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FUNCTIONAL ANALYSIS OF CYTOSOLIC HSP70 NUCLEOTIDE EXCHANGE 

FACTOR NETWORKS IN YEAST 

 

Jennifer Lynn Abrams, B.S. 

 

Advisory Professor: Kevin A. Morano, Ph. D. 

 

 The Hsp70 class of molecular chaperones play critical roles in protein homeostasis via an 

ATP-dependent folding cycle. Cytosolic Hsp70s in the budding yeast Saccharomyces 

cerevisiae, Ssa and Ssb, interact with up to three distinct nucleotide exchange factors (NEFs) 

homologous to human counterparts; Sse1/Sse2/HSP110, Fes1/HspBP1, and Snl1/Bag1. In an 

effort to understand the differential functional contributions of the cytosolic NEFs to protein 

homeostasis (“proteostasis”), I carried out comparative genetic, biochemical and cell biological 

analyses. For these studies, I developed protocols to monitor protein disaggregation and 

reactivation in a near real-time coupled assay that revealed the importance of aggregate 

dynamics in the solubilization of proteins for their refolding. This coupled experimental 

approach, represents an important step toward developing tools necessary to monitor in vivo 

mechanisms of proteostasis. 

  This work determined that the Hsp110, Sse1, is the primary NEF contributing to most 

Hsp70 functions and also uncovered a unique role for Fes1 in Ssa-mediated regulation of the 

cytosolic heat shock response, while revealing no significant contributions from Snl1 and Sse2. 

These findings suggest that NEFs do have overlapping functions, but their distinct associations 

with the Hsp70s as well as unique structural components could contribute to differential roles in 

proteostasis. 
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 Additionally, this study uncovered that relative levels of Snl1 and Sse1 are important for 

optimal growth. To probe this relationship, I exploited the Snl1 overexpression toxicity 

phenotype exhibited in the absence of Sse1 to examine which unique characteristics of Snl1 

are important for its function.  I discovered that Snl1 localization to the ER membrane is 

required for toxicity and that Sse1-mediated alleviation of this phenotype is Ssb-dependent.  

These results demonstrate a network of interactions that supports a hypothesis where Snl1 

plays a role in translation regulation. 

  This investigation was conducted to gain a better understanding of NEF roles within the 

Hsp70 chaperone network. Understanding these dynamics is critical to obtain successful 

treatments that can reverse the debilitating effects of neurodegenerative disorders such as 

Alzheimer’s and Parkinson’s diseases.  Pharmacological targeting of molecular chaperones 

and their co-factors, such as the NEFs, is an attractive therapeutic goal that may contribute to 

improving human health, most notably in the aging population. 
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INTRODUCTION AND BACKGROUND 

Stress and the maintenance of proteostasis - Cellular viability is at the mercy of the protein 

homeostasis (“proteostasis”) machinery, which includes the protein complexes responsible for 

maintaining the balance between polypeptide synthesis, transport, modification, and ultimately 

degradation.  Aggregation and loss of function resulting from improper inter- and intramolecular 

interactions of misfolded and partially folded proteins can lead to a deleterious loss of 

proteostasis [1].  Challenges in the external environment as well as internal stressors can 

negatively impact the balance of protein maintenance.  For example, temperature, pH, and 

osmolyte concentration are external factors that once altered beyond physiological range can 

increase the probability of misfolding and aggregation.  In addition, internal factors such as 

proteome complexity and protein synthetic load can heighten the need for proteome stabilizers 

such as molecular chaperones.  In support of this idea, there is a positive correlation between 

the complexity of the proteome and the number of conserved chaperone families maintained in 

an organism [2]. 

        Nascent chain folding is particularly sensitive to stress conditions.  Co-translational protein 

folding is important for longer, more complex, proteins because larger regions of the unfolded 

polypeptide have to be released from the ribosome in order to reach their native state.  The 

ribosome exit tunnel is 100 Å long x 20 Å in diameter, which is only enough space for smaller 

intramolecular interactions to take place, limiting folding to simple secondary structures such as 

α-helices [3-7]. Upon release from the ribosome, the highly crowded, aqueous environment of 

the cytosol poses a folding challenge to the polypeptide. Exposed hydrophobic stretches will 

attempt to bury themselves adjacent to other hydrophobic residues, which can lead to improper 

structural associations [8].  In eukaryotes this is a significant problem because in addition to 

exposed hydrophobic regions that need to be protected, 30% of the proteins are classified as 

intrinsically unstructured [9]. It is plausible that high levels of unstructured proteins would be 

evolutionarily disfavored, but protein function requires a balance of flexibility and 

thermodynamic potential energy [10,11].  Due to this delicate balance, proteins that fold without 
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assistance can fall into what is termed a kinetic trap, which is an alternative non-functional fold 

that has a lower potential energy then the next intermediate fold on the journey to the native 

active state.  

 The rate of translation is another factor that can affect nascent protein folding efficiency.  

The average speed of eukaryotic translation is four amino acids per second compared to 20 

amino acids per second in prokaryotes [12].  The mistranslation rate is 1 out of every 10-4 

residues in eukaryotes, so the rate of translation allows time to correct or eliminate misfolded 

proteins [13-17]. One way that the cell deals with terminally misfolded proteins is through the 

ubiquitin proteasome pathway in which 5-15% of nascent chains are ubiquitinated. This number 

increases upon loss of the chaperone complexes in contact with ribosomes and nascent chains 

and these complexes include TRiC/CCT and prefoldin, the yeast Hsp70, Ssb, with the 

ribosome-associated complex (RAC) and the nascent chain associated complex (NAC) and will 

be discussed in more detail later [18].  All of the above mentioned chaperones are coregulated 

with the ribosome. As a result their expression is suppressed during stress conditions [19]. 

These complexes maintain proteostasis at the ribosome.  In addition, proteins that have 

already been folded can be damaged during stress conditions, such as heat shock, and this 

requires repair mechanisms that involve chaperones, but also usually require global 

transcriptional responses. 

 

The heat shock response - When the cell senses stress, it activates protective measures in 

order to prepare for future threats.  In yeast, multiple transcription programs including the 

environmental stress response (ESR), the heat shock response (HSR), the oxidative stress 

response (OSR), and the unfolded protein response (UPR) allow cells to quickly adapt to 

changing environments. Stress responses can cross-protect against different stressors, but 

they each primarily respond to specific stressors. The most general stress response is the ESR 

and genes upregulated in the HSR are a subset of the ESR-regulated genes [20].  The HSR 

mounts a global cellular response upon exposure to temperatures greater than 36-37°C 
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characterized by cell cycle arrest and upregulation of heat shock proteins (HSPs) and other 

housekeeping proteins. 

 The master regulator of the HSR is the heat shock transcription factor, Hsf.  In mammals 

there are four different isoforms of this master regulator, HSF1-4, but HSF1 controls the HSR 

[21].  In yeast there is only one isoform, Hsf1, which is essential for growth at optimal 

temperatures [22]. Hsf1 consists of three domains: the winged helix-turn-helix DNA binding 

domain (DBD), which is important for activating gene targets upon initiation of the HSR [23, 24]; 

the leucine zipper oligomerization domain is important for trimerization, which is necessary 

prior to binding DNA [25, 26]; and a carboxyl-terminal transactivation domain (CTD), which is 

important for initial and prolonged transcription activation by the transcription factor [27, 28].  

Yeast Hsf1 has an additional amino terminal transactivation domain (NTA), which can initiate 

transcriptional activity independently or act as a negative regulator modulating CTD initiated 

activation [28, 29].   

 In mammals, activation of Hsf1 requires several steps including nuclear localization, 

trimerization, post-translational modifications, and DNA binding.  In yeast, regulation is much 

simpler in that the Hsf1 is constitutively trimerized, localized to the nucleus, and bound to 

promoters of many HS genes [30-32]. This is more similar to Drosophila than mammalian 

HSF1 [33]. Activation also results in Hsf1 hyperphosphorylation, which is mediated by multiple 

kinases that respond to specific stressors. In yeast, it was shown that Snf1 phosphorylates 

Hsf1 in response to glucose starvation [32], but the kinase responsible for heat shock 

associated phosphorylation is unknown. In addition to the above-mentioned regulatory 

mechanisms, Hsf1 is also bound and repressed by the molecular chaperones Hsp70 and 

Hsp90.  This has been shown via genetic evidence in yeast and mammals, and biochemical 

evidence in humans [34].  Hsp70 cannot completely repress Hsf1 alone; Hsp90 and co-

chaperones are also necessary for complete repression [35]. Exposure to heat shock is thought 

to titrate the HSPs away from Hsf1 allowing activation. Once the HSPs have restored 



 5 

proteostasis, they reestablish interaction with Hsf1 to attenuate the response.  In yeast, there is 

currently genetic evidence, but no biochemical evidence to support this hypothesis.  

 

Molecular chaperones - In order to maintain proteostasis, cells employ the help of molecular 

chaperones. All organisms maintain multiple families of chaperones, but not every family.   

Chaperones are named based on their molecular weights, and many of them are referred to as 

heat shock proteins (HSPs) due to their induction during heat shock. One of the most highly 

conserved families is the 70 kilodalton (kd) heat shock protein or Hsp70, which is present in all 

eukaryotes and bacteria currently identified, but not in all Archaea [36]. There is a roughly 

linear relationship between the number of genes maintained by an organism and the number of 

canonical HSPs, with exception of the Hsp100s.  There is approximately 1 Hsp70 gene, 5-6 

Hsp40 genes, 1 sHsp gene, and 1 Hsp60 gene for every 2000 genes and 1 Hsp90 gene per 

6000 genes [2].  It is unclear why this relationship exists since many of these chaperones do 

not have a high level of specificity, but it appears that throughout evolution mutations have 

resulted in slight adaptations improving survivability of the organisms that code for them in the 

above mentioned ratios.  These minor differences result in high levels of redundancy with the 

development of some distinct functions.  The variation provides more regulatory opportunities 

to respond to changing environments. A number of molecular chaperones are classified as 

HSPs because many of them were originally identified in pulse chase experiments, where 

protein abundance was monitored by incorporation of [35S]-methionine after heat treatments 

followed by SDS-PAGE [37].  Although many chaperones including some of the Hsp70s and 

Hsp90s are expressed constitutively, they are also upregulated upon HS and additional stress 

responsive isoforms are expressed in order to prepare for any additional assaults or to 

ultimately attenuate the active response.  A subset of these chaperones are referred to as 

housekeeping proteins or “generalists.” The generalists are involved in ensuring a protein 

successfully transitions from “birth” as nascent nonfunctional polypepetide to a localized, 

modified, active protein, and then upon reaching the limit of its lifetime, chaperones target it to  
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one of the degradation pathways for “death”.  A well-conserved example of the generalist family 

is the Hsp70s that bind promiscuously to exposed hydrophobic regions in partially unfolded 

proteins (Fig. 1.1). There is also a more specific subset of chaperones known as “specialists,” 

which include the Hsp90s that interact with specific substrates including kinases and hormone 

receptors, to promote their maturation, translocation, or degradation.  

 

The Hsp70s - As mentioned earlier, the Hsp70s are highly conserved and play an essential role 

in maintaining protein homeostasis [1, 38]. Hsp70 functions through a nucleotide dependent 

cycle to protect exposed hydrophobic regions of polypeptides from the aqueous environment of 

the cytosol, while they fold into their native structure as seen in Figure 1.1 [39]. Hsp70 switches 

from a low affinity to a high affinity substrate binding conformation using the energy from 

binding, hydrolysis and release of ATP (Fig. 1.2) [40, 41]. This cycle repeats as necessary to 

complete protein folding [42]. Hsp70 has a very low innate ATPase activity, 0.04 ATP 

hydrolyzed min-1, resulting in a low protein folding capacity. To improve folding efficiency, 

Hsp70 interacts with a myriad of co-chaperones [43]. The conserved Hsp40s or J-domain 

proteins interact with Hsp70 and can both activate its ATPase activity at least 200-fold as well 

as deliver substrate to Hsp70 in some cases [44-46]. The folding cycle is further regulated by 

the nucleotide exchange factors (NEFs) that bind the Hsp70 nucleotide binding domain (NBD) 

promoting the release of ADP and in turn substrate [47-51].  

      The architecture of Hsp70 includes a 44 kd nucleotide binding domain (NBD) and a 25 kd 

carboxyl-terminal substrate binding domain (SBD) [52]. The SBD is further composed of an α-

helical lid domain and β-sandwich domain [53].  Substrates interact with the β sandwich 

domain in the high affinity, ADP bound state, and the α-helical lid closes over the substrate 

providing optimal protection [54].  The domains communicate nucleotide status through 

allosteric coupling of the NBD and SBD via an interdomain linker [40, 41, 53, 55].  Structure 

and co-chaperone interactions have afforded Hsp70 the functional flexibility to be involved in 
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Figure 1.1. Model of Hsp70-mediated folding.  Hsp70 promotes folding into a native active 

structure and prevents misfolding and aggregation. 

  



 8 

Figure 1.1. Model of Hsp70-mediated folding 
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Figure 1.2. Hsp70 Cycle. This schematic depicts the nucleotide dependent mechanism by 

which Hsp70 binds and releases substrate.  In the ATP bound conformation, Hsp70 transiently 

interacts with polypeptide with low affinity.  Interaction with the Hsp40 family of co-chaperones 

activates Hsp70’s innate ATPase activity hydrolyzing ATP to ADP and switching Hsp70 to a 

high affinity substrate binding conformation.  Then the interaction between Hsp70 and the 

nucleotide exchange factors (NEFs) alters the structure to release ADP and the substrate. 
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Figure 1.2. Hsp70 Cycle 
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protein folding/biogenesis, maturation, transport, and degradation [1, 38].  

      The Hsp70 superfamily includes Ssa, Ssb, Sse, and the atypical Ssz (Stress Seventy A, B, 

E, and Z) (Table 1.3) [22].  In yeast there are two families of cytosolic Hsp70s, Ssa and Ssb.  

There are two proteins, Ssb1 and Ssb2, in this non-essential, ribosome-associated family of 

Hsp70s; they are 99% identical and believed to be functionally redundant [56].  Ssb is a fungal 

specific Hsp70, not present in metazoans; in mammalian cells, cytosolic Hsp70s are recruited 

to the ribosome for co-translational protein folding [57, 58]. Ssb1/2 are considered to be 

functionally distinct from the Ssa family proteins due to the inability of either family to 

completely complement the absence of the other [22, 59]. In contrast to the stress inducible 

Ssa family of Hsp70s, Ssb is regulated similar to ribosomal proteins in that its transcription is 

decreased in stress conditions [60, 61].    Ssb primarily interacts with translating ribosomes in a 

ribosome-associated complex (RAC) dependent fashion, independent of nascent chain 

association; however, nascent chain interaction stabilizes the Ssb/ribosome complex [62, 63]. 

RAC exists as a ribosome-bound heterodimer, which includes the J-domain protein, Zuo1, and 

the atypical Hsp70, Ssz1, and acts as a co-chaperone for Ssb, activating its ATPase activity 

[64]. The specific function of Ssz1 is unclear, but it is required for Zuo1 activity. In addition, 

Zuo1 contains the interaction domain required for RAC association with the ribosomal exit 

tunnel [64, 65]. Deletion of SSB, ZUO1, or SSZ1 results in identical phenotypes, slow growth, 

cold sensitivity, and hypersensitivity to aminoglycosides (translation inhibitors) suggesting they 

act together in one process.  Deletion of SSB also results in accumulation of aggregated 

proteins as well as a decrease in small and large ribosomal subunits, indicating roles in both 

co-translational protein folding and ribosome biogenesis [19] [66].  In addition to RAC, the 

highly conserved nascent chain associated complex (NAC) also binds the ribosome at the exit 

tunnel, but unlike RAC it interacts directly with nascent chains [67]. In yeast, NAC is composed 

of three subunits, Egd1, Egd2, and Btt1, but the protein is a heterodimer of Egd1 with either 

Btt1 or Egd2, which allows for differential substrate specificity [68, 69].  NAC has also been  
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Table 1.1. Yeast Cytosolic Chaperones [22]. 

Class Protein(s) Function(s) 

Hsp70   

Hsp70 Ssa1, Ssa2 Constitutively expressed protein foldase 

 Ssa3, Ssa4 Stress inducible protein foldase 

 Ssb1, Ssb2 Ribosome localized, constitutively 
expressed nascent protein foldase  

 Ssz1 Atypical Hsp70, involved in ATPase 
activation of Ssb, part of the ribosome 
associated complex 

     Hsp70 co-chaperones   

     Hsp70 NEF   

     Hsp110 Sse1 Constitutively expressed Hsp70 
nucleotide exchange, substrate binding. 

 Sse2 Stressed inducible, Hsp70 nucleotide 
exchange, substrate binding. 

     HspBP1 Fes1  

     Bag-domain Snl1 ER localized, Hsp70 nucleotide 
exchange factor 

     Hsp70 J protein   

     Ydj1 Hsp70 ATPase activator, substrate 
binding 

      Sis1 Hsp70 ATPase activator, substrate 
binding 

      Zuo1 Ribosome localized, Hsp70 ATPase 
activator, part of the ribosome 
associated complex 

     Jjj1 Hsp70 ATPase activator, substrate 
binding, ribosome biogenesis 

     Swa2 Hsp70 ATPase activator, substrate 
binding, vesicular transport 

Hsp100 Hsp104 Disaggregase, unfoldase 

sHsps Hsp42 Antiaggregase 

 Hsp26 Antiaggregase 

Chaperonin TriC/Cct1-
Cct8 

Protein folding, cytoskeleton substrates 
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shown to assist in de novo protein folding and ribosome biogenesis and has overlapping 

substrate interactions with Ssb [66].  Together these proteins affect proteostasis through folding 

and stabilizing proteins being released from the ribosome during translation.   

      The Ssa family includes four homologs, two of which are constitutively expressed, Ssa1/2 

and the other two of which are expressed only during stress conditions, Ssa3/4. The Ssa family 

is essential. Upon loss of Ssa1 and Ssa2, the cells exhibit a slow growth defect, heat sensitive 

phenotype, and derepression of Hsf1, which results in upregulation of the HSR [70, 71].  

SSA3/4 are upregulated in response to loss of Ssa1/2, likely due to derepression of the HSR, 

but despite high levels of similarity cannot fully complement the loss of Ssa1/2 [71]. Ssa1 and 

Ssa2 are 98% identical, but still maintain some unique functions, which has been tied to a 

single residue difference in the NBD [72].  It is thought that the promiscuity of the SBD and the 

specificity that can be imparted through protein interactions with the NBD allow Hsp70 to 

contribute to a multitude of distinct functions as seen in Figure 1.3. Elizabeth Craig’s laboratory 

at University of Wisconsin performed work identifying phenotypes associated with the Ssa 

proteins using an SSA1 and SSA2 deletion strain or a strain lacking all four Ssa genes and 

expressing only a temperature sensitive allele (ssa1-45), which is inactivated after 30 min at 

37°C [73].  Current findings using this construct have to be interpreted with some caution 

because the results could reflect phenotypes associated with loss of cell viability compared to 

the loss of the Ssa proteins alone.  Many of the in vivo and in vitro folding studies have been 

performed using well-established model proteins, such as firefly luciferase (FFL) and ornithine 

transcarbamylase, which have been shown to require Ssa1/2 for both biogenesis and refolding 

after denaturation [74, 75]. Studies performed in my laboratory and by others have shown that 

both Ssa1 and its co-chaperones, Ydj1 and Sse1, were necessary for the processing of pre-

pro-α factor to the mature form of the mating type specific protein, α factor [76, 77]. Ssa has 

also been shown to be involved in transport of mitochondrial, vacuolar, and nuclear precursors 

[78, 79].  Within the cytosol, Ssa is involved in maintaining solubility of immature proteins   
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Figure 1.3. Hsp70-mediated functions. In yeast the cytosolic Hsp70s are Ssa and Ssb.  Both 

Ssa and Ssb are involved in protein biogenesis, but in some cases misfolding occurs and the 

Ssa can triage aberrant protein to the ubiquitin proteasome pathway or refold it.  Depending on 

the level of misfolding in the cell, the heat shock response can be triggered, resulting in release 

of the Hsp70s and Hsp90s from Hsf1 bound to the heat shock element (HSE) in the promoter 

of heat shock genes allowing for expression of heat shock proteins (HSPs). 
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and delivering them to the endoplasmic reticulum (ER) for translocation and processing. 

Studies have also been performed relating Hsp70 to degradation of terminally misfolded 

proteins as well as proteins programmed with short half- lives.  In vivo and in vitro studies using 

well-characterized client proteins such as cystic fibrosis transmembrane conductance regulator 

(CFTR), von Hippel-Lindau (VHL) protein variants, as well as α-synuclein and poly-Q expanded 

proteins, have shown that Hsp70 is necessary for efficient protein degradation [81-84]. In 

mammals the Hsp70 machine along with the NEF, Hsp110, and the J-domain proteins have 

been shown to act in disaggregation, a process important for clearance of misfolded proteins 

[85, 86].  In yeast, disaggregation is the primary function of the Hsp104 chaperone, a member 

of the Hsp100 family that is absent from metazoans, but Hsp70 interacts with Hsp104 to 

activate disaggregation and promote refolding of the liberated protein [87].  It is interesting that 

mammalian cells have evolved so Hsp70 and its co-chaperones can perform a function that 

yeast manages using an alternate family of chaperones.  The diversity of co-chaperones 

establish them as important modulators of Hsp70 function and specificity. 

 

The Hsp40 co-chaperones - Aside from their role in modulating the folding cycle through 

activation of ATPase activity, the Hsp40 co-chaperones can also recruit Hsp70 for specific 

functions. The Hsp40s bind to the Hsp70 NBD to enhance the relatively low innate ATPase 

activity [38].  Yeast cells encode for at least 22 J-domain-containing proteins, or Hsp40s, which 

vary in substrate binding capabilities and process specificity.  Ydj1 is a general Hsp40 and one 

of the most highly expressed genes in the family.  This J-protein is one of the primary co-

chaperones involved in Hsp70-mediated protein folding. Jjj1, on the other hand is a highly 

specialized Hsp40 protein involved in ribosome biogenesis [88].  There are also Hsp40s that 

have no substrate binding capabilities, such as Zuo1, which is a component of the RAC 

complex involved in nascent chain folding [38, 89]. In spite of the structural and functional 

diversity of the J-domain proteins, they all perform the same biochemical function, which is to 
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activate the ATPase activity of Hsp70. This provides a mechanism by which co-chaperones 

can delicately modulate a highly promiscuous and ubiquitous chaperone in order to contribute 

to a plethora of distinct processes. 

