 

were isolated. The samples were separated using SDS-PAGE, and then immunoblotted with 

antibodies against A. oris MdbA (-MdbAAO). As expected, MdbA was detected in the M 

fraction of MG1, and migrated near its predicted molecular mass (32 kDa) (Fig. 19A; lane 3). 

Although still present, MdbA signal was greatly diminished when arabinose was absent, but 

detection was restored when the inducer was added to the culture medium (Fig. 19A; 

compare lanes 7 and 11).  

We also examined the depletion of A. oris mdbA by immunogold EM.  Bacteria grown 

on HIA plates were immobilized on nickel grids, and blotted with -FimA followed by 
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secondary antibodies conjugated to gold particles. FimA polymers were visible on the surface 

of the parental A. oris MG1 (Fig. 19B), but not on the conditional mutant grown without 

arabinose (compare Figs. 19C and D). This directly shows directly that mdbA is required for 

pilus assembly. Remarkably, the depletion of mdbA was also associated with morphological 

abnormalities. While MG1 and mdbA-expressing A. oris were rod-shaped, symmetrically 

dividing cells, the depletion mutant formed chains of bacteria that were sometimes observed 

to bend at odd angles indicating a defect in cell growth.  
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Figure 19. Depletion of A. oris mdbA abolishes pilus assembly and normal cell 

morphology. (A) Medium (S), cell wall (W), membrane (M), and cytoplasmic (C) fractions of 

A. oris were collected, separated by a 12% Tris-glycine gel, and immunoblotted with -

MdbAAo. (B-D) Overnight cultures of A. oris grown on HIA plates were immobilized on nickel 

grids, and stained with -FimA followed by secondary antibodies conjugated to 12nm gold 

particles. The samples were stained with 1% uranyl acetate and viewed by a transmission 

electron microscope. Scale bars indicate 0.2μm.  
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5.2.2 C. diphtheriae mdbA is temperature-sensitive. 

Unlike A. oris, a C. diphtheriae mdbA deletion was successfully generated, but this 

resulted in a temperature-sensitive phenotype. C. diphtheriae mdbA growth was similar to 

wild-type at 30°C, but it failed to proliferate at 37°C (Fig. 20A). Normal growth was restored by 

complementation of mdbA on a plasmid.  To examine cell morphology, overnight cultures of 

C. diphtheriae grown at 30°C were diluted into fresh media, and incubated at 30°C or 37°C 

until log phase. The cultures were then immobilized on nickel grids, strained with uranyl 

acetate, and viewed by EM. C. diphtheriae mdbA grown at 30°C were indistinguishable from 

wild-type (compare Figs. 20C and 20D). However, a dramatic change was observed when the 

bacteria were shifted to 37°C. The mdbA mutant became round, and formed chains or clumps 

(Fig. 20E).  Again, normal growth at 37°C was restored by plasmid complementation (Fig. 

20F). Together with A. oris, these data suggest that Actinobacterial MdbA is required for 

proper peptidogylcan synthesis and division. 
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Figure 20. C. diphtheriae mdbA is temperature sensitive. (A) HI medium was inoculated 

with single colonies of C. diphtheriae and incubated overnight at 37°C or 30°C (top panel). 

Stationary cultures of C. diphtheriae grown at 30°C were spot diluted on HI agar plates, and 

then incubated overnight at 37°C (lower panel). (B-E) Stationary cultures of C. diphtheriae 

grown at 30°C were diluted in fresh media and then incubated at 30°C or 37°C for 5 hours. 

The liquid cultures were immobilized on nickel grids, stained with 1% uranyl acetate, and 

viewed by a transmission electron microscope. Scale bars indicate 0.5μm.  
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5.2.3 C. diphtheriae mdbA exhibit a cell wall synthesis defect. 

Cell rounding of normally rod-shaped bacteria often indicates problems with cell wall 

synthesis (Botta & Buffa, 1981; Valbuena et al., 2007; Wei et al., 2003). We hypothesized that 

C. diphtheriae mdbA may be defective in cell wall synthesis at 37°C. To investigate this, 

bacteria were stained with Van-FL, a fluorescent derivative of vancomycin that binds to the D-

Ala, D-Ala moiety of nascent peptidoglycan. C. diphtheriae is known to grow at the cell poles, 

and divide at its center (Margolin, 2009). In line with this, new peptidoglycan was detected at 

the tips and septa of wild-type bacteria grown to log phase (Fig. 21A). Van-FL staining was 

remarkably different in the mdbA strain. Nascent cell wall surrounded the cell 

circumferences, and septa were not visible in rounded cells.  

In C. glutamicum, the deletion of pbps, which encode PBPs that catalyze cell wall 

synthesis, causes cell rounding (Valbuena et al., 2007). Based on this, we suspected that 

PBPs expressed by C. diphtheriae may be MdbA substrates. A survey of the C. diphtheriae 

proteome revealed that most identified PBPs harbor at least two Cys residues (Fig. 21B). To 

examine PBP function, we measured C. diphtheriae susceptibility to the -lactams ampicillin 

and penicillin. If MdbA was required for the proper folding of PBPs, we expected that the 

deletion mutant would be more sensitive to antibiotics. Indeed, growth of the mdbA mutant 

was inhibited at lower concentrations of antibiotic than wild-type (Fig. 21C).  
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Figure 21. C. diphtheriae mdbA exhibits abnormal Van-FL staining and increased 

sensitivity to -lactams. (A) Overnight cultures of C. diphtheriae grown at 30°C were diluted 

into fresh media, and then incubated at 37°C until wild-type cells reached log phase. A 1:1 

mixture of Van and Van-FL was added to cultures, and incubated for 10 minutes. The cells 

were then placed directly on agar pads, and viewed by a fluorescence microscope. Scale 

bars indicate 2.5 m. (B) The majority of identified PBPs contain multiple Cys residues 

indicating they may require disulfide bonds. (C) Overnight cultures of C. diphtheriae grown at 

30°C were spotted (10-3-10-7) on HIA plates containing various concentrations of ampicillin or 

penicillin, and incubated at 30°C for 48 hours. 
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5.2.4 Heat stress selects for C. diphtheriae mdbA suppressor mutants. 

