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      Glioblastoma (GBM) remains the deadliest form of brain tumors. The poor prognosis of 

glioblastoma patients is associated with a high rate of relapse after therapy. It has been 

suggested that the presence of cancer stem cells, which are relatively resistant to radiation 

and chemotherapy, may play a significant role in the recurrence of brain tumor. Understanding 

the biological property of glioblastoma stem cells is important to develop effective therapeutic 

strategies for glioblastoma.  In vitro, glioblastoma stem cells cultured in serum-free medium 

form self-renewing neurospheres, express the neural stem marker CD133, and are highly 

tumorigenic. On the other hand, in the presence of fetal bovine serum (FBS), the glioblastoma 

stem cells undergo differentiation.   

      In this study we used glioblastoma stem cells, GSC11 and GSC23, previously isolated 

from glioblastoma patients and expressed stem cell markers CD133, Olig2 and SOX2, to 

explore their bioenergetics by monitoring the oxygen consumption as an indication of 

mitochondrial respiration cultured in serum-free medium in comparison with that incubated in 

medium containing FBS. We found that GSC11 and GSC23 stem cells exhibited low 

mitochondrial respiration when cultured in stem cell medium. Upon exposure to FBS 

mitochondrial respiration increased significantly. Metabolic changes were also observed. 

Furthermore, we found that glutamine uptake was higher in GBM stem cells compared with 

FBS induced cells. Additionally, treatment of the cells with Compound 968, a glutaminase 

inhibitor, depleted the cells from the CD133 marker, slowed proliferation and limited growth on 

soft agar. Moreover, GBM stem cells showed an increase in the expression of genes related to 
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the mevalonate pathway. We also found that simvastatin, an inhibitor of the mevalonate 

pathway, induced GBM stem cells death. 

      This study showed mitochondria metabolic reprograming of GBM stem cells during 

differentiation. It also showed the importance of glutamine in maintaining CD133 expression 

and GBM stem cells growth. Lastly, the study showed that mevalonate pathway is a target to 

eliminate GBM stem cells.  
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CHAPTER 1. Introduction                          

1.1 Cancer stem cells hypothesis  

 
      Neoplasms are typically heterogeneous being comprised of different cell populations. 

Different cells within the primary tumor exhibit differential capacities in proliferation and 

differentiation as well as formation of the original tumor or its regeneration [1]. Thus, two 

models have been investigated to explain the tumor heterogeneity:  the clonal evolution and 

the cancer stem cells models. Both models provide potential cellular mechanistic to the 

functional heterogeneity of tumors. In the clonal evolution model individual clones of tumor 

cells acquire a selective advantage after accumulating over time genetic and epigenetic 

alterations and out-compete other clones. Clonal evolution may generate genetic 

heterogeneity that would result in phenotypic and functional differences between cancer cells 

[2]. Instead, the cancer stem cell model introduce a hierarchical organization including slowly 

proliferating cells, rapidly proliferating cells, and terminally differentiated cells with the cancer 

stem cells on the apex of the hierarchy [3]. Moreover, it is thought that the population of cancer 

stem cells within the tumor is responsible to sustain the tumor growth.  

Cancer stem cells (CSC) refer to a subset of tumor cells with unlimited self-renew, and 

differentiation capacities, allowing them to continually generate cells with phenotypic 

heterogeneity similar to the parental tumor [3, 4]. Self-renewal property is conferred by a 

symmetrical and asymmetrical division, consequently driving a sustained growth of the tumor. 

In addition, cancer stem cells are able to differentiate into multilineage. For example, 

glioblastoma stem cells are able to differentiate into neural and glial cells, but they also 

differentiate to functional endothelial cells [5]. 

      The existence of cancer stem cells was first demonstrated in acute myeloid leukemia AML. 

A small subset of cells CD34+/CD38- was identified to able to generate leukemia when 

transplanted into non-obese diabetic/severe combined immunodeficient mice (NOD/SCID), 
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whereas the inoculation of thousand-fold higher numbers of cells not bearing the marker did 

not [3, 6]. Importantly, the CD34 cell surface immunophenotype is also associated to normal 

hematopoetic stem cells, suggesting that normal stem cells makers might play a role in cancer 

development. 

      Similarly, the existence of cancer stem cells was proposed in solid tumors.  Hence, Al-Hajj 

and colleagues were able to isolate breast cancer stem cells using the marker present in the 

surface of normal mammary stem cells CD44. As few as 100 cells from this population were 

capable to reform the tumor when injected into immunodeficient mice, whereas a higher 

number of CD44- population failed to form tumors after reinjection [7]. In brain tumors cells 

have been identified using an apical plasma membrane protein expressed in embryonal 

plasma structure, the CD133 (prominin) [8]. In a study done by Chen et al. supported the 

adhesion of glioblastoma to a hierarchical model comporting cancer stem cells, in thhe study 

patients tumor were compromised by three types of cells; type I, a mixture of highly aggressive 

cells, Type III give rise to slow growing lesions of CD133- cells, and a third population that is 

not tumorigenic [9]. Subsequently, using different markers (table), cancer stem cells have 

been identified in variety of tumors: colon [10], head and neck [11] , pancreatic [12], melanoma 

[13], hepatic [14], lung [15], prostate [16] and ovarian tumors [17]. 

      Whereas the identification of specific surface markers has enabled the isolation and 

characterization of CSCs, controversies have arisen about the internal phenotype differences 

regarding the efficacy of these markers in identifying all cancer stem populations. Hence, 

cancer stem cells frequency and phenotype may not be uniform within the tumors of the same 

subtype. For example heterogeneity has been found within the glioblastoma stem cells 

population, in which the CD133- population could harbor the same properties of the CD133+ 

cells, which includes self-renewal, and high tumorigenecity [18]. Similar results have been 

obtained with the breast cancer stem cells using the CD44+ surface marker [19]. 
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Furthermore, in series of experiments on melanoma cancer stem cells, Quintana et al. have 

challenged the frequent assertion that CSCs are a rare population, consequently they 

demonstrated that in melanoma this population was found in abundance, with CSC’s 

frequency estimated at 1 in 20 cells [20].  

      The most convincing demonstration of CSC remains the serial transplantation of the cells 

into animal models. The CSCs should re-establish tumor with the same phenotypic 

heterogeneity of the parental tumor. A study by Kelly et al. has raised the possibility that 

cancer stem cells may be a population of selected cells that survive during the 

xenotransplantation, while the majority of the cells don’t survive the foreign environment [21]. 

However, this hypothesis has been averted considering that tumor cells are more likely to 

equally receive adequate and sufficient growth factors needed to their growth in the hosting 

model. 

 

 

 

 

 

 

Tumor type Markers  

 
Acute myeloid, Leukemia 
Breast 
Breast 
Brain 
Prostate 
Head and neck 
Colon 
Colon 
Pancreas 
Pancreas 
Lung 
Liver 
Melanoma 
Ovarian 

 
CD34+ CD38- 
CD44+CD24- 

                ALDH1+ 
               CD133+ 
               CD44+ CD133+ 

CD44+ 
CD133+ 
ALDH1+ 
ESA+CD44+CD24+ 
CD133+ 
CD133+ 

                CD90+ 

                ABCB5+ 
CD133+ 

Table 1. Markers associated with the identification of cancer stem cells in different cancers 
types. 
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1.2 Cancer stem cells self-renewal and therapeutics 

 
      Several lines of evidence suggest that cancer stem cells are resistant to the conventional 

radiation and chemo- therapies. Indeed, this population of cells subsists after treatment, while 

the rest of the tumor bulk cells are eradicated, resulting in re-growth of the tumors, and 

recurrence of the disease. For instance, glioblastoma stem cells have shown a great 

resistance to radiation with an enhanced DNA damage response, and more rapid repair of the 

DNA. In vitro, upon radiation of glioblastoma cell lines, and xenograft tumors, the CD133+ cells 

population has been found to be increased, resulting in more tumorigenic cells, and highly 

aggressive tumors upon serial transplantations [22]. Similarly these cells were found to exhibit 

resistance to chemotherapeutic agents such as temozolomide, paclitaxel, carboplatin [23]. 

Similar studies on breast cancers stem cells have showed an increase of the number of 

CD44+/CD24- mamospheres upon treatment as well as a high resistance to radiation. 

Furthermore, Li et al. demonstrated that the treatment of breast cancer patients with HER2 

inhibitor enriched the CSCs population in the tumor biopsies, and were more tumorigenic 

where injected to mice [24].  

      The inhibition of cancer stem cells growth relies on identifying and understanding the role 

of self-renewal pathways in maintaining CSCs. This task may be complicated by the fact that 

many of the essential pathways are shared with the normal stem cells. Although their roles are 

not fully understood, cancer stem cells renewal has been shown to be maintained by a 

plethora of extracellular stimuli, including Sonic hedgehog, Notch, Wnt/β-catenin, Pten, and 

the Transforming growth factor-β (TGF-β), pathways, as well as hypoxic condition. Strategies 

to disturb these pathways have resulted in decrease of the self-renewal and tumorgenecity in 

several cancer stem cells models [25-27]. 
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      For example, it has been demonstrated that Wnt/β-catenin signaling pathway is essential 

to maintain the leukemic, breast, and lung cancer stem cells self-renewing potential. Indeed, 

Wnt signaling knock out using a small interfering RNA decreased from the expression of CSC 

markers [28].   Pten knockdown enhances breast CSC markers and increase tumorigenecity in 

a xenograft model. Loss of the Hedgehog results in depletion of the chronic myeloid leukemia 

CML stem cells [26].  

      Two of the important signaling cascade in regulation of cancer, the MEK/ MERK 

extracellular signal-regulated kinase), and the PI3K/mTOR (mammalian target of rampamycin) 

pathways have been shown to control the self-renewal and tumorigenicity of glioblastoma 

stem cells. Inactivation of MEK by a small interfering RNA or a pharmacological inhibitor 

decreased the self-renewal capacity of glioblastoma stem cells, as well as their tumorgenicity 

and in addition drove the cells to differentiation [29]. Moreover, Notch blockade by gamma-

secreted inhibitors also leads to a decrease of the glioblastoma stem cells tumorigenicity and 

induces their differentiation [30]. The transforming growth factor-β (TGFβ) also influences CSC 

initiation and maintenance in glioblastoma, and its inhibition decreased from tumorigenecity of 

the cells [31].  

      In conclusion, the concept of cancer stem cells as being a small population responsible of 

maintaining tumor growth has been expanded to many hematological and solid tumor types. 

Investigating the exact role of this population will help in understanding the genetic bases of 

cancer development. Furthermore, understanding the programs that govern the self-renewal 

properties of these cells will help to develop novel therapies targeting the root of the cancer. 

However, many challenges remain in, including the standardization of more accurate and 

universal isolation techniques that provide consistent and accurate results. 
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1.3 Glioblastoma and glioblastoma stem cells  
 

      Glioblastoma multiform GBM, a high grade of gliomas, is the most lethal form of brain 

tumors that is typically resistant to radio and chemotherapies [32].Glioblastoma stem (GBS) 

cells have been identified and subsequently isolated and cultured [8, 33]. It has been 

suggested that these glioblastoma stem cells contribute to the pathogenesis and progression 

of the disease and importantly, may mediate resistance to various forms of anti-cancer 

therapies as well as to tumor recurrence [22].  The isolated glioblastoma stem cells were 

shown to express specific cell surface markers such as the neural stem cell marker and 

transmembrane glycoprotein prominin (CD133) [8] . Glioblastoma stem cells expressing 

CD133 are highly tumorigenic. In vivo they are highly tumorigenic and alone form 

characteristic glioblastomas.  In vitro, glioblastoma stem cells cultured in serum-free medium 

supplemented with endothelial and basic fibroblast growth factor (FGF) form self-renewing 

neurospheres. On the other hand and in the presence of fetal bovine serum (FBS), the 

glioblastoma stem cells are able to differentiate into different lineages expressing glial fibrillary 

acid protein (GFAP), a glial marker, and neuron-specific class III beta-tubulin (TUJ1). Other 

markers as the sex determining region Y-box 2 (SOX2), a transcriptional factor in embryonic 

stem cells [34], has also been shown to identify glioblastoma stem cells. 