 

Cytosolic Hsp70 nucleotide exchange factors - Unlike the Hsp40s, which all have a common J-

domain, the NEFs are completely distinct in sequence and structure and are thought to have 

emerged via convergent evolution (Fig 1.4).  The three families that exist in the cytosol of 

mammalian cells are identified as: Hsp110, HspBP1, and Bag domain-containing proteins [90]. 

In yeast, the Hsp110 family is represented by the two paralogs, Sse1 and Sse2, which are 

considered to be atypical members of the Hsp70 family because ATPase activity is limited and 

not required for their known functions [91].  Analogous to the Hsp70 family, Sse1/2 are 

composed of an NBD and an SBD.  Within the SBD, these proteins also have α and β 

subdomains important for substrate binding. One striking difference between the Hsp110 and 

the Hsp70 families is an extended linker region between the two subdomains of the SBD [92].  

The extended linker results in a structural change that causes the α domain to play a role in 

Hsp70 binding and likely plays less of a role in substrate interaction.  Due to these structural 

differences Sse1/2 act independently as holdases, which are proteins that bind to substrate 

and maintain it in a folding competent conformation, as opposed to foldases, which are proteins 

that bind and release substrate in iterative cycles to promote folding [93-95]. Co-crystal 

structures have been solved for the Hsp110/Hsp70 heterodimer, which shows the interaction 

interface lying between the two NBDs, and the α subdomain of the Hsp110 wraps around the 

Hsp70 NBD [92, 96].  The structure also shows that the β-sandwich domain of Hsp110 remains 

exposed and available for substrate binding [77, 92, 96, 97]. HspBP1, or Fes1 in yeast interacts 

with the NBD of Hsp70 through its armadillo repeat domain, or NEF domain, which distorts the 

two lobes of the Hsp70 NBD resulting in nucleotide release (Fig. 1.4) [98, 99]. The Bag domain-

containing family is made up of six homologs in humans and a single protein in yeast, Snl1, 

which is ER-membrane bound through its N-terminal transmembrane domain (Fig. 1.4). 
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Figure 1.4. Cytosolic Hsp70 nucleotide exchange factor (NEF) architectures and 

interaction interfaces.  Schematic representation of the architecture of each of the cytosolic 

Hsp70 NEFs as well as cartoon figures showing the interaction interfaces between Hsp70 and 

the NEFs. NEF family classifications are shown in parentheses.   
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Figure 1.4. Cytosolic Hsp70 nucleotide exchange factor (NEF) architectures and 
interaction interfaces  
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The Bag family of proteins interacts with Hsp70 through a triple helical bundle that contacts the 

Hsp70 NBD, slightly tilting one lobe to release ADP [38, 95, 100]       

      All of the NEFs are present at different levels in the cytosol: Sse1 is the most abundant 

NEF, present at 70,000 molecules per cell (compared to approximately 270,000 molecules of 

the Hsp70, Ssa), which is approximately five times that of Fes1, the next most abundant NEF, 

and levels of Sse2 and Snl1 are 15-20 times lower than Sse1 [101]. However Sse2 is the only 

NEF upregulated more than 20 fold in response to a number of stress conditions [61, 102].  

Loss of Sse1 results in a slow-growth phenotype exacerbated by temperature stress and 

deletion of both of the Hsp110s, Sse1 and Sse2, results in a lethal phenotype [102, 103].  

FES1 deletion cells exhibit mild slow growth and heat sensitivity [104]. No growth phenotypes 

associated with loss of Snl1 or Sse2 alone have been identified. 

      Similar to the cytosol, the ER also houses two distinct families of Hsp70 NEFs.  Kar2, the 

ER-resident Hsp70, interacts with two proteins Lhs1 and Sil1, that both result in the release of 

ADP from the Hsp70 NBD.  Lhs1 is a member of the Hsp110 family, but there are a few 

differences between Lhs1 and Sse1.  Lhs1 has a more extended linker between the α and β 

subdomains of the SBD [105]. Furthermore, Kar2 activates the ATPase activity of Lhs1, which 

is considered to be important for coordinated substrate interaction between the two proteins 

[106]. This linked chaperone/co-chaperone activity is also observed between the human ER 

Hsp70 and NEF, BiP and Grp170 [107, 108]; this type of chaperone interaction is thought to be 

possible between Sse1/2 and the Ssa proteins, but the function of the Sse1 SBD in Hsp70-

mediated folding is currently unknown.  Other than these two differences, there are many 

similarities between the Sse1 and Lhs1 including the dual NEF and holdase activities of Lhs1 

[77, 109, 110].  Sil1 is thought to be a member of the HspBP1 family, and in humans, a 

mutation in this protein is associated with the neurodegenerative disorder, Marinesco-Sjögren 

syndrome [111].  Although Sil1 acts as an equally potent NEF, it does not have completely 

redundant activities with Lhs1, mirroring the findings that will be later discussed in Chapter 4 

between Sse1 and Fes1.  Deletion of both SIL1 and LHS1 results in synthetic lethality, but loss 
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of either gene leads to protein folding defects in the ER [112, 113], suggesting these two 

proteins play unique roles in proteostasis.  Lhs1 was also shown to be important in protein 

translocation into the ER, which is not a function requiring Sil1 [113].   In addition, Lhs1 

contributes to Kar2-mediated folding and secretion of the heat denatured substrate, Hsp105Δ-

β-lactamase, but was not involved in initial folding of the protein.  These findings are similar to 

the work presented in this thesis, in that the NEFs contribute differentially to Hsp70-mediated 

functions, and in the finding that ER de novo folding and refolding of heat denatured proteins 

are distinct processes [114].  The ER-resident NEFs discussed above present a chaperone 

network very similar to the cytosol and show functional differentiation between two proteins, 

Lhs1 and Sil1, that perform the same biochemical function to release ADP from the Hsp70, 

Kar2.  This theme will be reiterated throughout the work presented in this thesis.   

Several studies have identified a number of individual NEF contributions to cytosolic Hsp70 

function. Sse1, the most highly studied yeast cytosolic NEF, has been shown to be important 

for a number of Hsp70-mediated processes.  Sse1 plays a significant role in the flux of nascent 

substrate through Ssa and Ssb proteins [97, 115].  In addition, Sse1 is necessary for 

biogenesis of the FFL protein in vivo or refolding in vitro [48].  Multiple experiments have also 

illustrated Sse1’s contribution to Hsp70-dependent co-translational folding, Hsp90-dependent 

signaling and post-translational translocation of pre-pro-α factor [77, 91, 97, 116]. Both Sse1 

and Fes1 have been implicated in prion propagation and curing. Sse1 is essential for [PSI+] 

propagation, and cells lacking Sse1 or Fes1 are cured for [URE3] [117, 118]. Sse1 and Fes1 

also contribute to Hsp70-mediated degradation via the ubiquitin proteasome pathway [119-

123].  It was recently shown that Snl1 associates with ribosomes through basic residues 

located near the Hsp70 binding Bag domain, but the functional ramifications are yet to be 

determined [124]. Work performed in the last decade has greatly augmented our understanding 

of the individual contributions of the cytosolic NEFs, but now the functions of these proteins 

must be studied at the network level to determine their relative contributions in vivo.    
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      In this study I have investigated differential contributions of the cytosolic Hsp70 NEFs to 

proteostasis, examined the functional significance of Sse1 and Snl1 synthetic growth 

phenotypes, and developed a coupled assay to address the relationship between protein 

aggregation and activation. I concluded that Sse1 is the primary NEF involved in most Hsp70 

mediated processes. However, it appears that none of the individual NEFs nor the two most 

abundant NEFs, Sse1 and Fes1, is necessary for protein refolding and repair.  The role of Sse1 

as the major NEF involved in cellular viability is reflected in the growth assays, which show that 

an SSE1 deletion strain exhibits a slow-growth phenotype with temperature sensitivity 

suggesting it is likely important in protein biogenesis as well as quality control. Loss of Fes1 

only showed a mild growth defect and heat sensitivity, suggesting it might be primarily 

important in protein quality control mechanisms.   In addition, cells lacking Fes1 resulted in high 

de-repression of the HSR.  Induction of the HSR also results in an increase in the cellular 

chaperone load.  It is possible that this phenotype could mask Fes1’s contributions to Hsp70 

function due to the availability of other chaperones.  This study did not reveal any unique 

functions of the Snl1 or Sse2 proteins, but previous studies performed in my laboratory with 

Snl1, as well as findings in this study, suggest that Snl1 may be involved in regulating some 

aspect of translation. In addition, it is possible that Sse2 is conditionally needed because it is 

the only NEF highly induced in response to stress.   

 In several experiments I compared solubility of a protein to its enzymatic activity or its rate 

of degradation; these two phenomena are closely connected.  In a coupled assay to monitor 

near real time fluorescence microscopy with automated enzymatic assays, I discovered that the 

dynamics of an aggregate is directly related to the ease at which the protein is liberated from 

the aggregate for refolding.  In addition, the presence of a disaggregase system is essential for 

efficient restoration of proteostasis.   

 Finally, phenotypes identified in my earlier work, as well as the synthetic deletion phenotype 

identified in the NEF study, led me to examine the functional relationship between Sse1 and 

Snl1.    This line of investigation uncovered that the levels of Snl1 become very important for 
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viability in the absence of Sse1, which suggests that Sse1 antagonizes the Snl1-mediated 

activity.  Due to the cold sensitivity (known to be associated with translation defects) observed 

upon deletion of SSE1 and SNL1, the ER localization of Snl1, and the induction of the HSR in 

the presence of high levels Snl1 in an SSE1 null strain, I hypothesized that this unknown 

function of Snl1 is associated with translation regulation.  Ultimately, all of these proteins have 

homology to human cytosolic proteins and therefore these studies can be applied to 

understand the division of labor among the NEFs in human cells, which can be used to develop 

treatments to modulate proteostasis. 
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SIGNIFICANCE OF THIS STUDY 

Understanding cytosolic Hsp70 NEFs - Previous findings mentioned above were performed in 

different strain backgrounds using multiple substrates, which contribute to the understanding of 

how the NEFs function.  However, the NEFs do not function alone in the cell and it is important 

to investigate how they work within the context of the chaperone network. I have performed 

comprehensive genetic, biochemical, and cell biological analyses in isogenic single and 

combinatorial cytosolic NEF deletion strains.  This thesis work aims to address a more global 

question of why have the three families of NEFs been maintained throughout eukaryotic 

evolution upon converging to perform the same biochemical function, which is to release ADP 

from Hsp70.  All three families have similar levels of NEF activity in vitro but are completely 

distinct structurally and in sequence.  Understanding how these NEFs contribute relatively to 

the chaperone network is important for two reasons: first, understanding specific functions can 

lead to the discovery of molecules that modulate Hsp70 function, which is becoming important 

in treatment for both neurodegenerative diseases and cancer. In addition, there are disorders 

directly associated with NEF dysfunction such as Marinesco-Sjøgren syndrome, which is an 

autosomal recessive cerebellar ataxia caused by a mutation in the Fes1 homolog in the ER, 

Sil1 (BAP) [125].  Second, loss of Hsp110 is associated with tau pathology in a mouse model 

and huntingtin-related neurodegeneration in a Drosophila model [126, 127]. The NEFs provide 

both direct and indirect targets for the development of drugs to treat a number of diseases.   

 

Human diseases related to proteostasis - Protein misfolding and aggregation in humans have 

been associated with the formation of highly structured amyloid deposits common to many 

neurodegenerative disorders including Alzheimer’s, Parkinson’s, and Huntington’s diseases 

[128]. These neurodegenerative diseases have a common theme in which normally existing 

proteins with either known or unknown functions adopt an alternative fold. This can lead to the 

formation of disordered and ordered aggregates that can further develop into highly structured 

amyloid fibers.  Understanding which of these proteins is most toxic and important in 
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neurodegeneration and what promotes its formation will require many more years of study.  In 

Alzheimer’s disease, both accumulation of amyloid beta (Aβ) and hyperphosphorylated tau 

protein are associated with neuroinflammation and progression of the disease [129]. α-

synuclein, the major component of Lewy Bodies, is a neuronal protein that misfolds leading to 

the formation of oligomers and ultimately fibrils, a mature ordered form of aggregate associated 

with Parkinson’s disease [130-132].  In Huntington’s disease and other poly-Q pathologies, 

disease onset and severity are highly dependent on the number of glutamine residues found in 

the protein, which have a direct relationship with the tendency toward forming ordered 

aggregates [133, 135, 136].  There are also a number of neurodegenerative diseases 

associated with the human prion protein PrP, which switches to the infectious scrapie form 

(PrPSC) through an unknown mechanism. PrPSC is associated with a number of human 

diseases including Creutzfeldt-Jakob disease (CJD), Gerstmann-Straussler syndrome (GSS), 

fatal familial insomnia (FFI), and Kuru [134, 135]. Mechanisms for how the alternate forms of 

each of these proteins are formed and how they lead to toxicity are mostly unknown.  Because 

protein misfolding seems to be central to all of these human diseases, it is important that the 

field identifies how chaperone activity can be altered to help correct folding or improve 

degradation of these aberrant proteins [136]. 

 

Treatments and therapies - There are currently no treatments or therapies that slow the 

progression or reverse the effects of neurodegenerative diseases.  Primarily small molecules or 

genetic modifiers have been identified and tested for their ability to modulate proteostasis [137].  

The chief goals for treating these types of diseases are to stabilize proteins to prevent 

misfolding and aggregation, or once the protein is misfolded, to promote protein refolding or 

degradation.  Both of these can be addressed through activation of stress responses or through 

direct modulation of molecular chaperones.  Hsp90 and Hsf1 have been primary targets for 

small molecule treatments, but more recently Hsp70 has become a desirable target [137, 138]. 

Multiple compounds were identified through a high-throughput screen that either increased or 
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decreased Hsp70 ATPase activity. The group that decreased activity were shown to specifically 

lower the levels of both total and hyperphosphorylated tau species in HeLa cells, and clear both 

normal and aberrant forms of the protein from mouse brains [139-141].  In addition, treatment 

with a compound that increased Hsp70 ATPase activity improved Hsp70-mediated luciferase 

refolding and suppressed the temperature-dependent slow growth defect observed in ydjΔ 

yeast cells [142].  One major issue with modulating chaperones, such as Hsp70 and Hsp90, is 

that these proteins act in a wide variety of proteostasis pathways, so it is important to regulate 

them as specifically as possible. One way to do this is to target the co-chaperones.  Although 

the J-domain proteins are well known to provide substrate and process specificity to Hsp70, 

this work suggests that the cytosolic NEFs may provide an additional level of control.  

Gestwicki and associates have identified a family of small molecules that affect the interaction 

between Hsp70 and the Bag-domain containing family of proteins, and I am now testing these 

compounds for specificity and efficacy. Targeting distinct families of co-chaperones is 

promising for developing treatment and therapies of proteostasis diseases. 
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MATERIALS AND METHODS 

Strains, plasmids and growth conditions - All strains in these studies are listed in Table 2.1 and 

are isogenic to BY4741 (MATa/his3Δ1/leu2Δ0/met15Δ0/ura3Δ0), BY4742 

(MATα/his3Δ1/leu2Δ0/lys2Δ0/ura3Δ0), or DS10 (MATa/leu2-3/112trp1-1/ura3-

52/lys1/lys2/his3-11,15).  Cells were grown on media containing 2% dextrose.  Media used in 

these studies include the nutrient rich media, yeast extract-peptone-dextrose (YPD) or 

synthetic complete (SC) media lacking only amino acids necessary for plasmid selection and 

supplemented with yeast nitrogen base (YNB) at 6.71 mg/ml (Sunrise Science Products, San 

Diego, CA).  In addition, for some experiments additives were used including azetidine-2-

carboxylic acid (2 mM) (Sigma Aldrich, St. Louis, MO), cycloheximide (100 µg/ml) (Acros 

Organics, Geel, Belgium), CdSO4 (200 µM) (Sigma) and diamide (300 µM) (Research 

Organics, Cleveland, OH).    

      Plasmids used in these studies are listed in Table 2.2. Deletion strains were constructed 

using cassettes built in pBluescriptII carrying the marker genes KANMX4, LEU2, or HIS3, 

flanked upstream and downstream by non-coding regions of SSE1, SSE2, FES1, and SNL1.  

Descriptions of the plasmids, including restriction sites used for cloning, are provided in Table 

2.2. Folding analysis was done in cells expressing the 425MET25-FFL-GFP–leu2::URA3 

plasmid. The original plasmid, p425MET25-FFL-GFP, was a generous gift from John Glover’s 

laboratory at University of Toronto. The plasmid used in this study was constructed by 

amplifying the URA3 gene from p426 [143] using oligonucleotides containing homologous 

regions of the LEU2 gene (5’-ATGTCTGCCCCTAAGATCGTCGTTTTGCCAGGTGACTAACTG 

AGAGTGCACCATACCACAGC-3’, 5’-TTAAGCAAGGATTTTCTTAACTTCTTCGGCGACAGCA 

TCACCCACCGCATAGGGTAATAACTG-3’).  For recombination of URA3 into the LEU2 locus, 

the amplicon and p425MET25-FFL-GFP were transformed into BY4741 cells. The construct 

was rescued from Leu+ Ura- transformants (Geitz laboratory protocol; University of Manitoba) 

and transformed into E. coli for amplification.  The plasmid was purified from E.coli using 

standard procedures and confirmed using PCR.  The p425MET25-FFL-GFP-leu2::URA3 
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construct was transformed into NEF deletion strains using the rapid yeast transformation 

protocol [144]. For Hsf1 activity assays, pSSA3HSE-lacZ, previously described in [145], was 

transformed into wild-type cells and each of the single deletion strains. For degradation 

analysis, strains were constructed using pRH2081 (from Randy Hampton’s Laboratory, UC San 

Diego), which is an integrative plasmid that carries TDH3-driven ssCPY*-GFP [120]. The 

plasmid was linearized using restriction endonuclease Van91I and transformed into wild-type 

and NEF deletion strains. For immunoprecipitation analyses, yeast cells were transformed with 

either p413TEF-FLAG-SSE1 or p413TEF-FLAG-FES1, which were constructed by subcloning 

the FLAG tagged SSE1 or FES1 using SpeI/XhoI restriction sites into the 413TEF plasmid as 

previously described in [124, 143].  For overexpression studies, all SSE1 and SNL1 alleles 

were cloned into parent vectors at SpeI/XhoI restriction sites.  

 

Yeast growth assays - For NEF deletion strain growth analysis, cultures were diluted to A600= 1; 

1:10 serial dilutions were spotted on YPD plates.  To identify growth phenotypes in both optimal 

and stress-inducing growth conditions, plated cells were incubated at 15, 25, 30 and 37°C for 

up to 5 days. To test azetidine-2-carboxylic acid (AZC) toxicity, strains were grown overnight 

and 1:10 serial dilutions were plated on SC media or SC+2 mM AZC and incubated at 30°C for 

3-5 days.   For de novo folding analyses, NEF deletion strains containing p425MET25-FFL-

GFP-leu2::URA3 were grown overnight in SC-URA media containing 200 µM additional 

methionine (addition of methionine represses expression of the FFL-GFP fusion under the 

MET25 promoter), subcultured in the same media, and grown to early log phase (A600= 0.4-

0.5), then induced in SC-URA-MET media.  Refolding assays were performed using NEF 

deletion strains containing p425MET25-FFL-GFP-leu2::URA3  and cells were grown overnight 

in SC-URA and subcultured to log phase A600= 0.8-1.0.  Cells were induced in SC-URA-MET 

for 1 hour at 30°C.  Prior to heat shock cells were treated with 100 µg/ml of cycloheximide and 

then incubated at 42°C for 25 minutes, and recovered for 60 minutes at 30°C. For degradation 

analysis log phase cells were treated with 100 µg/ml cycloheximide (CHX).   
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Protein isolation and visualization - For folding and immunoprecipitation analyses, proteins 

were isolated using glass bead lysis as described in [124]. Western blot analysis was 

performed using α-Ssa1/2 polyclonal antibody (from M. Ptashne, Sloan Kettering Institute) at a 

1:100,000 dilution, α-Ssb1/2 polyclonal antibody (from E. Craig, University of Wisconsin) at a 

1:10,000 dilution, α-GFP monoclonal antibody (Roche; Nutley, NJ) at a 1:1000 dilution, or α-

FLAG monoclonal antibody (Sigma). For degradation analyses and Hsf1 derepression assays, 

denaturing extractions were performed. Cells were resuspended in 200 µl SUME buffer 

(sodium dodecyl sulfate, 1%; urea, 8 M; MOPS, 10 mM, EDTA, 10 mM) + protease inhibitors 

(aprotinin, 2µg/ml; pepstatin A, 2 µg/ml; leupeptin, 1µg/ml; phenylmethylsulfonyl fluoride, 1mM; 

chymostatin, 2 µg/ml).  Glass beads were added and cells were lysed by vortexing for 3 

minutes and then centrifuging cells at approximately 4,600 x g for 5 minutes at room 

temperature. Supernate was transferred to a new tube and 6x SDS sample buffer (Tris-HCl, pH 

6.8, 350 mM; glycerol, 36%(v/v); SDS, 10% (w/v); β-mercaptoethanol, 5% (w/v); bromophenol 

blue, 0.012% (w/v)) was added and the sample was incubated at 65°C for 10 min. Proteins 

were separated by 15% SDS-PAGE and transferred to a PVDF membrane (Millipore 

Corporation, Billerica MA).  For degradation analysis α-GFP (Roche; 1:1000) or α-Pgk 

(Invitrogen, Carlsbad, CA; 1:1000) primary antibodies were used. For Hsf1 derepression assay 

proteins were incubated with α-Cpr6 (Jill Johnson Laboratory, University of Idaho; 1:1000), 

αHsp104 (Assay Designs / Stressgen, Farmingdale, NY; 1:1000), α-Sti1 (David Toft laboratory, 

Mayo Clinic, Rochester, NY; 1:1000), or α-Pgk (Invitrogen; 1:1000).  Translocation analysis 

used anti-pre-pro-α factor (α-ppαF) (Randy Schekman laboratory, University of California 

Berkeley; 1:2000).  To visualize proteins, membranes were exposed to enhanced 

chemiluminescence reagents and developed on X-ray film using a developer or a LI-COR C-

DiGit Blot Scanner and Image Studio Digits software (Lincoln, NE).  Coomassie staining was 

performed by placing the SDS-PAGE gel into Coomassie Brilliant Blue Stain (Coomassie Blue 

0.076% (w/v); methanol 45% (v/v); acetic acid 10% (v/v); water 45% (v/v)) for 20 minutes with 

rocking. Gels were rinsed in water and destain (acetic acid 5% (v/v); methanol 16.5% (v/v); 



 31 

water 78.5% (v/v)), microwaved for 30 seconds, and allowed to incubate until the desired 

staining of the protein bands was achieved. 

