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Src family kinases (SFKs) are commonly over-expressed and/or activated 

in glioblastoma multiforme (GBM), where they serve as key mediators of GBM 

cell proliferation, survival, invasion and angiogenesis. Mechanisms of allosteric 

SFK activation are well described; however, the SFK Fyn is commonly up-

regulated at the mRNA level in multiple human cancers, including GBM, where 

the mode of increased expression is poorly understood. Since activating 

mutations in the epidermal growth factor receptor (EGFR) are commonly 

occurring in GBM, we examined whether EGFR could induce Fyn expression. 

Here, we found that wild-type EGFR, and to a greater extent hyper-activating 

EGFR mutants, EGFRΔIII and R108K, induce a substantial up-regulation of Fyn 

expression. Furthermore, it was determined that Fyn expression is up-regulated 

across a panel of patient-derived GBM stem cells (GSCs) relative to normal 

progenitor controls. Inhibition of Fyn proved to be biologically relevant, as Fyn 

depletion significantly (p<0.01) reduced cellular proliferation and viability of U87-

EGFRΔIII and U87-R108K cells as well as significantly (p<0.001) reducing the 

sphere forming capacity of GSC 7-2. Mechanistically, Fyn induction was 

determined to be under the control of early growth response 1 (Egr-1), a 

previously described redox-responsive transcription factor. Though studies have 
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previously observed increases in reactive oxygen species (ROS) in GBM, the 

relationship between EGFR signaling and ROS production remain poorly 

understood. Using chemical and RNAi-based applications, we demonstrate that 

EGFR-up-regulates ROS in GBM cells through induction of the NADPH oxidase 

(Nox)-2 organizer complex, p47phox, which in turn regulates Fyn expression. 

Therefore, our studies highlight a novel mechanism linking EGFR to the Nox 

complex and Fyn, providing compelling rationale for redox-targeted strategies in 

EGFR-expressing GBM.   
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1.1 Malignant Glioma  
 

Originating from glial cells, gliomas account for the majority of intrinsic 

brain tumors occurring in adults.1 Gliomas are stratified into different subtypes 

based upon presumed cell of origin and include astrocytomas, 

oligodendrogliomas, and ependymomas.2 Glial tumors, or astrocytomas, 

represent the most commonly occurring group of gliomas.3  

On the basis of pathological presentation, namely anaplasia and 

invasiveness, the World Health Organization (WHO) classifies astrocytomas into 

four histological grades: grades I-IV.2 Grade I astrocytic tumors are either 

pilocytic astrocytomas or subependymal giant cell astrocytomas; grade II tumors 

include pilomyxoid astrocytomas, diffuse astrocytomas, and pleomorphic 

xanthoastrocytomas; and grade III tumors are anaplastic astrocytomas.4 Grade I 

lesions are considered low-grade, as they are relatively non-aggressive, 

generally benign and typically curable by resection.2 In contrast, Grade II and 

grade III lesions are diffusely infiltrating, may progress to higher-grade tumors 

and are associated with poorer patient survival and response to therapy.2 WHO 

grade IV lesions are the most common and biologically aggressive lesions and 

include glioblastomas, gliosarcomas and giant cell glioblastoma.4 High-grade 

gliomas are exceedingly invasive and confer the worst clinical prognosis as 

determined by several different factors including lesion grade and Karnofsky 

performance score.2,4,5 Among high-grade gliomas, glioblastoma multiforme 

(GBM) is the most common and lethal type.6 This generates significant interest in 
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better understanding the biology of GBM for the purpose of improving clinical 

outcomes, which will be the focus of the discussion in the following sections.   

 

1.2 GBM 

Roughly 3 in 100,000 patients are newly diagnosed with GBM in the 

United States each year.7 GBM may develop de novo (primary GBM) or through 

progression from lower-grade precursor lesions (secondary GBM).8 Primary GBM 

are rapidly developing tumors that comprise about 90% of all GBM cases, 

typically manifesting in elderly patients but also affecting children.3,7 Secondary 

GBM arise from lower grade anaplastic astrocytomas and occur far less 

frequently, affecting patients less than 45 years of age.7 Though largely 

indistinguishable by histology, primary and secondary GBM vary significantly in 

their genetic and epigenetic profiles.8  

 GBM is unique in that it is the most difficult of all human cancers to treat.9 

Despite advances in multimodal therapeutic approaches, patient outcomes have 

only modestly improved over the past few decades.1 At the same time, the costs 

of treatment are substantial, conferring an economic burden of $105,234.00 per 

per quality-adjusted life-year relative to 2013 US currency rates.9 Currently, the 

overall five-year survival rate for GBM patients is 3.4%10, with the majority of 

patients succumbing to the disease within 14 months.5 Nonetheless, as a more 

comprehensive understanding of the molecular pathology of GBM is attained, the 

development of targeted therapies will likely transform treatment and quality of 

life in this disease.1  
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1.2.1 Therapeutic Strategies in GBM  

The current standard of care for newly diagnosed GBM patients involves 

surgical resection followed by fractionated radiation therapy combined with 

concurrent and adjuvant administration of temozolomide (TMZ).10 TMZ is an 

orally available alkylating agent approved for anaplastic astrocytomas and GBM.  

Structurally, TMZ is a 3-methyl analog of mitozolomide, an antitumor 

imidazotetrazine developed by Stevens and colleagues circa 1987.11 In 

comparison to mitozolomide, TMZ exhibited a more favorable therapeutic index 

as determined across a variety of in vivo murine tumor models.12 Mechanistically, 

TMZ acts to methylate DNA at the O6 position of guanine.3 The resulting 

nucleotide mismatches in complementary DNA give rise to multiple unsuccessful 

post-replicative attempts at mismatch repair, culminating in an apoptotic 

response.13 Detected in roughly 45% of patients, the most salient prognostic 

indicator for a favorable response to TMZ treatment is the degree of epigenetic 

silencing of the DNA repair enzyme O6-methylguanine-DNA-methyltransferase 

(MGMT) promoter.14,15 By restoring O6-alkylated bases caused by 

chemotherapy, MGMT counteracts the effects of TMZ treatment.16 Results from a 

phase III trial have demonstrated the utility of TMZ in the treatment of primary 

GBM with regard to MGMT promoter status, as improved survival rates were 

reported for patients whose tumors had methylation of the MGMT promoter.17 

Resistance to TMZ, however, invariably occurs.9 Factors implicated in the innate 

resistance of GBM patients to TMZ include: elevated levels of the 
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aforementioned MGMT activity; loss of the tumor suppressor PTEN, resulting in 

increased levels of Akt phosphorylation18; and augmented base excision repair 

(BER), capable of rectifying DNA damage induced by TMZ.18,19 

 Despite the advances in surgical resection along with inclusion of TMZ, 

only modest improvements in survival have been observed.10 Therefore, studies 

have sought to better understand the genetic pathology of GBM for the purpose 

of developing targeted chemotherapies capable of increasing clinical efficacy.3 

Currently, however, a myriad of hurdles impede the responsiveness of GBM to 

targeted and non-targeted chemotherapy, thus highlighting the clinical challenges 

presented by GBM. First, incomplete tumor resection particularly often results in 

tumor recurrence. Secondly, several studies suggest that a population of highly 

chemo- and radio-resistant tumor-initiating cells, or GBM stem cells (GSCs), is 

maintained within the bulk of the tumor, giving rise to recurrent lesions that resist 

further treatment.20 Thirdly, a highly selective permeability barrier separating the 

brain from circulating blood, the blood-brain barrier (BBB), precludes delivery of 

polar compounds of high molecular weight to the central nervous system.6 Lastly, 

chemotherapeutics are often actively pumped out of the brain via ABC 

transporter efflux pumps.21 As a result, insufficient chemotherapeutic 

accumulation within the tumor, coupled with the highly heterogeneous 

composition of GBM, ensure that not all GBM tumor cells receive adequate 

treatment.6 In light of these many challenges, it is imperative that new therapies 

more closely targeting the biology of GBM are developed for the purpose of 

improving therapeutic outcomes in this devastating disease.  
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1.2.2 Genetics of GBM 

Though the exact cell of origin responsible for primary and secondary 

GBM remains unclear 3, it has been postulated that primary GBM cells arise from 

glial progenitors having accrued distinct genetic alterations.8 Characteristically, 

primary GBM display amplification, mutation and/or rearrangements of EGFR 

(57%); mutation or loss of phosphatase and tensin homolog (PTEN) (41%); 

amplification or overexpression of Cyclin D1/3 and murine double minute 2/4 

(MDM2/4) (7.6% and 7.2%, respectively); mutations of tumor protein 53 (TP53) 

(28%); and loss of heterozygosity (LOH) of chromosome 10 (73%).8,22,23 

In contrast to primary GBM, secondary GBM have been proposed to 

originate from progenitor cells harboring mutations of anisocitrate dehydrogenase 

1/2 (IDH1/IDH2).24 IDH1/2 mutations have been catalogued in the majority of 

WHO Grade II diffuse astrocytomas, where mutation frequency does not 

correspond with tumor grade.8 The mutation status of IDH1/2, however, positively 

correlates with a better prognosis for GBM patients, as patients presenting 

IDH1/2 mutations are predicted to survive roughly twice as long as patients not 

bearing an IDH1/2 mutation.24 Much like primary GBM, diffuse astrocytomas 

contain TP53 mutations, whereas anaplastic astrocytomas acquire LOH of 

chromosome 10.8 

 In an effort to broaden the molecular understanding of GBM, The National 

Cancer Institute (NCI) and The National Human Genome Research Institute 

(NHGRI) have joined efforts through The Cancer Genome Atlas (TCGA) 

initiative. Using high-throughput genome analysis technology, the central goal of 
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the TCGA is to provide the scientific community with valuable genomic 

information in order to improve diagnosis, treatment and prevention of multiple 

tumor types, including GBM. Initially, the TCGA published the results of genomic 

and transcriptomic analysis of 206 GBMs, which included mutational sequencing 

of 600 genes in 91 tumor samples.22 The TCGA database has since expanded 

and now contains molecular and clinical data for a total of 543 GBMs.25 The 

current dataset, which is available to the public, includes GBM sequencing of 

whole genomes, coding exomes and transcriptomes, DNA methylomes as well 

as targeted proteome profiling. Notably, analysis from the TCGA has uncovered 

several recurrent and focal alterations not previously detected in GBM, including 

amplifications in AKT3 and homozygous deletions in PARK2 and NF1.22 

Furthermore, analysis of the TCGA dataset indicates that EGFR alterations are 

the most commonly occurring among receptor tyrosine kinases (RTKs) in GBM 

(57%), thus corroborating data from early studies highlighting the essential role of 

EGFR in GBMs.26-28 

 
 
1.2.3 GBM Subtypes 
 

Using a gene expression-based molecular classification system, GBM has 

been further stratified into various subtypes. Initial GBM classification studies 

were performed by Wilson et al., in 2006, whereby three GBM subclasses were 

identified: mesenchymal, proneural and proliferative.29 The proneural subclass 

displayed markers indicative of a neural lineage and showed longer survival in 

patients versus those expressing mesenchymal (angiogenic) or proliferative 
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markers. Both mesenchymal and proliferative groups exhibited gains or 

amplification of EGFR as determined by comparative genomic hybridization, 

which were not present in the proneural GBM subtype. Additionally, the two poor 

prognosis subgroups expressed increased levels of neural stem cell markers 

relative to proneural tumors. Interestingly, the results of these studies indicate 

that recurrent tumors initially displaying proneural or proliferative markers tend to 

shift towards the mesenchymal phenotype. Recurrent tumors also commonly 

displayed up-regulation of YKL-40, CD44, STAT3 and vimentin, each of which 

are markers of the mesenchymal-angiogenic phenotype.20 As a result of these 

studies, a set of genes representing both the proneural and mesenchymal GBM 

subtypes have been identified, allowing for the development of a post-resection 

clinical test for predicting patient outcome.14  

More recent high-throughput studies conducted by Verhaak and 

colleagues30, expanded on the aforementioned classifications by molecularly 

stratifying GBM on the basis of genomic profile into four major subtypes: 

proneural, neural, classical and mesenchymal. DNA copy number and mutation 

patterns were additionally integrated into their analyses. The proneural subtype 

displayed aberrations in PDGFRA/IDH1, whereas the mesenchymal and 

classical subtypes predominantly exhibited NF1 and EGFR aberrations, 

respectively. Amplification of EGFR was present in upwards of 95% of the 

classical subtype and in at least 29% of the mesenchymal subtype. With the 

exception of tumors defined as being proneural, EGFR copy number increases 

were observed in >86% of all GBM subclasses. These seminal findings could 
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potentially lead to the identification of prognostic markers indicative of treatment 

response, allowing for the exploration of optimized therapies for the purpose of 

individualizing treatment in this deadly disease.17 Despite this, emerging reports 

indicate that a population of GBM-derived stem cells significantly contribute to 

resistant phenotypes in GBM and show no clear correlative patterns with respect 

to the established classification system. Thus a refined sub-classification 

integrating GBM-derived stem cell signatures is needed to better utilize molecular 

and clinical correlates in the treatment of GBM.  

 

1.2.4 GBM Stem Cells 

The cancer stem cell hypothesis posits that only a small portion of tumor 

cells harbor the capacity for self-renewal and tumor-initiation.31 Accumulating 

evidence suggests that primary GBM tumors contain such a population of cancer 

stem cells, referred to as GBM stem cells or GSCs.32,33 Like neural stem cells, 

GSCs express CD133 (prominin) and possess the ability to self-renew. In 

contrast, GSCs are highly refractory to chemotherapy and radiotherapy and 

therefore culpable in tumor progression and recurrence following conventional 

GBM therapy.33 Additionally, recent findings indicate that GSCs more accurately 

recapitulate the genotype, gene expression profile, and in vivo biology of human 

GBM when engrafted in nude mice.34 Interestingly, recent reports indicate that 

EGFRΔIII is commonly expressed in GSCs, where its expression is associated 

with enhanced stemness as well as resistance to therapies, including EGFR-

targeted modalities.35,36 These studies determined that EGFRΔIII is preferentially 
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expressed with CD133 in a subset of human tumor cells. Here, it was 

demonstrated that EGFRΔIII+/CD133+ and EGFRΔIII+/CD133− cells exhibited the 

greatest potential for self-renewal relative to EGFRΔIII−/CD133+ populations. 

Furthermore, the presence of EGFRΔIII significantly enhanced tumor formation in 

NOD/SCID mice, highlighting the relevance of EGFRΔIII expression in this 

setting. These findings, coupled with the frequency of EGFR alterations identified 

by the TCGA analysis25, highlight the therapeutic potential of targeting EGFR 

signaling in GBM and will, therefore, be the focus of the following section.   

