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ABSTRACT 

p53 MAINTAINS HEPATIC CELL IDENTITY DURING LIVER REGENERATION 

 

Zeynep Hande Coban Akdemir, B.S.,M.A. 

Advisory Professor: Michelle Craig Barton, Ph.D. 

 

p53 is a tumor suppressor that has been well studied in tumor-derived, cultured 

cells. However, its functions in normal proliferating cells and tissues are 

generally overlooked. We propose that p53 functions during the G1-S transition 

can be studied in normal, differentiated cells during surgery-induced liver 

regeneration. Two-thirds partial hepatectomy (PH) of mouse liver offers a unique 

model to compare p53 functions in regenerating versus sham (control) cells. My 

hypothesis is that intersection of global expression analyses (microarray and 

RNA sequencing) and profiling of p53 interactions with chromatin (ChIP 

sequencing) at the G1-S transition of normal cell cycle, corresponding to 24h 

post-PH in mice liver regeneration, will reveal p53 functions during cell cycle 

regulation in normal cells and during tissue regeneration.  

 



	
  

	
  

viii	
  

Combining chromatin immunoprecipitation with next generation sequencing 

technology (ChIP-Seq) allowed detection of genome-wide binding of p53 to 

target genes in liver. We found 5074 de novo p53 target genes, 92% of which 

participate in non-canonical p53 functions, mainly developmental processes. 

Integration of ChIP-Seq findings with global expression profiling (RNA-Seq) of 

both normal and p53-null liver allowed us to identify functional p53 target genes. 

Intriguingly, our data analysis revealed that a specific subset of p53-activated 

target genes is involved in liver-enriched functions such as lipid biosynthetic 

process, steroid metabolic process, circadian rhythm, and drug detoxification. 

These findings suggested that the loss of p53-chromatin interactions in 

regenerating liver may result in a decreased activity of differentiation-specific 

cellular processes and in attenuation of hepatic cell identity. Remarkably, p53 

cooperates with the master regulator of hepatocyte differentiation, HNF4α, to 

induce 78% of these genes, including a number of liver-enriched transcription 

factors such as CCAAT/enhancer binding protein beta (CEBPβ), hepatocyte 

nuclear factor 6 alpha (HNF6α), hepatocyte nuclear factor 6 beta (HNF6β). Thus, 

p53 acts in concert with HNF4α to promote the maintenance of liver functions 

during the G1àS transition of the cell cycle of normal proliferating livers cells. 
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CHAPTER 1 INTRODUCTION 

1.1 Liver regeneration  

1.1.1 Partial hepatectomy-induced liver regeneration 

  The liver is an important organ in the body that performs many essential 

functions such as carbohydrate metabolism, lipid and protein synthesis, bile acid 

production, and biodegradation of harmful compounds. The liver is a heterogeneous 

tissue, consisting of various cell types, including hepatocytes, hepatic sinusoidal 

endothelial cells, blood-resident macrophages (Kuppfer cells) and hepatic stellate cells 

(Fig.1) (119). As an essential compartment for detoxification, the liver is exposed to 

hepatic injuries induced by toxic substances, infectious agents and immune disorders. 

However, the liver has remarkable regenerative ability to respond to injury. Liver 

regeneration after partial hepatectomy (PH) offers a unique experimental model to 

study liver response to injury (51). In this model, two-thirds of the liver is surgically 

removed, and then the remaining liver proliferates until the liver index (the ratio of liver 

weight to body weight) is fully restored. In the normal adult liver, merely 0.005% of 

hepatocytes are in cell cycle and the rest of them are usually in a quiescent G0 cell 

cycle state (56, 82). After PH, the hepatocytes, which form approximately 80% of liver 
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cells, take a leading role in the proliferative process by re-entering the cell cycle in a 

synchronized wave for 1-2 rounds of mitosis. 90% of the remaining hepatocytes 

engage in the first round, whereas only a third undergo the second round of cell cycle 

(35, 88). During this proliferation period, hepatocytes secrete growth factors in a 

paracrine manner to trigger the non-parenchymal liver cells to proliferate in the 

following sequential order: biliary ductular cells, Kuppfer cells (hepatic macrophages) 

and hepatic stellate cells, and sinusoidal endothelial cells to restore the liver index 

within approximately 1 week (43, 87, 89). The liver regeneration terminates at a certain 

ratio when newly proliferating cells are sufficient to meet the metabolic demands of the 

body. In this light, the regenerative response after partial hepatectomy is governed 

mainly by hepatocytes.  

  Misregulation of the hepatic regenerative process has been shown in several 

mouse models. Upon severe liver damage in transgenic mice overexpressing the 

serine protease urokinase plasminogen activator (uPA), transplanted hepatocytes 

require approximately 12-18 rounds of cell cycle to reestablish the liver mass (105). In 

addition, the knockout mice deficient for the tyrosine catabolic enzyme 

fumarylacetoacetate hydrolase (FAH) exhibit liver failure, as the liver is no longer able 

to regenerate. The transplantation of hepatocytes into Fah-null liver prompts a 

successful restoration of liver cell population (92).  
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      In contrast to hepatocytes dividing to restore the liver index, oval cells, sometimes 

called liver precursor  “stem” cells, are the main source of new hepatocytes in the liver 

regeneration process after toxic injury. In these cases, an oval cell compartment, 

consisting of various kinds of liver precursor cell populations that have the ability to 

differentiate into both hepatocytes and biliary ductular cells, is activated and 

differentiates into hepatocytes that then regenerate the liver (30). In a specific subset of 

animal models recapitulating toxic injury-induced liver regeneration in humans, 

hepatocytes are unable to proliferate after severe damage and undergo necrosis in 

response to treatment by chemical compounds such as D-Galactosamine (GalN) and 

2-acetylaminofluorene (2-AAF) treatment (21, 34, 119). The transformation process of 

hepatocytes from oval cells is still controversial and may be associated with 

transformation of liver cells (31, 33).  
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Figure 1. Liver architecture. Reprinted by permission from Japanese Biochemical 
Society: The Journal of Biochemistry, copyright (2011) (119). 

The liver mainly consists of hepatocytes, which are highly polarized epithelial cells, 
stacked next to each other with sinusoid capillaries. Hepatocytes secrete bile acids to 
bile canalicus that is linked to bile duct via canals of Herring. The other major cell types 
in the liver include hepatic sinusoidal endothelial cells, blood-resident macrophages 
(Kuppfer cells), and hepatic stellate cells. 

1.1.2 Gene expression alterations during PH-induced liver regeneration 

 Profiling of gene expression alterations during PH-induced liver regeneration 

sheds light on the molecular mechanisms regulating this process. Rodent liver 

regeneration consists of mainly two phases: the priming phase and the responsive 

phase (the phase of cell progression) (30). In the priming phase, which lasts 

approximately 4 hours after partial hepatectomy in mice, post-mitotic hepatocytes and 
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non-parenchymal liver cells exit from their G0 state and re-enter into the cell cycle 

(G0-G1 transition). Although hepatocytes are stimulated by various mitogens to 

proliferate in culture, several studies suggested that hepatocytes must initially undergo 

the priming phase in order to respond to growth factors during liver regeneration (133, 

134). The priming phase in liver regeneration after PH exhibits rapid gene expression 

alterations in a coordinated fashion. This phase is initiated by the immediate activation 

of transcription factors, nuclear factor kappa-light-chain-enhancer of activated B cells  

(NFκB), signal transducer and activator 3 (STAT3), the activator protein 1 (AP1), and 

CCAAT/enhancer binding protein beta (CEBPβ) (18, 36, 42). Their binding on DNA 

leads to transactivation of a wide variety of genes (immediate early genes). Examples 

include proto-oncogenes encoding c-Fos and c-Jun (45, 122). Global gene expression 

profiling by high-density oligonucleotide arrays in the priming phase revealed that 185 

genes have altered expression levels including other transcription factors such as the 

gene encoding early growth response protein 1 (EGR1) (5, 115). Mice with deletion of 

immediate-early genes such as Egr1 demonstrated impaired liver regeneration due to 

deranged cellular proliferation (75).  

 Cytokines secreted by Kuppfer cells act upstream of transcription factors NFκB, 

STAT3, AP-1 and C/EBPβ. Binding of Interleukin 6 (IL6) secreted by Kuppfer cells to 

its receptor, Interleukin 6 receptor (IL6R), on hepatocytes leads to rapid activation of 
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both STAT3 and mitogen-activated protein kinase (MAPK) signaling (121). Mice 

deficient for IL6 exhibited a delay in liver regeneration, accompanied with a loss of 

STAT3 activation and impaired mitogenesis (19). Tumor necrosis factor alpha (TNFα), 

a cytokine secreted from Kuppfer cells, binds the receptors tumor necrosis factor 

receptor 1 and 2 (TNFR1, TNFR2) on hepatocytes to induce their replication (121). It 

was also hypothesized that TNFα is an upstream regulator of IL6 with the finding that 

TNFR1 knockout mice restored liver regeneration deficit by the induction of IL6 (121, 

139). 

