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IN VIVO DOSIMETRY USING PLASTIC SCINTILLATION DETECTORS FOR 

EXTERNAL BEAM RADIATION THERAPY 

 

Landon Scott Wootton, B.S. 

 

Supervisory Professor: Sam Beddar, Ph.D. 

 

In vivo dosimetry, the direct measurement of dose delivered to patients during 

radiation therapy, has significant potential in ensuring safe and effective treatment in 

radiation therapy. It can serve as point-of-delivery, patient specific quality assurance and 

direct verification of treatment. Despite evidence that in vivo dosimetry can detect errors 

in patient treatment that would otherwise go undetected, it is not commonly practiced. 

This is due in part to a lack of available detectors ideally suited to perform in vivo 

dosimetry. Plastic scintillation detectors (PSDs) possess a number of dosimetric 

characteristics advantageous for in vivo dosimetry including water equivalence, real-time 

capability, small size, and energy independence. However, PSDs have not been used for 

in vivo dosimetry of external beam radiation therapy to date. The overall purpose of this 

work is to apply PSDs to in vivo dosimetry of external beam radiation therapy, and 

demonstrate the utility and practicality of performing in vivo dosimetry with PSDs. 

 Three avenues of research were pursued in accordance with this purpose. First, 

the temperature dependence of PSDs was characterized. Prior to this work, PSDs were 

understood to be temperature independent detectors. However responses of PSDs 

constructed with BCF-60 and BCF-12, two common scintillating fibers, were 

v 
 



 

demonstrated to decrease by 0.5% and 0.1% per °C increase relative to 22 °C, 

respectively. The spectral distribution of light was observed to change with temperature 

as well. This resulted in a non-negligible error in measured dose at human body 

temperature, requiring a temperature-specific correction factor.  

 Next, PSDs were used for in vivo dosimetry of the rectal wall in five patients 

undergoing intensity modulated radiation therapy for prostate cancer. This was done as 

part of an Institutional Review Board approved protocol. PSDs were attached to 

endorectal balloons used routinely during prostate radiotherapy, positioning the detectors 

in close proximity with the rectal wall. Two PSDs were used for two treatment fractions 

each week for the duration of each patient’s treatment. The difference between the 

measured dose and expected dose was used to evaluate the accuracy and precision of the 

system. The mean difference between the measured and expected dose for the five patient 

population was -0.4%, with a standard deviation of 2.8%. The mean differences for 

individual patients fell between -3.3% and 3.3%. 

 Finally, a thorough characterization of the response of PSDs used for absolute 

entrance dosimetry in proton beams was performed. Entrance dose measurements for a 

passively scattered proton beam performed with a PSD were compared to measurements 

made with an ion chamber and radiochromic film. Ionization quenching, an under-

response due to densely ionizing radiation, was found to be responsible for a 7% loss of 

signal at the highest energy studied (250 MeV) and a 10% loss at the lowest (140 MeV). 

The under-response was found to be insensitive to other beam parameters, such as the 

width of the spread out Bragg peak.  
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1.1 Purpose Statement 

The primary objective of this research is to implement plastic scintillation detectors for in 

vivo dosimetry and to evaluate the practicality of doing so. In vivo dosimetry - direct 

measurement of dose delivered to patients during treatment – is a valuable tool for 

treating patients safely and effectively. However, its routine practice is uncommon 

despite evidence that it can identify treatment errors that would otherwise go undetected 

(Fiorino et al. 2000). This is due in part to the labor intensive nature of in vivo dosimetry 

and a lack of ideally suited detectors (Edwards 2007, Williams and McKenzie 2008). By 

demonstrating the plastic scintillation detectors are easy to use, highly accurate in vivo 

detectors, it is hoped that this research will contribute to increased adoption of in vivo 

dosimetry and enhance patient safety. 

 

1.2 Rationale and Significance 

Successful radiation therapy depends on an increasingly complicated interplay of 

different technologies and people including physicians, physicists, dosimetrists, and 

therapists. Such a complicated system will naturally be error prone if caution is not 

exercised, and errors can have severe consequences for patients undergoing treatment. 

Accordingly, numerous error checks and safety measures are routinely practiced in 

radiation therapy: chart checks, machine quality assurance, patient specific quality 

assurance, secondary dose calculations, machine interlocks and more detect and prevent 

errors that could compromise treatment quality or result in patient injury.  

This system has been largely successful: radiation therapy is on par with other 

areas of medicine in terms of safety (The Royal College of Radiologists 2008). However, 
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some errors still avoid detection and result in inadequate or excessive dose to patients. 

This fact has been the focus of high profile media attention in recent years due to 

avoidable patient deaths and injuries resulting from treatment errors (Bogdanich 2010). 

While patient deaths are uncommon, the literature contains reports of incidents resulting 

in the systematic under- or over-dosing of large patient populations (Ash and Bates 1994, 

ICRP 2000, Derreumaux et al. 2008, WHO 2008) with adverse results. The number of 

such reports is increasing as incident reporting becomes mandated by regulation in more 

countries. 

Many of the errors reported could have been identified if an in vivo dosimetry 

system was in place. In fact, in response to reported incidents some countries in Europe 

such as France, Sweden, and Denmark have mandated in vivo dosimetry in some form for 

all patients. In vivo dosimetry functions as an independent end-to-end test of treatment 

delivery by measuring the dose delivered to patients as they are treated. Detectors 

positioned in the target volume can verify that the correct treatment dose was delivered. 

Detectors positioned adjacent to organs at risk can verify that the dose delivered does not 

exceed what is planned. Gross errors can be detected rapidly and staff can intervene 

before patients are harmed. 

Plastic scintillation detectors are in many ways ideal detectors for in vivo 

dosimetry on the basis of their distinctive collection of dosimetric properties (Beddar et 

al. 1992a, 1992b). They are capable of real-time measurement, allowing errors to be 

detected as they occur. They are water equivalent and very small, allowing point 

measurements of dose without perturbing the radiation field being measured. They suffer 

minimally from radiation damage, and so can be used for a long time without 
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recalibration or replacement. Finally, they require minimal correction factors and exhibit 

a high level of accuracy. Other detectors commonly used for in vivo dosimetry lack this 

comprehensive set of characteristics. 

The rationale for the research presented in this work is the clear benefit of in vivo 

dosimetry coupled with the theoretical advantages of plastic scintillation detectors for in 

vivo dosimetry. Prior to this work, plastic scintillation detectors have not been used for in 

vivo dosimetry of external beam radiation. In doing so for the first time, it has been 

demonstrated that they are excellent in vivo detectors. They are capable of measuring in 

vivo dose with high accuracy and can be used without significantly altering the clinical 

workflow.  

 

1.3 Specific Aims 

The research performed for this work consisted of three specific aims, each dealing with 

a separate aspect of using plastic scintillation detectors for in vivo dosimetry.  

The first aim was to fully characterize the unexpected temperature dependence of 

plastic scintillation detectors and provide accurate methods to correct for it during in vivo 

dosimetry. The effect of temperature on measured dose, total light output, and spectral 

shape for two common plastic scintillating fibers and their optical train components was 

quantified. This characterization was used to suggest a correction method and evaluate its 

efficacy.  

The second aim was to carry out in vivo measurements of the rectal wall dose for 

a small group of prostate cancer patients undergoing intensity modulated radiation 

therapy, a form of external beam radiation using photons to deliver dose.  The data 

4 
 



 

generated during this study was used to evaluate the performance of plastic scintillation 

detectors as in vivo detectors in terms of accuracy, precision, and practicality. 

The final aim was to characterize the response of plastic scintillation detectors 

used for absolute entrance dosimetry in proton beams. Specifically, the effects of 

ionization quenching and Cerenkov light contamination were quantified and the necessity 

of correcting for each effect was evaluated, as well as methods to implement corrections. 

 

1.4 Organization 

The remaining five chapters of this work consist of one chapter of background 

information helpful in understanding the presented research, three addressing the specific 

aims listed in the previous section, and a final chapter summarizing the findings and 

discussing future directions of the presented research.  
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CHAPTER 2 

  

BACKGROUND 
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2.1 Physical Mechanisms of Scintillation 

Scintillation is the production of light by certain materials following energy deposition by 

ionizing particles. Scintillators are broadly categorized as organic or inorganic depending 

on their atomic composition and mechanism of light production (Birks 1964). For the 

purpose of this work only organic scintillators are considered, though inorganic 

scintillators have broad applications in medical imaging. 

As the name suggest, organic scintillators are composed of organic molecules 

(carbon containing molecules), and more specifically, hydrocarbons (chains of carbon 

atoms bonded to hydrogen atoms). Ring shaped hydrocarbon structures known as 

aromatic hydrocarbons (Figure 2.1) are responsible for the luminescent properties of 

organic scintillators (Bross 1991).  

The nature of the bonds in aromatic hydrocarbons determines their light emitting 

properties. In the s3p1 bonding configuration, each carbon atom forms three sigma bonds 

with two adjacent carbon atoms and a hydrogen atom, and a weak pi bond with a 

neighboring carbon atom. The pi bonds lie parallel to the plane of the ring, and by 

quantum mechanical superposition of possible pi bonding configurations, form a 

continuous ring within which the pi electrons from each carbon atom are free to move 

(Figure 2.2). The excitation and de-excitation of pi electrons within this ring is 

responsible for the luminescence of the molecule. 

The energy levels of the pi electrons can be approximately calculated by solving 

the Schrödinger equation assuming the electrons are moving in an equipotential 

continuous circle (this assumption is known as the free perimeter electron model, the full  
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Figure 2.1. Diagram of the bonds of the aromatic hydrocarbons Benzene (top) and 
Anthracene (bottom), to scale. The solid lines represents sigma bonds, and the dashed 
lines represents the weaker pi bonds. Each ring in an aromatic hydrocarbon consists of 
six carbons. By definition, multiple rings may be joined together, but three rings may not 
be directly joined.   
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Figure 2.2. A representation of the benzene molecule with the delocalized electron rings 
represented as transparent green toroids. These rings are the result of the quantum 
superposition of all possible pi bonding configurations. The blue and red spheres are 
carbon and hydrogen respectively. Pi electrons, or the fourth valence electron from each 
carbon atom, are free to move within the rings parallel to the plane of the molecule. The 
resulting energy levels of these electrons are responsible for the luminescent properties of 
their parent molecules. 
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calculation is contained in section A of the appendix). This calculation reveals that the 

energy difference between the base state and the first excited state is on the order of a few 

eV, the energy of ultraviolet photons. Thus, when a pi electron is promoted to the first 

excited state by ionizing radiation, it can produce an ultraviolet photon as it de-excites. 

This process is in competition with thermal de-excitation (the excited state gives up its 

energy as heat rather than light), and conversion into a lower energy metastable state with 

a long decay time (Birks 1964). A Jablonski diagram of possible excitational states and 

transitions of scintillating molecules is displayed in figure 2.3. 

Excitation of higher energy states is possible, but such states decay rapidly and 

non-radiatively to the first excited state, which then decays to the base state as described 

above. Other possible processes include ionization of the pi-electrons, and excitation or 

ionization of the sigma electrons. When sigma electrons are excited, the excess energy is 

dissipated as heat.  Ionization of pi or sigma electrons renders the molecule incapable of 

scintillation. If a free electron rejoins the ionized molecule, it will regain the ability to 

produce scintillation light. Sometimes the ionized molecule will bond with impurities 

present in the scintillator material, rendering it permanently incapable of scintillation. 

This is the mechanism responsible for radiation damage, a loss of scintillation efficiency 

resulting from exposure to radiation (Birks 1964).  

For the purpose of detection, photons in the visible range are desirable. To 

accommodate this, most scintillators are doped with secondary fluors that absorb energy 

from the scintillating molecules directly and emit photons of lower energy, 
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Figure 2.3. A representative diagram of the energy states of a scintillating molecule. 
Electronic states are represented as solid lines, and vibrational sub-levels as oscillating 
grey lines. Straight arrows correspond to radiative transitions, and wavy lines represent 
non-radiative transitions. Upon energy absorption a pi electron is promoted to one of the 
excited singlet states (A). Direct excitation to a triplet state is forbidden. Excitation to a 
state other than S1 (including the vibrational sub-levels) results in rapid decay to the S1 
level, with excess energy being thermally dissipated (B). From state S1 the molecule may 
decay to the ground state (C), a process known as fluorescence. It may also transition to a 
triplet state via inversion of the pi electron’s spin (D) in a process known as inter-system 
crossing. This process is less common than fluorescence. The first excited triplet state 
decays (E) on a much longer time scale, a process known as phosphorescence. Process C 
is responsible for scintillation light.  
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a phenomenon known as stokes fluorescence (Kulkarni et al. 1997). A third fluor may be 

used to further increase the wavelength of the emitted light by absorbing photons from 

the secondary fluor and emitting still lower energy photons. Selectively choosing the 

primary scintillator and the fluors allows different properties to be achieved such as 

specific emission wavelengths, efficiency (i.e. light produced per unit energy deposited in 

the scintillator), resistance to radiation damage, and more. 

 

2.2 Design of Plastic Scintillation Detector Systems 

Scintillators produce light in response to irradiation, and the light produced can be used 

as a measure of the dose deposited in the scintillator. This is the fundamental idea that 

underlies scintillation dosimetry (Beddar et al. 1992a, 1992b). A plastic scintillation 

detector system is designed to isolate and quantify scintillation light. How it does that is 

described in this section. 

As mentioned previously, scintillation is a property of individual aromatic 

hydrocarbons; as a result, organic scintillators can retain their luminescent properties in 

solid, liquid, and gaseous states (Birks 1964). This allows the production of arbitrarily 

shaped plastic scintillators. Plastic scintillator can in turn be used to produce plastic 

scintillating fibers by the addition of a thin layer of cladding, the purpose of which is to 

improve light collection and transmission. Plastic scintillator and plastic scintillating fiber 

are easy to work with because they are chemically inert and solid. A system that uses 

plastic scintillator or plastic scintillating fiber for radiation dosimetry will henceforth be 

denoted a plastic scintillation detector system, or PSD system. 
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The light produced by a scintillator must be transferred to a photodetector for 

quantification. When used for measurement the scintillator is directly exposed to 

radiation, which would either damage a photodetector or render its measurements errant, 

so the scintillator is coupled to optical fiber to transmit the scintillation light elsewhere 

for quantification. To form a secure connection and maximize the transmission of light, 

cyanoacrylate, epoxy or other adhesive optical coupling materials are used between the 

scintillator and optical fiber (Ayotte et al. 2006). The fiber is often plastic optical fiber 

but the use of other fibers is reported in the literature, such as silica or air-core fibers 

(Beddar et al. 1992b, Lambert et al. 2008). 

The scintillator and optical fiber are enclosed in opaque jacketing such as 

polyethylene or a similar material. This is to prevent external light from entering the 

system. Total light-tightness is essential, as any external light entering the system cannot 

be distinguished from scintillation light.  

A photodetector is used to collect and quantify the light produced by the 

scintillator. Photomultiplier tubes (PMTs), photodiodes, charged couple device cameras 

(CCDs), complementary metal-oxide semiconductor cameras and other photodetecting 

devices may be used, so long as they accurately quantify the light produced (Beddar et al. 

2001, Liu et al. 2012, Beierholm et al. 2014). The terminal end of the optical fiber and 

the photodetector are typically fitted with an optical connector, so that different optical 

fibers (with different scintillators) can be connected interchangeably. For this reason, the 

combination of a scintillator and optical fiber is denoted a plastic scintillation detector 

(PSD), to distinguish it from a plastic scintillation detector system which consists of one 

or more PSDs connected to a photodetector. Note that the PSDs of a PSD system can be 
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connected simultaneously or consecutively. An example of the former would be a CCD 

camera imaging the light produced by several PSDs at once (Archambault et al. 2007). 

The latter would be a photodiode which can only quantify the light from one PSD at a 

time, but the PSD can be exchanged for another between measurements (Theriault-Proulx 

et al. 2011b). 

Most PSD systems require a method for discriminating Cerenkov light from 

scintillation light (Beddar et al. 1992c, Beddar et al. 2004). Cerenkov light is light 

produced by a charged particle traveling faster than the phase velocity of light in that 

medium. The spectral distribution of Cerenkov light is continuous and is most intense in 

the blue and ultraviolet regions of the spectrum. Cerenkov light produced within the 

scintillator itself is minimal in comparison to scintillation light, but a significant amount 

of Cerenkov light may be generated in plastic optical fiber used to transmit the light from 

the scintillator.  

