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ABSTRACT 

ANTI-GD2 ETOPOSIDE-LOADED IMMUNOLIPOSOMES FOR THE  

TREATMENT OF GD2 POSITIVE TUMORS 

Brandon Scott Brown, B.S. 

 

Advisory Professors: Andrew Bean, Ph.D. and Ennio Tasciotti, Ph.D. 

Systemic chemotherapeutics remain the standard of care for most malignancies even 

though they frequently suffer from narrow therapeutic index, poor serum solubility, and off-

target effects. Monoclonal antibodies that specifically bind antigens overexpressed on many 

tumors such as the ganglioside, GD2, can be conjugated to drug-loaded liposomes to create a 

targeted drug delivery system. In this study, we have encapsulated etoposide, a topoisomerase 

inhibitor effective against a wide range of cancers, in surface modified liposomes decorated 

with anti-GD2 antibodies.  We characterized the properties of the liposomes using a variety of 

methods including dynamic light scattering, electron microscopy, and Fourier transformed 

infrared spectroscopy. We examined whether these immunoliposomes were able to target cell 

lines expressing varying levels of surface GD2 and affect cellular proliferation.  Anti-GD2 

liposomes were generally targeted in a manner that correlated with GD2 expression and 

inhibited proliferation in cell lines to which they were efficiently targeted. The mechanism by 

which the immunoliposomes entered targeted cells appeared to be via clathrin-dependent 

uptake as demonstrated using flow cytometry and confocal microscopy.  We initiated pilot 

studies in animals to examine the biodistribution and antitumor effects of immunoliposome 

mediated etoposide therapy. Fluorescent liposomes were observed at the tumor site with in 

vivo imaging, warranting further animals studies for antitumor efficacy. These studies suggest 

that anti-GD2-targeted, etoposide-loaded liposomes represent a potential strategy for more 

effective delivery of anti-cancer drugs that could be used for GD2 positive tumors. 
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Chapter 1: Introduction – Cancer and Targeted Therapy 

Cancer is a term describing diseases characterized by uncontrolled division of abnormal cells 

in one part of the body that can spread to other tissues. There are a multitude of molecular 

mechanisms thought to underlie this uncontrolled cell proliferation resulting in the hypothesis 

that cancer is not a single disease, but many related disorders.  Cancer leads to approximately 

1,600 deaths per day and causes an estimated $207 billion in medical costs in the United 

States1. Despite the advances in understanding its underlying molecular mechanisms and 

development of new treatment strategies, surgery and traditional cytotoxic therapies remain 

mainstays of cancer therapy2. 

1.1 Cancer in the US. Over 200 different types of cancer are recognized and stratified 

according to the originating organ system and cell type.  Malignant transformation of healthy 

cells is believed to occur in a multistep process due to a combination of environmental and 

genetic insults resulting in an accumulation of genetic damage3. Cancers generally occur more 

frequently with advanced age due to the accumulation of cellular damage over years of cell 

replication and environmental exposure. Genetic causes have been implicated in 5-10% of 

cancers, suggesting that environmental exposures may underlie up to 95% of cancer cases4. 

Tobacco is the suspected cause of 30% of cancer deaths with diet linked to cancer in 30-35%, 

and about 15% of cancer deaths are attributed to infections4. The remainder of 

environmentally-associated cancers are likely due to other factors such as stress and exposure 

to radiation4. 

 Pediatric cancer, while less common than cancer in adults, has increased by 0.6% 

annually from 1975 to 2002 in the US and 1.1% annually in Europe5. Rising incidence may be 

due to a combination of increased environmental exposures and advances in diagnostic 

technologies4. While adult cancers are typically solid tumors, pediatric tumors are more likely to 

occur in the blood in the form of leukemias and lymphomas that make up 46% of new pediatric 
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cancer cases in the US5, 6. These liquid tumors arise from white blood cells that fail to mature 

correctly and often replicate in the bone marrow where they suppress healthy blood cell 

production, or hematopoiesis. Solid tumors such as neuroblastoma and osteosarcoma also 

occur in pediatric patients, although less frequently. 

 Osteosarcomas make up 2-3% of pediatric tumors, and close to 20% of all primary 

bone cancers7. Osteosarcomas form from primitive mesenchymal cells that develop incorrectly 

for unknown reasons, resulting in tumors that typically arise at the ends of long bones8. Healthy 

mesenchymal cells usually differentiate into lymphatic, circulatory, connective tissues as well 

as bone. Osteosarcoma cells retain some function of their mesenchymal origin, producing 

osteoid, a precursor to bone formation7. Other pediatric malignancies such as neuroblastoma 

form tumors that also retain some properties of their originating cells.  

  To treat cancers aggressively, anti-cancer therapies have become toxic, invasive, and 

often cause significant morbidity of their own. Nonetheless, therapies have remained largely 

the same over the past several decades without appreciable increases in high-grade cancer 

cures. This trend is especially apparent in the pediatric cancer neuroblastoma, where tumors 

are found at advanced levels in as many as 2/3 of patients with the disease. 

1.2 Neuroblastoma. Neuroblastomas are solid tumors of neuroectodermal origin that occur 

heterogeneously in pediatric patients with regard to histopathologic appearance, biological 

characteristics, and location of primary tumors. These tumors originate from primitive 

sympathetic ganglion cells. Neuroectodermal cells that comprise the tumor arise from the 

neural crest during neurodevelopment in utero and are predestined for the sympathetic nervous 

system and adrenal medulla 9. Neuroblastoma tumors occur most often in the adrenal glands 

(40%), but they can also originate in the abdomen (25%), thorax (15%) or within pelvic 

sympathetic ganglia (10%), and in a minority of cases, the location of the primary tumor cannot 

be identified. Approximately 600 new cases occur per year in the US making neuroblastoma 
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the most common extracranial solid tumor of childhood responsible for 7% of childhood 

cancers and resulting in 12% of deaths in pediatric cancer patients5, 10. Despite multiple 

treatments being developed to address this malignancy, almost two-thirds of neuroblastoma 

patients diagnosed are found to have metastatic disease coupled with high occurrences of 

residual disease and low long-term survival11, 12. Ultimately, long term survival is only about 

40% in patients with high-risk neuroblastoma, defined by age above 18 months and disease 

dissemination or unfavorable histologic markers.  

 To treat neuroblastoma, a multimodal approach is typically implemented, involving a 

combination of surgical resection, radiation, chemotherapy, and endocrine or biological 

therapy13.  Surgical resection is an excellent option for primary tumors that have clear 

localization and well-defined borders, but is of little use in neuroblastoma that is widely 

disseminated. Surgical intervention is not used for rapidly spreading tumors, particularly within 

soft tissues are primarily addressed with systemic treatments involving cytotoxic chemicals and 

radiation. Radiation therapy in neuroblastoma is utilized when tumors are unresectable or 

unresponsive to chemotherapy. Radiotherapy involves exposure to the body with ionizing 

radiation (such as gamma rays) resulting in nonspecific genetic damage within cells of the 

exposed tissue. The side effects of radiotherapy are wide ranging and can be long lasting. 

Irradiated healthy tissue often develops diffuse scar tissue, resulting in fibrosis, dryness, 

lymphedema, and potential secondary malignancies14. Radiotherapy for neuroblastoma is 

generally avoided in neuroblastoma patients unless the tumors are resistant to chemotherapy 

due to the long-term complications frequently encountered after radiotherapy.  

