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Supervisory Professor: Ju-Seog Lee, Ph.D. 

  

MicroRNAs (miRNAs) are single-stranded, non-coding RNA molecules that 

regulate gene expression via imperfect binding of the miRNA to specific sites in 

the 3' untranslated region of the mRNAs. Because prediction of miRNA targets is 

an essential step for understanding the functional roles of miRNAs, many 

computational approaches have been developed to identify miRNA targets. 

However, identifying targets remains challenging due to the inherent limitation of 

current prediction approaches based on imperfect complementarity between 

miRNA and its target mRNAs. To overcome these current limitations, we 

developed a novel correlation-based approach that is sequence independence to 

predict functional targets of miRNAs by step-wise integration of the expression 

data of miRNAs, mRNAs, and proteins from NCI-60 cell lines. A correlation 

matrix between expression of miRNAs and mRNAs was first generated and later 

integrated with the correlation matrix between expression of mRNAs and 

signaling proteins. Because these integrated matrices reflect the association of 

miRNAs and signaling pathways, they were used to predict potential signaling 

pathways regulated by certain miRNAs. We implemented a web-based tool, 

miRPP, based on our approach. As validation of our approach, we also 
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demonstrated that miR-500 regulates the MAPK pathway in melanoma and 

breast cancer cells as predicted by our algorithms. In additional experiments, we 

further identified PPFIA1 as a direct target of miR-500 that regulates MAP2K1 in 

the MAPK pathway. In conclusion, we developed a systematic analysis approach 

that can predict signaling pathways regulated by particular miRNAs. Our 

approach can be used to investigate the unknown regulatory role of miRNAs in 

signaling pathways and gene regulatory networks. 
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1. MicroRNAs 

Noncoding RNAs (ncRNAs) are functional RNA molecules which are not 

translated into proteins (Cech and Steitz 2014). NcRNAs play critical roles in 

regulating gene expression at transcription, RNA processing, and translation 

levels (Bogunovic et al. 2009) in various biological processes. Depending on the 

length and functions, ncRNAs can be classified into three groups: very small 

RNAs (18 - 25 nucleotides) – microRNAs (miRNAs) and small interfering RNAs 

(siRNAs); small RNAs (smRNAs, 20-200 nucleotides); and medium and large 

RNAs (piRNAs, 200-10000 nucleotides) (Table 1)  (Wurdinger and Costa 2007; 

Esteller 2011) . 

 MicroRNAs are single-stranded noncoding RNA molecules and 

approximately 21–25 nucleotides in length, that play crucial roles in 

posttranscriptional regulation of gene expression (Bartel 2004).  MicroRNAs are 

partially or fully sequence-complementary to mRNA targets, and their main 

function is reduce stability, expression and/or translation of mRNAs in a variety of 

manners, including mRNA cleavage, translational repression, and deadenylation 

(Bartel 2009). More than 28,000 of miRNAs have been discovered in various 

organisms through both experimental sequencing and computational prediction 

in miRBase (http://miRBase.org), which provides easy access to miRNA 

sequence data, annotation data, target prediction and nomenclature (Kozomara 

et al. 2014).  
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Table 1.  Non-coding RNA types 

   

Name Size Location 
Number 

in 
humans 

Functions 

Short ncRNAs 
    

miRNAs 19–24 bp 
Encoded at 
widespread 

locations 
>1,424 

Targeting of mRNAs and many 
others 

piRNAs 26–31bp 
Clusters, 
intragenic 

23,439 
Transposon repression, DNA 

methylation 

tiRNAs 17–18bp 
Downstream of 

TSSs 
>5,000 Regulation of transcription? 

Mid-size ncRNAs 
    

snoRNAs 60–300 bp Intronic >300 rRNA modifications 

PASRs 22–200 bp 
5′ regions of 

protein-coding 
genes 

>10,000 Unknown 

TSSa-RNAs 20–90 bp 
−250 and +50 bp 

of TSSs 
>10,000 Maintenance of transcription? 

PROMPTs <200 bp 
−205 bp and −5 

kb of TSSs 
Unknown Activation of transcription? 

Long ncRNAs 
    

lincRNAs >200 bp Widespread loci >1,000 
Examples include scaffold 

DNA–chromatin complexes 

T-UCRs >200 bp Widespread loci >350 
Regulation of miRNA and 

mRNA levels? 

Other lncRNAs >200 bp Widespread loci >3,000 
Examples include X-

chromosome inactivation, 
telomere regulation, imprinting 
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1-1  Biogenesis 

Most of miRNAs has known to be located in the intron region of their host genes 

and share their mRNAs and regulatory elements resulting in a similar expression 

pattern (Bartel 2009; Saj and Lai 2011). Figure 1 shows canonical biogenesis of 

miRNA (Sullivan and Ganem 2005; Ruby et al. 2007; Winter et al. 2009). The 

process has several steps to produce a mature form of a miRNA from its host 

gene. The miRNA host gene is transcribed to a large RNA precursor (pri-miRNA) 

with of a 5' cap and poly-A tail3 in nucleus, and then processed to a precursor 

miRNA (pre-miRNA) by the complex of Drosha4 (RNase III enzyme) and 

Pasha/DGCR85 (double-stranded-RNA-binding protein). The pre-miRNAs 

becomes the imperfect stem-loop structure of about 70-nucleotides in length, and 

is exported into the cytoplasm by the karyopherin exportin 5 (Exp5) and Ras-

related nuclear protein (Ran)-GTP complex. Next pre-miRNA is further 

processed to a miRNA-miRNA duplex with 22 nucleotides by the RNAse III 

enzyme Dicer. After one strand of this duplex is degraded, a mature miRNA with 

approximately 22 nucleotides is generated and binds to RNA-induced silencing 

complex (RISC) leading to gene silencing and RNA interference (Paroo et al. 

2007).  
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Figure 1. Canonical biogenesis of miRNA. miRNA genes are expressed by 

RNA polymerase II in the nucleus forming the primary miRNA (pri-miRNA).         

The stem–loop is cleaved by Drosha in conjunction with Pasha (= DGCR8 in 

vertebrates). The precursor miRNA (pre-miRNA) is transported into the 

cytoplasm by Exportin-5 (Exp 5) where it is further processed by Dicer in 

association with the loquacious protein to produce a ∼22 nt miRNA:miRNA* 

duplex. The passenger strand, miRNA*, is usually degraded and the guide strand, 

miRNA, becomes incorporated into the RNA-induced silencing complex 

(Sontheimer 2005) containing the argonaute (Ago) protein. The miRNA–RISC 

complex interacts with the target sequences leading to repression of translation, 

mRNA degradation, or upregulation of transcript levels (Asgari 2011).  

Modified from Asgari, Front Physiol. 2011 under permission from Frontiers 

  



7 

 

1-2 MicroRNA and mRNA target interaction  

In miRNA target prediction using sequence based computational approaches, the 

critical step is to identify the miRNA-mRNA target interaction. There are four 

main characteristics to predict this interaction as followings: seed match, 

conservation, free energy and site accessibility (Cancer Genome Atlas Research 

et al. 2013). The seed sequence of a miRNA is the first 2-8 nucleotides from the 

5' end (Asgari 2011). Most of miRNA target prediction tools use this seed 

sequence to identify the targets of a miRNA by Watson-Crick (WC) match (Asgari 

2011) (Fig.2). Base paring pattern is important to predict miRNA targets (Maziere 

and Enright 2007). The potential binding sites can be defined into three groups 

such as 5’-dominant seed canonical, 5’-dominant seed only , and 3’-

compensatory (Enright et al. 2003; Lewis et al. 2005) (Fig.3). 

 Depending on the prediction algorithms, several types of seed matches 

are used: 6 mer, 7-mer-m8, 7mer-A1, and 8mer (Brennecke et al. 2005). 

Sequence conservation across species is one of factors to predict miRNA targets. 

Generally miRNA seed regions are highly conserved compared with non-seed 

region in a miRNA (Cancer Genome Atlas 2012). Gibbs free energy in binding 

between a miRNA and its target mRNA can be used for a prediction measure. If 

it has the lower energy the stability is increased meaning more likely to be a true 

target (Nair et al. 2014).  Site accessibility of a miRNA to a mRNA target is one of 

measurements for target prediction. Depending on the secondary structure of a 

target mRNA, miRNA:mRNA hybridization can be predicted (Cancer Genome 

Atlas Research 2008). Although many miRNA target prediction algorithms have 



 

been developed, it is still challengeable 

possibility per a miRNA depending on various conditions.

 

 

 

 

 

 

Figure 2. Schematic overview

nucleotides 2-8 of the miRNA seed region play an important role in binding 

target mRNA. Frank represents the outside sequence of the seed region.

wobble pair in green is 

Modified from Peterson et al.

from Frontiers 
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been developed, it is still challengeable due to the thousands

per a miRNA depending on various conditions. 

Schematic overview of a miRNA-mRNA target interaction

8 of the miRNA seed region play an important role in binding 

target mRNA. Frank represents the outside sequence of the seed region.

 shown in the middle of the interaction.  

Peterson et al., Front Genet. 2014 Feb 18;5:23 with permission 

 

thousands of binding 

target interaction. The 

8 of the miRNA seed region play an important role in binding to a 

target mRNA. Frank represents the outside sequence of the seed region. A G-U 

with permission 
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Figure 3. Major three types of secondary structures of miRNA-mRNA 

duplex.  (A) Canonical sites with a perfect base paring , a bulge, and  an 

extensive base pairing. (B) Dominant  seed sites with perfect complementarity in 

the seed region, but poor complementarity in the 3' end. (C) Compensatory sites  

with a mismatch or G:U wobble in  the seed region, but have extensive  base 

pairing to the 3' end.  

Modified from Min and Yoon, Experimental & Molecular Medicine (2010) 42, 233-

244 with permission from BioMed Central.  
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1-3  Nomenclature of miRNA 

For thousands of miRNAs across other species, the nomenclature system has 

been used before publication of their discovery. There are conventions for 

naming miRNA (Ambros et al. 2003) (Fig.4). In annotation a miRNA 

experimentally examined has a number followed by the prefix ‘mir’ or ‘miR’ and a 

dash such as ‘mir-123’.  The ‘mir-‘  and ‘miR’ represent pre-miRNA and the 

mature form, respectively. miRNAs with similar sequences are annotated by 

adding lower case letter such as miR-1a and miR-1b. The same miRNA from 

different loci are annotated with an additional number such as miR-1-1 and miR-

1-2. The species information is preceded to a miRNA. For example, hsa-miR-142 

represents the miR-142 of homo sapience.  The miRNAs originated from the 3’ or 

5’ end are annotated with a -3p or 5p suffix such as miR-142-5p and miR-142-3p. 

  

  



 

 

 

Figure 4. Nomenclature of miRNA.

premature and mature 

structure of miRNA with 1 or 2 nucleotide differences (C) Additional number 

means the same miRNA from different loci. (D) “3p” and “5p” repre

originating for the 3 and 5 end. Species is preceded to miRNA nomenclature.

11 

ture of miRNA. (A) Prefix “mir” and “miR” represent 

premature and mature form of miRNA. (B) Lower case letter represents similar 

structure of miRNA with 1 or 2 nucleotide differences (C) Additional number 

means the same miRNA from different loci. (D) “3p” and “5p” repre

originating for the 3 and 5 end. Species is preceded to miRNA nomenclature.

 

(A) Prefix “mir” and “miR” represent 

Lower case letter represents similar 

structure of miRNA with 1 or 2 nucleotide differences (C) Additional number 

means the same miRNA from different loci. (D) “3p” and “5p” represent 

originating for the 3 and 5 end. Species is preceded to miRNA nomenclature. 
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1-4  miRNA action mechanism 

Currently, 28645 miRNAs has been registered in miRBase (Kozomara et al. 

2014). miRNAs silence gene expression by making partial base-paring with 3’ 

untranslated region of target mRNAs (Bartel 2009). Because imperfect base-

pairing with target mRNAs is sufficient for inhibition, single miRNA can target a 

number of genes and also multiple miRNAs can target single mRNA (Vlachos et 

al. 2012).  

Figure 5 shows main regulatory mechanism of miRNAs. MicroRNAs can 

repress mRNA translation and destabilize mRNA transcripts in the processing 

body (P-body) in which miRNA-target mRNAs are isolated from translational 

process and degraded (Fazi and Nervi 2008; Romero-Cordoba et al. 2014). 

Furthermore miRNA regulation mechanisms can be classified to cis- and trans-

regulation (Liu et al. 2009) (Fig.6). In cis-regulation, miRNAs directly bind to 

target mRNA sequences and regulate the gene expression and translation. In 

trans-regulation, miRNAs can indirectly regulate from gene to protein levels by 

targeting the mRNAs of transcription factors, RNA regulating proteins and 

interacting proteins. 