Various methods are used to account for Cerenkov light. The simplest method 

uses a second line of optical fiber without scintillator as a control. If the second line is 

adjacent to the first, it will generate an essentially identical amount of Cerenkov light (by 

virtue of being subjected to the same conditions). The signal from the control is 

subtracted from the PSD to isolate scintillation light (Beddar et al. 1992a). Another 

method is to use a filter to eliminate the portions of the spectrum where Cerenkov light is 

strongest (Clift et al. 2000). This works best with a scintillator that emits light at longer 

wavelengths: the green or red region of the visible light spectrum for example. However, 

there will still be a Cerenkov component at these wavelengths (Therriault-Proulx et al. 

2011a), which prevents this method from being precisely accurate. The current favored 
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method is chromatic removal. In this method the light emitted from the PSD is spectrally 

separated into two components (using a dichroic mirror for example). The relative 

intensities of the two components are used to mathematically extract the scintillation 

(Fontebonne et al. 2002, Frelin et al. 2005, Archambault et al. 2006). Further explanation 

of this technique is available in part B of the appendix. 

Finally, calibration is necessary to establish a relationship between the 

scintillation light and dose. When using the chromatic removal technique, calibration 

consists of subjecting a PSD to well-known doses under two or more different conditions. 

Two conditions are considered different if the ratio of scintillation to Cerenkov light 

changes between them. This is most easily accomplished by increasing the quantity of 

exposed optical fiber. Using equation 2.1, a pair of calibration factors that convert PSD 

signal to dose can be recovered from the calibration measurements. 

 𝑭𝑭 = 𝑺𝑺+𝑫𝑫 (2.1) 

In this equation, D is a Nx1 matrix of known doses, S+ is the inverse of the Nx2 matrix of 

signals from the PSD (Nx2 rather than Nx1 because the light is split into two channels for 

each measurement, as explained in the previous paragraph), and F is the resulting 2x1 

matrix of calibration factors. In the case that the matrix S is not square, the Moore-

Penrose pseudoinverse is used instead of the true inverse. Once the calibration factors are 

determined, the dose corresponding to a given PSD measurement can be determined with 

equation 2.2.  

 𝐷𝐷 = 𝑺𝑺𝑭𝑭 (2.2) 

S is a 1x2 matrix of the PSD signals, F is a 2x1 matrix of the calibration factors, and D is 

a scalar corresponding to the dose. 
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In the case that chromatic removal is not used, calibration consists simply of 

determining the ratio of dose to signal under known conditions. This ratio would then be 

multiplied with the measured signal to determine dose.  

 

2.3 Dosimetric Properties of Plastic Scintillation Detectors 

With the theory underlying the design of a plastic scintillation detector presented, the 

practical properties of such a detector as relates to dosimetry will now be explored. 

As mentioned earlier, PSDs are composed of hydrocarbons. Because of this, their 

composition is very similar to tissue and water. Polystyrene for example, the main 

component of plastic scintillating fiber, has a density of 1.060 g/cc, just 6% higher than 

water. It has an electron density of 3.238x1023 e-/g, 3% below water. The mass collision 

stopping power and mass angular scattering power are very similar to that of water over a 

broad range of energies (Beddar et al. 1992a). Radiation therefore interacts with PSDs as 

it would with water or tissue. As a result, no correction factor is needed to convert from 

the dose deposited in the detector to the dose that would be deposited in water. 

Furthermore, charged particle equilibrium is not necessary for accurate dosimetry with a 

PSD, unlike with an ion chamber.  

PSDs are energy independent above a threshold of approximately 200 keV 

(Beddar et al. 1992a, Beddar et al. 2005). This is due both to water equivalence and the 

fact that the light yield of plastic scintillator is linear with the energy of charged particles 

interacting with the scintillator (Brannen and Olde 1962). This allows the use of PSDs in 

radiation beams of different energies (photon or electron) or at different depths without 

factors to account for changes in the beam’s energy distribution. 
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Another important property of PSDs is that the light produced by a PSD is linear 

with the quantity of dose deposited (Beddar et al. 1992b). Thus a doubling of scintillation 

light corresponds exactly to a doubling of dose deposited in the scintillator. This makes 

measurement simpler in comparison to mediums like film that respond non-linearly to the 

dose deposited. A closely related property is dose rate independence. The production of 

light in a PSD is a linear function of dose rate. If dose is deposited twice as quickly, light 

will be produced twice as quickly as well. 

The PSD response is independent of the orientation of the detector relative to the 

radiation field (Wang et al. 2010). Scintillation light is emitted isotropically (that is, 

photons are emitted from the scintillating molecules with equal probability in all 

directions), which is responsible for this property. As such, there is no need to take into 

account the orientation of the PSD when performing measurements. 

PSDs possess exceptional spatial resolution depending on the size of scintillator 

or scintillating fiber used. 1 mm and 0.5 mm diameter scintillating fibers are common. 

The length of fiber used is more variable, but 2 mm is a reasonable representative value. 

This corresponds to an active volume of approximately 1.6x10-3 cubic centimeters (for a 

1 mm diameter fiber). This makes PSDs ideal for measuring small fields or in steep dose 

gradients where volume averaging is a concern (Beddar et al. 2001). 

PSDs are capable of real time dosimetry because the decay rate from an organic 

scintillator’s first excited state to the base state is on the order of nanoseconds. The 

limiting factor in temporal resolution is typically the photodetector (for example, CCD 

cameras have a minimum exposure length that is orders of magnitude longer than the 
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decay rate of the scintillator). Real time dosimetry provides time-resolved detail of the 

delivered radiation (Archambault et al. 2010). 

Finally, scintillators convert absorbed dose to light with high efficiency. Thus 

even with a small active volume, a high signal is produced in response to small amounts 

of dose. As a result PSDs are highly precise detectors (Lacroix et al. 2009).  

 

2.4 In Vivo Dosimetry 

The dosimetric properties of PSDs make many useful applications possible such as small 

field dosimetry (Beddar et al. 2001, Klein et al. 2010), quality assurance (Gagnon et al. 

2012), and in vivo dosimetry. Among these applications, in vivo dosimetry has attracted 

great interest. The benefits of in vivo dosimetry will be laid out in the rest of this section. 

In vivo dosimetry is of interest primarily for its potential to improve patient safety 

and verify correct delivery of treatment. Patient safety is imperative in radiation therapy. 

Patients are exposed to high levels of radiation and both over- and under-exposure can 

have severe consequences as illustrated in figure 2.4. These consequences have been 

highlighted by recently reported accidents. In Panama 28 patients received excessive dose 

during treatment between August 2000 and March 2001 due to an error in the way the 

treatment planning system digitized shielding blocks. Eight of the patients subsequently 

died, with five deaths attributed to the overdose. The remaining patients were expected to 

develop complications (IAEA 2001). In Glasgow in 2006, human error induced by a 

change in the way dose was specified resulted in a medulloblastoma patient receiving 55 

Gy in 19 fractions instead of the intended 35 Gy in 20 fractions. This overdose eventually 
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Figure 2.4. Hypothetical tumor cure probability (TCP) curve and normal tissue 
complication probability (NTCP) are plotted in black. Successful radiation therapy 
maximizes the difference between the tumor cure probability and normal tissue 
complication probability to achieve the highest likelihood of uncomplicated cure (green 
dashed curve). The likelihood of tumor recurrence is plotted in blue to illustrate that 
deviation from the optimal dose in either direction can significantly increase the 
likelihood of either recurrence (caused by under-dose) or healthy tissue damage (caused 
by over-dose). 
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resulted in the patient’s death (Mayles 2007). Some errors are less severe but affect far 

more patients. For example, at a French center between 2001 and 2006, 397 patients 

received 8% overdoses because the dose resulting from MV portal imaging was not 

included in planning. No patients died, but the population exhibited an abnormally high 

rate of radiation induced complications (Derreumaux et al. 2008). In each of these cases, 

in vivo dosimetry could have detected errors early in the course of treatment, sparing 

patients undue injury through timely corrective action.  

In vivo dosimetry also has the potential to improve the patient experience. The 

promulgation of reports of radiation therapy accidents by the media produce anxiety in 

some patients undergoing treatment (The Royal College of Radiologists 2008). In vivo 

dosimetry can reassure patients that errors will be caught and mitigated if they occur, and 

bolster the patient’s confidence in the clinic. Thus, the perceived quality of care is 

improved even when no deviations in treatment occur. 

Another motivation to adopt in vivo dosimetry is that it may be legally required in 

the future. Some European governments have begun mandating in vivo dosimetry in 

response to accidents similar to those cited above. It is required by law in France, 

Sweden, and Denmark. The National Health Service in Britain recommended in 2008 that 

routine in vivo dosimetry be implemented for all patients undergoing radiation therapy. 

While in vivo dosimetry is not required on a routine basis in America, it is reasonable to 

assume regulation could move in that direction in the future. 

Finally, in vivo dosimetry is of scientific interest as well, because it generates data 

useful for toxicity studies. Tumor control probabilities and normal tissue risks are 

evaluated by correlating outcomes with planned doses as calculated by a treatment 
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planning system (TPS). While TPSs generally do an excellent job of accurately 

calculating dose distributions, the TPS calculated dose cannot account for day to day 

variations in setup and other external factors that affect the delivered dose distribution. In 

vivo dosimetry can be used to evaluate such effects, and may therefore be useful when 

used in conjunction with TPS calculated dose for evaluating toxicity risks. 

 

2.5 Challenges of In Vivo Dosimetry 

The potential benefits of in vivo dosimetry are clear, but its routine practice is rare. When 

in vivo dosimetry is performed, it is largely limited to special circumstances such as total 

body irradiation (to identify areas receiving too little radiation for local boosts), the 

treatment of pregnant patients, or the treatment of patients with implantable cardiac 

devices. A large majority of radiation therapy patients do not receive in vivo dosimetry in 

any form. In light of the clear benefits, it is obvious that there are obstacles to 

implementing in vivo dosimetry. The main obstacle is the labor intensive nature of in vivo 

dosimetry relative to the perceived benefits. 

The feasibility of implementing routine in vivo dosimetry has been much debated 

in the literature lately (Harrison and Morgan 2007, Williams and McKenzie 2008). 

Routine in vivo dosimetry would be costly, primarily in terms of the time required of staff 

to properly implement it (Edwards et al. 2007, Munro 2007). This includes the time 

required to prepare detectors, the time required to perform the measurements, and the 

time to analyze the data. Given that data from countries where misadministration 

reporting is mandatory indicates that severe incidents are rare (The Royal College of 

Radiologists 2008), the cost of preventing one major incident is potentially huge.  
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A significant portion of the resistance to in vivo dosimetry stems from the fact that 

detectors typically used for in vivo dosimetry have a variety of drawbacks that either 

make their use labor intensive and/or limit their usefulness (Mijnheer et al. 2013). An 

ideal detector should be largely independent of the need for correction factors so it will 

be easy to use. Real-time feedback is highly desirable in order to detect treatment 

deviations as soon as possible to mitigate any harm done. Finally, an ideal detector 

should not need to be replaced or recalibrated often in the interest of time. The detectors 

that are commonly used for in vivo dosimetry do not meet all of these requirements. 

Thermoluminescent dosimeters (TLDs) and optically stimulated luminescent detectors 

(OSLDs) cannot be used for real time measurement (and will therefore detect problems 

well after they occur), they require a number of correction factors to achieve high 

accuracy, can only be read out with expensive dedicated machinery, and are labor 

intensive (DeWerd et al. 2009). Diodes are capable of real time dosimetry with high 

spatial resolution, but are sensitive to a number of conditions such as energy, orientation, 

and temperature, and exhibit a significant loss of signal over time due to radiation 

damage (Saini and Zhu 2007a, 2007b). MOSFETS are similar to diodes in that they are 

capable of real time operation, but are sensitive to energy, orientation, temperature and 

generally have shorter useful lifetimes than diodes (Jornet et al. 2004, IAEA 2013). The 

shorter lifetime is a particularly limiting factor as the continual calibration of new 

detectors requires a significant time investment.  
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2.6 Plastic Scintillation Detectors for In Vivo Dosimetry 

Plastic scintillation detectors are good candidates to address the challenges cited above. 

As described previously, PSDs possess an array of unique dosimetric characteristics that 

fit the profile of an ideal in vivo detector well. The most notable characteristics of PSDs 

with regards to in vivo dosimetry are their water equivalence; a response independent of 

energy, dose rate, and other factors; a high ratio of signal to dose; a response time on the 

order of nanoseconds; and a low cost. The benefits of each characteristic in the context of 

in vivo dosimetry are examined in this section. 

Water equivalence is a highly desirable characteristic for in vivo dosimetry. It 

allows the dose to tissue to be measured directly without the use of a conversion factor. 

Additionally, water equivalence ensures that detectors do not perturb the radiation field 

being measured. Accordingly, a PSD can be placed in the center of a treatment field in a 

patient without compromising the treatment. A final benefit of water equivalence is that it 

allows the use of PSDs in very small fields, such as those encountered in radiosurgery, 

without the need for correction factors due to a loss of lateral electronic equilibrium or 

source occlusion.  

PSDs can measure dose with great accuracy in part due to a response independent 

of factors such as energy, dose rate, and angle of incidence. The effect of such factors 

will sometimes be difficult to determine and correct in vivo, even if they are well 

characterized ex vivo. Furthermore, any correction will necessarily involve some 

uncertainty which will contribute to the overall uncertainty of the detector. Therefore a 

minimal need for correction factors when using PSDs is an important advantage. 
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The high signal and nanosecond response time of PSDs makes real-time dose 

monitoring feasible. The fast response time eliminates blurring of the measured dose 

profile in time. The high signal allows a PSD system to maintain a reasonable signal to 

noise ratio (SNR) even when measuring in the short time intervals with commensurately 

small doses. Real-time dosimetry is essential if one wishes to be able to detect errors as 

they occur in order to interrupt treatment and rectify the situation. Temporal information 

can also be useful when investigating errors. For example, treatment can be investigated 

on a beam-by-beam basis. 

Finally, PSDs are more resistant to radiation damage than other available 

detectors. As such they may be reused for long periods of time without replacement or 

recalibration, saving time and money (Beddar et al. 1992a). 

Like any detector, PSDs do have a few unfavorable characteristics. First, some 

PSDs exhibit temperature dependence (Wootton and Beddar 2013, Buranurak et al. 

2013), a fact unknown before the work presented in chapter 3 was performed. This 

subject will be covered in depth in that chapter. By way of a brief overview however, the 

signal of BCF-60, a common scintillating fiber used in PSDs, exhibits as much as an 8% 

decrease in measured dose at body temperature relative to room temperature. Clearly this 

must be corrected for to perform accurate in vivo dosimetry. The stem effect (non-

scintillation signal in the form of Cerenkov light), is another drawback. However, this can 

be overcome with the highly effective chromatic removal technique. 

Overall, PSDs compare favorably with other detectors commonly in use for in 

vivo dosimetry. Their size is equal to or smaller than diodes and MOSFETS. They do not 

require build up or correction for factors such as energy, angle, or dose rate. They are far 
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more radiation resistant than either MOSFETs or diodes, giving them a comparatively 

longer lifetime and requiring less time for calibration. Finally, they are capable of real 

time dosimetry. 
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CHAPTER 3  

 

TEMPERATURE DEPENDENCE OF PLASTIC SCINTILLATION DETECTORS 
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This chapter is based on material published by the author of this dissertation in Physics 

in Medicine and Biology in 2013:[Wootton LS and Beddar AS 2013 Temperature 

dependence of BCF plastic scintillation detectors. Phys. Med. Biol. 58 2955-67]. It is 

reproduced here with permission of IOP Publishing. Wording in the introduction and 

discussion has been modified to conform to the overall style of this dissertation. 

 

3.1 Introduction 

The plastic scintillation detector (PSD) is a thoroughly studied detector notable for a 

unique collection of characteristics that make it well suited for dosimetry. For example, 

previous studies have established that PSDs are water equivalent; exhibit a linear 

relationship between scintillation light and deposited dose; are energy, dose rate, and 

angularly independent; have a high spatial resolution; and are temperature independent 

(Beddar et al. 1992a, 1992b). Some of these characteristics, most notably temperature 

independence, have been accepted as fact without independent validation by other 

groups. 