 

1.3 EGFR 

EGFR, also referred to as HER1/ErbB1, belongs to a larger family of ErbB 

receptors with tyrosine kinase activity.37 Other members of the HER family 

include ErbB2/HER2, ErbB3/HER3 and ErbB4/HER4. EGFR is frequently 

overexpressed and/or hyper-activated in human malignancies, including GBM, 

and therefore EGFR-directed therapeutic strategies are often utilized.16 

Increased activation of EGFR can occur through a variety of different 

mechanisms, both ligand-dependent and ligand-independent.3,38-40 Among these 

mechanisms include: aberrant enhancement of ligand production39; constitutive 

receptor activation by multiple exon deletion or missense mutations40,41; crosstalk 

with other receptors42; increased receptor protein level via gene amplification3; 

and malfunction in receptor degradation.38 As shown in Figure 1, EGFR 

overexpression and activation are known to significantly impact cancer cell 

hallmark traits, such as increased cell survival, proliferation and invasion.40,43,44 
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 Figure 1. EGFR signaling and related pathways in cancer. Illustration of 
the gene products involved in transferring signals from the outside of the cell to 
the nucleus mediated by EGFR, notably through SRC. 
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1.3.1 Structure  

Structurally, EGFR is a 170 KDa glycosylated plasma membrane protein 

containing three main domains: an extracellular domain, a transmembrane 

domain and an intracellular domain.45 The extracellular domain is comprised of 

four subdomains, where the ligand binding pocket is formed by domains I, II and 

III, which interact with cognate ligands.46 The intracellular domain, or tyrosine 

kinase domain, contains a c-terminal tail with multiple tyrosine residues capable 

of being autophosphorylated upon receptor dimerization and activation.47 

Canonical activation of EGFR can occur through seven different ligands 

including: epidermal growth factor (EGF), transforming growth factor-α (TGF- α), 

heparin-binding EGF-like growth factor (HB- EGF), amphiregulin, epiregulin, 

betacellulin and epigen.48 Ligand binding precedes EGFR homo- or 

heterodimerization with other ErbB family members, dictating 

autophosphorylation of various preferential tyrosine residues in the cytoplasmic 

domain.49,50 Importantly, site-specific tyrosine phosphorylation plays an essential 

role in determining the selectivity of downstream substrates triggered by EGFR 

and facilitates binding of adaptor or other signaling molecules.51 The preferred 

autophosphorylation site of wild-type EGFR is tyrosine 1173 (Y1173).3 Tyrosine 

residues Y1068 and Y1148 are also indicative of receptor activation.47 The 

tyrosine residue Y1045 is a c-Cbl binding site, functioning to ubiquitinate and 

down-regulate the receptor following ligand stimulation.52 Tyrosine site Y845 is 

phosphorylated by Src family non-receptor tyrosine kinases (SFKs) following 

their activation by the EGFR.53 
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1.3.2 EGFR Alterations in GBM  

EGFR is overexpressed in approximately 60% of primary GBMs versus 

only 10% of secondary GBMs and is characteristic of more aggressive GBM 

phenotypes.8 In addition to overexpression, several alternative mechanisms 

account for aberrant induction of EGFR activation in GBM, including enhanced 

autocrine expression of cognate ligands.47 Gene amplification and mutation of 

EGFR also enhance EGFR activation and occur in upwards of 57% of GBMs as 

determined by the TCGA dataset.25 From a subtype perspective, classical GBM 

are synonymous with focal amplification of EGFR (~95%), whereas 

mesenchymal, neural and proneural GBMs are associated with reduced rates of 

EGFR amplification at 29%, 67% and 17%, respectively.30 Mutations of EGFR 

occur in roughly one-third of all classical tumors and often in mesenchymal, 

proneural and neural GBMs as well.30 Of these mutations, extracellular domain 

EGFR mutations are most commonly observed in GBM.8  

The most frequently occurring EGFR mutation in GBM, EGFRΔIII, arises 

from an in-frame deletion of 801 bp in the DNA sequence encoding the 

extracellular domain, rendering a truncated yet constitutively active form of the 

receptor.41,44 EGFRΔIII is a cancer specific mutation, as it not detected in normal 

tissues, making it an attractive target for therapeutic intervention.54 Several 

different studies have indicated that EGFRΔIII is expressed in roughly 50% of 

GBMs that amplify wild-type EGFR.54-56 Additionally, data mined from the TCGA 

indicates that EGFRΔIII is most commonly present in the classical tumors (23%), 

where EGFR amplification is most prevalent.30 
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Despite being constitutively active, EGFRΔIII sustains a low-level signal 

capable of evading internalization and down-regulation, which primarily result 

from inefficient dimerization.50,57 In contrast, wild-type EGFR is rapidly degraded 

following acute stimulation with ligand.58 Though low-level in nature, constitutive 

signaling downstream of EGFRΔIII leads to increased GBM cell survival in vivo 

through selective augmentation of various mitogenic factors, namely Akt and 

repression of apoptosis via enhanced Bcl2 family member expression.59 

EGFRΔIII has also been associated with transformative properties, as INK4A/Arf 

depleted astrocytes and neural stem cells form high grade tumors in vivo when 

expressing EGFRΔIII.60 Given this, EGFRΔIII may act as a critical initiating event 

in tumor development. Not only is EGFRΔIII likely an important factor in 

gliomagenesis, but the tumorigenic potential of glioma cells in vivo are 

significantly increased by EGFRΔIII expression when compared to xenografts 

expressing the wild-type EGFR.61,62 Studies have also shown that EGFRΔIII-

expressing GBM cells are highly resistant to both chemotherapy59 and 

radiation.63 Interestingly, recent reports indicate that co-expression of EGFRΔIII 

and the GSC marker CD133+ defines a population of GSCs harboring the 

greatest tumor-initiating ability, thus further defining its importance in GBM.35,36 

Taken together, it’s not surprising that EGFRΔIII expression has been strongly 

associated with a poor survival prognosis for patients whose tumors amplify 

EGFR. 56,64 

In addition to EGFRΔIII, sequence analysis of the EGFR coding region in 

a cohort of 151 GBM tumor and cell lines identified a number of novel 
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ectodomain missense mutations.65 Approximately 14% of GBM patient samples 

and 13% of GBM cell lines displayed this form of mutation. Using missense 

mutants encoding R108K, T263P, A289V, G598V, and L861Q it was determined 

that these mutations were 1) hyper-phosphorylated receptor in the absence of 

ligand; 2) accompanied by an increased EGFR gene dosage; and 3) exhibited a 

stronger transforming phenotype relative to wild-type EGFR as determined by 

anchorage-independent growth in NIH-3T3 cells.65 Importantly, of the missense 

mutations evaluated, EGFR-R108K shares the greatest degree of signaling and 

behavioral homology to EGFRΔIII, particularly as it relates to therapeutic 

resistance.65,66  

 

1.3.3 EGFR Therapies in GBM 

Overexpression of EGFR has been noted in multiple epithelial tumors, 

supporting the notion that deregulated EGFR expression and signaling are 

pivotal events in the origin of human cancers.67,68 This led to the development of 

multiple inhibitors of EGFR, including EGFR-targeted monoclonal antibodies 

(mAB) such as mAB C225 69 and mAB 528.69,70 Mechanistically, EGFR-directed 

mAbs compete with cognate ligands for binding, effectively down-regulating 

receptor expression and leading to inhibition of cell growth by induction of cell 

cycle arrest.71 Initially, mAB C225, dubbed cetuximab, demonstrated promising 

anti-tumor effects in cell cultures and xenograft models, leading to its 

implementation as a therapeutic agent.72 Since, cetuximab has been approved 

for use in metastatic colorectal cancer (CRC) as well as squamous cell 

15



carcinoma of the head and neck (HNSCC).73,74 Cetuximab has additionally been 

under evaluation in progressive non-small cell lung cancer (NSCLS), where 

activating mutations of EGFR commonly occur.75 Notably, preclinical studies in 

GBM cell cultures and mouse models have demonstrated the anti-tumor and 

radio-sensitizing effects of cetuximab in this setting.76 Preclinical data also 

suggests that cetuximab is active against EGFRΔIII, where it binds to and 

engenders receptor internalization, rendering a reduction in kinase activation.77 

Though cetuximab has displayed promising effects in clinical trials involving 

CRC, HNSCC and NSCLC, phase I/II trials in patients with recurrent GBM have 

failed to confer any efficacious advantages over standard of care regimens.78 

Insufficient intratumoral accumulation of cetuximab was cited in the failed 

inhibition of EGFR autophosphorylation and degradation in these studies.  

Small molecule tyrosine kinase inhibitors (TKIs) that competitively target 

receptor catalytic activity via the EGFR kinase domain adenosine triphosphate 

(ATP)-binding pocket, present another approach to targeting EGFR.79 Despite 

being low in molecular weight and more likely to penetrate the BBB, the 

specificity of these inhibitors is diminished by the fact that the EGFR ATP-binding 

pocket shares homology with that of other RTKs, resulting in off-target effects.80 

Three TKIs of EGFR (gefitinib, erlotinib and lapatinib) have previously received 

regulatory approval for use in NSCLC and breast cancer.81 In contrast, several 

phase II clinical trials evaluating gefitinib, erlotinib or lapatinib in newly diagnosed 

or recurrent GBM have yielded minimal clinical activity as either a monotherapy 

or in combination regimens.82-84 These lack of clinical effects were attributed to 
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insufficient inhibition of Akt activation, which correlated most strongly with 

EGFRΔIII expression and loss of PTEN. Collectively, these findings highlight the 

need for novel therapeutic targets capable of improving clinical responses in this 

deadly disease.  

 

1.3.4 Dysregulated EGFR Signaling Networks in GBM  

The EGFR family is a complex system involved in growth factor cellular 

signaling.85 Phosphorylation of EGFR at the plasma membrane leads to the 

recruitment of multiple effector proteins via recognition and binding of Src 

homology 2 (SH2) and phosphotyrosine-binding (PTB) domains to 

phosphotyrosine motifs on the receptor.86 Formation of the EGFR signaling 

complex, in turn, triggers a variety signaling cascades involved in tumor cell 

proliferation, angiogenesis, motility, differentiation, and survival (Fig. 1).87 

Interestingly, similar substrates are activated downstream of EGFR and 

EGFRΔIII, but with differing levels of intensity.50 Among these pathways include 

the phosphoinositide 3-kinase (PI3K), mitogen-activated protein kinase (MAPK), 

signal transducer and activator of transcription 3 (STAT3) pathways and Src 

family kinases (SFKs; discussed in 1.4).50,88,89 

 

1.3.4.1 PI3K 

The class IA PI3Ks form heterodimers that are recruited to activated RTKs 

and adaptor proteins via their regulatory subunit, of which five isoforms exist: 

p85a, p55a and p50a, or PIK3R1; p85b or PIKR2; and p55y or PIKR3.87 p85α 
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associates with EGFR either through ErbB3 heterodimerization or through 

phosphorylation of EGFR by the SFK c-Src.90,91 p85α association with EGFR 

results in a conformational change in p85α, releasing the inhibition of the catalytic 

subunit p110 of PI3K. PI3K then localizes to the plasma membrane, where it 

functions to catalyze the formation of phosphatidylinositol 3,4,5-trisphosphate 

(PIP3) via the phosphorylation of phosphatidylinositol 4,5-bisphosphate (PIP2). 

The resulting PIP3 is a critical activator of Akt, which consequently 

phosphorylates, or inhibits, numerous target proteins involved in regulating 

cellular metabolism, motility and protein synthesis.92,93 Akt activation additionally 

results in phosphorylation of Bad, a Bcl family member, which when 

phosphorylated fails to inhibit the survival protein Bcl-Xl, thus precluding 

apoptotic induction.94,95 Activation of PI3K can also arise from point mutations, of 

which roughly 15% have been catalogued in GBM tumors.25 These mutations 

occur most commonly in the adaptor-binding domain (ABD) and less frequently in 

the C2 helical and kinase domains of the catalytic subunit (PIK3CA).96,97 Though 

mutations in the regulatory subunit (PI3KR1) are uncommon, prior sequencing 

analysis from the TCGA indicated the presence of 9 such mutations occurring 

among a cohort of 91 GBM samples.22 As a result, aberrant PI3K activation and 

subsequent activation of Akt is observed in upwards of 85% of GBM samples.98 

PI3K signaling is negatively regulated by various proteins, most notably 

PTEN; PTEN, however, is commonly inactivated (~50%) in GBM by either 

epigenetic silencing or deletion mutation.99 Loss of PTEN, therefore, disrupts the 

PI3K:PTEN balance resulting in increased Akt activation and uncontrolled cell 
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growth. Given the frequency of PI3K pathway aberrations occurring in GBM, 

inhibition of its signaling components present an attractive target for therapeutic 

intervention. Based on this, the rapamycin analogs, everolimus (Afinitor) and 

temsirolimus (Torisel), both of which inhibit mammalian target of rapamycin 

complex 1 (mTORC1) are regulatory-approved for treatment of advanced renal 

cell carcinoma and have been evaluated in GBM patients. Unfortunately, the 

clinical application of rapamycin analogs has yielded infrequent and short-lived 

responses in GBM.93-99 Additionally, the PKC/PI3K/AKT inhibitor, enzastaurin, 

was the first targeted therapy for GBM evaluated in a phase III clinical trial.100 

Regrettably, enrollment of this study was halted as no positive correlations with 

progression free survival were observed.  

 

1.3.4.2 MAPK 

 Following EGFR activation, the MAPK signaling pathway is triggered by 

the growth factor receptor-bound protein 2 (Grb2) binding directly to EGFR via 

Y1068 and Y1086 or indirectly by SHC binding Y1173 and Y1143.101 Grb2 also 

houses two SH3 domains, allowing for interactions with proline-rich sequences, 

namely those of son of sevenless (SOS).102 The Grb2/Shc/EGFR interaction 

precedes recruitment of SOS to the plasma membrane. SOS is a guanine 

nucleotide exchange factor, which functions to promote the conversion of Ras-

GDP to the active Ras-GTP. Subsequently, Ras activates Raf, a serine-threonine 

protein kinase, which then phosphorylates and activates MEK1/2, resulting in 

activation of ERK1/2 (MAPK).103  
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1.3.4.3 Signal Transducers and Activators of Transcription  

In addition to PI3K and MAPK, Signal transducers and activators of 

transcription (STAT) proteins are commonly activated downstream of EGFR in 

GBM.87 The STAT family of proteins consists of seven members (STAT1, 

STAT2, STAT3, STAT4, STAT5a, STAT5b, and STAT6), of which, STAT1, 

STAT3 and STAT5 are known substrates of oncogenic EGFR signaling.89 Upon 

activation, STATs function to increase transcription of proteins involved in cell 

mitogenesis, survival, and differentiation.104-107 In contrast to cytokine receptor-

mediated activation of STATs, ligand-dependent phosphorylation of STATs by 

EGFR does not require Janus activated kinases (JAK).105,108 Interestingly, 

STAT5b has recently been identified as a preferential substrate of EGFRΔIII 

signaling in GBM, capable of enhancing GBM cell survival through induction of 

Bcl-xL.109 From these studies, it was determined that STAT5b activation by 

EGFRΔIII was mediated by SFKs, which are commonly activated mediators of 

dysregulated RTK signaling in GBM and will be the focus of the following 

section.110  

 

1.4 SFKs 

The prototypical SFK member, c-Src, was discovered in 1976 as a 

mammalian homologue of the transforming agent in avian sarcoma virus, v-

Src.111,112 This family of non-receptor protein tyrosine kinases is comprised of 

nine members, including c-Src, c-Yes, Fyn, Lyn, Lck, Blk, Hck, Fgr and Yrk. 