 Later, during the responsive phase of liver regeneration, cell cycle genes are 

activated. Cell cycle genes promote hepatocytes to undergo the G1-S transition in cell 

cycle. Included in genes participating in cell cycle regulation, cell cycle stimulators, 

cyclins and cyclin dependent kinases (CDKs) have elevated expression levels. Cyclin 

D1/CDK4 and Cyclin E/CDK2 complexes phosphorylate the retinoblastoma protein 

(Rb), thereby diminishing its inhibitory effect on E2F proteins. This allows E2F proteins 

to induce their target genes involved in the promotion of S phase (98).  

 In addition to cell cycle stimulators, cell cycle inhibitors such as p53 and p21 are 

induced during liver regeneration (32, 66). This is extremely surprising, based on the 

prevailing knowledge, since it is known that their activity must be attenuated in order to 

allow cells to exit from cell cycle arrest and proceed to cell proliferation. However, their 
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induction during cell cycle progression of normal proliferating cells as safeguards may 

enable liver regeneration to be a tightly regulated cell cycle process. For instance, p21 

gene expression levels are quite low in quiescent liver and become markedly 

augmented, due to mRNA stability, during G1 and S phases of cell cycle after PH in 

mice and rat (2). The use of genetic manipulations revealed that p21-null mice 

exhibited accelerated entry into S phase by an earlier induction of cyclin D1 compared 

to wild type (WT) mice (3). On the other hand, p21 overexpression prevents hepatocyte 

replication (137). Taken together, these noted studies all suggest that p21 must be 

maintained at a certain level, thus allowing liver regeneration to proceed in a timely and 

coordinated fashion. 

1.2 p53: a new player in tissue regeneration 

1.2.1 p53 as a tumor suppressor 

The tumor suppressor protein p53, with mutations in 50% of all human cancers, 

has well-established important roles as a transcription factor (7, 27, 52, 91). The DNA-

binding domain of p53, which is a site of frequent mutations in tumors, is pivotal for p53 

tumor suppressor activities. Subsequent studies identified a significant number of p53-

responsive genes that respond to various forms of cellular stress, including DNA 
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damage, oncogene activation and hypoxia, as determined by luciferase reporter 

assays, chromatin immunoprecipitation (ChIP) and quantitative PCR (99). These genes 

were classified into major subgroups according to their biological function in the cells, 

such as regulation of cell cycle control, DNA-replication and repair, cell proliferation, 

apoptosis, and angiogenesis inhibition (125).  

However, identification of a more extensive p53-binding repertoire is essential to 

obtain a more complete picture of its transcriptional function in normal cells. At this 

point, high-throughput technologies such as ChIP-on-chip (ChIP-chip), which combines 

ChIP with microarray technology, ChIP followed by next generation sequencing (ChIP-

Seq), and ChIP followed by paired-end tag sequencing (ChIP-PET) and overlap with 

microarrays and RNA-Sequencing (RNA-Seq) have been performed. These studies 

offer a genome-wide profile of p53 interactions with chromatin, as well as p53-mediated 

changes in gene expression levels, in cancer cell lines (11, 86, 90, 113, 135). The 

substantial work conducted to elucidate the functions of p53 mostly has been 

completed with cultured cancer cell lines. Although there is compelling evidence that 

p53 has other roles beyond tumor suppression in normal cells, e.g. its involvement in 

development, aging, and senescence (128), its functions in normal proliferating cells 

and tissues remain relatively unknown. 
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1.2.2 The role of p53 in liver  

The loss of p53 function is associated with 35% of hepatocellular carcinoma 

(HCC) cases. Dysfunction of p53 may be caused by mutation of the p53 gene or its 

repression by hypermethylation of the promoter region (61, 83). HCC samples lacking 

p53 activity are likely less differentiated, more proliferative, progressive, and more 

invasive (95, 116). Sugo et al. reported that p53 mutation in primary lesions are 

associated with a shorter post-recurrence survival in HCC patients (P-value < 0.01) 

(116). Although there is a highly established correlation between p53 status and 

clinical outcome of HCC, less is known about tumor-suppressive roles of p53 in liver. 

Using mice to examine p53 functions in liver cancer offers some promising results, for 

example, 15% of double heterozygous p53/p73 mice develop HCC at 5-7 months of 

age (37). Recently, Xue et al. observed that WT p53 restoration caused tumor 

regression in murine liver carcinomas (138). As a whole, these studies suggest a 

protective function of p53 in liver. However, there are only a few studies investigating 

the function of p53 in normal proliferating liver cells after PH, including our previous 

studies (67, 68). To understand the roles of p53 better in the liver and loss of its 

protective function in liver diseases including HCC, we need to acquire a global view 

of p53 regulation in normal and proliferating liver. 
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1.2.3 p53 regulation during tissue regeneration 

Whether p53 acts as a tumor suppressor to suppress tissue regeneration or if it 

is essential for compensatory regeneration remains unknown (93). Recently, several 

studies underscore the significance of p53 regulation during tissue regeneration. It was 

elucidated that dp53 is crucial for the regenerative response in Drosophila imaginal 

discs (136).  Another study demonstrates that p53 expression is maintained at different 

levels at different phases of salamander limb regeneration. It was shown that p53 is 

expressed at relatively low levels when differentiated muscle cells dedifferentiate and 

proliferate during the first phase of muscle regeneration. In contrast, during the second 

phase, it was induced to promote differentiation of dedifferentiated muscle cells (141). 

This study suggests that the maintenance of differentiated cell identity by p53 has a 

significantly important role in tissue regeneration. My studies address whether this is 

the case in liver regeneration. In liver regeneration, after two-thirds PH, hepatocytes 

are the main cell type that proliferates to restore the liver mass when the environment 

is conducive for their proliferation (31). While undergoing proliferation, there is an 

enormously increased metabolic load imposed on hepatocytes in the remnant liver. As 

the liver still needs to perform normal liver functions, hepatocytes likely need to 

preserve a differentiated cell identity. In vivo fate-tracing studies by Malato et al. (2011) 

confirm that hepatocytes do not display a loss of their hepatic cell identity after acute 
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injury during liver regeneration (81). However, there is still a gap of knowledge in the 

p53 field in terms of any role for p53 during cell cycle control of normal proliferating liver 

cells. 

1.2.4 The role of p53 in lipid metabolism 

Mounting evidence suggests that p53 mediates a vast array of functions in 

cellular metabolism interlinked with its tumor suppressor activity. Numerous studies 

emphasize the significance of p53 and its family members in the regulation of a specific 

subset of genes involved in glycolysis, oxidative phosphorylation and amino acid 

metabolism. Associated with its tumor suppressor function, p53-mediated alterations in 

cellular metabolic pathways are utilized as a means to counteract the metabolic 

changes in cancer cells (9). One of the main metabolic alterations in cancer cells, as a 

results of an increased demand for free energy and biosynthesis, is the elevated rate of 

glycolysis, a phenomenon called as “the Warburg effect” (132). The intermediary 

substances produced by glycolysis are utilized for nucleotide and lipid synthesis to 

satisfy the increased biosynthetic demands of cancer cells (24, 126). In this context, the 

prevention of lipid anabolism and the augmentation of lipid catabolism by p53 are used 

as a means to inhibit cancer cell proliferation illustrated in Fig.2 (41).  
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However, the regulation of lipid metabolism by p53 is not only associated with its 

tumor suppressor activity. In addition, it serves as another means to promote the 

maintenance of metabolic homeostasis in normal cells (41). In response to glucose 

deprivation, AMP-activated protein kinase (AMPK) and p53 act in a feedback loop. The 

induction of AMPK leads to serine 15 phosphorylation on p53. Thus, the stabilized and 

activated p53 push the cells into p53-dependent cell cycle arrest at G1-S transition of 

cell cycle (58).  Furthermore, the activation of p53 in human embryonic kidney cell line 

HEK293 induces its downstream target genes Sestrin1 and Sestrin2 in order to 

promote elevated AMPK levels (13). Overall, this feedback loop results in a reduction in 

lipid biosynthesis through AMPK-mediated inhibition of two key enzymes, acetyl-CoA 

carboxylase 1 (ACC1) and fatty acid synthase (FASN), responsible for fatty acid 

synthesis. In addition, the AMPK-p53 feedback loop enhances lipid catabolism by 

means of p53 direct and indirect target genes in rat liver (23, 38, 46). The p53-

mediated induction of guanidinoacetate N-methyltransferase (GAMT) and lipin 1 

(LPIN1) both lead to an increased rate of lipid catabolism in human cell lines upon 

glucose starvation (6, 55). A specific subset of mitochondrial enzymes, carnitine 

palmitoyltransferase 1C (CPT1C) and 1 (CPT1) were identified as p53 direct and 

indirect target genes, in brain cells and hematopoietic cells, respectively (25, 104). The 

induction of CPT1C and CTP1 in the p53-AMPK pathway facilitates fatty acid import 
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into mitochondria, and thereby increases fatty acid oxidation. Taken together, these 

studies suggest that p53 promotes fatty acid oxidation as a metabolic switch in normal 

cells under glucose-deprived conditions (59, 94).  