 The most common therapeutic tool for reducing neuroblastoma tumor mass before and 

after bulk surgical resection is chemotherapy. Unfortunately, the majority of disseminated 

neuroblastoma cases do not survive despite aggressive multimodal therapy including 

chemotherapy15.  
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1.3 Etoposide chemotherapy for neuroblastoma. A first line treatment for neuroblastoma is 

the chemotherapeutic drug etoposide. Chemotherapeutics are chemicals that induce toxicity in 

rapidly dividing cells by interfering with cellular mechanisms of genetic replication.  Etoposide, a 

topoisomerase II inhibitor, causes the irreversible binding of DNA with topoisomerase II, 

preventing further function of the enzyme and resulting in high levels of torsional stress to the 

DNA strand. The effect of etoposide at a nuclear level is the accumulation of single and double-

stranded DNA breaks that lead to eventual cell death by a combination of cell death 

mechanisms (e.g. apoptosis, autophagy, and necrosis)16.  

 Very poor prognosis has been observed in high-risk neuroblastomas characterized by 

disseminated disease at the time of diagnosis and MYCN amplification (a protein marker 

correlated with a poor prognosis), and the chemotherapeutic etoposide remains a first line 

treatment. Often, doses are increased to maximally tolerated levels, with the dose-limiting 

toxicity being myelosuppression13. Intensive multiagent chemotherapy including etoposide is 

applied despite increased off-target effects observed with high concentrations of 

chemotherapeutics. The accumulation of dose-limiting toxicities in these drugs manifests the 

need for a more effective delivery platform to decrease off-target effects while maintaining the 

effects of intensive therapy. 

1.4 Off-target effects of etoposide. Cytotoxic off target effects can be observed upon 

systematic administration of chemotherapeutics because their therapeutic activity is often 

derived by targeting molecular pathways that are shared between rapidly proliferating cancer 

cells and healthy cells. Although, these drugs are somewhat more effective at killing tumor cells 

by virtue of their rapid cell division or defects in signaling pathways.  

Clinically, etoposide is one of the most common and effective chemotherapeutic drugs 

administered for cancers like neuroblastoma despite being poorly soluble in aqueous solutions. 

Administration of hydrophobic etoposide necessitates slow infusion over 30-60 minutes and the 
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use of solubilizing agents such as surfactants and alcohols to prevent precipitation of etoposide 

during systemic treatment17. In addition to difficulty in administration, major side effects of 

etoposide include myelosuppression and acute hypotension due to activity of the drug on the 

bone marrow and cardiovascular system. Observed low levels of white blood cells, called 

leukopenia, is part of a larger condition called myleosuppression in which the bone marrow 

produces fewer vital circulating cells due to etoposide toxicity. Many other organ systems are 

subject to off-site effects, including the cardiovascular, nervous, gastrointestinal, and 

genitourinary systems3. Unfortunately, many effects, such as neurologic deficits and fibrosis fail 

to resolve following cessation of chemotherapy. 

 Etoposide is cleared from the body primarily via the renal system, and blood levels of 

the drug can fluctuate significantly in patients suffering renal dysfunction due to other 

nephrotoxic drugs or underlying disease18, 19. Maintaining therapeutic etoposide levels in the 

body while avoiding toxicity becomes challenging, especially in pediatric patients with a much 

smaller volume of distribution. Thus, a more effective delivery platform is necessary to shuttle 

etoposide to its target site of a given tumor or disseminated cancer growth. Nanoparticle 

delivery systems have been formulated to carry various drugs during systemic administration. 

 The prevalence of off-target effects has been the driving force behind the investigation 

into alternative therapeutic approaches that specifically target cancer cells. Changes to 

traditional cancer therapy include the implementation of new types of treatment, such as 

hormone therapy, usually in conjunction with older strategies such as surgery and radiation 

therapy20. These courses of combinational therapies result in enhanced remission in patients, 

but approximately one third of cancer patients will fail to defeat their disease21, 22. Dose 

escalation over the last 20-30 years has pushed traditional chemotherapeutics to the limits of 

patient tolerance, in many cases without appreciable benefits in survival, hence the need for 

better biologically-based therapies with higher specificity and fewer unintended effects.  
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Therapeutics that target biological processes perhaps using antibodies or peptides that 

precisely target specific signaling pathways, aberrant protein interactions, or tumor-specific 

markers are on the horizon of cancer therapy. 

1.5 Cancer biomarkers and GD2 expression. Biomarker research is a way to understand 

disease and potentially provide a framework for approaches, other than traditional 

chemotherapy, that target either aberrant cellular processes or signaling. A feature of cancer 

cells is that particular proteins are sometimes over or under expressed relative to healthy cells. 

This could be due to disruptions in metabolic factors and pathways, malfunctioning signaling 

mechanisms, or other unknown cellular perturbations. Cancer-specific protein overexpression 

has been the focus of a large proportion of drug development research in recent years. While 

both intracellular and extracellular proteins can serve as biomarkers and potential drug targets, 

surface-expressed proteins are being utilized for new targeted therapies using antibodies and 

modern drug delivery systems. For example, vascular endothelial growth factor (VEGF) is a 

protein overexpressed in the cells of multiple cancer types23. Bevacizumab is an antibody that 

specifically binds VEGF and is being utilized for cancer therapy in patients with colorectal 

cancer, lung cancer, renal cell carcinoma, and some aggressive brain tumors24, 25. 

 Targeting by specific antibodies is expanding from tumor-specific protein expression to 

characteristic lipids and macromolecules found in tumor cells. One such example is the cancer 

biomarker GD2, a specialized lipid expressed by tumors of neuroendocrine origin (e.g., 

melanoma, ganglioneuroma and neuroblastoma)26, 27. GD2 is a ganglioside composed of a 

glycosphingolipid (a lipid containing a combination of a carbohydrate and sphingosine group) 

specifically modified with two sialic acid groups28. Gangliosides naturally exist within the cell 

membrane where they modulate cell recognition and signal transduction, converge in lipid rafts, 

and are expressed on all vertebrate tissues29 30. Gangliosides are present abundantly in the 

central nervous system where they function by interacting with ganglioside-binding lectins such 
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as myelin-associated glycoprotein and assist with the myelination of axons 31. Gangliosides 

GD2 and GD3 have been identified in surface adhesion domains of melanoma cells and are 

postulated to mediate adhesion of melanoma as well as neuroblastoma tumor cells by 

interacting with and modulating receptors for the extracellular matrix 32 33. GD2 expression in 

healthy tissue is largely restricted to the central and peripheral nervous system, and the highest 

levels of expression are seen during early stages of neurodevelopment34. Alterations in 

ganglioside synthesis pathways in cancer can result in high levels of gangliosides such as 

GD2, GD1, and GT1 in particular cancer types35. For example, greater than 90% of soft tissue 

sarcomas analyzed in one study were found to overexpress the ganglioside GD235. Levels of 

overexpression and heterogeneity between and within neuroblastoma cell lines are not well 

described in the literature9, 36.  