  Recent studies estimated that each miRNA can regulate more than 200 

genes (Krek et al. 2005; Bussey et al. 2006; Gennarino et al. 2009), implying that 

miRNAs regulates a large number of biological processes that are frequently 

altered in many human diseases.  Therefore, to understand the functional roles 

of miRNAs in disease, it will be axiomatic to accurately identify target mRNAs.   
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Figure 5. Major functions of miRNAs. Mature miRNAs guide the RISC complex 

to the 3′ untranslated regions (3′-UTR) of the complementary mRNA targets. The 

complexes repress mRNA translation, degrade mRNAs and destabilize by de-

adenylation. Scissors indicate the cleavage on pri-miRNA or mRNA. RISC: RNA-

induced silencing complex.   
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Figure 6.  Potential microRNA regulation mechanisms by multifactorial and 

encompassing interactions. (A) Cis-regulation. MicroRNAs directly target the 

mRNA, and control the expression of the target gene at post-transcriptional 

levels by mRNA degradation and inhibiting translation. (B) 

Transregulation. MicroRNAs regulate the expression changes of the targeted 

specific genes such as transcription factors, RNA regulating protein coding genes, 

and interacting protein coding genes. Modified from Liu et al., Comp Funct 

Genomics. 2009:837514 with permission from Hindawi publishing corporation.      
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1-5  miRNA and Cancer 

miRNAs are frequently dysregulated in many human diseases including cancer 

(Zhang et al. 2007; Lu et al. 2008; Macfarlane and Murphy 2010). Throughout 

regulating the expression of key genes in these critical pathways, miRNAs can 

modulate the cell cycle, cellular senescence, and the DNA damage response on 

tumorigenesis. The previous studies have shown that miRNAs play critical roles 

in cancer by targeting oncogenes or tumor suppressor genes (Garzon et al. 2006; 

Zhang et al. 2007) (Fig.7). When miRNAs are oncogenic, the tumor suppressor 

genes are repressed by the miRNAs resulting in tumor formation (Paranjape et al. 

2009). For example, mir-17-92, known as oncomir, was reported that enforced 

expression of mir-17-19b collaborated with the c-myc oncogene to activate B 

lymphomagenesis (He et al. 2005). 

While miRNAs also can play roles as tumor suppressor genes. In this case the 

miRNA downregulation can induce tumors. The previous studies showed 

miRNAs as a tumor suppressor gene are repressed in human cancers: colon 

cancer (Michael et al. 2003), lung cancer (Takamizawa et al. 2004), breast 

cancer (Iorio et al. 2005), and renal cell cancer (Liu et al. 2010a). For example, 

miR-20a and miR-125b have been reported to regulate the expression of E2F 

transcription factors in the retinoblastoma pathway (O'Donnell et al. 2005).  
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Figure 7. MicroRNA functions  as tumor suppressors and oncogenes. In 

cancer, aberrant miRNAs function as oncogenes by inhibiting the translation of 

tumor suppressor genes. On the other hand, tumor suppressor miRNAs are 

down-regulated resulting in the increase of oncogene expression. The both 

events  lead to tumor formation. 
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1-6  miRNA cluster 

Around 50 % of all miRNA genes are located within 50 kb in length on the 

genome and transcribed together as a cluster (Megraw et al. 2007; Becker et al. 

2012; Chan et al. 2012). These clusters range from 2 to several dozens of 

miRNAs. miRNAs in a cluster frequently shows similar sequence homology in the 

seed region. This results in identical targets of a miRNA cluster. The length of 

miRNA clusters depend on species (Chan et al. 2012). For example, mir-17 

cluster family including mir-17-92, mir-106-92, and mir-106-25, and located by 

tandem duplications (Olive et al. 2010) (Fig.8). This cluster family functions in 

cell proliferation, apoptosis, development and cancer oncogenesis (Mogilyansky 

and Rigoutsos 2013). Moreover, miRNA clusters can coordinately regulate the 

different genes or the downstream effectors such as transcription factors  in a 

specific signaling pathway or protein complex (Inui et al. 2010).  

 Because individual miRNA cluster can regulate the expression of multiple 

genes belonging to various signaling pathways, it could be a critical work to 

predict the its cellular function to target specific signaling pathways (Kuhn et al. 

2008). A miRNA cluster has been identified as cooperative regulatory RNAs 

through targeting multiple biological processes (Guo et al. 2014). They were 

evolutionary correlated and simultaneously expressed (Liang et al. 2014). 

Although the expression pattern of individual miRNA in a cluster or a family  can 

be different due to complex maturation and degradation mechanisms, a specific 

biological process can be regulated by the cluster (Xu and Wong 2008; Guo et al. 
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2014). Therefore, the integrative analysis based on clustered miRNAs might be a 

useful approach to discover the potential functional roles in tumorigenesis. 
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Figure 8. Human mir-17-92 as a polycistronic miRNA cluster and its 

homologues. Gene structure of mir-17-92 consist of miR-17, -18a, -19a, -20a, -

19b-1, and -92a-1 on chromosome 13. The mir-17-92 cluster has  two paralogs 

such as mir-106a-363 and mir-106b-25 clusters. Based on seed sequences, 

these miRNA clusters can be divided  to four miRNA families as followings: miR-

17 family (miR-17, miR-20a, miR-20b, miR-106a, miR-106b, and miR-93), the 

miR-18 family (miR-18a and miR-18b), the miR-19 family (miR-19a, miR-19b-1, 

and miR-19b-2) and the miR-92 family (miR-92a-1, miR-92a-2, miR-383, and 

miR-25). Modified from Olive et al., Int J Biochem Cell Biol. 2010 Aug;42(8): 

1348-54 with permission from Elsevier.  
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1-7  miRNA and clinical application 

 

MicroRNAs play critical roles in cancer and can be used as prognostic or 

diagnostic markers (Hung et al. 2014; Shah and Chen 2014; Ye and Cao 2014). 

Therapeutic approaches using miRNAs have been performed by re-introduction 

of miRNAs as tumor suppressors, or inhibition of oncogenic miRNAs (Jansson 

and Lund 2012). The expression profiles of miRNAs have been shown stable and 

unique signatures in the different tissue types and the stages of cancers (Lu et al. 

2005; Olson et al. 2009; Iorio and Croce 2012a; Iorio and Croce 2012b) . This 

tissue specificity of miRNA expression patterns showed  the possibility to identify 

the primary origin of metastatic cancer (Rosenfeld et al. 2008; Paranjape et al. 

2009; Ferracin et al. 2011). MicroRNAs also can be applied to discover non-

invasive biomarkers, and can measure therapeutic effect in cancer (Chen et al. 

2008; Ng et al. 2009; Paranjape et al. 2009). For these clinical application, multi-

omic data analysis including miRNA data might be useful in deciphering cancer 

biology (Fig.9).  
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Figure 9. MicroRNAs as potential diagnostic biomarkers. In cancer diagnosis, 

miRNAs can be a useful tool to provide several features. MicroRNA expression 

profile in cancer can be used to identify cancer from normal tissues and the 

original tissue for cancer. Moreover, their expression patterns in one cancer type 

show unique, and it allows to distinguishing tumor subtype. For a diagnostic test 

blood-based miRNA expression patterns can be used as a not-invasive method. 

SNPs in miRNA genes, binding sites, and the genes of a specific pathway also 

can be used to predict cancer predisposition. Modified from Paranjape et al.,Gut 

2009;58:1546-1554 with permission from BMJ Publishing Group Ltd & British 

Society of Gastroenterology. 
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2. miRNA database and target prediction 

 

 Many computational prediction approaches using sequence complementarity 

have been developed with moderate success in identifying miRNA targets (Chu 

et al. 2013(Krek et al. 2005; Griffiths-Jones et al. 2008; Maragkakis et al. 2009; 

Betel et al. 2010; Dweep et al. 2011; Iorio and Croce 2012b; Hamzeiy et al. 

2014). However, finding true targets is still extremely challenging because of 

inherited limitation of current prediction approaches based on imperfect 

complementarity between miRNA and its target mRNAs and a lack of a 

sufficiently large group of experimentally validated targets of miRNAs that can be 

used as a robust training set for target prediction (Rajewsky 2006).  

Therefore the integrated approaches using experimental and computational 

analysis has been developed to identify a true target of a miRNA  and miRNA 

databases have been constructed (Fig.10) (Table2,3). 
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Figure 10. Schematic flow to identify miRNA targets using in-vitro and in-

silico approaches. Putative target genes predicted by biochemical isolation of 

the miRISC or by target prediction algorithms are more than hundreds of 

candidates. Then, these genes can be evaluated  experimentally. Modified from 

Thomas et al., Nature Structural & Molecular Biology 17, 1169–1174 (2010) with 

permission from Nature publishing group. 
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2-1 Prediction tools 

Many miRNA target prediction tools have been developed based on their own 

detection algorithms (Table.3). miRbase is a well-known miRNA database to 

offer the information of miRNA sequences, annotations and computationally 

predicted targets linked to other prediction tools (Bussey et al. 2006). For 

predicting miRNA targets RNAHybrid used the minimum free energy (MFE) of 

hybridization between target genes and miRNA sequences  (Kruger and 

Rehmsmeier 2006) (http://bibiserv2.cebitec.uni-bielefeld.de/rnahybrid). 

TargetScan used the sequence conservation scores calculated from the 6-8 mer 

sites of the seed region on target genes against a miRNA (Lewis et al. 2005). On 

the other hand, Tarbase provides experimentally validated target information 

(Deschenes-Simard et al. 2014). 
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Table 2.  MicroRNA databases  

 

Name of the 

database 
URL  Main features  Reference 

mirBase http://microrna.sanger.ac.uk 

miRNA sequences, 

annotations and 

computationally 

predicted targets 

(Bussey et al. 

2006) 

Argonaute 
http://www.ma.uni-

heidelberg.de/apps/zmf/argonaute/interface/ 

Detailed 

information about 

known miRNAs 

and their targets 

(Liu et al. 

2010b) 

miRNAMap http://mirnamap.mbc.nctu.edu/tw 

Known as 

computationally 

predicted miRNAs 

and their targets 

(Nishizuka et 

al. 2003) 

Tarbase http://www.diana.pcbi.upenn.edu/tarbase.html 

Experimentally 

verified miRNA 

targets 

(Deschenes-

Simard et al. 

2014) 

Arabidopsis 

Small RNA 

project 

Database 

http://asrp.cgrb.oregonstate.edu/ 

Arabidopsis miRNA 

sequences and 

corresponding 

target genes in 

addition to other 

small RNAs 

(Akbani et al. 

2014) 
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Table 3 . MicroRNA target prediction algorithms  

Software Name URL Reference(s) 

TargetScan, 
TargetScanS 

http://genes. mit.edu/targetscan/ (Asgari 2011) 

miRanda 
http://www.microrna.org/ 

http://www.ebi.ac.uk/enrightsrv/microcosm/htdo
cs/targets/v5/ 

(Fazi and Nervi 2008) 

Pictar http://pictar.bio.nyu.edu/ (Olive et al. 2010) 

TargetBoost http://demo1.interagon.com/targetboost/ (Peterson et al. 2014) 

DIANA-microT http://diana.pcbi.upenn.edu/DIANA-microT 

(Maragkakis et al. 
2009; Maragkakis et 

al. 2011) 

Rna22 http://cbsrv.watson.ibm.com/rna22.html (Miranda et al. 2006) 

PITA http:// genie.weizmann.ad.il/pubs/mir07 (Tibes et al. 2006) 
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2-2 Limitation of DNA sequence based prediction 

For miRNA target prediction, most computational methods used the nucleotide 

sequences with perfect seed complementarity to miRNA, and the predicted 

secondary mRNA structure or energetically favorable hybridization sites (Martin 

et al. 2007; Deschenes-Simard et al. 2014). Table 3 and 4 show the features of 

the prediction tools publicly available such as TargetScan (Lewis et al. 2005), 

miRanda (John et al. 2004), PicTar (Lall et al. 2006), DIANA-micorT (Maragkakis 

et al. 2009), rna22 (Miranda et al. 2006). The prediction of miRNA targets based 

on nucleotide sequence generated many putative targets that cannot be 

experimentally validated  (Sethupathy et al. 2006). They have high false positive 

rates in target prediction up to 40% (Table 4). 
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Table 4. Summary for miRNA target prediction 

Name 
Target 

species 
Algorithms performance 

Distinguishing 
feature 

TargetScan Vertebrates 
Seed 

complementarity 
FPR: 22% 
(mammal) 

Requires 6-nt 
seed match and 

conserved 
Adenosine 

miRanda 
Flies, 

vertebrates 
Complementarity 

FPR: 24-39% 
(Fly) 

Also provides the 
expression 

profile of miRNA 
in various tissues 

PicTar 
Vertebrates, 

flies 
Thermodynamics FPR: 30% 

Uses cross-
species 

comparisons 
to filter out false 

positives 

DIANA-
microT 

Any Thermodynamics 
Precision: 

66% 

Target structure 
comes before 

seed 
complementarity 

rna22 Any 
Pattern 

recognition 

FPR: 19-
25.7% 

Sensitivity: 
83% 

Eliminates the 
use of cross- 

species 
conservation 

filtering, 
and leads to 

putative targets 
sites in 5’ UTRs 

and ORF 

 

Modified from Experimental & Molecular Medicine (2010) 42, 233-244 with 

permission from Nature publishing group 
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2-3 Modified prediction  

Recent studies proposed new approaches that integrate transcriptomic data into 

complementary seed sequence data to overcome the current limitation by using 

a combination of target predictions and paired miRNA-mRNA expression 

patterns in the same tissues and cells (Liu et al. 2007; Wang et al. 2009; Wang 

and Li 2009) (Table 5).  However, predicted outcomes of many different 

prediction algorithms are frequently inconsistent, suggesting that finding a true 

miRNA target is still very challenging (Witkos et al. 2011). Moreover, 

understanding molecular functions of miRNAs are further hampered by the fact 

that many of predicted targets are poorly annotated. 