	
  
	
  

Figure 2. p53  enhances lipid catabolism and inhibits lipid anabolism. Reprinted 
by permission from Elsevier: Trends in Endocrinology & Metabolism, copyright 
(2012) (41). 

p53 induces the expression of proteins involved in fatty acid (FA) metabolism and FA 
transport into mitochondria to be broken down through β-oxidation. In addition, among 
p53-activated genes, there are genes encoding proteins that play roles in mitochondrial 
β-oxidation while p53 represses the expression of proteins that support FA synthesis. 

eventually utilized in the tricarboxylic acid cycle (also
termed the TCA, Krebs, or citric acid cycle) and in the
oxidative phosphorylation pathway to yield ATP [14].

It is becoming apparent that both FA catabolism and its
anabolism are maneuvered by p53 through the regulation
of gene expression (Figure 1). The first evidence linking
p53 and FA metabolism appeared in studies examining
the effect of low nutrient availability on p53. First,
following glucose deprivation, p53 is activated and induces
the expression of guanidinoacetate N-methyltransferase
(GAMT), an enzyme involved in creatine synthesis. This
p53-dependent induction of GAMT leads to increased fatty
acid oxidation (FAO) in mouse liver following a 24 h starva-
tion period, and in glucose-deprived human cultured cells
[15], although the mechanism for increased FAO is still
unknown. Thus, in the absence of nutrients, p53 increases
FAO as an alternative energy source to glycolysis. Second,
glucose deprivation leads to a p53-dependent increase of
lipin 1 (LPIN1) gene expression [16]. In conditions of low
nutrient availability, the expression of LPIN1 is induced,
and LPIN1 cooperates with two transcriptional regulators,

peroxisome proliferator-activated receptor gamma coacti-
vator 1a (PGC-1a) and peroxisome proliferator-activated
receptor alpha (PPARa), to induce the expression of genes
involved both in enhancing FAO and in inhibiting FA syn-
thesis [17]. Indeed, the induction of LPIN1 by p53 enhances
FAO rates in cultured cells [16]. Third, following glucose
restriction, p53 binds to PGC-1a, which directs p53 to induce
a transcriptional program of metabolic genes and cell cycle
arrest genes [18]. Lipid metabolism was not examined in
this study, but PGC-1a is a transcriptional coactivator
which is heavily involved in regulating gene expression in
response to metabolic stimuli. In particular, PGC-1a reg-
ulates lipid metabolism pathways such as FAO [19]. The
interaction of p53 and PGC-1a opens a new perspective in
terms of p53 regulation of lipid-metabolism pathways. PGC-
1a does not directly bind to DNA but instead cooperates
with transcription factors to exert its effects. Thus, the PGC-
1a/p53 complex may be responsible for some of the known
PGC-1a-dependent effects pertaining to lipid metabolism.

Additional evidence show that p53 not only regulates
FAO through mediators but also by directly regulating key
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TRENDS in Endocrinology & Metabolism 

Figure 1. p53 enhances lipid catabolism and inhibits its anabolism. The figure depicts the various genes and proteins involved in fatty acid metabolism that are regulated by
p53 and their biological roles. p53 enhances the expression of proteins involved in metabolizing and shuttling FAs for mitochondrial b-oxidation (CROT, CPT1A, CYP4F). In
addition, p53 enhances the expression of proteins that support b-oxidation (LPIN1, GAMT) while inhibiting the activity/expression of proteins that support FA synthesis
(G6PD, SREBP1c). Regarding some of these genes, the regulation by p53 was shown to have physiological consequences (main text). Blue elliptic shapes represent proteins
whose genes are induced by p53. Red elliptic shapes represent proteins negatively regulated by p53 either at the expression (SREBP-1c) or activity (G6PD) level. Black
arrows represent metabolic pathways. Blue arrows represent support of a metabolic process, whereas red blocks represent inhibition of this process. The figure is not a
comprehensive depiction of FA metabolism and highlights only the proteins regulated by p53.
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1.3 Liver-enriched transcription factors  

In organ development and in progenitor cells, a specific group of transcription 

factors must be regulated in a timely fashion to activate liver-specific genes. As one 

example, HNF4α is a member of the steroid hormone nuclear superfamily and a 

hepatocyte-enriched transcription factor that binds to the DNA as a homodimer (112). 

HNF4α homozygous knockout mice exhibit embryonic lethality and impaired 

gastrulation due to defects in visceral endoderm. The rescue of knockout embryos by 

implantation of functional visceral endoderm enabled the study of HNF4α functions in 

fetal liver. HNF4α-null fetal liver failed to express a multitude of liver-specific genes 

required for functioning liver, including liver-enriched transcription factors hepatocyte 

nuclear factor 1 alpha (HNF1α) and xenobiotic nuclear receptor pregnane X receptor 

(PXR) (14, 73). Adult liver-specific HNF4α knockout mice exhibit loss of liver functions 

and develop steatosis as a result of disrupted regulation of a number of genes involved 

in the control of lipid homeostasis (47).  In sum, these studies suggest that HNF4α-

mediated transcription is required for liver development. Furthermore, HNF4α plays a 

critical role in differentiation of human pluripotent stem cells to hepatocyte-cell like cells. 

It acts as a master regulator and induces several key hepatic transcription factors, 

which promote hepatic-lineage specification (Fig.3) (26). 
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Figure 3. HNF4α  is the master regulator of hepatic-linage specification in 
differentiation of human pluripotent stem cells to hepatocyte-like cells. Reprinted 
by permission from Company of Biologists: Development, copyright (2011) (26). 
In differentiation of human pluripotent cells, definite endoderm transforms into nascent 
hepatic progenitor cells that express HNF4α in response to bone morphogenetic 
protein 4 (BMP4) and fibroblast growth factor (FGF). Hnf4α, in turn, establishes the 
hepatic transcriptional factor network that is essential for the differentiation of hepatic 
progenitor cells towards to functional hepatocytes. 

RATIONALE 

 Combining next generation sequencing technology with chromatin 

immunoprecipitation (ChIP-Seq), at specific time points of regeneration, allows 

detection of genome-wide binding of p53 to de novo target genes in liver during cell 

cycle. p53 has been implicated in cell cycle arrest both at G1-S and G2-M checkpoints 

in various cell types (72).  We use liver regeneration after two-thirds PH, as a model to 

assess p53 response in regenerating compared to sham liver (surgical control). 

Analysis of ChIP-Seq data, at specific time points of regeneration, will provide de novo 
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targets of p53 in regenerating liver.  My hypothesis is that intersection of global 

expression analyses (microarray and RNA sequencing) and profiling of p53 interactions 

with chromatin (ChIP-Seq) at the G1-S transition of normal cell cycle, corresponding to 

24h post-PH in mice liver regeneration, will reveal p53 functions during cell cycle 

regulation in normal proliferating cells and during tissue regeneration.  

DESCRIPTION OF THE OBJECTIVES 

Objective 1: To identify and annotate p53 de novo target genes at the G1-S transition 

of cell cycle of normal proliferating cells, corresponding to 24h post-PH in mice liver 

regeneration  

Objective 2: To establish p53 de novo target genes that have altered regenerative 

response at the G1-S transition of cell cycle of normal proliferating cells, corresponding 

to 24h post-PH in mice liver regeneration  

Objective 3: To elucidate the mechanism of p53-mediated maintenance of hepatic cell 

identity during liver regeneration  
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CHAPTER 2  MATERIAL AND METHODS 

2.1 Partial hepatectomy 

 WT and p53-null mice were anesthetized using isoflurane and two-thirds PH or 

sham surgery was performed as described in CSH Protocols; 2006; 

doi:10.1101/pdb.prot4384. Mice were fed normal chow and water, ad libitum. All 

mouse work was performed under the guidelines of The University of Texas MD 

Anderson Cancer Center Institutional Animal Care and Use Committee. Liver tissue 

was collected at the 24 hours post PH or sham surgery; tissue resected during PH 

used as Time= 0.  