While the majority of SFKs are expressed in cells of hematopoietic origin, C-Src, 
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C-Yes and Fyn, however, display a more ubiquitous pattern of expression.113 

SFKs interact with multiple cell surface receptors, including EGFR, and are 

rapidly activated upon receptor engagement, serving to promote cell proliferation, 

viability, motility and invasiveness as depicted in figure 1.113 Though activating 

mutations and genomic amplification of SFKs rarely occur, SFKs are commonly 

activated and/or overexpressed in a variety of cancers, which often correlates 

with cancer development and progression.114,115 Consequently, SFKs have 

emerged as promising targets in cancer therapy, where preclinical and clinical 

applications of the regulatory approved ATP-binding competitive inhibitor 

dasatinib have shown promise across several different tumor types.116-117 
 

1.4.1 Structure and Activation 

Collectively, SFKs exhibit structural homology consisting of an N- terminal 

membrane localization sequence, a poorly conserved unique domain, an SH3 

and SH2 domain, a tyrosine kinase domain and a regulatory sequence.118 

Housed within the c-terminal tyrosine kinase domain are two phosphorylation 

sites, which serve as critical regulators of protein function: Y527 (Y527 in chicken 

c-Src; Y530 in human c-Src) and Y416. Phosphorylation on residue Y527 

negatively regulates SFK activity, which is imparted by the c-terminal kinase 

(Csk) family of protein tyrosine kinases.119-125 The SH2 domain of SFKs bind to 

Y527 following phosphorylation on this site.126-127 As a result, this induces binding 

of the SH3 domain to the linker region between the SH2 and tyrosine kinase 

domains, precluding ATP from binding which stabilizes the closed conformation 
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and inactivates the protein.128-129 Dephosphorylation on residue Y527 is 

accomplished by several protein tyrosine phosphatases, including CD45, SHP-1, 

SHP-2, PTP-α, or PTP-λ. Secondly, phosphorylation of Y416 must occur for the 

protein to be active. Phosphorylation of Y416 is mediated by multiple proteins, 

including EGFR114, which results in repositioning of the catalytic domain and 

subsequent formation of a substrate binding pocket.128-131 Phosphorylation on 

Y416 is sufficient to activate c-Src, even in the presence of phosphorylation at 

residue Y527.132,133 Hence, dephosphorylation of Y416 is pivotal to the 

inactivation of SFKs, a function commonly ascribed to the tyrosine phosphatases 

PTP-α and PTP-λ.134,135 

 

1.4.2 SFKs in GBM  

Early studies identified elevated expression of SFKs occurring in neuronal 

cells, specifically c-Src, Fyn and c-Yes, thus generating interest in their potential 

role in brain and neuronal tumors.113 Since, multiple studies have reported 

elevated SFK activity in GBM. Initially, Lyn was identified by immunoblot analysis 

of p-Src (Y418) as the most commonly activated SFK occurring in GBM patient 

samples.136 In contrast, more recent high-throughput phospho-proteomic 

analyses identified c-Src as the most frequently activated SFKs in this context.110 

These studies additionally showed that treatment with dasatinib significantly 

lowered T-98 and U87-MG GBM cell proliferation and viability in vitro.110 Using 

dasatinib resistant mutants (T341I gatekeeper mutation), this study further 

determined that among SFKs expressed in GBM, only mutant c-Src and Fyn 
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were capable of rescuing the therapeutic effects of dasatinib.110 In corroboration 

with these reports, more recent studies indicated that c-Src and Fyn are 

preferential effector substrates of EGFRΔIII signaling in GBM cells. Here, it was 

demonstrated that genetic inhibition of c-Src or Fyn significantly mitigated cell 

motility in vitro. Furthermore, it was reported that dasatinib in combination with 

the EGFR-targeted antibody (mAB 806) significantly inhibited the growth of 

EGFRΔIII-expressing subcutaneous tumors in mice.137 In contrast, additional in 

vivo investigations using dasatinib in mice bearing orthotopic GBM tumors cited a 

lack of efficacy attributed to insufficient tumor accumulation.138 Collectively, these 

findings reinforce a role for dasatinib in the treatment of GBM, while also 

highlighting potential limitations in this regard. Regrettably, phase I/II clinical trials 

in patients with recurrent GBM have exhibited only minimal therapeutic activity 

when using dasatinib as a monotherapy or in combination with the EGFR kinase 

inhibitor erlotinib.139,140 These findings highlight the need for alternative SFK-

targeted strategies in GBM.  

In addition to being activated, analysis of the TCGA database indicates 

that Fyn and Lyn mRNA are significantly up-regulated among SFKs in GBM 

patients samples versus normal brain tissue.25 Fyn gene expression has also 

been identified as most significantly correlating with that of EGFR among SFKs in 

GBM patients.137 Importantly, increased Fyn expression has additionally been 

observed in a highly resistant population of GSCs, where dasatinib fails to reduce 

GSC proliferation and survival.141 These findings are of great interest, as 

targeting Fyn expression, as opposed to activation, has previously been 
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implicated in the inhibition of tumor growth and survival of prostate and breast 

cancer cells as well as CML cells.142,143 The role and regulation of increased Fyn 

expression, however, remains poorly understood in GBM but could provide 

valuable therapeutic insight into GBM.  

 

1.4.2.1 Fyn 

Fyn is a 59-kDa protein comprised of 537 amino acids located on 

chromosome 6q21.144 There are three isoforms of Fyn: isoform 1, or FynB, the 

canonical sequence; isoform 2, or FynT, which tends to be expressed in T-cells 

and differs from FynB in the linker region; and isoform 3, which is typically found 

in blood cells and differs from FynB by deletion of sequence 233-287.144 Fyn, like 

other SFKs, is comprised of an SH1, SH2 and SH3 domain. Prior reports have 

linked Fyn to several physiological processes, including cell proliferation and 

motility.145 Fyn also functions in pathophysiology, as it was shown to induce 

transformation and anchorage-independent growth in NIH 3T3 cells.146  

Increased Fyn expression has been reported in several tumor types, 

including prostate cancer and CML.142,143 While the specific function of increased 

Fyn expression in prostate cancer remains poorly understood, genetic inhibition 

of Fyn significantly reduced CML cell survival and proliferation as well as 

enhanced sensitivity to dasatinib.143 Interestingly, increases in Fyn expression 

were determined to occur through a reactive oxygen species (ROS)-dependent 

transcriptional mechanism downstream in CML. Based on observations that 

GBM is associated with elevated levels of oxidative stress, the potential role for 
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ROS-dependent transcriptional up-regulation of Fyn provides a plausible 

hypothesis for evaluation in GBM cells. Thus, the function and mechanistic 

regulation of cellular oxidative stress will be discussed in the following section.  

 
 
1.5 Oxidative Stress 
 

Oxidative stress by definition is an imbalance of the cellular pro-oxidant to 

anti-oxidant ratio. The resulting imbalance is characterized by an increase in 

reactive oxygen species (ROS). ROS are essential components of the cellular 

redox system, where they serve multiple roles in both physiological and 

pathophysiological states.147 Collectively, ROS are a group of exceedingly 

reactive oxygen-containing species, which includes singlet oxygen (1O2), 

superoxide (O2
-), hydrogen peroxide (H2O2) and the hydroxyl free radical (.OH).148 

Cells have developed a variety of ROS defense mechanisms, which include both 

enzymatic and non-enzymatic antioxidants. Examples of non-enzymatic 

antioxidants include glutathione (GSH) and thioredoxin149,150; among the known 

enzymatic antioxidants include cytoplasmic, SOD1, the mitochondrial Mn-

dependent, SOD2, and the Cu/Zn- dependent, SOD3 (Fig. 3).151 Once GSH is 

oxidized, the reduced form can be regenerated via GSH reductase activity (Fig. 

4). The resulting balance between GSH and GSSG can be useful in determining 

the redox state within the cell. 

 

1.5.1 ROS in Cancer Cell Signaling  

Steady state increases in oxidative stress have previously been implicated 
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Figure 2. Cellular redox homeostasis. The mitochondrial electron transport 
chain (Mito-ETC), endoplasmic reticulum (ER) and Nox complex serve as sites of 
cellular ROS production. GPX, glutathione peroxidase; GR, glutathione reductase; 
GRXo, glutaredoxin (oxidized); GRXr, glutaredoxin (reduced); GSHr, glutathione 
(reduced); GSSG, glutathione (oxidized); TRXo, thioredoxin (oxidized); TRXr, 
thioredoxin (reduced); XO, xanthine oxidase.  

Dunyaporn Trachootham, Jerome Alexandre, and Peng Huang. Targeting cancer 
cells by ROS-mediated mechanisms: a radical therapeutic approach? Nature 
Reviews Drug Discovery 2009, 8, 579-591.  
Reproduced with permission.  
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in the malignant phenotype of cancer.152 While classically perceived as cytotoxic 

and mutagenic metabolites, increased ROS have also been implicated as 

mediators of tumor cell growth and survival through activation of various signal 

transduction pathways.152 Specifically, ROS inactivate protein-tyrosine 

phosphatases via oxidation of the catalytic cysteine, thus impairing kinase de-

activation of key signaling intermediates such as MAPK, JAK/STAT and Akt.153 

This, in turn, engenders the induction of various pro-growth and pro-survival 

transcription factors, including nuclear factor-ĸB (NF-ĸB).154 Recent studies from 

our lab have identified an additional transcription factor induced by ROS: early 

growth response-1, or Egr-1.155 From these studies, Egr-1 was shown to 

increase CML cell growth and survival through increased transcriptional induction 

of Fyn.  

 

1.5.1.1 Egr-1 

The Egr-1 gene product is a zinc-finger transcription factor of 59 kDa that 

uniquely activates transcription by binding DNA as a monomer.156 Based on 

cellular context, Egr-1 behaves either as a tumor suppressor or oncogene.157-159  

Importantly, increased Egr-1 expression is reported to promote tumor 

development and progression in both breast and prostate cancer.159,160 Besides 

being transcriptionally induced by ROS, Egr-1 up-regulation has previously been 

determined to occur through a mechanism involving MAPK.161 Additionally, 

recent gene expression profiling identified Egr-1 as the most significantly up-

regulated gene in EGFRΔIII-overexpressing HEK293 cells versus vector 
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controls.162 Furthermore, analysis of the TCGA database reveals that Egr-1 

mRNA is significantly up-regulated in GBM versus normal brain tissue.25 

Together, these findings suggest that increased Egr-1 expression could provide a 

plausible mechanistic explanation for Fyn up-regulation downstream of EGFR 

and/or ROS-dependent signaling in GBM.  

 

1.5.2 Cellular Sources of ROS 

Otto Warburg first hypothesized that increases in cellular oxidative stress 

stem from alterations in mitochondrial metabolism.163 Besides the mitochondria, 

additional cellular sources of ROS include: fatty acyl-CoA oxidase, xanthine 

oxidase, cyclooxygenases, cytochrome p450, lipoxygenases, the endoplasmic 

reticulum (ER) and the nicotinamide adenine dinucleotide phosphate (NADPH) 

oxidase, or Nox (Fig. 3)164-167 The Nox complex of enzymes are the most 

extensively studied ROS producing enzymes in malignancy168, including GBM, 

and will be the focus of the following discussion in this regard. 

 

1.5.2.1 Nox Complex  

 The Nox complex family of enzymes is comprised of seven members: Nox 

1–5 as well as two dual oxidases (DUOXs), DUOX 1 and DUOX 2.169 Each 

respective enzyme shares highly conserved features: a C-terminal 

dehydrogenase domain containing binding sites for FAD and NADPH; and an N-

terminal transmembrane region comprised of six alpha-helical domains.170 

Enzymatically, Nox family members function solely to produce oxidative bursts at 
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the expense of NADPH.169 

The regulation of these enzymes is complex, with several members 

displaying intricacy with respect to subunit composition, cellular location and 

tissue-specific expression pattern.169 Such compositional complexity allows for 

effective and selective targeting of Nox enzymes in pathology, particularly in 

cancer where Nox-2 and Nox-4 have been thoroughly described (Fig. 3).170  

The classical Nox (Nox-2) in phagocytes was the first family member to be 

described.171 Structurally, Nox-2 consists of two membrane-bound elements, 

gp91phox and p22phox as well as four cytosolic proteins, p40phox, p47phox, 

p67phox and Rac1 (a small G-protein) (Fig. 3).172 Housed within the C-terminal 

cytosolic region is a flavoprotein domain, or NADPH binding site.168,173 In the 

resting state, the SH3 domains of the integral organizer complex, p47phox, bind 

the auto-inhibitory region (AIR) in the C-terminal, precluding physical association 

with p22phox. Upon stimulation, serine residues of p47phox, namely Ser345, are 

phosphorylated thus associating with p22phox and localization to the cell 

membrane.170 Activating phosphorylation of p47phox has previously been 

described downstream of JAK2 via ERK1/2 in myeloproliferative disorders, where 

it functions to increase enhance ROS production and cell proliferation.174 Akt has 

also been linked to p47phox activation, notably downstream of EGF stimulation, 

where it enhances colon cancer cell proliferation and survival.175 Importantly, 

recent studies in pediatric GBM have shown demonstrated that p47phox is 

expressed, where its genetic inhibition effectively reduces ROS.176 

In contrast to Nox-2, Nox-4 activation only requires p22phox, is 
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constitutively activated and regulated primarily at the transcriptional level. 177,178 

Nox-4 is highly expressed in pancreatic cancer, NSCLC and GBM cells, where 

elevated expression and ROS production have been implicated in increased cell 

proliferation, survival and migration.179-181 Though chemical inhibitors of the Nox 

complex are available, such as apocynin and diphenyleneiodonium (DPI), they 

generally target all flavonoid proteins.168 Therefore, more specifically targeting 

Nox-activation through their unique subunit composition represents a plausible 

and attractive therapeutic alternative to lowering Nox-induced ROS production.   