The vast majority of neuroblastoma tumors are expected to express elevated levels of 

GD2. One study found that only 3 cases lacked GD2 positive staining among 191 patients and 

288 bone marrow samples 37. Of those 3 cases, two of the three were found to express GD2 at 

the time of diagnosis and not at relapse. It was suggested that anti-GD2 therapy might select 

for GD2 negative blastoma. However, Kramer et al. communicated that 98% of neuroblastoma 

express homogenous GD2 expression both before and after anti-GD2 monoclonal antibody 

therapy, suggesting that loss of GD2 expression is uncommon and cannot account for failure of 

treatment 38. GD2 expression in human samples in studies appears to be limited to positive or 

negative GD2 reactivity as assessed by bone marrow immunofluorescence or tumor 

immunohistochemistry. 

1.6 Cancer immunotherapy. One alternative to traditional chemotherapy that makes use of 

biomarker technology is immunotherapy, where biological agents engage a patient’s immune 

system in the cancer-fighting process. The concept of using biological agents to stimulate the 

immune system to fight cancer growth was proposed in 1890, when William Coley 
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demonstrated remission of an inoperable tumor by repeated injections of bacterial extracts, 

establishing the new field of immunotherapy39. Successive research led to the use of Bacillus 

Calmette-Guerin (BCG) and other immune system-activating substances as treatment for 

certain solid tumors (e.g., bladder cancer40). Widespread use of immunomodulators for cancer 

therapy was not adopted until later in the 19th century due to concurrent advances in molecular 

biology41 42.  

 Current immunotherapeutics can be separated into three major categories: monoclonal 

antibodies (MAbs), non-specific therapies, and vaccines43. Non-specific therapies include 

biological and chemical agents such as interfereons and interleukins found to enhance the 

immune system’s ability to attack cancer cells44. Interleukin-2 and granulocyte macrophage 

colony-stimulating factor (GM-CSF) are currently given alone or in combination with to 

immunotherapeutics such as vaccines to enhance the patient’s immune reaction against 

cancer and other diseases43. Cancer vaccines engineered to focus immune reactions against 

tumor antigens are currently being investigated, and one drug, sipuleucil-T, has achieved FDA 

approval in the US for the treatment of prostate cancer, with a reported increase in survival of 

4.1 months compared to traditional treatment in patients with high grade metastatic disease45 

46. Both nonspecific immunomodulators and vaccines have many merits, but MAbs designed to 

specifically target particular antigens on tumor cells are of particular interest for the 

development of new drug delivery systems.  

1.7 Monoclonal antibodies and anti-GD2 immunotherapy. In the 1970’s and 1980’s, tumor-

binding antibodies were developed by cancer immunologists that enabled white blood cells to 

target tumor cells after activation with cytokines (e.g interleukin-2)47, 48. Since then, 

immunotherapy via antitumor MAbs has been investigated aggressively thanks to concurrent 

discovery of numerous tumor-associated biomarkers49. The production of MAbs was invented 
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by Georges J. F. Köhler and César Milstein in 1975 ultimately earning them the Nobel Prize in 

1984 for Medicine and Physiology.  

 Targeted monoclonal antibodies are typically produced by first exposing an animal to a 

given antigen. Next, antibody-producing cells are collected from the exposed mouse and fused 

with immortal myeloma cells capable of indefinite growth in cell culture50. Finally, the fused cells 

are separated and grown individually, producing cell lines generated from a single myeloma-

immune cell hybrid, also called a hybridoma51. The resulting antibodies are then analyzed for 

target antigen binding by traditional molecular biology techniques such as 

immunoprecipitation52. Hybridomas producing desired antibodies are then expanded to 

produce clonal populations which produce one single monoclonal antibody or MAb51 52. The 

hybidoma cells can facilitate production of MAbs in vitro, or they can be injected into the 

peritoneal cavity of mice where they produce large amounts of the MAb in abdominal fluid 

which can be purified for pharmaceutical use52.  

  MAb production methods were applied using cellular material from neuroblastoma cells 

as antigens, ultimately leading to the discovery of anti-GD2 MAbs53. The monoclonal antibody, 

3F8, was isolated after immunizing mice with neuroblastoma lysates and found to specifically 

bind GD2 without cross reactivity to similar other gangliosides such as GT1b, GM1a, or 

GD1a53, 54.  Pre-clinical studies suggested that 3F8 induces an immune response where 

monocytes, lymphocytes, and granulocytes attack neuroblastoma cells that have bound the 

3F8 antibody via antibody-directed cellular cytotoxicity (ADCC), and dose-dependent toxicity 

was observed by complement-mediated cytotoxicity (CMC)55. 

 The first anti-GD2 MAb tested in humans was the 3F8 (IgG3) antibody, developed as a 

treatment for neuroblastoma56. A single-arm study evaluating the use of 3F8 in addition to 

immunomodulators interleukin-2 (IL-2) and cytokine granulocyte macrophage colony-

stimulating factor (GM-CSF) in patients with high-risk stage 4 neuroblastoma found a 5-year 
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progression-free survival of 62% compared to the current treatments that result in less than 

40% survival9, 57. Immunomodulators have been included in most studies with 3F8 and other 

anti-GD2 antibodies due to the increased 3F8-induced ADCC observed compared to 3F8 

without immunomodulator therapy58. Additionally, a phase II clinical study combining 3F8 with 

GM-CSF observed complete remission of bone marrow disease in 80% of 19 patients resistant 

to neuroblastoma chemotherapy59.  

 Despite encouraging clinical results, the majority of success with 3F8 immunotherapy 

has been observed as a tertiary therapy in patients with minimal residual disease as opposed 

to bulky tumor masses36. Additionally, patients with repeated 3F8 treatment in short time 

periods develop human anti-mouse antibodies (HAMA) to 3F8 antibodies causing decreased 

anti-tumor efficacy and limiting the frequency of 3F8 doses possible57. Genetic techniques have 

been employed to humanize 3F8 and other anti-GD2 antibodies such as ch14.18 by replacing 

mouse-specific residues with those of human antibodies60. Humanized antibodies (prefixed 

“hu”) such as hu14.18 and hu3F8 were found to decrease the occurrence of HAMA, although 

human anti-human antibodies (HAHA) still interfere with repeated dosing61. 

 Dose-limiting features of 3F8 include off-target effects and inactivation by the patient’s 

immune system. 3F8 immunotherapy is associated with significant pain and pain-associated 

hypertension, likely due to the off-target effects because of GD2 present on peripheral 

nerves62. Although the pain usually resolves, it may result in persistent arthralgia. The vascular 

system can also react badly to high levels of the 3F8 antibody in “capillary leak syndrome”, 

where the patient’s vascular system temporarily loses the ability to maintain volume, resulting 

in a loss of effective gas exchange, or hypoxia63. 

 The combination of side effect profiles, necessity for additional immunomodulators, and 

dose-limiting immune responses results in an increased need to make anti-GD2 

immunotherapies more effective at lower doses. 
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1.8 Nanotechnology in medicine. Medical nanotechnology is the use of synthetic materials, 

or nanomedicines, that have nanoscale properties for medical applications. “Nano” from the 

greek νᾶνος for "dwarf", is a prefix meaning one billionth and typically refers to particles and 

materials with features less than 1,000 nanometers in diameter. Nanotherapeutics are 

nanoscale particles being developed from numerous materials such as gold, silicon, and lipids, 

figure 1. Nanomaterials have unique physical properties that manifest when materials are 

synthesized with nanoscale features. For example, hollow gold nanoshells have been 

engineered to absorb near infrared light by altering the gold shell thickness64, figure 1, B. 

Hollow gold nanoshells can be engineered to release drug or heat up locally upon exposure of 

the particles to infrared light which passes harmlessly through living tissue65. 