      It is noteworthy that the potential implication of glioblastoma stem cells to the clinical 

management of glioblastomas has been demonstrated by means of studying the expression of 

the aforementioned cell surface markers for identification of glioblastoma stem cells.  For 

example, cells co-expressing both the glioblastoma stem cells marker CD133 and 

proliferation-related ki67 were isolated and cultured from glioblastoma patients treated with 

surgery followed by adjuvant radiotherapy and target-specific drug treatment [35]. In addition, 
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the presence or abundance of these glioblastoma stem cell populations correlated with patient 

poor clinical outcome and response to therapy demonstrating that further interrogation of the 

biology of these stem cells will favorably impact the clinical management of glioblastoma 

patients. 

      Several molecular pathways have been postulated to play important roles in the control 

and maintenance of glioblastoma stem cells self- renewal and differentiation. Transforming 

growth factor-beta (TGF-β) by activating the leukemia inhibitory factor (LIF) increases self-

renewal of the GBM stem cells and prevents differentiation [31]. In addition, it has also been 

shown that PTEN blockage and a deletion in the tumor suppressor TP53 increase self-renewal 

and clonogenicity of the GBM stem cells [30, 36]. However, our knowledge on the molecular 

pathways governing glioblastoma stem cell self-renewal, survival and differentiation is dismal 

and limited to a few numbers of studies warranting the need to further study the molecular 

pathways, e.g. biochemical regulatory processes and pathways, crucial for glioblastoma 

stemness. 

1.4 Mitochondria 
 

      Mitochondria are dynamic and plastic cellular organelles carrying out numerous 

biosynthetic and bioenergetic reactions fundamental to cell function, cell survival but also cell 

death. These multiple biochemical properties depend on the unique mitochondrial ultra-

structural compartmentalization that assures the optimal microenvironment to each reaction. 

Oxidative phosphorylation is the main biochemical process taking place in mitochondria, a 

cascade of redox reactions catalyzed by five multi-subunit enzymatic complexes (the 

respiratory complexes I-IV) and the ATP-synthase leading to the generation of most 

intracellular ATP[37]. Krebs cycle, heme biosynthesis, β-oxidation of fatty acids, 

steroidogenesis, part of gluconeogenesis, and amino acid metabolism are only some of the 
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additional metabolic processes hosted by mitochondria. Although it is evident that 

mitochondria are crucial for cell fitness and survival, they also regulate cell death via both 

intrinsic apoptosis and non apoptotic cell death. In fact, under stress conditions if mitochondrial 

membrane permeabilization occurs the cell is inevitably directed to die following dissipation of 

mitochondrial transmembrane potential block of ATP synthesis and translocation to the cytosol 

of activators of caspase-dependent and caspase-independent mechanisms of cell death. 

Increased anabolism, uncontrolled proliferation and impaired apoptosis are typical 

characteristics of cancer cells along with sustained angiogenesis and metastatic ability [38].      

The first association between mitochondria deregulation and cancer was proposed in 1930 by 

Otto Warburg who observed an increased rate of aerobic glycolysis in several tumor cells [39]. 

It is now an emerging concept that mechanisms of neoplastic transformation and tumor 

progression may early involve mitochondrial dysfunctions.   

1.5 Mitochondria biogenesis  
 

      Mitochondria biogenesis is an essential process that enables the cells to meet energetic 

and metabolic demands. It is a complex process that integrates nuclear encoded proteins, 

lipids imported to the mitochondria from the cytosol, mitochondrial encoded proteins, and 

replication of the mitochondrial DNA (mtDNA) [40, 41]. The expression of genes necessary to 

the mitochondrial biogenesis is orchestrated by a network of nuclear DNA-binding transcription 

factors and coregulators.  

        To enable the cells meeting their energetic and metabolic demands, mitochondrial 

biogenesis is regulated in a tissue and signal specific manner [42]. The DNA-binding 

transcription factors regulate overlapping but distinct classes of mitochondrial genes. The 

nuclear respiratory factor-1 (NRF1) activates the expression of Oxphos components, 

mitochondrial transporters, and mitochondrial ribosomal proteins [43]. Furthermore, NRF1 

activates mitochondrial transcription factor A (TFAM) thereby, increasing the mtDNA 
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replication and expression. Upon its activation via phosphorylation or interactions with factors 

as PGC1, NRF1 translocates into the nucleus and binds to the promoter of different 

mitochondrial genes [41, 44, 45]. Suppression of NRF1 expression results in a decreased 

expression of mitochondrial target genes [46]. In addition, NRF1 expression is mainly affected 

by low energy sensing pathways, AMP-activated protein kinase (AMPK), and the increase in 

calcium flux in the cells. 

       Moreover, transcription coregulators allow coordination of physiological external signals, 

and enhancement of the activity of DNA-binding factors [47]. The PPARγ coactivator-1 family 

that includes the PGC1 alpha, PGC1 beta, and PRC promote mitochondrial biogenesis by 

activating the transcription factors, NRF1 and NRF2 as well as TFAM [48]. The PGC1-α is 

recruited to the mitochondrial genes target site where they interact with the DNA-binding 

factors through protein surfaces, thus enabling the recruitment of histone acetyltransferase 

[49, 50]. 

      PGC1-α senses signals of metabolic and energetic demands of the cells through the 

interaction with different key factors such as the AMPK and Sirt1 [51]. Both AMPK and Sirt1 

are energy sensors that are activated during metabolism stress, such as caloric restriction. 

AMPK phosphorylate PGC1 enhancing its activity whereas Sirt1 acetylate PGC1 to induce its 

activity [51-53].  In addition, PGC1 induce their own expression via a regulatory loop 

seemingly important in enhancing the mitochondrial gene response [54].  

1.6 Mitochondrial bioenergetics in cancer cells 

       In order to sustain and proliferate cells must produce sufficient stores of energy. Most of 

the adenosine triphosphate (ATP) generated in normal cells is produced via oxidative 

phosphorylation, accounting for 88% of the total energy that is required by the cell [55]. 

Oxidative phosphorylation (Oxphos) is carried by the electron transport chain (ETC) housed in 

the inner membrane of mitochondria, which consists of four multi-subunit enzymatic 
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respiratory complexes. Electrons are carried through these membrane complexes (1 to 4) to 

molecular oxygen pumping protons across the membrane thus creating electrochemical 

gradients to phosphorylate ADP, resulting in the production of more than 30 ATPs per glucose 

molecule. 

      In contrast, to achieve a growth and proliferation rate larger than the normal cells, 

malignant cells need to undergo metabolic reprogramming that optimizes the efficiency by 

which energy is produced and utilized. The first metabolic alteration described in cancer cells 

was the shift from oxidative phosphorylation to an aerobic glycolysis despite the presence of 

oxygen -a phenomenon known as the Warburg effect [56].  During aerobic glycolysis, glucose 

is decomposed to pyruvate, which is converted to lactate and secreted from the cells, resulting 

in the production of 2 ATPs per molecule of glucose; this low ATP yield is compensated for by 

a high glucose uptake. 

      It has been postulated that the increase of the aerobic glycolysis provides to the cells a 

growth advantage under conditions that are restrictive to normal cells, such as a hypoxic 

environment and a restricted flow of nutrients [57]. Moreover, the acidic environment created 

by lactate production enhances tumor invasion and suppresses anticancer immune effectors 

[58]. Furthermore, it limits the reactive oxygen species ROS, a damaging byproduct of 

mitochondrial respiration, by metabolizing glucose through the pentose phosphate pathways to 

generate the nicotidine adenine dinucleotide phosphate NADPH, that ensures a strong 

antioxidant defense [59]. Moreover, high glucose uptake of the cells can support the 

biosynthesis by using intermediate of the glycolysis pathway [59].  

      The conversion from oxidative phosphorylation phenotype to glycolytic phenotype is partly 

driven by the activation or mutation of oncogenes or tumor suppressor genes, such 

mechanisms affecting the PI3K/AKT/mTOR axis, c-Myc, AMP-activated protein kinase AMPK, 

or P53 pathway can control cell metabolism. PI3K/Akt and c-Myc pathways facilitate glycolysis 

by increasing the glucose uptake. Akt signaling mediates an increase in the glucose flux by 
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modulating the expression of the glucose transporters Glut1 and Glut4 on the cell surface and 

enhancing the activity of glycolytic enzymes [60, 61].  

      Moreover, by a mechanism that still needs to be elucidated, Akt stimulates the association 

of hexokinases HK1 and HK2, and modulates the expression of phosphofructokinase which 

catalyzes the initial step of glycolysis [60]. Also through dependent mTOR activation, Akt 

signaling enhances the protein translation. mTOR coordinates surface expression of amino 

acid transports, and promotes translation by stimulating ribosomal S6 kinase activity and 

relieving inhibition of eIF4E [62]. 

      The proto-oncogene c-Myc has been shown to directly alter glucose metabolism by 

promoting the constitutive elevation of the lactate dehydrogenase LDH-A, that is responsible of 

maintaining glycolytic flux by converting excess pyruvate to lactate [63]. Moreover, the 

transcription factor p53 influences the metabolism of cells by favoring the Oxphos to 

glycolysis. TP53 negatively regulates glysolysis by activating TIGAR, consequently TIGAR 

degrades to fructose 2-6- biphosphate, an activator of the glycolytic regulator enzyme 

fructokinase PFK1 [64]. In addition, P53 favors Oxphos by regulating the synthesis of 

cytochrome c oxidase SCO2 that is required for the assembly of the cytochrome c oxidase 

mitochondrial complex [65] 

      In addition, adaptive response to hypoxia stimulates aerobic glycolysis through regulation 

of the protein and transcriptional activity of the inducible factor-1 (HIF1). HIF-1 targets glucose 

transporters to increase the glucose uptake, and glycolytic enzymes required to convert 

pyruvate to lactate including the pyruvate dehydrogenase kinase (PDK1) that limits the entry of 

glucose to the TCA cycle [66]. 

      Bringing our knowledge of the mitochondria pathways regulation of bioenergetic process 

as glycolysis, or glutamine metabolism and the cellular signal transduction in cancer cells 

would make the combination of chemotherapies and targeting mitochondria deregulated 

pathways very potent for a selective killing of the cancer cells. 
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1.7 Glutamine metabolism in cancer cells 

      Glutamine, the most abundant nutrient in circulating blood [67], is another metabolic 

energy source for tumor cells and was shown to contribute to tumor progression [68]. 

Glutaminolysis in which glutamine is converted into glutamate then into the Tricarboxylic Acid 

(TCA) cycle intermediate α-ketoglutarate through the enzymes glutaminase and alanine 

aminotransferase/glutamate dehydrogenase, was shown to be essential for the growth of 

tumor cells [69]. Furthermore, xenograft studies have shown that glutaminase expression 

correlated with tumor growth and inhibition of glutaminase in cells led to inhibition of tumor 

growth and tumorigenicity [70, 71]. Thompson et al. (2007) performed NMR spectroscopic 

study in glioblastoma cells co-cultured with 13C-labelled glucose and glutamine and 

demonstrated that glutamine supplied the majority of aneplerotic carbon for the TCA cycle in 

cells [72].  