Twenty years have passed since the initial studies were conducted that established 

these characteristics, and the design and construction of PSDs has changed in that time. 

Specifically, the first PSD described in the published literature was constructed with a 

BC-400 scintillator coupled to a silica light guide using silicon optical coupling grease 

(Beddar et al. 1992a). It is now not uncommon to use different materials; SCSF-

3HF(1500), SCSF-78, BCF-12, and BCF-60 scintillating fibers often replace BC-400 

owing to their superior light collection and/or spectral properties. Plastic optical fibers are 

commonly substituted in place of the silica light guide to achieve better water 
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equivalence. Cyanoacrylate or epoxies are regularly used for optical coupling 

(Archambault et al. 2005, Ayotte et al. 2006). 

New generations of PSDs have been shown to possess almost all of the dosimetric 

characteristics of the original PSDs from the 1992 study, including response linearity, 

water equivalence, and energy, dose rate, and angular independence, as evidenced by 

their successful use in increasingly advanced dosimetric studies (Archambault et al. 

2010, Klein et al. 2010, 2012, Lacroix et al. 2010, Wang et al. 2012). However, to the 

best of our knowledge, temperature independence has not been independently validated 

or investigated for either the original PSD or any subsequent generations of PSDs. 

We were prompted to investigate temperature dependence in response to a 

systematic error exhibited by PSDs employed in an in-vivo dosimetry protocol (the 

subject of chapter 4) at our institution. These PSDs were regularly subjected to both in-

vivo dose measurements in patients and in-phantom validation designed to replicate the 

in-vivo conditions. The dose measured by the PSDs in the phantom agreed excellently 

with the calculated dose in the treatment planning system; however, the dose measured 

in-vivo differed from that calculated by the treatment plan. Because the phantom was at 

room temperature during validation, we concluded that temperature dependence was an 

important avenue of investigation.   

A brief initial investigation, reported in a letter to the editor previously (Beddar 

2012), confirmed that the PSDs did indeed exhibit temperature dependence. This 

investigation indicated that the measured dose decreased by an average of 0.6% per C 

increase, relative to room temperature, for PSDs made with BCF-60 scintillating fibers. 

This prompted us to conduct a more thorough systematic investigation of the effects of 
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temperature on PSDs built with BCF-12 and BCF-60 scintillating fibers, which are two of 

the most common scintillating fibers used in PSDs. In this article, we present our 

investigation and report the results. 

 

3.2 Methods and Materials 

3.2.1 Detectors 

The PSDs used for this study were constructed according to the following method. A 2-

mm length of either BCF-60 or BCF-12 scintillating fiber (Saint-Gobain Crystals, Hiram, 

OH) was optically coupled to an Eska GH-4001-P clear plastic optical fiber (Mitsubishi 

Rayon Corporation, Japan) with cyanoacrylate glue. The abutting ends of the scintillating 

fiber and the optical fiber were polished with fine grit polishing paper to facilitate high 

optical transmission efficiency (Ayotte et al. 2006). The entire assembly was light-

shielded in black polyethylene jacketing. Additionally, an opaque, black, alcohol-based 

adhesive was used to conceal exposed portions of scintillating fiber and optical fiber (e.g. 

at the end of the PSD where the scintillating fiber terminated) to prevent the admission of 

external light that would contaminate the PSD signal. Approximately 20 m of optical 

fiber was used to span the distance between the linac and the outside of the vault. The 

optical fiber was connected either to a Luca S CCD Camera (Andor Technology, Belfast, 

Northern Ireland) via a ST optical connector for dose measurements or to an Andor 

Shamrock 163 spectrometer via a SMA optical connector for spectral analysis. The 

connectors ensured a secure and reproducible connection. 

 Calibration was performed under cobalt-60 irradiation using the chromatic 

removal technique (Fontebonne et al. 2002, Frelin et al. 2005, Archambault et al. 2006) 
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to distinguish scintillation light from contaminating Cerenkov light (Beddar et al. 1992c). 

In order to implement this technique, a dichroic mirror (model NT47-950, Edmund 

Optics Inc., Barrington, NJ) was used to split the light produced by the PSDs into 2 

spectrums prior to imaging by the CCD. 

 

3.2.2  Experimental Setup 

To subject PSDs to a variety of stable temperatures, PSDs were placed into a 250-mL 

beaker filled with water that was placed on top of a hotplate. A cap of dense blue 

Styrofoam was fashioned to fit tightly into the top of the beaker to insulate the water, and 

small perforations in the Styrofoam cap allowed the PSDs access to the water. A 

thermometer was also inserted through the center of the Styrofoam cap into the water to 

monitor the temperature. The bulb of the thermometer was placed at the same depth as 

the active volume of the PSDs to provide the most accurate assessment of the PSD 

temperatures. 

The hotplate (model PC-620D; Corning Incorporated, Corning, NY) included a 

magnetic stirring device which was used to facilitate a homogeneous temperature 

distribution of the water. The hotplate was placed on a lateral edge of a linac couch. The 

gantry head was rotated to 270 degrees to position the beam perpendicularly to the PSDs, 

and the couch was then moved laterally as close to the linac head as possible to maximize 

the signal from the PSDs (Figure 3.1). 

Prior to obtaining each set of measurements, we filled the beaker with a 

combination of water and crushed ice. The cap with the PSDs and thermometer was then  
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Figure 3.1. Experimental setup. a) The gantry was rotated to irradiate the plastic 
scintillation detectors (PSDs) perpendicularly and the couch was shifted laterally to 
maximize the signal from the PSDs by placing them as close as possible to the radiation 
source. A beaker of water was placed on the center of a hotplate to position it above a 
magnetic stirrer, and the PSDs and a thermometer were held in place in the beaker by a 
Styrofoam cap. The optical fiber transmitting scintillation light was taped to the linac to 
prevent motion in and out of the field, which would alter the Cerenkov contribution to the 
PSD signal. b) Three PSDs (one for spectrometry and two for dose measurements, label 
A) were inserted through the Styrofoam cap (label C) into the water. The bulb of the 
thermometer (label B) was placed near the active volume of the PSDs to provide the most 
accurate assessment of the PSD temperatures. 
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affixed to the top of the beaker, and the stirrer used to bring the water to thermal 

equilibrium. The beaker was filled completely with water, so that no air gap was present 

between the water and the bottom of the Styrofoam cap. 

Each data point was acquired using the following protocol. First, the hotplate 

setting was adjusted to bring the water to the desired temperature. After the temperature 

stabilized but before the irradiation, the water temperature was held constant for an 

additional 10 minutes to allow the PSDs to come to thermal equilibrium with the water. 

Although less time was likely required (the jacketing consisted of polyethylene, the 

scintillator of polystyrene, and the optical fiber of PMMA, each of which have a thermal 

conductivity similar to water), 10 minutes was chosen to ensure that the water 

temperature measured by the thermometer accurately reflected the PSD temperature. 

After this waiting time, the detectors were irradiated with 100 monitor units (MU) 3 

times, for statistical purposes, and the output was captured with either the CCD or the 

spectrometer as described below. 

It was not possible to stabilize the water temperature below room temperature; no 

means of cooling the setup without disturbing it were available. Therefore, for these 

measurements, we averaged the temperature measured before and after the irradiation 

(typically differing by 0.5°C) and assumed that this accurately reflected the PSD 

temperature.  

 

3.2.3 Dose Measurements 

Dose was measured with a pair of BCF-60 PSDs and a pair of BCF-12 PSDs to quantify 

the effect of temperature on measured dose. Measurements spanned a range from 
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approximately 15°C to 40°C. Twenty-second CCD light-integrating acquisitions were 

used to measure the light output resulting from each 100 MU irradiation. An average 

background image was subtracted from the measurement images, from which dose values 

were subsequently obtained via analysis in ImageJ (Archambault et al. 2008). The 

resulting dose values were normalized to the dose measured at room temperature, here 

defined as 22°C. If no measurement was made at 22°C, the value was obtained by 

interpolating between the 2 closest points. 

 

3.2.4 Spectrometry 

The effect of temperature on the intensity and spectral distribution of light of 4 different 

PSD configurations was quantified with a spectrometer. The following PSD 

configurations were used: a PSD built with BCF-60 scintillating fiber, a PSD built with 

BCF-12 scintillating fiber, a bare fiber (i.e. an optical fiber without a scintillating element 

or cyanoacrylate, thus capable only of generating Cerenkov light), and a PSD with an 

isolated cyanoacrylate optical coupling.  

For measurements involving the bare fiber, only the submerged portion of the 

fiber that was subject to temperature changes was irradiated. This was done to ensure that 

any temperature dependence of the production and transmission of Cerenkov light would 

not be masked by Cerenkov generated elsewhere in the optical fiber.   

To create an isolated optical coupling, the optical fiber of a BCF-60 PSD was cut 

2 m below the scintillating element and reattached with cyanoacrylate. More 

cyanoacrylate than would typically be used in the fabrication of a PSD was employed to 

exaggerate any effects. Only this optical coupling was submerged in the water and 
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subjected to temperature changes, while the scintillating element of the PSD was 

maintained at room temperature outside of the beaker and irradiated to generate a light 

signal that would be transmitted through the isolated coupling. 

 Twenty-second acquisitions were used for each 100-MU irradiation. An average 

background spectrum was subtracted from each measurement. To distinguish between the 

Cerenkov light and the scintillation contributions to the spectral measurements, a pure 

Cerenkov spectrum and a pure BCF-60 or BCF-12 scintillation spectrum were fitted to 

the total spectral output at room temperature for each configuration using the least 

squares method. The fitted Cerenkov spectrum was then subtracted from measurements at 

other temperatures, leaving only the scintillation spectra (the Cerenkov spectrum was 

demonstrated to be unchanged by changing temperature). The fitted room temperature 

Cerenkov spectrum needed to be subtracted at non-room temperatures because fitting the 

pure scintillation spectrum would not correctly determine the scintillation signal if the 

spectral distribution of the scintillator was temperature dependent. The pure Cerenkov 

spectrum was obtained from the bare fiber. The pure scintillation spectra were obtained at 

room temperature by irradiating the scintillators on a kV irradiation unit; the low-energy 

radiation of the kV irradiator produces a negligible amount of Cerenkov light (Therriault-

Proulx et al. 2012).  

The spectra of each PSD configuration were analyzed to determine the 

wavelength at which the maximum intensity change occurred and the magnitude of that 

change, the change in the total intensity of the spectrum, and the change in the 

distribution of the spectrum. As a metric to quantify the change in the distribution, we 

calculated the ratio of the change in intensity of the portion of the spectrum that would be 
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reflected by the dichroic mirror used in our CCD setup (520-550 nm) to the change in 

intensity of the portion that would be transmitted by it (the remaining visible spectrum).  

 

3.2.5  Detector Stabilization 

An additional experiment was performed to determine whether the temperature-

dependent response of the PSDs at non-room-temperatures stabilized, and if so, how 

quickly. The water-filled beaker was heated to 29°C while a BCF-60 PSD was 

maintained at room temperature outside the beaker. After the water temperature stabilized 

at 29°C, the PSD was inserted through the Styrofoam cap and measurements of 100-MU 

irradiations were immediately commenced at a frequency of 1 per minute for 40 minutes. 

The first measurement was made approximately 50 seconds after introducing the PSD 

into the beaker. This delay was necessary to exit the room and close the vault door. 

For comparison, these measurements were repeated in air (i.e., the beaker was not 

filled with water) and without the application of heat. This was done to eliminate the 

possibility that changes in output were due to other effects such as fatigue of the CCD 

camera. 

 

3.3 Results 

3.3.1 Dose Measurements 

The measured dose for each pair of PSDs decreased with increasing temperature across 

the entire temperature range (Figure 3.2). The relationship between the BCF-60 PSD 

measured dose and temperature was predominantly linear, although a small nonlinear 
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Figure 3.2. Dose measurements obtained under changing temperature conditions 
from 2 pairs of plastic scintillation detectors made with BCF-12 and BCF-60 
scintillating fibers. A steady decrease in the measured dose was observed with 
increasing temperatures. Each point is the average of 3 measurements, and the 
error bars represent 2 standard deviations of those measurements. Linear fits show 
that BCF-60 exhibited slightly nonlinear temperature dependence, whereas the 
BCF-12 temperature dependence pattern was entirely linear. 
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component was present. The measured dose for the BCF-60 PSD decreased by 

approximately 0.50% per °C increase relative to room temperature. The relationship 

between the BCF-12 PSD measured dose and temperature was linear, with the measured 

dose decreasing by 0.09% per °C increase. 

 

3.3.2 Spectrometry 

Spectrometry data for irradiation of the bare fiber revealed that neither the total intensity 

nor the distribution of the Cerenkov spectrum changed as a function of temperature 

(Figure 3.3).  

However, considerable change in the intensity of the BCF-60 PSD output was 

observed for wavelengths between 475 nm and 650 nm, with no discernible change in 

output outside of that range (Figure 3.4). Between 475 nm and 650 nm, the maximum 

intensity loss occurred at 510 nm and was equal to 0.60% per °C relative to room 

temperature. The total light output of the BCF-60 PSD decreased at a rate of 0.32% per 

°C in a dominantly linear fashion, with a small nonlinear component. The portion of the 

spectrum that would be reflected by the dichroic filter decreased in intensity at a rate of 

0.59% per °C increase, whereas the rest of the spectrum intensity decreased at a rate of 

only 0.43% per °C increase, a ratio of 1.37 (i.e., the reflected portion decreased in 

intensity 37% more rapidly than the rest of the spectrum). 

A markedly less severe loss of intensity was observed in the spectrum of the BCF-

12 PSD, this time constrained to the regions between 375 nm and 500 nm (Figure 3.5). 

The maximum intensity loss occurred at approximately 410 nm: a 0.30% decrease per °C 
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Figure 3.3. Cerenkov spectra. In the top plot, the intensity vs. wavelength of the 
Cerenkov spectrum is displayed for a staggered selection of temperatures. The bottom 
plot displays the percent change in the spectrum per °C as a function of wavelength 
relative to the 20°C spectrum. The shape and intensity of the Cerenkov spectrum did not 
change discernibly with rising temperatures. Note that the two plots share the same x-
axis. 
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Figure 3.4. BCF-60 spectra. In the top plot, the BCF-60 spectrum is displayed for a range 
of temperatures. The bottom plot displays the percent change in the spectrum per °C as a 
function of wavelength, relative to the 20°C spectrum. The spectrum intensity decreased 
substantially between 475 nm and 600 nm. A small decrease is observed from 600 nm to 
650 nm. It is difficult to evaluate the change outside of this range due to a poor signal to 
noise ratio (SNR), but it appears negligible.  Note that the two plots share the same x-
axis.  
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Figure 3.5. BCF-12 spectra. In the top plot, the BCF-12 spectrum is displayed for a 
staggered selection of temperatures. The bottom plot displays the percent change in the 
spectrum per °C as a function of wavelength, relative to the 20°C spectrum. The 
spectrum intensity decreased slightly between 375 nm and 500 nm. Outside of this range 
no change is observed, though the low SNR makes it difficult to evaluate. Note that the 
two plots share the same x-axis.  
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increase relative to room temperature. The total light output of the BCF-12 PSD 

decreased by 0.13% per °C in a linear fashion. The intensity of the portion of the 

spectrum corresponding to light reflected by the dichroic filter decreased at a rate of 

0.02% per °C, whereas the intensity of the remaining spectrum decreased at a rate of 

0.12% per °C, a ratio of 0.13. 

For the cyanoacrylate coupling, a nonlinear decrease in transmitted light was 

observed with increasing temperature. Note that because the change was nonlinear, all 

values presented are the difference between the intensity at 38°C and 22°C. Intensity loss 

occurred primarily between 500 nm and 600 nm (Figure 3.6). The maximum intensity 

loss of 4.2% occurred at 550 nm. A 2.5% loss in total light intensity was observed. The 

intensity of the reflected portion of the spectrum decreased by 3.6%, whereas the 

intensity of the remaining spectrum decreased by only 2.5%, a ratio of 1.4. 

The total light output for each PSD configuration is plotted in figure 3.7. 