Since C. diphtheriae is important for growth, we wondered if the deletion mutant could 

select for suppressor mutations. To test this, stationary cultures of the mdbA mutant grown at 

30°C were diluted into fresh medium, and incubated overnight at 37°C. The next morning, the 

cultures were spread onto HI agar plates, which were also incubated at 37°C. After 24 hours, 

the plates were screened for colonies that formed at the non-permissive temperature. Three 

colonies named S1, S2, and S3 were isolated and confirmed to grow like wild-type at 37°C 

(Fig. 22A). To verify that these bacteria did not contain mdbA, genomic DNA was isolated, 

and PCR was used to detect the presence or absence of the gene. Similar to the parental 

strain mdbA, S1, S2, and S3 lacked the gene in question (Fig. 22B). MdbA protein was also 

not detected in the membrane fraction of any of the suppressors (Fig. 22C).  

We previously showed that mdbA is required for the formation of disulfide bonds in 

secreted virulence factors like SpaA (Chapter 4). To test if SpaA polymerization was altered in 

the suppressor mutants, medium (M) and cell wall (W) fractions were isolated, separated by 

SDS-PAGE, and immunoblotted with -SpaA.  SpaA polymers were detected in the W 

fraction of wild-type cells with some secreted into the M fraction (Fig. 22D; lanes 1 and 2). No 

pili were observed in fractions collected from the mdbA mutant, but degradation products of 

SpaA were visible in the M fraction (lane 3). Remarkably, pilus assembly in S1, S2, and S3 

was indistinguishable from wild-type (lanes 5-10).  

The production of diphtheria toxin (DT), another MdbA substrate, was also examined. 

DT was induced by the addition of a metal chelator to the culture media. Equal numbers of 

bacteria were collected, DT was isolated from the cultures by centrifugation, and detected by 

western blotting.  DT isolated from wild-type bacteria was readily detected, but absent in a 

strain lacking the toxin gene (tox) (Fig. 22E; lane 2). Consistent with previous results, the 



 
 

106 
 

detection of DT was diminished in the mdbA mutant (Chapter 4), but was restored in the 

suppressor mutants (compare lane 3 with lanes 4-6).  

We next examined the cell morphologies of the suppressor mutants. Stationary 

cultures of C. diphtheriae grown at 30°C were diluted into fresh media, and shifted to 37°C 

until wild-type cells reached mid-log phase. The bacteria were then collected by 

centrifugation, washed in PBS, immobilized on nickel grids, stained with uranyl acetate, and 

viewed with a transmission electron microscope (Fig. 23).  Again, C. diphtheriae mdbA were 

indistinguishable from wild-type when grown at 30°C (Figs. 23 and B), but became coccoid, 

chained, and clumped at the nonpermissive temperature (Fig. 23C). Amazingly, S1, S2, and 

S3 exhibited no growth defects when shifted to 37°C (Fig. 23D-F). The combined data 

demonstrate that the suppressor strains are phenotypically identical to wild-type.  

 

 

 

 



 
 

107 
 

 

Figure 22. Heat stress selects for C. diphtheriae mdbA suppressor mutants. (A) 

Stationary cultures of C. diphtheriae grown at 30°C were spot diluted on HI agar plates (10-3-

10-8), and incubated overnight at 37°C. (B) Chromosomal DNA isolated from C. diphtheriae 

and used to PCR-amplify 1 kB regions up-and downstream of mdbA. (C) Membrane fractions 

of C. diphtheriae were isolated, separated using SDS-PAGE, and immunoblotted with -

MdbACd. (D) Medium (M) and cell wall (W) fractions were isolated from C. diphtheriae, 

separated on a 4-20% gradient gel, and immunoblotted with -SpaA. (E) DT was induced by 

the addition of metal chelator to liquid cultures, collected by centrifugation, separated by SDS-

PAGE, and detected by -DT.  
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Figure 23. C. diphtheriae mdbA suppressor mutants exhibit normal morphology at the 

non-permissive temperature. (A-F) Stationary cultures of C. diphtheriae grown at 30°C 

were diluted into fresh media and incubated at 30°C or 37°C until wild-type reached log 

phase. The bacteria were collected from liquid cultures by centrifugation, washed in PBS, 

immobilized on nickel grids, stained with 1% uranyl acetate, and viewed by a transmission 

electron microscope. Scale bars indicate 0.5μm. 
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5.2.5 The mdbA suppressor mutants harbor a single nucleotide change within the 

promoter region of tsdA. 

To identify the change(s) that permitted C. diphtheriae to compensate for the deletion 

of mdbA, chromosomal DNA was isolated and subjected to whole genome sequencing. All 

three strains harbored a single T-to-G mutation within the predicted -10 box for the promoter 

of cdi_0397, which encodes a putative extracellular oxidoreductase with a CPFC motif (Fig. 

24A). Additionally, S2 was found to harbor an Arg-to-His mutation within a predicted 

peptidase. S3 was identical to S1, so it was eliminated from subsequent experiments.  

cdi_0397, which we renamed temperature-sensitive disulfide bond forming protein A 

(tsdA), was identified during our initial search for MdbA (Chapter 3). However, deletion of this 

gene produced no defect in pilus assembly, so it was not studied further. q-RT PCR was used 

to analyze whether the T-to-G mutation altered TsdA expression levels. Whole cell RNA was 

collected from C. diphtheriae grown to log phase at 30°C, converted to cDNA, and analyzed 

for tsdA transcripts. Remarkably, tsdA expression in S1 and S2 was approximately 30-times 

higher than wild-type and the parental mdbA mutant (Fig. 24B).  The expression of tsdA was 

slightly higher in the mdbA mutant than wild-type, but the difference was not significant.  