 Silicon-based porous nanoparticles have been used to carry drugs and genetic 

payloads for medicinal applications like anti-cancer therapy and gene therapy 66, Figure 1 C. 

Inorganic nanomaterials (e.g. silica nanoparticles) can be produced in many shapes such as 

rods or disks and undergo surface modification such as cationic coatings to modulate 

interactions with cells 66 67. Problems with inorganic nanoparticles arise with cellular toxicity due 

to difficulty metabolizing silicon nanomaterials and toxic remnant chemicals present from 

synthetic processes 67
 .  

 Early clinical successes in nanomedicine included the production of lipid vesicles to 

carry chemotherapeutics 68, Figure 1 A. Doxil, the first FDA-approved lipid vesicle carrier, 

consists of the DNA intercalating agent, doxorubicin, encapsulated inside lipid vesicles about 

100 nanometers in diameter69. These lipid vesicle carriers, called liposomes, altered the 

biodistribution of doxorubicin when injected systemically and decreased cardiotoxicity and other 

cytotoxic effects often observed with chemotherapeutics administered alone70 71. Liposomes 

have emerged as the dominant nanoparticle with respect to translation from the lab into the 
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clinic due to their nontoxic profiles, ease of manufacture and potential for modification and 

targeting72 73. 

 

Figure 1. Three types of nanoparticles for medical applications. 

Liposomes, hollow gold nanoshells, and silica microspheres are illustrated alongside 

respective synthetic materials, typical sizes in nanomedical applications, and common 

applications in the scientific field. 

 

1.9 Targeted liposomes. The combination of biomarker research with nanomedicine yields the 

possibility to target therapeutic nanoparticles to specific cells of interest. Indeed, multiple 

targeted drug delivery platforms have been developed and studied74, 75. With respect to GD2 

expression, anti-GD2 antibodies have shown promise as targeting agents for nanoparticle 

systems carrying biological and cytotoxic payloads76, 77. For instance, Allen et al. produced 

liposomes carrying genetic payloads that were delivered specifically to GD2-expressing cells 

resulting in the depletion of the anaplastic lymphoma kinase gene in vitro and in vivo
78. 
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 Alternatively, the synthetic retinoid, fenretinide has been delivered with competitive and 

specific binding to melanoma and neuroblastoma cells via anti-GD2 liposomes26. Despite these 

advances, no targeted liposomal formulations have been fully approved by the FDA for clinical 

use suggesting that manufacturing complications or insufficient efficacy has delayed approval 

for clinical applications79. These barriers to FDA approval can be negotiated by adapting more 

simple and precise manufacturing techniques along with more effective drug encapsulation and 

targeting tactics. To our knowledge, no attempts have been made to deliver one of the first line 

agents (e.g. etoposide), a topoisomerase inhibitor, to GD2-positive malignancies, even though 

systemic etoposide treatment remains a first-line therapeutic option for high-grade 

neuroblastomas.  

 This work describes the combination of modern, specific anti-GD2 antibodies with the 

traditional chemotherapeutic agent, etoposide via synthetic nanocarriers to produce a more 

precise and effective drug delivery system for GD2-positive malignancies. While all of the 

components within the final nanocarriers have been studied independently, their synergistic 

combination imparts new properties to an existing front-line therapy for neuroblastoma that may 

allow increased dosing to specific tumor cells and decreased off-target effects that may 

produce a more robust and better tolerated treatment approach.   

1.10 Overall Hypothesis. I hypothesize that immunoliposomes can be decorated with anti-

GD2 antibodies and loaded with etoposide for targeted drug delivery to tumor cells with GD2 

surface expression. Moreover, I hypothesize that the targeted immunoliposomes will inhibit 

proliferation of GD2-positive cells more than untargeted therapies due to receptor-mediated 

increased tumor cell uptake of drug-loaded liposomes. 
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Section I: Formation of the Targeted Etoposide Nanocarrier 

Rationale: Etoposide has been incorporated into untargeted liposomes previously. Attempts at 

the encapsulation of etoposide into untargeted liposomes yielded promising results, with Sistla 

et al. suggesting liposomal etoposide maintained more stable blood levels over time and resists 

clearance compared to the drug alone80. Other liposomal etoposide studies examined 

alternative routes of administration, including oral81 and inhaled liposomes82. Previously 

produced etoposide liposomes either sought enhanced drug effects through combination 

therapy with other drugs or via passive features of the liposomes that enhanced tumor uptake. 

 Liposomal etoposide alleviates some problems with drug solubility but fails to manage 

off-site effects. Targeting of liposomes potentially drives down dosing requirements and off-site 

effects while increasing the efficacy of treatments. Combination of powerful liposomal 

etoposide with a proven targeting antibody such as 3F8 provides a viable strategy to treat GD2 

positive malignancies. To our knowledge, there are no other targeted etoposide 

immunoliposomes. Prior to biological testing drug platform, this targeted drug delivery system 

must be fully characterized physiochemically, and efforts must be made to ensure a 

reproducible and reliable product. 
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Chapter 2: Liposome Assembly and Etoposide Loading 

 2.1 Liposomal background. Liposomes were first described in 1961 by Alec D 

Bangham, a British hematologist who was experimenting with phospholipids and observed 

circular bilayer structures on a newly acquired electron microscope83. The cell-like vesicles 

observed mimicked a cell membrane and represented pioneering evidence that the cell 

membrane consisted of a lipid bilayer. Phospholipids are amphiphilic lipids with a hydrophilic 

phosphate head group and a hydrophobic tail made up of glyceride bearing two hydrocarbon 

chains. Lipids vary in their head groups as well as hydrophobic tails, resulting in different 

melting temperatures and tendencies to form membranes84. 

 The circular bilayer structures observed by Dr. Bangham are now known as liposomes. 

Liposomes are hollow phospholipid-based spheres with an outer lipid bilayer shell. Lipid 

bilayers are composed of two polar lipid sheets with hydrophobic tails of each sheet oriented 

toward each other and polar hydrophilic heads facing outward from the bilayer as seen in 

Figure 2.  
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Figure 2. Depiction of basic liposome components. 

Phospholipids are represented in the periphery of the liposome schematic, with identified 

hydrophilic head groups and hydrophobic tails. The hydrophilic lumen is depicted in orange. 

  

 This configuration of lipids is driven mainly by hydrophobic effects which act to orient 

amphiphilic macromolecules (phospholipids) in such a way as to minimize interactions of the 

hydrophobic fatty acid tails with the surrounding water-based environment85. This organization 

of amphiphilic material into a bilayer results in a barrier capable of separating aqueous 

compartments, Figure 2. Compartmentalization is vitally important in cells allowing the 

separation of subcellular organelles and nuclei, and liposomes utilize this feature by carrying 

cargo (such as drugs or imaging agents) intact through dynamic environments.  

 Artificially formed lipid membranes are used to study model membrane function, and 

when formed into hollow spheres, single or multi-lamellar vesicles (also called liposomes) have 

been utilized in diverse applications such as carriers for dyes, pesticides, enzymes, nutritional 

supplements, cosmetics, and with respect to this work, targeted drug delivery72. Basic 

properties of these membranes originate from the lipids that make them up, while functional 
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properties are often determined by surface characteristics in combination with a cargo, or 

payload. 