2.2 Chromatin immunoprecipitation (ChIP)  

 ChIP was performed as previously described (67). Briefly, the ChIP liver lysate 

was prepared by 1% formaldehyde crosslinking of minced liver samples, followed by 

nuclei isolation. ChIP lysates were sonicated, using a Bioruptor (Diagenode), to 

generate chromatin fragments with DNA averaging around 500bp in length. Material 

from WT and p53-null liver chromatin lysates at specified time points using 5ug of 

either HNF4a antibody (ab41898, Abcam) or p53 antibody (OPO3, EMDMillepore) and 

were collected on Protein G magnetic beads (Invitrogen); nonspecific binding was 
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reduced by serial salt washes (300mM NaCl, 500mM NaCl, and 250mM LiCl). DNA 

was released from the immunoprecipitated material by treatment with RNase A, 

followed by Proteinase K digestion and reversal of formaldehyde crosslinks by >6 

hours of heat shock at 65°C. DNA was further purified by phenol:chloroform extraction 

followed by ethanol precipitation. 

2.3 RNA analysis 

  Total RNA isolation from liver tissue was realized with TriZOL (Invitrogen), 

following manufacturers recommended procedure. cDNA was prepared using 

Superscript II (Invitrogen) for Q-PCR and cDNA library was  generated using 

ScriptSeq for RNA-Sequencing using the Illumina HiSeq2000 platform.   

2.4 ChIP-Seq analysis 

  Bowtie mapping algorithm (version 0.12.8) (71) was utilized to map 36 bp raw 

reads in ChIP-Seq datasets to the NCBI build 37 (UCSC mm9) with following 

parameters: -n 1, -m 1, -S, --best, --strata, and --chunkmbs 320. The mapped reads 

were given as an input to peak calling algorithm MACS (1.4.0beta) to identify enriched 

regions (over Input) in the genome at a P value threshold of 10-8 (142). p53-enriched 

regions in sham liver was subtracted from the enriched regions  in PH liver using 
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BEDTools (version 2.13.3) (96) to form the final set of p53-enriched regions specific to 

PH liver for further analysis. 

2.5 Generation of ChIP-Seq signal density files for browser data visualization 

  After mapping ChIP-Seq tag sequences (reads) to the genome, aligned files 

were processed further for visualization. First, each aligned 36 bp ChIP-Seq tag 

sequence was extended to 200 bp, using the makeTagDirectory program in Homer 

(Hypergeometric Optimization of Motif Enrichment) software package (50). Second, 

ChIP-Seq signal density files in bedgraph format were generated using makeUCSCfile 

program. The signal density values were calculated as the total number of overlapping 

ChIP-fragments at each genomic position and normalized to the total number of 50 

million tags. Then, normalized values were summarized as the average score at each 

50 bp bin. Lastly, for visualization purposes, normalized signal density files in 

bedgraph format were converted to bigwig format, using UCSC bedGraphToBigwig 

program (http://genome.ucsc.edu) and uploaded to UCSC genome browser 

(http://genome.ucsc.edu) and IGV (Integrative Genomics Browser) (100, 124). 
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2.6 Heatmap generation for ChIP-Seq signal  

  The normalized ChIP-Seq signal density values were averaged at defined 

equally sized bins within ± 2.5 kb from p53-bound peak centers in Fig. 5. Then, p53-

bound peaks were ranked according to their signal density values in a descending 

order and displayed in a heatmap using the heatmap program in Cistrome analysis 

pipeline (http://cistrome.org/ap/).  

2.7 Distance plot calculations   

  Each p53-bound peak was assigned to the nearest annotated gene. Then p53-

bound peaks were partitioned into a number of subgroups according to their relative 

distance to the nearest gene. The positions of p53-bound peaks were shuffled to 

obtain randomly generated sequences using shuffleBed by BEDTools (version 2.13.3) 

(96). The number of binding sites and randomly generated sequences in the defined 

distance interval i were denoted as, bsi and ri, respectively. The 

enrichment  score  in the distance interval i denoted as ESi was defined in the below: 

    

   ESi= 

 

and plotted in Fig. 9. 

1-­‐	
  	
  	
  ri /bsi         ri ≤ bsi   

      0              ri > bsi   
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2.8 Average gene profile calculations  

  For ChIP-Seq data set, the signal density values in PH liver and input as a 

control was calculated by seqMiner along the average gene profile. Each gene in 

RefSeq gene model was partitioned into 100 equally sized bins. Its 5’ end and 3’ end 

flanking regions were partitioned into 20 equally sized bins. The average ChIP-Seq 

signal density value in each bin were computed and plotted as an aggregate plot.  

2.9 Conservation plot calculation  

  PhastCons conservation scores among 30 vertebrates were retrieved from the 

UCSC website (http://hgdownload.soe.ucsc.edu/goldenPath/mm9/phastCons30way/). 

Then, conservation scores were averaged at 100bp resolution within 3 kb of p53-

bound peak centers and were plotted using the Sitepro program under CEAS(110). 

2.10 Motif analysis  

  The enriched sequences within ± 300bp of the top 500 p53-bound peak centers 

were identified, utilizing transcription factor Affinity Prediction (TRAP) motif analysis tool 

with default P value threshold of 10-3 (123). In the analysis, mouse promoter sequences 

were chosen as background (control).   
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2.11 Gene ontology analysis 

  We identified the enriched Gene Ontology (GO) Biological Process terms and 

their associated P values for the gene lists obtained from ChIP-Seq and/or RNA-Seq 

analysis, making use of DAVID functional annotation tool (54). 

2.12 RNA-Seq analysis.  

  TopHat  (version 2.0.9) algorithm built on Bowtie mapping algorithm (version 

0.12.8) (71)  was applied to map 76 bp paired-end RNA-Seq reads to the NCBI build 37 

(UCSC mm9) (64). After mapping the reads to the genome, the normalization procedure 

was performed in three steps. First, HTSeq (4) count tool was applied to compute the 

number of reads aligning to the exons of each gene. Then, to identify the genes with a 

significant alteration in their regenerative response (PH vs. sham liver), EdgeR (101) was 

employed to determine regenerative responsive genes at a false discovery rate (FDR) 

adjusted P value (q-value) of 1%. Second, to determine the genes that have a p53-

mediated alteration in their regenerative response, expression values were calculated in 

terms of fragments per kilobase of exon per million fragments mapped (FPKM) values for 

each gene, using NGSUtils (12). The regenerative response (log2 fold change of 

normalized FPKM values in PH vs. sham liver) was computed in p53 WT and null liver, 
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separately. Lastly, permutation test was applied for each gene to determine p53-

dependent regenerative responsive genes at a P-value cutoff 0.05. 

2.13 Principal component analysis 

  The FPKM value was computed for each gene, using NGSUtils (12). These 

values were given as an input into principal component analysis. Principal component 

analysis was performed, utilizing prcomp function in R programming environment 

(http://www.r-project.org) 

2.14 Binomial test  

 P value calculation for significance of overlapping regions in Venn diagrams was 

performed using Binomial test.  
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CHAPTER 3 RESULTS 

3.1 p53 binds to a significant number of genomic sites in regenerating liver 

  Combining next generation technology with chromatin immunoprecipitation 

(ChIP-Seq) at specific time points of regeneration allows detection of genome-wide 

binding of p53 to de novo target genes in liver during cell cycle. We used liver 

regeneration after two-thirds PH as a model that enabled us to determine the change 

at the level of p53 response during liver regeneration. We determined p53-enriched 

regions (peaks) in regenerating liver by profiling of p53 interactions with chromatin 

(ChIP-Seq) at the G1-S transition of the cell cycle of normal proliferating cells. Our 

peak calling analysis with a stringent P value 10-8 revealed that a significant p53 signal 

is enriched at 14,071 and 1,705 genomic sites in PH and sham liver, respectively (Fig. 

4).  