       Glutamate via α-ketoglutarate is also the chief source of malate, oxaloacetate and the 

subsequent NADPH for fatty acid biosynthesis in tumors [72]. Further, glutamine also 

contributes to maintaining antioxidant pool in cancer cells - the glutamine-derived malate from 

the TCA cycle serves as the substrate for malic enzyme 1 (ME1) which produces NAPDH. In 

glioblastoma cells the excess NADPH has been shown to contribute towards the synthesis of 

glutathione (GSH), which is essential to balance the redox demands of tumor cells and 

microenvironment [72].  

      Glutamine also impacts cancer metastasis. A recent study by Seyfried et al., showed that 

inhibition of glutamine metabolism in a mouse breast cancer model using 6-diazo-5-oxo-L-

norleucine diminished metastasis of the tumor [73]. Currently, however, there are no extensive 

reports available on the effect of glutamine on cancer progression in patients. Further work 

needs to be done to understand the effect of oncogenes like Akt, HIF-1, NF-κB etc. on the 
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glutaminase (GAC) enzyme, glutamine metabolism and the “glutamine addiction” 

characteristic of cancer cells [74].  

      It is possible to target glutamine metabolism by targeting glutaminase increased activity, 

the mitochondrial enzyme responsible for hydrolyzing glutamine to glutamate and ammonia 

providing a therapeutic window through its inhibition [75]. Human B lymphoma and prostate 

cancer cells demonstrate an increased glutaminase expression dependent on c-Myc [76]. 

Similarly, MDA-MB231 breast cancer cell line showed higher expression of glutaminase when 

compared to normal mammary epithelial cells [74]. An inhibitor of Rho GTPas-dependent 

transformation, known as small molecule 968, inhibited the metabolic enzyme glutaminase 

and prevented oncogenenic transformation. 
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Figure 1. Cancer cell metabolism.  Representation of (A) glycolysis, (B) mitochondrial 

respiration and (C) glutaminolysis during glycolysis cells. 
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1.8 Mevalonate metabolism  

 
      It is the main pathway to generate cholesterol, isoprenoids, dolichol, ubiquinone and 

isopentenyladenine (Figure 2) [77]. First, hydroxyl methylglutaryl coenzyme A (HMG-CoA) is 

converted to mevalonate by the HMG-CoA reductase, which is the rate limiting enzyme of the 

reaction. Then, mevalonate is metabolized to isopentenyl pyrophosphate (IPP) and 

dimethylallyl pyrophosphate (DMAPP). DMAPP and 2 units of IPP are condensed to form 

farnesyl pyrophosphate (FPP) and geranyl pyrophosphate (GPP). Both GGPP and FPP serve 

in post translational modification of proteins known as prenylation. Moreover, FPP serves as a 

precursor for the biosynthesis of cholesterol and dolichols, which serves in N-glycolysation 

[78]. 

      Mevalonate pathway implication in tumergenesis was shown by Penn et al. (2009), where 

ectotopic expression of hydroxyl methylglutaryl coenzyme A reductase (HMGCR) increased 

transformation of the human liver hepatocellular carcinoma cells, HepG2, and immortalized, 

nontransformed breast cells, MCF7. Furthermore, HepG2 formed bigger and faster growing 

tumors when injected to severe combined immune-deficient (SCID) mice [79] . 

      Moreover, different studies found that HMGCR levels correlated with bad prognosis and 

reduced survival. In addition, epidemiological studies showed a decrease risk for breast 

cancer of 18% in cohort 8106 women taking hydrophobic statin [80].  

      Statin drugs were developed to inhibit the mevalonate pathway by blocking the rate limiting 

enzyme HMG-CoA reductase. Statins block cholesterol synthesis, in fact they are used as 

colestrol loweing drugs, but they also block the cells from making GGPP and FPP for protein 

prenylation. Therapeutically, in cancer, statin drugs induced cell death by inhibiting the 

biosynthesis of GGPP or FPP which are essential to the prenylation of key proteins  in 

prostate epithelial cells, lymphoma, breast cancer cells, glioblastoma, [81-84]. 
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Figure 2. Mevalonate metabolism pathway. Mevalonate pathway produces cholesterol and 

isopreponoids (gerany pyrophosphate, farnesyl pyrophosphate) which are important for protein 

prenylation. Statin inhibit the mevalonate pathway at the HMGCR level.  
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1.9 Hypothesis and specific aims  

 
      Glioblastoma multiform is the most lethal form of brain tumors that is typically resistant to 

various forms of therapies. Recently, it has been suggested that glioblastoma stem cells 

contribute to the pathogenesis of the disease and may mediate tumor recurrence and 

resistance to anti-cancer therapies. The proposed project aims to explore the bioenergetics 

pathways, typically derailed in malignant compared to normal cells, in glioblastoma stem cells 

in an effort to increase our understanding of the biology of this unique cell population.   

 

      I hypothesize that glioblastoma stem cells have a lower mitochondrial respiration, and rely 

on glutamine metabolism and mevalonate pathway for cell proliferation and survival.  

The major goals of this study were to compare mitochondria respiration and energy 

production, glutamine metabolism, and mevalonate pathway in glioblastoma stem cells and 

FBS induced cells.  Specifically to understand the role of glutamine in GBM stem cells and to 

identify a new metabolic pathway to be targeted to eliminate GBM stem cells.  

 

      The significance of this study relies on the importance of glioblastoma stem in the 

pathogenesis of glioblastoma and their resistance to therapies. The identification of 

deregulated metabolic pathways, such as increased mevalonate genes expression, in the 

stem cells compared to differentiated cells, may facilitate the specific targeting of glioblasoma 

stem cells for the goal of more efficacious clinical management of the morbid glioblastoma 

disease. In order to test my hypothesis, my specific aims were: 

 

Specific Aim1: Characterize the bioenergetics of glioblastoma stem cells and differentiated 

cells. 

Specific Aim2: Determine the effect of blocking glutaminolysis on glioblastoma stem cells. 
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Specific Aim3: Determine the therapeutic effect of mevalonate pathway blockade in 

glioblastoma stem cells.  
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CHAPTER 2.  Material and methods 

 
Cell culture  

      In this work we used glioblastoma stem cells that have been identified and isolated from 

fresh surgical specimens of glioblastoma multiform at the University of Texas MD Cancer 

Center, department of Neurosurgery. GSC11 and GSC23 GBM stem cells are typically 

cultured in medium devoid of serum but containing endothelial and basic fibroblast growth 

factors supplementation. To induce differentiation, cells will be incubated in culture medium 

containing 5% FBS. These cells were previously characterized as glioblastoma stem cells by 

their high tumorigenecity as well as their expression of the marker CD133 [85]. In contrast and 

in the presence of FBS, the stem cells differentiate to express GFAP and BIII tubulin. 

Therefore, incubation of glioblastoma stem cells in serum-containing medium appears to be a 

reliable method for differentiation induction and may be exploited to study mechanisms 

governing differentiation of these stem cells. 

 

Reagents and chemicals 

      GSC11 and GSC23 cells were maintained in MDM/F12 (Cellgro, Mediatech, Inc.) 

supplemented with B27 (17504-044, Life technologies), 20 ng/ml of epidermal growth factor 

(EGF), and 10 ng of basic fibroblast growth factor (bFGF) (Miltenyl Biotech, Bergisch 

Gladbach, Germany). Differentiated cells were kept in similar medium with fetal bovine serum 

(Sigma-Aldrich , St. Louis, MO). 

      Glutaminase inhibitor, 5-(3-Bromo-4-(dimethylamino)phenyl)-2,2-dimethyl-2,3,5,6 tetrahy-

drobenz[a]phenanthridin-4(1H)-one (Compound 968, C968) and betulin were purchased from 

EMD Millipore (Billerica, MA) and dissolved in dimethyl sulfoxide (DMSO) at a concentration of 

10 mM and 3 mg/ml, respectively. 



20 

 

      Simvastatin, geranylgeranyl phosphatase amonium salt, farnesyl pyrophosphate and 

squalene were obtained from Sigma-Aldrich (St.Louis, MO).  

 

Oxygen consumption 

      To measure oxygen consumption 3x106 cells are re-suspended in 1ml of fresh culture 

medium pre-equilibrated with 21% oxygen, and then placed in a sealed respiration chamber 

equipped with a thermostat control and a micro-stirring device (Oxytherm, Hansatech 

Instrument, England). Oxygen consumption was measured at 37 °C with the Clark-type 

oxygen electrode disc, using the conditions recommended by the manufacturer. Respiration 

was expressed as nanomoles of O2 consumed as a function of time in minutes [86] . 

 

Measurement of ATP 

      Cellular ATP was measured using the CellTiter-Glo Luminescent Cell viability Assay 

(Promega Biosciences, California). Cells were plated at 25,000 cells in 100 µl media per well, 

in a 96 well-plates. 100 µl cellTiter-Glo is added per well, and plates were incubated for 10 

minutes at room temperature on an orbital shaker. Luminescence was measured using a 

Fluoroskan luminescence scanner (Thermo Scientific, Waltham, MA). ATP level in the cells 

was evaluated by the luminescence intensity generated by the lucifirine catalyzed by luciferase 

in presence of Mg+2, ATP and molecular oxygen.  

 

Cell viability assay (MTS) 

      Cells were plated at a density of 5,000 cells per well in 96-well plates. The cells were then 

treated with different concentrations of C968 and incubated for the appropriate amount of time.  

Following which, 40 µL of 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-

sulfophenyl)-2H tetrazolium (MTS) (Promega, Madison, WI) was added to each well and 
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incubated at 37 °C (5% CO2) for 3 hours. The absorbance was measured at 492 nm using a 

Multiskan plate reader (Thermo Scientific, Waltham, MA). 

 

Western blot 

      Cells were collected by centrifugation, and cell pellets were washed with iced-cold PBS 

and lysed for 30 minutes on ice with ice-cold RIPA buffer (50 mM Tris-HCL pH 8, 150 mM 

NaCl, 1% NP-40, 0.5% sodium deoxycholate, 0.1% SDS) supplemented with Protease 

inhibitor cocktail (05892970001, Roche, Indianapolis, IN) and a phosphatase inhibitor cocktail 

(04906837001, Roche, Indianapolis, IN). Protein concentrations were measured using the 

ABC protein assay (23225, Thermo Scientific, Rockford, IL) following the manufacturer’s 

instruction.  20-25 µg of proteins were separated by electrophoresis on SDS-PAGE, transfered 

to a nitrocellulose membrane and then blotted with specific primary antibodies followed by a 

secondary antibody. 

 

CD133 extracellular staining  

      Neurospheres were disassociated into single cells with acctuase (Sigma-Aldrich), and then 

washed. 3x105 cells were re-suspended in 80 µL of MACS buffer (Miltenyl Biotech, Bergisch 

Gladbach, Germany) and 20 µl FcR blocking reagent (130-059-901, Miltenyl Biotech, Bergisch 

Gladbach, Germany). 3 µL isotope control, mouse IgG1/APC (130-090-845, Miltenyl Biotech, 

Bergisch Gladbach, Germany), was added or 5μl of CD133/2 (clone293C3)-APC, Human 

(130-090-854, Miltenyl Biotech, Bergisch Gladbach, Germany) and incubated at 4◦C for 15 

minutes. Cells were spun down, washed and re-suspended in 200 µL PBS for fluorescence 

measurement using FACScalibur flow cytometry (Becton Dickinson, San Jose, CA) equipped 

with CellQuest Pro Software. The isotope control was used to establish a gate in the APC 

channel. Cells showing signal beyond the gate were considerate to be CD133-positive.   
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Mitochondrial membrane potential measurement 

      Mitochondrial membrane potential was assessed by incubating 5x105 cells for one hour 

with 1 µM of Rhodamine 123 (Invitrogen), a cell-permeant, cationic, fluorescent dye that is 

readily sequestered by active mitochondria without cytotoxic effects. Cells were washed and 

resuspended in PBS for flow analysis using a FACScan flow cytometer (Becton Dickinson 

Bioscience, San Jose, CA) with the CellQuest software. A decrease in Rhodamine 123 

capture reflects a decreased mitochondrial potential. 