 

2.2 Liposome physics. Physical features of liposomes are largely dependent on the nature of 

the lipids that make them up. Certain lipids self-assemble into vesicles when introduced into an 

aqueous solution. In order for lipids to form lipid bilayers and liposomes, lipids must be able to 

move freely near each other, and they must have the capacity to pack together to form a 

sphere. Lipid movement and membrane flexibility involve a critical temperature called the 

“transition temperature,” defined as the minimum temperature for lipids required to induce a 

fluid-like state where liposomes can self-assemble. This state is called the disordered liquid 

crystalline state, contrasting with the ordered gel phase where lipids are closely packed and 

movement of lipids is restricted86. This is important for both liposome formation and drug 

loading because the liquid crystalline state is required for liposome formation, but drug release 

is slower and more controlled in the ordered gel phase. At temperatures exceeding the critical 

temperature, liposomes reenter the liquid crystalline state where more loaded cargo leaks out 

due to increased permeability of the membrane. For this reason, dipalmitoylphosphatidylcholine 

(DPPC) is commonly used when forming liposomes because DPPC is a lipid with a transition 

temperature (41°C) above that of the body’s temperature (37°C) and thus DPPC liposomes 

would retain their loaded drugs during administration in humans or animals. In addition to 

temperature requirements, lipids must be chosen with volumetric properties that allow 

formation into small vesicles, as indicated by their packing parameter. 

 Different sized particles, both single and bilayer, can spontaneously form when 

formulating vesicles. The ability for the lipids to pack together can be described mathematically 

by a packing parameter (Figure 3), which describes the shape of a lipid with respect to its 



 
 
 

ability to pack together into an aggregate when exposed to an aqueous medium and 

an estimate of the type of particles that will self

Figure 3. Packing parameters det

Depicted here are two lipids with packing parameters less than 0.33 (top) and 0.33

(bottom). The volumetric shape (middle) is determined by the fatty acid tail length, Lc, area of 

hydrophobic core, a, and volume of the hydrophobic chain Vc. Resulting structures when the 

lipids are aggregated together in an aqueous environment are depicte

 

The formula for the packing parameter is: 

NS = VC / (a * LC) 

where (VC) represents the volume of th

sectional area of the liposome or aggregate and 

an NS ≤ 1/2 tend to form micelles, described later in this work, and lipid formulations with an N

> 1/2 tend to form lipid bilayers when in an aqueous environment. DPPC within a bilayer has a 

18  

ack together into an aggregate when exposed to an aqueous medium and 

an estimate of the type of particles that will self-assemble for a given lipid87. 

Packing parameters determine lipid assembly geometry. 

Depicted here are two lipids with packing parameters less than 0.33 (top) and 0.33

(bottom). The volumetric shape (middle) is determined by the fatty acid tail length, Lc, area of 

hydrophobic core, a, and volume of the hydrophobic chain Vc. Resulting structures when the 

lipids are aggregated together in an aqueous environment are depicted in the right column.

The formula for the packing parameter is:  

volume of the hydrophobic fatty acid chains, (a) denotes 

sectional area of the liposome or aggregate and (LC) signifies the fatty acid length. Lipids with 

 1/2 tend to form micelles, described later in this work, and lipid formulations with an N

tend to form lipid bilayers when in an aqueous environment. DPPC within a bilayer has a 

ack together into an aggregate when exposed to an aqueous medium and provides 

.  

 

Depicted here are two lipids with packing parameters less than 0.33 (top) and 0.33-0.5 

(bottom). The volumetric shape (middle) is determined by the fatty acid tail length, Lc, area of 

hydrophobic core, a, and volume of the hydrophobic chain Vc. Resulting structures when the 

d in the right column. 

(a) denotes the cross 

acid length. Lipids with 

 1/2 tend to form micelles, described later in this work, and lipid formulations with an NS 

tend to form lipid bilayers when in an aqueous environment. DPPC within a bilayer has a 
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packing parameter of 0.7, indicating the ability to form lamellar structures such as liposomes88. 

Figure 4 represents a standard liposomal formulation using DPPC lipids and cholesterol, 

analyzed by electron microscopy and light scattering, methods described in the next section of 

this chapter.  

 

Figure 4. Characterization of liposome size and polydispersity by light scattering and 

transmission electron microscopy. 

Liposomes were synthesized with DPPC lipids in phosphate buffer via the thin film rehydration 

method and negative stained with ammonium molybdate prior to analysis via transmission 

electron microscopy and dynamic light scattering. A) Transmission electron micrograph with 

negative staining of immunoliposomes examined at low magnification (scale bar: 500 nm) and 

high magnification (inset, top right, scale bar: 100 nm). B) Dynamic light scattering data depicts 

the mean liposomal hydrodynamic diameter and associated polydispersity. 

 

 Lipids can be dissolved completely in organic solutions, and lipid bilayers 

spontaneously form when the organic solution is evaporated while the solution is heated above 

the transition temperature. The bilayers formed are typically in thin layers, called thin films. 

When thin films of phospholipids such as DPPC encounter an aqueous solution at a 

temperature above the transition temperature, vesicles spontaneously form, or self-assemble. 
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The vesicles are typically multilamellar and among a varied size distribution, but dimensions 

can be tailored by managing the lipids and environment where they self-assemble.  

In addition to temperature and material selection, liposome preparation protocols have been 

generated utilizing an array of synthetic methods including sonication, microinjection, extrusion, 

and freeze-thaw cycles. With respect to drug delivery, two major liposome preparation 

protocols, thin film rehydration and ethanol injection, are discussed here for the encapsulation 

of the hydrophobic drug, etoposide.  

2.3 Summary of liposome characterization methods. Liposomes are characterized by an 

array of techniques in a multimodal approach, as no one single technique adequately describes 

all liposomal features. These methods are introduced here and are discussed throughout the 

section. 

 Liposome size, size distribution, and surface charge are all experimentally determined 

using the dynamic light scattering (DLS) technique. During DLS analysis, a colloidal 

suspension of the particle of interest is illuminated with a laser at a known angle within an 

aqueous medium of known viscosity. The pattern of light scattering yields variations in intensity 

that correlate with particle diameter. The distribution of particle diameters within a solution is 

described by the polydispersity index (PDI). The PDI ranges from 0 to 1, with 0 being 

completely monodispersed, and 1 being a completely heterogeneous mixture of sizes. 

Experimentally, all liposomal formulations have some degree of polydispersity, and 

formulations with a controlled size for medical applications should have a PDI of less than 

0.389.  

 When a charge is applied across the sample in DLS, scattering intensity fluctuations 

produce data that can be translated to particle surface charge or zeta potential (ZP). Surface 

charge is important for nanomedicines because positively charged or cationic nanoparticles 

can be more readily taken up by negatively charged cellular membranes, and neutrally charged 
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nanoparticles lack sufficient repulsion from each other and may aggregate. Most commercially 

available liposomes for medicinal use have a negative ZP. 

 Drug loading with etoposide is determined after liposome synthesis by separation of 

drug-loaded liposomes from free drug via ultracentrifugation or ultrafiltration. Free drug is then 

quantified via high pressure liquid chromatography (HPLC). The process of HPLC involves 

passing the drug through a column where it is isolated and analyzed by absorbance of a given 

wavelength of light (228 nm for etoposide). 