  A significant fraction (97%) of these sites were specifically enriched in PH liver 

(Fig. 4). These identified p53-bound peaks were specifically enriched with p53 signal 

in PH liver and not in any of other controls (Fig. 5). The centers of these peaks are 

highly conserved among 30 vertebrate species, compared to the flanking non-peak 

regions and to the equivalent number of randomly generated sequences (Fig. 6), 

suggesting that they are likely represent functional regulatory elements in the genome 
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(131). Identification of p53-bound peaks in regenerating liver at a genome-wide level 

offers an unprecedented opportunity to define a p53 DNA-binding motif at a global 

scale in vivo. We identified the sequences that are enriched within 300 bp of p53-

bound peak centers and found one sequence that consists of two decameric half-sites 

and is significantly similar to the previously reported (84) p53-consensus motif (P = 

7.88*10-11) with a higher level of conservation at C and G bases in the CWWG core 

sequence of the right half-site (Fig. 7). Taken together, our ChIP-Seq data analysis 

suggested that p53 binds to a large number of genomic sites in normal proliferating 

cells in vivo, with a recognition site that has significant similarity to the p53 consensus 

motif obtained from the TRANSFAC database (84).  
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Figure 4. p53 gains a significant number of binding sites in regenerating liver 

The numbers of p53-bound peaks in PH vs. sham liver are shown in Venn diagram. 
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Figure 5. p53 exhibits binding at 13,662 sites in  regenerating liver 

p53 ChIP-Seq signal is specifically enriched at 13,662 sites in regenerating liver. The 
p53 ChIP-Seq signal densities of PH, sham and their inputs at 100 bp resolution within 
± 2.5 kb of 13,662 p53-bound peaks are displayed in the heatmap. 
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Figure 6. The centers of p53-bound peaks are well-conserved 

The evolutionary conservation of p53-bound peak centers was compared to the 
flanking non-peak and the equivalent number of randomly generated sequences. The 
average evolutionary conservation score at 50 bp resolution was plotted within ±2.5 kb 
of the peak centers in the aggregate plot. 
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Figure 7. The centers of p53-bound peaks are significantly enriched with p53 
consensus motif  

Motif discovery analysis at p53-bound peak centers. Top: One of the mostly enriched 
sequences within 300 bp of the top 500 p53-bound peak centers with its associated P 
value. Bottom: p53 consensus motif sequence obtained from the TRANSFAC 
database (84).  
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3.1.2 p53 binds novel genes in regenerating liver 

  To define the p53-bound genes in regenerating liver, we first identified the 

genes that have p53 binding within a certain cutoff distance from each gene’s 

transcription start site (TSS). First, each peak was assigned to the nearest annotated 

gene and the relative distance between each peak center and its assigned nearest 

gene transcription start site (TSS) was calculated. The overall distribution of p53-

bound peaks revealed that a significant portion of them (38%) was localized within 10 

kb of a gene TSS (Fig. 8). To determine whether their localization occurred more than 

expected by chance within a certain cutoff distance of a TSS, we normalized the 

peaks by the equivalent number of randomly generated sequences. At the end of the 

normalization procedure, we found that p53-bound peaks were localized most 

significantly within 1 kb of a TSS (Fig. 9). Similarly, the p53 binding density profile 

along an average gene structure revealed that p53 binding is most significantly 

enriched immediately downstream of the TSS of target genes (Fig. 10).  

  As examples of p53 binding and location relative to a TSS, I examined p53 

binding at two most significantly enriched genomic sites at the TSS of CDK2-

Associated, Cullin Domain 1 (Cacul1) and in the promoter region of olfactory receptor 

1274, pseudogene (Olfr1274-ps) (Fig. 11). Although p53 response elements can be 

found quite close to the TSS (within 300 bp), they are also found within exons and 
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introns (8). Therefore, we chose 10 kb as a cutoff distance and identified 5074 de novo 

p53 target genes. 413 target genes (8%) overlapped with a list of canonical p53 target 

genes retrieved from SABiosciences 

(http://www.genecards.org/cgibin/carddisp.pl?gene=TP53&sabio_targets=1911#sabio_

targets) (P value= 2.54*10-9).  Expectedly, this specific subgroup of canonical gene 

targets is enriched in well-established p53 functions, including regulation of apoptosis 

and cellular proliferation. Intriguingly, the remaining part of our de novo target genes, 

4661 genes (92%) defined as non-canonical p53 target genes, is mainly involved in 

developmental processes (Fig. 12).  

  Numerous studies established p53 as a critical regulator of developmental 

processes, including the renewal of the embryonic stem cells (ESCs), adult neural 

stem cells, and hematopoietic stem cells (1, 76, 78, 85). In addition, p53 acts as an 

inducer of differentiation to protect mESCs from DNA damage (74, 76). To determine if 

p53 binds to a conserved subset of genes to regulate developmental processes in 

regenerating liver, we compared our non-canonical p53-bound genes in regenerating 

liver to the p53-bound genes in mESCs retrieved from a publicly available dataset (74). 

Our analysis revealed a significant overlap between p53-bound genes in regenerating 

liver and p53-bound genes in mESCs (Fig. 13) (61% overlap, P = 1.72*10-136), 

including E2F1 and KLF4 as the key players of the transcription factor network that 
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regulates stem cell renewal (15). In addition, the overlap encompassed a particular 

subgroup of genes, encoding crucial transcription factors that guide the specification of 

hepatic lineage, such as HNF4α, HNF3β (Foxa2), HNF6α, HNF6β, GATA6, CEBPα 

and CEBPβ (69). Taken together, these results led us to question whether p53-

chromatin interactions at this specific subset of genes in regenerating liver would 

significantly alter their transcript levels.  

  



	
  

	
  

33	
  

 

 

 

 

 

 

 

 

 

 

Figure 8. 38% of p53 binding sites are located within 10 kb of TSS 

p53-bound peaks were partitioned into a number of subgroups by its relative distance 
to TSS of the nearest gene. The pie chart displays the fraction of p53-bound peaks in 
each distance interval. 
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Figure 9. p53 binding is mostly enriched within 1 kb of TSS 

Each p53-bound peak was assigned to the nearest annotated gene. Then p53-bound 
peaks were partitioned into a number of subgroups according to their relative distance 
to the nearest gene and normalized by the number of randomly generated sequences. 
An enrichment (normalization) score was assigned for each distance interval and 
plotted as a histogram.  
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Figure 10. p53 binding signal peaks at TSS of genes 

Average binding profile density of p53. The ChIP-Seq signal density at 100 bp 
resolution along average gene structure was plotted for PH liver (red) and as Input as 
control (black). X axis shows average gene structure, and y axis shows average tag 
number.  
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Figure 11. Individual examples of p53 binding at TSS of genes 

 

Individual examples of PH-specific and common p53-bound genes. Top: Visualization 
of normalized p53 tag numbers in PH vs. sham liver at Cacul1 (PH-specific gene). 
Bottom: Visualization of normalized p53 tag numbers in PH vs. sham liver at Olfr1274-
ps (common gene) in UCSC genome browser.  
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Figure 12. A significant number of non-canonical p53-bound genes 

Venn diagram indicates the overlap between p53-bound genes in PH liver and 
canonical p53-bound genes. Tables below show enriched GO Biological Functions 
with associated P values for Left: non-canonical p53-bound genes and Right: 
canonical p53-bound genes in regenerating liver. 
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Figure 13. Non-canonical p53-bound genes has a significant overlap with p53-
bound genes in mESCs 

Venn diagram indicates the overlap between non-canonical p53-bound genes in PH 
liver and p53-bound genes in mESCs. 
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3.1.3 A novel role of p53 in regulating lipogenesis 

  Global profiling of gene expression using RNA Sequencing (RNA-Seq) in 

regenerating liver allowed us to identify genes with significant p53-mediated changes 

in their expression levels following PH. An unsupervised clustering of RNA-Seq 

samples by principal component analysis revealed a broad picture of transcriptional 

differences among samples due to regenerative response (PH vs. sham) and p53 

response (WT vs. null) (Fig. 14). To identify p53-mediated alterations in regenerative 

response, we obtained 1305 genes with diminished (p53-activated) and 1573 genes 

with elevated levels of regenerative response (p53-repressed) in the absence of p53 

(Fig. 15). p53-activated genes play a role in biological functions such as oxidation 

reduction, response to unfolded protein, response to nutrient levels, steroid metabolic 

process, and fatty acid metabolic process. Furthermore, a specific subset of genes 

involved in the regulation of immune response has a higher level of regenerative 

response in the absence of p53 (Fig. 16). A closer inspection of p53-activated genes 

enriched in oxidation reduction revealed that they are mostly included in the 

cytochrome P450 superfamily (CYP). CYP enzymes catalyze the detoxification 

reactions in the liver on a wide range of substances such as drugs, toxic chemicals, 

steroids, prostaglandins, and fatty acids (22). The metabolic activity of CYP enzymes 
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is a definitive marker of mature hepatic cell identity along with expression of alpha-feto 

protein (AFP) and Albumin (ALB) (114). 