 

Fluorescence microscopy - Cells were collected and visualized using an Olympus IX81-ZDC 

inverted microscope as described previously in [146] as well as in Chapter 3.  To test steady-

state protein solubility, log phase cells were visualized. For refolding analysis, samples were 

collected prior to heat shock, immediately following heat shock, and 60 minutes post heat 

shock to be visualized using fluorescence microscopy. To perform degradation assays, 

samples were collected immediately after cycloheximide treatment and one and two hours post 

treatment. Quantification was performed by counting approximately 100 cells and dividing the 

number of cells containing aggregates by the total number of cells.   

 

 FFL-GFP activity assay - To test steady-state FFL activity, light unit production was monitored 

once cells reached log phase exactly as described in Abrams 2013 and Chapter 3. In short, an 

automated plate reader protocol (BioTek Synergy MX; Winooski, VT) was used to inject 100 µl 

of cells with 50 µl of D-luciferin reagent (~23 µg) (Sigma) in a 96-well white plate (Greiner; 

Monroe, NC) followed by mixing and a luminescence reading.  For refolding analysis, the 

activity was measured after cycloheximide treatment and heat shock.  In addition, an 

automated protocol described in Abrams 2013 and Chapter 3 was programmed using the 

Synergy MX plate reader (BioTek) to measure luminescence immediately after heat shock and 

at 60 minutes into recovery at 30°C. 

 

Hsf1 de-repression assay - Cells expressing the HSE-lacZ reporter construct were grown to log 

phase.  Activity of Hsf1 was determined by adding 50 µl of cells to 50 µl of Beta-Glo reagent 

(D-luciferin-o-β-galactopyranoside, Promega; Madison, WI) in wells of a white 96-well plate.  

After a 30 minute incubation at 30°C, the Synergy MX plate reader was used to measure 

luminescence. 
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Immunoprecipitation - The in vitro immunoprecipitation (IP) was performed using purified 

FLAG-Fes1 (3 µg/µl) incubated with no lysate or whole cell lysate at 4.5 µg/µl, or 7.5 µg/µl for 

two hours.  Protein was eluted using 30 µl of M2 FLAG resin (Sigma).  For in vivo FLAG-Fes1 

IP strains expressing empty vector p413TEF or p413TEF-FLAG-FES1 were grown to mid-log 

phase and the protein was isolated using glass bead lysis. 10 µl of supernate was mixed with 

10 µl of 2X SDS-PAGE sample buffer and incubated at 65°C for 10 minutes.  For the IP, the 

remaining supernate was transferred to a new tube and 30 µl of FLAG resin was added along 

with 700 µl of TEGN (Tris-HCl, pH 7.9, 20mM; ethylenediaminetetraacedic acid (EDTA), 0.5 

mM; glycerol 10%(v/v); NaCl, 50 mM) + PI.   The IP was incubated for 2 hours at 4°C with 

rocking, followed by 8 washes with 500 µl of TEGN + PI.  After the beads were washed, 40 µl 

of FLAG peptide solution (7 µg total) was added and the mixture was incubated at 37°C for 25 

minutes.  Protein solution was centrifuged at 4,600 x g and 40 µl of the supernate was 

transferred to a new tube, SDS-PAGE sample buffer was added and samples were incubated 

at 65°C for 10 minutes.  

 

Statistical analysis – The statistical analysis pertains to Chapter 4 only and was adapted from 

the publication denoted at the beginning of the chapter. All experiments were performed in 

triplicate and the results are represented as mean ± SD. Significance determinations were 

performed using the two-tailed Student t test. P values are represented as follows: *, p < 0.05; 

**,  p < 0.005; ***, p < 0.0005. Differences in data sets were considered to be statistically 

significant for all comparisons where p < 0.05. 
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Table 2.1. Strains used in these studies 

Strains Genotype Origin 

BY4741  Mata//his3Δ1/leu2Δ0/met15Δ0/ura3Δ0 Open Biosystems/ 
Thermo Scientific 

BY4742 Matα//his3Δ1/leu2Δ0/lys2Δ/ura3Δ0 Open Biosystems/ 
Thermo Scientific 

DS10 Mata//leu2-3,112/trp1-1/ura3-
52/lys1/lys2/his3-11,15 

[147] 

sse1Δ BY4741 sse1Δ::G418r This study 

sse2Δ BY4741 sse2Δ::G418r This study 

fes1Δ BY4741 fes1Δ::HIS3 This study 

snl1Δ BY4741 snl1Δ::LEU2 This study 

sse1Δfes1Δ BY4741 sse1Δ::G418r, fes1Δ::HIS3 This study 

sse1Δsnl1Δ BY4741 sse1Δ::G418r, snl1Δ::LEU2 This study 

fes1Δsse2Δ BY4741 fes1Δ::HIS3 
sse2Δ::G418r 

This study 

fes1Δsnl1Δ BY4741 fes1Δ::HIS3 
snl1Δ::LEU2 

This study 

sse1Δfes1Δsnl1Δ BY4741 sse1Δ::G418r 
fes1Δ::HIS3 
snl1Δ::LEU2 

This study 

sse2Δfes1Δsnl1Δ BY4741 sse2Δ::G418r 
fes1Δ::HIS3 
snl1Δ::LEU2 

This study 

ssz1Δ BY4741 ssz1Δ::G418r Yeast Knockout 
Collection 

zuo1Δ BY4741 zuo1Δ::G418r Yeast Knockout 
Collection 

edg1Δ BY4741 edg1Δ::G418r Yeast Knockout 
Collection 

edg2Δ BY4741 edg2Δ::G418r Yeast Knockout 
Collection 
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ssb1Δssb2Δ DS10 ssb1Δ::HIS3 ssb2Δ::LEU2 [56] 

ssb1Δssb2Δsse1Δ DS10  ssb1Δ::HIS3 ssb2Δ::LEU2 
sse1Δ::G418r 

This study 
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Table 2.2. Plasmids used in these studies 

Plasmid Description 

pBluescriptII – LEU2 BluescriptII plasmid with ~2173 bp of the 
LEU2 gene cloned with BamHI/SpeI 

pBluescriptII – HIS3 BluescriptII plasmid with ~1200 bp of the 
LEU2 gene cloned with BamHI 

pBluescriptII – KANMX4 BluescriptII plasmid with ~1440 bp of the 
LEU2 gene cloned with EcoRI/BamHI 

p413TEF Low copy; HIS+, constitutive promoter 
[143] 

pRS426 High copy; URA+ [143] 

  

pRH2081TDH3 – ss – CPY* - GFP Integrative plasmid containing the soluble 
CPY mutant with a C-terminal GFP tag 
(Hampton, UC San Diego) 

p425MET25-FFL-GFP High copy; Met repressible promoter 
containing firefly luciferase fused to green 
fluorescent protein [148] 

p425MET25-FFL-GFP – leu2::URA3 
 

Contains a LEU2 deletion with a URA3 
inserted through homologous 
recombination 

pSSA3HSE-lacZ 
 

Contains a heat shock response element 
from the promoter of SSA3 [145] 

p413TEF-FLAG-FES1 
 

N-terminally FLAG-tagged SSE1 ORF 
inserted into MCS (SpeI/XhoI) 

p413TEF-FLAG-SSE1 
 

N-terminally FLAG-tagged FES1 ORF 
inserted into MCS (SpeI/XhoI) 

p423GPD High copy; HIS+ constitutive promoter 

p423GPD-SNL1-FLAG C-terminally FLAG-tagged SNL1 ORF 
inserted into the MCS (SpeI/XhoI) 
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p413TEF-SNL1-FLAG C-terminally FLAG-tagged SNL1 ORF 
inserted into the MCS (SpeI/XhoI) 

p413TEF-Δ40snl1-FLAG C-terminally FLAG-tagged SNL1 ORF 
(lacking the first 40 aa; transmembrane 
domain) inserted into the MCS (SpeI/XhoI) 

p413TEF-SNL1E112A,R141A-FLAG C-terminally FLAG-tagged SNL1 ORF 
(with two mutations E112A and R141A; 
Hsp70 binding mutant) inserted into the 
MCS (SpeI/XhoI) 

p413TEF-Δ40snl1E112A,R141A-FLAG C-terminally FLAG-tagged SNL1 ORF 
(with two mutations E112A and R141A; 
Hsp70 binding mutant and lacking the first 
40 aa; transmembrane domain) inserted 
into the MCS (SpeI/XhoI) 

p413TEF-snl1(5K->A)-FLAG C-terminally FLAG-tagged SNL1 ORF 
(with 5 lys mutation in helix 1 of bag 
domain; ribosome binding mutant) inserted 
into the MCS (SpeI/XhoI) 

p415CYC Low copy; LEU+, weak constitutive 
promoter [143]  

p415CYC-FLAG-SSE1 N-terminally FLAG-tagged SSE1 ORF 
inserted into MCS (SpeI/XhoI) 

p415CYC-FLAG-sse1N281A N-terminally FLAG-tagged SSE1 ORF 
(with N281A mutation in NBD; binds Ssa 
only) inserted into MCS (SpeI/XhoI) 

p423GPD-FLAG-SSE1 N-terminally FLAG-tagged SSE1 ORF 
inserted into MCS (SpeI/XhoI) 

p423GPD-FLAG-sse1N281A N-terminally FLAG-tagged SSE1 ORF 
(with N281A mutation in NBD; binds Ssa 
only) inserted into MCS (SpeI/XhoI)  

p416TEF Low copy; URA+, strong constitutive 
promoter 

p416TEF-SNL1-FLAG C-terminally FLAG-tagged SNL1 ORF 
inserted into the MCS (SpeI/XhoI) 

p415TEF-SNL1-FLAG C-terminally FLAG-tagged SNL1 ORF 
inserted into the MCS (SpeI/XhoI) 

p415TEF-SNL1-FLAG C-terminally FLAG-tagged SNL1 ORF 
inserted into the MCS (SpeI/XhoI) 
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Chapter 3:  Coupled assays for monitoring protein refolding 
in Saccharomyces cerevisiae 
 

 

 

 

 

Note: This chapter has been derived from work that has been published in The Journal of 

Visualized Experimentation (JOVE).  Abrams, J. L., Morano, K. A. Coupled Assays for 

Monitoring Protein Refolding in Saccharomyces cerevisiae. J. Vis. Exp. (77), e50432, 

doi:10.3791/50432 (2013). I performed all experiments presented in this chapter. Permission to 

use this work in my thesis was granted by the Deputy Director of Journal Development, Kira M. 

Henderson, Ph. D..   
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INTRODUCTION 

      In humans, neurodegenerative disorders including Alzheimer’s, Parkinson’s, and 

Huntington’s diseases have been linked to protein misfolding and aggregation [149].  Cells 

employ molecular chaperones to prevent kinetic trapping of cellular proteins into misfolded 

inactive structures [150].  Chaperones participate in intricate interaction networks within the 

cell, but it is not completely understood how the sum of these interactions contributes to 

organismal proteostasis.  One of the main chaperones responsible for the majority of cytosolic 

protein folding is the 70 kilodalton heat shock protein (Hsp70) family [22].  It has been shown 

that in yeast loss of Hsp70 decreases the ability to fold nascent heterologously expressed 

firefly luciferase (FFL) and to refold the endogenous protein ornithine transcarbamylase, in vivo 

[74, 75].  The ability to analyze folding with near-real time resolution will facilitate understanding 

how additional cellular factors contribute to this Hsp70-dependent process. In addition, 

folding/refolding reactions may not be obligately dependent on these contributing proteins, so 

assays must be sensitive enough to detect small changes in kinetics and efficiency.  

 The yeast cell disaggregase, Hsp104, plays a vital role in repairing aggregated misfolded 

proteins.  Although Hsp104 homologs have been identified in fungi and plants, this family is 

absent in metazoans.  It has been proposed that other chaperones, such as those of the 

Hsp110 family perform disaggregase activity in mammals [85, 86]. Hsp104 is a AAA+, 

hexameric protein complex that functions in yeast to remodel protein aggregates, contributing 

to refolding and repair [151].  Hsp104, along with the yeast Hsp70, Ssa1, and the yeast Hsp40, 

Ydj1, is required for recovery of denatured FFL in yeast cells [152, 153].  The small heat shock 

protein, Hsp26, has also been shown to be required for Hsp104-mediated disaggregation of 

FFL [154].   

 FFL is a two-domain protein that binds the substrate luciferin in the active site and following 

a conformational change that requires ATP and oxygen, decarboxylates the substrate releasing 

oxyluciferin, carbon dioxide (CO2), adenosine monophosphate (AMP), and light [155-157]. The 

commercially available FFL substrate, D-luciferin, results in light emission at 550-570 nm that 
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can be detected using a luminometer [158]. FFL is exquisitely sensitive to denaturation from 

chemical or heat treatments and aggregates rapidly upon unfolding.  When exposed to 

temperatures at 39-45°C FFL is reversibly unfolded and inactivated [159]. In contrast, GFP and 

its derivatives are highly resistant to protein unfolding stresses [160]. Therefore fusion of these 

two proteins allows FFL to function as an experimentally labile moiety capable of targeting 

functional GFP to intracellular deposits that can be visualized using fluorescence microscopy at 

both the population and single-cell levels.  Application of the enzymatic assay in a semi-

automated multimode plate reader coupled with automated microscopy allows unprecedented 

simultaneous assessment of kinetics and yield of refolding reactions.  In addition, the facile 

molecular genetics of the model eukaryote Saccharomyces cerevisiae allows both precise 

manipulation of the protein quality control network and the opportunity for discovery-based 

approaches to identify novel players contributing to cellular stress response and proteostasis. 

 In this study, wild-type (WT) and HSP104 deletion strains expressing FFL-GFP are subject 

to protein denaturing heat-shock. FFL-GFP refolding is monitored through both an enzymatic 

assay and microscopy as a proxy readout for repair of the expressed proteome over a recovery 

time course.  When compared to wild-type cells, I show the Hsp104 deletion strain is ~60% less 

efficient at refolding FFL-GFP, supporting previous findings establishing a role for Hsp104 in 

reactivation of denatured FFL [154].  
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METHODOLOGY 

1. Construction of strains containing FFL-GFP plasmid 

For this study, Saccharomyces cerevisiae strain BY4741 (MATa, his3Δ1, leu2Δ0, 

met15Δ0, ura3Δ0) was used along with an HSP104 deletion strain from the yeast 

knockout collection (Open Biosystems/Thermo Scientific). The deletion was confirmed 

by Western blot analysis using an Hsp104-specific antibody. 

 

FFL-GFP was expressed from p426MET25-FFL-GFP, constructed from a LEU2-based 

source plasmid obtained from the Glover laboratory at the University of Toronto [148]. 

Expression of the FFL-GFP plasmid fusion protein is controlled by the MET25 

methionine-repressible promoter. The plasmid was transformed into each strain using a 

protocol adapted from [144]: 

 

1. Centrifuge 25 ml of log phase cells in a 50 ml conical tube at 1,800 x g for 2 

minutes, wash with 500 µl of double distilled H20 (ddH2O), and discard 

supernate.   

2. Resuspend cells in 250 µl of TE/LiAc (Tris-HCl 10 mM pH=7.5, 1 mM EDTA, 0.1 

M lithium acetate). Incubate at 30°C without mixing for 20 minutes.   

3. Transfer 50 µl of competent cells to a new tube along with 5 µl (50 µg) of carrier 

DNA and 5 µl (0.1-5 µg) of plasmid DNA.  Add 300 µl of PEG/TE/LiAc (same as 

TE/LiAc plus 40% polyethylene glycol (4000 g/mol) to this mixture, and incubate 

cells at 30°C for another 30 minutes.  

4. Add 1/10 volume (v/v) DMSO (36 µl) to this mixture and heat shock at 42°C for 6 

minutes.   

5. Centrifuge mixture at 3,380 x g rpm for 30 seconds and remove supernate.  

Resuspend cells in 100 µl of sterile ddH20 and plate cells onto synthetic 

complete media lacking uracil (SC-URA).    
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2. Induction of FFL-GFP 

FFL-GFP is induced once cells are in log phase so the majority of the protein prior to 

heat-shock is newly made to avoid proteins that have terminally aggregated over time 

due to aging-associated cellular inadequacies. 

 

1. Day 1: Incubate cells in 5 ml of SC-URA at 30°C rotating overnight.   

2. Day 2: Measure OD600 and inoculate fresh cultures in 5 ml of SC-URA 

OD600~0.2. 

3. Incubate cultures with rotation at 30°C until they reach log phase OD600~0.8-1.0.  

4. Centrifuge cells in 15 ml conical tubes at 1,800 x g for 3 minutes, decant 

supernate and resuspend cell pellet in 500 µl of ddH20; transfer solution to a 

microcentrifuge tube.  

5. Centrifuge at 3,380 x g and discard supernate. 

6. Resuspend cells in 5 ml of SC-URA-MET. Cells should be incubated rotating in 

this media for 1 hour at 30°C.   

7. Centrifuge cells and repeat wash in ddH20 and discard supernate. 

8. Resuspend cells in 5ml SC-URA media containing 100 µg/ml of cycloheximide 

to inhibit protein expression, and proceed immediately to Step 3.  

 

3. Enzymatic FFL-GFP recovery assay 

This assay is a quantitative approach to determine the levels of active enzyme in a 

population.  

 

1. Preparation for this assay: 

i. Measure OD600 for each sample. 
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ii. Prepare necessary amount of D-luciferin needed, based on the number 

of samples and desired number of replicates plus approximately 1200 µl 

for the tubing.  Final concentration of D-luciferin is ~23 µg per 100 µl of 

the culture.  Dissolve the D-luciferin by following the manufacturer’s 

instructions. Briefly, make a stock solution of at a concentration of 7.5 

mg/ml and diluted to 455 µg/ml in SC prior to experiment. In Figure 3.2, 

three replicates for each sample were analyzed resulting in a total of 2.4 

ml of D-luciferin being used. 

iii. Program plate reader for flash luminescence assay (adapted from 

BioTek Gen5 “Luminescence Flash Assay with Injection”; for other 

instruments follow manufacturer’s instructions) 

a. Set temperature to 30°C  

b. Set plate reader to add D-luciferin, shake, and read each well 

individually. 

c. Read luminescence (endpoint reading, 5 second integration time, 

180 sensitivity level) 

d. For recovery assay between each reading, shake for 5 minutes, 

delay 20 min, and shake an additional 5 min. 

e. Dispense 50 µl of D-luciferin from an injector. 

2. Pre-heat-shock luminescence is measured immediately after cells are added to 

media containing cycloheximide to halt protein synthesis.   

i. Transfer 100 µl of cells for each sample with desired number of 

replicates into a solid white 96 well plate.  

ii. Controls should include a water blank and cells containing an empty 

vector. 

iii. Start the read with the specifications listed above. 
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3. To denature the FFL moiety of FFL-GFP, incubate the 5 ml culture in a glass 

culture tube at 42°C shaking for 25 minutes.   

4. Recovery assay luminescence readings start immediately after cells are 

removed from the incubator, which is time point zero.  Measure luminescence 

same as described above for the first time point and every 30 minutes for 90 

minutes. 

5. Normalize samples to preheat-shock luminescence values that have been 

adjusted based on the OD600 (divide the preheat-shock values by OD600). 

 

4. Fluorescence microscopy 

This assay is a semi-quantitative method to determine solubilization of aggregates over 

time in a population of cells. 

 

1. Induction is the same as described in Section 2, Steps 1-8 of protocols. 

2. The same time points are taken as described above (Section 3, Step 4), but for 

microscopy collect 1 ml of culture at pre-heat-shock and each recovery time 

point, and incubate samples rotating at 30°C in culture tube.   

3. Visualization:  

i. Centrifuge 1 ml of culture at 3,380 x g for 30 seconds and remove 

supernate. 

ii. Resuspend cell pellet in 2 µl of ddH2O.  

iii. Mix 2 µl of cells plus 2 µl of 2% low melt agarose on the slide and add a 

cover slip.  In order to obtain a single plane of cells lightly press finger 

down in the center of the cover slip and rotate until the cover slip is 

difficult to move.  
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iv. Cells are visualized using 100X oil objective on fluorescent microscope; 

use DIC to visualize cells and the FITC filter to visualize GFP 

fluorescence.   

v. Take multiple pictures for each strain at each time point for quantitation.  

Fields for pictures should contain ~15-30 cells for quantitative post-

experimental analysis.   

vi. To calculate percentage of cells containing aggregates, count 50-100 

cells total and divide the number of cells containing aggregates. 

 

5. Single cell microscopy 

This method is used to follow the solubilization of individual aggregates in a single cell 

over time.  

 

1. Induce FFL-GFP expression as described in Section 2, Steps 1-8. 

2. After heat-shock, centrifuge cells in 15 ml conical tube at 4,400 rpm for 2 

minutes. 

3. Wash cells with 500 µl of water and resuspend in 10-20 µl of ddH2O. 

4. For each strain, cut out a 5 x 5 mm section of an SC-URA agar plate and using 

the surface that was in contact with petri dish, pipette 4 µl of cells and spread 

around surface of agar with pipette tip.  Let stand for ~1 min. 

5. Use tweezers to place agar cube section face-down on a ~55 mm glass bottom 

dish No. 0 and press down lightly. 

6. Visualization: 

i. See iv in Section 4. 

ii. Set coordinates for 2-4 focal points for each strain depending on density 

of culture.  
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iii. Set camera to take pictures with a Z-stack with appropriate range (-/+ 

15µm with a 0.5-1.0 µm slice thickness) every 5 minutes for a 90 minute 

period. 
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RESULTS 

      Yeast is dependent on the disaggregase, Hsp104, to efficiently refold heat-denatured 

proteins.  The activity of FFL-GFP was monitored after a 25 minute heat shock, using a 

luminescence flash assay (Fig. 3.1).  The results of this automated assay shown in Figure 3.2 

revealed a stepwise increase in activity over 90 minutes that ultimately led to a >80% recovery 

in wild-type cells.  The hsp104Δ strain recovered 19% of the original activity over the same time 

frame.  Moreover, the extent of initial inactivation was much higher in the chaperone mutant 

strain (26% activity in wild-type and 11% in hsp104Δ) suggesting that Hsp104 may be serving a 

protective role pre-stress, or rapidly associates with denaturing FFL-GFP during the thermal 

inactivation step to reduce loss of enzyme activity. 