Protein levels of TsdA were also examined in these strains.  Membrane fractions of C. 

diphtheriae were isolated, separated by SDS-PAGE, and immunoblotted with TsdA antibodies 

(-TsdA). A faint band indicative of the 32 kDa protein was detected in the membrane of both 

the wild-type and mdbA (Fig. 24D; lanes 1 and 3), but this signal was not detected in the 

tsdA deletion mutant (lane 2).  In accordance with the qRT-PCR, significantly more TsdA was 

detected in S1 and S2 than wild-type, or mdbA. Altogether, the data demonstrate that tsdA 

is overexpressed in the suppressor mutants. 
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To test if the basal expression of tsdA can compensate for the loss of mdbA at 30°C, 

we attempted to generate a double deletion mutant. Unfortunately, multiple attempts to 

construct this strain were fruitless. As an alternative, we overexpressed tsdA in C. diphtheriae 

mdbA by transforming the strain with a plasmid carrying an extra copy of the gene under 

control of an arabinose-inducible promoter (pAra-TsdA).  SpaA polymerization was used as a 

marker to test for the restoration of disulfide bond formation. M and W fractions of C. 

diphtheriae were collected, separated by SDS-PAGE, and immunoblotted with -SpaA. SpaA 

polymers were detected in both the M and W fractions of wild-type C. diphtheriae (Fig. 24; 

lanes 1 and 2). SpaA polymerization in the tsdA deletion strain was no different from wild-type 

(lanes 3 and 4). Pili were noticeably absent in the mdbA deletion mutant (lanes 5 and 6), but 

restored when the strain was transformed with pMdbA (lanes 7 and 8). Similar to the 

complemented strain, SpaA polymers were detected in the W fraction of mdbA harboring 

pAra-TsdA (lanes 9 and 10). Altogether, these results show that tsdA overexpression is 

sufficient to restore disulfide bond formation in the mdbA mutant.  
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Figure 24. A point mutation within the tsdA promoter induces gene overexpression, 

which rescues disulfide bond formation in the mdbA mutant. (A) A representation of the 

point mutation identified in the C. diphtheriae mdbA suppressor mutants S1, S2, and S3. A 

single T-to-G mutation was identified 29 bases upstream of the putative oxidoreductase tsdA 

near the predicted -10 box. (B) qRT-PCR was used to quantitate tsdA transcription. 

Expression levels were normalized to 16S rRNA levels, and the fold change values were 

calibrated against wild-type. An unpaired T-test was used to measure significance (mdbA vs. 

S1 P-value =0.0267; mdbA vs. S2 P-value = 0.0196). (C) Membrane fractions were 

collected from C. diphtheriae, separated by SDS-PAGE, and immunoblotted with -TsdA. A 

nonspecific band found at approximately 50 kDa was used as a loading control (*). (D) 
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Medium (M) and cell wall (W) fractions were isolated from C. diphtheriae, separated on a 4-

20% Tris-Glycine gel, and immunoblotted with -SpaA. Polymeric and monomeric forms of 

SpaA are indicated. 
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5.3 Discussion 

Disulfide bonds are important for the stability and function of many secreted proteins. 

Within Gram-negative bacteria, these linkages are catalyzed in the extracellular periplasm by 

DsbA. Until recently, disulfide bond formation has been largely ignored in Gram-positive 

bacteria, which lack periplasmic compartments. Using the models A. oris and C. diphtheriae, 

we recently revealed that Gram-positive Actinobacteria rely on protein oxidation to help fold 

secreted proteins (Chapter 4). Disulfide bond formation is catalyzed in these organisms by the 

membrane-bound oxidoreductase MdbA. Similar to Gram-negative DsbA, MdbA is important 

for pathogenesis because it is required for the production of secreted virulence factors like 

adhesive pili and DT. However, unlike DsbA, MdbA is required for growth and division. We 

showed that mdbA mutants are associated with severe morphological division defects that 

may result from the failure to oxidize cell wall synthesis machinery like PBPs. Remarkably, 

stress induced by deleting C. diphtheriae mdbA selected for a suppressor mutation that 

caused the overexpression of another oxidoreductase called TsdA.  

 To study A. oris mdbA in vivo, we generated a depletion mutant by placing a plasmid-

derived mdbA under control of an arabinose-inducible promoter. The depletion of mdbA was 

associated with cell chaining and bending (Fig. 19C) suggesting that MdbA is important for 

division. Eventually, we expected that depletion of mdbA would lead to death, but A. oris 

continued to divide. Western blotting revealed trace amounts of MdbA in the membrane even 

after prolonged incubation without arabinose (Fig. 19A). This suggested that the MdbA protein 

is stable, and/or the arabinose-controlled promoter is leaky. We reasoned that residual traces 

of MdbA may be enough to keep A. oris viable. In support of this, we failed to isolate colonies 

that had lost the plasmid carrying the only copy of mdbA after growing bacteria overnight 

without selective antibiotics (data not shown). 
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Since a C. diphtheriae mdbA deletion mutant was successfully generated, subsequent 

experiments focused on this bacterium. C. diphtheriae mdbA exhibited a severe 

temperature-sensitive phenotype. The bacteria grew normally at 30°C, but became coccoid, 

chained, and eventually stopped dividing at 37°C (Fig. 20). It should be noted that the growth 

defect is not responsible for the pilus assembly phenotypes described in Chapter 4.  Pilus 

assembly is dependent on peptidoglycan synthesis, so it is expected that non-growing mdbA 

mutants would not synthesize these factors at 37°C (Mandlik et al., 2008). However, all pilus 

assays were performed at the permissive temperature, so bacterial pathogenicity and growth 

were studied separately. 

Peptidoglycan, a lattice of glycan and peptide chains, determines cell shape, and 

counters intracellular osmotic pressure to prevent lysis (Cava & de Pedro, 2014). The 

inhibition of cell wall synthesis or removal of existing peptidoglycan is known to convert rod-

shaped E. coli, C. glutamicum and Bacillus into cocci (Botta & Buffa, 1981; Carballido-Lopez 

& Formstone, 2007; Tomasz, 1979; Valbuena et al., 2007).  Based on this, we suspected that 

C. diphtheriae mdbA morphological defects were caused by a compromise in cell wall 

synthesis. Using Van-FL staining, nascent cell wall was detected at apical sites of growth and 

division septa of wild-type cells, but found throughout the mdbA mutants (Fig. 21). 