 

Mitochondrial mass measurement                                                                                                                                                                                                                            

      Mitochondrial mass was measured using MitoTracker Green (Invitrogen, Carlsbad, CA). 

Cells were incubated for one hour with 60 nM MitoTacker Green, which efficiently stains 

mitochondria. MitoTracker Green staining was quantified by flow cytometric analysis for GBM 

stem cells and differentiated counterparts. 

 

Glutamine uptake 

      To measure glutamine uptake, culture media was replaced by a glutamine-free DMEM/F-

12 and incubated for 4 hours. Then [14C]L-glutamine (0.05 µCi/ml) (Perkin Elmer, Waltham, 

MA) was added and incubated  at 37 °C for 30 minutes. Cells were collected by centrifugation, 

washed with PBS and lysed with 0.2% SDS/0.2N NaOH solution, and incubated for 1 hour. 

Radioactivity in the cell lysate was quantified by beta scintillation counter (Beckman).   

 

Cell proliferation 

      To test cell proliferation, an equal number of cells were plated in 1ml of medium in 12 well-

plates. Cells were counted every few days. The day of the counting, neurospheres are 

dissaciotated, and resupended in 1ml of PBS to be counted with an automatic counter. 

Soft agar assay 
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      Cells were dissociated and seeded in a 6 wells plate at a density of 10,000 cells per well in 

a stem cells medium with 0.33% agar. Bottom layer consisted of a 0.7% agar in stem cell 

medium. Plates were incubated for 4 weeks, and then stained with MTT to visualize colonies.  

 

Real time PCR 

      Total RNA was extracted from glioblastoma stem cells in serum-free medium and cells in 

medium containing 5% FBS at 24, 72 hours and 7 days. Total RNA was isolated, along with 

elimination of genomic DNA, using the RNeasy kit from Qiagen (Qiagen, Valencia, CA). cDNA 

was synthesized from 5 µg RNA. PCR was carried with Syber Green PCR Mix (4344463, 

Applied Biosystems, Grand Island, NY) on the Viia Real-Time PCR System (life Technologies, 

Grand Island, NY). Primers used are found in table 2. 

 

Table 2. Human PCR primer sequences 

Gene Forward Revers 

Olig2 TAGAACTGTGGCCGTTCCTC TGAGTCGGTGGGGTAGTTTC 
SOX2 AACCCCAAGATGCACAACTC CGGGGCCGGTATTTATAATC 
CD133 CTAGCCTGCGGTCATCTCTC GGATTGATAGCCCTGTTGGA 
TFAM CCGAGGTGGTTTTCATCTGT AGTCTTCAGCTTTTCCTGCG 

PGC1-α ACTCAGCAGCAGTTGACCCT GGACTAGGAGAAGCAGGGCT 
COX2 TATCACCTTTCATGATCACGC GACGATGGGCATGAAACTG 
20KDa ACATCCCCCACACCTGTTTC ATAGTGAACCACCCGCTCTG 
ND4 GACTCCCTAAAGCCCATGTCG TTGATCAGGAGAACGTGGTTAC 
Cyt b CGCCTACACAATTCTCCGATC CGGGTGTTGATGGGTGAGTC 
ATPase CTGTTCGCTTCATTCATTGCC GTGGCGCTTCCAATTAGGTG 
HMGCS1[87] GGGCAGGGCATTATTAGGCTAT TTAGGTTGTCAGCCTCTATGTTGAA 
HMGCR GGCCCAGTTGTGCGTCTT CGAGCCAGGCTTTCACTTCT 
MVK [87] TGGACCTCAGCTTACCCAACA GACTGAAGCCTGGCCACATC 
MVD [87] TGAACTCCGCGTGCTCATC CGGTACTGCCTGTCAGCTTCT 
LSS [87] TGCAGAAGGCTCATGAGTTCCT TCTGGTAGTCGGGAGGGTTATC 
SQLE [87] CGTGCTCCTCTTGGTACCTCAT CGGTCAAGGCGGAGATTATC 
SREBP1 GTGGCGGCTGCATTGAGAGTGAG AGGTACCCGAGGGCATCCGAGAAT 
SREBP2 GCAGATGGGCAGCAGAGTTCC GTGGTCAGGAGGCGGCAATG 
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CHAPTER 3.   Metabolic state of glioblastoma stem cells and FBS induced cells 

 

3.1 Results  

GSC23 and GSC11 express stem cells markers which are decreased with the induction 

of differentiation with FBS 

      In this study we used two human glioblastoma stem cell lines: GSC23 and GSC11, which 

were previously derived from surgically removed tumors. Glioblastoma stem cells are cultured 

in serum free medium supplemented with EGF and bFGF and grow in the form of 

neurospheres (Figure 3A). Moreover, the induction of differentiation by adding 5% fetal bovine 

serum (FBS) resulted in the loss of neurospheres forming capacity and the attachment of the 

cells to the culture plates (Figure3A). 

      To ascertain whether GSC23 and GSC11 cells display stem cells features, we assessed 

for the expression of the stem cell markers: CD133, Olig2 and SOX2 by quantitative real time 

PCR. We found that both GSC23 and GSC11 cells expressed these markers; furthermore we 

observed a decrease of stem cells marker mRNA levels when the cells were induced to 

differentiate with FBS (Figure 3 B-C). 
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           GSC23 
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Figure 3. Differentiation of glioblastoma stem cells. A, GSC11 (top row) and GSC23 

(bottom row) cells form the typical neurospheres when incubated in serum-free medium (left 

column), and changed morphology after 3 days when 5% FBS was added (right column). Cells 

were observed under an inverted light microscope. 

B-C, mRNA expression of GBM stem cells markers Olig2, SOX2 and CD133. GSC23 and 

GSC11 cells were cultured in serum free medium or in medium containing 5% FBS for 1, 3 or 

7 days, after which total RNA was isolated, and gene expression was assessed by quantitative 

real time PCR.  
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Glioblastoma stem cells exhibit reduced mitochondrial respiration which increases 

upon exposure to fetal bovine serum.  

      As mentioned before, we hypothesized that glioblastoma stem cells exhibit reduced 

mitochondrial bioenergetics and respiration compared to their differentiated counterparts. We 

sought to assess oxygen consumption, as an indication of mitochondrial respiration, in 

glioblastoma stem cells cultured in serum-free medium as well as in stem cells incubated in 

medium containing 5% FBS. Towards this goal, GSC23 and GSC11 cells were made to 

differentiate by exposure to 5% FBS for 72 hours. Oxygen consumption was then measured at 

37°C with a Clark-type oxygen electrode disc. Exposure of GSC11 and GSC23 glioblastoma 

stem cells to 5% FBS for 72 hours, significantly increased oxygen consumption rate 

(*p<0.05).The rate increased by approximately 2.6-fold and 6.2-fold in the GSC11 and GSC23 

glioblastoma stem cells exposed to FBS, respectively (Figure 4). These findings suggest that 

an increase in mitochondrial activity is coupled to differentiation induction. We seek to further 

expand these results to increase our understanding of the role of mitochondrial bioenergetics 

in glioblastoma stem cell differentiation. 
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Figure 4. Increase in oxygen in glioblastoma stem cells following exposure to FBS.  

GSC11 and GSC23 glioblastoma stem cells were resuspended (3 x 106) in fresh culture 

medium equilibrated with 21% oxygen. Concurrently, the cells were also incubated in medium 

containing 5% FBS. After 72 hours, oxygen consumption rate was assessed and expressed as 

nanomoles of oxygen consumed as a function of time in minutes. Consumption rate was 

calculated from three independent experiments. P-values indicating statistical significance (*, 

p<0.05) in differences of oxygen consumption rate were calculated by the Student’s t-test. 
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No increase in mitochondria mass or biogenesis upon differentiation  

       Because we observed that there was an increase in the mitochondrial respiration upon 

exposing GBM stem cells to FBS, we hypothesized that there might be an increase in the 

mitochondrial mass to support mitochondrial respiration. Therefore, we measured the 

mitochondrial mass in GSC23 and GSC11 cells in comparison to cells exposed to FBS for 3 

days by incubating the cells with the mitoTracker Green dye for one hour, followed by flow 

cytomertric analysis. However, we didn’t observe a significant difference in mitochondria mass 

in the FBS induced cells compared to the GBM stem cells (Figure 5A).  

      We further sought to explore mitochondrial bioenergetics as a mean to support the 

increase of the mitochondria respiration in FBS induced cells. As explained in the introduction, 

mitochondria have their own genome which carries many of the genes encoding for proteins 

needed for the respiratory chain. In addition, mitochondria genome transcription involves 

nuclear encoded transcription factors as TFAM, and PGC1-α. To assess if there was an 

increase of the transcription of the mitochondrial genome, we measured the mRNA levels of 

mitochondria encoded genes COX2, 20kDa, ND4, Cytb, ATPase and the transcription factors 

TFAM and PGC1-α in GSC23 and GSC11 stem cells and FBS induced counterpart for 1 and 3 

days. We didn’t observe any significant difference between GBM stem cells and differentiated 

cells to support a potential increase in mitochondria (Figure 5B). 
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Figure 5. FBS does not induce an increase in mitochondrial mass or mitochondria 

biogenesis. A, GSC 23 (left) (colored filled) cells were induced to differentiate with FBS for 3 

days (no fill histogram). Mitochondria mass was assessed by flow cytometry and no significant 

increase of the mass was observed. Similarly, GSC11 (right) was induced to differentiate (no 

fill ), after which mitochondria mass was assessed by flow cytometry. 

B, GSC 23 (top graph) and GSC11 (bottom graph) were induced to differentiate with FBS. 

RNA was isolated and transcripts levels were assessed by QRT-PCR. Results show no 

significant difference in the transcripts after FBS differentiation. 
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Effect of metabolic inhibitors on ATP levels  

      We found that mitochondrial respiration increased during induction of differentiation with 

FBS, therefore we speculated that there might be a shift in the ATP generation from glycolysis 

to oxidative phosphorylation with differentiation. We induced GSC23 to differentiate with FBS, 

for 3 or 7 days. After which the cells were dissociated and re-plated at a density of 25,000 cells 

per well in 96 well-plates. The cells were then treated with metabolic inhibitors for 6 hours. 2 

deoxyglucose (2-DG) was used to inhibit glycolysis (2.5-10 µM), Antimycin A (2-20 nM) was 

used to inhibit mitochondria respiration. After 6 hours of incubation, ATP production was 

assessed. We observed that with differentiation (GDC23D7) ATP production inhibition was 

more sensitive to antimycin A, which correlates with the increase of the mitochondria 

respiration (Figure 6). 
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Figure 6. Differentiated GBM stem cells are more sensitive to antimycin A. GSC23 were 

induced to differentiated with FBS for 3 and 7 days, after which the cells were dissociated and 

replated at 25,000 cells per well in a 96 well-plates. Cells were treated with 2-deoxyglucose 

(2DG), Antimycin A, or a combination of the two. Cells were incubated for 6 hours at 37°C, and 

100 µl of stop and glow was added to each well and left to shake for 10 minutes. Luminisence 

was assessed.  
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Molecular changes are observed upon differentiation with FBS 

       To understand the molecular mechanism behind the increase of mitochondrial respiration, 

we compared the protein expression of pyruvate dehydrogenase kinase (PDK1) and 

glutaminase (GLS2). Pyruvate dehydrogenase kinase (PDK1) inactivates the pyruvate 

dehydrogenase (PDH), the enzyme converting pyruvate to acetyl-CoA, by its phosphorylation. 