 

2-4 New challenges   

Recent studies demonstrated an association between miRNAs and expression of 

target proteins (Betel et al. 2010), suggesting that protein expression profile data 

can be used to verify putative functional targets and potential molecular networks 

regulated by miRNA (Baek et al. 2008; Selbach et al. 2008). Because proteins 

are functional end products of miRNA targets, proteomic approaches for 

identifying miRNAs targets would significantly improve our understanding on 

functional roles of miRNAs.  

  



 

 

Adapted from 

3. RPPA and signaling pathway

 

Reverse phase protein arrays (RPPA) is a powerful high

with the procedures similar to that of Western blots for targeted proteomics 

(Hennessy et al. 2010)

number of samples at the same time against high
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Adapted from PLoS ONE. 2009; 4(6): e5878 with permission

RPPA and signaling pathway 

Reverse phase protein arrays (RPPA) is a powerful high-throughput approach 

with the procedures similar to that of Western blots for targeted proteomics 

). RPPA data provides protein expression profile

number of samples at the same time against high-quality antibodies in a 

with permission from PLOS 

throughput approach 

with the procedures similar to that of Western blots for targeted proteomics 

provides protein expression profiles in huge 

quality antibodies in a 
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quantitative manner. As a major advantage, RPPA allows to assess target 

protein expression quantitatively in large sample sets while requiring only a very 

low amount of biological sample making this platform attractive for the analysis of 

clinical materials and biomarker discovery. 

 Furthermore, because proteomic data include critical signaling events 

such as phosphorylation, acetylation, and sumoylation of proteins (Nishizuka et 

al. 2003; Park et al. 2010), functional roles of miRNAs in key signaling pathways 

can be readily uncovered by correlating miRNAs with proteomic data. 

 

4. NCI-60 cells and data sets 

 In this study, we sought to integrate expression data of miRNAs, mRNAs, and 

proteins to uncover signaling networks regulated by miRNAs and key regulatory 

genes (mRNAs) of the networks directly targeted by miRNAs.  We used data 

from panel of NCI-60 cancer cells that have been extensively used for genomic 

and pharmacological studies (Ross et al. 2000; Tibes et al. 2006; Blower et al. 

2007; Shankavaram et al. 2007). The NCI-60 cells consist of leukemia, 

lymphoma, and ovarian, renal, breast, prostate, colon, lung, and central nervous 

system carcinoma cells(Table.6). NCI-60 is also the most extensively profiled set 

of cells, and investigators have widely used them in many cancer-related studies. 

In recent study (Park et al. 2010), we generated extensive proteomic data from 

NCI-60 cell lines by using the RPPA technique.  
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5. Motivation and aims  

Identification of miRNAs’ target genes has been challenging because of inherited 

limitation of current prediction methods that are largely based on imperfectly 

matched short sequences between miRNAs and their target sequences. 

Because mRNAs indirectly regulate protein expression or activation by targeting 

their mRNAs, we aimed to develop prediction approach that would mimic 

biological process of regulatory circuits in cells.  

To uncover the complicated intracellular signaling networks regulated by miRNAs, 

we carried out multi-step integrated analyses with both transcriptome and 

proteome data from cancer cell lines.  

 

In this study we aimed as the following: 

• First, to develop a new approach for the integration of three independent 

datasets in NCI-60 data. 

• Second, to establish a prediction model for identifying putative direct or 

indirect miRNA targets by integrating genomic and proteomic data, and to 

construct a web-based database  

• Third, to validate a prediction model that miRNAs are highly associated with 

biological signaling pathway by in-vitro experiment. 

• Last, to construct a web-based database to provide the data analysis outputs 

by our approach 

 



 

 

 

 

 

Figure11. Gene–protein network in normal tissues and in cancer.

are transcribed from miRNA non

multiple mRNAs affecting the output of many proteins. miRNAs have a crucial 

role in keeping the gene

miRNA and mRNA expression 

oncogenic proteins that cause a certain cancer phenotype.

coordinate gene regulatory networks at genomic and proeomic level.

Adopted from Garzon et al., 

with permission from Nature publishing group
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protein network in normal tissues and in cancer.

are transcribed from miRNA non-coding genes, MicroRNA coordinately regulate 

multiple mRNAs affecting the output of many proteins. miRNAs have a crucial 

role in keeping the gene–protein network interconnected. In cancer

miRNA and mRNA expression can occurs and induce the expression of 

ogenic proteins that cause a certain cancer phenotype. 

gene regulatory networks at genomic and proeomic level.

Garzon et al., Nature Reviews Drug Discovery 9, 775

from Nature publishing group 

 

protein network in normal tissues and in cancer. miRNAs 

coordinately regulate 

multiple mRNAs affecting the output of many proteins. miRNAs have a crucial 

protein network interconnected. In cancer aberrant 

the expression of 

 Thus miRNAs 

gene regulatory networks at genomic and proeomic level. 

Nature Reviews Drug Discovery 9, 775-789. 2010 
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CHAPTER 2 

MATERIALS AND METHODS 
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1. The datasets 

The mRNA expression data of NCI-60 cell lines (Table.6) were generated by 

using Affymetrix HG-U133 44K platform and available from Gene Express 

Omnibus (GEO) database (accession number, GSE5720). MiRNA expression 

data were generated by using custom-made microarray from Ohio State 

University Comprehensive Cancer Center (OSU-CCC-hsa-miRNA-chip-V3) and 

available from ArrayExpress (accession number E-MEXP-1029) (Blower et al. 

2007). This microarray contains 627 probes representing 423 unique 

miRNAs.  Protein expression data were generated by using custom-made RPPA 

from University of Texas MD Anderson Cancer Center as described in Park et al 

(Park et al. 2010). RPPA platform contains 167 unique protein features.  

 

2. Data preprocessing 

The mRNA and miRNA data sets were log2 transformed and normalized using 

quantile normalization in Bioconductor (www.bioconductor.org). As a large 

fraction of mRNAs and miRNAs were either not expressed or non-detectable, we 

filtered out 30% of total probes with low variance across all samples to reduce 

potential noise. The final number of mRNA and miRNA probes reduced to 25,306 

and 436 probes for final data analysis respectively. Multiple values from multiple 

probes map to single genes by calculating the average of their values. 
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Table 6.  Tumor tissue types of NCI-60 cell lines* 

* http://discover.nci.nih.gov/cellminer 

 

Tissue of 

origin  

Cell Line 

Name 
Age Sex Histology Source p53 

doubling 

time 

Breast BT_549 72 F 

Papillary infiltrating ductal 

carcinoma-mammary gland; 

breast 

Metastasis - 53.9 

Breast HS578T 74 F 
Carcinosarcoma-mammary 

gland; breast 
Primary MT 53.8 

Breast MCF7 69 F 

Adenocarcinoma- mammary 

gland; breast; metastatic 

site: pleural effusion; 

Pleural 

effusion 
WT 25.4 

Breast MCF_7/AdrR NA F Adenocarinoma NA MT 34 

Breast MDA_MB_231 51 F 

Adenocarcinoma-mammary 

gland; breast; epithelial; 

metastatic site 

Pleural 

effusion 
MT 41.9 

Breast MDA_MB_435 31 F 

Ductal carcinoma- mammary 

gland; breast; duct; 

metastatic site 

Pleural 

effusion 
MT 25.8 

Breast T47D 54 F infiltrating ductal carcinoma NA MT 45.5 

CNS SF_268 24 F Glioblastoma, ud NA MT 33.1 

CNS SF_295 67 F Glioblastoma, ud NA MT 29.5 

CNS SF_539 34 F Glial cell neoplasm NA WT 35.4 

CNS SNB_19 47 M Glioblastoma, ud NA MT 34.6 

CNS SNB_75 NA F Astrocytoma NA MT 62.8 

CNS U251 75 M Glioblastoma,ud NA MT 23.8 

Colon COLO205 70 M Adenocarcinoma Ascites MT 23.8 

Colon HCC_2998 NA NA carcinoma NA MT 31.5 

Colon HCT_116 NA M carcinoma-vpd NA - 17.4 

Colon HCT_15 NA NA Adenocarcinoma p/md NA - 20.6 

Colon HT29 44 F Adenocarcinoma-md Primary MT 19.5 

Colon KM12 NA NA Adenocarcinome-pd NA MT 23.7 

Colon SW_620 51 M Carcinoma-ud NA MT 20.4 

Leukemia CCRF_CEM 4 F ALL NA MT 26.7 

Leukemia HL_60 36 M Pro myelocytic leukemia PBL MT 28.6 

Leukemia K_562 53 F CML 
Pleural 

effusion 
MT 19.6 

Leukemia MOLT_4 19 M 
ALL (cells were taken when 

patient was in relapse) 
PB WT 27.9 

Leukemia RPMI_8226 61 M Myeloma PB WT 33.5 

Leukemia SR 11 M Lymphoma NA - 28.7 

Melanoma LOXIMVI 58 M 
Malignant amelanotic 

melanoma 
NA WT 20.5 
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Melanoma M14 NA NA Melanotic melanoma NA MT 26.3 

Melanoma MALME_3M 43 M 
Malignant melanotic 

melanoma 
Metastasis WT 46.2 

Melanoma SK_MEL_2 60 M 
Malignant melanotic 

melanoma 
Metastasis WT 45.5 

Melanoma SK_MEL_28 51 M 
Malignant melanotic 

melanoma 
NA MT 35.1 

Melanoma SK_MEL_5 24 F 
Malignant melanotic 

melanoma 
Metastasis WT 25.2 

Melanoma UACC_257 NA NA Melanotic melanoma NA WT 38.5 

Melanoma UACC_62 NA NA Melanotic melanoma NA WT 31.3 

Non-Small 

Cell Lung 
A549 58 M Adenocarcinoma-p/md NA WT 22.9 

Non-Small 

Cell Lung 
EKVX NA M Adenocarcinoma-md NA MT 43.6 

Non-Small 

Cell Lung 
NCI_H226 NA M 

Squamous cell carcinoma-

vpd 
NA MT 61 

Non-Small 

Cell Lung 
NCI_H23 NA M Adenocarcinoma-ud NA MT 33.4 

Non-Small 

Cell Lung 
NCI_H322M 52 M 

Small cell Bronchioalveolar 

Carcinoma 
NA MT 35.3 

Non-Small 

Cell Lung 
NCI_H460 NA M Large Cell Carcinoma-ud 

Pleural 

effusion 
WT 17.8 

Non-Small 

Cell Lung 
NCI_H522 NA M Adenocarcinoma-vpd NA MT 38.2 

Non-Small 

Cell Lung 
HOP_62 60 F adenocarcinoma-ud NA MT 39 

Non-Small 

Cell Lung 
HOP_92 62 M Large cell-ud NA MT 79.5 

Ovarian IGROV1 47 F Cystoadenocarcinoma-pd NA MT 31 

Ovarian OVCAR_3 60 F Adenocarcinoma-md Ascites MT 34.7 

Ovarian OVCAR_4 42 F Adenocarcinoma-md NA WT 41.4 

Ovarian OVCAR_5 67 F Adenocarcinoma-wd NA MT 48.8 

Ovarian OVCAR_8 64 F Carcinoma-ud NA MT 26.1 

Ovarian SK_OV_3 64 F Adenocarcinoma-vpd Ascites - 48.7 

Prostate DU_145 69 M 
prostate; metastatic site: 

brain; carcinoma  
Metastasis - 32.3 

Prostate PC_3 62 M 
Adenocarcinoma- prostate; 

metastatic site: bone; 
NA MT 27.1 

Renal 786_0 58 M Adenocarcinoma NA MT 22.4 

Renal A498 52 F Adenocarcinoma NA WT 66.8 

Renal ACHN 22 M Renal cell carcinoma-p/md NA WT 27.5 

Renal CAKI_1 49 M Clear cell carcinoma Metastasis WT 39 

Renal RXF_393 54 M hypernephroma-pd NA MT 62.9 

Renal SN12C 43 M Renal cell carcinoma-pd NA MT 29.5 

Renal TK_10 43 M Renal Spindle cell carcinoma NA MT 51.3 

Renal UO_31 NA F Renal cell carcinoma-vpd NA WT 41.7 



 

3. Correlation analysis between miRNA

To identify the functional targets of miRNA, Pearson’s correlation coefficient 

approach applied to the miRNA, mRNA and protein array data generated from 

NCI-60 cell lines. The log

the association among the expression pro

the correlation coefficient values among all miRNA, mRNA and protein 

expression profiles; all

Overall data process is shown in Fig

between two data sets was calculated by

 

 

where X denotes expression value of a miRNA or a protein, and Y denotes 

expression value of a mRNA. 

the standard deviations of all X and Y values of each probe. We defined the 

miRNA-mRNA correlation coefficient 

significant. 
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Correlation analysis between miRNA-mRNA and mRNA