 

3.3.3 Detector Stabilization 

All measurements made with the PSD maintained at 29°C were within 0.50% of the 

average measured value. The measurements did increase very slightly over the course of 

the experiment; at the conclusion of the experiment it was noted that the water 

temperature had decreased by 1.5°C, which accounted for the increase in the measured 

values. 

When the experiment was repeated in air, all measured values fell within 

approximately 0.50% of the average measured value, and no trend was observed. These 

results are displayed in figure 3.8.  
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Figure 3.6. Isolated optical coupling. A small temperature-dependent decrease was 
observed in the light transmitted through the cyanoacrylate coupling. The bottom plot 
displays the average percent change in the spectrum per °C between 38°C and 20°C. A 
small decrease between 500 nm and 600 nm is observed. Note that the limits of the x and 
y axis here differ from those of other spectra figures to give a magnified view of this 
spectrum, and the two plots share the same  x-axis. 
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Figure 3.7. Total light output of each detector configuration as measured with a 
spectrometer. A more severe decrease in light output was observed for the BCF-60 PSD 
than for the BCF-12 PSD. Cerenkov light did not exhibit any temperature dependence. 
The cyanoacrylate coupling exhibited a temperature-dependent transmission. Each point 
is the average of 3 measurements, and the error bars represent 2 standard deviations of 
those measurements. Linear fits demonstrate that that the intensity change of the BCF-60 
PSD had a small nonlinear component, whereas the temperature dependence pattern for 
the BCF-12 PSD was entirely linear.  
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Figure 3.8. Stabilization. A room-temperature plastic scintillation detector immersed in 
29°C water displayed a stable response over 40 minutes, from the first measurement at 50 
seconds after immersion (dashed lines indicate ±1% from the average response). A slight 
upward trend owing to a small decrease in the temperature of the water over the 40 
minutes was observed. Identical measurements in air confirmed that the plastic 
scintillation detector was stable under normal conditions.  
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3.4 Discussion 

Contrary to widely accepted knowledge, our results indicate that PSDs are not universally 

temperature independent. The temperature dependence of BCF-60 PSDs is on the order 

of 1% within a few degrees of room temperature and on the order of 10% at human body 

temperature. The effect of temperature on BCF-12 PSDs is much smaller but would still 

contribute a systematic error in measured dose at noncalibration temperatures if 

uncorrected. Clearly the effect of temperature must be accounted for in current PSDs and 

minimized in future PSDs if possible. 

Measurements with pairs of PSDs revealed nearly identical temperature 

dependence for PSDs built with like scintillating-fibers. From these results, we conclude 

that the temperature dependence of one PSD is sufficient to characterize the dependence 

of a large number of PSDs if care is taken to standardize the construction.  

Our spectrometry data revealed several points of interest. First, neither the 

intensity nor the spectral distribution of the Cerenkov light collected from the bare fiber  

was temperature dependent. From this, we conclude that Cerenkov production and 

attenuation of light in the range of wavelengths spanned by the Cerenkov light in the 

optical fiber are temperature independent. The Cerenkov spectrum spans both the BCF-

12 and the BCF-60 spectrum, so the temperature-independent attenuation of the optical 

fiber holds for both types of scintillators. Accordingly, any temperature dependence of 

the PSDs must be caused by changes in the light emitted from the scintillator or the 

transmission of light through the optical coupling. Additionally, the temperature 

independence of Cerenkov light is important because the chromatic removal technique 
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assumes that only the intensity and not the spectral distribution of Cerenkov light changes 

as irradiation conditions change.  

Second, the distributions of the scintillators’ spectra were observed to change 

slightly in addition to the total intensity. This is problematic because the chromatic 

removal technique requires the spectral distribution of scintillation light to be constant to 

extract the dose from the total light output correctly. Our implementation of this 

technique using a dichroic mirror specifically requires that the ratio of the portion of 

scintillation light reflected to the portion transmitted is constant. As stated in the results, 

this was not the case. This means that not only will the dose measured be incorrect owing 

to the change in scintillation light produced per unit dose, but the error will also be 

compounded by the incorrect extraction of dose from the total light.  

We became aware after starting this research that Buranurak et al. had 

independently started similar work on scintillator temperature dependence. They reported 

changes in the light output and spectral distribution of BCF-12 and BCF-60 very similar 

to those found in our study, corroborating our results. Their findings were presented at 

the 2012 Luminescent Detectors and Transformers of Ionizing Radiation (LUMDETR) 

conference (September 2012). 

Lastly, our spectrometry data showed that the transmission of light through 

cyanoacrylate optical coupling exhibited a nonlinear temperature dependence. The 

temperature dependence was largely confined to the wavelengths between 500 nm and 

600 nm, which is why the relationship between light output and temperature was partially 

nonlinear for BCF-60 PSDs (most of the BCF-60 emission spectra fell in this range) but 

not for BCF-12 . Because the quantity of cyanoacrylate used in our experiments was 
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greater than that used in a typical PSD, it is not possible to determine how much of either 

the BCF-12 or BCF-60 temperature dependence stems from the use of a cyanoacrylate 

coupling. However, given the relatively small nonlinearity of the BCF-60 PSDs 

compared with the cyanoacrylate transmission, it is safe to say that the cyanoacrylate 

contributes only a small amount to the BCF-60 detectors’ temperature dependence. 

The stability tests revealed that the PSD output stabilizes very rapidly when the 

temperature changes, reaching equilibrium in the first minute. This is likely due to the 

small size of the PSD, which has a diameter of only 2.3 mm, and the water-like thermal 

conductivity of the materials that make up the PSD. This is ideal for time-sensitive 

applications (e.g., integrating in-vivo dosimetry into the treatment workflow). 

The disparity between the responses of BCF-60 and BCF-12 PSDs to temperature 

increases yields insight into an additional possible source of the temperature dependence. 

The key difference between these 2 scintillators is the wavelength shifting fluors used to 

convert the scintillation light, which is emitted primarily in the ultraviolet spectrum, to 

the visible spectrum. One fluor shifts ultraviolet light to blue light in BCF-12 and BCF-

60 scintillators. In BCF-60 scintillators, a second fluor is responsible for shifting blue 

light to green light. This suggests that the wavelength shifting fluors may be partially 

responsible for the temperature dependence. Published data support this conclusion. 

Rozman and Kilin (1960) found that when a variety of fluors were incorporated into 

polystyrene scintillator, each combination exhibited temperature dependence and the 

dependence differed greatly depending on the fluor used. Surprisingly, Rozman and Kilin 

also observed temperature dependent emission of light in pure polystyrene. 
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Several methods to correct for the temperature dependence are possible. The 

simplest method is to determine the ratio of the measured dose at various temperatures to 

the measured dose at the temperature at which the detector was originally calibrated and 

use the inverse of these ratios as temperature-specific correction factors. However, this 

method does not account for the change in the spectral distribution. As stated previously, 

the changing distribution of the scintillation spectrum compromises the chromatic 

removal technique. Thus, this correction will only be exactly correct when irradiation 

conditions (e.g., field size, depth) are identical to the conditions used to determine the 

ratios. The change in distribution of the spectrum is small for both detectors, so this may 

introduce an acceptably small error into measurements. However, our study did not test 

this and cannot confirm that this is in fact the case; thus, further research is warranted.  

A more effective but much more cumbersome solution would be to calibrate 

detectors at the temperature(s) at which they will be used. Any of the published 

calibration techniques could be used (Fontebonne et al. 2002, Archambault et al. 2006, 

Guillot et al. 2011), the only difference being that the scintillator would need to be heated 

to and maintained at a temperature of interest during the calibration. A separate 

calibration would need to be performed for each temperature at which the PSD will be 

used. The set of calibration coefficients resulting from a calibration would then be based 

on a temperature-specific intensity and spectral distribution of scintillation light. As such, 

no temperature correction would be necessary when using the calibrated PSD, provided 

measurements were performed at the same temperature as the calibration.  

For in-vivo applications, a single correction factor or calibration for 37°C should 

be sufficient. The temperatures that might be encountered in the healthy adult population 
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range from 35.6°C to 38.2°C (Mackowiak et al. 1992), a 2.6°C difference. Thus one 

could assume the temperature of any individual is 37°C with a 1.3°C uncertainty. Based 

on our results, for a detector corrected/calibrated to measure at 37 °C this uncertainty 

would contribute a 0.41% and 0.17% uncertainty in total light output per unit dose for 

BCF-60 and BCF-12 respectively. Both are below 0.5% and small compared to other 

uncertainties that might be encountered in in-vivo dosimetry (for example, uncertainty in 

the detector location due to the difficulty of reproducibly placing the detector and due to 

anatomical motion).  

Perhaps the best solution would be to construct a PSD that is minimally affected 

by temperature. To accomplish this, a scintillator with less intrinsic temperature 

dependence must be found. Rozman and Kilin’s (1960) finding of a broad range of 

temperature dependence patterns for different wavelength shifting fluors suggests that 

this is possible. The BC-400 scintillator may be a good candidate, because Beddar et al. 

(1992a) found that it had no temperature dependence. Additionally, cyanoacrylate should 

not be used as optical coupling for scintillators emitting primarily in the green region of 

the visible spectrum. Other couplings need to be investigated before a recommendation 

can be made. Ayotte et al. (2006) found that a detector with no optical coupling is 

feasible if well polished, outputting approximately the same amount of light that a 

coupled scintillator might. Unfortunately, this may result in a less robust detector because 

of the impermanent connection between the scintillator and the optical fiber. It does not 

appear to be necessary to replace the plastic optical fiber. 
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3.5 Conclusion 

We have found that PSDs built with BCF-60 or BCF-12 scintillating fiber exhibit non-

negligible temperature dependence, with BCF-60 PSDs exhibiting greater temperature 

dependence than BCF-12 PSDs. For BCF-60 PSDs calibrated at room temperature, the 

dependence is on the order of 1% near room temperature and on the order of 10% at 

human body temperature. The exact mechanism of this temperature dependence is not 

known, but the wavelength shifting fluors and temperature-dependent transmission 

through cyanoacrylate appear to be at least partially responsible. We have suggested that 

a temperature-specific correction factors derived by characterizing the temperature 

dependence may be sufficient to account for this effect, although further research is 

required to validate this assertion. Alternatively, temperature-specific calibrations would 

account for the effect. In addition, carefully selecting the scintillator and optical coupling 

used in new PSDs may reduce the temperature dependence. Further research is needed to 

determine the optimal materials to use in a PSD to reduce or eliminate the temperature 

dependence.  
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CHAPTER 4 

 

INTERNAL IN VIVO DOSIMETRY FOR PROSTATE INTENSITY 

MODULATED RADIATION THERAPY  
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This chapter is based on material published by the author of this dissertation in Physics 

in Medicine and Biology in 2014:[Wootton LS, Kudchadker RJ, Lee AK, and Beddar AS 

2014 Real-time in vivo rectal wall dosimetry using plastic scintillation detectors for 

patients with prostate cancer. Phys. Med. Biol. 58 2955-67]. It is reproduced here with 

permission of IOP Publishing. Wording in the introduction and discussion has been 

modified to conform to the overall style of this dissertation. 

 

4.1 Introduction 

With the increasing complexity of radiation treatments, a commensurate increase in 

quality assurance procedures is important to ensure the safe and effective delivery of 

radiation to patients. An important aspect of a comprehensive quality assurance program 

is in vivo dosimetry (Yorke et al. 2005, Edwards and Mountford 2009, Mijnheer et al. 

2013, Tanderup et al. 2013). Historically, in vivo dosimetry has been limited to skin dose 

measurements because only a few avenues have been available for internal in vivo 

dosimetry. 

A fully developed internal in vivo dosimetry system would provide multiple 

benefits, including a direct verification of treatment and the ability to detect potential 

treatment variances immediately (e.g., incorrect plan delivery, incorrect monitor unit 

settings) and halt delivery to minimize deleterious effects. Internal in vivo dosimetry 

could also detect systematic errors over the course of treatment if, for example, the 

patient alignment used for treatment differed from the alignment used in simulation. 

Finally, in vivo dosimetry could provide measured data to supplement calculations for 

toxicity studies. 

52 
 



 

Relatively few detectors have been previously employed for in vivo dosimetry. 

Thermoluminescent dosimeters (TLDs) have been used because of their small size and 

tissue equivalence (Hsi et al. 2013). However, thermoluminescent dosimeters can provide 

only a cumulative dose and require a complicated readout process with expensive 

specialized equipment (DeWerd et al. 2009). As a result, the delivered dose is not known 

instantaneously, but rather with some delay after the treatment. Metal oxide 

semiconductor field effect transistors (MOSFETs) have also been used for internal in vivo 

dosimetry (Den et al. 2012). They are capable of real-time measurement and are very 

small, providing excellent spatial resolution and perturbing the beam minimally. 

Unfortunately, MOSFETS have short lifespans and must be replaced relatively often. 

Furthermore, they require a number of corrections, are expensive, and possess poorer 

intrinsic precision than other detectors (Jornet et al. 2004). 

The plastic scintillation detector (PSD) is a good candidate for in vivo 

measurements. PSDs are extremely small, water-equivalent (eliminating the need for 

dose-to-water corrections and making them non-beam-perturbing detectors), and 

independent of angular, energy, and dose-rate effects (Beddar et al. 1992a 1992b). 

Furthermore, PSDs are capable of providing real-time data because they have a response 

time on the order of nanoseconds. Finally, PSDs are resistant to radiation damage and can 

be reused (Beddar 2006).  

Substantial research has been directed toward developing PSDs for in vivo use. 

Archambault et al. (2010) demonstrated the feasibility of using PSDs for real-time 

measurements, with better than 1% accuracy. Subsequently, Klein et al. (2012) used 

PSDs to make real-time measurements of volumetric modulated arc therapy and 
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intensity-modulated radiation therapy (IMRT) treatment plans delivered to an IMRT 

phantom and an anthropomorphic pelvis phantom. The difference between the measured 

dose and the expected dose was less than 1%.  

We have built on these results to develop a fully functional in vivo dosimetry 

system using PSDs for use in patients undergoing treatment for prostate cancer. The 

purpose of this chapter is to describe the real-time in vivo dosimetry system designed and 

constructed in our laboratory. Additionally, we will present the results generated by using 

this system to perform in vivo measurements of dose to the rectal wall in a small cohort 

of patients treated for prostate cancer with IMRT. Finally, we will compare the measured 

results with the treatment planning system (TPS) generated calculations to demonstrate 

the accuracy of this system.  

 

4.2 Methods and Materials 

4.2.1 Detector Design 

Two millimeters of BCF-60 scintillating fiber 1 millimeter in diameter (Saint-Gobain 

Crystals, Hiram, OH) was optically coupled to Eksa GH-4001-P plastic optical fiber 

(Mitsubishi Rayon Corporation, Japan) with cyanoacrylate. BCF-60 was chosen for its 

high signal and spectral separation from signal-contaminating Cerenkov light (Beddar et 

al. 1992c). The plastic optical fiber was chosen for its water equivalency and robustness 

compared with silica or glass fibers. Approximately 25 m of optical fiber extended 

between the scintillating fiber and an ST optical connector that interfaced with a panel in 

a black box containing a Luca S charge-coupled device (CCD) camera (Andor 

Technology, Belfast, Northern Ireland). This length of optical fiber allowed the CCD to 
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be outside the treatment vault in the treatment console area. A dichroic mirror (model 

NT47-950; Edmund Optics Inc., Barrington, NJ) split the light delivered by the optical 

connector into 2 distinct spectra for decomposition via the chromatic removal technique 

(Fontbonne et al. 2002, Frelin et al. 2005, Archambault et al. 2006).  

The Luca S CCD camera was chosen specifically for its suitability for performing 

real-time measurement. The Luca S is extremely fast, and when operating in frame 

transfer mode, has a dead time less than 300 μs. Thus negligible signal (<0.1%) is lost to 

dead time. It is also extremely sensitive, capable of single photon detection. The detector 

elements are 10 x 10 µm2 each, and there are a total of 658x496 pixels for an imaging 

area of 6.58x4.96 mm. The average readout noise per pixel in frame transfer is 15 

electrons. The signal (and thus the signal to noise ratio) depends on many factors such as 

the volume of scintillating fiber, the efficiency of the transmission of scintillation light, 

and the focusing of the camera. However, scintillating fibers are highly sensitive and 

when used in conjunction with the Luca S CCD high SNRs are easily achievable as a 

result (Archambault et al. 2010). 