This suggests that the tricarboxylic acid cycle (TCA cycle) might be slowed down by limiting 

the conversion of the pyruvate to acetyl-CoA. Therefore, we assessed for another enzyme 

(GLS2) that could supply the TCA cycle with α-ketoglutarate, which could have increased the 

mitochondrial respiration. We found that the protein expression of GLS2 was increased with 

FBS, suggesting that glutamine might be used by the cells as a substrate to fuel the TCA 

cycle. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

PDK1 

β-actin 

Cont    D1    D3      D7 

 

  

 

 Cont    D1   D3   D5   D7 

β-actin 

PDK1 

  

   GLS2  

β-actin 

GLS2 

    β-actin 
  

 

 Cont    D1   D3   D5   D7 Cont      D1     D3      D7 

   GSC23              GSC11 



33 

 

 

 

Figure 7. Exposure of glioblastoma stem cells to FBS increases the protein expression 

of PDK1 and GLS2. GSC23 and GSC11 glioblastoma stem cells were incubated in medium 

containing 5% FBS for 1 (D1), 3 (D3), or 7 (D7) days. Total protein lysates were prepared from 

the cells in FBS as well as from cells cultured in serum-free medium (Cont). Lysates (20 µg) 

were subjected to western blotting to assess protein expression of the PDK1 and GLS2. 
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3.2 Discussion   

 

      Energy metabolism in the form of Adenosine triphosphate (ATP) is generated intracellularly 

either by glycolysis or mitochondrial oxidative phosphorylation [88]. Metabolic reprogramming 

is required for cell homeostasis and survival as well as for the sustained proliferation of cancer 

cells. Furthermore, cancer cells frequently exhibit increased glycolysis and depend largely on 

this metabolic pathway for generation of ATP to meet their energy needs. As mentioned 

before, it is now being increasingly recognized that cancer stem cells play crucial roles in the 

survival and clinical relapse of various malignancies [89]. However, metabolic pathways and 

energetics in cancer stem cells are still poorly understood. We sought to understand 

mitochondrial bioenergetics in glioblastoma cells that had been previously isolated from 

patients (GSC23 and GSC11). 

      We found that GBM stem cells GSC23 and GSC11 cells cultured in serum free medium 

expressed cancer stem cells marker Olig2, SOX2, CD133, which were downregulated upon 

induction of differentiation with fetal bovine serum (FBS). These cells can serve as a good 

system to evaluate mitochondrial bioenergetics in GBM stem cells and differentiated cells. 

      We found that glioblastoma stem cells exhibited low mitochondrial respiration. Moreover, 

mitochondrial respiration in the cancer stem cells increased when induced to differentiate with 

FBS (Figure 4). It is well appreciated that a switch to active mitochondrial respiration requires 

the acquisition of properties such as an increase in the number of mitochondria (mitochondrial 

mass), increased function of the mitochondrial respiratory chain and expression of its 

complexes subunits and the expression of biogenesis markers. However, in our study we 

didn’t observe any change in the mitochondria biogenesis. Therefore, we can suspect that 

there was an increase of mitochondria function, which remains to be tested.  

      Furthermore, previous study by Marin-Valencia et al., investigating brain tumor metabolism 

in vivo in an orthotopic mouse model of primary human glioblastoma, revealed that brain tumor 



35 

 

cells avidly consumed glucose to utilize it to fuel energy through oxidative respiration [90]. 

Those findings were contradictory to what it has been previously observed in GBM cell lines, 

where the cells were more glycolytic. However, it supports our finding that more differentiated 

cells (GBM stem cells induced with FBS) had a higher mitochondrial respiration compared to 

GBM stem cells, which from a previous study of our group, were shown to be more glycolytic 

[91].  

      Also, it was suggested that the differences in the metabolic profiles and pathways 

activation among various types of tumors are in part due to the tumors unique 

microenvironments. The different tumor microenvironments in which the cells are subject to 

differential fluctuation in oxygen levels and changes in the nutrient abundance, tailor the 

energetic remodeling and metabolic profiles for optimal survival of the specific cancer cells 

[92]. In a review by Jezek et al, it was postulated that metabolic alterations follow a “wave of 

gene reprogramming”, where at first aerobic glycolysis during a lack of oxygen is enhanced 

due to the activation of hypoxia-inducing factor 1 (HIF1α) transcriptional factor which in turn 

transactivates the expression of various glycolytic enzymes [93]. However, when energy 

demands exceed nutrients supplied by the blood, the tumor cells typically re-establish 

mitochondrial respiration to meet the energy levels and demands needed to maintain the 

increased proliferation of the cells. For example, mesenchymal stem cells were shown to be 

highly glycolytic but shift to oxidative phosphorylation during their differentiation into fibroblasts 

[94]. Moreover, hypoxic niche was identified as critical regulator of stemness of GMB stem 

cells. This might support our finding for a low mitochondrial respiration in GBM stem cells.  

Interestingly, GBM stem cells GSC23 and GSC23 were shown to have enhanced stem cells 

properties under lower O2 tension [85]. 

      Our findings that respiration is low in GBM Stem cells and increase with differentiation 

support the hypothesis where cancer stem cells are to be found in specific niches.  
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      Furthermore, we found that pyruvate dehydrogenase was elevated following differentiation, 

this might slow the entrance of pyruvate into the TCA cycle, however, the increase of GLS2 

might provide a substrate, α-ketoglutarate, to fuel TCA cycle and increase mitochondrial 

respiration. These findings provide a molecular basis to the elevation of respiration with 

differentiation, however more functional assays must be conducted in the future. 
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CHAPTER 4. Glutamine role in glioblastoma stem cells maintenance  

4.1 Results  

Glutamine consumption in cancer stem cells and differentiated cells 

      Glutamine is an important amino acid in many cancer types; it has been implicated in 

transformation, proliferation and survival. We sought to explore glutamine metabolism in 

glioblastoma stem cells and differentiated cells. To assess glutamine metabolism in GBM stem 

cells, we first measured glutamine uptake in GBM-SC and differentiated cells. Strikingly, 

GSC23 and GSC11 GBM stem cells consumed two folds greater of glutamine than their 

differentiated cells counterparts (GSC11D7, GSC23D7), which were induced with 5% FBS for 

7 days (p<0.05) (Figure 8). 
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Figure 8. Comparison of glutamine uptake between glioblastoma stem cells and 

differentiated cells. A, GSC23 were maintained in stem cells media, and GSC23D7 were 

induced to differentiate with FBS for 7 days. 1x106 cells were replated in glutamine free 

DMEM/F12 and incubated for 4 hours. [14C]- Glutamine (0.5 µci/ml) was added to the cells and 

incubated for 30 minutes. Cells were then collected, spun down and washed twice with cold 

PBS. Cell pellets were re-suspended in 200 µl lysis buffer and incubated at 37°C for one hour. 

Uptake of the labeled glutamine was quantified by scintillation counting of the cellular lysate. 

Data represent the mean  ± SD of biological triplicate samples.  

B, glutamine uptake was measured in GSC11 cells and GSC11 induced with FBS for 7 days 

(D7), 1x106 cells were used. Data represent the mean ± SD of biological triplicate samples.  
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Glutamine affects cell proliferation but does not cause cell death  

      The finding that GBM stem cells consumed more glutamine, prompted us to hypothesize 

that glutamine might be mediating proliferation and survival of GBM stem cells.  Subsequently, 

to investigate the role of glutamine, we blocked glutaminolysis by employing a small molecular 

weight inhibitor, C968. C968 was shown to block glutaminase activity at concentration of 1-

10 µM [74]. A 7 days treatment of GSC23 cells with C968 (10 µM) resulted in the formation of 

smaller neurospheres as compared to control DMSO treated cells, as observed under the 

phase contrast microscopy picture (Figure 9). 

      Next, to determine if the smaller neurospheres resulted from cell death, we examined the 

effect of C968 on cells survival. GSC23 and GSC11 cells were treated with increasing 

concentrations of C968 (1 to 20 µM), for 3 or 5 days. We analyzed the cytotoxicity of C968 on 

the cells by MTS (3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-

2H-tetrazolium, inner salt; MTS). Glutaminolysis inhibition was not cytotoxic to the cells (Figure 

10). 

      Furthermore, we examined cell proliferation as a cause to the formation of smaller 

neurospheres.  An equal number of GSC11 cells and an equal number of GSC23 cells were 

cultured in the absence of presence of C968 (10 µM).  Cells were counted every few days. At 

3 days the difference in proliferation of GSC23 wasn’t significant, however, after 7 days the 

cells treated with C968 were significantly proliferating slower than the untreated cells and 

continued to grow significantly slower at 10 days.  Similarly, GSC11 cells showed a significant 

difference in cells number at 7 days and 10 days, however, it didn’t show any difference at 3 

days, which can be explained by their slower doubling time and time to recover after 

dissociation with acctuase before plating (Figure 11). These data indicate that proliferation and 

not survival was affected by blocking glutaminolysis with C968. 

 
 



 

 

 
 
 

 

 

 

 

 

 

 

 

Figure 9. C968 treatment results in the formation of smaller

(top) were dissociated into single cells. An equal cell number was then plated and treated with 

either DMSO (left) or 10 µM C968 (right) and cultured for 7 days. Also GSC11 were 

dissociated into single cells and plated with DMSO 

Neurospheres were observed under light
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results in the formation of smaller neurospheres

(top) were dissociated into single cells. An equal cell number was then plated and treated with 

either DMSO (left) or 10 µM C968 (right) and cultured for 7 days. Also GSC11 were 

dissociated into single cells and plated with DMSO (left) or 10 µM of C968 for 7 days (right).  

Neurospheres were observed under light microscopy at magnification x40. 

neurospheres. GSC23 cells 

(top) were dissociated into single cells. An equal cell number was then plated and treated with 

either DMSO (left) or 10 µM C968 (right) and cultured for 7 days. Also GSC11 were 

C968 for 7 days (right).  
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Figure 10. GBM stem cells viability is unaffected by C968.  (A) GSC23 neurospheres and  

(B) GSC11 neurospheres were disassociated into single cells and seeded in 96 well-plates at 

a density of 5,000 cells per well. Cells were treated with either DMSO, (0µM), or C968 at 

doses ranging from 1-20 µM for 3 or 7 days, after which MTS was added, and incubated for 3 

hours at 37°C.  Measurement was done at 432nm and cell viability was normalized to control 

DMSO treated cells. Results are represented as mean ± SD of three independent 

experiments.  
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Figure 11. C968 slows GBM stem cells proliferation. GSC23 (A) and GS11 (B)  

neurospheres were dissociated, seeded equally in 12 well-plates and left untreated or treated 

with 10 µM C968. Biological triplicate were counted at the indicated times. Data points 

represent the mean value ± SD. 
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Effect of C968 on CD133 glioblastoma stem cells marker  
 
      To further characterize the role of glutaminolysis in GBM Stem cells, we explored if the 

inhibition of glutaminolysis affected the stemness of the cells.  As previously shown, GBM 

stem cells express the stem cell marker CD133, thus we determined the expression of CD133 

after treatment with C968.  

      GSC23 and GSC11 cells were treated with various concentrations of C968 (1-20µM), for 

either 3 or 7 days. Flow cytometric analysis showed a suppression of the CD133 in a dose 

dependent manner (Figure 12 A-B). At 10 µM of C968 there was a suppression of about 70% 

in CD133, and didn’t further decrease at a concentration of 20 µM.  