To identify the functional targets of miRNA, Pearson’s correlation coefficient 

approach applied to the miRNA, mRNA and protein array data generated from 

60 cell lines. The log-normalized values were used as input data. To explore 

the association among the expression profiles of NCI-60 data sets we calculated 

the correlation coefficient values among all miRNA, mRNA and protein 

expression profiles; all-against-all miRNA-mRNA and mRNA

Overall data process is shown in Figure 1 and 2. The Pearson correlation 

between two data sets was calculated by 

 

where X denotes expression value of a miRNA or a protein, and Y denotes 

expression value of a mRNA.   and  are the mean of X and Y. S

the standard deviations of all X and Y values of each probe. We defined the 

mRNA correlation coefficient P-value less than 0.005 to be statistically 

 

and mRNA-RPPA pairs 

To identify the functional targets of miRNA, Pearson’s correlation coefficient 

approach applied to the miRNA, mRNA and protein array data generated from 

normalized values were used as input data. To explore 

60 data sets we calculated 

the correlation coefficient values among all miRNA, mRNA and protein 

mRNA and mRNA-protein pairs. 

ure 1 and 2. The Pearson correlation 

where X denotes expression value of a miRNA or a protein, and Y denotes 

are the mean of X and Y. Sx and Sy are 

the standard deviations of all X and Y values of each probe. We defined the 

value less than 0.005 to be statistically 
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4. Generation of miRNA and Pathway association 

To establish the association between miRNAs and signaling pathways, we 

carried out multi-step data analyses and integrated analyzed outcomes. We 

started this process by generating association score. First, we computed 

correlation between miRNAs and mRNAs by using Pearson correlation test with 

stringent cut-off (P < 0.005). Likewise, correlation between protein features and 

mRNAs were computed by using Pearson correlation test (P < 0.005). Second, in 

order to estimate the association between miRNA and protein, two independently 

generated correlation lists (miRNAs and protein features) were merged together 

by using correlated mRNAs as denominators. Computed association scores were 

saved in matrix format (222 RPPA probes x 436 miRNA = 96,792) for further 

analysis (association score matrix or ASM). In ASM, correlation between miRNAs 

and protein features were represented as number of commonly shared correlated 

mRNAs. For example, if miRNA-X and RPPA-Y has 5 correlated mRNAs 

respectively and share 3 mRNAs, association score between miRNA-X and 

RPPA-Y will be 3 (Fig. 12).   

  



 

 

 

 

 

 

Figure 12. Schematic diagram for Association Scores

number of commonly shared correlated mRNAs between miRNAs and protein 

features. For example, if miRNA

respectively and share 3 mRNAs, association score between miRNA

RPPA-Y will be 3. Finally

between miRNAs and RPPA proteins.
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number of commonly shared correlated mRNAs between miRNAs and protein 

features. For example, if miRNA-X and RPPA-Y has 5 correlated mRNAs 

respectively and share 3 mRNAs, association score between miRNA

Y will be 3. Finally Association Scores Matrix (ASM) was generated 

between miRNAs and RPPA proteins. 

 

(AS) was estimated by 

number of commonly shared correlated mRNAs between miRNAs and protein 

Y has 5 correlated mRNAs 

respectively and share 3 mRNAs, association score between miRNA-X and 

Association Scores Matrix (ASM) was generated 
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Next, we assessed significance of signaling events in NCI-60 cells by estimating 

correlated number of mRNAs with phosphorylation of signaling proteins. To 

estimate the signaling influence we assumed that a phosphorylated protein might 

be more impact on gene expression more than its unmodified form in signaling 

pathway. 

RPPA data includes 25 pairs of antibodies that can specifically recognize 

phosphorylated or unmodified same proteins. Establishing a Pearson’s 

correlation test P-value of less than 0.005 as indicative of significance with 

expression or phosphorylation patterns of the each protein feature, we first 

generated lists of correlated mRNAs for expression (unmodified form)) and 

phosphorylation level (modified form) of proteins. Second, with paired numbers of 

mRNAs significantly associated with phosphorylated and unmodified protein, P/U 

ratios (number of mRNAs associated with phosphorylated protein/number of 

mRNAs associated with unmodified protein) were generated and used as 

indicator of signaling activity of particular protein in NCI-60 cell lines.  For 

example, if number of mRNAs correlated with phosphorylation of particular 

protein (P value) is 9 and number of mRNAs correlated with unmodified same 

proteins (U value) is 3, then P/U ratio of the protein will be 3 (Fig.13 ).  

We also identified signaling pathways that are potentially regulated by 25 

signaling proteins in RPPA data (Table 7).  

  



 

 

 

 

 

Figure 13 . Schematic diagram for generation of P/U ratios.

signaling influence weight, P/U ratio. It was calculated by P/U ratios (number of 

mRNAs associated with phosphorylated protein/number of mRNAs associated 

with unmodified protein). For exam

phosphorylation of particular protein (P value) is 9 and number of mRNAs 

correlated with unmodified same proteins (U value) is 3, then P/U ratio of the 

protein will be 3. 
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signaling influence weight, P/U ratio. It was calculated by P/U ratios (number of 

mRNAs associated with phosphorylated protein/number of mRNAs associated 

with unmodified protein). For example, if number of mRNAs correlated with 

phosphorylation of particular protein (P value) is 9 and number of mRNAs 

correlated with unmodified same proteins (U value) is 3, then P/U ratio of the 
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mRNAs associated with phosphorylated protein/number of mRNAs associated 

ple, if number of mRNAs correlated with 
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correlated with unmodified same proteins (U value) is 3, then P/U ratio of the 
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Table 7.  Phosphorylation specific probe information of RPPA data  

No Gene Phospho-sepcific probe 

1 ACACA PS79 

2 AKT1 PS473/ PT308 

3 EIF4EBP1 PS65/ PT37.46 

4 ERBB2 PY1248 

5 ESR1 PS167/ PS118 

6 FOXO3 PS318.S321 

7 FRAP1 PS2448 

8 GSK3A PS21.S9 

9 IRS1 PS307 

10 MAP2K1 PS217.S221 

11 MAPK1 PMAPK1/PMAPK8/JNK 

12 MAPK14 PT180.Y182 

13 MYC PT58.S62 

14 PDK1 PS241 

15 PRKAA1 PT172 

16 PRKCA  PS567 

17 RPS6 PS235.S236/ PS240.S244 

18 RPS6KA1 PT389.S363 

19 RPS6KB1 PT389 

20 SGK PS78 

21 SRC PY416/ PY527 

22 STAT3 PS727/ PY705 

23 STAT5A PY694 

24 STAT6 PY641 

25 TSC2 PT1462 
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To do this, we carried out pathway enrichment analysis after mapping 25 proteins 

in signaling pathways by using the DAVID bioinformatics resource 

(http://david.abcc.ncifcrf.gov/) in NIAID, NIH. We used a significance threshold P-

value adjusted by Benjamini of 0.05 for KEGG and BIOCARTA pathways to 

control the false discovery rate (Huang da et al. 2009). This analysis showed that 

40 signaling pathways can be potentially regulated by 25 signaling proteins 

(Table 8).  
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Table 8. Significantly enriched signaling pathways with 25 P/U pair 

proteins† 

Pathway DB Count Genes –NP/P pair protein PValue Bonferroni Benjamini 

ErbB signaling pathway 
KEGG 

12 
PRKCA, AKT1, MAPK1, EIF4EBP1, 
MAP2K1, ERBB2, STAT5A, MAPK8, 
RPS6KB1, MTOR, MYC, SRC  

2.20E-14 1.47E-12 1.47E-12 

Insulin signaling pathway  
KEGG 

11 
AKT1, MAPK1, EIF4EBP1, 
MAP2K1, TSC2, ACACA, MAPK8, 
PRKAA1, RPS6KB1, MTOR, IRS1  

1.06E-10 7.12E-09 2.37E-09 

mTOR signaling pathway  
KEGG 

8 
AKT1, MAPK1, EIF4EBP1, 
RPS6KA1, TSC2, PRKAA1, 
RPS6KB1, MTOR  

1.67E-09 1.12E-07 2.79E-08 

Neurotrophin signaling pathway  
KEGG 

9 
PDK1, AKT1, MAPK1, RPS6KA1, 
MAP2K1, MAPK14, MAPK8, 
FOXO3, IRS1  

3.60E-08 2.41E-06 4.82E-07 

Regulation of eIF4e and p70 S6 Kinase  
 

8 
PRKCA, AKT1, MAPK1, EIF4EBP1, 
MAPK14, RPS6KB1, MTOR, IRS1  

2.04E-08 2.85E-06 2.85E-06 

Fc epsilon RI signaling pathway  
KEGG 

7 
PDK1, PRKCA, AKT1, MAPK1, 
MAP2K1, MAPK14, MAPK8  

8.80E-07 5.90E-05 6.55E-06 

Adipocytokine signaling pathway  
KEGG 

6 
AKT1, MAPK8, PRKAA1, MTOR, 
IRS1, STAT3  

9.56E-06 6.41E-04 5.34E-05 

VEGF signaling pathway  
KEGG 

6 
PRKCA, AKT1, MAPK1, MAP2K1, 
MAPK14, SRC  

1.67E-05 0.001118 8.60E-05 

GnRH signaling pathway  
KEGG 

6 
PRKCA, MAPK1, MAP2K1, 
MAPK14, MAPK8, SRC  

6.13E-05 0.0041 2.42E-04 

MAPK signaling pathway  
KEGG 

8 
PRKCA, AKT1, MAPK1, RPS6KA1, 
MAP2K1, MAPK14, MAPK8, MYC  

1.21E-04 0.008048 4.49E-04 

Human Cytomegalovirus and Map Kinase 
Pathways  

BIOCARTA 
5 

AKT1, MAPK1, MAP2K1, MAPK14, 
RB1  

3.74E-05 0.005223 0.001744 

Links between Pyk2 and Map Kinases  
BIOCARTA 

6 
PRKCA, MAPK1, MAP2K1, 
MAPK14, MAPK8, SRC  

2.77E-05 0.003871 0.001938 

Bioactive Peptide Induced Signaling Pathway 
BIOCARTA 

6 
PRKCA, MAPK1, MAP2K1, 
MAPK14, STAT5A, MAPK8  

5.77E-05 0.008041 0.002016 

Fc gamma R-mediated phagocytosis  
KEGG 

5 
PRKCA, AKT1, MAPK1, MAP2K1, 
RPS6KB1  

7.71E-04 0.050366 0.002458 

Toll-like receptor signaling pathway  
KEGG 

5 
AKT1, MAPK1, MAP2K1, MAPK14, 
MAPK8  

9.71E-04 0.063027 0.002955 

Multiple antiapoptotic pathways from IGF-1R 
signaling lead to BAD phosphorylation  

BIOCARTA 
5 

AKT1, MAPK1, RPS6KA1, MAP2K1, 
IRS1  

1.10E-04 0.015258 0.00307 

Transcription factor CREB and its 
extracellular signals  

BIOCARTA 
5 

PRKCA, AKT1, MAPK1, RPS6KA1, 
MAPK14  

1.10E-04 0.015258 0.00307 

Chemokine signaling pathway  
KEGG 

6 
AKT1, MAPK1, MAP2K1, GSK3A, 
FOXO3, STAT3  

0.00125 0.080358 0.003345 

T cell receptor signaling pathway  
KEGG 

5 
PDK1, AKT1, MAPK1, MAP2K1, 
MAPK14  

0.001248 0.080275 0.003481 

NFAT and Hypertrophy of the heart 
(Transcription in the broken heart)  

BIOCARTA 
6 

AKT1, MAPK1, MAP2K1, MAPK14, 
MAPK8, RPS6KB1  

1.64E-04 0.02276 0.00383 

Top 20 of 40 Pathways (Bejamini-Hochberg procedure, corrected P-value  < 0.05) 

† Proteins with a pair of non-phospho and phospho protein in the protein array data  
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By using analyzed outcomes from previous steps, we next to find signaling 

pathways associated with each miRNA. First, we generated matrix of miRNAs vs. 

P/U ratios of each proteins by using association scores in ASM from previous 

analysis. Among 222 antibodies used in RPPA data, we only selected 25 pairs of 

antibodies for analysis. P/U ratios were generated by using number of associated 

mRNAs from ASM. In this new matrix (436 miRNAs x 25 P/U ratios of signaling 

proteins), signaling strength of each proteins per each miRNA is presented as 

P/U ratios. Second, under the assumption that a protein with higher P/U ratio 

would play more active roles in regulation of signaling pathway, we computed the 

sum of P/U ratios of the proteins in each signaling pathway per miRNA, 

generating Pathway Association Score (PAS) (Fig.14).  PASi per a miRNA, i, 

was calculated as following: 

PASi � ∑ R�
��	  

 

Where n is the total number of protein pairs belonging to a specific pathway and 

R is the P/U ratio value of each protein pair. For example, if there are 12 proteins 

with P/U ratios in a specific pathway, we can calculate the sum of the 12 P/U 

ratio values as a PAS per a miRNA. We computed PAS values for 40 signaling 

pathways for all miRNAs, yielding new matrix of 436 miRNAs x 40 signaling 

pathways (Pathway Association Score Matrix, PASM).  In later analysis, we used 

the ranked PAS values as indicator of signaling strength associated with miRNAs.   
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Figure  14. miRNA-Pathway association score. MicroRNA-Pathway 

association score. After generating Association Score Matrix (ASM) between 

miRNAs (Mi) and P/U ratios (Ri) of each protein, we computed the sum of P/U 

ratios of the proteins in each signaling pathway per each miRNA and calculated 

Pathway Association Score (PAS) that indicated the association of miRNAs to 

signaling pathways. Next, the matrix of PAS (PASM) was constructed. Diagram 

represents the sample pathway as following: circle-pathway.I, square-pathway.II, 

and triangle-pathway. AS: Association Score, PAS: Pathway Association Score, 

Mi: a miRNA, Ri: AS ratio of P/U protein pair, and Sik: PAS between miRNA Mi 

and Pathway k. 
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5. miRNA cluster enrichment analysis  

Previous study identified miRNA clusters in human genome (52 clusters) (Ruepp 

et al. 2010) (Table 9). Because miRNAs of the same cluster have been known to 

share common target mRNAs and similar biological function (Gurtan and Sharp 

2013), we carried out enrichment analysis of miRNAs with pathways by using 

values in PASM and miRNA genome cluster information in order to identify the 

signaling pathways potentially regulated by miRNA. 