 Population microscopy corroborated the enzymatic activity assay.  Nearly all cells in the 

hsp104Δ mutant strain maintained at least one FFL-GFP aggregate compared to the number of 

aggregates in the wild-type strain, which decreased by 62% within 90 minutes after heat-shock 

(Fig. 3.3).  While a substantial number of aggregates formed immediately after heat-shock in 

both strains, the number of wild-type cells containing aggregates decreased rapidly while 

hsp104∆ cells failed to clear the observable puncta.  These data corroborate the activity assay, 

which showed a 52% recovery of activity in wild-type versus a minimal 8% recovery in hsp104Δ 

strain. 

 Single cell automated microscopy revealed that in wild-type cells versus the hsp104Δ 

strain, FFL-GFP was solubilized at a higher rate (representative still images are shown in 

Figure 3.4; supplemental movies for time-lapse series of FFL-GFP re-solubilization available in 

[150].  In addition, the dynamics of the protein aggregates were very different; in the wild-type 

cells aggregates tended to fuse before being solubilized, and this was not observed in the 

hsp104Δ strain.  This assay not only supports the results from the other two methods, but also 

provides insight into a possible mechanism for how the aggregated protein is solubilized and 

refolded.   
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Figure 3.1. Schematic of FFL-GFP heat-shock recovery assay. FFL-GFP expression is 

induced in log phase in cells that have been incubated in SC-URA.  To induce cells incubate in 

SC-URA-MET for 1 hour.  Centrifuge cells and resuspend in SC-URA containing 100µg/ml 

cycloheximide (CHX). For heat-shock, incubate cells at 42°C for 25 minutes.  Allow cells to 

recover by incubating at 30°C.  Collect samples for a 90 minute time course.  For enzymatic 

assays D-luciferin is added before each reading. 
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Figure 3.1. Schematic of FFL-GFP heat-shock recovery assay 
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Figure 3.2. FFL-GFP enzymatic refolding/recovery assay. Samples of wild-type (WT) and 

hsp104Δ cells (100 µl) were collected prior to heat shock and immediately after heat-shock for 

each time point (0, 30, 60, 90 minutes).  Three replicates of each sample were aliquoted into 

wells of a 96-well white plate for each time point.  For readings, the plate reader was set to 

measure luminescence every 30 minutes for 90 minutes at 30 °C.   
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Figure 3.2. FFL-GFP enzymatic refolding/recovery assay 
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Figure 3.3. FFL-GFP refolding microscopy. 1 ml of cells at each time point (pre-HS, 0, 30, 

60, and 90 minutes) were collected and centrifuged.  Supernate was aspirated and cells were 

resuspended in 2 µl of water.  Cells were prepared by mixing with 2ul of low melt agarose. 

Cells were visualized using the 100x oil objective. Representative images of each time point 

are shown. Quantitation was done by counting cells in 4-5 fields and calculating the percent of 

cells containing aggregates (n~100).  
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Figure 3.3. FFL-GFP refolding microscopy 
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Figure 3.4. Single cell refolding microscopy time course of FFL-GFP. Post heat-shock 5 ml 

of cells were collected, centrifuged, and resuspended in 20 µl of ddH2O.  4 µL of cells were 

placed on a 5 x 5 mm section of SC-URA agar, and visualized using an automated fluorescent 

microscope over a 90 minute period.  The images are projections from a Z-stack taken during 

the time course.  
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Figure 3.4. Single cell refolding microscopy time course of FFL-GFP 
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DISCUSSION 
 

      In this article the model protein FFL-GFP was used to show that the yeast disaggregase, 

Hsp104 contributes to protein re-solubilization and repair.  The enzymatic assays and 

microscopy differentially interrogated the status of the same substrate protein to determine 

refolding efficiency and yield.  Results of the enzymatic recovery assays suggest that not only 

is the maximal recovery in the hsp104Δ mutant strain inefficient, but the initial magnitude of the 

unfolding stress was greater in the mutant strain (Fig. 3.2). The analysis also shows that while 

hsp104Δ cells appeared to be attempting repair, they were unable to refold the protein as 

quickly as wild-type cells.  This method allowed sensitive and quantitative analysis of FFL-GFP 

activity and was confirmed by showing the essential role of Hsp104 in repair of this protein.   

 Microscopy results suggest that the reason for the inefficient repair of denatured FFL 

enzyme is due to protein trapping within aggregates (Fig. 3.3). The population analysis showed 

that in cells lacking Hsp104, no cells could completely clear aggregates in 90 minutes. In 

addition, single cell analysis revealed that in wild-type cells, aggregates fuse over time, 

suggesting that consolidation of smaller aggregates into larger structures may aid the repair 

and refolding process. Observation of aggregates over the time course uncovered decreased 

aggregate fusion in the hsp104Δ strain, indicating that these cells do not form the larger 

structures as efficiently and suggesting that Hsp104 is required for this facet of protein quality 

control (Fig. 3.4).  A further speculation is that cells may solubilize protein more quickly from 

these larger aggregates, which may additionally contain the disaggregation and repair 

machinery. Single-cell microscopy can also be used to determine if other chaperones and co-

chaperones are present in the larger versus smaller aggregates, and if this residency pattern 

varies over time. 

 Together these methods allow both biochemical and cell biological analysis of protein 

refolding and repair in living cells.  Integration of the results from the three methods described 

affords multi-dimensional insight into the kinetics and efficiency of cellular recovery after 
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proteotoxic heat-shock.  Automation of some or all of the steps in the protocol also allows for 

greater sample sizes and biological replicates in a given experiment, increasing the robustness 

and ultimate confidence in the outcome.  In addition, these methods theoretically can be 

extended to use in human cells and not only for genetic analyses, but also to investigate 

chemicals that alter proteostasis.  
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Chapter 4:  Hierarchical functional specificity of cytosolic 
Hsp70 nucleotide exchange factors in yeast 
 
 

 

 

 

 

 

Note: This chapter has been derived from work that has been published in The Journal of 

Biological Chemistry (JBC).  Abrams, J.L., J. Verghese, P.A. Gibney, and K.A. Morano, 

Hierarchical Functional Specificity of Cytosolic Heat Shock Protein 70 (Hsp70) Nucleotide 

Exchange Factors in Yeast. J Biol Chem, 2014 [161]. JBC does not require permission to use 

published materials in ones thesis: http://www.jbc.org/site/misc/Copyright_Permission.xhtml. I 

performed all experiments presented in this chapter with exception to panels A&B of Figure 4.6 

that were performed by Jacob Verghese Ph.D.  
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INTRODUCTION 

      Cellular viability relies on maintaining protein homeostasis (“proteostasis”), defined as a 

balance between polypeptide synthesis, transport, modification, and eventual degradation. 

Exposed hydrophobic regions of proteins resulting from incomplete or improper folding may 

cause deleterious intra- and intermolecular interactions in both nascent and extant proteins, 

leading to aggregation and loss of function [1]. In humans, protein misfolding and aggregation 

have been associated with the formation of amyloid deposits common to many 

neurodegenerative disorders including Alzheimer’s, Parkinson’s, and Huntington’s diseases 

[128]. Cells employ molecular chaperones, most notably the highly conserved Hsp70 class, to 

combat proteotoxic stress. The Hsp70 chaperone functions through a nucleotide dependent 

cycle to bind and shield short hydrophobic regions of polypeptides from the aqueous 

environment while the remainder of the protein folds [39]. Hsp70 binds ATP in its amino-

terminal nucleotide-binding domain (NBD), which causes conformational shifts in the substrate-

binding domain (SBD), allosterically communicated through an interdomain linker, to generate 

a low-affinity polypeptide binding state [40, 41]. Upon ATP hydrolysis, Hsp70 shifts to a high-

affinity substrate binding conformation. Iterative cycles of binding and release ultimately result 

in promotion of substrate folding to the native state [42]. The intrinsic ATPase rate, and by 

extension substrate refolding efficiency, of Hsp70 chaperones is quite low, and is accelerated 

via interaction with co-chaperones [43]. Interaction with an Hsp40 type co-chaperone 

containing a conserved J domain stimulates Hsp70 ATPase activity [45, 46]. The nucleotide 

cycle is further enhanced by interaction with nucleotide exchange factors (NEFs), which bind 

the NBD and cause structural changes that promote release of ADP [47-51]. Co-chaperones 

also impart specificity by recruiting Hsp70s to distinct cellular processes. For example, yeast 

cells possess 22 J domain-containing proteins, ranging from those involved in general cytosolic 

protein folding such as Ydj1, to highly specific factors such as Jjj1, involved in ribosomal 

subunit biogenesis, and Swa2, required for clathrin-coated vesicle uncoating [38, 88, 89, 162]. 
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Due to their substrate and process specificity, the J proteins provide a model in which Hsp70 

participation in various cellular networks is determined by its co-chaperone interactions.  

 In contrast to the highly conserved core domain architecture of J proteins, three NEF 

families distinct in both sequence and structure have been identified: Hsp110, HspBP1, and 

Bag domain-containing proteins [90]. Hsp110 is represented by Sse1 and Sse2 in yeast, and is 

a divergent relative of Hsp70, with an NBD and SBD, the latter domain lengthened by the 

presence of an extended linker between the SBDb and SBDa subdomains. Hsp110 proteins 

bind Hsp70 with high affinity to form a functional heterodimer, with co-crystal structures 

indicating that the NBDs of Hsp70 and Hsp110 interact, while the extended linker region 

between SBDb and SBDα allows the α-helical bundle to wrap around the NBD of Hsp70, 

leaving the Hsp110 β-sandwich domain exposed and in close proximity to the Hsp70 SBD [77, 

92, 96, 97]. The structural similarity of these two proteins is reflected in the demonstrated 

interaction of purified Hsp110s with substrate in a manner that prevents aggregation (holdase 

activity) but does not result in refolding [93-95]. HspBP1/Fes1 is composed nearly exclusively 

of armadillo repeats that bind and distort the Hsp70 NBD to promote nucleotide release [98, 

99]. The Bag family is composed of six related proteins in humans, with at least two different 

structural arrangements of a triple helical bundle [38, 95]. A single yeast protein, Snl1, contains 

a functional Bag domain and additionally is tethered to the endoplasmic reticulum membrane 

via an amino-terminal transmembrane region [100]. Sse1 is the most abundant of all the NEFs 

at approximately 70,000 molecules per cell, while Fes1 is present at about one fifth the level of 

Sse1 and Snl1 and Sse2 15-20-fold lower than Sse1 [101]. Of the four NEF genes, only SSE2 

is significantly induced by stress [62]. Deletion of Sse1 results in slow growth and temperature 

sensitivity, and Hsp110 is essential in yeast as simultaneous deletion of both SSE1 and SSE2 

is lethal [102, 103]. FES1 disruption causes a mild slow growth phenotype exacerbated by heat 

shock [104]. To date, no phenotypes have been associated with mutations in SNL1 or SSE2. 

 Functionally, Sse1 and Fes1 have both been shown to be involved in prion formation and 

curing, as Sse1 is required for [PSI+] propagation, and deletion of either SSE1 or FES1 blocks 
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[URE3] propagation [117, 118]. Sse1 has been implicated in Hsp70-mediated protein folding at 

the ribosome, Hsp90 chaperoning of signal transduction and post-translational translocation of 

pre-pro-α factor [77, 91, 97, 116]. Both Sse1 and Fes1 participate in Hsp70-dependent 

ubiquitination and degradation of misfolded proteins [119-123]. Snl1 was recently shown to 

bind intact ribosomes via a polybasic region adjacent to the Hsp70-binding Bag domain, 

although the consequence of this association is not known [124]. These studies, carried out in 

different strain backgrounds with different model clients, have contributed in a piecemeal 

fashion to understanding how the NEFs function individually, but how they are integrated into a 

comprehensive cellular proteostasis network is still unclear. Additionally, it is not known why 

Hsp70 NEF function has independently arisen at least three times, given that the relative rates 

of exchange measured in vitro are approximately equivalent. These are highly relevant 

considerations, given that human disorders are associated with NEF dysfunction. Marinesco-

Sjøgren syndrome is an autosomal recessive cerebellar ataxia caused by a mutation in Sil1 

(BAP), an NEF for the ER-resident Hsp70 BiP [125]. Loss of Hsp110 is additionally associated 

with tau pathology in a mouse model and huntingtin-related neurodegeneration in a Drosophila 

model [126, 127].  

 In this study, I undertook a comprehensive genetic and cell biological analysis of cytosolic 

Hsp70 NEF functions to determine functional specificity. I report that deletion of SSE1 uniquely 

results in severe defects in Hsp70-mediated protein biogenesis and quality control while 

surprisingly, NEFs are not required to assist in refolding of a model misfolded substrate. 

Deletion of both major soluble NEFs results in constitutive de-repression of the heat shock 

transcription factor Hsf1, consistent with a role for Sse1 and Fes1 in governing cellular 

responses to stress through Hsp70. I find that Fes1 associates with the general Hsp70 Ssa1/2, 

but not the co-translational Hsp70 Ssb1/2 in vivo, in contrast to Sse1 which binds both, 

providing a possible driver of functional specificity. These findings, along with the absence of 

consequences for deletion of SSE2 or SNL1, lead us to conclude that Hsp110 may be the 

principal NEF in yeast and possibly higher eukaryotic cells. 
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RESULTS 

      Disruption of genes encoding cytosolic NEFs negatively impacts cell growth in yeast. For 

example, loss of Sse1 was previously identified to cause a severe growth defect whereas loss 

of both Hsp110s results in lethality [102, 103]. In addition, fes1∆ strains exhibit a moderate 

growth defect exacerbated by deletion of Sse1 [50]. To comprehensively investigate the 

contributions of all four yeast NEFs to growth under optimal and stress conditions, a 

combinatorial and isogenic deletion collection was constructed and dilutions spotted onto YPD 

plates (Fig. 4.1 A). I confirmed a major slow growth phenotype for sse1Δ, a moderate growth 

defect for fes1Δ cells, and an additive severe growth defect for sse1∆ fes1∆ cells at normal 

growth temperatures of 25˚C and 30˚C.  No growth defects were observed for the sse2∆ and 

snl1∆ strains. Interestingly, a similar slow growth phenotype was caused by simultaneous loss 

of both Sse1 and Snl1, but was not observed in any of the other double knockout strains. 

Neither of the triple deletion strains showed any synthetic enhancement over the parent double 

knockouts. Heat shock (37°C) sensitivity is generally associated with protein 

misfolding/denaturation defects and sensitivity to cold shock (15°C) with defects in translation. 

Slow growth due to deletion of SSE1 is intensified during both temperature stresses, with a 

striking sensitivity to cold shock consistent with previous observations and known roles in 

protein synthesis [48, 98]. While fes1Δ cells exhibited sensitivity to heat stress, only a minor 

growth reduction was seen at 15˚C. Again, double and triple mutant phenotypes were largely 

dictated by the presence of sse1∆ or fes1∆ deletions and no additional synthetic interactions 

were detected. To further quantify the respective growth phenotypes, microwell automated 

growth curves were performed and generation times calculated, revealing three distinct classes 

of growth phenotypes (Fig. 4.1 B).  The first group, which included the snl1∆ and sse2∆ 

deletion strains, grew at wild-type rates (doubling time (TD) 1.8-1.9 h).  The second group 

exhibited moderate relative growth defects (TD 2.0-2.2 h) and are associated with loss of Fes1.  

The third group displayed severe relative growth retardation (TD 2.5-3 h), which reflected the 

absence of Sse1. Together these data indicate that Sse1 is the most important single NEF for 



 62 

 

 

 

 

 

 

 

 

FIGURE 4.1. Growth analysis of wild-type and nucleotide exchange factor deletion 

strains.  A. Serial dilutions of cells were plated onto rich (YPD) media and incubated at the 

indicated temperatures. Wild-type (WT). All other strains have the indicated genotypes B. 

Automated growth curves in liquid media were generated as described in Experimental 

Procedures. WT, black; sse1∆, blue; sse2∆, gray; fes1∆, red; snl1∆, maroon; fes1∆ sse1∆, 

yellow; fes1∆ sse2∆, orange; fes1∆ snl1∆, light purple; snl1∆ sse1∆, light blue; snl1∆ sse2∆, 

brown; fes1∆ snl1∆ sse1∆, violet, fes1∆ snl1∆ sse2∆, green. 
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FIGURE 4.1. Growth analysis of wild-type and nucleotide exchange factor deletion 

strains 
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maximal proliferation at all tested temperatures. Fes1 appears to be required for heat tolerance 

in strains expressing Sse1 or Sse2, suggesting it has unique roles that contribute to survival 

under these conditions. 

 The preceding growth assays provided an important top-level analysis of relative NEF 

contributions to cell viability, paving the way for more in-depth investigation into specific roles 

each factor plays in critical cellular Hsp70-mediated functions.  I first examined whether the 

NEFs play differential roles in protein biogenesis.  Sse1 has been previously shown to have a 

role in protein refolding in vitro and in vivo and in de novo folding in vivo [48, 49]. Human 

Hsp105 (Hsp110) has been shown to be important in CFTR folding in vivo [163].  Roles of the 

other NEFs have not been fully investigated. To identify relative contributions of the NEFs to 

Hsp70-mediated protein folding, I utilized a well established yeast model folding substrate, 

firefly luciferase fused to green fluorescent protein (FFL-GFP; Fig. 4.2 A) [148]. This construct 

allows for enzymatic assay of properly folded luciferase in addition to surveillance of protein 

solubility via fluorescence microscopy. In addition, expression of the fusion protein is regulated 

by the methionine-repressible MET25 promoter, which allows precise control of synthesis 

initiation and termination.  The FFL-GFP plasmid was transformed into wild-type cells and each 

of the NEF single deletion strains.  For steady state analysis, cells harboring FFL-GFP were 

grown to logarithmic phase without induction or repression resulting in low-level production of 

the fusion protein as visualized using fluorescence microscopy.  Representative images of the 

population show that the sse1Δ and fes1Δ strains both contain cytosolic FFL-GFP foci, 

implying aggregation, while the protein was soluble in wild-type, sse2∆ and snl1∆ cells. In 

addition, GFP alone failed to aggregate in any strain, demonstrating that the FFL moiety was 

serving as a proteostasis sensor (Fig. 4.2 B). As properly folded FFL-GFP should be expected 

to be enzymatically active, I determined steady state levels of luciferase activity in living cells 

as shown in Figure 4.2 C.  As expressed in arbitrary relative light units, nearly complete loss of  
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FIGURE 4.2. Nucleotide exchange factor deletions differentially affect firefly luciferase 

GFP biogenesis. A. Schematic of model folding construct firefly luciferase fused to GFP (FFL-

GFP) and controlled by a methionine-repressible promoter. B. Representative micrographs 

showing GFP only control (top panel) or steady state FFL-GFP fluorescence in log phase wild-

type or NEF single deletion strains (bottom panel). The FFL-GFP construct is grown in the 

presence of minimal methionine and is therefore not fully repressed, leading to low level 

expression. C. Steady state FFL activity monitored in the same cells as (B) D. De novo folding 

kinetics of wild-type or NEF deletion strains monitored over 120 min. WT, black; sse1∆, blue; 

sse2∆, gray; fes1∆, red; snl1∆, maroon. Strains were shifted to methionine-free medium to fully 

induce FFL-GFP expression. E. Western blot of FFL-GFP protein levels from the same cells as 

in (D). Monoclonal antibody against phosphoglycerate kinase (PGK) was used as a load 

control.  
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FIGURE 4.2. Nucleotide exchange factor deletions differentially affect firefly luciferase 

GFP biogenesis  
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activity relative to wild-type was observed in the sse1Δ strain, while a moderate defect was 

found in fes1Δ cells. Cells lacking SSE2 or SNL1 displayed essentially wild-type levels of 

luciferase activity. These data suggest that the aggregation phenotypes observed via 

microscopy correlate with enzymatically inactive FFL-GFP, and that cells lacking SSE1 are 

severely compromised in biogenesis of this model protein. Because the steady state analysis is 

a function of both protein production and degradation, I probed de novo folding specifically by 

inducing FFL-GFP expression through methionine withdrawal and measuring luciferase activity 

over time. The sse1∆ deletion strain was impaired in producing enzymatically active protein 

both in terms of kinetics and total yield (Fig. 4.2 D). In contrast to the steady state analysis, 

fes1∆ mutants showed no discernable defect in luciferase folding. Western blot analysis of the 

same samples with anti-GFP showed similar levels of overall FFL-GFP synthesis, suggesting 

that differences in luciferase activity are due to folding and maturation of the enzyme rather 

than translation (Fig. 4.2 E). In addition, newly synthesized FFL-GFP remained soluble over the 

entire time course in all strains, as judged by fluorescence microscopy (data not shown). 

Overall these data indicate that Sse1 and to a lesser extent, Fes1, are required for folding and 

maintenance of newly translated FFL-GFP, and in their absence a fraction of the total pool 

aggregates over time. However, the non-aggregated FFL-GFP in fes1Δ cells is likely properly 

folded as indicated by much higher luciferase activity levels relative to sse1∆. 

 Proteotoxic stress may result in unfolding of both nascent and folded proteins. In addition to 

other chaperones, Hsp70 is required to stabilize and refold these substrates [152]. 

Consistently, yeast cells defective in cytosolic Hsp70 (Ssa), or the disaggregase Hsp104, fail to 

recover activity of model substrates after heat shock [146, 152]. While Sse1 has been shown to 

be important for refolding of firefly luciferase after temperature inactivation, little is known about 

the roles of the other NEFs in yeast or higher eukaryotes [48, 49]. I addressed this question by 

an alternative experimental protocol using the strains described in Figure 4.2. Cells harboring 

FFL-GFP or GFP alone, were grown in repressing medium then transferred to induction 

conditions for one hour. Cells were then treated with cycloheximide (CHX) to halt protein 
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synthesis, and heat shocked at 42°C followed by recovery at 30°C (Fig. 4.3 A).  Cells were 

visualized prior to heat shock (pre HS), immediately after, and 60 min into recovery.  As shown 

in Figure 4.3 B, newly synthesized FFL-GFP was completely soluble in all strains. After heat 

shock FFL-GFP formed multiple aggregates per cell that appeared to be re-solubilized over the 

60 min recovery period. GFP alone was insensitive to heat shock.  FFL-GFP enzymatic activity 

was also measured in the same cultures and normalized to the pre-heat shock values. 