Three ceramic fiducials were attached to the detector as surrogates to aid the 

visualization of the detectors on computed tomographic (CT) images. One fiducial was 

attached to the distal tip of the detector and the other 2 were attached on either side of the 

fiber proximal to the sensitive volume of the detector (Figure 4.1). A carbon spacer of 

known dimensions was used to separate the scintillator from the distal fiducial. Carbon 

was chosen because of its similarity to tissue. 

All detectors were calibrated in a cobalt 60 beam using the chromatic removal 

technique for Cerenkov correction using 3 dose conditions (Archambault et al. 2012).   
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Figure 4.1. Scale model of an in vivo plastic scintillation detector. A) Ceramic fiducials 
of 2.3-mm diameter were used for visualization on daily computed tomographic images. 
B) A 7-mm-long carbon spacer provided separation between the scintillator and the distal 
fiducial to avoid potential dose shadows. C) Two millimeters of BCF-60 scintillating 
fiber was used. D) Plastic optical fiber transmitted emitted light to a photodetector. E) A 
polyethylene jacket prevented the admission of contaminating external light. The jacket 
covered the entire assembly, but is partially transparent here to reveal the inner 
components of the plastic scintillation detector. 
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4.2.2 Protocol Design 

This research was conducted in accordance with an Institutional Review Board–approved 

protocol. The protocol stipulated that patients must have been diagnosed with prostate 

cancer (either with an intact prostate or after prostatectomy) to be eligible. Furthermore, 

only patients undergoing radiation therapy with the concurrent use of an endorectal 

balloon for prostate immobilization were eligible. No radiation modality was specified. 

However, we enrolled only patients undergoing IMRT for consistency and relevance, 

considering the widespread use of IMRT. 

The data presented here were collected from the first 5 patients enrolled in the 

protocol. The patients ranged in age from 62 to 70 years and were diagnosed with T1c, 

T2b, or T3c prostate cancer with no nodal or metastatic involvement. Four patients were 

treated with a course of radiation to the prostate, seminal vesicles, and lymph nodes 

collectively followed by a boost to the prostate alone. The fifth patient was treated with 

radiation only to the prostate. In vivo measurements were performed twice weekly for the 

duration of each patient’s course of treatment, barring extraneous circumstances (e.g., CT 

scanner not functional). Approximately 14 treatments were monitored with 2 in vivo 

PSDs for each patient, resulting in a total of 142 in vivo measurements.  

Each in vivo fraction proceeded as follows. Prior to the patient’s arrival, the 

system was prepared for use by connecting the CCD camera to a laptop for data 

acquisition and cooling the CCD to an operating temperature of -20°C via a built-in 

peltier element. A patient-specific PSD duplex (i.e., 2 PSDs attached to one another) was 

taken into the treatment vault on a spool. The distal end of the detector duplex was 

mounted to an endorectal balloon. The spool was unrolled and the proximal ends of the 
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PSD duplex connected to the CCD camera via ST connectors. Inside the vault, the 

treating therapists placed a latex sheath around the balloon and detectors. The sheath 

served to isolate the detector from direct contact with the rectal wall to facilitate reuse 

and to ensure that if a fiducial detached from the detector it would not remain in the 

patient.  

After the patient was positioned on the couch, the rectal balloon was inserted by 

the therapist, and the patient was aligned using external marks. During this alignment a 

series of background images was acquired by the CCD camera. The treatment couch was 

then rotated 180 degrees to obtain a CT scan using a CT-on-rails linear accelerator 

(Varian Medical System, Palo Alto, CA; GE Healthcare, United Kingdom), with a slice 

thickness of 2.5 mm. This slice thickness is standard for CT-on-rails measurements 

obtained from patients with prostate cancer at our institution. The CT scan allowed 

accurate localization of the detector within the patient, as described in section 4.2.3. An 

example of a CT slice containing PSDs in vivo is displayed in figure 4.2.  

After the CT scan, the patient was rotated back to the original position and then 

shifted using soft tissue alignment on the basis of the CT images. Megavoltage portal 

images were taken to confirm the isocenter position prior to turning the beam on, for 

consistency with non-protocol days on which the patients did not undergo a CT scan.  

After the final port film was acquired, real-time data acquisition was initiated. The 

course of radiation was delivered normally, and after delivery of the final beam, the data 

acquisition was halted. The entire workflow is graphically summarized in figure 4.3. The 

balloon was then removed by therapists, and the latex sheath was removed and the  
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Figure 4.2. Plastic scintillation detectors (PSDs) in vivo. The active volume of 2 PSDs is 
contained in this axial slice. Isodose lines are also displayed, starting at 200 cGy with 
intervals of 10 cGy for each successive isodose line. 
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Figure 4.3. Workflow diagram of the in vivo protocol workflow for a treatment fraction. 
Steps that would not occur during routine prostate IMRT treatment are denoted with 
asterisks. Most of the in vivo specific steps can occur in parallel with the normal 
workflow such that it need not be altered. For example, system preparation can occur 
before the patient arrives while another patient is treated. The background acquisition can 
occur while the patient is aligned to external markers as long as the rectal balloon with 
detectors has already been inserted. The exception is the CT scan. However, some patient 
are aligned with soft tissue each fraction, rather than using MV portal images. For these 
patients the CT scan would be a routine part of treatment, and the in vivo workflow 
would not disrupt or alter the treatment workflow in any way. 
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detectors were detached from the balloon. The balloon was then discarded and the PSD 

duplex was cleaned with medical-grade sanitary wipes. 

Finally, each day that patient measurements were obtained, the PSDs were 

irradiated in a phantom using a simple fixed geometry to confirm that they were 

measuring dose as expected. This simple validation served to check for any damage or 

any change in response. The detectors were centered in a 10 × 10 cm2 field under 1.5 cm 

of tissue-equivalent bolus with 5 cm of acrylic back-scattering media and irradiated with 

200 cGy. Any deviations >2% were considered indicative of damage or loss of 

functionality. In the rare case that such a deviation was observed, the detector was 

recalibrated. 

 

4.2.3 Imaging Methodology 

To calculate the expected dose to the detector, we needed to accurately identify the 

location of the detector on the CT image dataset. However, because the PSD is a water-

equivalent detector, this cannot be done directly (i.e., the PSD is indistinguishable from 

tissue). This was the motivation to use fiducials attached to the detector as surrogates for 

localizing the PSD. 

The fiducials attached to the detector were used to contour a region of interest 

(ROI) corresponding to the detector’s active volume using a combination of manual input 

and scripting in the Pinnacle TPS (Philips Healthcare, Andover, MA), although the 

method is generalizable to any TPS with scripting capability. We assumed a rigid 

geometry between the 3 fiducials and the scintillating fiber. Operating under this 

assumption, it was straightforward to calculate the location of the scintillating fiber by 
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providing the location of each fiducial to a script as a point of interest. A 1-mm-diameter 

ROI centered on the scintillating fiber was contoured on the slice containing the largest 

portion of the fiber, because the fiber was not guaranteed to reside solely on one slice. If 

consecutive slices each contained more than a third of the scintillating fiber, contouring 

was performed on both slices.  

To validate this method and its assumptions, we constructed detectors with CT-

opaque metal wire substituted for scintillators, and we attached the detectors to 

endorectal balloons and imaged them in an anthropomorphic prostate phantom. The 

above method was used to automatically contour the wire and the resultant ROI 

compared with the position of the center of the wire, providing a quantitative measure of 

the accuracy of this method. This experiment was repeated 10 times with independent 

setups, using 2 detectors each time. 

 

4.2.4 Data Acquisition 

Data was acquired during each monitored treatment starting immediately after the final 

port film and continuing through the entire treatment. The data acquisition rate was set to 

10 seconds (0.1 Hz) — that is, the CCD sequentially acquired 10-second integrations of 

the light output of the scintillator. Ten seconds was ideal because the longer integration 

time improved the signal-to-noise ratio of the measurements primarily by increasing the 

signal per image (the dominant noise was the readout noise of the CCD image, which was 

independent of integration times) while still allowing the temporal resolution necessary to 

distinguish between individual beams, the smallest portion of treatment for which dose 

information is easily retrievable from the Pinnacle TPS.  
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A temperature dependence correction factor was also applied to each detector. 

The correction factor was determined by performing repeated irradiations at varying 

temperatures, as described by Wootton and Beddar (2013), and assuming an idealized 

body temperature of 37°C for all patients. Small variations from 37°C would have a 

negligible effect on the final measured dose. 

To quantify the agreement between planned dose and measured dose, the location 

of each detector was first contoured on the daily CT image dataset. Then the beam 

parameters were imported from the patient’s treatment plan and used to calculate the dose 

distribution on the daily CT image dataset. Because the treatment couch rotated between 

the CT scanner (imaging) and the linac (treatment), the setup in the daily CT image 

dataset was identical to the setup used during treatment, with the exception of any patient 

movement occurring after the CT scan. The isocenter in the CT image was confirmed to 

be correct by comparing digitally reconstructed radiographs with daily port films. The 

expected dose for each detector was simply the mean dose in the corresponding ROI.  

 

4.2.5 Data Analysis 

For each fraction, the percent difference between the measured and expected dose was 

calculated (relative to the calculated dose). For each patient, a mean difference, a 

standard deviation, and a 95% confidence interval of the mean were computed. The 

confidence interval was computed using the t-distribution with degrees of freedom equal 

to 1 less than the number of measurements. Finally, the mean of the mean differences 

was computed over all 5 patients, as well as a standard deviation and a 95% confidence 
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interval. The confidence interval was again computed using a t-distribution, this time 

with 4 degrees of freedom (1 less than the number of patients). 

Only 3 measurements were excluded from this analysis, owing to physical 

damage to the termination of the optical fiber at the CCD interface, resulting in severely 

compromised light transmission. The damage was revealed by visual inspection 

prompted by detectors failing the post-treatment validation. Aside from these 3 

measurements, all 139 remaining data points were included in the analysis.  

 

4.3 Results 

4.3.1 Imaging Methodology 

The mean difference between the center of the contours and the center of the wires in the 

axial plane in the phantom study was 0.1 mm in the anterior direction. The standard 

deviation of the differences was 0.4 mm, and 100% of the contours were within 0.7 mm 

of the wire. 65% of the contours were on the correct axial slice and 35% were one slice 

off (Figure 4.4). 

 

4.3.2 In Vivo Results 

The results for each patient are listed in table 4.1. The mean difference between measured 

and calculated dose ranged between -3.3% and 3.3%. For 4 of the 5 patients, the standard 

deviation was between 5.6% and 7.1%. The standard deviation for the fifth patient was 

14.0%. Eighty-two percent of the measurements agreed with the Pinnacle TPS calculated 

dose to within 10%. The percent differences are plotted in a histogram shown in figure 

4.5, and the patient-specific results are plotted in a boxplot in figure 4.6.  
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Patient 
No. of 

measurements 
Mean dose 
difference 

95% confidence 
interval 

Standard 
deviation Validation 

1 30 -2.6% -4.7%, -0.5% 5.6% -0.1% 

2 28 -1.1% -3.9%, +1.6% 7.1% 0.5% 

3 30 1.5% -1.0%, 4.0% 6.7% 0.3% 

4 28 3.3% -2.1%, 8.7% 14.0% 0.5% 

5 21 -3.3% -5.9%, -0.6% 5.8% -0.5% 

 

Table 4.1. In vivo dosimetry results for each patient. The 95% confidence interval of the 
mean was computed using a t-distribution with (measurements – 1) degrees of freedom. 
Validation is the mean discrepancy between the known and measured dose delivered to 
the plastic scintillation detector during the detector’s performance validation after patient 
treatments. 
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Figure 4.4. Axial discrepancies between script-contoured locations and actual locations. 
All 20 contoured locations were within 0.7 mm of their actual location, and the mean 
difference was 0.1 mm in the anterior direction. 
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Figure 4.5. Distribution of differences between measured dose and calculated dose. The 
distribution was centered near 0 and was mostly contained within ±10%. 
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Figure 4.6. Boxplot of patient-specific results. The mean difference between measured 
dose and calculated dose was near 0 for all 5 patients. Patients 1-3 and 5 exhibited very 
similar distributions, and patient 4 exhibited a relatively larger spread. 
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When the patient-specific results were analyzed, the overall mean difference 

between measured dose and calculated dose was -0.4%. The standard deviation was 2.8% 

(standard deviation of the 5 mean differences). The 95% confidence interval of the mean 

extended from -3.9% to 3.0%.  

The temporal resolution of the system was consistently sufficient to identify dose 

from individual beams during treatment for comparison with the dose for each beam 

calculated by the Pinnacle TPS. This is demonstrated in figure 4.7. 

Each patient was questioned regarding the use of the probes, and 4 of the 5 

patients reported not noticing any difference between the balloon with and without the 

detectors. The remaining patient reported that he noticed a difference but that it was 

tolerable. All patients tolerated the PSD attached to the balloon through the entirety of 

their treatment. 

 

4.4 Discussion 

Our results demonstrate that PSDs can be successfully used to measure rectal wall dose in 

real time and in vivo during prostate IMRT. We have developed a simple, effective 

visualization methodology for locating these water-equivalent detectors on CT images 

and integrated the use of these detectors into normal clinical workflow. 

The imaging methodology performed exceptionally well in the axial plane when 

tested in an anthropomorphic phantom. The detector active volume was identified with 

submillimeter accuracy and precision. However, the methodology exhibited reduced 

accuracy in the superior-inferior (SI) direction. This can be attributed to inherent 

limitations resulting from slice thickness; the location of the fiducials cannot be specified   
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Figure 4.7. PSD measured real-time dose. The accumulated dose measured by one of the 
plastic scintillation detector is plotted in black. The treatment planning system allows the 
cumulative dose-per-beam to be extracted (represented by blue bars at right), but not the 
cumulative dose as a function of time. Dashed lines between the measured dose and the 
bars are meant to facilitate comparison. Between beams when there is no radiation, the 
measured dose profile is flat. If the detector is measuring dose accurately, these plateaus 
in the dose profile should agree with the cumulative beam-by-beam dose. As can be seen, 
these plateaus agree excellently with the cumulative doses calculated by the treatment 
planning system, indicating good beam-by-beam agreement between the plastic 
scintillation detector and treatment planning system. 
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with precision better than the magnitude of the slice thickness. Smaller slices could be 

used to improve the localization of the detector in the SI direction. However, SI accuracy 

was deemed far less important than axial accuracy for this study because the dose 

gradient posterior to the prostate was steep in the anterior-posterior direction in the axial 

plane and essentially flat in the SI direction. Thus, the results presented were sufficient 

for our study. 

This study is subject to statistical limitations. Ideally more patients should have 

been included in the study. However, owing to the large number of fractions monitored 

for each patient with in vivo dosimetry, this was not possible without greatly extending 

the time required to complete this study. Because of the limited number of patients, the 

results generated from the 5 patient mean differences theoretically may not be 

representative of the PSD system’s performance in the general population. However, few 

variables might affect how a detector performs for a given patient, given that this is an 

entirely physical process; that is, radiation transport is not affected by biological factors. 

A possible variable would be the magnitude of patient-specific intrafractional movement. 

The system would exhibit a loss of precision in patients prone to extreme intrafractional 

movement. Assuming this movement was not significant in any given direction, the 

accuracy should not be compromised. Given the highly similar performance of the 

system for 4 out of the 5 patients (Figure 4.6), we believe that our results are 

representative of the performance that could be expected from this type of detector 

system. The reasons for the erratic performance of the detector for the remaining patient 

are addressed below. 
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Our data indicate that most measurements that deviated largely from the 

calculated dose occurred when the PSDs were located either laterally or posteriorly in the 

rectum. This occurred as a result of twisting of the endorectal balloon as the balloon was 

inserted into the rectum. The reasons for the larger deviations are twofold. The first is the 

magnitude of the dose gradient. The dose gradient is relatively shallow in the anterior 

rectum owing to the need for complete coverage of the prostate, which is immediately 

adjacent to the rectum. However, because the rectum is an organ at risk, the dose 

decreases rapidly away from the prostate, resulting in a far steeper dose gradient in the 

anterior-posterior direction within the rectal balloon and at the lateral rectal walls (refer 

to figure 4.2). This means that intrafractional motion will have a disproportionately large 

effect on the dose measured by laterally positioned detectors. The second reason is that 

the reference dose (the Pinnacle calculated dose) is lower for lateral and posterior 

measurements than for other measurements, inflating the percent difference (for example, 

an absolute discrepancy of 10 cGy is 5% relative to 200 cGy and 10% relative to 100 

cGy). The combination of these 2 effects is illustrated in figure 4.8. The position of the 

detector depends on the insertion of the balloon. Occasionally the balloon twisted during 

insertion. After insertion, it was not possible to adjust it without removing it because of 

the latex sheath. Removing the balloon and reinserting it to achieve better detector 

positioning was not considered worthwhile at the cost of causing the patient additional 

discomfort and extending the overall treatment time. 