 The presence or absence of specific molecular bonds can be determined by both 

Fourier transform infrared spectroscopy (FTIR) and nuclear magnetic resonance (NMR). Both 

techniques identify a spectrum of a given sample that produces peaks correlating with specific 

bonds and arrangements of atoms. For FTIR, the spectrum is obtained by analyzing an infrared 

spectrum of absorbance within a sample. Conversely, NMR uses a large magnet and 

specialized detectors to analyze the resonance frequency of particular bond conformations. In 

essence, NMR analysis is used to confirm the identity of a substance.  

 Transmission electron microscopy (TEM) is often used for nanoparticles including 

liposomes and generates an image based on the transmission of electrons through a sample 

onto a detector. The detector then produces a visible image from the transmission data. TEM 

has tremendously high magnification abilities, approaching 500,000 x. Light microscopy 

approaches 2,000 x. Lipid bilayer structure, particle size, and immunolabeling with gold-

conjugated IgG allow visualization of specific structures. Liposomes are typically negative-

stained with electron-dense materials such as uranyl acetate or ammonium molybdate to 

opacify areas around liposomes, thus highlighting their shapes and membrane features. We 

examined liposomes with the electron microscope using uranyl acetate or ammonium 

molybdate, Figure 5.  
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Figure 5. Representation of particle morphology, size, and size distribution via 

transmission electron microscopy. 

Liposomes were formed via ethanol injection and negative stained with either uranyl acetate 

(left images) or ammonium molybdate (right images) prior to imaging at the electron 

microscope. Images were acquired at low magnification (top, 40,000 x) and high 

magnification (bottom, 100,000 x). Scale bar: 1 µm (top), 200 nm (bottom). 
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 We found that ammonium molybdate resulted in better images with respect to expected 

size, shape, and polydispersity based on prior dynamic light scattering, 

2.4 Formation strategies for liposomes. Preparing liposomes for self-assembly typically 

involves dissolving lipids in an organic solution followed by removal of the organic solvent and 

addition of an aqueous solution in order to optimize organization of lipids into lipid bilayers. One 

of the most widely utilized methods for this type of liposome formulation is known as thin film 

rehydration and involves producing a thin film of lipids on glass prior to addition of the aqueous 

solution. Thin film rehydration is depicted graphically in Figure 6.  
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Figure 6. Schematic of liposome synthesis by the thin film rehydration method. 

Thin films are produced by dissolving lipids and hydrophobic drugs into an organic solvent 

such as chloroform. The organic solvent is then removed with heating via rotary 

evaporation under negative pressure to produce a thin film on the round bottom flask. The 

dry lipid film is then rehydrated with an aqueous solution to induce the self-assembly of 

lipid vesicles. 

 

Reference: 

Sávia Caldeira de Araújo Lopes, Cristiane dos Santos Giuberti, Talita Guieiro, Ribeiro 

Rocha, Diêgo dos Santos Ferreira, Elaine Amaral, Leite and Mônica Cristina Oliveira 

(2013). Liposomes as Carriers of Anticancer Drugs, Cancer Treatment - Conventional and 

Innovative Approaches, Prof. Letícia Rangel (Ed.), ISBN: 978-953-51-1098-9, InTech, DOI: 

10.5772/55290. Open access, permission freely available from: 

http://www.intechopen.com/books/cancer-treatment-conventional-and-innovative-

approaches/liposomes-as-carriers-of-anticancer-drugs 

 

 To form thin films, dissolved lipids are deposited onto a round bottom flask forming a 

dried film of lipids consisting of lipid bilayers stacked upon each other. The thin film is then 

rehydrated with an aqueous medium such as water or buffer followed by high speed agitation 



 
 
 

25  

to break up the large sheets of bilayers into smaller vesicles. The dispersion of vesicles 

produced through thin film rehydration is then be extruded through polycarbonate membranes 

containing micro-and nanometer pores90. Extruding the lipid mixture through membranes of 

sequentially decreasing size results in unilamellar liposomes of a controlled size91. Particle 

diameter could be controlled by using membranes with different pore sizes, while particle 

charge could be manipulated by altering the types of lipids used as starting material92.  

Advantages of thin film rehydration are its relative simplicity and ability to produce a 

concentrated solution of liposomes quickly. Blank liposomes (without drug or other loaded 

substance) produced via thin film rehydration maintain colloidal stability in solution for more 

than two months at 4°C. Commercially available extrusion membranes from companies like 

Wattman® and Millipore® enable the extrusion of many different sized liposomes from 30-800 

nanometers. 

 Disadvantages of thin film rehydration are apparent when loading hydrophobic drugs 

into liposomes and quantifying payload or fluorescent lipids. Liposome-encapsulated drugs as 

well as specialized fluorescent lipids can be lost during extrusion by precipitation onto the 

extrusion membranes, and exact amounts of remaining lipid and payload must be determined 

following synthesis via analytical methods such as high-pressure liquid chromatography 

(HPLC)93. We found that thin films produced with DPPC lipids and the drug etoposide were 

irregular and resulted in drug precipitants during extrusion.  

 An alternative to thin film rehydration is the ethanol injection method. Ethanol injection is 

accomplished by first dissolving a lipid mixture in a pure ethanolic solution followed by injection 

of this solution into an aqueous medium of much larger volume, Figure 7.  
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Figure 7. Schematic of etoposide loading into liposomes via the ethanol injection 

method. 

Etoposide encapsualtion into liposomes via ethanol injection is depicted graphically. A 

tuburculin syringe is shown filled with warmed ethanol, dissolved phospholipids and 

cholesterol, and dissolved etoposide. Self-assembled liposomes are depicted below in the 

beaker containing warmed saline. Stirring and heating conditions are shown on the 

hotplate control panels at the bottom. Formed etoposide liposomes are shown in the 

beaker containing an aqueous solution. 

 

 As ethanol-dissolved lipids contact the excess volume of aqueous media (such as water 

or salt buffer), the lipids spontaneously arrange into vesicles94. Nanoscale liposomes can be 

produced by controlling several factors during injection. The size of injection needle, type of 
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phospholipids, ratio of ethanol to aqueous media, rate of injection and temperature of fluids 

involved are all factors that contribute to the final diameter of ethanol injected self-assembled 

liposomes. 

 Advantages to the ethanol injection are enhanced simplicity (in comparison with thin film 

rehydration) and the ability to produce liposomes of a controlled size without extrusion. While 

ethanol injected liposomes can be extruded for further modification of size and lamellarity, it is 

not necessary if the parameters of injection are well controlled. Monodispersed liposomes with 

a PDI <0.1 can be produced in sizes between 100-200 nanometers without extrusion95. This 

advantage is of paramount importance for the production of etoposide liposomes, where 

difficulties can arise during extrusion. 

 Disadvantages of the ethanol injection method involve the lack of control over the 

number of liposomal layers or lamella when extrusion is not performed. Additionally, there have 

been reported difficulties in performing ethanol injection to produce highly concentrated 

liposomes as limits of dissolved lipids within the ethanolic solution are reached96. 

2.5 Etoposide loading into liposomes. Initial attempts to encapsulate etoposide into 

liposomes were performed via the thin film rehydration method followed by serial extrusion 

through polycarbonate membranes. The thin film method proved ineffective for etoposide 

encapsulation due to drug precipitation during extrusion at concentrations above 0.25 mg/mL. 