 For the miRNA-pathway enrichment test we used the modified parametric 

analysis of gene set enrichment algorism (Kim and Volsky 2005).  For each 

pathway, j, we calculated the enrichment score (Kim and Volsky 2005) based on 

PASM as following: 


� �
�Ux � Ut� � √N

S
 

 

where Ux denotes the mean PAS values within each miRNA cluster. Ut denotes 

the mean of PAS against all miRNAs. N denotes the number of all miRNAs and S 

denotes the standard deviation of all PAS values against each pathway. 

Enrichment score f converted into P-value by applying the cumulative standard 

normal distribution function using T-profiler algorithm (Boorsma et al. 2005) in R. 

Finally we generated the pathway-miRNA cluster association matrix (52 miRNA 

clusters x 40 pathways). Significant pathway enriched miRNA clusters were 
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selected based on the P < 0.05. All analyses were performed using the R 

Bioconductor statistical programming platform (http://bioconductor.org). 
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Table 9. MicroRNA cluster family  

Cluster  miRNA cluster   

1 

hsa-mir-371|hsa-mir-372|hsa-mir-373|hsa-mir-512-1|hsa-mir-512-2|hsa-mir-
498|hsa-mir-520e|hsa-mir-515-1|hsa-mir-519e|hsa-mir-520f|hsa-mir-515-
2|hsa-mir-519c|hsa-mir-520a|hsa-mir-526b|hsa-mir-519b|hsa-mir-525|hsa-
mir-523|hsa-mir-518f|hsa-mir-520b|hsa-mir-518b|hsa-mir-526a-1|hsa-mir-
520c|hsa-mir-518c|hsa-mir-524|hsa-mir-517a|hsa-mir-519d|hsa-mir-521-
2|hsa-mir-520d|hsa-mir-517b|hsa-mir-520g|hsa-mir-516b-2|hsa-mir-526a-
2|hsa-mir-518e|hsa-mir-518a-1|hsa-mir-518d|hsa-mir-516b-1|hsa-mir-518a-
2|hsa-mir-517c|hsa-mir-520h|hsa-mir-521-1|hsa-mir-522|hsa-mir-519a-
1|hsa-mir-527|hsa-mir-516a-1|hsa-mir-516a-2|hsa-mir-519a-2|hsa-mir-
1323|hsa-mir-1283-1|hsa-mir-1283-2  

2 

hsa-mir-134|hsa-mir-154|hsa-mir-299|hsa-mir-376c|hsa-mir-369|hsa-mir-
376a-1|hsa-mir-377|hsa-mir-379|hsa-mir-380|hsa-mir-381|hsa-mir-382|hsa-
mir-323|hsa-mir-329-1|hsa-mir-329-2|hsa-mir-453|hsa-mir-409|hsa-mir-
412|hsa-mir-410|hsa-mir-376b|hsa-mir-485|hsa-mir-487a|hsa-mir-494|hsa-
mir-495|hsa-mir-496|hsa-mir-539|hsa-mir-544|hsa-mir-376a-2|hsa-mir-
487b|hsa-mir-411|hsa-mir-654|hsa-mir-655|hsa-mir-656|hsa-mir-758|hsa-
mir-668|hsa-mir-1185-2|hsa-mir-1185-1|hsa-mir-300|hsa-mir-541|hsa-mir-
889|hsa-mir-543|hsa-mir-1197  

3 hsa-mir-16-2|hsa-mir-15b  
4 hsa-mir-105-1|hsa-mir-105-2|hsa-mir-767  

5 
hsa-mir-127|hsa-mir-136|hsa-mir-370|hsa-mir-337|hsa-mir-431|hsa-mir-
433|hsa-mir-493|hsa-mir-432|hsa-mir-770|hsa-mir-665  

6 hsa-mir-34b|hsa-mir-34c  
7 hsa-mir-144|hsa-mir-451  
8 hsa-mir-365-1|hsa-mir-193b  
9 hsa-mir-224|hsa-mir-452  
10 hsa-mir-421|hsa-mir-374b  
11 hsa-mir-449a|hsa-mir-449b  
12 hsa-mir-296|hsa-mir-298  

13 
hsa-mir-424|hsa-mir-450a-1|hsa-mir-450a-2|hsa-mir-503|hsa-mir-542|hsa-
mir-450b  

14 hsa-mir-215|hsa-mir-194-1  
15 hsa-mir-221|hsa-mir-222  
16 hsa-mir-141|hsa-mir-200c  
17 hsa-let-7c|hsa-mir-99a  
18 hsa-mir-195|hsa-mir-497  
19 hsa-mir-143|hsa-mir-145  
20 hsa-mir-23a|hsa-mir-24-2|hsa-mir-27a  
21 hsa-let-7g|hsa-mir-135a-1  
22 hsa-mir-181b-1|hsa-mir-181a-1  
23 hsa-let-7a-3|hsa-let-7b  
24 hsa-let-7a-2|hsa-mir-100|hsa-mir-125b-1  
25 hsa-mir-25|hsa-mir-93|hsa-mir-106b  
26 hsa-mir-24-1|hsa-mir-23b|hsa-mir-27b  
27 hsa-mir-181c|hsa-mir-181d  
28 hsa-mir-191|hsa-mir-425  
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29 hsa-mir-30c-1|hsa-mir-30e  
30 hsa-let-7a-1|hsa-let-7d|hsa-let-7f-1  
31 hsa-mir-193a|hsa-mir-365-2  
32 hsa-mir-30a|hsa-mir-30c-2  
33 hsa-mir-15a|hsa-mir-16-1  

34 
hsa-mir-19b-2|hsa-mir-92a-2|hsa-mir-106a|hsa-mir-363|hsa-mir-18b|hsa-
mir-20b  

35 hsa-mir-302a|hsa-mir-302b|hsa-mir-302c|hsa-mir-302d|hsa-mir-367  
36 hsa-mir-216a|hsa-mir-217|hsa-mir-216b  
37 hsa-mir-29a|hsa-mir-29b-1  
38 hsa-mir-212|hsa-mir-132  
39 hsa-mir-199a-2|hsa-mir-214  
40 hsa-mir-29b-2|hsa-mir-29c  

41 
hsa-mir-188|hsa-mir-362|hsa-mir-500|hsa-mir-501|hsa-mir-502|hsa-mir-
532|hsa-mir-660  

42 hsa-let-7e|hsa-mir-125a|hsa-mir-99b  
43 hsa-mir-1-2|hsa-mir-133a-1  
44 hsa-mir-200b|hsa-mir-200a|hsa-mir-429  
45 hsa-mir-192|hsa-mir-194-2  

46 
hsa-mir-17|hsa-mir-18a|hsa-mir-19a|hsa-mir-19b-1|hsa-mir-20a|hsa-mir-
92a-1  

47 hsa-mir-96|hsa-mir-182|hsa-mir-183  
48 hsa-mir-30d|hsa-mir-30b  
49 hsa-mir-133a-2|hsa-mir-1-1  
50 hsa-mir-181a-2|hsa-mir-181b-2  
51 hsa-mir-206|hsa-mir-133b  
52 hsa-let-7f-2|hsa-mir-98  
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 For the strong assumption regarding as the log-normality and equal variance for 

PASM we performed a normalization based on z-score transformation in R. The 

P-values were calculated against 1000 randomized samples. 

 

6. Cell culture and miRNAs transfection 

MDA-MB-231, MCF7 and UACC-257 were cultured in liquid culture with 

Dulbecco’s modified eagle medium (DMEM; GIBCO Laboratories, Grand Island, 

NY, USA) and RPMI supplemented with heat-inactivated 10% fetal bovine serum 

(FBS; Equitech-Bio, Kerrville, TX, USA) and a 1% antibiotic antimycotic solution 

(Invitrogen, CA, USA). The cells were maintained at 37°C in a humidified 

atmosphere with 5% CO2. Mature microRNAs mimics from miR-500 were 

purchased from Ambion Inc.  To estimate transfection efficiency, the negative 

control FAM (carboxyfluorescein) labeled RNA oligonucleotide (Ambion, TX, USA) 

were used. The oligonucleotides were individually transfected with 

Oligofectamine reagent (Invitrogen, CA, USA) at the final concentration of 100 

pmol/well for a 12-well plate. After 48-h post-transfection, cells were harvested 

and analyzed. 

 

7. Microarray and data analysis 

Two breast cancer cell lines (MDA-MB-231 and MCF7) were used for analysis of 

gene expression data after transfecting miR-500 mimic (Ambion, TX, USA) and 

control. Total RNA was extracted by using the mirVana miRNA Isolation kit 
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(Ambion, TX, USA). 750 ng of total RNA was used for labeling. Sample labeling 

was performed with an RNA amplification kit according to the manufacturer’s 

instructions (Applied Biosystems; Foster City, CA). We used the HumanHT-12 v4 

expression beadchip containing 48000 probes of 25000 annotated genes from 

Illumina Inc (San Diego, CA). After hybridization according to the manufacturer’s 

protocols (Illumina®), the bead chip was scanned with a BeadArray Reader 

(Illumina®) and microarray data were log2-transformed and normalized using the 

quantile normalization method in the Linear Models for Microarray Data package 

in Bioconductor.  Primary microarray data are available in the National Center for 

Biotechnology Information Gene Expression Omnibus public database 

(GSE61752). BRB-ArrayTools were used for statistical analysis of gene 

expression data (Simon et al. 2007). For class comparison between control and 

test samples treated by miR-500, the t-test was applied to identify the genes 

significantly different between two groups when compared using BRB ArrayTools 

(Qi et al. 2009). Gene expression differences were considered significant if P < 

0.001. Cluster analysis was performed using the software programs Cluster and 

Heatmap was generated by Treeview (Eisen et al. 1998).   

 

8. 3’-UTR luciferase reporter assays 

To evaluate miR-500 binding to the PPFIA1 3′-UTR, 74-bp oligonucleotides 

spanning the predicted 3′-UTR miRNA binding site flanked by XhoI and NotI 

restriction sites were cloned into pmirGLO Dual-Luciferase miRNA target 

Expression vector (Promega). Oligonucleotides with a mutated binding site were 
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used as control. Breast cancer and melanoma cells were seeded at a density of 

10,000 cells per well in an opaque 6-well plate. Twenty-four hours after seeding, 

cells were co-transfected with a miR-500 pre-miR (Ambion) or negative control 

pre-miR (Ambion) in combination with the vectors. Forty-eight hours after 

transfection, luciferase reporter gene activity was measured using the Dual-Glo 

Luciferase Assay System (Promega) and a FLUOstar OPTIMA microplate reader 

(BMG LABTECH). 

 

9. 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay 

The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT; Sigma-

Aldrich) assay was performed as described previously (Mosmann 1983) to 

assess cell proliferation after mimic miR-500 treatment or control in MDA-MB-231 

cells. Cells were plated into 12-well plates, transfected with mimic and control 

and incubated for 48 hrs. Cells were fixed in 10% formaldehyde and stained in 10% 

Crystal violet (Sigma-Aldrich) for 10 min at room temperature. The absorbance of 

individual wells was read using by a VMax kinetic microplate reader (Molecular 

Devices, Sunnyvale, CA, USA) at 570nm. 
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10. shRNAs and lentiviral transduction. 

 

Letiviral-based shRNA against human (Sigma-Aldrich, St. Louis, MO,), human 

PPP2R5E and PPFIA1, and control shRNA targeting eGFP (Cat. No. SHC005V) 

were used for knock-down experiments. Lentivirus particles were produced by 

transient transfection of shRNA expression vectors along with packaging vectors 

pLP1, pLP2, and pLP/VSVG (Invitrogen, Carlsbad, CA) in 293FT cells. The 

lentiviral supernatants were collected at 48-72 hours post transfection and frozen 

in aliquots. A moderate multiplicity of infection (MOI=3) was used for transduction 

of cells to minimize negative effects on cellular proliferation. At 2 to 4 days after 

infection, all experiments were performed. Reverse transcription polymerase 

chain reaction (RT-PCR) was performed to quantify the mRNA of PPP2R5E and 

PPFIA1 to examine the knock-down efficiency with the primers (Table 10).  