      In addition to the flow cytometric analysis, which assesses for CD133 on the cell surface, 

we evaluated the protein expression of CD133 in GSC11 and GSC23 cell lysates by western 

blot. Consistent with the flow cytometry analysis, the protein expression of CD133 was 

decreased in GSC11 and GSC23 following 72 hours treatment with C968 (10 µM) (Figure 

12C). 

      The suppression of CD133 suggested that glutaminolysis blockade could either have led to 

differentiation of the cells, or simply to the loss of stemness. In the case of differentiation, the 

CD133 expression would not reverse if the drug were removed, whereas the suppression 

wouldn’t be drug dependent if there were a terminal differentiation of the GBM stem cells. 

Therefore, to determine if CD133 suppression was reversible, we treated GSC23 cells with 

C968 (10 µM) for 7 days, then we washed the cells and cultured them without the drug. As 

previously shown, CD133 expression decreased from 70% to 21% with C968 (10 µM), 

however, after 24 hours without C968, CD133 expression increased to 40% and further 

increased to 72% within 72 hours, which is comparable to the CD133 expression in the 

untreated cells (Figure 13). These data suggest that CD133 suppression is dependent on 

glutaminolysis blockade by C968 inhibitor.  
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      Because, we had found that GSC23 and GSC11 cells proliferated slowly when treated with 

C968 (10 µM), we investigated the impact of the CD133 reversibility on cells proliferation.       

We compared the cell number of GSC23 cells that were treated with DMSO, to GSC23 treated 

with C968 and GSC23 that were pretreated with C968 and then plated without C968. While 

GSC23 treated with C968 proliferated slowly in comparison to DMSO treated cells, GSC23 

cells that were pretreated with C968 and plated without the inhibitor had an unaffected 

proliferation (Figure 14). Proliferation of the cells was reverted while the cells were cultured 

without C968, which also correlated with the reversibility of CD133 expression. 
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Figure 12. C968 suppresses the expression of CD133 stem cell marker. Neurospheres 

were dissociated with accutase and seeded at equal number, then treated with various 

concentrations of C968 (1-20 µM). Following 3 or 7 days of treatment, the cells were analyzed 

for CD133 expression by flow cytometry. (A) represents the expression of CD133 expression 

in treated GSC23,  while (B) shows CD133 expression in GSC11. Bar graphs represent the 

mean ± SD of three different samples. 

(C) GSC11 and GSC23 cells were treated with C968 (10 and 20 µM) for 7 days. Cells were 

collected and total protein lysates were prepared. Lysates (20 µg) were subjected to western 

blotting to assess protein expression of CD133.  
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Figure 13. C968 reversibly inhibits CD133 expression

µM of C968 for 7days, and then assessed for CD133 expression. The same cells were 

dissociated, washed with PBS and replated in fresh medium with or without C968. CD133 was 

assessed by flow cytometry after 24 hours and 48 hours.

percentages as analyzed by flow cytometry.
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. C968 reversibly inhibits CD133 expression. GSC23 cells were treated with 10

of C968 for 7days, and then assessed for CD133 expression. The same cells were 

dissociated, washed with PBS and replated in fresh medium with or without C968. CD133 was 

assessed by flow cytometry after 24 hours and 48 hours. The dot plots represent APC

percentages as analyzed by flow cytometry. 

. GSC23 cells were treated with 10 

of C968 for 7days, and then assessed for CD133 expression. The same cells were 

dissociated, washed with PBS and replated in fresh medium with or without C968. CD133 was 

The dot plots represent APC-CD133 
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Figure 14. C968 withdrawal restores cells proliferation. GSC23 cells were dissociated with 

FBS and plated at an equal number in stem cells medium. Then the cells were either treated 

with DMSO (black) or 10 µM of C968 (blue). GSC23 pretreated with C968 were also 

dissociated and plated at the same number without the drug (red). Cells were counted at the 

indicated times. Data points represent the mean ± SD of biological triplicate.  
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Effect of C968 on the capacity for anchorage-independent growth  

       To assess the importance on glutaminolysis on the ability of GBM stem cells to grow in an 

anchorage-independent manner, GSC 23 and GSC11 cells were seeded in soft agar without 

or with C968 (10 µM), after 4 weeks the colonies were stained with MTT (3-(4,5-

Dimethylthiazol-2-yl)-2,5-Diphenyltetrazolium Bromide). Untreated GSC23 cells formed 

significantly more colonies, 400 colonies, compared to C968 treated cells which formed 50 

colonies (p=0.0006). Similarly, GSC 11 formed about 650 colonies, whereas C968 treated 

cells formed less than 20 colonies (p<0.0001), as shown in (Figure 15).  

Furthermore, to determine if the suppression of the colony formation was dependent on the 

continuous blockade of glutaminolysis by C968, we pretreated GSC23 cells with C968 (10 μM� 

for 7 days, following which we plated the cells in soft agar in the absence or the presence of 

C968 (10 μM). With C968 in the soft agar the ability of the cells to grown in an anchorage-

independent manner was reduced. GSC23 cells formed less than 10 colonies, however, they 

formed an average of 650 colonies in the absence of C968 (Figure 16). These findings show 

that glutaminolysis is important for GBM stem cells to grow in anchorage-independent manner. 
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Figure 15. Decrease in cell colony formation with C968 treatment. A, GSC23 (10,000) 

were grown in soft agar (plus stem cells media) either in the absence or presence of 10 µM of 

C968.  Cells were maintained in culture for 4 weeks, after which they were stained with MTT (1 

mg/ml) to visualize the colonies and colonies were counted (top).  Results were calculated as 

means ±SD of biological triplicate. 

B, GSC 11 (10,000 cells) were grown in soft agar with or without 10 µM of C968. After 4 

weeks, cells were stained with MTT and colonies were counted. Results were calculated as 

means ±SD of biological triplicate. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

Figure 16. Anchorage-independent growth capacity is restored with C968 withdrawal

GSC23 cells were treated with C968 (10 µM) for 7 days, and then dissociated. 10,000 cells 

were seeded in soft agar (plus stem cells media) either in the absence of presence of 10 µM of 

C968.  Cells were maintained in culture for 4 weeks, after 

(1mg/ml) to visualize the colonies (Bottom). Quantification of colonies 

graph (Top).  Results were calculated as means ±
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independent growth capacity is restored with C968 withdrawal

were treated with C968 (10 µM) for 7 days, and then dissociated. 10,000 cells 

were seeded in soft agar (plus stem cells media) either in the absence of presence of 10 µM of 

C968.  Cells were maintained in culture for 4 weeks, after which they were stained

(1mg/ml) to visualize the colonies (Bottom). Quantification of colonies is represented in the bar 

(Top).  Results were calculated as means ± SD of triplicate wells. 

independent growth capacity is restored with C968 withdrawal. 

were treated with C968 (10 µM) for 7 days, and then dissociated. 10,000 cells 

were seeded in soft agar (plus stem cells media) either in the absence of presence of 10 µM of 

which they were stained with MTT 

is represented in the bar 
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4.2 Discussion 
 
      Glutamine and glucose are two of the most abundant nutrients in the blood. Both are 

involved in cancer cells survival and proliferation in different types of cancer. However, little is 

known about the role they play in GBM stem cells. Our group has lead new research studies 

about the role of these nutrients in GBM stem cells. For instance, we showed that glucose 

affected GBM stem cells survival. Yuan and Wang showed that inhibiting glycolysis with 3-

Bromo-2-oxipropinate-1-propyl ester (3-BrOP) in combination with a chemotherapeutic agent 

(BCNU) constituted a new strategy to eliminate GBM stem cells [95]. In this study we show for 

the first time that glutamine maintains proliferation and cell growth of GBM stem cells on soft 

agar.  

      Glutamine is an essential amino acid, cells uptake the glutamine needed to their function 

from the microenvironment [96]. Therefore, we measured the glutamine uptake in glioblastoma 

stem cells GSC23 and GSC11 and compared it to the cells that were induced to differentiate 

with FBS. We found that GBM stem cells consumed more glutamine than differentiated cells, 

which prompt us to determine the role of glutamine in GBM stem cells functions and 

maintenance.  

      In mitochondria glutamine is consumed by the cells and turned to glutamate by the 

glutaminase (GLS) enzyme, through a process called glutaminolysis. To obtain insight on how 

glutaminolysis potentially affects GBM stem cells, we employed a small inhibiting molecule 

previously identified as a GLS inhibitor, C968 [74].  

      As mentioned before GBM stem cells are characterized by their ability to form 

neurospheres, strikingly we observed that the treatment of GSC23 cells with C968 resulted in 

the formation of smaller neurospheres. To test whether the disturbance in neurospheres 

formation was a result of cell death or slower cell growth, we tested for cell viability and cell 

proliferation with glutaminase inhibitor, C968. 
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      We found that when the cells were treated with 10µM C968, a concentration shown to 

inhibit GLS activity by Conroe et al., It didn’t affect cells viability as shown by MTS assay and 

unlike in the glucose study which killed the cells (data not shown), glutaminolysis blockade 

didn’t lead to cell death. Furthermore, we found that C968 treatment slowed from GSC23 and 

GSC11 cells proliferation. This demonstrates that glutamine doesn’t affect GBM stem cells 

survival but affects cell proliferation. 

      Cells use glutamine as an energy source to promote proliferation. Glutamine is converted 

to glutamate through glutaminolysis, which is converted to α-ketoglutarate to produce ATP 

through the mitochondrial oxidative phosphorylation (Figure 1). Therefore, it was plausible to 

suggest that a depletion of ATP might be the cause of a slow proliferation. We tested whether 

C968 treatment depleted the cells from ATP, however, ATP generation wasn’t compromised in 

the cells (appendix 1). Several studies showed that molecular pathway such as mTOR/AKT or 

TGF beta have been shown to affect stemness of GBM stem cells without killing the cells. The 

cells lose their stem cell markers and their ability to form tumors; therefore, we tested the 

effect of C968 on stemness.  

     CD133 (prominin1) stem cell marker is widely used to identify and isolate GBM stem cells; 

it is associated with stemness properties as self-renewal and increased tumorgeneity. The role 

of CD133 as a marker for cancer stem cells is still not fully understood and studies about its 

functions in GBM stem cells have been contradictory. In some cases CD133 negative 

population was able to form tumors as much as the CD133 negative population [97]. However, 

they are many studies that indicate that CD133 is important to the cells to maintain stemness 

and tumorgenicity. For instance, Paola Bresscia et al, [98] showed that suppressing CD133 

expression using three different lentivirus-mediated short hairpin RNA, reduced GBM stem 

cells proliferation and tumorigenic capacity in xenograft mice.  

      In our study, we showed that inhibition of glutaminolysis by C968 suppressed the 

expression of CD133 stem cell marker at the plasmamembrane surface, as shown by flow 
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cytometric analysis, and in the cytosolic level as shown by western blotting for protein 

expression.  

      In addition, C968 is a reversible allosteric inhibitor of GLS, so it was important to test 

whether the suppression of CD133 was dependent on the C968 inhibitor and was temporary 

or if it made the cells definitely lose their stemness. Therefore, we treated the cells with C968 

for 7 days before culturing them in fresh media with no drug. Following flow cytometry 

analysis, we determined that CD133 suppression was reversed when the drug inhibitor of GLS 

was removed from the cell culture.  

      Subsequently, we questioned if it had an effect on cell proliferation. Therefore, we treated 

the cells with C968 and then cultured them without or with C968. Our data showed that 

proliferation is no longer jeopardized when the cells are re-plated in a fresh medium. In fact, 

proliferation correlated with CD133 re-expression. 