Etoposide concentrations of at least 2 mg/mL were required for therapeutic doses in future 

animal studies. Empty, unloaded liposomes or etoposide-loaded liposomes were produced by 

either thin film rehydration or ethanol injection techniques and analyzed for size and 

polydispersity, Figure 8.  
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Figure 8. Effects of thin film rehydration or ethanol injection liposome synthesis 

methods on size and polydispersity. 

Liposomes with or without 1 mg/mL etoposide were synthesized by ethanol injection (blue) or 

thin film rehydration followed by extrusion (red). A, C) Particle diameters from all four 

formulations were analyzed by dynamic light scattering with a goal size of 100-200 nm for 

optimal circulation time. B, D) Polydispersity measures of size distribution were also 

determined by dynamic light scattering. Polydispersities below 0.3 were considered adequately 

monodispersed formulations. * = p < 0.05; *** = p < 0.001 

 

 Etoposide loading into liposomes via the thin film rehydration technique was found to 

cause a significant increase in both size and polydispersity of liposomes representing a 

relatively unstable and non-uniform formulation. The ethanol injection method was adopted, 

and drug encapsulation was dramatically improved up to 3 mg/mL etoposide without 
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precipitation encountered with thin film rehydration. We then analyzed the effects on liposome 

size and polydispersity in liposomes of increasing etoposide concentration, Figure 9.  

 

Figure 9. Characterization of size and polydispersity in liposomes with 0-3 

mg/mL encapsulated etoposide. 

Seven formulations of etoposide-loaded liposomes with increasing amounts of drug, 0-

3 mg/mL, were synthesized via the ethanol injection technique and purified by 

ultrafiltration. Liposome diameter after synthesis (black bars, left y-axis) and 

polydispersity (red points, right y-axis) were measured for each formulation using 

dynamic light scattering. Statistical significance was determined with two-way ANOVA 

(each drug-loaded sample versus the unloaded group *** = p < 0.001, n=3). 

 

 We found that etoposide loading via the ethanol injection method did not significantly 

affect size or polydispersity of liposomes up to 2 mg/mL. Above 2 mg/mL, liposome size was 
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found to increase above 300 nm with a high polydispersity, representing a heterogeneous 

population of liposomes. Above 3 mg/mL, significant drug precipitants were observed which 

interfered with obtaining sizes and polydispersity readings via DLS. 

 Next, the quantity of drug physically encapsulated into liposomes was quantified. 

Etoposide-loaded liposomes were separated from free, unencapsulated etoposide by 

ultrafiltration, and free etoposide was quantified by HPLC to determine the entrapment 

efficiency (EE) and drug loading (DL). 

EE (%) = (Quantity of drug encapsulated) / (Total quantity of drug added) x 100 

DL (%) = (Quantity of drug encapsulated) / (Total quantity of lipids added) x 100 

EE is a measure of how much drug must be used to load a given amount of drug, while DL 

concedes information about the amount of liposomal material required to carry a given amount 

of drug. The EE and DL were determined to be 88.2% (SD 0.5) and 30.4% (SD 4.34), Figure 

10.  
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Figure 10. Quantification of etoposide drug loading and entrapment efficiency within 

liposomes. 

Liposomes were formulated with 2 mg/mL etoposide using the ethanol injection technique, and 

unencapsulated etoposide was separated from liposomal etoposide by repeated ultrafiltration 

via centrifuge filters. Purified etoposide-loaded liposomes were then lysed and etoposide was 

quantified by high pressure liquid chromatography. The percent entrapment efficiency (mg drug 

encapsulated / mg of drug starting material) and drug loading (mg of drug encapsulated / mg of 

lipid starting material) were calculated from measured unencapsulated drug. 

 

 Effectively, the DL is a measure of how effective the carrier material is for containing a 

given drug, while EE provides information about how much drug is lost during synthesis due to 

inefficient loading. These values were comparable to those produced in untargeted etoposide 

liposomes produced by other groups81, 82.  
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2.6 Release of etoposide from liposomes. Liposomes begin releasing etoposide immediately 

following synthesis at a variable rate depending on multiple environmental factors. The 

concentration, temperature, pH, and level of agitation all contribute to the rate that etoposide is 

released from the liposome carriers. For antitumor efficacy, etoposide must be released from 

liposomes at a rate slow enough to allow accumulation at the tumor site. While untargeted 

liposomes require longer circulation times due to a lack of specific binding process, targeted 

liposomes are expected to interact with target tissue in the first 3 hours in a well vascularized 

tumor72.  

 Drug release from liposomes was performed using dialysis tubes, but initial attempts at 

determining the rate of etoposide release failed due to undetectable drug levels from all 

samples. We presumed this to be due to the poor solubility and precipitation of etoposide prior 

to sample collection or aggregation of etoposide at the dialysis membrane itself, preventing 

representative sample collection. This was corrected by adding a small amount of surfactant to 

the receptor phase of the dialysis experiment similar to the release study conducted by 

Jinturkar et al.82. We investigated the rate of etoposide release from immunoliposomes from 1-

8 hours at physiologic temperature and pH, Figure 11.  
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Figure 11. Cumulative etoposide release from immunoliposomes. 

A total of 1 mL of immunoliposomes loaded with 1 mg/mL etoposide were placed in 

dialysis cartridges and incubated with agitation at 37˚C in a solution of physiologic buffer 

at pH 7.4. Samples were obtained from the dialysate at prescribed time points and the 

released etoposide was quantified by high pressure liquid chromatography. 

 

 The final results of the release study indicated that etoposide liposomes exhibited a 

sustained release of etoposide over the course of 6 hours. Notably, only 0.25 mg of the 1 

mg/mL was detected in the dialysate, suggesting that a portion of released material either 

became entrapped in the dialysis membrane or failed to be released from the liposomes over 

the duration of the experiment. 

 Difficulties encountered with etoposide encapsulation underline the need to fully 

characterize each new synthesis strategy for drug encapsulation. Successful verification of 

drug loading into the liposomal delivery system laid the foundation for a targeted drug delivery 

platform. The next stage of liposome functionalization involves surface modification of 

liposomes with targeting moieties to enhance the efficacy and antitumor activity of liposomes.  
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 2.7 Synthesis conclusions. The notion that we have reached dose-limited toxicity, 

often with a non-proportional decrease in disease, has driven the search for new therapeutics 

and new approaches for targeted drug delivery. One approach to treat disease with higher 

efficacy is the use of liposomal drug carriers that can control the release of cytotoxic 

chemotherapeutics like the first line agent, etoposide. We hypothesized that etoposide could be 

stably encapsulated into nanoscale liposomes and subsequently decorated with anti-GD2 

antibodies for active targeting.  

 Indeed, DPPC liposomes were self-assembled via a modified ethanol injection 

technique that allowed for the simultaneous formation of liposomes and passive drug loading 

without direct extrusion. This was advantageous and could make manufacturing and scaling 

production up easier and more efficient. This process resulted in stable 125.7 nm (+/- 1.4) 

particles with a polydispersity of 0.108. These parameters were previously described as ideal 

for liposome systemic treatment in the avoidance of nonspecific removal from circulation by the 

liver and spleen. Entrapment efficiency and drug loading were maximized at 88.2% and 30.4%, 

respectively, as determined by HPLC analysis. This procedure simultaneously encapsulated up 

to 4 mg/mL etoposide into 10 mM liposomal formulations, comparing favorably to other 

etoposide formulations 81, 97.  
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Chapter 3: Targeting Moiety Attachment and Verification 

3.1 Passive liposomal targeting. Nanoparticle applications in medicine potentially alter and 

enhance control over particle and drug biodistribution during treatment. Liposomes have the 

advantage of a cell-like lipid membrane that is capable of alterations and modifications to 

control surface interactions between the liposome and the dynamic circulatory environment 

during medicinal administration. Targeting with liposomes is generally divided into two main 

genres: passive targeting and active targeting. 