Multiple reports have identified elevated oxidative stress as a growth and 

survival-promoting factor in GBM.180-182 More recent studies have indicated that 

EGFR further elevates the redox state of GBM.183,184 Based on prior observations 

linking EGFR to Nox enzyme expression and activation, studies evaluating their 

relationship and potential link to increased Fyn expression provide an attractive 

topic for investigation in GBM.  
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 Figure 3. Subunit composition of Nox-2 and Nox-4. (A) Nox-2 is 

composed of a catalytic core subunit, Nox-2, as well as maturation and 
stabilization partners (p47phox, p67phox, p22phox) and the small GTPase, 
Rac1. (B)  Nox-4 is far less complex, consisting of the core complex, Nox-4, 
as well as p22phox, PDI and Poldip2.  

A) 

B) 
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1.6 Hypothesis, Rationale and Significance 

GBM is the most common and deadly form of primary brain tumor in 

adults. Amplification and activating mutations of EGFR are commonly detected 

genetic alterations in GBM.25 The most frequently occurring EGFR mutation in 

GBM, EGFRΔIII, has previously been associated with poorer patient survival and 

higher rates of clinical relapse.56 This association with poorer clinical outcomes is 

imparted, in part, by EGFRΔIII-induced pro-proliferative and anti-apoptotic 

signaling.59,89,185,186 Regrettably, EGFR-targeted strategies have yielded limited 

clinical responses in GBM.187,188 This problem generates significant interest in 

improving the collective understanding of downstream and/or parallel pathway 

activation culpable in the failed response to EGFR-targeted therapy.  

SFKs are frequently activated in GBM, serving as molecular adaptors of 

receptor tyrosine kinase growth and survival signaling.114,115 Interestingly, recent 

studies have identified Fyn and c-Src as the most relevant dasatinib targets in 

GBM cells, where they also serve as preferential substrates of EGFRΔIII 

signaling.110,137 Though inhibitors of SFKs have enjoyed clinical success against 

multiple tumor types189, early-phase clinical trials in GBM have exhibited only 

minimal therapeutic activity when used alone or in combination with the EGFR 

kinase inhibitor erlotinib.139,140 These findings highlight the need for alternative 

SFK-targeted strategies in GBM. In addition to being activated, analysis of the 

TCGA database reveals that Fyn expression, but not c-Src, is significantly up-

regulated GBM patient samples versus normal brain controls.25 Individual reports 

have additionally demonstrated increased Fyn expression to occur in a highly 
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chemo- and radio-resistant population of GSCs.141 The role and regulation of Fyn 

overexpression in GBM, however, remain poorly understood, but are important 

as prior studies in prostate cancer and CML have identified Fyn overexpression 

as a pro-proliferative and pro-survival factor.142,143 Interestingly, the mechanism 

responsible for increased Fyn expression in CML was determined to involve the 

transcription factor Egr-1, whose expression is also significantly elevated in GBM 

patient samples, though its function remains unknown.25,190 Therefore, a better 

understanding of the mechanism and contribution of increased Fyn expression 

may lead to a novel therapeutic strategy in GBM, specifically in tumors with 

acquired resistance to EGFR and/or SFK inhibitors.  

The goal of this Ph.D. dissertation is to investigate the role and regulation 

of increased Fyn expression with regard to pro-proliferative and pro-survival 

signaling in EGFR-overexpressing GBM. A less studied but intriguing feature of 

EGFR is its ability to elevate intracellular ROS through increased expression and 

activation of Nox enzymes.170 While classically perceived as cytotoxic and 

mutagenic metabolites, ROS have also been implicated as mediators of tumor 

cell growth and survival through activation of various signal transduction 

pathways.152 Importantly, Fyn transcription has previously been described as 

being redox-responsive, particularly downstream of ROS-dependent induction of 

Egr-1.155,191 The relationship between EGFR and Nox enzymes, including their 

potential link to increased Fyn expression, however, remain undetermined in 

GBM. The hypothesis tested in this dissertation is that EGFR induces Fyn 

expression via Nox-mediated redox up-regulation of Egr-1 leading to 
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increased GBM cell proliferation and survival. To test this hypothesis, we first 

determined if EGFR induces Fyn expression in GBM cells and the effects of Fyn 

inhibition on cell proliferation and survival in this context. These studies were 

extended to a population of GSCs, where we determined Fyn expression levels 

and the effect of Fyn inhibition on sphere-forming capacity. Additionally, we 

evaluated whether the transcription factor Egr-1 was up-regulated by EGFR-

overexpression in GBM cells, and if Egr-1 was capable of modulating Fyn 

expression in this setting.  Secondly, we determined if Nox enzymes are involved 

in the expression of Fyn and the effect of redox-targeted strategies on cell 

proliferation and survival in EGFR-overexpressing GBM. The work in this 

dissertation has led to a better understanding of how Fyn expression is regulated 

in GBM as well as furthered our understanding of Fyn overexpression in EGFR-

driven pro-proliferative and survival signaling. The findings presented here have 

also provided novel insight into role of Fyn expression in a population of 

refractory GSCs, which are frequently cited in tumor relapse.32,192 Furthermore, 

this work has also led to a better mechanistic understanding of how EGFR 

impacts Nox-mediated ROS production in GBM, thus highlighting the potential for 

redox-targeted strategies in this deadly disease.  

!

34



 
 
 

Chapter 2 
 
 

MATERIALS AND METHODS 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

35



2.1 Cell Culture  
 

The human GBM cell line U87-MG stably overexpressing wild-type EGFR, 

EGFRΔIII or the missense mutation R108K was a kind gift of Dr. Oliver Bogler 

(UT M.D. Anderson Cancer Center, USA). Cells were cultured in DMEM/F12 

containing 10% FBS/2 mM glutamine/100 units/ml penicillin/100 mg/ml 

streptomycin in 95% air/ 7% CO2 at 37°C. The cells were routinely maintained in 

DMEM/F12 growth medium supplemented with 50 µg/ml of Zeocin (Life 

Technologies, Carlsbad, CA). Patient-derived GSCs were kindly provided by Dr. 

Frederick Lang (UT M.D. Anderson Cancer Center). GSCs were isolated as 

previously described193 and cultured in DMEM/F12 containing 20 ng/mL human 

recombinant human (hr) EGF (Sigma, St. Louis, MO) and bFGF (Life 

Technologies). 

 

2.2 Chemicals and Antibodies 

N-acetylcysteine (NAC), apocynin, DPI, rotenone and hrEGF were 

purchased from Sigma. Lapatinib ditosylate was purchased from LC laboratories 

(Woburn, MA). The antibodies used in this study were obtained from the 

following sources: Fyn, Egr-1, phospho-Src (Y416) and phospho-EGFR (Tyr1068 

and Tyr1173), Cell Signaling Technology (Danvers, MA); EGFR, Lyn and 

p47phox, Santa Cruz Biotechnology; and β-actin, Sigma. HRP conjugated 

secondary antibodies (anti-rabbit) were purchased from Sigma.  
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2.3 Immunoblot Analysis 

Protein expression was evaluated in total cell lysates that were prepared 

using Triton X-100 buffer (PBS with 1% Triton X-100; 25 mM Tris, pH 7.5; and 

150 mM NaCl) containing phosphatase and protease inhibitors (Roche, 

Indianapolis, IN). Resulting lysates were boiled in 5X SDS AT 100° for 5 minutes 

and subsequently resolved by 10% sodium dodecyl sulfate (SDS)-polyacrylamide 

gel in 1X running buffer for 1 hour at 120 volts. Resolved proteins were then 

transferred to PVDF membranes for 1 hour at 100 volts (Bio-Rad, Hercules 

California). Membranes were washed in 1X TBST buffer (0.1% Tween 20, 20 mM 

Tris base (pH 7.6), 136 mM NaCl and 0.38 mM HCL) and blocked in 5% milk for 

1 hour at room temperature. Proteins were detected by immunoblot analysis 

using 1:1000 concentrations of primary antibodies. Immunoreactive bands were 

detected using enhanced chemiluminescence (GE Healthcare, Waukesha, WI). 

Resulting protein levels were quantified by densitometry using ImageJ (National 

Institutes of Health, Bethesda, MD). 

 

2.4 Real-time Polymerase Chain Reaction 

Total RNA was purified using an RNeasy Mini Kit (QIAGEN, Valencia, 

CA). Reverse transcription reaction was performed for each sample using 1 µg 

RNA with Omniscript RT kit (QIAGEN) per the manufacturer's protocol. Real-time 

PCR was carried using the iTaq Universal SYBR Green PCR master mix in a 20 

µL total volume containing the following: 1 µL cDNA (1:5 dilution), 10 µL 2x 

SYBR Green PCR master mix, and 1 µL of 10 µM forward and reverse primers, 
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respectively. The PCR primer sequences for human Nox-4 were previously 

described194 and are as follows: forward 5’- CTCAGCGGAATCAATCAGCTGTG 

and reverse 5’-AGAGGAACACGACAATCAGCCTTAG; Fyn: forward, 5’-

CTGGTCACCAAAGGAAGAGTGC and reverse, 5’-

GGTCCTTTTTCAGCAGTGGATC; p47phox as previously described195: forward 

5’- AGTCCTGACGAGACGAAGA and reverse 5’- 

GGACGGAAAGTAGCCTGTGA; and β-actin: forward, 5′-

CTGTGGCATCCACGAAACTA-3' and reverse 5’-CGCTCAGGAGGAGCAATG-

3'. For Fyn, p47phox and β-actin, PCR conditions included 40 cycles with an 

annealing temperature of 57°C, and for Nox-4 60 cycles with an annealing 

temperature of 55°C. Relative gene expression was calculated by determination 

of the cycle threshold (Ct) value and normalizing to actin Ct values. Samples 

were analyzed in duplicate/triplicate. All experiments were repeated a total of 

three times. 

 

2.5 Transfection 

Transfection with short interfering ribonucleic acids (siRNAs) was 

performed using RNAiMAX (Life Technologies) according to the manufacturer’s 

instructions. Briefly, U87-EGFR expressing cells were cultured to 60% 

confluence in 6-well plates and transfected with Fyn, EGFR, Egr-1, p47phox or 

non-specific scrambled control siRNA at a final concentration of 30 pmol. Fyn 

EGFR and p47phox siRNA were purchased from Santa Cruz Biotechnology. Egr-

1 siRNA was purchased from ThermoScientific (Pittsburgh, PA). Fyn and EGFR 
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were single siRNA sequences. Egr-1 and p47phox were pools of 3 and 4 siRNA 

sequences, respectively. Knockdown was evaluated by immunoblotting as 

previously described.  

 

2.6 Cellular Viability Analysis 

Cellular viability was analyzed using the trypan blue exclusion method (1:1 

dilution) and counting positive cells by hemocytometry. 

 

2.7 Seahorse Extracellular Flux Analysis 

Cellular oxygen consumption rate (OCR) was measured using the 

Seahorse XF96 Extracellular Flux Analyzer platform (Seahorse Bioscience, 

Billerica, MA, USA). OCR was measured after sequentially adding oligomycin, 

FCCP and rotenone, at working concentrations of 1 µg/ml, 1 µM and 1 µM, 

respectively. All assays were performed using a seeding density of 1x103 

cells/well in 200 µL DMEM in a XF96 micro plate (Seahorse Bioscience). OCR 

was recorded as picomoles per minute.  

 

2.8 EGF Stimulation Conditions  

U87 cell lines stably overexpressing wild-type EGFR were seeded in 100 

mm plates and cultured in standard conditions. At ~60% confluence, one set of 

plates was serum starved overnight and the other set of plates was ligand 

stimulated following serum starvation using hrEGF (10 ng/ml of media for 5 

minutes). Cell cultures were then washed with pre-chilled PBS and lysed in Triton 
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buffer. Protein lysates were obtained and analyzed by immunoblotting as 

previously described.  

 

2.9 Measurement of intracellular NADP+/NADPH Ratios 

NADPH oxidase activity was measured by determination of intracellular 

NADP+/NADPH ratios using an NADPH assay kit (Abcam, Cambridge, UK) 

according to the manufacturer's protocol. Briefly, 2.0 X 105 cells/mL were treated 

or untreated with apocynin (apocynin, 24 hours at 100 µM) followed by freeze-

thaw lysis (20 min on dry-ice, then 10 min at room temperature) in NADPH 

extraction buffer. To detect NADP+, portions of samples were subjected to 

thermal decomposition by application of heat (60°C) for 30 min as per 

manufacturer’s instructions. Samples and standards were quantified using a 

SpectraMax Gemini EM plate reader (Molecular Devices, Sunnyvale, CA) 

according to instructions and results presented as NADP/NADPH ratios. 

 

2.10 Intracellular ROS Assessment 

Intracellular superoxide levels were measured using the cell permeable 

dye dihydroethidium (Molecular Probes, Eugene, OR) followed by flow cytometry 

analysis. Briefly, cells were centrifuged and suspended in 1 mL of PBS 

containing 330 nM dihydroethidium followed by incubation at 37° for 30 minutes 

in the dark. Cells were then centrifuged, washed with PBS and re-suspended in 

500 µl of PBS. Resulting fluorescence was measured on the FL-3 channel of a 

40



FACSCalibur (BD Biosciences, Palo Alto, CA). Data were analyzed using FlowJo 

software (Tree Star, Version 7.6.5, Ashland, OR). 

 

2.11 GSC Sphere-Formation Assay 

Sphere formation was performed as previously described.35 Briefly, 

spheres were dissociated by trypsinization and passaged through a 40 µm nylon 

mesh (Fisher Scientific), followed by transfection with either Fyn or non-specific 

scramble control siRNA (30 pmol final concentration) as previously described. 

Cells were then counted 24 hours later and re-plated at a density of 5,000 cells 

per well. Resulting spheres > 50 µM were counted 10 days later.   

 

2.12 Data Mining and Analysis 

 The Oncomine database was queried to identify alterations occurring in 

gene expression. Oncomine 4.5 database analysis tool is available with a 

subscription at http://www.oncomine.org. Selected data from the TCGA dataset25 

was compared for gene expression levels in primary GBM tumor samples relative 

to normal brain controls.  

 

2.13 Statistical Analysis 

Unless otherwise stated, values listed in figures are expressed as the 

mean ± SEM of at least three replicates. Statistical comparisons were made 

using GraphPad Prism 4.0 software (GraphPad Software, Inc., La Jolla, CA) by 

Student’s t-test and one-way ANOVA (Bonferroni correction), where indicated. A 
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p-value of less than 0.05 was considered significant. Statistical values are as 

follows: * p<0.05; ** p<0.01; and *** p<0.001.  
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EGFR INDUCES FYN EXPRESSION VIA EGR-1 LEADING TO 
INCREASED GBM CELL PROLIFERATION AND SURVIVAL 
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3.1 Introduction 
 

Enhanced pro-proliferative and anti-apoptotic signaling are frequently cited 

events in the failed response to EGFR-targeted therapies in GBM.80,109 A variety 

of signaling molecules are known to enhance and sustain the degree of survival 

signaling often observed in GBM, including SFKs.109,115,189 In particular, the SFKs 

Fyn and c-Src serve as effector substrates of EGFRΔIII signaling, which are 

linked to poorer survival and increased clinical relapse in GBM.137 Though Fyn 

and c-Src have additionally been identified as the most relevant dasatinib targets 

among SFKs in GBM, early-phase clinical application of dasatinib has exhibited 

very limited clinical efficacy in GBM.110,139 These findings highlight the need for 

alternative SFK inhibitory strategies in GBM.  