As mentioned previously, the system produced results characteristically different 

for one of the patients. There are several identifiable reasons for this, all of which relate  
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Figure 4.8. Dose profile taken from patient data starting at the isocenter in the prostate 
and extending to the posterior rectal wall. Different regions of anatomy are labeled and 
demarcated by dashed lines. Uncertainties in the expected dose to be measured by a 
hypothetical detector with a positional uncertainty of ±1 mm are displayed as colored 
bars. At the anterior rectal wall (green), the positional uncertainty translates to an 
uncertainty in expected dose of ±2%. A laterally positioned detector (red) exhibits an 
uncertainty of ±11% owing to the steep gradient and lower absolute dose. A detector 
positioned posteriorly (blue), although in a shallow gradient, exhibits an expected dose 
uncertainty of ±4% owing to the very low absolute dose. Finally, a hypothetical detector 
positioned in the urethra (yellow) is completely unaffected by positional uncertainty 
(expected dose uncertainty of ±0.1%). 
  

73 
 



 

to the patient’s size. This patient was obese, whereas the other 4 patients had average 

weight. This decreased the image quality of the CTs acquired for this patient (we 

measured the signal-to-noise ratio of the patient’s CT images to be roughly half that of 

the other patients), making detector localization more difficult. Additionally, because of 

the patient’s large size, the patient was truncated from the CT field of view. As a result, 

some tissue was missing from the image and artifacts were present where tissue was cut 

off (Figure 4.9). Finally, the balloon was twisted out of position in this patient far more 

often than in other patients. This subjected the PSD system to the gradient-related 

difficulties discussed in the previous paragraph with higher regularity, increasing the 

overall variability of the agreement between measured dose and calculated dose. We 

suspect that the patient’s size made correct insertion of the balloon more difficult or 

caused increased twisting of the balloon during insertion. We also at first considered 

increased intrafractional movement in this patient as a possibility, but literature indicates 

that the magnitude of intrafractional movement is unchanged or possibly decreased in 

obese patients relative to the general population (Butler et al. 2012). 

An important question is the feasibility of implementing this system in a clinical 

setting. The system was integrated easily into the treatment workflow. Therapists did not 

have to alter their procedure at all from that used for patients receiving CT-on-rails 

guided IMRT, save for stepping over the optical fiber and sheathing the balloon with 

latex. This suggests that clinical implementation is possible. Another important 

consideration is the feasibility of using this system without a CT-on-rails, because most  
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Figure 4.9. A computed tomographic scan from a patient for whom the plastic 
scintillation detector system exhibited poor precision. The image quality was 
compromised and patient tissue was truncated from the computed tomography field of 
view (at right). However, the primary source of the lost precision was the difficulty of 
placing the balloon correctly in this patient. 
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institutions do not have CT-on-rail units. Two possibilities exist: either cone beam CT 

could be used or perhaps MV/kV orthogonal imaging could be used. For cone beam CT, 

it would be straightforward to adopt the methodology described here. Using portal 

imaging would be more difficult, but the success of Hsi et al. (2013) using portal imaging 

to locate thermoluminescent detectors for in vivo dosimetry suggests that it is possible. 

More research along this avenue is warranted. 

 

4.5 Conclusion 

We have successfully used PSDs for in vivo dosimetry of the rectal wall of patients with 

prostate cancer undergoing IMRT, with good results. The accuracy (mean difference 

between measured and expected dose) was excellent, at -0.4%. The precision of the 

system was good for in vivo dosimetry, at 5.6% to 7.1% for 4 of the 5 patients. We have 

also presented a simple but effective method for localizing water-equivalent detectors in 

vivo. Overall, the PSD has proven to be an excellent detector for in vivo use, with 

promising future applications (e.g., in vivo dosimetry of stereotactic radiosurgery, 

volumetric modulated arc therapy, etc.). 
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CHAPTER 5  

 

PASSIVELY SCATTERED PROTON BEAM ENTRANCE DOSIMETRY WITH 

PLASTIC SCINTILLATION DETECTORS 
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5.1 Introduction 

The popularity of proton therapy as a treatment modality is growing rapidly owing to 

advantageous characteristics of protons such as a finite range and a characteristic dose 

depth curve wherein dose is concentrated at the end of that range. As a result, protons are 

useful for highly targeted therapy with low integral dose to normal tissue. However, these 

unique benefits bring with them important considerations when treating patients. 

One such consideration is the lack of skin sparing. Whereas therapeutic photon 

beams exhibit a skin sparing effect owing to a buildup of secondary electrons over a 

small distance, protons interact directly and do not have this quality. Furthermore, proton 

treatments typically use fewer beams than photon treatments (particularly compared with 

intensity-modulated radiation therapy and volumetric modulated arc therapy), which 

exacerbates the lack of skin sparing. As a result, patients commonly experience skin 

reactions such as radiation dermatitis (Chang et al. 2011, Sejpal et al. 2011, Zenda et al. 

2011). Skin dose is therefore an important consideration in proton therapy and can even 

be a limiting factor when planning treatment for sites such as the lung or breast (Whaley 

et al. 2013). 

In vivo entrance dosimetry (also called skin dosimetry) can be used to investigate 

skin reactions. Comparing accurate measurements of delivered skin dose with skin 

reactions in individual patients can help physicians better quantify risks of toxic effects. 

These risks could then be used to refine treatment strategies and evaluate treatment plans. 

As an added benefit, in vivo entrance dosimetry can catch gross errors in treatment 

administration, such as incorrect SSD, malfunction of the delivery system dose monitor, 

or interlock failures.  
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A few detectors have already been used to measure skin dose during treatment. 

The commercial MOSFET detector, OneDose, has been used with success (Cheng et al. 

2010). However, OneDose has a few drawbacks, including the single-use nature of each 

detector (requiring calibration of a few detectors from each batch to account for detector 

variability) and variation in response depending on the angle and radiation energy. 

Thermoluminescent dosimeters have also successfully been used to measure proton dose 

(Zullo et al. 2010), but the necessity of waiting 2 to 3 days before reading the dose is not 

ideal.  

Plastic scintillation detectors (PSDs), however, do not suffer from any of the 

shortcomings listed above. They can be reused extensively, do not exhibit an orientation-

dependent response, and provide real-time results. PSDs can be very small (~1 mm in 

diameter) and are water-equivalent (Beddar et al. 1992a, 1992b). PSDs can therefore 

make measurements in a beam without significantly perturbing it (Beddar et al. 2001). 

Finally, PSDs have been used for in vivo dosimetry in photon-based therapy already 

(Wootton et al. 2014). Although there are some drawbacks to using PSDs, such as 

ionization quenching, which we address in the current study, PSDs are nonetheless 

promising candidates for in vivo entrance dosimetry in proton therapy. 

The aims of this study are threefold, with the overall goal of establishing the 

feasibility of using PSDs for in vivo entrance dosimetry for a passively scattered proton 

beam. The first is to evaluate the effect of ionization quenching on a PSD used for 

entrance dosimetry. Ionization quenching is an under-response of the PSD due to high 

linear-energy transfer associated with heavy charged particles (Birks 1964). Previous 

PSD studies have evaluated this effect in the context of relative dosimetry using Monte 
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Carlo and measurements (Torrisi 2000, Archambault et al. 2008, Wang et al. 2012), but 

measurements have not been performed to establish the effect of quenching on absolute 

dosimetry and the practicality of correcting it. The second is to determine whether the 

generation of Cerenkov light in the PSD can be safely ignored. Cerenkov light is most 

intense at the entrance of a proton beam (Glasser et al. 2014), so although previous 

studies have found that Cerenkov light can be ignored for measurements at depth, 

measurements at the entrance of the beam merit investigation. The final aim is to 

investigate general dosimetric characteristics of PSDs used for entrance dosimetry, such 

as accuracy and precision. 

 

5.2 Methods and Materials 

5.2.1 Detectors 

A PSD was fabricated from 3 mm of BCF-12 scintillating fiber (Saint-Gobain Crystals, 

Hiram, OH) with a diameter of 1 mm; the scintillating fiber was optically coupled to 3 m 

of clear plastic optical fiber. A photodiode was used to convert the scintillation light 

transmitted by the optical fiber into electrical charge. The photodiode had dual channels 

sensitive to different wavelength so that it could quantify the signal in the blue and green 

portions of the spectrum separately. This allowed for analysis via the chromatic removal 

technique (Fontbonne et al. 2002, Frelin et al. 2005, Archambault et al. 2006), which is 

necessary for eliminating the light contribution from Cerenkov light in the plastic optical 

fiber (Beddar et al. 1992c). The photodiode was chosen because it could be placed in the 

treatment vault, thus converting scintillation light to an electric signal near the point of 

measurement. This offered an advantage over charge-coupled device cameras and 
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photomultiplier tubes, 2 other devices commonly used for light quantification, which are 

more sensitive to radiation and should be placed outside of the vault. In such a setup, a 

significant loss of signal would result from attenuation of scintillation light as it passed 

through the long optical fiber required to reach outside the vault. In contrast, minimal 

signal is lost over a triaxial cable, as was used in our setup. The signals from the 

photodiode were measured using a SuperMax electrometer (Standard Imaging, Madison, 

WI). 

The PSD was calibrated on a Cobalt 60 unit, chosen for the high degree of 

accuracy and precision achievable owing to the highly stable and well-characterized 

output of Cobalt 60, using the chromatic removal technique. The resulting calibration was 

independently verified by irradiating the PSD with a known dose on a Varian linear 

accelerator, and the calibration was found to be accurate to within 1%. 

For absolute dose comparison in the proton beam, a calibrated parallel plane ion 

chamber (PTW, Freiburg, Germany) was used (International Atomic Energy Agency 

TRS 398 Report 2001), with an entrance window thickness of 0.9 mm (acrylic) and an 

active volume of 0.02 cm3. All ion chamber readings were corrected for ambient pressure 

and temperature. The ion chamber was operated at +300V and the charge was read out 

using a Scanditronix/Wellhofer electrometer (Scanditronix Wellhofer North America, 

Bartell, TN). Background subtraction was used for both the SuperMax and Wellhofer 

electrometers to ensure accuracy. The absolute dose was calculated using the method 

described in the International Atomic Energy Agency TRS 398 Report (2001). 

Finally, radiochromic film was used to measure lateral profiles of proton beams 

for comparison with profiles measured using the PSD (Vatnitsky 1997, Niroomand-Rad 
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et al. 1998, Zhao and Das 2010). Gafchromic EBT3 film (Ashland Inc., Covington, KY) 

was chosen for its large dynamic range and ease of use (i.e., no development necessary). 

Calibration curves were generated for each energy at which film was used to measure 

profiles. Films were scanned before irradiation and 48 hours after irradiation on an Epson 

flatbed scanner (Epson Corp., Suwa, Japan) in transmission mode at a resolution of 400 

dpi. The pre-irradiation film images were used for background subtraction. Per 

manufacturer specifications, only the red channel of the scanned image was used because 

of its high sensitivity in the range of doses used in the study. 

 

5.2.2 Setup 

The passive scattered beam in the fixed beamline treatment vault at our institution’s 

proton center was used. A brass aperture with a 12 × 12 cm cutout in the center shaped 

the field for all measurements.  

Acrylic blocks were placed on the treatment couch with the surface of the blocks 

at an SSD of 270 cm. For measurements using the ion chamber, an acrylic block with a 

custom-milled cavity designed to hold the ion chamber surface flush with the surface of 

the block was used. For measurements with film, a plain acrylic block was used and the 

film was affixed to it with tape. When these blocks were switched out or other 

adjustments were made that might disturb the setup, the SSD was re-verified using the 

treatment positioning lasers. 

When direct comparisons were made between ion chamber measurements and 

PSD measurements, the ion chamber was centered on the beam’s central axis and the 

PSD was attached to the surface of the block immediately adjacent to the ion chamber 
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(rather than directly in front of the ion chamber). This was done because the charge 

measured by the ion chamber increased by 1% when the PSD was placed in front of it, 

relative to the charge measured when the PSD was placed adjacent to the ion chamber, 

for a 140-MeV beam. The PSD response was the same in both positions. For a 250-MeV 

beam, no change was observed in the PSD or ion chamber signal between the 2 scenarios 

(i.e., PSD in front of the ion chamber or adjacent to it). Placing the PSD adjacent to the 

ion chamber allowed concurrent measurement of the entrance dose and eliminated 

fluctuations in beam output as a contributor to differences between the dose measured 

with the ion chamber and the dose measured with the PSD. 

 

5.2.3 Ionization Quenching Characterization 

First, absolute entrance dose on the central axis of the beam was measured using the ion 

chamber and the PSD for a range of nominal proton energies between 140 MeV and 250 

MeV, with a fixed spread out Bragg peak (SOBP) width of 8 cm. The purpose of this was 

to quantify the effect of ionization quenching on the PSD as a function of beam energy. 

Three irradiations of 50 MU were performed at each energy. The difference between the 

dose measured with the ion chamber, considered to represent the correct dose, and the 

dose measured with the PSD was calculated for each irradiation. The mean and standard 

deviation of these differences were then calculated. The difference was also used to 

calculate correction factors for the dose measured with the PSD. 

Next, absolute entrance dose was measured for a variety of SOBP widths at fixed 

energies of 225 MeV and 140 MeV. The purpose of this was to determine what effect the 

introduction of low-energy protons, necessary for widening the SOBP, had on the 
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quantity of ionization quenching in the PSD. SOBP widths of 1, 4, 8, 12, and 16 cm were 

used for the 225 MeV beam, and widths of 1, 2, 4, 8, and 10 cm were used for the 140 

MeV beam. (One centimeter is the minimum SOBP width allowed by our system, 16 cm 

is the maximum SOBP width allowed for the 225 MeV beam, and 10 cm is the maximum 

SOBP width for the 140 MeV beam.) Again, 3 irradiations of 50 MU each were 

performed for each setting, and the mean difference and standard deviation were 

computed. 

 

5.2.4 Cerenkov Light Removal 

Next, the contribution of Cerenkov light was investigated. The PSD was first irradiated in 

the normal setup and then irradiated again with extra optical fiber coiled into the beam to 

increase the generation of Cerenkov light. All other conditions were held constant. The 

normal setup had approximately 6 cm of fiber in the field, whereas roughly 20 cm of 

fiber was coiled into the field for the second irradiation. This was done at 225 and 140 

MeV, and the increase of signal in each channel was quantified as an indicator of 

Cerenkov light produced in the clear optical fiber. 

To quantify the effect of neglecting Cerenkov production on the accuracy of the 

system, the PSD was calibrated at the lowest energy assuming no Cerenkov light (i.e., a 

single calibration factor was generated, equal to the ratio of the dose delivered to the total 

light output). This calibration was used to recalculate the dose for the measurements 

performed in section II.C. The dose calculated at each energy level was then corrected for 

ionization quenching using the results from the previous section; the remaining 

discrepancy was therefore assumed to be an artifact of Cerenkov light contamination. 
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5.2.5 Accuracy and Precision of Relative Dose Measurements 

Lateral half profiles were measured using the PSD for the 225 MeV and 140 MeV beams 

and compared with profiles measured using film. The purpose of this measurement was 

to validate the relative accuracy of the PSD, specifically in the steep dose gradient of the 

beam penumbra. The PSD profile was acquired by centering the detector’s active volume 

on the central axis of the beam using the lasers. The PSD was oriented vertically so that 

the lateral resolution corresponded to the diameter of the scintillating fibers (1 mm) and 

not the length (3 mm). At each position, 3 separate irradiations of 50 MU were measured, 

and then the couch was translated laterally to move the PSD through the field with high 

accuracy and precision.  