Peptidoglycan is synthesized by a group of extracellular enzymes called PBPs, which are 

divided into two categories (Sobhanifar, King & Strynadka, 2013). High-molecular-weight 

(HMW) PBPs are transglycosylase and/or transpeptidase enzymes that polymerize the cell 

wall glycan backbone and cross-link peptide chains.  LMW PBPs are typically D, D-

carboxypeptidases that remove the terminal D-Ala residue from cross-linked peptide chains. 

A survey of the C. diphtheriae proteome revealed several PBPs, and most contained two or 

more Cys residues (Kanehisa & Goto, 2000) (Fig. 21B) . We predicted that the mdbA mutant 

was defective in cell wall synthesis because the bacteria failed to form disulfide bonds 
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required for the stability and/or function of PBPs. Valbuena et al. (2007) investigated the role 

of HMW PBPs in C. glutamicum growth and division. Single deletions of most pbp-encoding 

genes produced no detectable defects, but phenotypes associated with double deletions were 

strikingly similar to C. diphtheriae mdbA. A double deletion of C. diphtheriae homologues 

pbp1a and pbp1b, or pbp1a and pbp2a induced cell rounding and inhibited septation. To test 

if HMW PBPs were compromised in the mdbA mutant, susceptibility to -lactams ampicillin 

and penicillin, which specifically target PBPs, was assayed (Fig. 21C). mdbA growth was 

inhibited at lower concentrations of antibiotics than wild-type. This result supports a role for 

MdbA in cell wall synthesis.  Reduced levels of functional PBPs in the mdbA mutant could 

explain the temperature-sensitive phenotype. PBPs within the C. diphtheriae mdbA may be 

sufficient to handle cell wall synthesis at slow-growth temperatures, but become overwhelmed 

by the high demand for peptidoglycan at 37°C.  

Our findings reveal a major difference between Gram-negative and Gram-positive 

disulfide bond forming pathways. MdbA proteins are required for cell growth and division, 

while DsbA is not. Eukaryotic PDI is essential because of its dual function in oxidative protein 

folding; it forms new disulfide bonds, and reduces nonnative linkages (Laboissiere et al., 

1995). Thus, it is possible that MdbA is more functionally similar to PDI than DsbA. The 

observation that MdbA is important for growth is not limited to A. oris and C. diphtheriae. An 

M. tuberculosis transposon library generated by Sassetti et al. (2003) revealed a low insertion 

frequency within vkor and an adjacent dsbA-like gene suggesting they are important for 

survival. In line with this, deletion of M. tuberculosis vkor confers a slow-growth phenotype 

(Dutton et al., 2008). Gram-negative DsbA is an attractive target for new antimicrobials 

because it is not required for growth (Heras et al., 2009). Inhibiting DsbA is proposed to 

lessen selective pressures that lead to mutation (Allen et al., 2014; Rasko & Sperandio, 
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2010). Although MdbA inhibitors would make powerful bactericides, we have shown that they 

would not be immune to bacterial resistance. 

To test if inhibiting disulfide bond formation in C. diphtheriae could lead to mutation, 

we screened for mdbA suppressors. Three strains capable of growing at the nonpermissive 

temperature were isolated, and found to harbor a single point mutation within the predicted -

10 box of the tsdA promoter (Fig. 24). This mutation was found to increase the expression of 

tsdA, which restores disulfide bond formation in the mdbA mutant. It is not yet clear how the 

mutation alters tsdA expression, but we suspect it extends the -10 box to increase its basal 

level of transcription. Extended -10 boxes are alternative  -type promoter elements 

commonly found in Gram-positive bacteria (Burns & Minchin, 1994; Haenni, Moreillon & 

Lazarevic, 2007; Helmann, 1995; Sabelnikov, Greenberg & Lacks, 1995).  The extended -10 

box, which features a TRTGNTATAAT consensus sequence, harbors a TG dinucleotide that 

lowers the thermal energy required to form an open RNA polymerase initiation complex  

(Haenni et al., 2007). The -10 box within the wild-type tsdA promoter (TTTTGTATTCT) is 

similar to the extended sequence, but it lacks the TG dinucleotide.  The T-to-G substitution 

within the promoter creates this TG element (TTTGGTATTCT), which may induce higher 

levels of tsdA transcription. 

Multiple attempts to delete tsdA from mdbA were unsuccessful suggesting its basal 

expression is required to keep the mdbA mutants viable at 30°C. To test if overexpression of 

tsdA was sufficient to rescue disulfide bond formation, the parental mdbA mutant was 

transformed with a copy of tsdA under control of an arabinose-inducible promoter. 

Remarkably, this construct restored SpaA polymerization, an event shown to require disulfide 

bond formation (Fig. 24D).  Due to the presence of a CxxC motif, it is most likely that TsdA is 

an oxidoreductase, but its role in wild-type C. diphtheriae is not known. Based upon the 

residues making up its CPFC motif, we predict it is probably not a disulfide bond forming 
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enzyme (Fig. 8). The oxidoreductases PDI, DsbA, and MdbA contain a His residue in their 

CxxC consensus sequences.  This positively charged amino acid contributes to the high 

redox potential of these enzymes by stabilizing a negative charge that forms in the active site 

after catalysis (Grauschopf et al., 1995; Guddat et al., 1997). Since TsdA lacks this residue, it 

is possible that it is a disulfide bond isomerase that corrects misoxidized proteins (Fig. 25). If 

this is the case, the T-to-G promoter mutation may simply increase its basal level of 

transcription to allow it to compensate for mdbA. In support of this, overexpression of dsbC 

restores disulfide bond formation in an E. coli dsbA mutant (Missiakas et al., 1994). It is also 

possible that TsdA is a specialized oxidoreductase that is activated in response to stress. In 

this case, the T-to-G mutation may help to relieve repression of tsdA. Future studies will focus 

on elucidating TsdA function, as well as its possible regulatory pathway.   