 

Table 10. Primers for qRT-PCR 

Gene Forward Reverse 

PPFIA1 CCACATCTGTGCATGACCTC TTCCAAGCGCTCCTGTAACT 

PPP2R5E GTATGTGGCTGTCAGCTCGT TTGTGGCGTTGGTGTACAAT 
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11.      Western blot analysis 

 

The culture cell samples were homogenized at 4°C in a protein lysis buffer. Equal 

amounts of total protein from each sample were resolved through a 10% SDS–

PAGE gel and then transferred to a PVDF membrane (Perkin Elmer Life 

Scientific Inc.). The membranes were blocked with 5% non-fat dried skimmed 

milk powder solution for 1 h, and then incubated overnight at 4◦C with 

monoclonal or polyclonal antibodies for Phospho-MAP2K1 (Ser217/221, 1:1000, 

Cell Signaling Technology), MAP2K1 (1:1000, Cell Signaling Technology), and α-

tublin (1:1000, Cell Signaling Technology). After washing with TBST (Tris-

buffered saline with Tween; 20 mM Tris/HCl, pH 7.6, 150 mM NaCl and 0.05% 

Tween 20), the membranes were incubated with a secondary antibody against 

rabbit or mouse IgG. Then the membranes were washed, and protein was 

detected with an ECL (enhanced chemiluminescence) kit (Bio-Rad). 

 

12. Database implementation 

We implemented a web-based miRNA-RPPA-pathway profiling system (miRPP, 

http://www.appex.kr/mirpp) based on our approach using a host language, JAVA 

(http://www.java.com). To provide user friendly and active interfaces, Google web 

toolkit (GWT, http://www.gwtproject.org/) and GWT extended (GXT, 

http://www.sencha.com/products/gxt) frameworks were used. The data 

transporting between client and miRPP server is controlled by GWT remote 
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procedure call (RPC) method. All statistical analysis methods of miRPP were 

implemented by R script language (http://www.r-project.org) with Bioconductor 

plugins (http://www.bioconductor.org). Calling R modules from a host language is 

managed by RCaller framework (https://code.google.com/p/rcaller). To store and 

handle the association scores and expression intensities, MySQL database 

management system was applied (http://dev.mysql.com). In addition, data query 

on MySQL from a host language is controlled by MyBatis, a XML based SQL 

mapping framework (https://code.google.com/p/mybatis). All services of miRPP 

are contained and served on an Apache Tomcat web server 

(http://tomcat.apache.org). 
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CHAPTER 3 

CONSTRUCTION OF CORRELATION MATRIX OF MICRORNAS, 

MRNA, AND PROTEIN FEATURES IN NCI-60 CELL LINES. 
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1. Microarray Expression data sets 

 

In this study, we used three different level of data sets in NCI-60 cells as the 

followings: mRNA array (45k probes), miRNA array (439 probes), RPPA (222 

probes). Figure.15 shows the overall expression pattern of each data set. We 

found the tissue specific signature of human tumors in the clustering analysis. 

For example, in the clustering of miRNA expression data we found the 

expression signatures depending on tumor types which were reported in the 

previous study (Olive et al. 2010) (Fig15C.).  
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Figure 15. Overall expression pattern of omics data sets in NCI-60 cells. (A) 

mRNA array data, (B) miRNA array data, (C) RPPA data (Park et al. 2010). After 

variance filtering of probes with low standard deviation in mRNA data set, 

hierarchical clustering was performed. MicroRNA and RPPA data were clustered 

with all probes. 
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2. Construction of correlation matrix of miRNAs, mRNA, and protein 

features in NCI-60 cell lines.  

 

For the development of algorithms, we selected data sets of miRNAs, mRNAs, 

and protein expression from NCI-60 cell lines rather than from other data sets 

because NCI-60 cell lines are the most extensively characterized lines (Bussey 

et al. 2006; Liu et al. 2010b; Zeeberg et al. 2012; Varma et al. 2014), and 

although data size is relatively small but they represent major tumor types well. 

More importantly, these cell lines can be quickly tested for validation of molecular 

functions predicted by algorithms.   

A schematic overview of our approach is shown in Figure.16. Because 

miRNAs indirectly regulate expression and activation of proteins through 

targeting mRNAs, we tried to develop an analysis approach that would mimic 

biological process of regulatory circuits in cells.  

In the correlation analysis between miRNA and mRNA data sets we found 

that top ranked miRNAs by the number of correlated mRNAs tends to be more 

tumor specific. For example, among these miRNAs in Table.11  the previous 

study showed that mir-093-prec and mir-106, mir-107, mir-020, mir-099, and mir-

017 were differentially expressed in tumors compared with non-tumorous tissues 

(Paranjape et al. 2009).  
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Figure 16. Schematic overview illustrating data analysis process. Data 

analysis was carried out in three steps. In first step, two correlation matrices 

(miRNAs vs. mRNAs, and mRNAs vs. protein features) were generated by using 

Pearson correlation values. Two correlation matrices were integrated later by 

using mRNAs as denominators, generating association score between miRNAs 

and protein features. Resulted association scores represent number of 

commonly correlated mRNAs between miRNAs and protein features in matrix 

format. In second step, the P/U ratios (number of mRNAs associated with 

phosphorylated protein/number of mRNAs associated with unmodified protein) of 

each miRNA are mapped into signaling pathways and used to generate Pathway 

Association Score (PAS). PAS is later was normalized through z-score 

transformation with 1000 permutation. In last step, miRNA cluster enrichment 

analysis over signaling pathways was carried out with PASM and miRNA cluster 

information.  
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Table 11. Top 20 miRNA ranked by the number of correlated mRNAs 

 

miRNA # of correlated mRNA probes(%)* 

mir-093-prec-7.1=093-1 1841(8.07) 

mir-106bNo1 1579(6.92) 

mir-125b-2-precNo2 1424(6.24) 

mir-106-prec-X 1357(5.95) 

mir-142-prec 1337(5.86) 

mir-125b-1 1327(5.82) 

mir-020-prec 1268(5.56) 

mir-106aNo1 1217(5.34) 

mir-100No1 1216(5.33) 

mir-025-prec 1208(5.3) 

mir-509No1 1180(5.17) 

mir-032-precNo2 1168(5.12) 

mir-20bNo1 1138(4.99) 

mir-099-prec-21 1117(4.9) 

mir-200cNo1 1099(4.82) 

mir-125a-precNo1 1065(4.67) 

mir-023a-prec 1053(4.62) 

mir-018-prec 1042(4.57) 

mir-017-precNo2 1021(4.48) 

mir-513-2No1 1018(4.46) 

*p-val < 0.005 
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First, we generated a correlation matrix between expression of miRNAs and 

mRNAs by using expression data from NCI-60 cell lines (Liu et al. 2010b); 

302,712 pairs were significantly correlated (P < 0.005).  Second, we generated a 

correlation matrix between expression of mRNAs and protein features 

(expression and phosphorylation) (Zeeberg et al. 2012; Varma et al. 2014) two 

correlation matrices were integrated together by using mRNAs as denominators 

connecting miRNAs to protein features, reflecting indirect regulation of proteins 

by miRNAs. Briefly, significantly correlated mRNAs for a particular miRNA were 

cross-compared with significantly correlated mRNAs for all proteins to generate 

association scores of the miRNA across all proteins. Thus, association scores 

represent number of commonly correlated mRNAs between miRNAs and protein 

features in matrix format (Fig. 17).  
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Figure 17. Schematic overview illustrating data integration. Pearson's 

correlation coefficient analysis was performed to generate two correlated pair 

sets; miRNA-mRNA and RPPA-mRNA pairs. In correlation analysis, P-value less 

than 0.005 was considered to be statistically significant. To establish the 

association between miRNA and protein, two independently generated  

correlation matrices were integrated by counting correlated mRNAs as 

denominators. Association score represents the log2 transformed number of 

commonly correlated mRNAs with the both miRNA and RPPA probe. 
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To explore the distribution of ASM we made a density plot with all association 

scores between miRNAs and RPPA proteins. It showed a Gaussian distribution 

over 2 (Fig.18). When using ASM integrated together by counting correlated 

mRNAs between miRNA and RPPA (cut-off >7), we found one of miRNA clusters 

representing miR-200 cluster (Fig.19).  This cluster showed the high association 

with E-cadherin, AKT, PI3K and other proteins. The previous studies showed 

MiR-200 family play important role in EMT pathway including E-cadherin and 

also in AKT pathway (Cancer Genome Atlas Research 2014).   
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Cut-off(log2) # of miRNA-RPPA pairs % 

>2 48,242 50.07 

>3 36,524 37.91 

>4 25,672 26.65 

>5 16,654 17.29 

>6 9,643 10.01 

>7 4,831 5.01 

>8 1,809 1.88 

 

 

Figure 18. Density plot of Association scores. X-axis represents log2 based 

values. The table shows the number of significantly correlated miRNA-RPPA 

pairs depending on the cut-off. 

 

 



 

 

Figure 19 . miR-200 cluster associated with RPPA proteins in ASM
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200 cluster associated with RPPA proteins in ASM

CHAPTER 4 

FUNCTIONAL MAPPING OF MICRORNAS IN SIGNALING 

PATHWAYS 

200 cluster associated with RPPA proteins in ASM.   

RNAS IN SIGNALING 



73 

 

Signaling events of pathways are best reflected in modification of signaling 

proteins such as for phosphorylation (Karin and Hunter 1995). RPPA has been 

used for the comprehensive analysis of protein expression levels and activation 

status in signaling pathways through measuring phosphorylation status of gene 

products (Tibes et al. 2006). Using information from antibody pairs that can 

recognize unmodified form or phosphorylated form of the same protein, we 

assessed the significance of phosphorylation by identifying the number of genes 

whose expression patterns are significantly correlated with the degree of 

phosphorylation over expression of the protein. 

Because signaling events of pathways are best reflected in modification of 

signaling proteins like phosphorylation and vast majority of downstream effectors 

of many signaling pathways are transcription regulators, we hypothesize that 

cellular signaling activity would be well reflected in number of mRNAs whose 

expression patterns are correlated with signaling events like phosphorylation of 

signaling proteins. Therefore, we tried to estimate signaling activities in NCI-60 

cells by computing correlated number of mRNAs with phosphorylation of 

signaling proteins. RPPA used 25 antibody pairs that recognize unmodified or 

phosphorylated form of signaling proteins (Table 1). By selecting out 25 pairs of 

correlation data between mRNAs and protein features from correlation matrix, we 

generated P/U ratios (number of mRNAs associated with phosphorylated 

protein/number of mRNAs associated with unmodified protein) as indicator of 

signaling activity of signaling proteins in NCI-60 cell lines.   
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To correlate miRNAs to signaling activity of 25 signaling proteins, we next 

generated matrix between miRNAs and P/U ratios of each proteins (436 miRNAs 

x 25 P/U ratios of signaling proteins) by using association scores in ASM from 

previous analysis. Because 25 signaling proteins are involved in regulation of 40 

signaling pathways (Table 12), we computed the sum of P/U ratios of the 

proteins in each signaling pathway per each miRNA, generating Pathway 

Association Score (PAS) that well reflected the association of miRNAs to 

signaling pathways and the matrix of PAS (PASM). Significance of miRNAs 

associated with signaling pathways was estimated by enrichment analysis using 

association values in PASM and miRNA genome cluster information because 

miRNAs in the same genomic cluster share target mRNAs and biological function 

(Gurtan and Sharp 2013).  This analysis yielded functionally matched list 

between signaling pathways and miRNA clusters (Table 3). Some mRNA 

clusters seem to be involved in regulation of many signaling pathways. For 

example, miRNAs in cluster 5 (hsa-mir-127, -136, -370, -337, -431, -433, -493, -

432, -770 and  -665 ) showed frequent association with multiple signaling 

pathways. Interestingly, substantial fraction of signaling pathways associated 

with cluster 5 is immune-response pathways, suggesting that miRNAs in cluster 

5 might be important regulators of immune systems.   For instance, a previous 

study reported that hsa-miR-127 is involved in B-cell differentiation process 

(Leucci et al. 2010). 
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Table 12.  MicroRNA cluster enriched pathway 