The radiochromic film was cut into long strips approximately 4 cm tall and 20 cm 

wide to encompass the entire lateral extent of the beam. A vertical mark was placed on 

the film with marker above the central axis of the beam, and 2 lateral marks were placed 

on either side of the central axis of the beam using the gantry lasers. The lateral marks 

were used in analysis to account for rotation of the film strip relative to the beam. The 

vertical mark indicated the precise center of the profile, to facilitate direct comparison 

between the film profile and the PSD profile. As mentioned previously, the film was 

scanned before irradiation and 48 hours after irradiation. The red channel of the pre-

irradiation image was subtracted from the post-irradiation red-channel, and the pixel 

values were converted to dose using a previously acquired calibration curve with a 

python script. Pixel-by-pixel dose values were averaged in a narrow vertical band, 

approximately 2 cm tall, centered on the lateral plane to improve the signal-to-noise ratio 
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(SNR). No smoothing was done along the profile. The central mark on the film and the 

scanner resolution were used to assign absolute locations (i.e., distance from 0) for each 

point in the profile. The PSD measurements were normalized to the measurement on the 

central axis, and the film measurements were normalized to the flat region at the center of 

the profile. 

Finally, the SNR of the PSD was measured as a function of dose at 225 MeV and 

140 MeV. Three sets of 3 irradiations were measured using 1, 10, and 100 MU, for a total 

of 9 irradiations at each energy. The SNR was calculated as the standard deviation of the 

measurements divided by the average value. 

 

5.3 Results 

5.3.1 Response vs Range 

The difference in doses measured by the PSD and the ion chamber is shown in figure 5.1. 

For energies between 200 and 250 MeV, the PSD under-responded by 7% with an 

average uncertainty of ±1% (with uncertainty expressed in percentage points, i.e., the 

under-response of the PSD is between 6% and 8%). The under-response increased to 

approximately 10% ± 1% of the dose measured by the ion chamber for energies between 

180 and 140 MeV. Within these energy ranges, the loss of signal owing to ionization 

quenching was fairly stable.  
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Figure 5.1. Plastic scintillation detector under-response relative to the dose measured 
with a plane-parallel ion chamber at the surface of an acrylic block. The under-response 
increased from 7% at 250 MeV to 10% at 140 MeV and was fairly constant for energies 
above 200 MeV and below 180 MeV. Error bars indicate 1 standard deviation. 
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5.3.2 Response vs SOBP Width 

The dose measured by the PSD relative to the dose measured by the ion chamber did not 

change appreciably as a function of SOBP width for either the 225 MeV beam or the 140 

MeV beam, with one possible exception. The dose measured by the PSD for the 10 cm 

wide SOBP configuration of the 140 MeV beam, which has a 10 cm range in water, 

decreased to 89% of the dose measured by the ion chamber, compared with 90% of the 

dose measured by the ion chamber for other SOBP widths. However, given the 

uncertainty of the measurements, the decrease to 89% may not be due to the SOBP width. 

The dose measured by the PSD was approximately 93% of the dose measured by the ion 

chamber for the 225 MeV beam and 90% of the dose measured by the ion chamber for 

the 140 MeV beam, in good agreement with the measured values from the previous 

section. Detailed results are presented in figure 5.2. 

 

5.3.3 Cerenkov Light Contribution 

Increasing the optical fiber in the proton field from 6 cm to approximately 20 cm resulted 

in a small change in the channel readings for the 140 MeV beam. A 0.2% increase in blue 

channel signal, a 2.5% increase in green channel signal, and an overall 0.9% increase in 

light output was observed. The same procedure resulted in a slightly larger change for the 

250 MeV beam: a 1.7% increase in blue channel signal, a 3.1% increase in green channel 

signal, and an overall 2.1% increase in light output. These results are presented in figure 

5.3. The absolute signal of the blue channel was about twice that of the green channel, 

which is why the blue channel contributed more to the overall increase in signal. 
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Figure 5.2. Plastic scintillation detector (PSD) under-response relative to a plane-parallel 
ion chamber for a variety of spread out Bragg peak (SOBP) widths. No meaningful 
change was observed in the PSD response for the 225 MeV beam. For the 140 MeV 
beam, the under-response was consistently 10% for all but the 10-cm SOBP, for which it 
increased to 11%. However, the uncertainty in the measurements precludes definitively 
concluding that this effect is real. 
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Figure 5.3. Percent change in the blue and green channel output and overall light output 
when approximately 3 times as much fiber is irradiated (20 cm vs 6 cm). Although the 
total increase in light output doubled between the 140 MeV and 225 MeV beams, the 
increase was small in both cases (2% and 1%), indicating that although Cerenkov light 
was present, it contributed very little to the total light signal. 
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Calibrating the PSD on the basis of total light output (i.e., assuming no Cerenkov 

light) per dose revealed that the contribution of Cerenkov to measured dose was very 

small. This calibration factor was used to calculate dose measured at higher energies, and 

after ionization quenching was accounted for, the measured dose did not deviate from the 

actual dose by more than 1% at any energy (Figure 5.4). 

 

5.3.4 Profile Measurements 

The lateral beam profiles measured using the PSD were in excellent agreement with those 

measured using film for both the 225MeV beam and the 140 MeV beam; the film 

measurements fell within the uncertainty of the PSD measurements. Both profiles are 

plotted in figures 5.5 and 5.6. 

 

5.3.5 SNR 

For the 250 MeV beam, the SNR value (calculated as the standard deviation of repeated 

measurements divided by the average signal) was 7 for the 1-MU irradiation, 30 for the 

10-MU irradiation, and 385 for the 100-MU irradiation, with 1 MU corresponding to a 

dose of 0.67 cGy. For the 140 MeV beam, the SNR values were 19 for the 1-MU 

irradiation, 169 for the 10-MU irradiation, and 294 for the 100-MU irradiation, with 1 

MU corresponding to 0.63 cGy. The noise, quantified by taking the standard deviation of 

sets of 3 measurements, was consistent regardless of the dose delivered (approximately 

0.2 cGy). Thus, the SNR of the detector appeared to be largely a function of the dose. 
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Figure 5.4. Error introduced into dose measurements by ignoring Cerenkov light. A 
simple total light to dose calibration was performed at 140 MeV and retroactively applied 
to dose measurements at higher energies. This introduced less than 1% error to the 
measured dose.  
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Figure 5.5 Film and plastic scintillation detector (PSD) measurements of the lateral beam 
profile acquired at 225 MeV. Horizontal error bars represent a ±1 mm uncertainty in the 
positioning of the PSD. Vertical error bars are 1 standard deviation of the PSD 
measurements. The film measurements agree to within the uncertainty of the PSD 
measurements. 
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Figure 5.6 Film and plastic scintillation detector (PSD) measurements of the lateral beam 
profile acquired at 140 MeV. Horizontal error bars represent a ±1 mm uncertainty in the 
positioning of the PSD. Vertical error bars are 1 standard deviation of the PSD 
measurements. The film measurements agree to within the uncertainty of the PSD 
measurements. 
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5.4 Discussion 

Our results showed that although ionization quenching correction factors were needed for 

PSD dosimetry, the PSD measured the lateral beam profile accurately and SOBP width 

variation and Cerenkov light contributed negligibly to the performance of the PSD, 

indicating that PSDs represent a practical solution for proton entrance dosimetry.  

As expected, ionization quenching was found to be responsible for a non-

negligible loss of signal in the PSD at all energies. This result is in agreement with the 

literature; Archambault et al. (2008) performed Monte Carlo calculations to determine 

linear energy transfer in proton beams and used the Birks quenching correction formula 

to predict an under-response of 13% at the entrance for energies between 150 MeV and 

250 MeV on the basis of the Birks formula. This under-response is greater than what we 

observed. However, Archambault et al. applied the semi-empirical Birks formula under 

different conditions than those used in our study. Thus, some discrepancy in the absolute 

value of the under-response is not surprising. 

Although ionization quenching effects are present at all proton energies, the 

correction required to determine the entrance dose is straightforward relative to those 

required to measure depth-dose curves. For depth-dose measurements, Monte Carlo is 

used to determine linear energy transfer values for a proton beam of interest, and then 

these values are used to calculate quenching correction factors using the Birks formula. 

These factors are then applied to measured values. The quenching correction factors 

increase rapidly at the end of a proton beam, so for measurements to be corrected 

effectively, the position of the PSD in the beam must be known with a high degree of 

accuracy. In contrast, our results show that one correction factor could be used with an 
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accuracy of ±1% for nominal beam energies of 200 MeV to 250 MeV for all SOBP 

widths. A second correction factor would be sufficient for beams with energies of 140 

MeV to 180 MeV with the same 1% accuracy.  

Furthermore, the range of correction factors for entrance dosimetry is narrow 

compared with those required for depth-dose measurements. In our study, ionization 

quenching at the surface resulted in 7% to 11% loss of signal for all energies and SOBPs 

considered. In contrast, the ionization quenching calculated by Archambault et al. (2008) 

in a 150 MeV pristine beam resulted in 13% loss of signal at the entrance and 30% loss of 

signal at the Bragg peak. 

Variation in the SOBP width did not have an observable effect on ionization 

quenching. In the 140 MeV beam, the under-response increased to 11% from 10% for the 

widest SOBP, but because of the uncertainty in the measurements, it cannot be 

definitively concluded that this effect is real. However, there is a physical reason to 

suspect that the effect might be real: the SOBP width was equal to the beam range in 

water, bringing the most proximal Bragg peak to the surface. Regardless, even if the 

effect is real, the difference is very small. The likely reason for the lack of influence of 

the SOBP width on ionization quenching is the energy distribution of protons required to 

achieve the SOBP. The highest energy protons, corresponding to the most distal portion 

of the beam, contribute more dose at the surface than any other portion of the beam. This 

is because the highest energy protons must supply the full dose at the distal end of the 

beam, whereas lower energy protons (corresponding to more proximal regions of the 

beam) need only supply the difference between the desired dose and the dose contributed 

by higher energy protons. For this reason, for very wide beams, the most proximal Bragg 
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peak, or the lowest energy component of the SOBP, contributes only a very small amount 

to the entrance dose. This is illustrated in figure 5.7. 

Cerenkov light was demonstrated to be essentially negligible for our setup, in 

agreement with prior studies using PSDs for relative dosimetry. A relatively large field 

was used and the measurements were performed at the surface, which constitute a worst-

case scenario in terms of Cerenkov contamination. Therefore, it is unlikely that Cerenkov 

light is an important consideration when using PSDs for proton beam dosimetry under 

any circumstances. The source of the Cerenkov light is not the protons themselves 

because the threshold energy (determined as the energy necessary for the protons to move 

faster than the local speed of light in media) for Cerenkov production is approximately 

320 MeV. However, the required energy for electrons to produce Cerenkov light is only 

0.175 MeV owing to the smaller mass of electrons relative to protons (these calculations 

assume an index of refraction of 1.5, which corresponds to PMMA, polyethylene, and 

many other plastics that are used as optical fiber). The maximum secondary electron 

energy for a given proton energy can be calculated (Beringer et al. 2012), and doing so 

reveals that 250 MeV and 140 MeV monoenergetic proton beams can produce electrons 

with maximum energies of 0.616 (250 MeV beam) and 0.352 MeV (140 MeV beam). 

Thus, some of the secondary electrons produced will be capable of producing Cerenkov 

light. However, most of the secondary electrons produced will be of much lower energy 

and will not produce Cerenkov light. For this reason, the quantity of Cerenkov light 

produced in proton beams is much lower than that of photon or electron beams.  
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Figure 5.7 Dose deposition curves for a hypothetical SOBP and its constituent pristine 
Bragg peaks plotted side by side (a) and stacked from most distal to most proximal (b). It 
can be seen that the most distal Bragg peak contributes disproportionately more entrance 
dose than other beams (left side of the plot), and that the contribution to entrance dose by 
each increasingly proximal Bragg peak diminishes.   
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The profile measurements in our study demonstrate the high spatial resolution and 

sensitivity of the PSD, without which accurate measurements of the beam penumbra 

would be difficult. Furthermore, the good agreement between profiles measured using the 

PSD and those measured using film at all locations implies that the results obtained on 

the central axis of the beam (with regard to ionization quenching and Cerenkov light) can 

be generalized to a PSD measuring the entrance dose off axis. If this were not the case, 

the relative profiles would not be expected to agree. 

The SNR of the PSD was reduced by ionization quenching (an unsurprising result 

given that quenching reduces the scintillation signal), but the SNR was still excellent 

(>200) at all energies for moderate doses (100 MU corresponded to approximately 60 

cGy).  

One limiting factor in the current study is that many of the results are differences 

between 2 measurements, namely the dose measured by an ion chamber and the dose 

measured by a PSD, increasing the relative uncertainty. Both the ion chamber and the 

PSD measured dose with high precision, but subtracting the dose measured by the PSD 

from the dose measured by the ion chamber resulted in a quantity that was both smaller 

and noisier than the dose measured by either the PSD or the ion chamber. This made 

obtaining highly precise results difficult and limited the effects that could be observed. 

For example, if more precise results were obtained, one might expect to see a small but 

definite increase in ionization quenching for increasing SOBP widths. Nonetheless, the 

uncertainty in the results obtained was generally ±1%, which is adequate for dosimetry. 

The possibility of direct calibration in the proton beam should also be considered. 

Ionization quenching would be directly accounted for in the calibration, and because the 
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variation in quenching for different energies is slight, a calibration at one energy may be 

appropriate for measurements at other nearby energies. A direct calibration would also be 

expected to have an improved SNR, because the total spectrum rather than the difference 

between 2 portions of the spectrum would constitute the signal. This is possible because 

of the minimal contribution of Cerenkov light to the total light output. 

 

5.5 Conclusion 

Because the PSD has been demonstrated to be a good in vivo detector in prior studies and 

because we have shown here that PSDs can be used for entrance dosimetry for proton 

fields without undue difficulty, we believe that PSDs are a good candidate for in vivo 

entrance dosimetry in patients undergoing proton therapy. PSDs are small and water 

equivalent, so the beam should not be perturbed in a clinically significant manner, and 

skin dose results would be available immediately following treatment. This may prove 

helpful in assessing the risk of radiation dermatitis for patients undergoing treatment. 

PSDs for in vivo entrance dosimetry would also be capable of detecting gross errors 

during dose delivery. Unfortunately, other treatment parameters such as beam range 

could not be verified with such a system. Nonetheless, we believe that PSDs could serve 

as a useful tool to perform in vivo entrance dosimetry. 
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CHAPTER 6 
 
 
 CONCLUSION 
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6.1 Summary and Conclusions 

The work presented in this dissertation represents a significant step towards 

implementing plastic scintillation detectors for general use as in vivo dosimetry devices in 

external beam radiation therapy. Three specific projects were undertaken as steps towards 

this goal: characterization and correction of the temperature dependence of common 

scintillating fibers, a clinical protocol employing the PSD as an in vivo dosimeter for 

patients undergoing prostate radiation therapy, and a characterization of the performance 

of PSDs in the context of proton skin dosimetry. 

The first study demonstrated that, in contrast with prior knowledge, two 

scintillating fibers commonly used in PSDs exhibit temperature dependence. The 

temperature dependence was found to be approximately linear with temperature. The 

first, BCF-60, was found to lose 0.5% of its signal with each °C increase in temperature, 

relative to 22°C. BCF-12 was found to lose 0.09% with each °C increase. This 

corresponds to a 7.5% and 1.4% under-response at body temperature, respectively. The 

shape of the scintillation spectrum was found to change slightly for each scintillating 

fiber. This effect was small however, and it was suggested that a simple correction factor 

consisting of the ratio of dose measured at a given temperature to that at a reference 

temperature was sufficient to account for this effect. 

The second study utilized PSDs to perform in vivo dosimetry for patients 

undergoing IMRT for prostate cancer. Pairs of PSDs were attached to endorectal balloons 

which were then inserted into patient’s rectums for the duration of each fraction of 

treatment. This positioned the PSD pair in close proximity with the rectal wall where they 

were used to measure the dose delivered during treatment. Temperature correction factors 
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derived from the previous study were used to ensure accurate results. Prior to each 

treatment, a CT image set was acquired for the purpose of locating and determining the 

expected dose to each detector. This procedure was repeated twice weekly for five 

patients, generating a total of 142 in vivo measurements. 