In summary, we have revealed that oxidative folding pathways are essential in Gram-

positive Actinobacteria. Using A. oris and C. diphtheriae as models, we showed that 

mutations targeting mdbA cause severe morphological and division defects. These 

phenotypes likely result because division components like PBPs require MdbA for proper 

folding.  Remarkably, the deletion of C. diphtheriae mdbA selected for a suppressor mutation 

that upregulated tsdA expression. The isolation of suppressor mutants emphasizes the need 

to consider bacterial back-up plans when disulfide bond formation is inhibited. Our results 

provide valuable insight for combating future mechanisms of resistance against disulfide bond 

formation inhibitors.  
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Figure 25. The role of TsdA in C. diphtheriae.  TsdA is proposed to function as a disulfide 

bond isomerase that rearranges nonnative disulfide bonds formed by MdbA or the 

environment.  
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Chapter VI: 

Discussion and future directions 
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6.1 Summary 

Disulfide bonds result when neighboring Cys residues in a protein are oxidized. The 

formation of these covalent linkages, which is often required for the stability of secreted 

proteins, is an active process that occurs in extracellular compartments. In eukaryotic cells, 

disulfide bond formation is catalyzed in the ER by the chaperone PDI. In Gram-negative 

bacteria, Cys-oxidation is performed by DsbA in the periplasm. Unlike PDI, DsbA is not 

required for growth, but it is important for pathogenesis (Heras et al., 2009; Laboissiere et al., 

1995; Vertommen et al., 2008). Bacteria that lack functional Dsb enzymes are often 

attenuated in virulence because factors required for host colonization, immunomodulation, 

and/or death become misfolded (Heras et al., 2009). 

Oxidative protein folding in Gram-positive bacteria is less understood. The cell wall 

envelopes of these bacteria are comprised of a single membrane that is surrounded by 

peptidoglycan. Because peptidoglycan is porous, these organisms are not thought to possess 

enclosed compartments to fold secreted proteins. This presents a potential problem for the 

translocation of Cys-containing proteins. If the exoplasm is exposed to the extracellular milieu, 

proteins could suffer oxidative damage. Proteomic analyses have revealed that the majority of 

proteins secreted by Gram-positive Firmicutes contain one or no Cys residues suggesting that 

they do not rely on disulfide bond formation (Daniels et al., 2010; Dutton et al., 2008). Gram-

positive Actinobacteria, however, appear to be exceptions. Unlike Firmicutes, proteins 

secreted by these bacteria are abundant in Cys residues, which strongly indicate they contain 

intramolecular disulfide bonds (Daniels et al., 2010; Dutton et al., 2008). However, to date, 

protein oxidation pathways have not been explored in these organisms. 

 This thesis elucidates disulfide bond forming pathways in Actinobacteria using the 

model substrates FimA and SpaA secreted by A. oris and C. diphtheriae, respectively. FimA 

and SpaA are major components of adhesive pili, which mediate adherence to host tissues, 
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induce inflammation, and promote biofilm formation (Mandlik et al., 2008).  Pilin precursors 

are translocated to the exoplasm where they are folded, and then processed by sortase 

enzymes to form pili (Hendrickx et al., 2011). Recently, the crystal structures for FimA and 

SpaA were solved, and predicted that they form disulfide bonds (Kang et al., 2009; Mishra et 

al., 2011). Using an alkylation assay, we demonstrated that these linkages form in vivo 

(Chapter 3). Mutational analysis showed that FimA and SpaA are not polymerized when Cys 

residues are mutated to Ala. Instead, degradation products of FimA and SpaA were secreted 

into the culture media. Together, the data demonstrated that disulfide bonds are an important 

folding feature for these pilin proteins.  

We proposed to use FimA and SpaA as models to study disulfide bond formation in 

Actinobacteria. Using a combination of bioinformatics and transposon mutagenesis, we 

identified A. oris MdbA and VKOR and C. diphtheriae MdbA. Protein disulfide bond formation 

is catalyzed in both bacteria by the membrane-bound MdbA (Chapter 4). MdbA oxidizes 

proteins by donating a disulfide bond found in a CxxC motif. In turn, it is reduced and requires 

re-oxidation by VKOR in A. oris and an unidentified protein (MdbB) in C. diphtheriae.  

Since the majority of signal-peptide-containing proteins in A. oris (74%) and C. 

diphtheriae (60%) harbor two or more Cys residues, we predicted that MdbA targets multiple 

virulence factors (Chen, 2005; Kanehisa & Goto, 2000). DT, a secreted protein with two 

disulfide bonds, was chosen as an additional substrate to test this idea. In the C. diphtheriae 

mdbA mutant, we found that Cys residues within diphtheria toxin were reduced, and that the 

protein was heavily degraded. In line with this, the same deletion strain was attenuated in 

virulence in an animal model.  

Unexpectedly, this work revealed that Actinobacterial MdbA is also required for growth 

(Chapter 5). The depletion of A. oris mdbA and deletion of C. diphtheriae mdbA was 

associated with abnormal morphological and division phenotypes. Due to the increased 



 
 

122 
 

susceptibility to -lactam antibiotics and atypical Van-FL staining, it was suspected that mdbA 

deletion phenotypes were caused by a defect in peptidoglycan synthesis. The high number of 

Cys residues within PBPs hinted that cell wall machinery may require disulfide bonds. In the 

absence of mdbA, we predict that these factors misfold and, therefore, malfunction.  

This was a surprising finding since disulfide bond forming enzymes are nonessential in 

Gram-negative bacteria (Bessette et al., 2001; Vertommen et al., 2008). E. coli DsbA is 

considered a valuable drug target because it is not required for viability, but is important for 

the folding of secreted virulence factors. Due to this characteristic, DsbA inhibitors are 

proposed to allow human hosts to clear infections without providing a selective pressure to 

mutate (Cascioferro et al., 2014; Cegelski et al., 2008).  Efforts are ongoing to develop drugs 

that target disulfide bond forming pathways in the Gram-negative periplasm (Adams et al., 

2014; Halili et al., 2015). This thesis presents evidence that anti-Dsb drugs may not be 

resistance-proof for all bacteria. To test if inhibiting protein oxidation in Actinobacteria could 

lead to resistance, we isolated C. diphtheriae mdbA suppressor mutants (Chapter 5). Whole 

genome sequencing revealed that the suppressors harbored a T-to-G mutation within the 

promoter of a gene encoding an oxidoreductase called TsdA. This single nucleotide change 

resulted in TsdA overexpression, which restored disulfide bond formation in C. diphtheriae 

mdbA.  