Surprisingly, all the NEF deletion strains recovered activity at least to wild-type levels (Fig. 4.3 

C).  In this experiment, the fes1∆ deletion strain recovered activity to a slightly higher level than 

the wild-type strain, but also appeared to lose less activity upon heat shock (approximately 

45% reduction versus greater than 75% for all other strains). These data suggest that none of 

the NEFs are individually required for re-solubilization and refolding of an inactivated and 

aggregated protein in vivo. I therefore tested the sse1∆fes1∆ double deletion strain predicted to 

lack nearly all cytosolic NEF functions and observed that while enzymatic activity was again 

recovered to wild-type levels, a significant fluorescence signal was retained in cytosolic foci. 

These results suggest that either refolding does not rely on NEF activity to a significant degree 

or that Sse2 and Snl1 may contribute enough exchange activity to mask defects in the 

sse1∆fes1∆ double deletion strain. Furthermore, these data suggest that Hsp70-mediated 

biogenesis and refolding/repair have distinct NEF chaperone requirements.   

 In eukaryotic cells the heat shock response (HSR) responsible for production of 

cytoprotective factors including heat shock proteins is primarily regulated by the transcription 

factor HSF1 [20]. In both yeast and mammalian cells, HSF1 is repressed by the Hsp70/Hsp90 

chaperone network in the absence of stress and activates transcription from promoters 

containing heat shock elements (HSE) bound to DNA as a trimer [34, 164, 165]. Human HSF1 

is primarily retained as a monomer in the cytoplasm by the chaperones while yeast Hsf1 is 

constitutively nuclear and bound to high affinity promoters [21, 32]. It is thought that 

Hsp70/Hsp90 associates with DNA-bound yeast Hsf1, maintaining it in a transcriptionally 

inactive state [165]. 
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FIGURE 4.3. Cytosolic nucleotide exchange factors are not required for luciferase 

refolding in vivo. A. Schematic of refolding assay. B. Representative micrographs showing 

GFP fluorescence for pre-heat shocked cells and cells 0 (white bars) and 60 min (grey bars) 

post heat shock. GFP only controls are represented in the right panel and they were visualized 

at 30°C (pre-HS) or immediately after heat shock at 42°C (post-HS).  C. FFL activity from the 

same cells as in (B). Refolding efficiency is calculated as percent of initial activity pre-heat 

shock. *, p<0.005; ns, not significant. 
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FIGURE 4.3. Cytosolic nucleotide exchange factors are not required for luciferase 

refolding in vivo  

 

 

 

 

 

 

 

 

 



 71 

      We and others have previously shown that deletion of either SSE1 or FES1 results in 

constitutive HSR up-regulation [116, 123, 166]. To comprehensively determine how the loss of 

the NEFs affects the HSR I determined Hsf1 activity using a well-documented HSE-lacZ 

reporter system [167]. Wild-type, sse2Δ, and snl1Δ strains all maintained Hsf1 in a repressed 

state at 30˚C, demonstrating a lack of involvement for these NEFs (Fig. 4.4 A). As previously 

shown, sse1Δ cells exhibited approximately two- to three-fold de-repression relative to wild-

type.  Cells lacking Fes1, on the other hand, showed a dramatic increase (approximately 13-

fold) in Hsf1 activity. Moreover, the double deletion strain, sse1Δfes1Δ, revealed a striking 

additive effect, strongly up-regulating the HSE-lacZ reporter by nearly 30-fold.  To validate the 

reporter results, I examined the steady state levels of three heat shock proteins whose 

expression is controlled by Hsf1 via Western blot analysis, focusing on the up-regulation 

observed in sse1Δfes1Δ cells.  As shown in Figure 4.4 B, the Hsp90 co-chaperones Cpr6 and 

Sti1, and the disaggregase Hsp104 were all produced at much higher levels in the double 

deletion strain than in wild-type cells in non-stress conditions, confirming global de-repression 

of the HSR. I predicted that constitutive HSR activation resulting in increased HSP abundance 

should protect against high levels of protein misfolding.  To test this hypothesis, I challenged 

cells with azetidine-2-carboxylic acid (AZC), a proline analog that incorporates into nascent 

chains causing protein misfolding [121, 168, 169]. As shown in Figure 4.4 C, all three NEF 

mutant strains analyzed exhibited varying degrees of AZC resistance consistent with the levels 

of HSR activity observed in Figure 4.4 A. Strikingly, the sse1Δfes1Δ mutant displayed robust 

growth in the presence of AZC, to the point that the misfolding agent suppressed the severe 

slow growth defect exhibited by this strain under normal conditions. These results suggest that 

Sse1 and Fes1 both play major roles in regulating the HSR in the absence of stress, and that 

Hsf1 hyperactivation in the absence of misfolded proteins may contribute to the observed 

growth phenotypes of cells lacking both NEFs. 
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FIGURE 4.4. Sse1 and Fes1 contribute to regulation of the heat shock response through 

Hsf1. A. Hsf1 de-repression in wild-type, NEF single deletion strains, or the sse1Δfes1Δ strain 

monitored using an HSE-lacZ reporter. B. Western blot showing differential steady state 

expression of Hsf1 target proteins Cpr6, Hsp104, and Sti1. The load control is 

phosphoglycerate kinase (PGK). C. Growth analysis of wild-type, sse1Δ, fes1Δ, and 

sse1Δfes1Δ strains in the presence or absence of proteotoxic stress caused by AZC. *, 

p<0.0005; ***,  p<0.05. 
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FIGURE 4.4. Sse1 and Fes1 contribute to regulation of the heat shock response through 

Hsf1 
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 Hsp70 plays a major role in protein degradation through the ubiquitin-proteasome system 

[170]. In this capacity the chaperone is predicted to stabilize partially folded forms and to 

perform the “triage” decision whether to continue the folding process or present the substrate to 

associated ubiquitin ligases (CHIP in mammalian cells, primarily Ubr1 in yeast) to mark for 

degradation. We and others have implicated NEFs in control over client fate [121, 122]. A 

variant of the yeast vacuolar protease carboxypeptidase Y (CPY) has been successfully used 

as a model protein to study chaperone involvement in regulated protein degradation [120]. 

CPY‡-GFP lacks the ER signal sequence and contains a single destabilizing mutation causing 

the fusion to misfold in the cytoplasm, but retain GFP fluorescence to enable surveillance via 

microscopy [171]. The half-life of this fusion is approximately 30-60 min in wild-type cells, and 

is significantly stabilized in cells compromised for Hsp70 function, including ssa1ts and sse1∆ 

strains [120]. I generated strains expressing CPY‡-GFP and followed protein stability via 

cycloheximide chase and Western blot analysis (Fig. 4.5 A). I confirmed a nearly complete 

block in CPY‡-GFP degradation in sse1Δ cells but noted that all other single NEF deletions and 

the  sse1Δfes1Δ strain degraded the fusion with essentially wild-type kinetics. Observation of 

CPY‡-GFP aggregate formation revealed patterns that closely matched these results (Fig. 4.5 

B).  Wild-type, sse2∆ and snl1∆ cells accumulated few detectable aggregates, all of which were 

cleared, while sse1∆, fes1∆ and sse1Δfes1Δ cells contained numerous aggregates at the 

initiation of the cycloheximide chase. In contrast to the sse1∆ mutant that failed to resolve and 

degrade the aggregates, fes1∆ and sse1Δfes1Δ cells successfully eliminated CPY‡-GFP over 

the time course, as quantitated in Figure 4.5 C. These results suggest that Fes1 plays 

essentially no role in degradation of this model substrate, and moreover show that degradation 

defects in sse1Δ cells are suppressed by concomitant deletion of FES1. Given that fes1∆ and 

sse1Δfes1Δ cells exhibit significant de-repression of the HSR, I reasoned that enhanced 

production of HSPs and associated factors may accelerate CPY‡-GFP degradation. To test this 

hypothesis, I attempted to create hypomorphic mutations at the HSF1 locus in these strain 

backgrounds, but were unable to do so, perhaps indicative of synthetic lethality. Instead we 
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FIGURE 4.5. Sse1 uniquely contributes to Hsp70-mediated protein degradation. A. 

Western blot of CPY‡-GFP degradation over a 2 hr cycloheximide chase period. PGK was used 

as a load control. B. Representative micrographs of wild-type and NEF deletion cells from the 

time points sampled in (A). C. Quantitation of aggregate-containing fraction of the total 

population for each strain from (B) at 0 (light grey), 1 (dark grey bars) and 2 hr (black bars) 

(n~100 cells). D. Western blot analysis of CPY‡-GFP degradation in wild-type and sse1Δ 

strains at control (30˚C) or heat shock (37°C) temperatures. **, p<0.005; ***,  p<0.05. 
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FIGURE 4.5. Sse1 uniquely contributes to Hsp70-mediated protein degradation 
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determined whether activation of the HSR via external stress would phenocopy the effects of 

eliminating the NEFs on Hsf1 regulation. CPY‡-GFP degradation kinetics were determined in 

wild-type and sse1∆ cells exposed to heat shock (37°C) or kept at optimal temperature (30°C) 

for 30 min prior to initiation of the cycloheximide chase.  As shown in Figure 4.5 D, this brief 

heat shock substantially improved CPY‡-GFP degradation in the sse1Δ strain, supporting the 

possibility that alternative factors induced in the HSR may be substituting for Sse1 to promote 

CPY‡-GFP degradation. Together, these data suggest that Sse1 is a critical Hsp70 partner for 

degradation of at least one misfolded protein substrate. In addition my data contrast with a 

recent report that Fes1 is specifically required for recognition and processing of misfolded 

substrates as I find no defects in CPY‡-GFP degradation under conditions where sse1∆ cells 

fail to degrade the same protein [123]. 

 My experiments indicated that Sse1 plays roles in protein biogenesis, degradation and Hsf1 

regulation, while Fes1 only appeared to contribute significantly to the latter Hsp70-mediated 

process. In addition Fes1 has been directly implicated in recognition of misfolded proteins 

during stress conditions.  A possible explanation for this distribution of NEF dependency could 

be differential interaction with the two classes of cytosolic Hsp70 in yeast: Ssa is involved in all 

the processes I investigated, while Ssb likely only plays a significant role during protein 

translation, interacting with nascent chains by virtue of its association with the ribosome [115, 

172]. To test this hypothesis, I took advantage of previously developed co-immunoprecipitation 

assays using fully functional FLAG-tagged NEF alleles expressed in yeast. I first performed an 

in vitro binding analysis using FLAG-Fes1 produced in E. coli cells that was mixed with 

increasing amounts of yeast extract and affinity purified.  As shown in Figure 4.6 A, both Ssa 

and Ssb co-purified with FLAG-Fes1 as demonstrated by Coomassie staining and Western 

blot. These data are consistent with a previous report that His6-Fes1 produced in E. coli 

likewise binds both Hsp70s [99].  
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FIGURE 4.6. Fes1 specifically interacts with Ssa chaperone in vivo. A. Coomassie brilliant 

blue (CBB, top panel) and Western blot (bottom panels) of in vitro immunoprecipitation (IP) of 

Hsp70 from wild-type cell lysates added at concentrations of 0, 4.5 µg/µl, or 7.5 µg/µl with 

FLAG-Fes1-bound beads. Western analysis was done using anti-Ssa and anti-Ssb antibodies 

as indicated. B. Coomassie brilliant blue (CBB, top panel) and Western blot (bottom panels) of 

in vivo FLAG-Fes1 or FLAG-Sse1 immunoprecipitations in wild-type cells. C. Coomassie 

brilliant blue (CBB, top panel) and Western blot (bottom panels) of in vivo FLAG-Fes1 

immunoprecipitations from the indicated strains. Panels A and B were performed by Jacob 

Verghese. 
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FIGURE 4.6. Fes1 specifically interacts with Ssa chaperone in vivo 
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     We then expressed FLAG-Fes1, and FLAG-Sse1 as a control, in wild-type yeast cells and 

immunoprecipitated the tagged NEFs (Fig. 4.6 B). As previously demonstrated, Sse1 strongly 

interacted with both Hsp70s [77]. In contrast, Fes1 appeared to interact exclusively with Ssa in 

vivo, with only background amounts of Ssb co-purifying.  This striking finding suggested that 

Fes1 may be unable to bind Ssb in living cells due to other factors. I therefore repeated the 

immunoprecipitation experiment in strain backgrounds chosen to address this question. To 

determine if Sse1 outcompetes Fes1 for Ssb binding due to its greater abundance (71,000 

versus 13,000 molecules per cell) an sse1Δ strain was utilized [101]. To ask whether the 

ribosome-associated complex (RAC), a potent activator of Ssb, was involved I employed 

strains lacking Ssz1 and Zuo1, the two RAC components [173, 174]. Lastly, I tested whether 

another factor associated with polypeptides during synthesis, the nascent chain associated 

complex (NAC), was involved using cells lacking the ß-NAC protein Edg1 and α-NAC Edg2 

[68].  None of the gene deletions altered Fes1 interaction with Ssb, suggesting that competition 

and occlusion at the ribosome are likely not contributing to the specificity I observed in vivo 

(Fig. 4.6 C).  
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DISCUSSION 

      The existence of at least three distinct types of eukaryotic nucleotide exchange factor for 

Hsp70, none of which are related to the bacterial NEF GrpE, suggests significant evolutionary 

selective pressure to modulate cycling of this critical chaperone. While intense research efforts 

in the last decade have revealed many features of NEF function in yeast and human cells, most 

of the work has been focused on individual factors, sometimes leading to conflicting results. For 

example, deletion of FES1 led to temperature sensitive growth in two yeast strains (W303-1b 

and RSY801), and normal growth in another (S1278b) [175]. Simultaneous deletion of SSE1 

and SSE2 is reported to be viable by one group, and lethal by another [97, 103]. These findings 

prompted us to generate a collection of combinatorial yeast NEF deletion mutations in a single 

strain background and to carry out functional assays in strains with significant phenotypes to 

parse their relative contributions to Hsp70-dependent cellular processes. My results confirmed 

previous functional analyses and uncovered several previously unappreciated aspects of NEF 

biology. Most notably, I find that Hsp110 (Sse1) participates in multiple aspects of Hsp70 

function in vivo while the HspBP1 homolog Fes1 plays a more restricted role.  The heat shock 

inducible Hsp110 Sse2 as well as the Bag domain-containing protein Snl1 appear to have little 

to no impact on the processes I analyzed (Fig. 4.7). 

 To probe NEF roles in protein biogenesis and repair, I utilized a previously generated model 

substrate consisting of the thermolabile protein firefly luciferase fused to the green fluorescent 

protein (FFL-GFP). This protein offers multiple advantages as a proxy chaperone substrate: 

synthesis, solubility and enzyme activity can all be easily assayed and expression controlled in 

the particular construct I used by a regulatable promoter. Sse1 was found to be required for 

production of enzymatically active FFL-GFP, but not for its synthesis, while cells lacking Fes1 

displayed only minor defects in steady state (non-induced) FFL activity (Fig. 4.2). Interestingly, 

sse1∆ and fes1∆ strains both accumulated stable FFL-GFP aggregates, implying either that a 

subset of the aggregates in fes1∆ cells contain active FFL, or that a greater fraction of soluble 

FFL is active in fes1∆ vs. sse1∆ mutants. Aggregates were not seen in any NEF deletion strain  
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FIGURE 4.7.  Model of nucleotide exchange factor roles in Hsp70-mediated protein 

biogenesis and quality control.  See text for details. HSE, heat shock element; HSP, heat 

shock protein. Translating ribosomes are depicted in orange, the proteasome is depicted in 

blue and green. 
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FIGURE 4.7.  Model of nucleotide exchange factor roles in Hsp70-mediated protein 

biogenesis and quality control 
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when FFL-GFP synthesis was induced by withdrawal of methionine from the growth medium 

and activity and solubility followed over time (Fig. 4.2 and data not shown). These results 

suggest that FFL-GFP does not aggregate immediately upon synthesis but rather accumulates 

in the absence of Fes1, while Sse1 is required for both acquisition of enzymatic activity at early 

stages of biogenesis and stability at later stages. These results fit well with my finding that 

while Sse1 interacts with both Ssa and Ssb in vivo, Fes1 appears to exclusively associate with 

Ssa, restricting it to post-translational folding (Fig. 4.6). This binding specificity is not apparent 

in vitro, with Fes1 produced heterologously in E. coli, nor is it due to steric hindrance with the 

other Ssb-associated factors I tested [99]. These results imply that Fes1 may be modified in 

yeast, a hypothesis my laboratory is actively pursuing. Interestingly, I observed a modest 

enhancement of the slow growth and cold-sensitive phenotypes of sse1∆ cells and in the 

snl1∆sse1∆ double deletion strain, perhaps indicative of compounded translational alterations. 

This novel phenotype may be linked to the previous discovery that Snl1 associates with intact 

and likely translating ribosomes [124]. In addition, stoichiometric balance of the Snl1 and Sse1 

proteins may be critical as sse1∆ cells are hypersensitive to even moderate overexpression of 

SNL1 (Fig 5.1). 

 The Hsp70 chaperone system is required for refolding of damaged proteins in yeast, in 

collaboration with the fungal disaggregase Hsp104. It was therefore surprising to find that the 

NEFs do not appear to be critical for this process (Fig. 4.3). All individual NEF knockout strains 

lost FFL activity and accumulated FFL-GFP aggregates after heat shock at 42˚C, and most if 

not all foci were resolved after 60 min of recovery. Moreover, all mutant strains recovered FFL 

activity similar to wild-type cells. I note that fes1∆ cells partially resisted FFL-GFP misfolding in 

these experiments as evidenced by fewer foci and higher residual post-heat shock enzyme 

activity. This may be due to hyperactivation of the heat shock response resulting in increased 

production of HSPs including Hsp104 (see below). Cells lacking both Sse1 and Fes1 likewise 

exhibited no refolding defects, but accumulated FFL-GFP foci that persisted after 60 min 

recovery, suggesting that some of the material localized to the aggregates may in fact be 
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refolded but not mobilized or fully solubilized. My data contrast with those of Bukau and 

coworkers at Heidelberg University, who found that fes1∆ cells recovered less than 50% of 

initial FFL enzyme activity over a similar time period [49]. These differences may be attributable 

to the fact that the substrate I used includes the stable GFP moiety fused to FFL. In that report 

Sse1 was also found to differentially participate in refolding of monomeric FFL as compared to 

heterodimeric bacterially derived luciferase, raising the possibility that NEF recruitment may be 

substrate-specific. 

 In addition to established roles for Hsp70 in protein biogenesis, accumulating evidence 

places this chaperone at the nexus of the decision to fold or degrade damaged substrates. I 

examined NEF participation in this process with a permanently misfolded construct, CPY‡-GFP, 

previously shown to be degraded in an Hsp70-dependent manner (Fig. 4.5) [86]. As with the 

FFL-GFP construct, the GFP moiety allows simultaneous surveillance of both protein level and 

aggregation status. As reported, sse1∆ cells dramatically stabilized CPY‡-GFP levels as 

determined by Western blot [120]. I additionally found that this reporter protein accumulated in 

multiple distinct foci that persisted throughout the cycloheximide chase. Interestingly, cells 

lacking Fes1 exhibited similar foci that were absent in wild-type, sse2∆ and snl1∆ cells, yet 

cleared this material over time as indicated by fluorescence microscopy and Western blot. This 

result suggests that Fes1 may contribute to processing of misfolded and/or aggregated proteins 

but not be absolutely required to do so. In a recent study focusing exclusively on the role of 

Hsp70 NEFs in protein degradation, Gowda and coworkers at Stockholm University, found that 

both Sse1 and Fes1 contributed to Hsp70-mediated degradation of model misfolded proteins 

[123]. Because cells lacking Sse1 are also impaired in degradation of UbV76-Ura3, a ubiquitin-

targeted but folded chimeric substrate, it was concluded that Fes1 may specifically target 

Hsp70 to misfolded substrates to accelerate ubiquitination. However, it is not clear how such 

specificity is generated, as the soluble Bag domain from Snl1 is fully competent to replace Fes1 

in this process, while Sse1 is not [123]. My laboratory also previously demonstrated that only 

the Hsp110 homolog Sse2, and not the same soluble portion of Snl1 (Snl1∆N), could efficiently 
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rescue processing of the Hsp90 substrate Ste11 [121]. The answer may be that both soluble 

NEFs (Sse1 and Fes1) participate in targeting misfolded proteins for ubiquitination based on as 

yet undetermined features of a particular substrate. 

 Remarkably, deletion of FES1 in the sse1∆ background partially restored degradation of 

CPY‡-GFP in my assays. This double mutant combination also exhibited the highest levels of 

de-repression of the heat shock response, with corresponding overproduction of HSPs and 

resistance to the proteotoxic compound AZC (Fig. 4.4). Correspondingly, I demonstrated 

similar suppression of the sse1∆ degradation phenotype when the experiment is conducted at 

37˚C. I envision two possible, and not mutually exclusive, explanations to account for activation 

of the HSR in these cells. Loss of both NEFs may negatively impact Hsp70-mediated folding to 

an extent that allows for significant accumulation of misfolded proteins, long suspected to be 

the primary signal for HSR activation via titration of repressing chaperones [176]. Alternatively, 

general protein folding may not be severely affected, and rather inhibition of Hsf1 

transcriptional function by Hsp70, perhaps as part of the Hsp90 super-complex, could be 

abrogated leading to HSR de-repression.  In support of this conjecture, I recently demonstrated 

that modification of key cysteine residues in Ssa1 is sufficient to induce the HSR [166]. At this 

time it is not possible to mechanistically deconvolute these two models as both ultimately 

converge on the same fundamental aspect of Hsp70 function. However, it is worth noting that 

mutations in the major cytosolic Hsp40 Ydj1 impair protein refolding and degradation, yet do 

not induce the HSR [116, 177]. 

 Although my current study sheds light on the distribution of labor between the cytosolic 

NEFs, many questions remain unanswered.  Sse1 is the only one of the three that contains a 

substrate binding domain, yet to date no in vivo role has been directly ascribed to this domain. 