Pathway DB Cluster COUNT 
Z-

SCORE 
P-

VALUE 
q-

VALUE 

PELP1 pathway  BIOCARTA 35 14 4.03653 5.43E-05 0.000762 

FC EPSILON RI signaling pathway  KEGG 5 14 3.55105 0.000384 0.01867 

T-CELL RECEPTOR signaling pathway  KEGG 5 14 3.55105 0.000384 0.01867 

CREB pathway   BIOCARTA 5 14 3.52968 0.000416 0.018861 

BIOPEPTIDES pathway   BIOCARTA 5 14 3.48198 0.000498 0.015912 

ADIPOCYTOKINE signaling pathway  KEGG 46 7 3.31242 0.000925 0.028157 

HCMV pathway   BIOCARTA 5 14 3.26827 0.001082 0.0326 

TOLL LIKE RECEPTOR signaling pathway  KEGG 5 14 3.26827 0.001082 0.0326 

CHEMOKINE signaling pathway  KEGG 5 14 3.26103 0.00111 0.02751 

ERK pathway   BIOCARTA 41 9 3.21621 0.001299 0.050206 

NFAT pathway   BIOCARTA 5 14 3.1846 0.00145 0.043812 

PROGESTERONE MEDIATED OOCYTE 

MATURATION  

KEGG 

5 14 
3.13745 0.001704 0.053421 

BIOPEPTIDES pathway   BIOCARTA 2 38 3.07015 0.002139 0.034201 

FC GAMMA R MEDIATED 

PHAGOCYTOSIS  

KEGG 

5 14 
3.05116 0.00228 0.080329 

NEUROTROPHIN signaling pathway  KEGG 5 14 2.99409 0.002753 0.142044 

HER2 pathway  BIOCARTA 41 9 2.90519 0.00367 0.041129 

MTOR pathway   BIOCARTA 47 6 2.90323 0.003693 0.034864 

TPO pathway   BIOCARTA 4 3 2.89114 0.003838 0.199599 

PDGF pathway   BIOCARTA 4 3 2.89114 0.003838 0.199599 

EGF pathway   BIOCARTA 4 3 2.89114 0.003838 0.199599 

IL4 pathway  BIOCARTA 7 3 2.83008 0.004654 0.030358 

EIF4 pathway  BIOCARTA 5 14 2.81424 0.004889 0.12102 

ADIPOCYTOKINE signaling pathway  KEGG 26 4 2.80944 0.004963 0.053712 

VEGF signaling pathway  KEGG 5 14 2.80882 0.004972 0.053927 

VEGF signaling pathway  KEGG 23 2 2.69258 0.00709 0.053927 

EDG1 pathway  BIOCARTA 5 14 2.67643 0.007441 0.172658 

MAPK signaling pathway  KEGG 5 14 2.63849 0.008328 0.216517 

ERK pathway   BIOCARTA 4 3 2.58685 0.009686 0.187181 

CHEMOKINE signaling pathway  KEGG 23 2 2.52562 0.01155 0.090542 

IGF1R pathway  BIOCARTA 5 14 2.52197 0.01167 0.219031 

 

Top 30 overrepresented pathways with p < 0.02  The pathway and cluster are sorted by 

p-value of Parametric gene set enrichment analysis 
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1.  Web-based Database system, miRPP 

 

Based on our approach we implemented a web-based tool, miRNA-RPPA-

pathway profiling system (miRPP) (Fig.20). miRPP provides the following 

information against a query miRNA in NCI-60 data sets: Overall expression of 

significantly correlated mRNAs and RPPA protein probes, mRNA mediated 

Association Score Matrix between miRNAs and RPPA probes, and miRNA 

associated cell signaling pathways. 
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Figure 20 . miRNA-RPPA-Pathway Association Profiler (miRPP). miRPP 

provides the following information against a miRNA in NCI-60 data sets: Overall 

expression of significantly correlated mRNAs and RPPA protein probes, mRNA 

mediated Association Score Matrix between miRNAs and RPPA probes, and 

miRNA associated cell signaling pathways. It was implemented by JAVA. For 

user friendly and active interfaces, Google web toolkit (GWT) and GWT extended 

(GXT) frameworks were used. RPPA: Reverse phase protein array. 
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2.  Biological and clinical significance of miR-500 

 

Because MAPK pathway is critical for regulation of cell growth and cross-talk with 

many other signaling pathways (De Luca et al. 2012; Deschenes-Simard et al. 

2014), we selected miRNAs (cluster 41; hsa-mir-188, -362, -500, -501, -502, -532, 

and -660) significantly associated with MAPK pathway for further functional 

validation (Table.13). We found strong association between miR-500 cluster and 

proteins in MAPK pathway (Fig.21). Out of 7 miRNAs in cluster 41, we further 

selected miR-500 because its expression was most significantly associated with 

activation of MAPK pathway as judged by correlation between its expression and 

phosphorylation of MAP2K1, a key upstream regulator of MAPK1 (Sebolt-

Leopold 2000; Chowdhury et al. 2014; Neuzillet et al. 2014). We also found that 

MAP2K1 had high score of P/U ratio against miR-500 (Fig. 22). Among miR-500 

cluster members, the phosphorylation of MAP2K1 was significantly correlated 

with miR-500 expression in NCI-60 cells (Fig.23). 
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Table 13. Hsa-mir-500 information from miRBase* 

Accession MI0003184 

Previous IDs hsa-mir-500 

Symbol HGNC:MIR500 

Description Homo sapiens miR-500a stem-loop 

Gene family MIPF0000139; mir-500 

Genome context Coordinates (GRCh38) chrX: 50008431-50008514 [+] 

Stem-loop 

 c c     -u         uac ug    agag   ugu  
gcuc c cucuc  aauccuugc   c  ggug    ugc   c 

|||| | |||||  |||||||||   |  ||||    |||   u 

cgag g gagag  uuaggaacg   g  ccac    acg   g 

    a c     uc         --- gu    -gua   uaa 

Clustered miRNAs 

< 10kb from hsa-mir-500a > 

hsa-mir-532 chrX: 50003148-50003238 [+]  

hsa-mir-188 chrX: 50003503-50003588 [+]  

hsa-mir-500a chrX: 50008431-50008514 [+]  

hsa-mir-362 chrX: 50008964-50009028 [+]  

hsa-mir-501 chrX: 50009722-50009805 [+]  

hsa-mir-500b chrX: 50010672-50010750 [+]  

hsa-mir-660 chrX: 50013241-50013337 [+]  

hsa-mir-502 chrX: 50014598-50014683 [+]  

 

*http://www.mirbase.org 

  



81 

 

 

Figure 21.  Association between miR-500s and the proteins in MAPK 

pathway. (A) Heatmap of ASM against miR-500s. (B) Direct correlation of 

expression data between miR-500s and proteins in MAPK pathway. MEK1/2 

(official symbol: MAP2K1) 
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Figure 22. P/U ratio of the protein pairs against miR
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. P/U ratio of the protein pairs against miR-500. 
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Figure 23. Association between miRNAs in cluster 41 and 

of MAP2K1in NCI-60 cells.

correlation matrix between miRNAs in cluster 41 and phosphorylation level of 

MAP2K1 in NCI-60 cells. Numbers in boxes represent correlation and size of 

number reflect strength of correlation. pMAP2K1, Phosphorylated MAP2K1. 
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. Association between miRNAs in cluster 41 and phosphorylation 

60 cells. Pearson correlation approach was used to generate 

correlation matrix between miRNAs in cluster 41 and phosphorylation level of 

60 cells. Numbers in boxes represent correlation and size of 

ct strength of correlation. pMAP2K1, Phosphorylated MAP2K1. 

 

phosphorylation 

Pearson correlation approach was used to generate 

correlation matrix between miRNAs in cluster 41 and phosphorylation level of 

60 cells. Numbers in boxes represent correlation and size of 

ct strength of correlation. pMAP2K1, Phosphorylated MAP2K1.  
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3. Chloride channel protein 5 (CLCN5) 

 

CLCN5 gene is a member of the CIC family of chloride ion channels and ion 

transports. It is localized to endosomal membranes. Its mutations induce Dent 

disease and renal tubular disorders complicnephrolithiasis, and functions as 

antiport system and exchanges chloride ions against protons (Akbani et al. 2014). 

CLCN5 also is localized in Golgi apparatus membrane (http://www.genecards.org) 

and highly expressed in Kidney tissue, moderately in aortic vascular smooth 

muscle and endothelial cells, and a little higher in the coronary vascular smooth 

muscle (Fig.24). 

 

 

 

 

Figure 24. mRNA expression of CLCN5 in nomal and cancer tissues  
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Interestingly, expression of miR-500 is significantly higher in melanoma and 

breast cancer cell lines (Fig. 25A), suggesting potential roles of miR-500 in 

regulation of MAPK pathway in these cancer types. Since miRNA cluster 41 is 

co-localized with CLCN5 gene and expressed as part of CLCN5 transcript, we 

assessed correlation of expression of miRNAs in cluster 41 and CLCN5 in NCI-

60 cell lines (Fig. 25B). Interestingly, correlation was highest between miR-500 

and CLCN5.  Because expression of CLCN5 is highly correlated with expression 

of miR-500, we next assessed potential clinical relevance of miR-500 in 

melanoma by using mRNA expression data of tumor tissues from patients with 

melanoma (GSE19234) (Lorenzi et al. 2009). When patients were dichotomized 

according to expression of CLCN5, high expression of CLCN5 was significantly 

associated with shorter overall survival (Fig. 25C), strongly suggesting that miR-

500 might play roles as oncogene presumably by activating MAPK pathway in 

melanoma. 

  



 

 

 

 

 

 

Figure 25. miR-500 is significantly associated with prognosis of patients 

with melanoma. (A) Average expression of miRNAs in cluster 41 in NCI

lines. Among 7 miRNAs in cluster 41, probes for 5 miRNAs were available in 

expression data. The expression values are normalized and averaged in each 

tissue. (B) Correlation analysis between mi

expression of CLCN5 

survival of patients dichotomized according to the expression of 
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500 is significantly associated with prognosis of patients 

(A) Average expression of miRNAs in cluster 41 in NCI

lines. Among 7 miRNAs in cluster 41, probes for 5 miRNAs were available in 

expression data. The expression values are normalized and averaged in each 

tissue. (B) Correlation analysis between miRNAs in cluster 41 and the mRNA 

 in NCI-60 cell lines.  (C) Kaplan-Meier plots of overall 

survival of patients dichotomized according to the expression of CLCN5

500 is significantly associated with prognosis of patients 

(A) Average expression of miRNAs in cluster 41 in NCI-60 cell 

lines. Among 7 miRNAs in cluster 41, probes for 5 miRNAs were available in 

expression data. The expression values are normalized and averaged in each 

RNAs in cluster 41 and the mRNA 

Meier plots of overall 

CLCN5. 
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CHAPTER 5 

IN-VITRO VALIDATION OF PREDICTED TARGETS OF MIR-500 
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1. Hypothesis and experimental design 

 

In-silico analysis we identified that miR-500 expression is significantly associated 

with MAPK pathway and positively correlated with the phosphorylation of 

MAP2K1. Therefore, we hypotheses when miR-500 mimic is treated into cells the 

phosphorylation level of MAP2K1 will be increased (Fig.26). 

 

 

 

 

 

Figure 26. Experimental design to examine the increase of MAP2K1 

phosphorylation by miR-500 in melanoma and breast cancer cells. 

- Control 

- Mimic miR-500  

 

Phosphorylation level of MAP2K1 (S217.S221) ?  

MB231, MCF7 or UACC257 
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2. Screening direct targets of miR-500 through In-vitro assays  

 

Because our analysis suggested significant correlation of miR-500 with MAPK 

pathway, we hypothesized that miR-500 regulates MAP2K1 in melanoma cells. 

To do this, we transfected miR-500 mimic into UACC-257 melanoma cell and 

measured phosphorylation of MAP2K1, reflecting activation of MAP2K1 

(Mammano et al. 2012; Federici et al. 2013) (Fig.27).  In good agreement with 

our hypothesis, MAP2K1 was activated upon transfection of miR-500 mimic as 

evidenced by increased phosphorylation of MAP2K1 (Fig. 28A). To verify that 

the effect was not specific to melanoma cells and was occurred independently of 

BRAF mutation status, we further tested the ability of miR-500 to activate 

MAP2K1 in two MCF7 and MDA-MB-231 breast cancer cell lines. MCF7 cells do 

not have BRAF mutation. Consistent with result from UACC-257, we observed 

activation of MAP2K1 when miR-500 mimic were transfected into MCF7 and 

MDA-MB-231 cells, strongly suggesting that miR-500 regulates MAPK pathway 

by activating MAP2K1. In addition, cell growth was significantly increased upon 

introduction of miR-500 mimic to MDA-MB-231 cells (Fig. 28B), further 

supporting that MAPK pathway is really activated.  
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Figure 27.  Representative photographs of Negative control miRNA with 

FAMTM. Control miRNAs were transfected under light (left), epifluorescence (mid), 

overlay (right) microscopy in MB-231, UACC-257 and MCF7 cells.   
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Figure 28. miR-500 regulates phosphorylation of MAP2K1. (A) Western blots 

for expression and phosphorylation of MAP2K1 in miR-500 transfected 

melanoma and breast cancer cells.  α-Tubulin was used as loading control. (B) 

miR-500 significantly increased proliferation of MDA-MB-231 cells. MTT 

proliferation assay was carried out 48 hours after treating cells with miR-500 

mimic or control (P < 0.01 by Student t-test).   
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To determine the molecular mechanism by which miR-500 regulates MAP2K1, 

we performed microarray experiments after transfecting miR-500 mimic into 

MCF7 and MDA-MB-231 breast cancer cells. Because MAPK pathway can be 

activated in UACC-257 melanoma cells with a BRAF mutation, we used breast 

cancer cells to identify more direct downstream effect on the MAP2K1 

phosphorylation by miR-500. Then microarray experiment was performed with 

extracted RNA. 

Analysis of gene expression data revealed that expression of 719 genes 

was significantly changed in both cell lines (P < 0.001, Two sample t-test). 