Due to the importance of MdbA for virulence and growth, we predicted that it serves a 

housekeeping role in disulfide bond formation. Therefore, TsdA is probably an accessory 

oxidoreductase. The enzyme could function as a disulfide isomerase that re-folds proteins 

with non-native Cys residues (Fig. 24). Similar to our results, the over-expression of E. coli 

DsbC, a known disulfide isomerase, was shown to restore oxidative protein folding in a dsbA 

mutant (Missiakas et al., 1995). Under normal conditions, we hypothesize that TsdA is 

repressed, or expressed at low levels. The consequences of a single point mutation within C. 
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diphtheriae mdbA provide valuable insight for the development of antibacterial agents. 

Although inhibitors of Cys oxidation would make powerful bactericides, they would not be 

immune to natural section. Similar to C. diphtheriae, other bacteria could activate alternative 

disulfide bond forming pathways to circumvent drugs targeting MdbA or other DsbA-like 

enzymes. To prevent or delay drug resistance, it is important to consider developing drugs 

that will target more than one disulfide bond forming factor. Given that C. diphtheriae can 

survive with MdbA or TsdA, this organism is an excellent model to study broad-spectrum 

disulfide bond inhibitors.  

6.2 Disulfide bond formation in the Gram-positive exoplasm. 

Due to the lack of an outer membrane, it is proposed that Gram-positive bacteria do 

not possess periplasmic compartments. Potentially, this makes the secretion of Cys-

containing proteins hazardous due to the risk of aberrant oxidation. However, this thesis has 

revealed that disulfide bonds are important folding features for proteins secreted by 

Actinobacteria like A. oris and C. diphtheriae. How do these Gram-positive models catalyze 

oxidative folding without enclosed extracellular compartments? 

The argument that Gram-positives do not possess periplasmic spaces may not be 

valid. Corynebacteria, including C. diphtheriae and M. tuberculosis, exhibit unique cell 

envelope architectures. Their peptidoglycan is cross-linked to arabinogalactan, which is 

esterified by mycolic acid. Mycolic acid, a type of long chain fatty acid, forms a hydrophobic 

surface layer that is visible by thin section EM (Bayan et al., 2003). Interestingly, this layer 

contributes to the high impermeability of Corynebacteria, and forms liposomes when cells are 

treated with detergent (Bayan et al., 2003; Puech et al., 2001).  These fatty acids are 

proposed to form a so-called mycomembrane, which may be analogous to the Gram-negative 
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outer membrane.  Therefore, it is possible that some Gram-positives contain protected 

compartments to regulate protein oxidation (Fig. 25A). 

Although A. oris does not produce mycolic acid, it must have evolved to successfully 

oxidize proteins since 74% of its predicted secretome contains two or more Cys residues 

(Chen et al., 2005). It is possible that A. oris possesses an outer lipid layer that has not been 

characterized. Its environment may also contribute to disulfide bond formation in the 

exoplasm. A. oris, a pioneer colonizer of the oral cavity, comprises the anaerobic layers of 

mature biofilm (Kolenbrander, 2000; Kolenbrander et al., 2006). The lack of oxygen within its 

niche may help avoid environmentally-induced protein oxidation (Fig. 25B). However, this 

does not explain how A. oris survives during the early stages of biofilm development when 

exposure to oxygen is high. To alleviate oxidative stress, A. oris secretes catalase, and 

benefits from other antioxidants released by oral co-colonizers. For example, co-aggregation 

between A. oris and S. gordonii induces the oral cocci to synthesize arginine (Jakubovics et 

al., 2008). Together, these compounds may provide some protection against oxidative 

damage until an anaerobic environment within the biofilm is established.  

Finally, Actinobacteria could avoid random oxidation by coordinating translocation with 

extracellular folding. Specialized zones of secretion have been identified in multiple Gram-

positive bacteria including S. pyogenes, Enterococci faecalis, and C. diphtheriae (Guttilla et 

al., 2009; Kline et al., 2009; Rosch & Caparon, 2005). For example, the Sec machinery was 

shown to co-localize with sortase and pilus subunits (Guttilla et al., 2009; Kline et al., 2009). 

In C. diphtheriae, pilus subunits devoid of their C-terminal membrane anchor were found to be 

incorporated into pilus structures (Chang et al., 2011). Since the membrane anchor is 

required to prevent the release of pilins into the culture medium, it was expected that these 

mutants would not be polymerized by sortase. However, since they were polymerized, this 

strongly suggested that  sortase processes its substrates during or immediately following 
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translocation (Chang et al., 2011). Thus, C. diphtheriae secretion and pilus assembly may be 

coupled.  

Ideally, sortase would not process FimA and SpaA until they are folded. Since 

disulfide bonds are required for the stability of these proteins (Chapter 3), we predict that they 

are processed by MdbA prior to interacting with sortase. Therefore, if sortase is co-localized 

with the SecYEG translocon, MdbA must be also. The coupling of secretion with protein 

folding could be an adaptation for secreting proteins into unfavorable environments (Fig. 

25C). The ability of MdbA to oxidize substrates as they emerge from the cytoplasm may 

increase the likelihood that disulfide bonds are catalyzed by cellular machinery, rather than 

the extracellular milieu.  
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Figure 26. Disulfide bond formation in the Gram-positive exoplasm. Three mechanisms 

for catalyzing disulfide bond formation in the Gram-positive exoplasm are proposed (A) 

Similar to Gram-negative bacteria, Gram-positives may possess an enclosed extracellular 

compartment to regulate the folding and maturation of secreted proteins. Actinobacteria 

including C. diphtheriae and M. tuberculosis synthesize mycolic acid, which is incorporated 

into the cell envelope. This lipid layer may form a barrier between the exoplasm and 

extracellular milieu (symbolized by lightning bolts). (B) Bacterial co-colonizers and the 

extracellular matrix that comprise the oral biofilm may protect proteins secreted by A. oris 

from oxidative stress. (C) Actinobacteria may couple secretion and folding events to protect 

Cys-containing proteins from aberrant oxidation within an exoplasm that is exposed to the 

extracellular milieu.  
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6.3 The importance of disulfide bond forming pathways for Actinobacteria and Gram-

negative bacteria. 