Interestingly, a mutant SSE1 allele lacking NEF activity stabilizes and promotes nucleation of 

the prion-forming domain of Sup35, prompting speculation that the Sse1 SBD is responsible 

[178]. The lack of a verified mutant in this domain, preferably one that also does not impede 

NEF activity within the Hsp110/Hsp70 heterodimer, continues to hamper progress in 
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understanding this important co-chaperone. The recent identification of Hsp70/Hsp110/Hsp40 

complexes as functional protein disaggregases that could play a role in clearing amyloid 

deposits in metazoans that lack Hsp104, further underscores the importance of understanding 

and perhaps decoupling NEF and chaperone holdase functions [85, 86]. In addition, the high 

degree of conservation of orthologous Hsp70 NEF families in higher eukaryotes suggests that 

answers derived from these and future studies in yeast will benefit investigations into human 

diseases of protein misfolding. 
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INTRODUCTION 

      Snl1 is an 18 kd cytosolic Hsp70 NEF in the Bag-domain family.  In yeast Snl1 is the only 

homolog in this family identified thus far and it is unique in that it is tethered to the ER 

membrane through a transmembrane domain (TMD) located at the N-terminus [179]. The TMD 

is followed by the Bag domain, which is made up of three α-helices; helices 2 and 3 have been 

shown to interact with the NBD of Hsp70 [51].  When Snl1 binds Hsp70 it causes a 14 Å 

rotation of the Hsp70 IIB domain that releases the ADP, and this mechanism is conserved in 

the bacterial DnaK/GrpE interaction, suggesting convergent evolution, as there is no 

conservation of sequence or structure between Snl1 and GrpE [51, 181]. Snl1 was shown to 

act as a potent NEF for the Hsp70 family, but unique characteristics and similarity to the Bag 

family of proteins suggest it also has specific functions. 

 The Bag family of proteins is known to contain unique sequence motifs associated with 

distinct roles for each of the isoforms including folding, degradation, signal transduction, 

apoptosis, and transcription [181-187]. Snl1 was originally identified as a high copy suppressor 

of the nup116C (the carboxyl-terminal portion of nucleoporin 116) overexpression lethality in a 

Nup116 deletion strain [179].  Suppression of this phenotype suggests a role for Snl1 in nuclear 

pore biogenesis and work following this study indicated that suppression was Hsp70-

dependent, but the mechanism has yet to be revealed [100].  In a recent study performed in my 

lab, Snl1 was shown to interact with the ribosome, but no specific function associated with this 

interaction has been established [124].   

 For this study, I used genetic and biochemical analysis to attempt to uncover a biological 

role for the elusive NEF, Snl1.  Growth analysis from Chapter 4 showed that deletion of Snl1 

alone has no phenotype, but a minor synthetic growth defect and cold sensitivity is present in 

the absence of both Snl1 and Sse1.  Cold temperatures are associated with induction of 

translation machinery, and sensitivity to this stress suggests an issue with activating translation 

[188, 189].  Therefore, this phenotype indicates Sse1 and Snl1 work together to maintain 

balance in a process involving translation.  Furthermore, overexpression of Snl1 in an sse1Δ 
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strain, results in toxicity and activation of the HSR.  The overexpression phenotype is 

dependent on Snl1 localization and alleviation of the growth defect was mediated through 

Sse1’s interaction with the Hsp70, SSB. These data support a model where Snl1 provides 

regulatory activity affecting translation and Sse1 helps to maintain proteostasis by mediating 

flux of proteins through the Hsp70s, which encourages high efficiency folding kinetics.     
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RESULTS 

      Gene deletion is one way to investigate the function of a protein.  In addition 

overexpression can reveal phenotypes that may suggest a role for that protein.  Only one major 

phenotype has been associated with Snl1, which is the suppression of toxicity associated with 

nup116C overexpression. In addition, Snl1 has been shown to interact with the ribosome [124, 

179].  Based on the data uncovered in these studies, I wanted to identify additional phenotypes 

that might illuminate a cellular purpose for Snl1.  No growth defect is associated with deletion of 

Snl1 in wild-type (WT) cells, but analysis of the multiple NEF deletion strains in Chapter 4 (Fig. 

4.1), revealed a synthetic growth defect and cold sensitivity upon deletion of SNL1 and SSE1.  

This suggests that these two proteins work together to contribute to an essential process, 

which is not deficient upon loss of Snl1 alone.  To investigate if other changes in relative levels 

of these two proteins cause growth defects that may indicate functional roles, I overexpressed 

SNL1 using a high copy plasmid with a high expression level promoter (p423GPD) in wild-type 

or sse1Δ cells.  Spots of serial dilutions were plated at physiological temperature (30°C) and 

heat shock temperatures (37°C and 39°C) (Fig. 5.1).   High levels of Snl1 in an sse1Δ strain 

were severely toxic, suggesting that altering Snl1 levels in an SSE1 null background possibly 

leads to additional problems separate from those that already exist in this strain, including 

defects in protein biogenesis, degradation, protein translocation  (Chapter 4, [48, 121]).   

 This observation suggests that Snl1 could be involved in many different processes. Some 

unique properties of Snl1 can be exploited to narrow down the possibilities.  One distinct 

attribute of Snl1 is the ER/nuclear membrane localization mediated through an N-terminal 

transmembrane domain located in the first 40 residues.  To test if localization is required for 

overexpression toxicity, I used a truncated allele of SNL1 missing the transmembrane domain 

(Δ40snl1), which was previously described in a paper published by my laboratory [124].  This 

construct and the wild-type allele were placed under control of a high expression promoter and  
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Figure 5.1. Cells lacking Sse1 are hypersensitive to Snl1 overexpression.  Spotted serial 

dilutions (1:10) of BY4741 (wild-type; WT) or sse1Δ cells expressing an empty vector, 

p423GPD (-) or p423GPD-SNL1-FLAG (SNL1) were plated onto SC-URA plates at 

physiological temperature (30°C) or heat shock temperatures (37°C or 39°C). 
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Figure 5.1. Cells lacking Sse1 are hypersensitive to Snl1 overexpression 
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Figure 5.2. Soluble truncation mutants of Snl1 lose toxicity and partially suppress the 

sse1Δ growth defect. A. Spotted serial dilutions (1:10) of BY4741 (WT) or an sse1Δ strain 

expressing empty vector, p413TEF (-), p413TEF-SNL1-FLAG (SNL1), or p413TEF-Δ40snl1-

FLAG (Δ40snl1; mutant is soluble due to a 40 aa N-terminal truncation) were plated at 

physiological (30°C) or heat shock (37°C). B. Western blot analysis of Snl1 expression in each 

strain background. C. Liquid growth curves of each strain at 30°C or 37°C. 
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Figure 5.2. Soluble truncation mutants of Snl1 lose toxicity and partially suppress the 
sse1Δ growth defect 
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transformed into wild-type or sse1Δ cells (Fig. 5.2 A,C).  The growth defect observed upon 

overexpression of wild-type Snl1 was not seen in cells overexpressing the localization mutant. 

In addition, this mutant suppressed the sse1Δ slow growth phenotype at 30°C, but increased 

temperature sensitivity.  Panel B shows that the constructs are being expressed in both strains, 

so the differences in toxicity are not likely due to differences in protein levels (Fig 5.2 B).  This 

phenotype is also recapitulated in the liquid growth curves, which accentuates the toxicity of the 

Δ40snl1 protein in the SSE1 null strain (Fig 5.2 C). These data suggest that Snl1 has to be 

localized to the ER membrane to cause toxicity when overexpressed in an sse1Δ strain. 

Therefore, it is likely that the process in which these two NEFs work together occurs at the 

cytoplasmic surface at the ER membrane. These findings also provide insight into Sse1 

functions; the soluble version of the Snl1 protein rescues the sse1Δ strain at 30°C, but not 

37°C, which implies under thermal stress conditions NEF-independent functions of Sse1 are 

likely important to maintain proteostasis and NEF activity in the absence of this additional 

function is detrimental. This theory is supported by data in another published study from my 

laboratory, which showed that even when expressed from a stronger promoter, soluble Snl1 

cannot complement loss of SSE1 at heat shock temperature and this is accompanied by an 

inability to suppress the sse1Δ strain glucocorticoid receptor maturation defect [121].    

 Snl1 is the only NEF that interacts more robustly with Ssb than Ssa in vivo [124].  This 

could be due to its ER localization and therefore may play an important role in toxicity observed 

in the SSE1 deletion strain. In order to test if Hsp70 interaction is necessary for the Snl1 

overexpression phenotype, I employed a published Hsp70 binding mutant [100] that contains 

two alanine mutations (snl1E112A, R141A; denoted snl1**) in residues necessary for Hsp70 

interaction.  This mutant allele was expressed alone (snl1**) or in concert with the 40 amino 

acid N-terminal truncation (Δ40snl1 **), which produces a soluble form of the Hsp70 binding 

mutant (Fig. 5.3).  The full length Hsp70 binding mutant was slightly little less toxic than the 

wild-type protein. Furthermore, the soluble Hsp70 binding mutant was a less potent suppressor 

of the sse1Δ growth defect compared to the soluble mutant, suggesting NEF activity is require  
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Figure 5.3. Snl1 overexpression toxicity is dependent on ER localization but 

independent of Hsp70 interaction. Spot dilutions (1:10) of BY4741 (wild-type; WT) or an 

sse1Δ strain expressing empty vector, p413TEF (-), p413TEF-SNL1-FLAG, p413TEF-snl1E112A, 

R141A-FLAG (snl1**; mutant does not bind Hsp70), p413TEF-Δ40snl1-FLAG (Δ40snl1; mutant is 

soluble due to a 40 aa N-terminal truncation), or p413TEF-Δ40snl1E112A, R141A-FLAG (Δ40snl1**; 

mutant is soluble due to a 40 aa truncation and it does not bind to Hsp70) were plated at 30°C 

or 37°C. 
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Figure 5.3.  Snl1 overexpression toxicity is dependent on ER localization but 
independent of Hsp70 interaction. 
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Figure 5.4.  Snl1 is not required for post-translational translocation of pre-pro-α factor.  

A. Schematic showing the processing of pre-pro-α factor. The protein is fully translated by the 

ribosome and then translocated into the ER, assisted by Hsp70 and an NEF. It is processed in 

the ER prior to being secreted as the mature form of the protein, α factor. B. Log phase 

BY4742 (MATα) (WT), sse1Δ, or snl1Δ cells were lysed and proteins were visualized through 

Western blot analysis using α-pre-pro-α factor antibody for the unprocessed protein or using 

αPGK as a load control with quantitation to the right. 
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Figure 5.4.  Snl1 is not required for post-translational translocation of pre-pro-α factor 
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for the rescue observed. These data suggest that the primary determinant of toxicity appears to 

be localization to the ER.  

 Localization to the ER membrane suggests that Snl1 could contribute to the transport of 

proteins from the cytosol to the ER lumen.  The yeast pheromone, α factor, is one protein 

known to be post-translationally translocated for ER processing and is ultimately secreted for 

mating. My laboratory previously showed that translocation of the immature form of the protein 

was Sse1-dependent [77]. I tested the role of the Sse1 and Snl1 in post-translational 

translocation using Western blot analysis of the unprocessed form of α factor, pre-pro-α factor 

(ppαF) (Fig. 5.4).  Lack of the unprocessed protein in the SNL1 deletion strain revealed that 

Snl1 is not involved in translocation/processing of this secreted protein.  One caveat to this 

experiment is that protein loads are not completely equal, but relative loads of the sse1Δ strain 

and the snl1Δ strain are comparable, and loss of Sse1 significantly inhibits processing of ppαF. 

This suggests that it is unlikely that Snl1 is located at the ER membrane for post-translational 

protein translocation. Another possibility discussed below is that Snl1 is located at the ER to be 

in close proximity to translating ribosomes.     

 This unknown function appears to be independent of NEF activity, the only currently 

identified function of Snl1, so how toxicity was mediated remained unclear.  Snl1 was shown to 

interact with the ribosome through a five-lysine motif located in helix 1 of the functional three-

helix bundle of the BAG domain [124].  It was also shown that mutation of these five lysines to 

alanine results in loss of interaction with the ribosome.  Based on this evidence, I wanted to test 

if ribosomal interaction was required for Snl1 overexpression toxicity.  Growth analysis using 

the five-lysine mutant (snl1 5K->A) revealed that ribosomal interaction is not necessary for 

toxicity (Fig. 5.5 A).  

 The unknown process that involves Sse1 and Snl1 does not require any of the currently 

known functions or interactions of Snl1.  Although, Hsp70 interaction is not required for the 

Snl1-mediated toxicity, it does interact primarily with the Ssb protein.   If Sse1 interaction with  
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Figure 5.5. Snl1 overexpression toxicity is independent of ribosomal association. Spot 

dilutions (1:10) of BY4741 (WT) or an sse1Δ strain expressing empty vector, p413TEF (-), 

p413TEF-SNL1-FLAG (SNL1), p413TEF-snl1E112A, R141A-FLAG (snl1**; mutant does not bind 

Hsp70), p413TEF-Δ40snl1-FLAG (Δ40snl1; mutant is soluble), or p413TEF-snl1 (5K->A) (snl1 

5K->A; mutant does not bind the ribosome) were plated at 30°C, 37°C, or 39°C.  
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Figure 5.5. Snl1 overexpression toxicity is independent of ribosomal association 
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Figure 5.6. The sse1-N281A mutant that interacts with SSA only does not cause  

overexpression toxicity associated with wild-type Sse1. A. SSE1 deletion cells expressing 

empty vector, p415CYC (-), p415CYC-FLAG-SSE1, or p415CYC-FLAG-sse1N281A were grown 

to log phase and cell lysate was collected for a FLAG immunoprecipitation (IP).  This was 

visualized by Coomassie stain (CBB) of an SDS-PAGE gel.  Bands were quantified using 

Image J software B. Growth analysis of wild-type (BY4741) expressing empty vector, p423GPD 

(-), p423GPD-FLAG-SSE1 (SSE1), or p423GPD-FLAG-sse1N281A  (sse1-N281A). Spot dilutions 

(1:10) were plated at physiological temperature 30°C and heat shock temperature 37°C. 

Western blot analysis of protein expression in wild-type cells expressing the plasmids above 

with αFLAG antibody and Coomassie stain (CBB) was used to balance loads.   
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Figure 5.6. The sse1-N281A mutant that interacts with SSA only, does not cause  

overexpression toxicity associated with wild-type Sse1 
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Ssb is required for alleviation of this toxicity, it provides a connection between Sse1 and Snl1.  

In order to test this, I used a mutant version of Sse1 that has an alanine mutation in the NBD 

resulting in interaction with only the Ssa family of Hsp70s (sse1N281A), which is in contrast to the 

wild-type protein that interacts with both Ssa and Ssb (SSE1) [197]. This is shown in a 

Coomassie stain of a FLAG immunoprecipitation separated by SDS-PAGE with quantitation in 

the right panel (Fig. 5.6 A).   I performed growth analysis of wild-type cells overexpressing 

either the wild-type Sse1 or the N281A mutant at 30°C and 37°C (Fig. 5.6 B).  This assay 

showed Sse1 overexpression toxicity, which was previously shown by a former student in my 

laboratory Lance Shaner, but this growth defect was alleviated by the N281A mutation and the 

two proteins were expressed at similar levels [190],.  It appears that Sse1 interaction with Ssb 

is required for Sse1-mediated overexpression toxicity in wild-type cells.  

 To further this investigation, I examined if Sse1 requires Ssb interaction to alleviate Snl1-

mediated overexpression toxicity. Snl1 overexpression in wild-type cells does not cause a slow 

growth defect, suggesting that when Sse1 is present it antagonizes the activity of Snl1 that 

leads to the growth defect. It is important that we understand how Sse1 deflects the activity of 

Snl1. Sse1 interacts with both Hsp70s, so I investigated if Sse1 interaction with Ssa or Ssb was 

specifically required.  To test this, sse1Δ strains overexpressing Snl1 were complemented with 

low levels of either wild-type SSE1 or sse1N281A (Fig. 5.7). This assay was analyzed by 

visualizing growth on plates because many of the strains were very slow growing and spot 

analysis could give false positive growth due to suppressor mutants. This method provided a 

larger selection of colonies to assess.  Low levels of wild-type Sse1 were only able to partially 

complement in the presence of high levels of Snl1, which indicates a specific ratio of Sse1 to 

Snl1 must be present to reestablish proteostasis. The mutant Sse1 not only lacked the ability to 

complement, but also appeared to cause higher levels of toxicity compared to Snl1 

overexpression alone.  This suggests that the Sse1 interaction with Ssb and not simply the 

presence of Sse1 itself is important for blocking the toxic effect of Snl1 overexpression.  This 

also adds a new level of complexity to this mechanism. The increased toxicity due to Sse1 
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interaction with Ssa implies an Sse1-dependent balance maintained between Ssa and Ssb that 

also contributes to the Snl1-mediated process. 

 Since it appeared that Snl1 overexpression toxicity was alleviated through Sse1 interaction 

with Ssb, I wanted to determine if loss of Ssb would also increase the toxicity in cells lacking 

Sse1.  For this experiment, I overexpressed Snl1 in wild-type, sse1Δ, ssb1Δssb2Δ, or an 

sse1Δssb1Δssb2Δ strain (Fig. 5.8).   I expected to see either complete loss of toxicity due to 

inability of the Snl1-mediated process to be carried out or increased toxicity in wild-type cells 

due to inability of Sse1 to restore proteostasis through interaction with Ssb.  Loss of Ssb only 

partially rescues the Snl1 overexpression toxicity in the absence of Sse1.  Logically because 

Snl1 overexpression toxicity does not require Snl1 interaction with Ssb, and alleviation of 

growth defect is mediated through Sse1 interaction with Ssb, cells lacking Ssb should have an 

additive growth defect, but this is not what is observed.  This indicates that the phenotypes 

observed are not direct consequences of the protein interactions, but rather the interactions 

indirectly influence the observed phenotypes.    

 Because this Snl1-mediated process seems to involve Ssb, I examined if the toxicity is 

associated with misfolding of nascent proteins. One way to test for the presence of misfolded 

proteins indirectly is to determine if the heat shock response (HSR) is activated.  The HSR is 

repressed in unstressed cells, but non ideal conditions such as heat shock that results in 

protein denaturation activates Hsf1, the master regulator of the HSR.  It was previously 

identified in my laboratory that deletion of SSE1 results in the activation of the HSR and this is 

thought to be due to the presence of misfolded proteins (Chapter 4, [48, 97].  To test this 

hypothesis, I used cells expressing a published lacZ reporter construct (pSSA3HSE-lacZ) to 

analyze Hsf1 derepression (Fig. 5.9) [145].  As seen previously, the loss of Sse1 activates the 

heat shock response approximately six-fold, but overexpression of SNL1 increases the level of 

Hsf1 derepression approximately 12-fold, a net two-fold increase in the sse1Δ background.  

This suggests that the Snl1-mediated process likely affects nascent protein folding albeit 

indirectly because toxicity, observed exclusively in sse1Δ cells, is independent of Hsp70 
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Figure 5.7.  The sse1-N281A increases Snl1 overexpression toxicity in the sse1Δ strain. 

In an sse1Δ strain expressing empty vectors p415CYC and p423GPD (lanes 1-3,6), SNL1-

FLAG on p423GPD (SNL1 o/e) (lanes 4-6), FLAG-SSE1 (lanes 2 and 4) or the mutant FLAG-

sse1N281A (lanes 3 and 5) from p415CYC (SSE1 or sse1N281A respectively) were plated onto SC-

LEU-HIS and allowed to incubate for three days.   
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Figure 5.7.  The sse1-N281A increases Snl1 overexpression toxicity in the sse1Δ strain 
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Figure 5.8. Loss of the SSB proteins alleviates Snl1 overexpression toxicity in an sse1Δ 

strain. DS10 (WT), ssb1Δssb1Δ, sse1Δ, or ssb1Δssb2Δsse1Δ expressing either empty vector, 

p416TEF (-), p416TEF-SNL1-FLAG were plated onto SC-URA plates at 30°C. 
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Figure 5.8. Loss of the SSB proteins alleviates Snl1 overexpression toxicity in an sse1Δ 

strain 
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Figure 5.9. HSR activation in an sse1Δ strain is stimulated by overexpression of Snl1.  

wild-type (WT) or sse1Δ cells expressing pSSA3HSE-lacZ and empty vector, p415TEF, or 

p415TEF-SNL1-FLAG. Hsf1 derepression was measured in log phase cells and reported in 

relative light units (RLUs).  Data are representative of two independent experiments.    

  



 113 

Figure 5.9. HSR activation in an sse1Δ strain is stimulated by overexpression of Snl1 
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interaction and ribosomal interaction.   

 Ultimately, these results suggest that Snl1 performs a task that is not essential for viability, 

but is important for proteostasis in concert with Sse1.  This is shown in the growth defects 

observed in the absence of both Sse1 and Snl1 and in the toxicity exhibited by overexpression 

of SNL1 in and SSE1 deletion strain.  In addition, the Hsp70 Ssb appears to play a role in the 

activity of Sse1 that antagonizes the Snl1 activity.  This Snl1-mediated process appears to 

impact protein folding as indicated by enhanced HSR activation; moreover, altering relative 

stoichiometry of Sse1 and Snl1 upsets proteostasis resulting in HSR upregulation.    
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DISCUSSION 

 Snl1 was originally identified as a high copy suppressor of the nup116C overexpression 

lethality and thus thought to be involved in nuclear pore biogenesis.  No further evidence other 

than this genetic interaction has been reported for this particular function of Snl1 [179].  This 

protein was then identified as a member of the Bag-domain containing family that acts as an 

NEF for the cytosolic Hsp70 families [100].  Recently it was shown in my laboratory that Snl1 

also interacts with the ribosome independently of Hsp70 [22].  No specific function dependent 

or independent of NEF activity has been identified for the Snl1 protein.  This yeast Bag-domain 

protein is unique in that it contains a transmembrane domain that tethers it to the ER 

membrane, which is trait conserved in Candida albicans [124], but again no functional link has 

been attributed to its localization.     