In addition to being activated, Fyn mRNA, but not c-Src, is significantly up-

regulated in GBM patients25, with recent reports indicating that Fyn expression 

most significantly correlates with that of EGFR among SFKs in GBM patient 

samples.137 Furthermore, increased Fyn expression has recently been identified 

in a population of highly resistant GSCs, where co-expression of 

EGFRΔIII/CD133+ defines a subpopulation of cells with greatest self-renewal 

potential.35,36 The role and regulation of increased Fyn expression, however, 

remain unknown in GBM, but are important as prior studies in prostate cancer 

and CML have identified Fyn overexpression as a pro-proliferative and pro-

survival factor.142,143 Though unknown in prostate cancer, Fyn induction in CML 

was determined to occur through a mechanism involving Egr-1: a transcription 

factor commonly up-regulated at the mRNA level in GBM25, though its function 

44



remains inadequately addressed.25,190 Despite being poorly understood in GBM, 

Egr-1 is reported to promote tumor development and progression in both breast 

and prostate cancer, notably through a transcriptional mechanism involving 

EGFR signaling.159,160 Additionally, recent gene expression profiling identified 

Egr-1 as the most significantly up-regulated gene in EGFRΔIII-overexpressing 

HEK293 cells versus vector controls.162 Thus, an understanding of the role and 

regulation of increased Fyn and Egr-1 expression may represent novel 

therapeutic targets in GBM, particularly in tumors with acquired resistance to 

EGFR and/or SFK inhibitors.   

Given the frequency of EGFR alterations in GBM as well as the previously 

identified correlation between EGFR and Fyn gene expression in GBM patient 

samples25,137, we explored if EGFR could induce Fyn expression. We also 

evaluated Fyn inhibition with regard to cell proliferation and survival in EGFRΔIII 

and EGFR-R108K-overexpressing GBM, where enhanced and sustained 

induction of pro-proliferative and anti-apoptotic signaling contributes to EGFR-

targeted resistance.59,109 We extended these studies to include a population of 

GSCs32, where we determined Fyn expression levels as well as the effect of Fyn 

knockdown on sphere-forming capacity. Lastly, we determined whether the 

transcription factor Egr-1 was regulated by EGFR and if it was capable of 

modulating Fyn protein expression in this context. Because EGFRΔIII expression 

is lost in standard cell culture59, our studies employed an isogenic GBM cell line, 

U87-MG, engineered to stably overexpress wild-type EGFR (wtEGFR), EGFRΔIII 
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or EGFR-R108K. The single missense mutation EGFR-R108K was chosen 

based on its behavioral and signaling likeness to EGFRΔIII.65 
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3.2 Results 

 

3.2.1 EGFR induces Fyn expression in GBM cells 

Given the frequency of EGFR alterations in GBM as well as the previously 

identified correlation between EGFR and Fyn gene expression in GBM patient 

samples25,137, we aimed to determine if EGFR could regulate Fyn expression in 

GBM cells. To test this, we evaluated Fyn expression in GBM cells by examining 

mRNA and protein levels using real-time PCR and immunoblot analysis in U87-

MG cells stably overexpressing vector control, wtEGFR, EGFRΔIII or EGFR-

R108K. First, we demonstrated that Fyn mRNA expression was significantly 

increased in wtEGFR-expressing cells (>2.0-fold), and to a greater extent (>3.0-

fold) in EGFRΔIII and EGFR-R108k-overexpressing cells, relative to vector 

control (Fig. 4). These findings suggest that Fyn induction is imparted, in part, by 

the kinase activity of EGFR.  

To determine if the changes in Fyn mRNA were also occurring at the 

protein level, we next evaluated Fyn by immunoblotting. Similar to the mRNA 

expression pattern, Fyn protein levels were increased 2.2-fold in wtEGFR and to 

a higher degree in EGFRΔIII (3.7-fold) and EGFR-R108K (5.2-fold) 

overexpressing cells relative to vector control (Fig. 5). To better understand 

whether the effects of EGFR overexpression were selective for Fyn, we 

assessed the expression of another SFK identified as significantly up-regulated 

in the TCGA database, Lyn.136 EGFR expression did not increase Lyn protein 

expression (Fig. 5), suggesting a relatively exclusive mechanism for Fyn 
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induction. These results demonstrate that EGFR-overexpression elevates Fyn 

mRNA and protein expression, particularly in the context of mutant EGFR, which 

is commonly associated with therapeutic resistance and poorer clinical 

outcomes.59,80 These findings prompted us to further evaluate the impact of 

EGFR kinase activity in the regulation of Fyn expression.  

!
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 Figure 4. EGFR-overexpression increases Fyn mRNA expression in 
U87-MG cells. Using real-time PCR, relative Fyn mRNA levels were examined in 
U87-vector control, U87-wtEGFR, U87-EGFRΔIII and U87-R108K and normalized 
to the housekeeping gene β-actin. * p< 0.05, ** p<0.01, *** p<0.001; one-way 
ANOVA with Bonferroni's Multiple Comparison Test. Data are mean ± SEM and 
are representative of at least three individual experiments.  
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 Figure 5. EGFR-overexpression up-regulates Fyn protein expression 
U87-MG cells. Fyn protein levels were examined in U87-MG stably 
overexpressing either vector control, wtEGFR, EGFRΔIII or EGFR-R108K by 
immunoblotting. β-actin was shown as a loading control. Relative protein levels 
were determined by densitometry using ImageJ. Results are representative of at 
least three individual experiments. 
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3.2.2 EGFR kinase inhibition reduces Fyn expression in GBM 

cells  

Based on our finding that Fyn expression was more pronounced in the 

hyperactive U87-EGFRΔIII and U87-R108K mutants relative to U87-wtEGFR 

(Figs. 4, 5), we next examined the role of EGFR kinase signaling on Fyn 

expression. To do so, we measured Fyn protein levels in EGFR-overexpressing 

GBM cells following 48 hours of treatment with the regulatory approved EGFR 

kinase inhibitor lapatinib. Inhibition of EGFR kinase activity was validated by 

immunoblot analysis of EGFR phosphorylation at tyrosine residues 1068 and 

1173. Figure 6 shows that lapatinib-mediated inhibition of EGFR activity 

significantly reduced Fyn protein levels (~50%) in wtEGFR, EGFRΔIII and EGFR-

R108K-overexpressing cells.  

To examine whether the inhibition of Fyn expression by lapatinib was 

occurring at the mRNA level, real-time PCR was conducted. Similar to the effects 

of lapatinib on Fyn protein expression, figure 7 demonstrates that Fyn mRNA 

levels were significantly reduced in wtEGFR (p<0.001), EGFRΔIII (p<0.01) and 

EGFR-R108K-overexpressing cells (p<0.01). Like many tyrosine kinase 

inhibitors, lapatinib exhibits off-target effects.80 In light of this, we also evaluated 

the effects of lapatinib treatment in U87-vector controls, which express very low 

basal levels of EGFR. Fyn expression, however, was not altered in U87-vector 

controls treated with lapatinib (Fig. 7), thus reinforcing a specific role for EGFR 

kinase signaling in the regulation of Fyn expression. Together, these results 
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clearly demonstrate a role for EGFR kinase signaling in the up-regulation of Fyn, 

irrespective of EGFR mutational status. 

To corroborate these findings, we next evaluated effect of EGFR 

knockdown on Fyn expression in EGFR-overexpressing GBM cells. Here, we 

demonstrated that EGFR depletion effectively reduced Fyn protein expression, 

but not Lyn, to a basal level not achievable by kinase inhibition by lapatinib in 

EGFRΔIII and EGFR-R108K-overexpressing cells (Fig. 8). Collectively, these 

results indicate that EGFR kinase signaling up-regulates Fyn expression in 

EGFR-overexpressing GBM cells, which is only partially alleviated by EGFR 

kinase inhibition in mutant EGFR-overexpressing GBM cells. Therefore, we next 

wanted to evaluate the relative contribution of Fyn expression in mutant EGFR-

overexpressing cells, where cell proliferation and survival are incompletely 

inhibited by EGFR-directed strategies.59,196 
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Figure 6. Inhibition of EGFR kinase signaling reduces Fyn mRNA 
expression in EGFR-overexpressing U87-MG cells. Vector control, wtEGFR, 
EGFRΔIII and EGFR-R108K-overexpressing U87-MG cells were treated with 
lapatinib (1 µM; 48 Hrs.) and relative Fyn mRNA levels were examined by real-
time PCR and normalized to the housekeeping gene β-actin. ** p<0.01, *** 
p<0.001; Student’s t-test. Data are mean ± SEM and are representative of at least 
three individual experiments. 
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 Figure 7. EGFR kinase inhibition reduces Fyn protein expression in 
EGFR-overexpressing U87-MG cells. Fyn protein levels were examined in U87-
wtEGFR, U87-EGFRΔIII and U87-R108K cells following treatment with lapatinib 
(1 µM; 48 hrs.) by immunoblotting. β-actin was shown as a loading control. 
Relative protein levels were determined by densitometry using ImageJ. Results 
are representative of at least three independent experiments.  
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 Figure 8. EGFR knockdown reduces Fyn protein expression to a basal 
level in EGFR-overexpressing U87-MG cells. U87-wtEGFR, U87-EGFRΔIII and 
U87-R108K cells were transfected with either EGFR-specific or scrambled control 
siRNA and EGFR, Fyn and Lyn protein levels were evaluated at 48 hours post-
transfection by immunoblotting. β-actin was shown as a loading control. Relative 
protein levels were determined by densitometry using ImageJ. Results are 
representative of at least three independent experiments.  
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3.2.3 Fyn knockdown reduces cell proliferation and survival in 

mutant EGFR-overexpressing GBM cells 

SFK activation is well understood to promote GBM cell proliferation and 

survival.109,114,143 Moreover, recent studies have demonstrated that Fyn activation 

increases GBM cell motility in EGFRΔIII-overexpressing GBM cells.137 We 

sought to expand on these findings by examining the effect of Fyn knockdown on 

cell proliferation and survival in U87-EGFRΔIII and U87-R108K, which are 

associated with therapeutic resistance and poorer clinical outcomes in GBM.59,109 

To deplete Fyn protein levels, we performed RNA interference-based knockdown 

of Fyn using siRNA. Fyn protein expression was markedly reduced in Fyn siRNA-

transfected U87-EGFRΔIII (Fig. 9A) and U87-R108K (Fig. 10A) cells compared 

to respective scrambled control-transfected cells. Proliferation of Fyn siRNA-

transfected cells versus scrambled control-transfected cells was assessed by 

plating equivalent cell numbers and comparing relative cell counts 48, 72, and 96 

hours post-transfection. Both U87-EGFRΔIII (Fig. 9B) and U87-R108K (Fig. 10B) 

cells transfected with Fyn siRNA grew at a significantly (p<0.01) slower rate 

relative to scrambled control-transfected cells. Fyn knockdown also significantly 

(p<0.01) reduced cell viability in U87-EGFRΔIII and U87-R108K-expressing cells 

relative to scrambled controls as measured by trypan blue exclusion (Figs. 9C 

and 10C).  

We next evaluated whether Fyn inhibition could sensitize otherwise highly 

resistant U87-EGFRΔIII cells to the EGFR inhibitor lapatinib. Interestingly, our 

results indicated that the addition of lapatinib conferred only modest effects 
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(p<0.05) on cell proliferation and survival when combined with Fyn knockdown 

(Figs. 11 A and B). Collectively, these results suggest that targeting Fyn 

expression is a plausible therapeutic approach in EGFRΔIII and EGFR-R108K 

overexpressing cells, which are associated with increased EGFR-resistance and 

clinical relapse rates.80,187 To build on these findings, we were eager to evaluate 

the presence and functional role of Fyn expression in a population of GSCs, 

which are reported to more faithfully recapitulate the properties of primary tumors 

observed in humans.33 
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Figure 9. Fyn knockdown reduces cell survival and proliferation in 
EGFRΔIII-overexpressing U87-MG cells. (A) U87-EGFRΔIII cells were 
transfected with either Fyn specific or scrambled control siRNA and Fyn protein 
levels were evaluated by immunoblotting at 48, 72 and 96 hours post-transfection. 
(B) Resulting cell numbers (x106) and (C) viability were determined at 48, 72 and 
96 hours by trypan blue exclusion. Percent viability was calculated compared to 
untreated control. * p<0.05, ** p<0.01; Student’s t-test. Data are mean ± SEM and 
are representative of at least three individual experiments.  
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Figure 10. Fyn knockdown reduces cellular survival and proliferation in 
U87-R108K cells. (A) U87-R108K cells were transfected with either Fyn specific or 
scrambled control siRNA and Fyn protein levels were evaluated by immunoblotting at 
48, 72 and 96 hours post-transfection. (B) Resulting cell numbers (x106) and (C) 
viability were determined at 48, 72 and 96 hours by trypan blue exclusion. Percent 
viability was calculated compared to untreated control. * p<0.05, ** p<0.01; Student’s 
t-test. Data are mean ± SEM and are representative of at least three individual 
experiments.  
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Figure 11. The effect of Fyn knockdown in combination with EGFR kinase 
inhibition on cell proliferation and survival in U87-EGFRΔIII. (A) U87-EGFRΔIII 
cells were transfected with Fyn-specific or scrambled control siRNA in the presence of 
DMSO control or lapatinib (1.0 µM; 48 hrs.) and resulting cell numbers (x106) and (B) 
viability were determined by trypan blue exclusion. Percent viability was calculated 
compared to untreated control. * indicated p<0.05; Student’s t-test. Data are mean ± 
SEM and are representative of at least three individual experiments.  
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3.2.4 Increased Fyn expression contributes to the sphere-

formation capacity of GSCs  

 Heterogeneity is a hallmark of GBM, which is bolstered by the existence of 

a highly chemo- and radio-resistant population of GSCs capable of re-populating 

the tumor following treatment.32 Importantly, recent reports indicate that 

EGFRΔIII/CD133+ co-expression defines a population of GSCs with the greatest 

potential for self-renewal.35,36 Furthermore, increased expression of SFK 

members, namely Fyn, has been observed in GSCs.141 These observations, 

coupled with our previous findings in EGFR-overexpressing GBM cells, led us to 

examine the presence and potential biological impact of Fyn expression in GSCs. 