This work revealed a significant difference between disulfide bond forming enzymes 

expressed by Gram-negative bacteria and Actinobacteria. E. coli Dsb proteins are 

nonessential, while MdbA is required for growth and division (Chapter 5). When grown at the 

nonpermissive temperature, C. diphtheriae mdbA mutants became spherical, formed chains, 

and eventually stopped dividing. These phenotypes indicated a defect in cell wall synthesis 

(Valbuena et al., 2007). PBPs secreted by C. diphtheriae harbor multiple Cys residues, which 

suggest they contain disulfide bonds. We hypothesized that the failure of the mdbA mutant to 

catalyze these linkages in growth factors caused the observed defects.  

Since E. coli PBPs are secreted proteins, it was possible that they contained disulfide 

bonds. Why, then, are E. coli dsbA mutants not associated with growth defects? A survey of 

12 known PBPs expressed by E. coli revealed that half harbored one or no Cys residues 

(Zhou & Rudd, 2013). This indicated that the majority of these factors may not require 

oxidative protein folding  Exceptions included PBP1a and PBP1b, which are vital for the 

insertion of new peptidoglycan during cell growth. A double deletion of E. coli pbp1a and 

pbp1b is lethal (Denome et al., 1999). Since disulfide bonds are important for proper protein 

folding, it was logical to assume that both PBP1a and PBP1b would misfold in the dsbA 

mutant leading to cell death. However, Chalut et al. (1999) found that disrupting disulfide 

bond formation within PBP1b did not affect its activity. This implies that (at least) one 

essential PBP would be functional in the absence of dsbA. Therefore, dsbA mutant 

phenotypes would not mimic the conditionally lethal pbp1a pbp1b deletion. Unlike 

Actinobacteria, the data suggests that protein oxidation and cell wall synthesis are not linked 

in Gram-negative bacteria like E. coli.  
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E. coli LptD is another essential protein that contains disulfide bonds, but does not 

require Dsb proteins. Together with the accessory protein LptE, LptD forms a channel that 

transports newly synthesized lipopolysaccharide (LPS) to the outer leaflet of the outer 

membrane (Whitfield & Trent, 2014). LptD harbors two nonconsecutive disulfide bonds (C31-

C724 and C173-C725) that position its N- and C-termini in the periplasm (Ruiz et al., 2010). 

LptD function is dependent of the formation of only one of these linkages, which suggests 

they are redundant (Ruiz et al., 2010). This may serve as a failsafe for LptD folding when Dsb 

pathways are inhibited. Random oxidation could be sufficient to induce the formation of at 

least one disulfide bond to keep E. coli viable. However, this may not be the case because 

LptD folding appears to be independent of Dsb machinery. Chng et al. (2012) showed that 

DsbA targets LptD, but catalyzes nonnative Cys linkages. Normally, this is corrected by 

DsbC, but LptD function is not defective in a dsbC mutant. It turns out that the Cys linkages 

within the translocon become rearranged when it binds to LptE, a protein with no known 

oxidoreductase activity. Importantly, the DsbA-catalyzed nonnative disulfide bonds may not 

represent a folding intermediate since reduced LptD still interacts with LptE (Ruiz et al., 

2010). Because dsbA and dsbC do not appear to be required for LptD oxidation, it is possible 

that its interaction with LptE is sufficient to induce disulfide bond formation.  

Both Actinobacteria and Gram-negative organisms use disulfide bond formation to 

help fold secreted proteins. However, only Actinobacteria require oxidative folding for proper 

growth and division. It is remarkable that multiple virulence factors misfold in an E. coli dsbA 

mutant, but essential proteins do not (Chalut, Remy & Masson, 1999; Chng et al., 2012b; 

Heras et al., 2009).  Gram-negatives are proposed to be descendants of a Gram-positive 

ancestor (Koch, 2003). It is possible that disulfide bond formation was once essential in this 

ancestor, and remained so in Actinobacterial descendants. However, over the course of 
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evolution, Gram-negatives may have fine-tuned disulfide bond forming pathways to be 

important for competitive fitness (i.e. pathogenesis), but not essential for growth and division. 

6.4 Disulfide bond forming pathways in Actinobacteria and Firmicutes.  

Bioinformatics analysis revealed a trend in which the majority of proteins secreted by 

Gram-positive Actinobacteria contained multiple Cys residues, while Firmicutes tended to 

exclude the residue altogether (Daniels et al., 2010; Dutton et al., 2008). This suggested that 

disulfide bond formation is an important protein folding pathway for the first, but not the latter. 

The thesis demonstrates that Actinobacteria rely on thiol oxidation to help fold secreted 

proteins in vivo (Chapter 4). Why do Firmicutes seem to lack similar pathways?  

It is not that Firmicutes cannot use thiol oxidation to help fold proteins. Although 

proteins secreted with disulfide bonds are relatively rare, instances have been identified in B. 

subtilis and S. aureus. B. subtilis encodes four known oxidoreductases (bdbA-D) that are 

arranged in operons with known targets. bdbA and bdbB cluster with a gene encoding the 

lantibiotic sublancin, which contains two disulfide bonds (Dorenbos et al., 2002). The 

additional oxidoreductases bdbC and bdbD are located in a DNA competence operon. These 

enzymes are required for the formation of the ComCG pseudopilus, which also has disulfide 

bonds (Meima et al., 2002). In S. aureus, a single DsbA-like enzyme (SaDsbA) has been 

identified, but its only known substrate is also the ComCG pseudopilus (van der Kooi-Pol et 

al., 2012).  Curiously, a DsbB-like protein for the re-oxidation of SaDsbA has not been 

identified (Dutton et al., 2008).  