  In addition, p53-activated genes are highly represented in steroid metabolism 

and fatty acid metabolic process (Fig. 17). p53-mediated alterations in steroid and fatty 

acid metabolic process at 24h after PH occurred concomitantly with a transient 

accumulation of lipids (transient steatosis) observed during the early phase of liver 

regeneration prior to the peak of hepatocyte proliferation in mice (111). Previous 

reports emphasized that disruption of this process is associated with impaired liver 

regeneration (29, 40, 102, 111, 129). Several reasons justify the necessity of a 

transient steatosis during liver regeneration, including utilization of lipids as an energy 

source through β-oxidation of fatty acids and as constituents of the nuclear cell 

membranes of newly proliferating hepatocytes (102).  

  Our study also reveals novel p53 direct target genes involved in lipogenesis. 

p53-activated direct target genes include a catalyzer for the synthesis of 

monounsaturated fatty acids stearoyl-CoA desaturase 1 (Scd1). Overexpression of 

Scd1 leads to hepatic steatosis (77). We further examined the biological output of p53-

mediated activation of these genes involved in lipogenesis. The Oil Red O staining of 

neutral triglycerides and lipids in WT and null regenerating liver tissues indicated that 
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loss of p53 leads to a significant decrease in lipid accumulation at 24h after PH (Fig. 

18). 

  Intersection of p53-responsive (p53-activated/-repressed) gene set with p53-

bound genes (ChIP-Seq) provided a list of functional p53-bound genes defined as 

direct target genes. p53-activated direct target genes play roles in epithelial cell 

development and include a number of genes encoding transcription factors that are 

critical for the specification of hepatic lineage, such as HNF6α, HNF6β, CEBPα, and 

CEBPβ (69). On the other hand, p53-repressed target genes are highly represented in 

a totally different function, in regulation of immune response (Fig. 19).  

  One mechanism that may underlie the difference between a repressive vs. 

activating binding of p53 to its target genes is the DNA sequence of the p53 binding 

sites may differ. To address this possibility, I calculated the length of spacer 

sequences between two half-sites in p53 response element. According to a previously 

established model, the length of spacer in p53 response element is one of the 

determining factors for p53-mediated activation and repression (99). This model 

suggested that p53-mediated activation has a greater preference for no spacer 

sequence. However, our computational analysis indicated that the length of spacer 

sequences at activator and repressor sites are similarly distributed (Fig. 20). In 
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addition, we did not observe any significant difference between p53-bound motifs at 

the activator vs. the repressor sites (Fig. 21) 

 

 

 

 

 

 

 

 

 

 

 

Figure 14. Principal component analysis of RNA-Seq samples 

Unsupervised clustering of gene expression profiles in WT PH, WT Sham, p53-null 
PH, and p53-null Sham samples. Principal component analysis on expression levels of 
all genes in the genome, enabled us to obtain a broad picture of the transcriptional 
differences among WT PH, WT Sham, p53-null PH, and p53-null Sham samples 
(n=2,2,2,3). 
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Figure 15. Hierarchical clustering of p53-responsive genes 

Heatmap displays the clustering of p53-dependent regenerative responsive genes 
based on log2 expression values.  
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Figure 16. p53-responsive genes are involved in liver-specific functions and 
regulation of immune response 

Biological functional annotation of differentially expressed genes (p53-activated/-
repressed). Tables demonstrate top 5 enriched GO Biological Process (BP) terms with 
associated identifiers and P values for Left: p53-activated and Right: p53-repressed 
genes.  

  

Identifier GO term P-Value 

GO:0055114 Oxidation reduction 2.77*10-7 

GO:0006986 Response to unfolded 
protein 

2.67*10-4 

GO:0031667 Response to nutrient 
levels 

4.14*10-3 

 

GO:0008203 Cholesterol metabolic 
process 

2.55*10-3 

 

GO:0006631 Fatty acid metabolic 
process 

3.10*10-3 

 

Identifier GO term P-Value 
GO:0006955 Immune response 9.32*10-10 

 

GO:0050778 Positive 
regulation of 

immune response 

3.76*10-9 

 

GO:0048584 Acute 
inflammatory 

response 

4.05*10-8 

 

GO:0016064 Inflammatory 
response 

1.81*10-7 

 

GO:0002253 Leukocyte 
mediated 
immunity 

2.23*10-7 

p53-activated genes
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Figure 17. p53-activated genes are enriched in oxidation reduction, steroid 
metabolism, and fatty acid metabolic process  

Heatmaps display the clustering of p53-activated genes involved in i) oxidation ii) 
steroid metabolism, and iii) fatty acid metabolic process, based on log2 expression 
values. 
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Figure 18. p53-dependent lipid accumulation at the G1-S transition of the cell 
cycle in regenerating liver 

Top: Oil Red O staining of male p53 WT and null samples at T=0 and T=24 after PH. 
Bottom: Oil Red O staining of female p53 WT and null samples at T=0 and T=24 after 
PH (n=3 in each group). 
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Figure 19. p53 direct target genes are involved in liver-specific functions and 
regulation of immune response 

Functional annotation of p53-activated/-repressed direct target genes. Top 5 enriched 
GO Biological Process (BP) terms for p53-activated target genes (left) and p53-
repressed target genes (right) (x axis in -log(p-value) scale).  
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Figure 20. There is no major difference between spacer lengths of p53 response 
elements at activator and repressor sites 

 
The histograms of all spacer lengths of p53 response elements (REs) within 300 bp of 
p53-bound peak centers at the activated (left) and the repressed (right) target genes. 
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Figure 21. There is no major difference between p53 DNA-binding motifs at 
activator and repressor sites 

 
Motif analysis to determine p53-activated and p53-repressed DNA-binding motif. The 
DNA binding motif identified within 300 bp p53-bound peak centers at the activated 
(top) and the repressed (bottom) target genes. 
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3.1.4 p53 and HNF4α shares a significant portion of their target genes 

  To further determine which transcription factors cooperate with p53 to regulate 

its target genes during liver regeneration, we performed de novo motif analysis of the 

DNA sequences at the center of p53-bound peaks. The most strongly enriched 

sequences within 300 bp of p53 peak summits were remarkably similar to the HNF4α 

DNA-binding motif with an adjusted P value of 10-85 (Fig. 22), suggesting HNF4α as a 

potential co-regulator. Indeed, taking advantage of publicly available datasets (106), 

we found that 40% of p53-bound genes overlapped with HNF4α-bound genes (Fig. 23, 

P = 1.94*10-10). In addition, a majority (78%, P = 1.04*10-43) of p53-activated direct 

target genes enriched in developmental processes and steroid metabolism, was also 

included in an HNF4α target gene list. On the other hand, 63% (P = 1.57*10-9) of p53-

repressed direct target genes, involved in regulation of immune response, overlapped 

with HNF4α target genes (Fig. 24).  In aggregate, these correlation analyses suggest 

that HNF4α is a potential co-regulator of p53 during liver regeneration.  
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Figure 22. p53-bound peak centers are enriched with HNF4α DNA-binding motif 

Table showing the mostly significantly enriched DNA binding motifs identified within 
300 bp of the top 500 p53 peak summits with associated P values. 

  

Motif_ID Transcription 
Factor 

Adjusted  
P-value 

M01033 HNF4α 10-85 

M00468 LFA1 10-43 

M00646 KLF12 10-43 

M00943 TCF3 10-39 

M01596 MYOD 10-30 
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Figure 23. p53 and HNF4α shares a significant portion of their target genes 

Identification of the overlap between genes bound both by p53 and HNF4α. The pie 
chart categorizes p53-bound genes into two subgroups (HNF4α target) and (Non-
HNF4α target) with the associated P value for significance of the overlap. 
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Figure 24. A significant portion of p53 direct target genes coincide with HNF4α 
target genes 

Identification of the overlap between p53 direct target genes and HNF4α-bound genes. 
Top: The pie chart categorizes p53-activated target genes (left) and p53-repressed 
target genes (bottom) into two subgroups (HNF4α target) and (Non-HNF4α target). 
Bottom: Enriched GO terms and associated P values for HNF4α-bound p53-activated 
target genes (left) and p53-repressed target genes (right). 
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3.1.5 p53 binds to tissue-specific enhancers in regenerating liver 

  A specific combinatorial chromatin signature, which consists of high levels of 

H3K4me1 and low levels of H3K4me3, defines putative transcriptional enhancers (48, 

49). In addition, active enhancer sites show increased levels of H3K27ac (20). 