 To address this problem, I have performed a number of genetic analyses in this chapter to 

determine a possible role for the Snl1 protein in proteostasis.    Initially, a former student in my 

laboratory, Patrick Gibney and I identified a toxic phenotype exhibited when Snl1 is 

overexpressed in an SSE1 deletion strain.  This was interesting because in wild-type cells 

overexpression of Snl1 results in no phenotype.  This suggested that there is a functional 

relationship between Sse1 and Snl1 in vivo and that the relative levels of these proteins are 

important for maintaining proteostasis.  In support of this theory, the genetic screens of the 

combinatorial deletion strains in Chapter 4 revealed that loss of both Snl1 and Sse1 leads to a 

synthetic slow growth phenotype and cold sensitivity, whereas the snl1Δ strain has no 

phenotype.  This severe slow growth phenotype of the sse1Δsnl1Δ strain was found to be 

worse than the SSE1 deletion alone.  While Sse1 is known to play various roles in protein 

homeostasis, it is particularly surprising that loss of the least expressed NEF would cause a 

more exaggerated growth defect.   

 I examined which activities of Snl1 are necessary to cause the toxicity seen in the sse1Δ 

strain, with the idea that this could possibly help identify the role that Snl1 plays in concert with 

Sse1.  To determine if localization, Hsp70 interaction, or ribosomal interaction was required for 
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this toxicity, I performed growth analysis in strains overexpressing mutants that were either 

soluble (Δ40snl1), unable to bind Hsp70 (snl1**), or unable to bind the ribosome (snl1 5K->A).  

The only mutation that impaired toxicity was the Δ40snl1 mutant.  This suggests that 

localization is the only characteristic of Snl1 necessary for overexpression toxicity.  This rules 

out NEF activity as a possible reason for the negative effect on proteostasis.  This finding is 

interesting because it now leads to a hypothesis in which Snl1 has an NEF-independent 

function, which could be one reason that it has been conserved as an ER membrane protein in 

fungi.  Interestingly, Schizosaccharomyces pombe, the fission yeast, has two Bag family 

homologs, Bag101 is cytosolic and Bag102 is tethered to the ER membrane respectively [184].  

Unlike S. cerevisiae, Bag101 contains an N-terminal ubiquitin-like domain, which is more like 

the human Bag protein and provides an evolutionary link. In addition, the lack of a ubiquitin-like 

domain suggests that Snl1 may have a function that is not directly associated with the human 

Bag proteins. 

 I wanted to examine the chaperone network interactions that were important for Snl1 

function.  Sse1 interacts with both families of Hsp70s, Ssa and Ssb. A previous student in my 

laboratory, Lance Shaner, identified Sse1 overexpression toxicity [190], and based on this idea 

I tested a mutant construct that only interacts with Ssa to determine if this protein also leads to 

a slow growth defect when overexpressed.  It does not, which implies that the Sse1/ Ssb 

interaction is the primary cause of the cellular damage in the presence of high levels of protein.  

This is thought to be due to improper regulation of the Hsp70 cycle leading to high rates of 

nascent substrate release and an increase in nonfunctional proteins present in the cytosol.  A 

study done in 2006 by Ulrich Hartl’s laboratory at the Max Planck Institute, supports this claim, 

as overexpression of Sse1 resulted in a 50% decrease in FFL biogenesis [48], nearly as severe 

as the phenotype observed previously for the sse1Δ strain.     

 Once it was established that Ssb interaction was necessary for Sse1 overexpression 

toxicity, I tested whether this interaction was also necessary to alleviate the Snl1 

overexpression growth defect.  In addition, this experiment was an attempt to establish a more 
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complete idea of the chaperone network important for this unknown process involving Snl1.  

The results showed that the Sse1 Ssb interaction was not only necessary, but that the 

presence of the Sse1 mutant that only interacts with the Ssa family of Hsp70s increased 

toxicity in strains overexpressing Snl1.  This suggests that the Snl1-mediated activity is 

balanced by Sse1 interaction with Ssb, and upregulation of the HSR upon overexpression of 

Snl1 further suggests that protein folding is negatively affected by the change in levels of these 

proteins.  This could be due to loss of a regulatory step that involves Snl1 during translation, 

and if this step is missing, translation is increased and in the absence of Sse1, the increased 

folding load cannot be handled leading to loss of proteostasis. 

 More experiments need to be performed to determine whether translation rates are 

changed in response to the Snl1 levels.  Localization appears to be required for the 

overexpression toxicity phenotype in the sse1Δ strain, which could also indicate importance of 

ER related functions. However, lack of Snl1 involvement in post-translational translocation 

suggests that the positioning of Snl1 could enhance ribosomal interaction, which would be 

important if this process affects translation. In addition, because loss of Snl1 is not detrimental, 

it may only be a certain subset of proteins that relies on Snl1-mediated regulation.  Finally, 

because this process involves one chaperone and two co-chaperones, Ssb, Sse1 and Snl1, it 

is important to determine if there are other proteins that are part of the network affecting this 

unknown process.   
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Chapter 6:  Discussion and perspectives 
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SUMMARY 

 In this thesis I have presented a comprehensive analysis of the cytosolic Hsp70 NEFs in 

isogenic strains and performed extensive analysis of the NEFs with unknown cellular functions 

to determine specificity of these important regulators. In addition, I have developed a novel 

method to monitor aggregation and protein activity in a coupled assay involving fluorescence 

microscopy and firefly luciferase (FFL) activity.  The goal of this work was to develop a better 

understanding of the cytosolic Hsp70/NEF network. 

      Chapter 3 describes a technique I developed using the well-established model folding 

protein, FFL-GFP, to monitor protein refolding and repair by coupling an enzymatic activity 

assay and fluorescence microscopy.  Hsp104, the yeast disaggregase, must be present in 

order to release proteins from aggregates post-stress treatment, so in the absence of this 

chaperone reactivation of denatured proteins cannot occur efficiently.  This study revealed that 

solubilization and reactivation of proteins function together.  In addition, the process of 

liberating proteins from this incompetent state is associated with aggregate dynamics that 

include fusion of small aggregates into large aggregates prior to dissolution. This observation is 

supported by observations in a paper published last year that showed that misfolded substrates 

accumulate into what they termed as Q-bodies [195].  They showed that initially small 

aggregates formed and then were sequestered into dynamic Q-bodies independent of 

cytoskeletal components [191]. 

 In Chapter 4, I revealed that Sse1 acts as the primary NEF involved in most Hsp70-

mediated processes including protein folding/biogenesis, refolding/repair, translocation and 

degradation.  Although some of the individual findings have been shown in previous studies, 

they were in various strains and contributions of the other NEFs were not always included [48, 

49, 92, 98, 120, 123, 179, 192].  An interesting finding in this study was that none of the 

individual NEFs nor the two most abundant NEFs, Sse1 and Fes1, were required for misfolded 

protein repair.  This result was unexpected because the NEFs are central to Hsp70 function.  

Furthermore, for the first time Fes1 was shown to interact with only the Ssa family of Hsp70s, 
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and to play a primary role in regulation of the HSR.  Upon deleting FES1 the HSR was highly 

induced; even more than in the absence of the most abundant NEF, Sse1.  Because it did not 

appear that Fes1 played a primary role in protein folding, which would lead to high levels of 

misfolded protein, it seems more plausible that Fes1 is directly involved in Hsf1 repression.  

Specific contributions of Snl1, and Sse2 were not identified in this chapter, but Sse2 is the only 

NEF highly induced upon exposure to high temperatures; this suggests it may be important in 

stress conditions, which could explain the reason why loss of both Hsp110s is detrimental. 

Deletion of SNL1 results in a synthetic growth defect and cold sensitivity in the absence of 

Sse1. In concert with the previous finding in my laboratory revealing Snl1 interaction with the 

ribosome, this led to the theory that Snl1 plays a regulatory role in translation.   

 In Chapter 5, I expanded upon a previously identified finding that overexpression of Snl1 in 

an sse1Δ strain causes toxicity to investigate possible roles of Snl1 in proteostasis [193]. To do 

this I used a number of Snl1 mutants including an Hsp70 binding mutant, a soluble truncation 

mutant, and a ribosomal binding mutant to test the importance of each of these characteristics 

in the observed toxicity.  In this study, I uncovered that ER/nuclear localization was required for 

toxicity and Sse1 alleviated it in an SSB-dependent manner. 
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DISCUSSION 

The role of NEFs in regulating Hsp70 activity – All of the NEFs play relatively equal biochemical 

roles as Hsp70 cycle regulators.  Each of the three families of NEFs, the Hsp110s, HspBP1s, 

and Bag1-domain containing proteins appears to have evolved separately as indicated by their 

distinct sequence and structures (Fig. 1.5), but they all perform the same biochemical activity 

suggesting convergence.  This also indicates that Hsp70 regulation is very important for 

viability and requires some redundancy amongst its regulatory factors. The three NEF families 

are distinct from one another, but their structural similarities to their mammalian homologs set 

the premise for each of the NEFs to have unique functions as well.  Keeping with this 

hypothesis, the Hsp40s, or J-domain proteins that regulate Hsp70 ATPase activity, also have 

structural differences, which allow them to provide specificity to Hsp70. There are 22 identified 

Hsp40s in yeast, and they include proteins that bind a wide range of substrates (Ydj1, Sis1), 

proteins that bind very specific substrates (Jjj1, Swa2), and proteins that do not bind substrate 

(Zuo1, Sec63) [38].  Based on their protein interactions and their protein networks, these co-

chaperones contribute to a plethora of Hsp70-dependent and Hsp70-independent processes.  

This theme is also maintained by the ER-resident Kar2 NEFs, Lhs1 and Sil1, which belong to 

the Hsp110 and HspBP1 families, but have unique and overlapping functions.    

      The regulatory architecture described above allows Hsp70, one of the main housekeeping 

proteins in eukaryotic cells, to be highly promiscuous when the situation demands and highly 

specific when needed.  When considering the NEFs, although there are fewer compare to the 

Hsp40s, they present some comparable characteristics, such as substrate binding. The 

Hsp110 family is very similar to the Hsp70s, in that they have nucleotide binding and substrate 

binding domains (NBD and SBD respectively), but the Hsp110s are thought to function 

independently of ATPase activity.  Two recent studies claim that Hsp110 ATPase activity is 

required for a novel disaggregase activity in mammalian cells [87,198].  However, another 

study presented conflicting results [85, 86, 194].  The Hsp110 SBD is distinct from the Hsp70s 

in that it has an extended linker domain between the α and β subdomains [105].  This results in 
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the α domain wrapping around the Hsp70 and being involved in Hsp70 binding rather than or in 

addition to substrate binding.  In Hsp70, the α domain acts as a lid over the β domain 

increasing affinity for the substrate (Fig1.3 B,C).  Based on the structure and genetic data 

showing the α domain is necessary for Hsp70 binding, leaving the β domain free and exposed 

to interact with substrate wen Hsp110 is in complex with Hsp70 [93].  Several studies have 

shown that Sse1 in fact does interact with the substrate and that substrate binding activity 

contributes to preventing accumulation of disease-causing protein isoforms [126, 163].  

Substrate interaction is one way that the NEFs can provide specificity to Hsp70 and it has been 

shown that the binding affinities for different substrates are distinct for Hsp70 and Hsp110 [94, 

95]. In addition, Lhs1, the ER Hsp110, binds substrate in a coordinated activity with the Hsp70, 

Kar2 to promote efficient substrate refolding [114], which also occurs between BiP and Grp170 

in humans [107, 108] suggesting this is a well conserved mechanism. 

 Another method for modulation of Hsp70 specificity is through network interactions and/or 

localization.  The Bag-domain family NEF, Snl1, has an N-terminal transmembrane region that 

tethers it to the ER membrane. Genetic and biochemical evidence has linked Snl1 to the 

ribosome; immunoprecipitation experiments show interaction between ribosomal subunits and 

biochemical evidence shows that it is regulated concurrently with translational machinery [101, 

124].  ER localization and association with translation machinery is a possible mechanism by 

which the NEFs can target Hsp70 for specific processes.  In addition, Snl1 has been shown to 

primarily interact with the Ssb family of Hsp70s, while Fes1, the HspBP1 family NEF, only 

interacts with Ssa in vivo.  Because both of these NEFs have been shown to interact with both 

Hsp70s in vitro, their specific interactions in vivo could be part of the mechanism by which 

these cytosolic NEFs specifically regulate Hsp70 [22, 48].    

 In addition, NEF regulation of the Hsp70s could be conditional.  Sse2 is the only NEF highly 

induced, approximately 20-fold, by stress conditions, which would change the dynamics of the 

Hsp70 chaperone networks.  The Hsp70s induced during stress are Ssa3/4, and although 

these proteins are very similar to Ssa1/2 slight alterations in the structure could change the 
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mechanism of function [52, 72, 195].  Ultimately there are many mechanisms by which the 

NEFs can regulate not only the Hsp70 cycle, but also Hsp70-mediated processes.  Although 

there is some evidence to support these hypotheses, more work needs to be done in vivo to 

determine if they are valid.    

 

Understanding differential NEF contributions to Hsp70-mediated processes – In order to 

determine if the three families of cytosolic NEFs differentially contribute to Hsp70 function, I 

tested four Hsp70 associated processes including protein biogenesis, refolding and repair, 

regulation, and degradation, in the presence and absence of each of the NEFs alone or in 

combination with each other.  I initiated these studies by developing a collection of NEF 

deletions strains and performing growth analysis; this was based on the known growth defects 

previously observed upon loss of Sse1 and Fes1 and the synthetic lethality resulting from 

deletion of both Hsp110s. In the same strain background I wanted to determine if any of the 

other NEFs exhibit growth phenotypes, which would suggest roles in vital cellular processes.  

The only novel growth phenotype was the severe slow growth defect and temperature 

sensitivity observed at physiological temperature upon deletion of both SSE1 and SNL1 (Fig. 

4.1). This synthetic growth phenotype was interesting and unexpected because no growth 

defect is associated with the loss of Snl1 alone.  Furthermore, the cold sensitivity implies there 

is a problem with upregulating translation, which is necessary when cells are exposed to cold 

temperatures. These studies did not reveal any unique contribution of Snl1 to Hsp70-

dependent processes, but I performed more genetic analysis to uncover a possible function for 

Snl1 in Chapter 5, which I will discuss later. Ultimately these growth assays showed that Sse1 

of the Hsp110 family is the most important NEF for cellular viability.  Fes1 also appears to play 

an important role as loss of Fes1 in the presence of Sse1 results in a mild growth defect.  

Whether the role of Fes1 is distinct from Sse1 could not be determined from this level of 

analysis because the reason for this defect could be due to an overall decrease of cytosolic 

NEF activity. 
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      In order to address what could specifically contribute to the various growth phenotypes, I 

developed a number of assays to determine efficiency of known Hsp70-mediated processes.  

Folding is one of the most well known activities of the Hsp70s and many studies have been 

done using a well-established yeast model protein, firefly luciferase, which is a thermolabile 

protein that unfolds and aggregates when exposed to high temperatures.  For these studies I 

used FFL-GFP [74, 75, 148, 196].  Data collected using both fluorescence microscopy and 

enzymatic assays uncovered Sse1 as the primary NEF involved in biogenesis of this model 

protein (Fig. 4.2).  Fes1 also appears to play a minor role in maintaining the active form of 

protein, but not in de novo folding.  This fits well with a model where Sse1, that binds both 

families of Hsp70s, interacts with Ssb to fold nascent chains while Fes1, which only interacts 

with the Ssa family, is more involved in later stages of biogenesis once the protein is 

completely released from the ribosome. 

 One interesting finding was in the refolding and repair experiment; FFL-GFP reactivation 

after heat denaturation did not require any of the individual NEFs or the two most abundant 

NEFs, Sse1 and Fes1 (Fig. 4.3). This was surprising specifically because Sse1 and Fes1, 

which have been shown in this and other studies to play a role in protein folding, do not appear 

to be particularly important for maintenance after stress.  Another NEF that might be 

considered to be important in this pathway is Sse2 due to upregulated in stress conditions, but I 

detected no refolding defect in the sse1Δ strain.  There are two likely explanations as to why I 

obtained these results; one is that in stress conditions the NEFs could become highly 

redundant, so unless all of them are absent during recovery, protein repair occurs efficiently.  

Snl1 is unlikely to fit into the NEF redundancy hypothesis for refolding damaged proteins since 

the Ssa proteins are important for this process and Snl1 primarily interacts with Ssb.  A future 

experiment would be to test the quadruple deletion mutant that I have constructed whose 

growth is supported by a temperature sensitive allele of SSE1.  The temperature sensitive 

allele of SSE1 is unique in that it becomes inactive at 30°C, which is the physiological 

temperature for yeast.  This strain will allow us to determine if loss of all the NEFs still supports 
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refolding of the model protein.  These experiments would also have to be interpreted with 

caution similar to studies done with the temperature sensitive allele of SSA1 (ssa1-45) because 

deletion of both Hsp110s is lethal; therefore, phenotypes could be attributed to cell death 

versus loss of specific proteins.  Another possibility for why I see no specific NEF necessary for 

protein refolding is that there are other known or unknown factors that contribute to this process 

during stress to regain proteostasis.  For example one of the factors important for reactivation 

of denatured proteins is the yeast disaggregase, Hsp104.  Hsp104 is upregulated in response 

to stress and it along with Ssa1 and Ydj1 has been shown to refold luciferase without an NEF 

in vitro, suggesting that the NEF activity may not be necessary in this process in the presence 

of a disaggregase system [85, 86].  It is known that Hsp104 is necessary for recovery of 

proteins after heat stress, but the open question is whether it is sufficient [146, 152, 153]. 

 I also performed Hsp70-mediated degradation assays using a soluble mutant allele 

vacuolar protease carboxypeptidase Y (CPY ) fused to GFP that is quickly degraded in the 

cytosol (Fig. 4.5). These data revealed that Sse1 is the only NEF necessary for efficient 

clearance of this mutant protein; this finding has been corroborated by evidence presented in a 

number of studies [120, 121].  Surprisingly, the double deletion mutant sse1Δfes1Δ exhibited 

improved degradation kinetics compared to the sse1Δ strain.  Fluorescence microscopy 

showed that the CPY-GFP protein is highly aggregated in sse1Δ cells and these aggregates 

are maintained throughout the two hour cycloheximide chase.  Fluorescence microscopy 

showed the fes1Δ and the sse1Δfes1Δ strains initially contain aggregates of the model protein, 

but the FES1 deletion strain clears the aggregates to wild-type levels in two hours whereas the 

double mutant has an intermediate phenotype when compared to the sse1Δ and the fes1Δ 

strains.  This suggests that inability to clear the mutant protein could be due to inability to 

liberate the protein from aggregates. A number of scenarios can be envisioned to explain this 

phenomenon.  One possibility is that the proteins are not being ubiquitinated to target them to 

the proteasome for degradation.  This could lead to the mutant protein collecting in cytosolic 

granules.  There is evidence to support this showing that SSE1 deletion cells are defective in 
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protein ubiquitination [120, 121], but the Gowda et. al. 2013 paper counters this presenting 

evidence that there is a high level of ubiquitinated protein in the absence of Sse1 that is 

increased upon exposure to stress [123].  To determine if this is the issue the mutant CPY 

protein would need to be immunoprecipitated in the absence of proteasome activity in the NEF 

deletion strains followed by Western blot analysis using antibody specific to ubiquitin. This 

would reveal if the mutant protein is ubiquitinated in an SSE1 deletion strain.  Alternatively, the 

issue could be the dissolution of the aggregates.   The Hsp110s have been shown to increase 

reactivation of an aggregated model protein in the presence of Hsp104, but have not been 

shown to directly affect Hsp104 disaggregation activity [85, 86].  Because these results were 

presented as differences in FFL activity, disaggregation could not be deconvoluted from 

refolding. To resolve this issue aggregation assays using spectrophotometric techniques would 

have to be done in the presence and absence of the NEFs.   Aside from the reason for protein 

accumulation in the SSE1 deletion strain, there is still the open question as to why loss of Fes1 

somehow improved the cells ability to clear CPY-GFP?   

 

The role of Fes1 in the heat shock response – In attempts to explain why the double deletion 

strain, sse1Δfes1Δ, shows suppression of the CPY-GFP degradation defect seen in sse1Δ 

cells, I turned to previously published data from my laboratory [166] and in Claes Andreasson’s 

laboratory at Stockholm University [123] that showed upregulation of the HSR in a fes1Δ strain.  

The heat shock response is regulated by the heat shock transcription factor, Hsf1.  In yeast this 

protein is trimerized, DNA bound, nuclearly localized, but repressed in unstressed cells [30-32].  

There are two main events associated with activation of Hsf1, which include dissociation of 

heat shock proteins (HSPs) and hyperphosphorylation of Hsf1. Once Hsf1 is active, it 

upregulates HSPs, which ultimately act in attenuation of this stress response [26].  I tested the 

activation of the HSR in each of the single NEF deletion strains as well as the sse1Δfes1Δ 

strain (Fig. 4.4).  As seen previously in my laboratory, loss of SSE1 upregulates the HSR two-

to-three-fold [127].  Activation of the HSR in the sse1Δ strain is thought to be due to increased 



 127 

levels of misfolded proteins; this is based on the known role of Sse1 in protein folding, but this 

has only been tested indirectly [48, 66, 92].  In the fes1Δ strain, the HSR is activated 

approximately 13 fold, which is significantly higher than the sse1Δ strain.  The Gowda et. al. 

2013 paper suggests that this is likely due to high levels of misfolded protein in the fes1Δ strain 

background. Fes1 has not previously been shown to be necessary for folding of nascent 

proteins, which would be the primary reason for high levels of misfolded proteins leading to 

upregulation of the HSR.  The work performed in Chapter 4 reveals a minor role for Fes1 in 

FFL-GFP biogenesis, but the role of Sse1 is more significant and the upregulation of the HSR 

in the sse1Δ strain is one sixth of the fes1Δ strain, which makes this hypothesis unlikely.  A 

study in 2006 tied Fes1 to refolding of denatured luciferase [49]; however, in these studies, the 

cells were heat shocked prior to the refolding assay, and in cells where the HSR is already 

highly upregulated heat shock could be damaging.  This theory fits with the heat sensitivity of 

the fes1Δ strain, and would explain why a refolding defect might be observed that is not related 

to the role of Fes1, but rather the general health of the cells. Unfortunately, the actual 

contributions of Fes1 are difficult to assess because the high levels of chaperones in these 

cells could mask the contributions of this protein in optimal conditions.  I wanted to test the 

functional contributions of Sse1 and Fes1 in conditions were the HSR remained repressed, to 

avoid any masking issues.  All attempts to mutagenize, chemically alter, or build constructs to 

control expression of Hsf1 failed when in concert with the deletions strains.  This suggests that 

inhibiting Hsf1 function in the absence of these NEFs is lethal, so I was not able to pursue this 

line of investigation. 