Because miRNAs negatively regulates mRNAs by directly targeting them, we 

further selected genes whose expression is commonly down-regulated by miR-

500 (Fig. 29). Of 719 genes, 447 genes were commonly downregulated by miR-

500 in the both cells. Because miR-500 activated MAP2K1 while miRNAs 

negatively regulates their targets, we reasoned that targets of miR-500 for 

regulation of MAP2K1 might be negative regulators of MAP2K1. Phosphatases 

are best known negative regulators of kinase-mediated signaling pathways 

(Roskoski 2012).  Therefore, we further selected mRNAs of phosphatase families 

with predicted target sequence of miR-500 as candidates for key regulators by 

using starBase database providing miRNA-target interactions (Yang et al. 2011; 

Chou et al. 2013). There are only two phosphatases or its binding proteins 

(PPP2R5E and PPFIA1) with target sequence of miR-500 among down-

regulated genes by miR-500.  We performed the protein-protein interaction 



 

network analysis related to two putative targets with STRING

(Fig.30 ). 
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network analysis related to two putative targets with STRING (http://stringhttp://string-db.org)  
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Figure 29. Gene expression of MDA-MB-231 and MCF7 cells after the 

transfection of mimic miR-500 or control. Gene expression was used for 

hierarchical clustering after filtering genes with low SD. The data were 

centralized by subtracting median expression level across samples for clustering 

analysis. 3047 genes were presented in the data set. The data are presented in 

matrix format in which rows represent individual gene and columns represent 

each sample. Each cell in the matrix represents the expression level of a gene 

feature in an individual sample. The red and green color in cells reflect relative 

high and low expression levels respectively as indicated in the scale bar (log2 

transformed scale).   
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Figure 30. Protein-Protein Interaction network(PPI) of  phosphatase associated 

proteins from the microarray data analysis. STRING is the database for Known 

and predicted protein-protein interactions. 

  



96 

 

To test if they are involved in regulation of MAP2K1, we silenced their expression 

in MCF7 and UACC-257 cells and measured phosphorylation of MAP2K1. 

Silencing of PPFIA1 activated MAP2K1 in both cell lines whereas silencing of 

PPP2R5E had no effect on MAP2K1 activity (Fig. 31B), suggesting that PPFIA1 

might be negative regulator that is regulated by miR-500 for activation of MAPK 

pathway.  To determine whether miR-500 directly targets the 3’UTR of PPFIA1 

mRNA, we used a luciferase reporter vector containing the 3’UTR sequence of 

PPFIA1, including the predicted binding site for miR-500 in UACC-257 cells. 

Luciferase activity was significantly inhibited by the PPFIA1 3’UTR sequence 

when only miR-500 were co-transfected (Fig. 31D). However, luciferase activity 

was not inhibited by a mutant 3’UTR sequence (Fig. 31C and 31D), strongly 

demonstrating that miR-500 directly targets the 3’UTR sequence of PPFIA1 

mRNA and inhibits the expression of PPFIA1. 
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Figure 31. PPFIA as a direct target of miR-500 for regulation of MAP2K1. (A) 

Commonly down-regulated genes in MB-231 and MCF7 cells. After transfecting 

mimic miR-500 and control in MB-231 and MCF7 cells whole genome microarray 

experiment was performed and differentially expressed genes in two cell lines 

were selected by two-sample t-test (P < 0.001). (B) Western blots for 

phosphorylation of MAP2K1 after silencing PPFIA1 and PPP2R5E in UACC-527 

and MCG7 cells. Cells were transfected with specific shRNAs for 72 hrs. α-

Tubulin was used as a loading control. (C) The miR-500 binding site in the 3′-

UTR of PPFIA1 mRNA.(D) Luciferase reporter assays used vectors including WT 

or Mutant sequences against 3’-UTR region of PPFIA1.  
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CHAPTER 6 

DISCUSSION  
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MicroRNAs have critical roles as a main regulator in post transcriptional level. 

Because miRNAs have small nucleotide sequences, it is challengeable to 

characterize their functional roles in abnormal signaling pathways in cancer. In 

this study we developed a new correlation based approach on the integration of 

the three levels of omics data including miRNA, mRNA, and protein array data, 

for miRNA targeted biological pathways. In this approach we generated ASM and 

PASM for predict miRNA associated pathways. To validate our prediction that 

miR-500 is associated with MAPK pathway, we performed in-vitro experiment 

and found that miR-500 increased the phosphorylation of MAP2K1 by regulating 

PPFIA1 as a direct miR-500 target in melanoma and breast cancer cells. 

 

Using three independent data sets (miRNAs, mRNAs, and proteins) from NCI-60 

cell lines, we developed a series of systematic integration methods that can 

uncover functional roles of miRNAs in regulation of signaling pathways important 

for cancer development and established functional connection map of miRNAs to 

signaling pathways.  

 

Our approaches have several advantages over conventional approaches.  First, 

our analytical approach mimics natural process of cellular regulation in which 

miRNAs target mRNAs to regulate protein expression.  We estimated the 

functional association between miRNAs and proteins by using mRNAs as 

intermediate denominators that were used to establish the functional connection 
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of miRNAs to signaling pathways.  In our approach these intermediate 

denominators might contribute to reflecting biological context for identifying 

miRNA function in signaling pathway. Second, because miRNAs are connected 

to signaling pathways that are a functional unit of cellular regulation, 

interpretation of the data is easier and straightforward. Third, because we used 

data from NCI-60 cell lines that have been extensively characterized, the 

identified functional association can be easily tested and validated in cell lines as 

demonstrated in current study. Lastly, in our study we estimated the function of 

miRNA clusters in signaling pathways in cancer.  Such clusters would more 

reliably predict the association between miRNAs and signaling pathways 

compared with using a single miRNA to understand their function and 

mechanism in various biological processes, because miRNAs in the same cluster 

are frequently regulated together.  

 

While our approach uncovered new functional connections of miRNAs to 

signaling pathways, some of identified functional connection of miRNAs to 

signaling pathways are in good agreement with previous observations. A 

previous report showed that after the knockdown of the entire miR-183~96~182 

cluster, its associated genes were enriched in apoptosis and the 

PI3K/AKT/mTOR pathway (Weeraratne et al. 2012). In our analysis we predicted 

that cluster 47, miR-96, -182, and -183 were significantly associated in regulation 

of mTOR pathway (Table 4). We also found miRNAs in cluster 5 (miR-127, -136, 

-337, -370, 431, -432, -433, -493, -665, and -770) were significantly enriched in 
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the regulation of immune system associated pathways such as Fc epsilon RI (P < 

0.0004), T cell receptor (P < 0.0004), Toll-like receptor (P < 0.0011), Fc gamma 

R-mediated phagocytosis (P < 0.0023), and chemokine signaling pathways (P < 

0.012). In good agreement with our predictions, previous study showed that 

expression of miR-127 was increased in diffuse large B-cell lymphoma (Robertus 

et al. 2009) and also plays a role in inhibiting lung inflammation by targeting IgG 

Fcy receptorI (CD64) in an IgG immune complex model in-vivo (Xie et al. 2012). 

miR-493 regulated the expression of E2F1 in Lung cancer (Gu et al. 2014) which 

was involved in controlling Innate immune receptor Toll-like receptor3 in epithelial 

cells (Taura et al. 2012). MiR-136 is known to be involved in regulation of 

hematopoietic lineage(Yu et al. 2006) and erythropoiesis (Choong et al. 2007). 

 

In addition to good concordance of our prediction with previously known roles of 

miRNAs, reliability of our new method is further tested by functional validation of 

roles of miR-500 in regulation of MAPK pathway. Our data demonstrated that 

miR-500 function as a positive regulator of MAP2K1, upstream regulator of 

MAPKs, by directly targeting PPFIA1, a member of the LAR protein-tyrosine 

phosphatase-interacting protein (liprin) family. The previous studies showed that 

it was regulated by ERK2 in MAPK pathway leading to the inhibition of tumor 

invasion and progression (von Thun et al. 2012), and identified as a putative 

invasion suppressor gene in head and neck cancer (Tan et al. 2008). We further 

demonstrated that PPFIA1 is negative regulator of MAP2K1 as evidenced by 

activation of MAP2K1 upon depletion of PPFIA1 in melanoma and breast cancer 
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cell lines. Although precise mechanism of MAP2K1 regulation by PPFIA1 is 

currently unknown, our data clearly demonstrated that PPFIA1 is a novel 

regulator of MAP2K1.  Taken together with strong concordance of our analysis 

with previous studies, these data strongly supported the validity of our approach 

in finding novel functional roles of miRNAs in the regulation of signaling pathways 

and its potential for identifying novel regulators of signaling pathways.  

 

There are some limitations in our approaches. First, because we generated 

functional connection map between miRNAs and signaling pathways, extra 

experiments is necessary to identify direct targets of miRNAs that regulate 

signaling pathways.  Second, our approaches are limited by number of available 

high quality antibodies used in RPPA experiments. However, because many of 

antibodies used in RPPA experiment were pre-selected for signaling pathways 

important for cancer development and progression, substantial portion of 

signaling pathways is covered by our study. Moreover, antibodies available for 

RPPA experiments have been steadily increased to discover proteomic 

biomarkers in cancer (Hennessy et al. 2010; Meric-Bernstam et al. 2014).   

 

There is an limitation of correlation or association based approaches on miRNA 

target prediction. The correlation between miRNAs and target genes does not 

mean inferring their causal regulatory relationship. Because in this study we also 

used the correlation analysis to generate the indirect association between 
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miRNAs and proteins or biological pathways, it can be limited to examine the 

causality of miRNA-target genes. 

  

1. Concluding remarks and Future directions 

 

In this study we have developed a novel correlation based approach to 

characterize potential miRNA target pathways using ASM and PASM generated 

from genomic and proteomic data. Based on our approach, we found that miR-

500 cluster was enriched in MAPK pathway and performed in-vitro validation that 

miR-500 is involved in MAP2K1 phosphorylation in breast cancer and melanoma 

cells. In addition, we identified PPFIA1 as a direct target of miR-500 that 

regulates MAPK1 in the MAPK pathway.  

 

Our web-based database, miRPP, constructed with the procedures and 

approaches described in this study, may open up new opportunities to uncover 

novel molecular mechanisms regulated by miRNAs in cancer development. This, 

together with hypothesis-driven validation experiments as demonstrated with 

miR-500, paves the way for rapidly cataloging functional roles of miRNAs in 

signaling pathways in general. 
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2. Future works  

Expanding our approach to larger data sets 

With availability of The Cancer Genome Atlas data containing all three data sets 

(mRNAs, miRNAs, and proteins) from same tissues (Cancer Genome Atlas 

Research Network, 2014; Cancer Genome Atlas Research Network 2013; 

Cancer Genome Atlas Network, 2012), we expect our approach can be rapidly 

expanded to identify more functional links of miRNAs to signaling pathways in 

cancer type specific manner. Moreover, this can be also expanded to entire 

TCGA data to find generalizable connections of miRNAs to signaling pathways 

as seen in TCGA Pan-Cancer Project (Cancer Genome Atlas Research et al. 

2013b) (Hoadley et al. 2014). Table 14 shows the TCGA multiomics data sets 

which can be applicable with our approach in cBioPortal 

(http://www.cbioportal.org). Through the analysis of these massive data using our 

approaches we expect to elucidate the complicated miRNA regulatory 

association between miRNAs and signaling pathways. 

 

Improvement of prediction algorithms by including more high-throughput data.  

Since our current approach is based on correlation that does not reflect direct 

functional connections, we will include functional experimental data in future 

analysis to improve accuracy of our prediction methods.  These new data will 

include photoactivatable-ribonucleoside-enhanced crosslinking and 

immunoprecipitation (PAR-CLIP) (Bussey et al. 2006) assay, and high-



106 

 

throughput sequencing of RNAs isolated by crosslinking immunoprecipitation 

(HITS-CLIP) (Roschke et al. 2003) with the next-generation sequencing.  

 

Other non-cording RNAs 

With developing RNA-sequencing technology, huge amount of ncRNA data are 

produced. However their functions have not been clear and needed to be 

characterized. lncRNA data from cancer tissues are available in TCGA data 

portal (https://tcga-data.nci.nih.gov/tcga/). Therefore we can apply our approach 

to investigate lncRNA functions in signaling pathway using TCGA RNA-seq data 

in cancer. 

 

miRPP 

MiRPP currently provides the miRNA-correlated mRNA and RPPA protein 

profiles, indirection association between miRNAs and proteins, and the miRNA-

associated signaling pathways. For the future works in this system, we will 

update the analysis ouputs of TCGA data sets to verify our approach in large 

cancer data sets with the clinical information such as patient survival, tumor 

recurrence  and drug response. 
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3. In summary 

We have developed a novel correlation based approach to characterize 

potential miRNA target pathways using ASM and PASM generated from genomic 

and proteomic data. Based of our approach, we found that miR-500 cluster was 

enriched in MAPK pathway and performed in-vitro validation that miR-500 is 

involved in MEK1/2 phosphorylation in Breast cancer and melanoma cell. In 

addition, we identified PPFIA1 as a direct target of miR-500 that regulates 

MAP2K1 in the MAPK pathway. This approach can be applied to investigate 

unknown regulatory role of miRNAs in signaling pathway and miRNA regulatory 

networks in cancer. 
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