B. subtilis and S. aureus mutants lacking oxidoreductase enzymes are still viable 

(Kouwen et al., 2007; van der Kooi-Pol et al., 2012). Unlike Actinobacteria, this indicates that 

their Dsb-like proteins do not play a housekeeping role in protein folding.  Since Dsb-like 

enzymes are arranged in gene operons, they probably specialize in oxidizing specific 
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substrates. However, B. subtilis and S. aureus oxidoreductases may not be strictly limited as 

they have been  shown to target exogenous substrates. E. coli PhoA, which contains two 

disulfide bonds, is properly oxidized when it is secreted from B. subtilis (Kouwen et al., 2007). 

Furthermore, SaDsbA expressed in B. subtilis devoid of bdbA-D is sufficient to oxidize PhoA, 

sublancin, and the ComCG pseudopilus (Kouwen et al., 2007).  

Altogether, these findings suggest that Firmicutes are capable of catalyzing general 

oxidative folding, but do not normally do so. Simply, this may be because they lack the 

available substrates. Oxidative folding pathways in E. coli appear to be nonessential because 

Dsb enzymes are not required for disulfide bond formation in essential proteins (i.e. PBPs and 

LptD). Over the course of evolution, Firmicutes may have excluded Cys residues from 

secreted proteins to avoid the consequences of random protein oxidation. Therefore, if they 

are not used for other purposes, it makes sense to cluster bdbA-D with their substrates. A 

lack of substrates could also explain why SaDsbA does not appear to possess a DsbB-like 

redox partner. Disulfide bond forming enzymes like E. coli DsbA exhibit high redox potentials 

to ensure that disulfide bonds are transferred from the enzyme to substrates (Grauschopf et 

al., 1995). Following catalysis, DsbA is converted to a reduced state that is extremely stable, 

so it requires re-oxidation by DsbB (Bardwell et al., 1993; Missiakas et al., 1993). In vitro 

studies have revealed that SaDsbA’s redox potential is low enough to allow it to self-re-

oxidize (Heras et al., 2008). If disulfide bond forming pathways are not vital for S. aureus, it 

may not be necessary for a DsbB-like protein to maintain SaDsbA in an active state. Over the 

course of evolution, we speculate that Actinobacteria adapted to the challenges of 

extracellular protein oxidation, while Firmicutes have largely eliminated the need for it.  
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6.5 Future directions  

6.5.1 Elucidate a complete disulfide bond forming pathway in C. diphtheriae.  

This thesis has revealed that Actinobacteria A. oris and C. diphtheriae use disulfide 

bond formation to help fold secreted proteins. In both organisms, Cys residues are oxidized 

by MdbA. Following catalysis, A. oris is re-oxidized by VKOR, which probably shuttles 

acquired electrons to the electron transport chain (Kadokura & Beckwith, 2010). The redox 

partner for C. diphtheriae MdbA has not been identified. Several oxidoreductase candidates 

were identified in C. diphtheriae (Chapter 3). We expected that the deletion of mdbA and its 

redox partner would result in identical pilus assembly phenotypes. However, only the deletion 

of mdbA produced a detectable defect (Chapter 4).  We suspected that MdbA may have 

multiple redox partners, but double deletions constructed thus far have also failed to reveal 

any phenotype (data not shown). Since MdbA is important for growth and division, it is 

possible that its active state is maintained by multiple oxidoreductases. This could be 

explored by generating more extensive combinations of deletions. Since homology between 

redox-active enzymes is generally low, it is also possible that our search parameters were not 

sufficient to identify this factor by BLAST analysis. We could expand this search by including 

other redox-active enzymes including known Dsb-like proteins from other bacteria, 

periodoxins, and glutathioredoxins.  

Finally, E. coli DsbA has been engineered to trap reaction intermediates with both 

DsbB and its substrates (Inaba et al., 2009; Kadokura et al., 2004). Similar mutations could 

be generated in C. diphtheriae to trap MdbA’s redox partner. Since MdbA is predicted to 

target multiple substrates, one problem with this approach is that it might be difficult to enrich 

MdbA-redox partner complexes. Assuming that MdbA and this factor are co-localized, a 

cross-linker may be more effective in identifying this factor.  
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6.5.2 Identify essential substrates of C. diphtheriae MdbA. 

The C. diphtheriae mdbA mutant exhibits a severe growth defect at the nonpermissive 

temperature (Chapter 5). To elucidate the importance of MdbA for cell viability, we must 

identify its essential substrate(s). It is hypothesized that secreted PBPs require MdbA for 

disulfide bond formation. In the absence of mdbA, PBPs may malfunction, which would lead 

to the observed defects. First, disulfide bond formation within PBPs will need to be confirmed 

using an alkylation assay. Next, since the levels of detectable SpaA and DT are reduced in 

the mdbA mutant, the same would be expected for PBPs. PBP levels in the parental and 

mutant can be compared using Boc-FL, a fluorescent derivative of penicillin (Valbuena et al., 

2007).  

6.5.3 Determine the function of TsdA in wild-type conditions. 

The overexpression of tsdA in the C. diphtheriae mdbA mutant rescues disulfide bond 

formation. What is the function of this factor under normal conditions? The deletion of tsdA 

produced no pilus assembly defect. Therefore, it is probably an accessory oxidoreductase 

that is normally expressed at low levels, or activated under stress conditions. Measuring its 

redox potential in vitro could provide some functional insight (Grauschopf et al., 1995). If TsdA 

is an isomerase, we would expect its redox potential to be lower than disulfide bond forming 

proteins like E. coli DsbA or MdbA. Finally, to test if TsdA is required to reverse aberrant Cys 

oxidation, the ability of a deletion mutant to grow in the presence of oxidative stress-inducing 

compounds like hydrogen peroxide or copper can be tested (Hiniker et al., 2005).  

6.6 Overall Conclusions. 

This thesis has revealed disulfide bond forming machinery in the Actinobacteria A. oris 

and C. diphtheriae. To our knowledge, we are the first to elucidate general oxidative folding 



 
 

133 
 

pathways in Gram-positive bacteria. In both organisms, MdbA is required for disulfide bond 

formation in secreted proteins important for virulence and growth. Due to its apparent 

housekeeping function in protein folding, MdbA inhibitors would make powerful bactericides 

against important Actinobacterial pathogens.  C. diphtheriae, in particular, is an excellent 

model to study potential inhibitors in vivo, as well as mechanisms of resistance.  
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