Enhancers as transcriptional regulatory regions are mostly tissue specific, usually 

marked by the binding of transcription factors specifically expressed in the 

differentiated tissue (48, 50). To define a particular subset of liver-specific enhancers 

bound by p53 in regenerating liver, we examined H3K4me1 and H3K27ac profiling in 

quiescent liver and compared these profiles at the center of the p53-bound peaks. We 

found that 1107 p53 peak summits were enriched with higher levels of H3K4me1 and 

H3K27ac marks relative to the flanking non-peak regions and to the equivalent number 

of randomly generated sequences (Fig. 25). Interestingly, a majority of these sites 

(74%) were also bound by HNF4α.  I present one of the p53 and HNF4α co-bound 

enhancer regions at the upstream of Pleckstrin Homology Domain Containing, Family A 

Member 1 (Plekha1) gene promoter as an example (Fig. 26). Furthermore, 33% of 

HNF4α/p53 co-bound enhancers, identified here, coincided with liver-specific 

enhancers, which were reported by a previous study (109). Altogether, our findings 

suggest that p53 and HNF4α co-bound enhancers serve as pivotal regulatory elements 

to control liver-specific gene expression. 
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Figure 25. p53 binds to tissue-specific enhancers in regenerating liver  

Active enhancer marks are enriched at the center of a specific subset of p53 peak 
summits. Left: H3K27ac binding signal is higher at p53 peak summits relative to 
random locations. The aggregate plot indicates the average H327ac signal density 
around the center of p53 peak summits. Right: H3K4me1 binding signal is higher at 
p53 peak summits relative to random locations. The aggregate plot indicates the 
average H3K4me1 signal density around the center of p53 peak summits. 
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Figure 26. An individual example of p53 and HNF4α co-bound enhancer regions 

Visualization of normalized p53 tag numbers in PH vs. sham liver as well as 
normalized tag numbers of H3K4me1, H3K27ac and H3K27me3 at the upstream of 
Plekha1 gene promoter. Black bars indicate HNF4α binding sites. 
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3.1.6 p53 is required for HNF4α-mediated maintenance of hepatic cell identity 

during liver regeneration 

  We next investigated whether p53 is required for HNF4α recruitment to 

chromatin. We first selected a subset of p53-activated direct target genes that exhibit 

HNF4α co-binding either at their proximal promoter or distal enhancer sites. Next, we 

performed ChIP experiments for HNF4α binding at these genes. Our results indicated 

that p53 promotes HNF4α binding to this specific subset of genes. As examples, at the 

Plasminogen (Plg) and Fibrinogen alpha chain (Fga) genes, encoding major 

coagulation proteins plasminogen and fibrinogen in liver, respectively, we observed a 

p53-mediated increase in HNF4α binding to their proximal promoter regions during liver 

regeneration. In addition, at the Fga liver-specific enhancer site [114], p53 promotes an 

elevated level of HNF4α recruitment to chromatin (Fig. 27 and Fig. 28). When we 

examined the overall effect of p53 on HNF4α binding to chromatin, loss of p53 

mediates a significant level of decrease in HNF4α binding during liver regeneration 

(Fig. 29).  
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Figure 27. p53 promotes HNF4α binding to the Plg proximal promoter during liver 
regeneration 

p53 mediates an increase in HNF4α binding at the proximal Plg promoter during liver 
regeneration (-140bp). (* p<0.05, ** p<0.01; Student’s t-test).  
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Figure 28. p53 promotes HNF4α binding  both at the Fga proximal promoter and 
the distal Fga enhancer  

p53 mediates an increase in HNF4α recruitment both to Left: the proximal promoter (-
240bp) and Right: the distal enhancer (-5.5kb)  of Fga during liver regeneration. P-
values were calculated by direct comparison between WT and null liver (*p<0.05, ** 
p<0.01, *** p<0.001, Student’s t-test). 
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Figure 29. p53 regulation of HNF4α binding during liver regeneration 

p53 promotes an increase in HNF4α recruitment to proximal promoters and/or distal 
enhancers of co-target genes during liver regeneration. ChIP experiments were 
performed in WT and null liver at 24h following PH and sham surgeries. P-values were 
calculated by internal comparison between PH and sham surgeries, determined by 
Student’s t-test. (p<0.05 *, p<0.01 **p<0.001***). Y axis shows the fold change of 
HNF4α binding between PH and sham liver. 
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CHAPTER 4 DISCUSSION AND FUTURE DIRECTIONS 

4.1 DISCUSSION 

  Liver regeneration in response to PH is one of the best models to study large 

populations of quiescent liver cells that re-enter the cell cycle in a synchronized wave. 

Unlike the model of liver regeneration induced by chemical injury, liver regeneration 

following PH does not involve an extensive level of necrosis and inflammation, which 

would cause hepatocyte damage. After PH, undamaged hepatocytes are able to 

achieve a significant portion of liver mass restoration (62) and this process is governed 

by an interconnected network of signaling pathways. Genetic manipulations in 

transgenic and knockout mouse models provide an invaluable resource to understand 

this intricate network of events regulating liver regeneration (53). Here, we use a p53- 

null mouse model to study loss of p53 function during liver regeneration (57)  

  It is interesting that not only stimulators but also repressors of the cell cycle such 

as p53 and p21 which function as safeguards of the cell cycle process, are activated 

during the PH-induced regenerative process (32, 66). This suggests that the cell cycle 

process during liver regeneration is tightly regulated. This highly controlled cell cycle 

process consists of two critical steps: the quiescent hepatocytes are first primed to re-

enter the cell cycle (priming phase) and then pass through the restriction point in the 
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G1 phase of cell cycle to progress through the S phase to proliferate. Hence, the G1-S 

transition represents a crucial checkpoint after the quiescent hepatocytes re-enter the 

cell cycle and its regulation needs to be well characterized. This can be partly achieved 

by elucidating the transcriptional network that orchestrates regulation of this critical 

checkpoint in regenerating liver. In response to a range of genomic stress, the tumor 

suppressor p53 induces expression of genes that lead to cell cycle arrest or 

programmed cell death at the G1-S transition of cell cycle, a process well established in 

cultured cells (103, 127). Here, we determine the response of p53 in vivo during the 

G1-S transition of the cell cycle in normal proliferating cells isolated from regenerating 

liver. A phase-specific comparison of p53 binding to chromatin in regenerating vs. 

sham liver (control) cells provides a full perspective of p53-related changes in 

regenerating liver. Our ChIP-Seq analysis suggests that p53 specific target genes in 

regenerating liver are also genes highly represented during developmental processes, 

including a subset of transcription factors required for the maintenance of hepatic cell 

identity. Integration of these alterations in p53 binding to chromatin with gene 

expression profiling studies led us to uncover novel functions of p53 de novo target 

genes in normal proliferating cells in vivo.  

It has previously been reported that p53 enhances lipid catabolism in response to 

glucose deprivation in human cell lines and mouse liver (6, 55). In cancer cells, 



	
  

	
  

63	
  

lipogenesis is usually favored to meet increasing biosynthetic demands. In this 

condition, p53 acts as a barrier to lipogenesis, repressing a vast array of genes 

involved in lipogenesis. Conversely, p53 also induces a particular subset of genes 

represented in fatty acid oxidation as a way of lipid catabolism (41). However, it 

remains unknown whether p53 plays any role in any of the conditions where fat 

accumulation is favored in normal proliferating cells, including the early phase of liver 

regeneration. Several studies suggested that transient fat accumulation is critical for 

normal liver regeneration in a rodent model (29, 40, 102, 111). In mice, transient 

hepatic fat accumulation was observed at a specific period during the time course of 

liver regeneration, 12-24 hours after PH prior to the peak of DNA synthesis. Reversal of 

hepatic fat accumulation by various means in regenerating liver, diminished the 

proliferative response in hepatocytes (111). Our data show that the multitude of genes 

involved in lipogenesis and lipid catabolism exhibit p53-mediated activation in normal 

proliferating cells at 24h after PH. Importantly, p53-null mice display markedly 

decreased hepatic fat accumulation compared to WT mice at the G1-S transition of the 

cell cycle, corresponding to 24h after PH. Taken together, the p53 response to PH 

could be associated with the regulation of metabolic homeostasis to meet the demands 

of newly proliferating cells in regenerating liver.  
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  The remaining liver after PH is not only able to reestablish its mass but also 

performs its normal liver functions for the body, including maintenance of glucose 

homeostasis, synthesis of blood coagulation factors, bile acid secretion and 

detoxification of toxic compounds. This generates a massive metabolic load imposed 

on the remnant liver. It was hypothesized that this extensive metabolic load is one of 

the mechanisms that triggers the initiation of regenerative process in the remnant liver 

(39). A significant number of studies have shown that the regenerating liver exhibits 

specific metabolic alterations, including low blood glucose levels and transient fat 

metabolic accumulation (102). However, we still need a better understanding of 

transcriptional networks governing these metabolic alterations in the remnant liver and 

how they are linked to the proliferative response.  