In agreement with previously published findings141, we showed that Fyn 

expression was elevated in in the majority (eight of ten) GSC lines relative to 

normal progenitor control (Fig. 12). To determine the functional relevance of 

increased Fyn expression in the GSC phenotype, we performed Fyn-directed 

siRNA in GSC line 7-2 and evaluated resulting sphere formation capacity. Here, 

we determined that Fyn depletion significantly (p<0.001) reduced sphere 

formation, suggesting a functional role for Fyn expression in this population of 

tumor-initiating cells (Fig. 13). Together, these findings indicate that Fyn up-

regulation is commonly occurring in a refractory population of GSCs culpable in 

clinical relapse, where Fyn expression functions to increase sphere-formation 

capacity.  
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 Figure 12. Fyn protein expression is increased in a panel of 
glioblastoma-derived stem cells. Fyn protein levels were evaluated by 
immunoblotting in a panel of glioblastoma-derived stem cells relative to normal 
progenitor counterparts. β-actin was shown as a loading control. Relative protein 
levels were determined by densitometry using ImageJ. 
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 Figure 13. Fyn knockdown reduces sphere-formation in GSC line 7-2. 
GSC line 7-2 was transfected with either Fyn specific or scrambled control siRNA 
and sphere-forming capacity was measured as described in materials and 
methods. Images are shown at 20x magnification. *** indicated p<0.001; 
Student’s t-test. Data are mean ± SEM and are representative of at least three 
individual experiments.  
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3.2.5 The transcription factor Egr-1 is up-regulated by EGFR and 

sufficient for induction of Fyn expression in EGFR-

overexpressing GBM cells 

Given that EGFR-mediated up-regulation of Fyn expression was 

determined to occur at the mRNA level, we next evaluated the transcription factor 

responsible for Fyn induction downstream of EGFR. Prior studies from our lab 

have functionally characterized the Fyn promoter, identifying Sp1 and Egr-1 

bindings sites capable of driving Fyn expression.155 Notably, Egr-1, but not Sp1, 

is overexpressed in GBM cells and patient samples.25,190 Interestingly, Egr-1 

induction in prostate cancer is EGFR-dependent.197 In addition, recent microarray 

analysis identified Egr-1 as the most strongly up-regulated gene downstream of 

EGFRΔIII-overexpression in HEK293 cells versus vector control.162 Therefore, 

we explored the relative contribution of Egr-1 with regard to Fyn up-regulation in 

EGFR-overexpressing GBM cells. Immunoblot analysis indicated that Egr-1 

expression is up-regulated in U87-wtEGFR (4.5-fold), and to a greater degree 

(>7.0-fold) in U87-EGFRΔIII and U87-R108K cells, relative to vector control (Fig. 

14). This finding, much like our Fyn expression result, suggested a role for the 

kinase activity of EGFR in the regulation of Egr-1 expression. To more closely 

examine this possibility, we next evaluated Egr-1 expression in U87-wtEGFR 

cells following acute stimulation with human recombinant hrEGF. Here, we 

determined that Egr-1 expression was robustly up-regulated in cells stimulated 

with hrEGF relative to non-stimulated controls (Fig. 15), further indicating a role 

for EGFR kinase activity in the regulation of Egr-1.  
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To verify that the increases in Egr-1 expression were EGFR-dependent, 

EGFR knockdown was performed using EGFR-directed siRNA. Indeed, EGFR 

knockdown saliently reduced (>90%) Egr-1 protein levels in wtEGFR, EGFRΔIII 

and EGFR-R108K-overexpressing cells (Fig. 16), providing corroborating 

evidence for EGFR-mediated regulation of Egr-1 expression in our model 

system.  

Based on these findings, we next wanted to determine whether Egr-1 was 

responsible for the modulation of Fyn expression downstream of EGFR-

overexpression. Here, depletion of Egr-1 by siRNA rendered a significant and 

concordant level of Fyn protein reduction (~50%) in wtEGFR, EGFRΔIII and 

EGFR-R108K-overexpressing cells (Fig. 17).  These results demonstrate that 

EGFR-dependent regulation of Fyn expression is imparted, in part, by EGFR-

mediated modulation of Egr-1. Together, these findings generate significant 

interest in better understanding the mechanism of increased Egr-1 expression 

occurring in EGFR-overexpressing GBM cells as a means of effectively targeting 

Fyn expression.  
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Figure 14. EGFR-overexpression increases Egr-1 expression in U87-
MG cells. Egr-1 protein levels were examined in U87-MG stably overexpressing 
either vector control, wtEGFR, EGFRΔIII or EGFR-R108K by immunoblotting. β-
actin was shown as a loading control. Relative protein levels were determined by 
densitometry using ImageJ. Results are representative of at least three 
independent experiments.  
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 Figure 15. EGF stimulation increases Egr-1 expression in U87-
wtEGFR. Egr-1 protein levels were measured in U87-wtEGFR cells acutely 
stimulated with hrEGF by immunoblot analysis. Total EGFR and 
phoshporylationed EGFR (Y1068) are shown. Results are representative of at 
least three independent experiments.  
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 Figure 16. EGFR knockdown reduces Egr-1 expression in EGFR-
overexpressing U87-MG cells. U87-wtEGFR, U87-EGFRΔIII and U87-R108K 
cells were transfected with either EGFR-specific or scrambled control siRNA and 
EGFR and Egr-1 protein levels were evaluated at 48 hours post-transfection by 
immunoblotting. β-actin was shown as a loading control. Results are 
representative of at least three individual experiments.  
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 Figure 17. Egr-1 knockdown reduces Fyn expression in EGFR-
overexpressing U87-MG cells. U87-wtEGFR, U87-EGFRΔIII and U87-R108K 
cells were transfected with either Egr-1-specific or scrambled control siRNA and 
Egr-1 and Fyn protein levels were evaluated at 48 hours post-transfection by 
immunoblotting. β-actin was shown as a loading control. Relative protein levels 
were determined by densitometry using ImageJ. Results are representative of at 
least three individual experiments.  
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3.2.6 Egr-1 and Fyn expression are redox responsive in 

EGFRΔIII-overexpressing GBM cells 

Currently, there are no clinically available Egr-1-targeted agents. Thus, we 

explored the mechanism whereby EGFR signaling up-regulates Egr-1 expression 

in GBM cells. Interestingly, Egr-1 expression has previously been described as 

being redox-responsive in CML and 293T cells.155 Therefore, we evaluated the 

effect of redox alterations on Egr-1 and Fyn expression downstream of 

EGFRΔIII, which has previously been linked to elevated oxidative stress in 

GBM.183,184 To do so, EGFRΔIII-expressing cells were treated for 24 hours with 

either diluent or a general antioxidant, N-acetylcysteine (NAC). Cells were 

harvested 48 hours post-treatment and subjected to immunoblot analysis for Egr-

1 and Fyn. Our findings demonstrated that treatment with NAC reduced, albeit 

modestly, both Egr-1 and Fyn protein expression (Fig. 18), suggesting a role for 

redox-dependent regulation of Fyn via Egr-1 in EGFRΔIII -overexpressing GBM 

cells.  
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 Figure 18. The antioxidant N-acetylcysteine reduces Egr-1 and Fyn 
protein expression in EGFRΔIII-overexpressing GBM cells. U87-EGFRΔIII 
cells were treated with either DMSO control or N-acetylcysteine (10 mM; 24 Hrs.) 
and resulting Egr-1 and Fyn protein levels were analyzed by immunoblotting at 48 
hrs. post-treatment. β-actin was shown as a loading control. Relative protein 
levels were determined by densitometry using ImageJ. Results are representative 
of at least three individual experiments.  
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3.3 Discussion and Future Directions 

EGFR is commonly dysregulated in GBM, presenting a compelling 

therapeutic target.6,80 Regrettably, EGFR-targeted therapies, namely lapatinib, 

have yielded very modest clinical efficacy, which has been attributed to several 

factors including: the acquisition of secondary EGFR point mutations as well as 

co-activation and/or amplification of additional RTKs.55-57 Thus, a more thorough 

understanding of signaling intermediates culpable in the failed response to 

EGFR-directed therapies is needed. In vitro studies have highlighted the 

therapeutic potential of SFKs in GBM, where inhibition of their enzymatic activity, 

particularly Fyn and c-Src, reduces cell growth, viability and motility.110,115,136 

Regrettably, early-phase clinical application of the pan-Src inhibitor dasatinib has 

yielded only marginal therapeutic activity in GBM patients139,140, highlighting the 

need for alternative SFK targeted strategies in this setting. Interestingly, in 

addition to serving as an effector substrate of EGFR signaling in GBM, the SFK 

member Fyn is commonly overexpressed in GBM patient samples, cell lines and 

GSCs.25,137,141,190 Fyn overexpression has previously been identified as a growth 

promoting factor in breast and prostate cancer and, more recently, in CML where 

increased expression was imparted via Egr-1, a transcription factor also 

commonly overexpressed in GBM.190,142,143,155 However, the regulation and 

contribution of increased Fyn protein remain poorly understood in GBM. The 

work presented in this chapter reveals a novel mechanism whereby EGFR 

induces Fyn expression via the transcription factor Egr-1 in GBM cells. Increases 

in Fyn expression were also commonly observed across a panel of GSCs. 
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Furthermore, this chapter uncovered novel biological roles for increased Fyn 

expression in the proliferation and survival of EGFRΔIII and R108K-

overexpressing cells, as well as in the sphere formation potential of GSC line 7-2. 

Given the frequency of EGFR alterations in GBM as well as the previously 

identified correlation between EGFR and Fyn gene expression in GBM patient 

samples25,137, we sought to determine the effect of EGFR-overexpression on Fyn 

expression in GBM cells. Our data demonstrate that Fyn mRNA and protein 

expression, but not Lyn, are increased in EGFR-overexpressing GBM cells, in a 

manner concordant with EGFR activation status (Figs. 4, 5). The observed 

increases in Fyn expression were effectively abrogated by lapatinib in U87-

wtEGFR, while on partially blunted in U87-EGFRΔIII and U87-R108K (Figs. 6, 7), 

suggesting a potential lapatinib escape mechanism involving Fyn expression. 

These findings were corroborated by EGFR knockdown studies, which effectively 

repressed Fyn expression to a baseline level not achievable by lapatinib in 

EGFRΔIII and R108K-expressing cells (Fig. 7). This prompted us to evaluate the 

contribution of Fyn expression in EGFRΔIII and R108K-overexpressing cell 

proliferation and survival, where persistent Fyn expression, if tumor promoting, 

could facilitate resistance to EGFR inhibition. Here, we demonstrated that genetic 

inhibition of Fyn protein significantly reduced cell proliferation and survival U87-

EGFRΔIII and U87-R108K cells (Figs. 9, 10). Importantly, the effects of Fyn 

depletion in U87-EGFRΔIII were not bolstered by the addition of lapatinib, 

suggesting that Fyn inhibition alone is sufficient to reduce to U87-EGFRΔIII cell 

growth whereas lapatinib is not (Figs. 11). These findings are of significant 
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interest, as enhanced and sustained pro-proliferative and anti-apoptotic signaling 

are hallmarks of EGFRΔIII and EGFR-R108K signaling, which contribute to 

therapeutic resistance and clinical relapse in GBM.59,89,185,186 The heightened 

resistance of mutant EGFR expressing cells has previously been attributed to 

increased Bcl-xL expression.59 Importantly, recent reports indicate that Fyn 

mediates the activation of Stat5b in GBM cells, which is known to drive 

expression of Bcl-xL in this context.109 We did not explore this possibility; future 

studies should, however, should evaluate potential differences in BCL-xL 

expression as well as the identity of differentially regulated substrates occurring 

in the context of Fyn knockdown. These findings would aid the development of 

the rational therapeutic combination strategies in EGFR-expressing GBM.  

Together, these observations suggest that insufficient inhibition of Fyn 

expression could serve as a preferential signaling hub in the maintenance of 

EGFRΔIII and EGFR-R108K-induced survival signaling.  

Though we did not evaluate the effect of Fyn knockdown in wt-EGFR-

overexpressing cells, these studies would provide further insight into the 

functional significance of Fyn expression in GBM as: 1) EGFR amplification is the 

most commonly occurring alteration in GBM patients (57%)25; and 2) cognate 

ligand production (i.e. TGF-α and EGF) is significantly up-regulated in tumors, 

resulting in receptor activation.56 Additionally, though Lyn expression was not 

altered by EGFR, its potential role cannot be excluded and should be further 

evaluated in knockdown studies. Nonetheless, these findings suggest a novel 

role for increased Fyn expression in cell proliferation and survival downstream of 
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aberrant EGFR signaling in GBM cells, which encouraged us to extend these 

studies into GSCs. 

A growing body of literature suggests that tumor recurrence and 

therapeutic resistance in GBM are greatly impacted by the presence of GSCs.32 

Interestingly, recent reports indicate that a subpopulation of GSCs co-expressing 

EGFRΔIII/CD133+ maintain the greatest potential for self-renewal.35,36 Moreover, 

increased Fyn expression has previously been described in GSCs, where 

dasatinib treatment failed to suppress GSC growth and viability.141 Consistent 

with these findings141, we determined that Fyn expression was commonly 

elevated in a panel of GSCs relative to normal neural progenitor controls 

(Fig.12). Additionally, our studies demonstrate that Fyn knockdown was sufficient 

to reduce sphere formation in line 7-2 (Fig. 13). Given that sphere formation is an 

indirect measure of cellular stemness33, evaluation of stem cell markers such as 

SOX2, nestin and CD44 should also be examined as a means of delineating a 

potential role for Fyn expression in this regard. The importance of these findings 

should be validated in additional GSCs and, furthermore, studies should evaluate 

whether or not the observed effects are specific for GSCs by examination of Fyn 

knockdown in normal progenitor controls. Our findings in U87-EGFRΔIII and 

U87-R108K indicate that Fyn knockdown decreases cell proliferation and 

viability, which could be contributing to the reductions in sphere formation 

observed in GSC 7-2. Fyn also, however, also activates focal adhesion kinase 

(FAK)142, whose inhibition via Fyn depletion could have a negative impact on cell 

adhesion, resulting in fewer spheres being formed. The potential contributions of 
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each aforementioned aspect should be taken into careful consideration moving 

forward.   

Though prior studies have analyzed GSC phenotype in relation to 

EGFRΔIII, we failed to detect EGFRΔIII expression by immunoblot analysis in 

our panel of GSCs. The presence of wtEGFR also was not detected in our 

studies, which can be explained by receptor degradation elicited by hrEGF 

supplementation in sphere forming media.31 Due to this, we could not evaluate 

the potential involvement of EGFR-mediated Fyn regulation in this regard. This, 

however, alludes to a potential EGFR-independent mechanism of Fyn regulation 

occurring in GSCs, as Fyn levels were commonly up-regulated in the absence of 

detectable EGFR protein. Therefore, further studies evaluating the potential 

mechanism(s) of Fyn regulation in this regard are needed for the purpose of 

identifying additional mechanisms and therapeutic targets in GSCs. These 

studies should additionally examine the effects of hrEGF supplementation on Fyn 

activation and up-regulation. Regardless, our findings indicate that Fyn protein is 

commonly up-regulated in a panel of GSCs, where it functions to enhance 

sphere formation in GSC line 7-2.  