      Importantly, blocking glutaminolysis prevented the cells from anchorage-independent 

growth, which was also reverted when the drug was removed from the soft agar. Taking 

together our data show that glutaminolysis might be regulating CD133 and mediating GBM 

stem cell growth. 

      It is worth to note that it has previously been shown that the transcription factor c-MYC 

induced glutaminolysis through the regulation of GLS expression via suppression of microRNA 

miR-23a/b, which normally suppresses GLS [76, 99]. Moreover, previous studies 

demonstrated that c-myc is critical to maintain GBM stem cells stemness and self-renewal 

without affecting cell survival [100]. Our finding that glutamine affects GBM stem cells 

stemness might support a mechanism by which c-MYC regulates GBM stem cells.  This 

possibility will need to be further tested.  

       In this study we also explored some possibilities that lead to CD133 suppression. It was 

shown that an increase of reactive oxygen species (ROS) lead to loss of stemness and 

increase of differentiation in glioblastoma stem cells [101]. On the other hand, glutamine 
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catabolism to glutamate helps to support cells defense against oxidative stress through the 

formation of glutathione, which serves as a redox buffer [102], it was plausible that the 

inhibition of glutaminolysis with C968 caused an increase of ROS leading to a loss of 

stemness. However, our data showed that C968 didn’t increase the mitochondrial ROS as 

measured by MitoSOX (appendix 2), therefore it couldn’t support this possibility. 

      Moreover, CD133 suppression was reversible; we might speculate that it was 

epigenetically regulated. Previous studies have shown that CD133 can be regulated by 

epigenetic changes. For instance, the transforming growth factor beta (TGF-β) was shown to 

increase the expression of CD133 by increasing demethylation [103] .  On the other hand, a 

previous report showed that C968 treatment in breast cancer cell lines could induce 

methylation [104], therefore It was plausible that CD133 suppression was caused by 

methylation. To test this possibility we co-treated GSC23 with C968 and an inhibitor of DNA 

methylation, 5-aza-2'-deoxycytidine [105]. Flow cytometry  analysis for CD133 showed that 5-

aza-2'-deoxycytidine didn’t prevent CD133 suppression by C968, which suggests that 

methylation wasn’t the cause of CD133 suppression. This will need further studies with 

different approaches such as epigenetic sequencing, because CD133 has 3 promoters and it 

might be complicated to prevent its methylation with one agent [106].  

     Furthermore, CD133 is a plasmamembrane protein which is translated in the cytosol and 

sent to the cell surface. Glutamine, besides glucose and Acetyl Coenzyme A (Ac-CoA) are 

required for N-linked glycolysation, folding and trafficking of growth factor receptor to the cell 

surface. It is plausible that blocking GLS affects N-linked glycolysation. This possibility remains 

to be tested in the future.  

     In Conclusion, our study has shown that inhibiting glutaminolysis by C968 slowed GBM 

stem cells growth and prevented GBM stem cells from forming colonies on soft agar. In 

addition, proliferation and anchorage-independent capacity of GBM stem cells correlated with 

CD133 expression, supporting the importance of CD133 as a stem marker in GBM stem cells. 
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This study shows for the first time that glutamine metabolism affects GBM stem cells and offer 

opportunities to further investigate the molecular bases underlining the regulation of CD133 by 

glutaminolysis. It will also be important to determine if the loss of CD133 caused by blocking 

glutaminolysis with C968 could sensitize GBM stem cells to conventional chemotherapies.  
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CHAPTER 5.  Mevalonate pathway as a therapeutic target 

5.1 Results 

Identification of mevalonate pathway as a target for GBM stem cells  

      We sought to unravel key genes and molecular pathways important to glioblastoma stem 

cells using high-throughput microarray technology. We compared the gene expression profile 

of GSC11 cells to FBS induced cells at 72 hours. We identified the mevalonate pathway as 

being differentially modulated between the stem cells and differentiated counterparts. For 

instance, the expression of mevalonate pathway related enzymes correlated inversely with 

differentiation, such that genes associated with this pathway were elevated in the GSC cells 

compared to their differentiated counterpart (FBS induced cells) as early as 24 hours (Table 

3). 

      To further validate these results quantitatively, we analyzed HMGSC1, HMGCR, MVD, 

MVK, SQLE, LSS; transcripts levels, by quantitative real-time polymerase chain reaction 

(QRTPCR), in GSC23 and GSC11 glioblastoma stem cells cultured in serum free medium or 

in medium containing 5% FBS for 24 and 72 hours, noted respectively as D1 and D3. 

Exposure to FBS significantly decreased the mRNA expression levels of these genes in both 

glioblastoma stem cell lines as early as 24 hours post-exposure to FBS (P<0.005) (Figure 17).   
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Table 3. Mevalonate pathway related genes were significantly downregulated after 

differentiation with FBS. 

Gene 
  

Fold change (day3 vs Control) 
 

GFAP 2.384728 

PROM1 -1.92046 

MVK -1.6279 

DHCR24 -1.77728 

SOX2 -1.7935 

MVD -2.05976 

DHCR7 -2.31148 

LSS -2.72754 

HMGCR -3.01903 

FASN -3.10088 

SQLE -4.33563 

FDFT1 -5.3944 

OLIG2 -8.47662 

HMGCS1 -9.02319 

INSIG1 -9.02413 

ALDOC -9.24284 
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Figure 17. Mevalonate pathway is upregulated in glioblastoma stem cells. (A) GSC23 

and FBS induced cells for 24 hours and 7 days, (B) GSC11 and FBS induced for 24 and 72 

hours were collected and total RNA was extracted, revers-transcribed, and analyzed by real 

time PCR for transcripts level for mevalonate pathway associated genes. All expression levels 

were normalized internally to β-actin and FBS induced samples were normalized to the no 

FBS samples. The error bars represents the standard deviation (*p>0.005).
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Blocking mevalonate pathway caused cell death in GBM stem cells 

      The reduction in mevalonate related genes expression with differentiation suggests that 

mevalonate pathway preferentially associated with the stem cell subsets. Therefore, we 

hypothesized that mevalonate might regulate the stemness or the survival of GBM stem cells.  

      To investigate the role of mevalonate pathway in GBM stem cells, we tested the effect of 

blocking this pathway with simvastatin on CD133 positive cells. As mentioned before, 

simvastatin is widely used as cholesterol lowering drug which works through inhibiting HMG-

CoA reductase activity. GSC23 and GSC11 cells were treated with 500 nM, 1 µM or 2 µM 

simvastatin for 3 or 5 days, respectively.  Cells were labeled with CD133-APC and analyzed 

by flow cytometry. We observed a dose dependent decrease of the CD133 positive population. 

500 nM simvastatin decreased CD133 by 75% in GSC23 and 80% with a concentration of 1 

and 2 µM after 3 days treatment. Whereas, after 5 days treatment of GSC11, 500 nM 

simvastatin decreased 50% of the CD133 positive population, and 63% and 82% with 1 µM 

and 2 µM of simvastatin, respectively (Figure 18 A-B). 

      These observations suggested that simvastatin might exert a cytotoxic effect on GSC23 

and GSC11 cells. We further assessed for cell viability by measuring the mitochondrial 

membrane potential using the fluorescent dye Rhodamine 123, because the loss of 

mitochondrial potential is a mark of cell death.  We treated GSC23 cells with simvastatin 500 

nM, 1 µM or 2 µM for 3 or 5 days. We observed about 40% of cell death with 500nM of 

simvastatin after 3 days and about 90% after 5days. 1 µM simvastatin caused 50% of cell 

death after 3 days, and about 95% after 7days (Figure 19). 
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Figure 18. Simvastatin depletes CD133 positive population. (A) GSC 23 were dissociated 

to single cells, an equal number of cells were plated and treated with DMSO or 500nM, 1 µM 

or 2 µM of simvastatin. After 5 days the cells were analyzed for CD133 expression by flow 

cytometry. Top plots are representative data from the CD133 analysis. Values depict the 

percentage of CD133 positive population. Bottom graphs represent the mean of biological 

triplicate ± SD.  

(B) GSC11 cells were treated with DMSO, 500nM, 1 µM or 2 µM of simvastatin. After 7 days 

CD133 expression was determined by flow cytometry analysis. Top plots are representative of 

the flow cytometry analysis. Values depict the percentage of CD133 positive population. 

Bottom graphs represent the mean of biological triplicate ± SD.  

(A,B) *p<0.0001, ** p=0.003 
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Figure 19. Simvastatin induces cell death in glioblastoma stem cells. GSC23 were 

dissociated and same number of cells was plated. The cells were treated with DMSO (0), 500 

nM, 1 or 2 µM of simvastatin for 3 or 5 days. Mitochondrial membrane potential was assessed 

by incubation of the cells with Rhodamine 123 for one hour followed  by flow cytometry 

analysis.   
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Mevalonic acid is able to prevent cell death by simvastatin, demonstrating that 

simvastatin is specifically targeting the mevalonate pathway.  

      To insure that simvastatin was specifically blocking the mevalonate pathway, by inhibiting 

the HMG-COA reductase, the cells were treated with either 2 mM of mevalonic acid, 1 µM of 

simvastatin or a combination of mevalonic acid and 1 µM Simvastatin. While we observed a 

loss of neuroshperes in simvastatin treated cells, the co-treated with mevalonic acid kept intact 

neurospheres (Figure 20 A-B). 

      We further assessed for cell death by measuring mitochondrial membrane potential in this 

above experimental setting. Indeed, mevalonic acid wasn’t toxic to the cells, and the cells 

treated with simvastatin lost all potential, whereas the cells co-treated with mevalonic acid 

preserved their membrane potential. In other words, mevalonic acid prevented simvastatin to 

cause cell death (Figure 20C) 
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Figure 20. Mevalonic acid prevents simvastatin induced cell death.  Cells were 

dissociated with accutase and plated at an equal number. Cells were treated for 5 days then 

observed under microscope. 

(A) GSC23 cells were treated with 2 mM mevalonic acid, 1 µM simvastatin, or a combination of 

mevalonic acid and simvastatin. 

(B) GSC11 cells were treated with 2 mM mevalonic acid, 2 µM simvastatin, or co-treated with 

mevalonic acid and simvastatin. 

(C) GSC23 cells were treated with 2 mM mevalonic acid alone or 1 µM simvastatin or with 

both simvastatin and mevalonic acid. To assess for cell death, cells were analyzed for loss of 

mitochondrial membrane potential.  Top histogram is representative of the Rhodamine 123 

analysis by flow cytometry. Bottom quantitation graphs represent means of biological triplicate 

samples ± SD. 
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Mevalonate transcription is tightly regulated by SREBP 

      Sterol regulatory element-binding proteins 1 and 2 (SREBP 1 and SREBP2) are 

transactivation factors that modulate and activate the transcription of mevalonate genes. To 

determine if SREBPs were modulated, we analyzed SREBP1 and SREBP2 transcripts levels, 

by QRTPCR in GSC11 and GSC23 cells in comparison to the FBS induced cells. Interestingly, 

SREBP1 and SREBP2 expressions were elevated in GBM stem cells as compared to FBS 

induced cells (Figure 21 A). 

 

Inhibiting SREBP using a small molecule Betulin also caused cells death  

      Because SREBP high expression was associated with mevalonate expression pathway in 

GBM stem cells, we sought to block the mevalonate pathway by inhibiting SREBP. Therefore, 

the cells were treated with betulin, a small molecule inhibitor of SREBP (Figure 21B). Betulin 

was previously identified by Jing-Jie Tang et al., from a mass screening as a specific inhibitor 

of SREBPs [107]. GSC23 cells were treated with 3 and 6 μg/ml of betulin for 7 days. 