  While the remaining liver maintains its hepatic cell identity during liver 

regeneration in vivo, this has not been observed in vitro. In contrast, hepatocytes in 

culture loose their hepatic cell identity accompanied by a decrease in expression of 

liver-enriched transcription factors (97). This suggests that the maintenance of 

metabolic homeostasis in the remaining liver requires the induction of liver-enriched 

transcription factors that help liver cells preserve their hepatic cell identity (120) (44). 

These liver-enriched transcription factors are transcriptionally activated in an 

orchestrated fashion to induce hepatocyte differentiation during organ development and 



	
  

	
  

65	
  

to maintain liver function in adult hepatocytes (107). HNF4α, as the master regulator of 

the hepatocyte differentiation process, directly controls the expression levels of other 

liver-enriched transcription factors required for normal liver function (69). Here, our data 

analysis reveals that p53 cooperates extensively with HNF4α to activate genes 

involved in liver-enriched functions such as steroid metabolic process. Among them, 

there are liver-enriched transcription factors such as CEBPβ, HNF6α and HNF6β.  

Further analysis uncovered a subset of genomic sites bound by both p53 and HNF4α, 

which exhibit distinguished features of active enhancers. Integration of our data with 

publicly available datasets revealed that 31% of these enhancer sites are liver-specific 

(109). In aggregate, these observations led us to hypothesize that p53 is required for 

HNF4α-mediated maintenance of liver-enriched transcriptional networks during the 

regenerative process. Indeed, our ChIP experiments further revealed that HNF4α 

binding significantly diminishes at a subset of liver-specific genes in the absence of 

p53. Altogether, we uncovered a novel function of p53 during the G1-S transition of the 

cell cycle in normal proliferating cells in vivo. p53 acts in concert with HNF4α to sustain 

hepatic cell identity and maintain metabolic homeostasis during liver regeneration. This 

modulation in p53 function at the G1-S checkpoint during liver regeneration may be 

partially explained by phosphorylation of p53 at Ser389 (80).  Compelling evidence 

suggests that posttranslational modifications of p53 could alter its function in cells (10, 
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17). For instance, a previous study suggested that Ser46 phoshorylation of p53 leads 

to altered promoter selectivity and induces p53 to target proapoptotic genes but not cell 

cycle arrest genes (117). 

  Understanding the role of p53 in normal proliferating liver cells may allow us to 

better target it in diseases such as hepatocellular carcinoma (HCC) where p53 is one of 

the most commonly mutated genes. As one of the major causes of cancer-related 

deaths worldwide, hepatocellular carcinoma (HCC) is the most common type of human 

liver cancer (28, 140). Although liver resection is the most common treatment for HCC, 

it comes with major complications. For instance, 75% to 100% tumors recur within five 

years after liver resection (79, 108). The remarkable regenerative ability inherent in the 

liver may actually augment tumor recurrence rate after resection due to the shared 

molecular mechanisms between liver regeneration and liver cancer. Understanding 

these shared molecular mechanisms is crucial for development of therapeutic 

interventions that prevent liver carcinogenesis while allowing normal liver regeneration 

(16).  

  Identification of signaling pathways and gene regulatory networks in liver 

regeneration of a model organism is likely to suggest molecular mechanisms 

deregulated in HCC. A functional study of p53 response in liver showed that tissue-

specific deletion of p53 induced liver tumors with bi-lineal differentiation (63). Using 
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publicly available global gene expression profiling dataset retrieved from the noted 

study, we identified genes with significantly altered expression levels in liver tumors 

induced by p53 deletion. Similar to p53-mediated changes in cellular processes in 

regenerating liver, p53 induces a vast array of genes involved in sterol and lipid 

biosynthetic process, whereas it represses a subset of genes enriched in leukocyte 

activation (Fig. 30). Based on these shared and conserved cellular processes, 

identification of p53 de novo target genes in liver during cell cycle of normal 

proliferating cells is very likely to identify a great number of genes important for liver 

growth and cancer. Taken together, this study elucidates the role of p53 in normal 

proliferating liver cells, providing further insights into its association with 

hepatocarcinogenesis. 

4.1.2 FUTURE DIRECTIONS 

Our data analysis revealed that a specific subset of functional p53 target genes 

is included in Cyp gene family, a definitive marker of mature hepatic cell identity (114) . 

These genes have significantly decreased expression levels during liver regeneration 

mediated by a loss of p53 binding to chromatin in null liver. These results led us to 

hypothesize that p53 induction of a specific subset of hepatocyte differentiation 

markers in regenerating liver promotes the maintenance of hepatic cell identity. To 
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support our hypothesis, we will determine if there is any loss of hepatic cell identity in 

p53-null liver compared to WT liver by immunohistochemical staining of liver cells with 

hepatocyte differentiation markers. Next, we will quantify hepatocyte cell populations in 

p53-null liver compared to WT liver, using CyTOF mass cytometry. These experiments 

may allow us to address a quite significant question in the field that whether 

hepatocytes could preserve their cell identity in the absence of p53 while liver mass is 

reestablished during the PH-induced regenerative process. Our study has been the first 

one to elucidate the transcriptional role of p53 in a possible loss of hepatocyte 

differentiation during liver regeneration.	
  

  p53 shares a considerable amount of structural homology with its family 

members, p63 and p73 (60). p53 and p73 exhibit hepatic-specific functions in 

development of liver and tumor suppression (68). Mice with heterozygous deletion of 

p53 along with p73 are highly susceptible to spontaneous liver tumor development (37). 

Previous studies also demonstrated that p73 could maintain genomic integrity in certain 

conditions in the absence of p53 (118). Here, we show that p53 cooperates extensively 

with HNF4α to maintain hepatic cell identity during liver regeneration. Due to the 

significant role of p73 in liver development and function, further studies are required to 

investigate p73 function during liver regeneration. These studies should address if p73 
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could compensate for p53 function and could act in concert with HNF4α to sustain 

hepatic cell identity at certain time points of liver regeneration in the absence of p53.  

  Our analysis revealed that p53 and HNF4α co-bind to a substantial amount of 

tissue-specific enhancers to regulate liver-specific genes during liver regeneration. 

The recent discovery that enhancer-RNAs (e-RNAs), transcripts derived from 

enhancers (26, 65, 130), play a critical role in tissue-specific functions (70). Taking 

these studies into account, the identification of e-RNAs produced from p53 and HNF4α 

co-bound enhancers could provide further insights into the mechanism by p53 

maintains hepatic cell identity during liver regeneration.
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Figure 30. Tissue-specific p53 deletion induces liver carcinoma 

Identification and functional annotation of p53-responsive genes in liver tumors induced 
by tissue-specific deletion of p53. Right: Heatmap displays expression levels of p53-
responsive genes in null vs. N-nitrosodiethylamine (DEN)-treated liver tumors. Left: 
Enriched GO Biological Process (BP) terms and associated P values for p53-activated 
(top) and p53-repressed (bottom) genes in liver tumors. 
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Table 1: HNF4α ChIP primer sites 

Fga -230bp 5' CATCTCCCCAGCTTCCAA 

Fga -230bp 3' TTGTTTGTTTCCGATAAGTTGTTG 

Fga  -5.5kb 5' CTCCTCATCAGTCTGGTTGTTG 

Fga  -5.5kb 3' CCCAATGTTAGCTCCCTTCTTT 

Kng1 -124bp 5' CTCCTGGCTTCAAACTCT 

Kng1 -124bp 3' TCTCTGCTGGGTTCTATTG 

Kng1 -1.9kb 5' CCTGTTAGCCTGTTCTGG 

Kng1 -1.9kb 3' GCATCCACACCTTCAACA 

Plg -140bp 5' GTAAGAGGGAAGAGGGAGGA 

Plg -140bp 3' TGTGGTAGATGCTGGAAGTG 

Serpina1e -4.5kb 5' GGACACCCACTCAGTTAT 

Serpina1e -4.5kb 3' CCTCTTCTCGGAAATGGA 

Serpine1 -507bp 5' GCAGTAACCCAAGAGAAAG 

Serpine1 -507bp 3' ACAGCCATCACAGAGAAG 
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