Since Fyn expression increases were determined to occur at the mRNA 

level, which corresponds with meta-analysis of the TCGA database 25, we sought 

to determine the transcription factor responsible for increased Fyn expression. 

Functional characterization of the Fyn promoter has previously been performed 

in our lab, identifying Sp1 and Egr-1 bindings sites, capable of driving basal and 

redox-responsive transcriptional Fyn levels, respectively.155 Interestingly, Egr-1 
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but not Sp1, is commonly up-regulated in GBM cells and patient samples25,190; 

however, its role and regulation in GBM are poorly understood. Our findings 

demonstrated that Egr-1 expression is EGFR-dependent in GBM cells and, much 

like Fyn, was more pronounced in the setting of mutant EGFR (Figs. 14, 16) In 

addition, Egr-1 induction was indicated to occur via EGFR kinase signaling, as 

determined by acute hrEGF stimulation of U87-wtEGFR cells (Fig. 15). These 

results are in agreement with previously published findings in prostate cancer as 

well as microarray analysis of EGFRΔIII-overexpressing HEK293 cells, where 

Egr-1 transcription was imparted by the kinase activity of EGFR.159,162 We also 

determined that genetic inhibition of Egr-1 effectively and concordantly reduced 

Fyn protein expression to an endogenous basal level in U87-wtEGFR, U87-

EGFRΔIII and U87-R108K cells (Fig. 17). Further studies are needed to confirm 

that Egr-1 regulates Fyn transcription in this setting, specifically assessment of 

Egr-1 association with the Fyn promoter by chromatin immunoprecipitation. 

Given that lapatinib failed to sufficiently reduce Fyn expression, which was 

determined to aid cell growth and survival, this finding suggests that targeting 

Egr-1 is a more effective means of reducing Fyn expression in EGFR-

overexpressing GBM cells. However, despite restoring Fyn levels to a baseline in 

EGFR-overexpressing GBM cells, our Fyn knockdown studies (Figs. 9, 10) imply 

that complete abrogation of Fyn protein is likely needed to reduce cell growth. 

Hence, additional studies evaluating the basal transcriptional activator of Fyn, 

including Sp1 as identified from prior Fyn promoter analysis155, are needed to 

more efficiently target Fyn expression in EGFR-overexpressing GBM cells.  
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As no clinical agents targeting Egr-1 are currently available, we next 

determined the mechanism whereby EGFR signaling up-regulates Fyn 

expression in U87-EGFR expressing GBM cells. Previous findings from our lab in 

CML indicate that Egr-1 expression is responsive to oxidative stress.155 Thus, we 

examined Egr-1 and Fyn expression in EGFRΔIII treated with the global 

antioxidant NAC. Here, we determined that Egr-1 and Fyn expression were 

modestly reduced by antioxidant treatment, suggesting a role for redox-

dependency in the regulation of Egr-1. The modest degree of expression 

inhibition suggests that more specific ROS inhibitory approaches may be 

necessary to adequately assess redox-dependent alterations. Interestingly, 

multiple reports across a variety of tumor types, including GBM, have implicated 

redox signaling in the growth and survival of tumor cells. 149,153 ROS production in 

cancer typically occurs downstream of oncogene-induced up-regulation of Nox 

enzyme expression and/or activation.153,180,182,198 Therefore, a better 

understanding of the relationship between EGFR and Nox enzyme expression 

and activation would enable the development of novel redox-targeted strategies 

aimed at reducing cell proliferation and survival in EGFR-overexpressing GBM.   

 In summary, this chapter provides novel evidence whereby EGFR induces 

Fyn expression via redox-dependent up-regulation of Egr-1, leading to enhanced 

cell proliferation and survival in U87-EGFRΔIII and U87-R108K. Increased Fyn 

expression was additionally noted in GSCs, where it served to enhance sphere 

formation in GSC line 7-2. Though these studies focused on the regulation and 

functional significance of Fyn expression, the relative contribution of Fyn 
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enzymatic activity in this regard cannot be excluded and should be further 

evaluated. Specifically, a kinase-dead mutant of Fyn should be used as a 

dominant negative approach to better assess whether the pro-proliferative and 

pro-survival functions of Fyn are mediated in a kinase-dependent or independent 

manner. Nevertheless, these studies provide compelling rationale for targeting 

Fyn expression, particularly in tumors with acquired resistance to EGFR and/or 

SFK inhibitors.   

!
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4.1 Introduction 
 

Oncogenes commonly elevate cellular ROS production.147,199 Though 

moderate ROS accumulation functions to promote cell differentiation and 

proliferation, excessive ROS accumulation can give rise to oxidative damage of 

DNA, proteins, and lipids.153 Thus, maintenance of ROS homeostasis is vital for 

standard cell growth and survival, and has generated significant interest in better 

understanding the role of redox as it pertains to cancer cell signaling.   

 A less studied but intriguing feature of EGFR is its ability to increase 

intracellular ROS content, including in GBM.183,184 Though an understudied 

feature of GBM, ROS are important as emerging reports indicate that increased 

ROS production exerts pro-proliferative and pro-survival effects across a variety 

of different cancer types.180,182,184 Despite the negative impact of increased ROS 

in cancer cells, recent studies have highlighted the exploitable nature of this 

biochemical feature, as genetic and chemical means of ROS inhibition have 

proven effective in targeting cancer cell growth.153   

Based on our findings in chapter 3 that inhibition of Egr-1 reduced Fyn 

expression through redox alterations, we aimed to examine the source of 

oxidative stress in EGFR-overexpressing GBM as a means of targeting Fyn 

expression. Though the mitochondria are the most common source of cellular 

ROS200, oncogene-induced ROS production, particularly EGFR175, 

characteristically involves Nox enzyme up-regulation and/or activation.170 

Because EGFR is known to influence Nox enzymes, we set out to determine the 

relationship between EGFR and Nox enzymes in GBM and their potential link to 
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increased Fyn expression. To accomplish this, we employed a series of 

biochemical analyses aimed at determining basal cellular respiration rates as 

well as superoxide production in the presence of flavonoid, lipoxygenase and 

mitochondrial electron transport chain (ETC) inhibitors.  The work in this chapter 

has led to a better understanding of the mechanism responsible for increased 

ROS accumulation in EGFR-overexpressing GBM cells as well as the redox 

contributions to cell proliferation and survival therein. Furthermore, the work 

presented here has broadened our understanding of redox signaling as a 

therapeutic strategy in GBM via determination of redox-dependent regulation of 

Fyn expression.  
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4.2 Results  
 
 
4.2.1 EGFR-overexpression increases ROS production in GBM 

cells  

Oxidative stress has previously been observed in EGFR-expressing GBM 

cells.183,184 The mechanism of elevated ROS production downstream of EGFR in 

GBM, however, remains unclear. Given our finding that the broad antioxidant 

NAC reduced Egr-1 and Fyn expression in EGFRΔIII-expressing cells, we 

wanted to further explore the mechanism of ROS induction imparted by EGFR as 

a means of modulating Fyn expression. In accordance with previously published 

findings184, our data indicate that hyperactive EGFR signaling, via EGFRΔIII and 

EGFR-108K, significantly elevate ROS levels (p<0.001) relative to wtEGFR- and 

vector-expressing cells (Fig. 19). To verify that the alterations in ROS were 

occurring in a kinase-dependent manner, serum starved U87-wtEGFR cells were 

acutely stimulated with hrEGF and resulting ROS levels were measured. Here, 

we determined that increased ROS accumulation was indeed imparted by the 

kinase activity of EGFR, as verified by immunoblot analysis of phosphorylated 

EGFR at tyrosine residue 1068 and superoxide evaluation (Fig. 20). Having 

verified that EGFR signaling elevates ROS production we next sought to 

evaluate the impact of EGFR-overexpression on cellular bioenergetics.  
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 Figure 19. EGFR-overexpression increases superoxide content in 
GBM cells. (A) Superoxide levels were measured in vector control, U87-wtEGFR, 
U87-EGFRΔIII and U87-R108K cells by flow cytometry using dihydroethidium 
staining as described. (B)  ** p<0.01, *** p<0.001; one-way ANOVA with 
Bonferroni's Multiple Comparison Test. Data are mean ± SEM and are 
representative of at least three individual experiments. 
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 Figure 20. EGF stimulation increases superoxide content in U87-
wtEGFR. Superoxide levels were measured in U87-wtEGFR cells acutely 
stimulated with hrEGF by flow cytometry using dihydroethidium staining as 
described. Total EGFR and phoshporylationed EGFR (Y1068) are shown. Results 
are representative of at least three independent experiments.  
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4.2.2 Mutant EGFR-overexpression augments non-mitochondrial 

respiration in GBM cells 

 
In many cell types, mitochondria are the primary source of ROS, occurring 

as undesired byproducts of cellular respiration.147 Though the relationship 

between EGFR and Nox enzymes is well described in other systems, oncogenic 

overexpression can also increase mitochondrial biogenesis.201 In light of this, we 

aimed to determine the global effects of EGFR-overexpression on cellular 

respiration via extracellular flux analysis. From these experiments, it was 

determined that EGFRΔIII, but not wtEGFR or EGFR-R108K, elevated 

mitochondrial respiration (Fig. 21). Both EGFRΔIII and EGFR-R108K did, 

however, elevate levels of non-mitochondrial respiration (Fig. 21). This finding is 

of great interest, as EGFRΔIII and EGFR-R108K elevate ROS in a pronounced 

and commensurate manner, whereas non-stimulated wtEGFR confers only 

modest effects on ROS content (Fig. 19). These findings suggest a similar 

mechanism of EGFR-induced ROS production stemming from non-mitochondrial 

sources of respiration, but do not preclude potential mitochondrial involvement. 

Given this finding, we next sought to determine ROS content following chemical 

inhibition of both Nox and mitochondrial ROS.  
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 Figure 21. Mutant EGFR-overexpression increases non-mitochondrial 
respiration in GBM cells. Cellular respiration as depicted by oxygen 
consumption rates (OCR) were determined over time in wtEGFR, EGFRΔIII, 
EGFR-R108K-expressing U87-MG. All injections were 1 µM. * indicated p<0.05; 
one-way ANOVA with Bonferroni's Multiple Comparison Test. Data are mean ± 
SEM and are representative of at least three individual experiments.  
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4.2.3 Chemical inhibition of the Nox complex reduces ROS in 

mutant EGFR-overexpressing GBM cells 

To more closely examine ROS production, we next evaluated superoxide 

levels following application of the following chemical inhibitors: an inhibitor of 

mitochondrial respiration, rotenone; an inhibitor of lipoxygenase-derived ROS, 

Nordihydroguaiaretic acid (NDGA); two Nox complex inhibitors, 

diphenelyeneiodonium (DPI) and apocynin; and the global ROS inhibitor, NAC. 

These studies were performed in cells overexpressing either EGFRΔIII or EGFR-

R108K, which harbored the greatest elevations in superoxide content (Fig. 19). 

Here, DPI and apocynin most significantly (p<0.001) reduced ROS levels, 

whereas rotenone exhibited only modest effects in this regard (Fig. 22). Thus, 

these data reinforce a potential role for Nox-mediated ROS production in mutant 

EGFR-overexpressing cells. It should be noted, however, that apocynin and DPI 

are reported to inhibit multiple flavoproteins194, thus requiring a more thorough 

examination of Nox activity in this regard.  
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 Figure 22. Chemical inhibition of the Nox complex significantly 
decreases superoxide content in mutant EGFR-overexpressing GBM cells. 
EGFRΔIII and EGFR-R108K-expressing cells were treated with either NAC (10 
mM; 24 hrs.), DPI (5 µM; 4 hrs.) apocynin (100 µM; 24 hrs.) or rotenone (1 µM; 4 
hrs). Following treatment, intracellular ROS levels were measured by 
dihydroethidium staining. * p<0.05, ** p<0.01, *** p<0.001; one-way ANOVA with 
Bonferroni's Multiple Comparison Test. Data are mean ± SEM and are 
representative of at least three individual experiments.  
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4.2.4 EGFRΔIII-overexpression increases Nox activity in GBM 

cells 

The Nox family of enzymes function to produce oxidative bursts via 

conversion of molecular oxygen to superoxide. This reaction takes place at the 

expense of NADPH, which is metabolized to NADP+.169 As such, to further 

evaluate activation of the NADPH oxidase downstream of EGFR signaling, we 

measured NADPH consumption (NADP/NADPH ratios) as an indirect readout of 

Nox activity. Much akin to the effect of EGFR signaling on ROS content and 

oxygen consumption rates, we determined that the most frequently occurring 

EGFR mutant, EGFRΔIII, but not wtEGFR, significantly elevated NADPH 

consumption (Fig. 23). These findings, again, were linked to the kinase activity of 

EGFR, as lapatinib inhibition of EGFRΔIII restored NADPH consumption to a 

baseline level (Fig. 23). Collectively, these findings suggest that EGFR-

overexpression dictates Nox-mediated ROS production downstream of EGFR 

signaling.  
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 Figure 23. EGFRΔIII-overexpression increases Nox activity in GBM  
cells. Nox activity was measured in vector control, wtEGFR and EGFRΔIII (+/- 
lapatinib) and cells as described in materials and methods. ** p<0.01, *** 
p<0.001; one-way ANOVA with Bonferroni's Multiple Comparison Test. Data are 
mean ± SEM and are representative of at least three individual experiments.  
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4.2.5 p47phox up-regulation contributes to Nox-mediated ROS 

production downstream of EGFR-overexpression in GBM cells 

Increased Nox activity downstream of EGFRΔIII, as well as decreased 

ROS production following treatment with apocynin and/or DPI, implies 

involvement of at least one of the known Nox enzymes. Apocynin and DPI, 

however, reportedly inhibit a variety of flavoproteins.169 Therefore, we set out to 

more clearly delineate the specific Nox isoform and/or subunit involved in mutant 

EGFR-initiated ROS production. Previous studies have identified Nox4 up-

regulation and activation as a mediator of ROS production and cell growth in 

GBM.180-182 These studies, however, did not evaluate Nox4 status in the context 

of EGFR. Using real-time PCR, we examined Nox4 expression in EGFR-

expressing GBM cells. Nox4 mRNA, however, was not significantly altered by the 

presence of wtEGFR, EGFRΔIII or EGFR-R108K overexpression (Fig. 24 A). 