Subsequently, we observed that GSC23 neurospheres were lost (Figure 22). We furthermore 

assessed for cell viability by measuring the mitochondrial membrane potential with Rhodamine 

123. We observed a concentration dependent loss of cell viability with Betulin treatment, with a 

total loss at 6 µg/ml. Note that there was no cell death at earlier time (data now shown).  
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Figure 21. SREBP mRNA levels correlate with mevalonate genes expression and their 

decrease with Betulin treatment.  A, SREBP transcripts levels were compared by real time 

PCR in (Top) GSC 23 (Bottom) GSC11 that were cultured as stem cells or induced with FBS 

*p< 0.0001. 

B, GSC23 were treated with Betulin 3 and 6 µg/ml for 7 days. RNA was extracted, revers 

transcribed and transcripts levels for mevalonate pathway were assessed by QRTPCR 
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Figure 22. Betulin treatment induces GBM stem cells death. GSC23 were plated and 

treated with 3 or 6 µg/ml of betulin for 7 days. A, cells were observed under the microscope.  

B, GSC23 were treated with betulin for 7 days, then assessed for mitochondrial membrane 

potential with Rhodamine 123. Dead cells lose their membrane potential which is represented 

by a shift toward the left of the control DMSO treated cells.  
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5.2 Discussion 

 
      Glioblastoma is the most lethal form of brain tumors with a median survival of 12 months. 

Patients with glioblastoma not only don’t respond to therapies, but they also experience 

relapse. A line of studies have suggested that glioblastoma stem cells contribute to the 

pathogenesis of the disease, may mediate tumor recurrence, and are resistant to conventional 

therapies. Therefore, we are urged to identify pathways that are important for GBM stem cells 

survival to serve as new therapeutic targets.  

      In this study we aimed to identify a new metabolic pathway to be targeted in GBM Stem 

cells. Toward this goal, we analyzed gene expression modulation in GBM stem cells (GSC11) 

and FBS induced cells for 24 and 72 hours. The analysis revealed that the expression of 

genes related to the mevalonate pathway were elevated compared to the FBS pathway), 

which were further validated by real time PCR for HMGSC1, HMGCR, MVD, MVK, SQL, LLS. 

     Mevalonate pathway was shown to be hyper-activated in some cancer and is implicated in 

tumor progression by contributing in cancer cells proliferation, invasiveness and survival [79].  

Statin drugs are known to inhibit the rate limiting enzyme, HMG-CoA, in the mevalonate 

pathway leading to decrease of the cholesterol biosynthesis. Therefore, we utilized the statin 

drug simvastatin to explore the effect on GBM Stem cells [78].  

      We found that there was a depletion of CD133 positive cells with simvastatin.  GSC23 and 

GSC11 treated with simvastatin had a decreased CD133 expression starting from a 

concentration of 500 nM, which further decreased with 1 µM of simvastatin. These results 

hinted us toward two possibilities: 1) that simvastatin leads to the loss of stemness, as seen 

with C968 or 2) Simvastatin caused cell death.  

      We found that simvastatin caused cell death in GBM stem cells as shown by the loss of 

mitochondrial membrane potential. Consistently with previous studies [89, 108], It is important 
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to note that GSC23 cells were resistant to temozolomide in vitro, a conventional chemotherapy 

for the treatment of glioblastoma (Appendix 3), 

      Contrary to other studies in breast cancer cell lines and glioblastoma cell lines in which 10 

µM of simvastatin was needed to induce cytotoxicity, we observed cell death in GBM stem 

cells starting from 500 nM. Moreover, FBS induced cells were also treated with Simvastatin, 

the cells were induced for 7 days with FBS then treated with either 1 µM for a week, following 

which the cells were analyzed for cell death using Rhodamine 123. We didn’t observe cells 

death at this concentration. This suggests that mevalonate pathway is perhaps even more 

active in GBM stem cells rendering them more sensitive to simvastatin. Importantly we 

demonstrated simvastatin specificity to inhibit mevalonate in GBM stem cells. We co-treated 

the cells with mevalonic acid was able to prevent cells death, demonstrating that simvastatin 

was specifically inhibiting the mevalonate pathway.   

      Previous studies showed that statin drugs induction of cell death in breast cancer and 

glioblastoma was independent from its property to lower cholesterol synthesize and was 

directly linked to intermediates linked to protein isoprenylation such as geranygeranyl 

phosphate and farnesyl phosphate [84]. However, in our study co-treatment of the GSC23 

cells with geranygeranyl pyrophosphate or farnesyl pyrophosphate failed to prevent death 

induced by simvastatin (Appendix 4).  Furthermore, the main pathway being the synthesis of 

cholesterol, we co-treated the cells with a direct precursor of cholesterol biosynthesis, squalen, 

unfortunately squalen was toxic to the cells, which is probably due to the high volume needed 

to add  to the cells culture to reach the appropriate concentration. To determine if cell death is 

induced by the decreasing levels of cholesterol remains to be investigated using different 

approaches.  

      Because it was also reported that simvastatin treatment increased ROS production in 

breast cancer cells, leading to cell death, we measured ROS in GSC23 treated with 

simvastatin [84] . However, we didn’t observe an ROS increase.   
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     Furthermore, mevalonate enzymes expression is regulated by transcription factors, 

SREBPs. A study showed that mevalonate pathway was important to protect mammary tissue 

architecture, by upregulating SREBPs expression [87]. 

      Interestingly we found that the transcription factor SREBPs transcripts were higher in GBM 

stem cells, and associated with a high mevalonate pathway. SREBPs mRNA expression levels 

were elevated in GBM stem cells, and downregulated with FBS.  Therefore, we targeted the 

mevalonate pathway upstream by inhibiting SREBPs, using betulin inhibitor.  Similarly to 

simvastatin, we found that betulin killed GBM stem cells at concentrations previously reported 

to downregulate SREBP [107]. In conclusion, in this study we identified the mevalonate 

pathway as a target to eliminate glioblastoma stem cells. 
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CHAPTER 6. Research summary 

6-1 Experimental summary 
 

      Glioblastoma remains the most lethal form of brain tumors; moreover, GBM stem cells 

have been implicated in tumor initiation, resistance to chemotherapies leading to recurrence of 

the tumor.  Therefore, it is crucial to understand the biology of these cells. In this study, we 

investigated the metabolic profile of cancer stem cells, and the importance of two metabolic 

pathways namely, glutamine and mevalonate pathways in maintaining GBM stem cell growth, 

expression of stemness, and viability. 

      First, based on previous knowledge that GBM stem cells differentiated when exposed to 

fetal bovine serum, we could compare the mitochondrial respiration in two cell lines in their 

stem cell state and in their differentiated phenotypes. We found that during differentiation GBM 

stem cells shifted toward a higher oxygen consumption, which didn’t result from an increase of 

mitochondria biogenesis, but probably from an increase of the TCA cycle substrate, α-

ketoglutarate, which could be produced from an in increase of the glutaminolysis, since we 

found that GLS2 enzyme expression was unregulated. This finding support previous reports 

suggesting that stem cells might be present in hypoxic niches, whereas differentiated cells are 

exposed to more O2. Furthermore, cancer cells are characterized by metabolic 

reprogramming, unlike normal cells, cancer cells use aerobic glycolysis to generate energy 

[109] . In our study we showed that cancer stem and differentiated cells are also different in 

their bioenergetics profile, which could help us develop new therapeutic strategies.  

      We also found that glutaminolysis was important to maintain cell growth, stemness and 

clonogenicity of GBM stem cells. Treatment with glutaminase inhibitor C968, lead to a 

suppression of the stem cell marker CD133, which was accompanied by a decrease in the 

proliferation and the capacity for independent-anchorage growth. 
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      Lastly, we unraveled a metabolic pathway that is highly associated with GBM stem cells. 

The mevalonate pathway was upregulated in both GSC cell lines. We further determined the 

biological relevance of this pathway in GBM stem cells by using a statin drug. We showed that 

a commonly used drug to lower cholesterol, simvastatin, was able to cause cell death in GBM 

stem cells. It was previously shown that simvastatin can cause cell death in breast cancer and 

breast cancer stem cell by inhibiting the generation of isoprenoids, however, in GBM stem 

cells, simvastatin induced cell death was independent from isoprenoids biosynthesis.  

      This study brings new insights into roles that metabolism could play in GBM Stem cells, 

and provide a good support for the development of new studies to further determine how 

metabolic shift contributes to differentiation or to underline the mechanism by which glutamine 

metabolism regulates CD133.  
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6-2 Future directions 

 
      Results from this study showed a mitochondrial shift during differentiation, however, we 

don’t know if it was a primary event in the differentiation. Also, we don’t know if the increase of 

mitochondrial respiration is necessary for GBM stem cells differentiation. Since we showed an 

increase of GLS2 protein expression during differentiation, we would test if overexpressing this 

gene in GSCs, would lead to differentiation. Moreover, we would test if blocking mitochondrial 

respiration would prevent differentiation.  

      Another part of our study was to investigate the role of glutamine in GBM stem cells. We 

showed that C968 inhibited CD133, however the mechanism remains unknown. We would test 

the effect of C968 on methylation of CD133, because it was shown that hyper-methylation 

suppresses CD133 expression. Furthermore, blocking glutaminolysis with C968, slowed 

proliferation, and significantly lowered clonogenicity, but did not lead to cell death. It is 

important to test if the suppression of CD133 in GSCs, would sensitize the cells to other 

chemotherapies. We would combine C968 to other drugs, such as temozolomide, and test for 

cell death. 

      Furthermore, we showed that simvastatin caused cell death in vitro, it would be important 

to study its effectiveness in vivo. We would use glioblastoma xenografts to treat with 

simvastatin. In addition, we don’t know if other statin drugs would be effective to eliminate 

GBM stem cells, or if it is specific to simvastatin. Therefore, we would test lovastatin in future 

experiments. 
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CHAPTER 7. Appendix 

 

 

 
 

 

 

 

 

 

 

 

 

Appendix 1. C968 doesn’t affect ATP production. GSC23 (black) and GSC11 (grey) cells 

were dissociated and plated at a density of 25,000 cells per well in a 96 well-plate. Cells were 

left untreated or treated with 10 µM C978, and incubated for 6 hours following which ATP was 

measured.  Bar graphs represent the mean ± DS of biological triplicate.   



 

 

 

 

 

 
 

 

 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 
 
 
 

Appendix 2. C968 doesn’t increase from ROS production in the cells

represent CD133 expression in GSC23 with DMSO or with C968 (10

days. 

Histogram (bottom) represents 

C968 for 3 or 7 days, after which ROS was measured 

dye as compared to DMSO treated cells (black)
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doesn’t increase from ROS production in the cells

represent CD133 expression in GSC23 with DMSO or with C968 (10 µM) 

Histogram (bottom) represents mitochondrial ROS in the same cells. Cells were treated with 

after which ROS was measured by flow cytometric analysis with

dye as compared to DMSO treated cells (black). 
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Appendix 3. GSC23 cells are resistant to temozolomide. GSC23 were seeded in a 96 well-

plate at a density of 5,000 cells per well and then treated with various concentrations of 

temozolomide (TMZ).  40 µl MTS was added in each well and the plates were incubated for 3 

hours. Absorbance was measured at 490nM. Bars represent the mean of triplicate wells. 
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Appendix 4. GGPP and FPP don’t prevent cell death induced by simvastatin in GSC23. 

GSC 23 cells were treated with combinations of simvastatin, GGPP and Simvastatin with FPP. 

Mitochondrial membrane potential was assessed to determine the viability of the cells.  
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