The average difference between the expected dose and the measured dose ranged 

from -3.3% to 3.3% over the five patient population. The standard deviation fell between 

5.6% and 7.1% for four of the five patients, and was 13.9% for the fifth patient for 

reasons explained in detail in chapter 4. The average difference over all five patients was 

-0.4% with a standard deviation of 2.8%. The implementation of an in vivo dosimetry 

system did not interrupt or alter the clinical workflow, and the patients reported that the 

detectors attached to endorectal balloons were as tolerable as the endorectal balloon 

alone. 

During the course of this study, a method of localizing the detector using three 

ceramic fiducials attached in a rigid geometry was implemented. This was necessary 

because PSDs are radiographically indistinguishable from tissue as a result of being water 

equivalent. When experimentally validated in an anthropomorphic phantom, this method 

localized detectors to within 1 mm in the lateral and anterior-posterior directions, 

exhibiting an average deviation of just 0.1 mm from the true location. 

The final study investigated the use of PSDs for entrance dosimetry in proton 

beams. Of particular interest was the problem of ionization quenching, an under-response 

when measuring dose delivered by high LET radiation. Comparisons between ion 

chamber measurements and PSD measurements revealed that PSDs under-respond by 7% 

to 10% at the entrance of passively scattered proton beams of energies between 140 MeV 
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and 250 MeV, with lower energy beams producing a greater under-response. The width 

of the spread out Bragg peak was found to have a negligible effect on the magnitude of 

the under-response. In spite of the reduced signal due to ionization quenching, the PSD 

was found to exhibit excellent relative accuracy and a high SNR. On the basis of this 

work it is expected that the PSD can be used effectively as an in vivo skin dosimeter in 

proton therapy with the use of empirically determined ionization quenching correction 

factors or direct calibration in the proton beam of interest. 

Overall, this work has demonstrated that two non-negligible response-altering 

effects can be accurately corrected for, permitting high accuracy in vivo dosimetry. 

Furthermore, it has been demonstrated that PSDs are effective and practical when used 

for in vivo dosimetry, producing accurate results even when placed in a high dose-

gradient region such as the rectal wall in prostate intensity modulated radiation therapy. 

 

6.2 Future Directions 

Each of the three specific aims carried out for this work suggest future avenues of 

productive research. Temperature dependence and proton entrance dosimetry will be 

considered first. The in vivo protocol is saved for last because of the large number of rich 

possibilities to cover. 

It has been demonstrated that PSDs using BCF-12 and BCF-60 scintillating fibers 

exhibit a thermally induced loss of signal that can be accounted for with temperature 

specific correction factors. This is an effective solution, as demonstrated by the excellent 

results obtained during the in vivo protocol outlined in chapter 4. Ideally however, a PSD 

would be temperature independent and no correction factor would be needed. The fact 
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that the original PSD studied by Beddar et al. (1992a) exhibited negligible temperature 

dependence suggests this is possible. This PSD used plastic scintillator (BC-400), rather 

than scintillating fiber. The theoretical downside of plastic scintillator is inferior light 

collection properties resulting from a lack of cladding. Therefore a PSD using plastic 

scintillator may have a somewhat weaker signal. A PSD using BC-400 should 

nevertheless produce adequate signal to be useful for in vivo dosimetry. To this end, the 

temperature independence of BC-400 should be independently verified. It may also be 

possible to fabricate a temperature independent scintillating fiber. It would require a base 

other than polystyrene as pure polystyrene has been found by others to exhibit 

temperature dependence as well (Rozman and Killin 1960). Polyvinyltoluene is a good 

candidate, as it is the base in BC-400. Such a scintillating fiber would be ideal for in vivo 

dosimetry with PSDs and warrants further research. 

It has also been demonstrated that PSDs are capable of accurate entrance 

dosimetry in proton beams. An obvious next step is to use PSDs to measure skin dose as 

part of a clinical protocol. Of particular interest is investigating the claim made by 

Whaley et al. (2013) that a transparent film dressing can lessen the severity of radiation 

dermatitis. The authors of that study noticed that the radiation dermatitis for two patients 

treated for prostate cancer was significantly reduced underneath transparent adhesive 

markers used for alignment. A phantom study was performed and did not detect any 

change in dose deposition with or without the adhesive dressing. The authors do not posit 

a mechanism for this effect. PSDs can be used for a larger, systematic study of this effect 

with in vivo measurements of dose with/without dressing rather than phantom 

measurements. 

105 
 



 

The entrance dosimetry study also suggests a few more basic avenues of future 

research. One is the extension of these measurements to spot scanning proton beams. 

Spot scanning is an increasingly popular proton therapy modality due to a diminished 

neutron dose and an improved ability to conform the delivered dose to the tumor. 

Another is investigation of possible solutions to ionization quenching. Currently the use 

of PSDs in proton beams requires measured correction factors (as put forth in chapter 5), 

or advance knowledge of the proton beam LET so that correction factors can be 

calculated. A spectral characterization of quenching could be performed to identify 

whether the scintillator base or the wavelength shifting fluors are responsible for the loss 

of signal. This information could be used to formulate a scintillator less sensitive to 

ionization quenching. Alternatively, if two scintillators are found that under-respond 

differently for a given LET, the two could be used in concert to determine the quantity of 

quenching taking place by comparing the ratio of their responses relative to a reference 

condition. Finally, if progress is made on correcting ionization quenching, an in vivo 

study could be performed using PSDs for internal measurements rather than skin 

measurements. PSDs placed internally can be in close proximity to the target or organs at 

risk, providing more useful measurements. This is particularly important in proton 

therapy, as protons have a finite range and measurements at the surface are not indicative 

of dose at depth because of the sensitivity of protons to the media they are passing 

through. 

Finally, much work could be done based on the in vivo protocol presented in 

chapter 4. To begin, having demonstrated that PSDs perform well as in vivo detectors, it 

stands to reason that there are many useful in vivo applications outside of prostate 
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radiation therapy. New treatment sites may benefit from in vivo dosimetry such as head 

and neck cancers. Head and neck cancer involves many organs at risk in close proximity 

to targets, and anatomical changes over the course of treatment (due to weight loss for 

example) alter the dose distribution, sometimes requiring replanning. An in vivo PSD 

could be used to determine when anatomical changes are significant enough to require 

replanning or to monitor the dose to organs at risk.  

Another use of PSDs for in vivo dosimetry of great interest would be in 

stereotactic radiosurgery or stereotactic body radiation therapy (SRS and SBRT 

respectively). SRS and SBRT both use high doses spread over fewer fractions, often 

administered by small fields. High dose gradients are used to achieve sparing of healthy 

tissue. The success of SRS and SBRT depends on the accurate delivery of radiation 

through image guidance and patient immobilization. PSDs could be used in vivo to verify 

that radiation is being delivered correctly. Interrupting treatment when an error is 

detected would be of greater benefit in SRS/SBRT than other modalities. As there are 

fewer fractions, the consequences of misadministering one fraction is significantly 

higher.  

Lastly, PSDs are a natural candidate to be used with MRI-Linacs in vivo. The 

MRI can be used to track the position of the PSD during treatment delivery, and the PSD 

to verify the dose delivered. 

Another route of research is implementing new PSD technology for use in in vivo 

PSDs. In particular, the multi-point PSD (Therriault-Proulx et al. 2012), or mPSD, would 

be useful as it allows the measurement of dose at multiple distinct points but uses only 
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one optical fiber. More points of measurement offer a better verification of the dose 

delivered. 

Though not unique to PSDs, additional research on the analysis and interpretation 

of in vivo measurements will be important going forward. For example, establishing 

action limits for different treatment sites based on the capabilities of the detector will be 

necessary to maximize the detection of errors while minimizing false positives. The 

implementation of an automated error detection system for in vivo PSDs similar to the 

one described by Kertzscher et al. (2014) may increase the utility of PSDs for in vivo 

dosimetry and decrease the time cost associated with it. Finally, research into what types 

of error cannot be detected with in vivo dosimetry is important. For example, if a 

dosimetrist creates a plan with the wrong prescription dose and that plan is delivered 

correctly, in vivo dosimetry will not draw attention to this error. As part of improving 

patient safety, it is vital that the limitations of in vivo dosimetry are well understood to 

preclude a false sense of confidence. 

Finally, perhaps the most useful avenue of investigation to move PSDs from the 

lab into the clinic is the study and characterization of commercial PSDs for in vivo 

applications. A new endorectal balloon with PSDs embedded in the balloon lumen is 

already available (Klawikowski et al. 2014), and warrants investigation.   
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APPENDIX 

 

A – Derivation of Approximate Energy Level Spacing via the Free Electron 

Perimeter Model 

 

The pi-bonds parallel to the plane of an aromatic hydrocarbon allow electrons to move 

freely along the perimeter of the molecule. If the perimeter of the molecule is 

approximated as a circle, the wavefunction of the electrons must satisfy the following 

relationship: 

 𝜓𝜓(𝜃𝜃) = 𝜓𝜓(𝜃𝜃 + 2π) (A.1) 

where θ is the angular position of an electron along the circle. This simply means that the 

wavefunction can take only one value at a given point on the circle. The wavefunction 

must therefore be either periodic or constant. Equation A.2 satisfies this requirement: 

 𝜓𝜓(𝜃𝜃) = 𝐶𝐶 ∙ 𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖 (A.2) 

In this equation q is a quantum number to allow any periodicity and C is a normalization 

constant. The energy levels, E, associated with this wavefunction can be obtained by 

solving the Schrödinger equation, 𝐸𝐸𝜓𝜓 = 𝐻𝐻𝜓𝜓, where H is the Hamiltonian operator. If the 

circle is assumed to be equipotential, the only term in the Hamiltonian is the kinetic 

energy. When this Hamiltonian is expressed using quantum mechanical operators in 

angular coordinates, the Schrödinger equation becomes: 

 
𝐸𝐸𝜓𝜓 =

−ℏ2

2𝑚𝑚
1
𝑟𝑟2
𝜕𝜕2𝜓𝜓
𝜕𝜕𝜃𝜃2

 (A.3) 

The differential on the right side can be evaluated to determine the energy levels. 
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 𝜕𝜕2𝜓𝜓
𝜕𝜕𝜃𝜃2

=
𝜕𝜕2

𝜕𝜕𝜃𝜃2
𝐶𝐶𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖 (A.4) 

 = −𝑞𝑞2𝐶𝐶𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖 (A.5) 

 = −𝑞𝑞2𝜓𝜓 (A.6) 

Substituting this into equation A.3 gives the final expression (note that 𝜓𝜓 cancels out): 

 
𝐸𝐸 =

ℏ2𝑞𝑞2

2𝑚𝑚𝑟𝑟2
 (A.7) 

With this equation in hand, consider benzene. Benzene has six pi electrons. Since each electron 

can take on one of two spin values and can move in one of two directions around the perimeter 

of the molecule (for states with q > 0), each state with q > 0 is doubly degenerate, and the q = 0 

state is singly degenerate (Birks 1964). The lowest energy configuration consists of two electrons 

occupying q = 0, and four electrons occupying q = 1. This is the base state of the molecule. 

Excitation of a pi electron from q = 1 to q = 2 corresponds to the first excited state of the 

molecule (S1 in figure 2.3). De-excitation is responsible for scintillation. If the electron mass and 

approximate radius of benzene are substituted into equation A.7 for q = 1 and q = 2, the 

difference in the calculated energies is 6.4 eV. This is close to the actual transition energy of 4.8 

eV despite the simplifying assumptions made. 
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B – The Chromatic Removal Technique 

 

For a rigorous treatment of the chromatic removal technique, the reader is referred to 

the following three references: Fontebonne et al. 2002, Frelin et al. 2005, and 

Archambault et al 2006. What is presented here is meant as an aid to understanding why 

this method works. It assumes familiarity on the part of the reader with linear algebra. 

 

The signal produced by a PSD is a combination of scintillation light, which is directly 

proportional to the dose delivered, and Cerenkov light, which depends on many factors. 

The total light output is therefore an inappropriate measure of the dose delivered. The 

chromatic removal technique overcomes this difficulty using the fact that the spectral 

distributions of Cerenkov light and scintillation are constant (Figure B.1), and that the 

intensity of one is independent of the intensity of the other. These facts allow the 

mathematical extraction of the correct dose from a signal contaminated by arbitrary 

amounts of Cerenkov light. 

To do this, the light generated by a PSD must be split into two spectrally distinct 

components. This may be accomplished with a dichroic mirror or other optical filter. For 

the purpose of explanation, consider a dichroic mirror that transmits light between 500 

nm and 600 nm and reflects everything else. The transmitted light will be referred to as 

the ‘green’ signal, and the reflected the ‘blue’ signal for the sake of simplicity. Each 

measurement made with a PSD in this setup can then be considered a vector in ‘blue-

green’ vector space. 
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Figure B.1. The signal from a PSD obtained with a spectrometer is plotted in red. The 
signal is a combination of scintillation light (green) and Cerenkov light (blue). The shape 
of the scintillation and Cerenkov spectra do not change; the combined signal is always a 
linear combination of the two.  
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If the scintillation spectrum were split by our hypothetical dichroic mirror, it 

would result in a vector in blue-green space. The length of this vector would vary with 

the intensity of scintillation light, but its direction would be constant because the spectral 

distribution of scintillation light is constant (Figure B.2). This vector can be considered a 

basis vector corresponding to scintillation. The same reasoning can be applied to generate 

a Cerenkov basis vector. It is therefore possible to mathematically transform blue-green 

space into a space defined by the scintillation and Cerenkov basis vectors. To do so, the 

blue-green vector space is left multiplied by the inverse of a matrix containing the 

scintillation and Cerenkov light basis vectors expressed in blue-green coordinates: 

 
�
𝑆𝑆𝑏𝑏 𝑆𝑆𝑔𝑔
𝐶𝐶𝑏𝑏 𝐶𝐶𝑔𝑔

�
−1

�𝐵𝐵𝐺𝐺� = �𝑆𝑆𝐶𝐶� 
(B.1) 

For reasons that will be made clear presently, variables will be substituted for the values 

of the inverted matrix: 

 �𝐹𝐹11 𝐹𝐹12
𝐹𝐹21 𝐹𝐹22

� �𝐵𝐵𝐺𝐺� = �𝑆𝑆𝐶𝐶� (B.2) 

If the matrix multiplication is carried out in equation B.2 it results in two equations. The 

first relates the intensity of scintillation light to the measured blue and green components 

of the total light signal. The second does the same for Cerenkov light can be discarded. 

The first equation is:  

 𝐹𝐹11𝐵𝐵 + 𝐹𝐹12𝐺𝐺 = 𝑆𝑆 (B.3) 
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Figure B.2. On the left, the spectra of scintillation light, Cerenkov light, and the 
combined signal are plotted.  The intensity of light between the wavelengths of 500 and 
600 nm (the ‘green’ signal) is represented by the green shading in each of the three plots. 
This corresponds to the light that would be transmitted by a hypothetical dichroic mirror. 
Likewise, the light that would be reflected is represented by blue shading (the ‘blue’ 
signal). The blue and green intensities of each spectrum are used to generate vectors in 
‘blue-green’ vector space. The direction of the scintillation vector will not change as the 
intensity of scintillation changes, only the length. The same is true for Cerenkov light. 
The vector corresponding to the combined signal can take on a range of directions 
however, corresponding to the relative intensities of the underlying scintillation and 
Cerenkov components. 
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If equation B.3 is multiplied by the ratio of dose to scintillation light a new equation is 

obtained relating the blue and green components of the total light signal directly to dose. 

 𝐷𝐷
𝑆𝑆

(𝐹𝐹11𝐵𝐵 + 𝐹𝐹12𝐺𝐺) =
𝐷𝐷
𝑆𝑆

(𝑆𝑆) (B.4) 

 

 
𝐹𝐹11′ 𝐵𝐵 + 𝐹𝐹12′ 𝐺𝐺 = 𝐷𝐷 (B.5) 

Thus it is possible to determine the dose delivered from the blue and green signal. By 

performing measurements under known dose conditions, the factors 𝐹𝐹11′ and 𝐹𝐹12′  can be 

empirically determined. Doing so is easier than directly evaluating the value of the 2x2 

matrix in equation B.1, as it is difficult to obtain a pure scintillation spectrum without 

special equipment (Therriault-Proulx et al. 2012). Once the factors are obtained, equation 

B.5 can be used to accurately measure dose with the PSD in the presence of arbitrary 

quantities of Cerenkov light. 
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