However, in addition to Nox4, clinical evidence suggests a potential role for the 

Nox-2 organizing complex, p47phox, as it is commonly overexpressed in GBM 

patient samples compared to normal brain tissue.190 Furthermore, recent studies 

have shown p47phox phosphorylation and subsequent Nox activation to be EGF-

inducible events contributing ROS production and cell proliferation in human 

colon cancer cells.175 Thus, using real-time PCR we determined that p47phox 

mRNA was significantly up-regulated in wtEGFR (1.5-fold), EGFRΔIII (1.9-fold) 

and EGFR-R108K (1.7-fold)-overexpressing cells (Figure 24A). The observed 

increase in p47phox mRNA was determined to occur in a commensurate manner 

at the protein level by immunoblotting (Fig. 25 B), suggesting a functional role for 
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its expression. Hence, we sought to determine the effect of p47phox knockdown 

on superoxide content and Nox activity as previously described. Interestingly, 

genetic inhibition of p47phox (Fig. 25) significantly reduced both ROS content 

(p<0.01) and Nox activity (p<0.01) in EGFRΔIII-expressing cells, providing 

evidence for p47phox-mediated ROS production via Nox downstream of EGFR 

signaling in GBM (Fig. 25). To determine the biological significance of p47phox 

up-regulation, proliferation of p47phox siRNA-transfected U87-EGFRΔIII cells 

versus scrambled control-transfected U87-EGFRΔIII cells was assessed by 

plating equivalent cell numbers and comparing relative cell counts 48, 72, and 96 

hours post-transfection. Cells transfected with p47phox siRNA grew at a 

significantly (p<0.05) slower rate relative to scrambled control-transfected cells 

(Fig. 25). U87-EGFRΔIII viability, however, was unaffected by p47phox siRNA as 

determined by trypan blue exclusion (data not shown).  

In summation, these findings reveal a novel mechanism by which EGFR 

signaling contributes to GBM growth through transcriptional induction of the ROS 

producing Nox-2 organizer subunit, p47phox. Given this finding we were eager to 

evaluate the effect of p47phox depletion, as well as chemical inhibition of Nox, as 

a redox-targeted strategy for regulating Fyn expression.  
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 Figure 24. EGFR-overexpression increases p47phox mRNA and 
protein expression in U87-MG cells. (A) Nox4 and p47phox mRNA levels and 
(B) p47phox protein levels were examined in U87-MG expressing either wtEGFR, 
EGFRΔIII, EGFR-R108K or vector control by real-time PCR (housekeeping gene 
β-actin) and immunoblotting, respectively. β-actin was shown as a loading control. 
Relative protein levels were determined by densitometry using ImageJ. * p<0.05, 
** p<0.01; one-way ANOVA with Bonferroni's Multiple Comparison Test.  
!

Ŧ!Ŧ!
!

!!!*!

 1.0       2.8       2.7       2.9     p47phox/Actin      

94



U87-EGFRΔIII 

Hours post transfection

C
e

ll 
n

u
m

b
e

r 
(x

1
0

6 )

48 72 96
0.0

0.2

0.4

0.6

Scrambled Ctl
p47phox siRNA*"

α-p47phox 

α-Actin 

+
$ +

$ Control siRNA 
p47phox siRNA 

Contro
l s

iR
NA

p47
phox s

iR
NA

0.0

0.5

1.0

N
A

D
P/

N
A

D
PH

 R
at

io

Control siRNA
p47phox siRNA

1

0.0

0.5

1.0

M
ea

n 
In

te
ns

ity
 (F

L-
3)

*"

**"

B)#

A)#

 Figure 25. The effect of p47phox knockdown in U87-EGFRΔIII. (A) 
U87-EGFRΔIII cells were transfected with either p47phox-specific siRNA or 
scrambled control and p47phox and protein levels were evaluated at 48 
hours post-transfection by immunoblotting. Resulting Nox activity and ROS 
levels were measured as described in materials and methods. (B) Resulting 
cell numbers (x106) were determined at 48, 72 and 96 hours by trypan blue 
exclusion. ** indicated p<0.01; student’s t-test. Data are mean ± SEM and 
are representative of at least three individual experiments.  
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4.2.6 p47phox contributes to Fyn protein expression in 

EGFRΔIII-expressing GBM cells  

To better understand the relationship between the Nox complex and Fyn 

expression, we treated U87-EGFRΔIII cells with the Nox inhibitor apocynin and 

assessed resulting Egr-1 and Fyn protein levels by immunoblotting. Similar to our 

results obtained with NAC, apocynin reduced, though more effectively (~50%), 

Egr-1 and Fyn protein expression, providing a direct link between the Nox 

complex and Fyn expression (Fig. 26 A). To more directly implicate Nox-2 in the 

induction of Fyn, we next sought to determine the effects of p47phox inhibition on 

Fyn and Egr-1 expression. Genetic inhibition of p47phox also reduced Egr-1 and 

Fyn protein in a commensurate manner (Fig. 26 B). These results indicate that 

Nox, through p47phox, modulates Fyn expression downstream of EGFRΔIII 

signaling via redox-dependent induction of Egr-1 (Fig. 27) Thus, these findings 

provide a novel therapeutic means of influencing Fyn expression in EGFRΔIII-

overexpressing GBM cells, which is important as Fyn inhibition reduces cell 

proliferation and survival in EGFRΔIII-overexpressing GBM cells (Fig. 9).  
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Figure 26. Targeting the NADPH oxidase through p47phox influences 
Fyn expression in EGFRΔIII-overexpressing GBM cells. (A) U87-EGFRΔIII 
cells were treated with apocynin (100 µM; 24 hrs.) or  (B) transfected with either 
p47phox-specific siRNA or scrambled control. Resulting p47phox, Egr-1 and Fyn 
protein levels were evaluated at 48 hours post-transfection by immunoblotting. β-
actin was shown as a loading control. Relative protein levels were determined by 
densitometry using ImageJ. Results are representative of at least three 
independent experiments. !
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4.3 Discussion and Future Directions 

Elevated ROS content is commonly observed in cancer, particularly in the 

context of oncogene activation.198 Importantly, oncogenic-induced ROS 

production has previously been described as a growth and survival-promoting 

factor in a variety of cancers, including GBM.180-182,198 Recent findings have also 

demonstrated that EGFR activation increases markers of oxidative stress and 

positively correlates with therapeutic resistance in GBM.180,183,184 EGFR is known 

to regulated Nox enzymes in phagocytes colon cancer170,175; however, their 

relationship in GBM remains unclear, but is of clinical value as recent studies 

have highlighted the potential of redox-targeted strategies in cancer therapy.153 

Given that oncogene overexpression is known to increased mitochondrial 

biogenesis201, we first evaluated the impact of EGFR overexpression on 

respiratory bioenergetics. Here, we determined that both EGFRΔIII and EGFR-

R108K elevate non-mitochondrial sources of respiration, but only EGFRΔIII 

elevated mitochondrial sources of respiration (Fig. 21). This is interesting, as 

EGFRΔIII and EGFR-R108K elevate ROS in a pronounced and commensurate 

manner, whereas wtEGFR only modestly elevates ROS (Fig. 19). These findings 

suggest a similar mechanism of EGFR-induced ROS production involving non-

mitochondrial sources of respiration, but do not preclude potential mitochondrial 

involvement. Inhibitors of the Nox complex, however, more effectively reduced 

ROS content than rotenone, thus reinforcing a potential role for Nox-mediated 

ROS production in mutant EGFR-expressing GBM cells (Fig. 22). Notably, 

EGFRΔIII and EGFR-R108K but not wtEGFR also significantly elevated Nox 
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activity, which was effectively restored to a baseline by lapatinib in EGFRΔIII-

expressing cells (Fig. 23). Collectively, these findings suggest a role for the Nox 

complex in ROS production downstream of EGFR signaling. 

The Nox family of ROS producing complexes includes 5 isoforms, each of 

which is comprised of a unique set of subunits.169 Involvement of the Nox 

complex has previously been reported in GBM, where increased expression, 

specifically Nox4, augments GBM cell growth and survival.180-182 These studies, 

however, did not evaluate Nox status in the context of EGFR. Thus, we aimed to 

more closely examine the specific Nox isoform and/or subunit involved in EGFR-

initiated ROS production. Here, we demonstrate a novel role for p47phox up-

regulation in EGFR-overexpressing GBM cells (Fig. 24 A,B). EGFR-

overexpression, however, showed no effects on Nox4 expression. Interestingly, 

these findings are corroborated by the TCGA dataset, which indicates that EGFR 

and p47phox gene expression show a strong tendency toward co-occurrence, 

whereas EGFR and Nox4 exhibit no association (data not shown). Though we 

did not evaluate the mechanism of EGFR-induced p47phox induction, this is 

important as p47phox knockdown reduces ROS levels, Nox activity and cell 

proliferation (Fig. 25). Thus, the molecular mechanism(s) of p47phox up-

regulation downstream of EGFR should be further evaluated as a means of 

targeting p47phox expression in this setting.   

Given that prior studies have implicated increased ROS in enhanced cell 

proliferation and survival153,198, we next sought to determine the functional 

relevance of increased p47phox expression in this regard. Using EGFRΔIII-
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overexpressing cells, our studies indicated that p47phox knockdown effectively 

reduces ROS content, Nox activity and cell proliferation rates as well as Egr-1 

and Fyn expression (Fig. 25 A, B). Notably, our studies did not reveal any 

changes in cell survival despite reducing cell proliferation, which could be 

attributed to the robust manner by which EGFRΔIII increases BCL-xL 

expression.59 Furthermore, recent reports indicate that oncogene-induced ROS 

production act primarily to induce aberrant cell proliferation.198 Regardless, our 

findings show that p47phox inhibition is sufficient to reduce cell proliferation in 

U87-EGFRΔIII, which should further be evaluated mechanistically for the 

purpose of designing rational therapeutic combinations in this setting.  

Though these studies placed ROS production downstream of p47phox 

expression, the impact of p47phox activation was not explored. This, however, is 

important as prior reports have demonstrated that Akt stimulates p47phox 

localization/activation via serine phosphorylation (Ser345) in human 

myeloproliferative disorders.174 Given the preferential degree of Akt activation 

occurring in EGFR-overexpressing cells89, the potential contribution of this 

mechanism should be further examined. This is important, as EGFR-

overexpression, regardless of mutational status, significantly up-regulates 

p47phox, which could then be serine phosphorylated and activated downstream 

of various kinases implicated in RTK co-opting mechanisms of therapeutic 

resistance. Furthermore, though we did not evaluate the effect of Nox4 inhibition 

of ROS in EGFR-overexpressing cells, these studies are needed to better 

understand its potential for activation versus mere up-regulation in this context.  
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Our findings presented in this chapter provide novel evidence for 

EGFRΔIII-induced Fyn expression downstream of p47phox-mediated redox 

regulation of Egr-1 (Fig. 27). Collectively, these studies highlight a novel 

mechanism linking EGFR to the Nox complex and Fyn, providing compelling 

rationale for novel redox-targeted strategies in EGFR-overexpressing GBM. 

 

!

101



!!

!

! !

EGFR%(EGFRΔIII,#R108K)!

!

!

!
!

Fyn!

!

!!p47phox/NOX2 

EGR"1 

ROS 

EGR"1 
! 

(Increased*cell*proliferation*and*survival)* 

 Figure 27. EGFR-overexpression increases Fyn expression via 
p47phox-mediated induction of Egr-1 in U87-MG cells. Working model 
indicating that Fyn expression downstream of EGFR is regulated, in part, by 
increased expression of integral Nox-2 organizer component, p47phox, through 
induction of the redox-responsive transcription factor Egr-1. 
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5.1 Conclusions 
 
 !

Though increases in Fyn expression have previously been noted in GBM, 

the work presented in this dissertation is the first to connect Fyn expression to 

EGFR activation, specifically with regard to overexpression and hyper-activating 

mutation, EGFRΔIII and EGFR-R108K. The resulting increases in Fyn 

expression were biologically relevant, as Fyn knockdown significantly reduced 

cell proliferation and viability in EGFRΔIII and EGFR-R108K-overexpressing 

GBM cells (Figs. 9 & 10). We also demonstrated that Fyn expression is 

commonly up-regulated in a population of highly chemo- and radio-resistant 

GSCs (Fig. 12) and, furthermore, showed that siRNA knockdown of Fyn 

significantly lowered sphere formation in GSC 7-2 (Fig. 13). Therefore targeting 

Fyn expression, as opposed to activation, may represent a novel therapeutic 

strategy in EGFR-expressing GBM, as the clinical application of lapatinib and 

dasatinib exhibit only minimal therapeutic activity in this deadly disease.7,8,14,15 

The transcription factor Egr-1 has previously been shown to implicated in 

the up-regulation of Fyn expression in CML155 and, therefore, targeting Egr-1 

expression may be an effective strategy for reducing Fyn expression. From these 

studies herein, we found that Egr-1 protein expression, much like Fyn, is 

significantly up-regulated by EGFR-overexpression in GBM cells, specifically in a 

manner concordant with EGFR kinase activation (Fig. 14). Interestingly, Egr-1 

has previously been reported to behave as either a tumor suppressor or an 

oncogene depending on the cellular context.157,158,197 Here, we determined that 

Egr-1 knockdown markedly reduced Fyn protein levels in EGFR-overexpressing 
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GBM cells (Fig. 17), notably to a degree not achieved by lapatinib in U87-

EGFRΔIII and U87-R108K. These findings suggest that increased Egr-1 

expression plays an oncogenic role in EGFR-overexpressing GBM, providing 

rationale for targeting Egr-1 expression in the regulation of Fyn expression in 

GBM.   

The work presented in this dissertation also points to a novel means of 

regulating Fyn expression via EGFR-dependent induction of the integral Nox-2 

organizer complex, p47phox, which up-regulates Egr-1 expression in a redox-

responsive manner. Knockdown of p47phox, as well as treatment with the Nox 

inhibitor, apocynin, significantly reduced ROS content and Nox activity (Fig. 25) 

as well as Egr-1 and Fyn protein expression (Fig. 26) in U87- EGFRΔIII. Thus, 

our findings generate compelling interest in better understanding the 

physiological relevance of p47phox/Egr-1/Fyn pathway inhibition with regard to 

orthotopic tumor cell growth as well as animal survival in EGFR-expressing GBM. 

In vivo studies, however, aren’t without their limitations, namely insufficient 

recapitulation of the highly immunoregulatory microenvironment present in 

human tumors, as immunodeficient mice are employed in xenograft models. 

Moreover, though the classic Nox inhibitors such as the ones employed in this 

study, apocynin and DPI, significantly reduce Nox activity, they unfortunately 

display a non-specific pattern of NOX-targeting consequently limiting their clinical 

utility.202 More specific Nox-2 inhibitors, however, are currently under evaluation, 

including the p47phox binding peptide, Nox2ds-tat203, providing promise for the 

clinical application of Nox-2-targeted strategies.202 Collectively, these findings 
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indicate that targeting NOX-2 activation downstream of EGFR signaling by 

inhibition of p47phox represents a plausible means of reducing Fyn expression in 

EGFR-overexpressing GBM (Fig. 27).  
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