      There is another possibility as to why HSR activation occurs in the fes1Δ strain.  If Fes1 

acts as a negative regulator for Hsf1 along with Hsp70 and Hsp90, this would result in high 

levels of HSR activation in its absence.  Further studies need to be performed to determine if 

Fes1 directly interacts with Hsf1, which will likely performed by Sara Peffer in my laboratory, 

who is currently working on chaperone-mediated regulation of Hsf1. Immunoprecipitation 

experiments performed in this study show that Fes1 interacts exclusively with Ssa in vivo (Fig. 
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4.6).  In addition, I found that this is not likely due to competition with other proteins that interact 

with Ssb because in the absence of proteins in the RAC and NAC complexes as well as in the 

sse1Δ strain, Fes1 lacked interact with Ssb.  This suggests that in vivo there is a mechanism in 

place that results in a specific interaction with Ssa.  The most probable mechanism for this 

specificity is post-translational modification because in vitro Fes1 interacts equally with Ssa and 

Ssb, but the protein used for in vitro assays is purified from E. coli, which would not be modified 

the same as in yeast.  Further studies will have to be done to test the difference in modification 

of these two proteins, which could include mass spectrometry or mutational analysis of 

predicted modification sites.  Alternatively, there could be minor differences in the fold that 

allows it to be functional, but changes the interaction interface with Hsp70.  This could be 

analyzed by using Fluorescence Resonance Energy Transer (FRET) of yeast purified Fes1.   

 One major caveat to the hypothesis that Fes1 directly regulates Hsf1 is how specificity 

would be imparted.  Sse1 is the NEF most highly associated with Hsp70-mediated activity.  In 

addition, Sse1 is also involved in Hsp90 regulation, and Hsp90 binds and represses Hsf1 as 

well.  Sse1 presents as the most likely candidate for Hsf1 regulation, so why would Fes1 be 

more involved in this process? One possibility is that Sse1 is a very large co-chaperone much 

like Hsp90 and Hsp70, so the steric hindrance created by these two proteins could block Sse1 

interaction leaving Fes1 as the only NEF that is small enough and can localize to the nucleus.  

This seems like a very simple explanation, but in some cases the simplest possibility is correct.  

 While the mechanism of Fes1 regulation of the HSR is currently unknown, I wanted to test if 

this was the reason we see suppression of the CPY-GFP slow degradation phenotype in the 

sse1Δfes1Δ strain.  To do this I heat shocked the cells in the sse1Δ strain to activate the HSR 

prior to the CPY-GFP cycloheximide chase (Fig. 4.5).  This improved the degradation kinetics 

suggesting that the upregulation of the HSR due to deletion of FES1 is one possible 

mechanism by which the mutant CPY protein is cleared more efficiently in the sse1Δfes1Δ 

strain.  
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Understanding functional contribution of Snl1 to proteostasis – One of the most disconcerting 

findings in these studies was the lack of Snl1 process specificity.  This NEF even more than the 

others should have a very specific activity because it is the only one that is localized to a 

distinct compartment, and this characteristic is unique to fungi to the best of my knowledge.  

This suggests that Snl1 localizes to optimize its function in yeast.  Unfortunately the specific 

Hsp70-mediated processes that were tested in Chapter 4 did not identify any specific role of 

Snl1; although, one novel phenotype was revealed in this chapter.  The synthetic slow growth 

phenotype observed at physiological temperatures in the sse1Δsnl1Δ strain suggests these two 

proteins either act redundantly in the same process or they act in two parallel processes (Fig. 

4.1). This finding along with the ER localization, ribosomal interaction, and interaction with SSB 

in vivo led me to the hypothesis that Snl1 plays a role in modulating translation, but whether 

this role is direct has yet to be determined.    

      Previously Patrick Gibney, Ph.D. and I uncovered overexpression toxicity of Snl1 in an 

sse1Δ strain (Fig. 5.1, [193]).  To further analyze this, I performed genetic analysis of Snl1 

mutants produced and published by Jacob Verghese [124] in my laboratory to try to determine 

which aspects of Snl1 biology are important for the observed toxicity. This revealed that the 

primary characteristic of Snl1 related to overexpression toxicity is localization to the ER/nuclear 

membrane (Fig. 5.2-5.5).  This could suggest that the primary role of Snl1 is associated with 

transport of proteins from the cytosol to the ER.  Co-translational protein translocation is a 

tightly regulated process involving encoded signals and the signal recognition particle (SRP), 

and this is not known to involve Snl1.  In addition, loss of proteins associated with this process 

results in upregulation of the stress response [197], and loss of Snl1 does not result in 

activation of the HSR (Fig 4.4).  This does not completely eliminate the possibility of Snl1 

playing a role in co-translational translocation, but more studies would have to be performed to 

understand the mechanism.  Most likely if Snl1 is involved in this process, it is only active for 

specific substrates so a number of proteins would have to be tagged and folding or stability 

would have to be monitored in the presence and absence of Snl1.  
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 Alternatively, post-translational translocation seems like a possible process that Snl1 might 

contribute to; although, it is not common in yeast, mating pheromone α-factor is a substrate 

requiring this pathway.  Because α-factor is modified and processed in the ER, the only time 

the immature substrate (pre-pro-α factor) can be detected at high levels is when post-

translational translocation is not properly functioning.  Testing the accumulation of pre-pro-α 

factor revealed that Sse1, but not Snl1, was involved in translocation of this protein (Fig. 5.4).   

 In addition, I wanted to determine how the presence of Sse1 might prevent the Snl1 

overexpression toxicity, so I tested an Sse1-Ssb binding mutant (sse1-N281A) in the presence 

and absence of Snl1 (Fig. 5.6-5.7).  These results suggested that Sse1 interaction with Ssb 

was required to alleviate the toxicity exhibited by Snl1 overexpression, which supports a 

translation related role.  It also appears that the presence of sse1-N281A in an Snl1 

overexpression strain was more toxic than no Sse1 at all.  It is unclear why this would occur. In 

addition, these studies revealed that Sse1 overexpression toxicity is mediated through the SSB 

interaction (Fig. 5.7-5.8).  This is not surprising because nascent chains are the most sensitive 

to changing environments and stress, so if translation is somehow being altered it could easily 

lead to proteostasis issues.   Because Sse1 interacts with both Ssa and Ssb it is likely that it is 

involved in the transition of nascent chains form co-translation folding to post-translational 

folding, which is more likely to be true if the substrate binding domain (SBD) of Sse1 of is active 

in the protein biogenesis process.  To test this, Sse1 SBD mutants will need to be analyzed for 

efficiency of protein biogenesis.  

 The overexpression toxicity was mediated through Ssb, so I examined if it is maintained in 

cells lacking Ssb especially because Snl1/Hsp70 interaction was not required for this 

phenotype.  The results showed partial alleviation of the Snl1-mediated overexpression toxicity 

in the absence of Ssb1/2.  These data suggest that SSB compounds the problem associated 

with Snl1 overexpression toxicity in cells lacking Sse1.  This makes sense if Sse1 is 

responsible for passing nascent chains from Ssb to Ssa because if Ssb proteins are out of the 

way, Ssa and another NEF can fold polypeptides being released from the ribosome; whereas 
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Ssb alone holds on to nascent chains for longer and folds with decreased efficiency without 

Sse1 [97]. This same study also shows that Ssa interaction with nascent chains increases in 

the absence of Ssb, which suggests that Ssa does come in and take over nascent chain folding 

when Ssb is not present.   

      It is still unclear what exactly is the physiological consequence when Snl1 is overexpressed 

in an sse1Δ strain.  Obviously, this synthetic genetic situation is damaging as seen by the 

growth defect, so I wanted to test if the imbalance of these two NEFs was enough to activate 

the heat shock response more than the deletion of SSE1 alone, and it was (Fig. 5.9).  Although, 

it only appears to be a modest two-fold increase above the sse1Δ strain, overexpression of 

Snl1 increases stress associated with loss of Sse1.    

      Ultimately these data led me to two possible hypotheses: 1) Snl1 plays a general negative 

regulatory role in translation; or 2) It interacts with another unknown protein that regulates 

translation for vital proteins.  Out of the two hypotheses, I think the first one is more plausible 

because this is an effect that would not be easily detected upon deletion of SNL1.  If all other 

conditions in the cell are at optimum levels and translation rates are only slightly increased, this 

would not be an issue because the folding machinery and degradation machinery is intact.  If 

this hypothesis is correct, Snl1 is primarily important for larger more unstructured proteins that 

need to be slowly translated so they can be folded to their native state without improper inter- 

or intra- molecular interactions occurring.  This fits well with the data presented in 2012 by 

Judith Frydman’s laboratory at Stanford University, that showed that the primary substrates 

associated with Ssb interaction were the ones with properties that slowed translation rates such 

as: protein length, secondary structure characteristics, hydrophobic elements, and aggregation 

propensity [115].  In theory, in the absence of Snl1 and Sse1, folding of large, complicated 

substrates is compromised and partially folded proteins are likely being locked in position with 

Ssb; therefore, even temporary pausing of translation due to slow release can lead to a loss of 

proteostasis.  In addition, if Snl1 is overproduced, slow translation rates and general misfolding 

due to the absence of Sse1, could compound the proteostasis issue that already exists in the 
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sse1Δ strain. Thus proteins necessary to reset proteostasis in the SSE1 null strain, such as 

Sse2, cannot be efficiently translated.  This function of Snl1 would explain both observed 

phenotypes, but there is a caveat to this hypothesis; Snl1 localization and the low relative 

levels make its ability to affect global translation unlikely.   

 The alternative hypothesis is that Snl1 recruits another factor that affects translation of a 

subset of proteins.  There is less evidence supporting this hypothesis, but it could explain how 

Snl1 seems to be impacting processes it is not known to be directly involved in such as nuclear 

pore biogenesis [179].  In addition, if Snl1 is not necessary for the recruitment of this unknown 

factor but improves efficiency of localization, it is unlikely there would be obvious phenotypes 

unless there are additional problems in the cell, such as upon the loss of Sse1. In a search for 

possible Snl1 interacting proteins that could fit this profile using The Biological General 

Repository for Interaction Datasets (BioGrid), I found Gis2.  Gis2 is the only protein I was able 

to identify that also interacts with Sse1 and Ssb.  In addition, this protein was found to control 

translation rates by interacting with hundreds of mRNA targets [198].  In addition, Gis2 was 

shown to localize to P-bodies and stress granules as well as interact with the translation 

initiation factor e1F4G [199], which suggests that this protein shuttles from granules where 

mRNA can remain latent until needed at the ribosome for translation.  It would be interesting to 

see the genetic interactions between this protein and Snl1.  More work needs to be done to 

determine the role of Snl1 in translation, but the evidence presented here provides support for 

this hypothesis.   

 

The chaperone networks in process specificity – The primary cytosolic chaperones in yeast 

have a wide variety of substrates for which they bind to exposed hydrophobic regions.  It is 

important to understand how these proteins are specifically required for so many different 

functions and how substrates are triaged in a very busy molecular environment. Chaperones 

also interact with each other to provide specificity; Hsp70 is part of the Hsp90 folding cycle and 

is thought to deliver substrate to Hsp90 [200].  In addition, Hsp70 and the yeast Hsp100, 
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Hsp104, interact and Hsp70 stimulates disaggregation activity of this protein [87].  In a yeast 

model for Huntington’s disease, TRiC, the cytosolic chaperonin interacts with Hsp70 to prevent 

misfolding that leads to accumulation of amyloid deposits of polyglutamine proteins [201].  

These are interactions of the primary chaperones, which I consider a top-level regulation, but 

other proteins that interact with the chaperones mentioned above also have to be considered.   

      One way that chaperones are involved in specific processes or bind to specific substrates is 

through the interaction with co-chaperones.  The J-domain proteins, or Hsp40s, which activate 

the ATPase activity of Hsp70, are also well known for binding and delivering substrate to 

Hsp70.  In yeast, there are 22 Hsp40s involved in a variety of processes and depending on 

which one is interacts with Hsp70 dictates substrate and pathway specificity.  There are 

multiple levels at which this can happen.  For example there are a number of general Hsp40s, 

such as Ydj1, that can interact with many substrate proteins to assist in folding.  In this case, 

Ydj1 could also interact with an additional protein that interacts with a substrate.  This paints a 

picture where several levels of interactions determine the process specific function at any given 

time.  This means alone Hsp70 is one of the most promiscuous chaperones, but dependent on 

the complete network of interacting proteins, it can contribute to some of the most specific 

processes that exist in the cell.   

 One of the lesser-studied areas of the Hsp70 network is the NEFs.  Many studies have 

been dedicated to Hsp110/Sse1 contributions to Hsp70 function, but the other families of NEFs 

have been somewhat overlooked.  Hardly any work has been done on Hsp70-independent 

functions of these co-chaperones.  It is important to understand how the NEFs act in the 

chaperone network because knowing their specific contributions to cellular processes is 

important for understanding the global picture of how proteostasis is maintained.  Yeast is an 

important model system for studying these network interactions because homologs of nearly all 

of the chaperones and co-chaperones presented in this work exist in humans and models for 

many of the human neurodegenerative diseases have been generated in yeast [124, 202]].  

Once the network interactions are understood, very specific complexes can be targeted to alter 
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processes associated with disease development or to reverse the negative effects of the 

disease.    

 

Disease implications and relevance – There are currently no treatments that cure or reverse 

the effects of neurodegenerative diseases.  Some of the most common neurodegenerative 

diseases, which have all been associated with specific proteins include: Alzheimer’s disease 

(tau, amyloid-β), Huntington’s disease (huntingtin, poly-Q), Amyotrophic Lateral Sclerosis (ALS; 

TDP-43, FUS), and Parkinson’s disease (α-synuclein) [128].  Some of these proteins have 

been associated with multiple diseases and in some cases multiple proteins will aggregate 

leading to one disease state [203]. In addition, the prion protein, PrP, is a membrane protein 

that can also be cleaved and secreted for normal function, which is not completely understood 

[134].  PrP can assume alternative folds, on of which is known as PrpSC, through an unknown 

post-translational process [204-206], and this conformation leads to the formation of 

aggregates that are found in extracellular deposits in diseases brains of people with 

Creutzfeldt-Jakob disease, fatal familial insomnia, Gerstmann-Straussler-Scheinker syndrome, 

and Kuru [207]. Much like the symptoms of the diseases themselves, the states of the proteins 

associated with each of these diseases all have a common theme. In each of these diseases a 

normal functioning protein can reach an alternative fold, which is thermodynamically favored 

and functions abnormally. This form of the protein can lead to aggregation, which can be either 

disordered or ordered such as in the formation of structured β-sheets. Ordered aggregation can 

develop into large amyloid structures and fibrils. Small pieces of these structures can break off 

to “seed” the production of more amyloid structures [208].  Ultimately, this process leads to cell 

damage and in humans, tissue damage and eventually death.  Which state of each of these 

proteins is the most detrimental to cells is under constant debate and is still unclear; however, 

each state of the protein provides another process that can be targeted for treatment.  

Preventing initial misfolding and aggregation is dependent on the function of chaperones to 

target the alternatively folded proteins as they begin to aggregate in order to pull them apart 
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and refold to their proper structure.  Once the aggregates are formed they can be stabilized so 

they do not form large disordered aggregates or amyloid structures, which can be mediated by 

chaperones such as the sHsps.  Finally, once the amyloid structures are formed, the primary 

goal is to prevent seeding, which is mediated through disaggregase machines, such as Hsp104 

in yeast [209-211].  Humans do not have Hsp104, but a complex of Hsp70, Hsp110, and one of 

the Hsp40s was shown to exhibit disaggregase activity [85, 86].  Disaggregase activity would 

have to be inhibited to stabilize the amyloid state of prion-like proteins to prevent seeding.  The 

main question now is which state causes the most damage? Once that is identified as well as 

the chaperone networks involved in inhibiting that state, specific treatments to target chaperone 

protein interactions can be developed to prevent the progression of these debilitating diseases.   

 

Future directions and new technologies targeting chaperones for disease treatment – The work 

presented here has uncovered some of the relative functions of cytosolic Hsp70 NEFs.  I have 

also presented many questions that still need to be addressed.  One major question is how 

Fes1 is contributing to the repression of Hsf1.  This is important because the other chaperones 

involved in HSR regulation, Hsp70 and Hsp90, are general molecular chaperones, and 

alterations in their function will affect many different processes.  If Fes1 could be targeted to 

selectively regulate the HSR, this could be beneficial in decreasing protein misfolding or 

aggregation.  Cell biological analysis of wild-type Fes1 and mutants that cannot reside in the 

nucleus as well as biochemical analysis of Fes1 interactions need to be performed to provide 

enough data to develop a mechanism of how this regulation occurs.   

      Sse1 is the most studied of the NEFs, but the role of the SBD remains unclear.  Sse1 is 

known to bind protein and act as a holdase for some substrates in vitro and maintain solubility 

of proteins in vivo, but is there a more specific function for substrate binding?  Hsp110s have 

been shown to be important in preventing disease-causing proteins from accumulating in vivo, 

but it is difficult to separate these functions from that of Hsp70 [126, 163, 212]. In vitro Sse1 

has been shown to specifically bind substrate with high affinity, and compared to Hsp70, it  
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tends to bind more aromatic residues suggesting that there are differential binding sites for 

Hsp70 and Hsp110 substrate interactions [94, 95].  Sse1 and the human Hsp110s were shown 

to stabilize firefly luciferase as a model and prevent aggregation of the unfolded protein directly 

in vitro [93, 194].  In addition a study in 2008 showed mutational analysis of Sse1 and 

suggested that Sse1 could assist Hsp70 by simultaneously associating with substrate [92].  

What is left to determine is which Hsp70-mediated processes require Hsp110 substrate 

binding?  Veronica Garcia in my laboratory is isolating Sse1 SBD mutants to characterize and 

test functional contributions to proteostasis.   

 Sse1 and Sse2 are paralogs that are 76% identical, but Sse2 is expressed at very low 

levels and is induced up to 20 fold in stress conditions [101].  In the studies presented in this 

thesis, I was unable to identify a distinct function for Sse2.  A study done in 2010, uncovered 

data that suggested that Sse2 is more stable than Sse1 during heat stress [93]. They 

suggested that Sse2 may act as the primary NEF during heat stress because Sse1 begins to 

unfold in moderate heat whereas Sse2 unfolds at around 50°C, similar human Hsp110s, 

Hsp105α and Apg2, which suggests stability at all temperatures relevant to life [93].  Sse1 and 

Sse2 also differ in holdase activity, in this same study Sse1 held FFL in a soluble, folding ready 

conformation, but Sse2 bound FFL and it could not be recovered from the complex; this 

suggests that Sse2 is not a productive holdase.  Understanding the function of Sse2 would 

require studying it under constant heat stress conditions to determine which Hsp70-mediated 

processes it contributes to.  Also because the heat inducible versions of Hsp70 in the yeast 

cytosol are Ssa3/4, Sse2 should be studied in the context of these proteins rather than Ssa1/2 

because Sse2 is more likely to work with these isoforms of Hsp70. 

 Snl1 is from a larger family of Bag-domain containing proteins known to be involved in a 

number of functions in humans including but not limited to influencing signal transduction 

pathways, protein folding, and protein degradation [181, 182, 184, 186, 213].  An interesting 

finding is that the Bag-family of proteins can act as both positive and negative regulators of 

Hsp70 activity [214].  Two studies have shown that Bag1 inhibits Hsp70-mediated reactivation 
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of FFL, but this appears to be dependent on the relative levels of Bag1 and Hsc70 [214, 215].  

The C-terminus of Bag1 stimulates NEF activity, but the N-terminus modulates that activity 

[215].  There is not much conservation in the N-terminus of the Snl1 and Bag1 (22% for 

everything outside the Bag domain), and the yeast protein has a unique transmembrane 

domain that tethers it to the ER membrane, which is associated with the overexpression toxicity 

observed in an sse1Δ strain.  This toxicity appears to be mediated through Ssb, but the role of 

Snl1 in proteostasis has not been determined.  It is possible that it somehow acts as a negative 

regulator of translation, but more studies have to be done to test translation rates and other 

proteins that could be involved in this process.   

 The importance of this work is to get a better understanding of how chaperones and co-

chaperones work together in networks dedicated to perform specific functions.  Piecemeal-

studies have been done providing bits of information for how each of the NEFs contributes to 

Hsp70-mediated functions, but many of these did not consider how the other NEFs compare.  It 

is unlikely that all three families of NEFs would have been maintained throughout eukaryotic 

evolution if they did not have some specific purpose in the cell.  It is important that I start to 

determine the function of a protein in the simplest way.  Initially, starting with the protein itself 

using in vitro studies then determining if these functions are maintained in vivo, and ultimately 

examining how it works in the context of other proteins.  Once the network has been 

established, the system can be manipulate in more specific ways to identify targets for 

treatment. 

 Based in this idea, small molecules are being created that target molecular chaperones.  

Hsp90 has classically been a target for the development of small molecule inhibitors due to its 

role in cancer [216].  Both inhibitors and activators of Hsp70 are now being developed, but it is 

important to understand the mechanism of these drugs [217].  For example a drug that directly 

binds Hsp70 NBD and inhibits ATPase activity is going to globally affect all functions related to 

Hsp70, but if only the Fes1 interaction with Hsp70 is inhibited, this would specifically upregulate 

the HSR according to the studies I have presented here.  Now through the unpublished work of 
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Gestwicki and associates at University of California San Francisco, high throughput screens for 

small molecules that affect protein-protein interactions has led to the identification molecules 

that bind E.coli DnaK (Hsp70) and block the interface with DnaK and either DnaJ (J-domain 

protein) or GrpE (NEF).  This sets a template for other protein interaction inhibitors.  I am now 

screening a group of Hsp70 small molecules inhibitors that block the interaction between 

Hsp70 and the Bag-domain proteins.  I am testing them in yeast to see if they also block Snl1 

interaction with Ssa, so I can ultimately test the efficacy and specificity of these drugs.  The 

purpose of this work, and by extension future investigations into the pharmacological 

manipulation of chaperone function, is to identify molecules that can very specifically alter 

protein interactions modulating activity of Hsp70 to improve or reverse the molecular effects of 

disease.   
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