 Passive targeting involves the size and general surface properties of liposomes capable 

of altering their biodistribution. Liposomes and other nanoparticles below a certain size 

threshold (approximately 200nm for normal human circulation) are known to accumulate into 

cancerous tissue preferentially due to the enhanced permeation and retention (EPR) effect98. 

The EPR effect is the result of nanoparticles circulating through altered vasculature within the 

tumor microenvironment. Cancer causes rapid development of blood vessels through the 

release of several angiogenic growth factors such as vascular endothelial growth factor. 

Cancer-induced angiogenesis results in blood vessels composed of poorly aligned endothelial 

cells with larger-than-normal fenestrations (producing what is often called “leaky vasculature”) 

capable of the passage of liposomes and other large macromolecular drugs99. Enhanced tumor 

accumulation of liposomes via the EPR effect is often cited as one of the primary mechanisms 

for current successes in passively targeted nanomedicines100.  

 To maximize the time in circulation for the EPR effect to occur, liposomes can be 

coated with polyethylene glycol (PEG), a hydrophilic polymer chain. Surface modification with 

PEG, or “PEGylation”, results in a hydration shell around the liposome or nanoparticle 

protecting it from removal by the mononuclear phagocyte system (MPS) from circulation. The 

MPS is composed largely of monocytes and macrophages within the spleen in combination 

with Kupffer cells within the liver. These cells work together to recognize and remove foreign 
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substances and senescent blood cells via phagocytosis. MPS recognition of foreign particles is 

hindered by PEG chains. Hence, PEGylated liposomes remain in circulation for longer periods 

of time, enabling more particles to accumulate at the tumor site via the EPR effect101. 

 Other mechanisms for the passive targeting of liposome payloads to tumor cells involve 

nanoparticle surface modifications. Cationic liposomes have been found to more readily fuse 

with negatively charged cell membranes, resulting in a particular use for the delivery of genetic 

contents to the cytoplasm102. Thermal or pH responsive liposomes have been shown in studies 

to release payloads at tumor microenvironments that are at slightly higher temperatures or 

relatively more acidic, respectively103.  

 While innovative, most nanomedicines utilizing passive mechanisms other than the 

EPR effect have failed to reach federal approval for clinical use due to lack of efficacy or 

unanticipated side effects due to specialized materials on healthy tissue104. Additionally, these 

mechanisms lack true specificity for the tumor cells themselves, underlining the need for a 

more precise form of targeting. Active targeting addresses this demand by utilizing molecular 

mechanisms and binding kinetics to directly target tumor cells. 

3.2 Active liposomal targeting. Controlling the biodistribution of liposomes via specific 

targeting mechanisms is termed “active targeting” and is one of the leading edge fields of 

medical nanotechnology. Active targeting refers to ligand-directed targeting of liposomes to 

specific sites via monoclonal antibodies, peptides, or other small molecule targeting moieties 

attached to the liposome surface79. Advances in molecular biological techniques revealing 

multitudes of cancer-specific biomarkers produced countless potential targets for liposomes. 

For example, folate receptors have been found to be significantly overexpressed in numerous 

cancerous lines, likely related to the high metabolic requirements of malignant cells. Hence, 

folate decorated liposomes were produced and shown to be taken up preferentially by the 

folate-receptor positive cancer cells via receptor mediated endocytosis74. Small molecules and 
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vitamins have been used intermittently as targeting agents for liposomes and other particles, 

but they have not demonstrated the specificity of more precise targeting moieties such as 

peptides and antibodies. Of the more stringent targeting moieties, MAbs and antibody 

fragments are the principal method of targeting liposomes. 

 Monoclonal antibodies (MAbs) are rapidly being developed to address the growing 

number of identified cancer biomarkers. MAbs under development are being used both as 

standalone immunotherapeutics and targeting moieties for drug delivery systems 

simultaneously. Anti-GD2 antibodies have been attached to liposomes with some success in 

targeting delivery of drugs. One example is the GD2-targeted delivery of fenretinide, a synthetic 

vitamin-like drug, to melanoma cells in vitro
26 using the 3F8 anti-GD2 antibody. Targeted 

delivery of fenretinide using anti-GD2 immunoliposomes reduced melanoma cell growth and 

had no evident cytotoxicity on cells without GD2 expression.  

 In our study, anti-GD2 antibodies were attached to immunoliposomes via specialized 

crosslinkers containing a covalent conjugation group called maleimide. MAb attachment to 

liposomes can be accomplished by different biomolecular mechanisms, and covalent 

attachment is generally accepted as the most stable and reliable method for attachment105. 

Several commercially available covalent crosslinkers are available to standardize connective 

reactions. 

3.3 Strategies for targeting moiety attachment. Effective attachment of a targeting moiety to 

the surface of a liposome depends both on the nature of the moiety and intended function of 

the targeted liposome. Liposomes are formulated with crosslinkers at the lipid membrane 

surface or at the end of PEG chains extending from the surface of liposomes. PEG chains 

between liposomes and targeting antibodies function as flexible tethers, decreasing steric 

hindrances between the antibody and liposome during ligand binding106. 
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 An array of crosslinkers exist for protein immobilization; two of the most commonly used 

modalities are N-Hydroxysuccinimide (NHS)/ ethyl(dimethylaminopropyl) carbodiimide (EDC) 

and maleimide crosslinkers. Both NHS/EDC and maleimide chemical reagents can be utilized 

in physiologic conditions to prevent disturbing tertiary and quaternary structure of antibodies in 

order to preserve targeting abilities. Deciding which conjugation strategy is ideal for a particular 

application depends largely on the conjugation material and intended function post-conjugation. 

NHS/EDC reactions activate carboxylates (-COOH) for conjugation to primary amines (-NH2).  

Primary amines are found in lysine (Lys, K) side chains, and carboxyls can be found at the C-

terminus as well as within aspartic acid (Asp, D) and glutamic acid (Glu, E) residues. While 

biologically compatible, NHS/EDC reactions are difficult to control in MAbs due to the omnibus 

presence of primary amines in antibodies. This lack of specificity is allieviated by using a more 

specific crosslinker such as maleimide.  

 Maleimide reaction chemistry involves the specific reaction of maleimide with sulfhydryl 

groups (-SH). Sulfhydryl groups are located in the side chain of cysteine (Cys, C) amino acids 

which are often unavailable for crosslinking due to their activity in disulfide bonds (-S-S-) where 

they support secondary and tertiary protein structure. Hence, the majority of crosslinking 

reactions occur secondary to a controlled thiolation reaction at primary amine sites via 

thiolating agents such as 2-iminothiolane.  Traut’s reagent (2-Iminothiolane) is used to add 

sulfhydryl groups to the side chain of primary amines found at the side chain of lysine amino 

acids. Thiolation at lower levels (molar excess of 2-iminothiolane to antibody of less than 20:1) 

has been shown to have little effect on the binding ability of targeting antibodies. Thus, 

maleimide crosslinking is the approach we utilized for attaching anti-GD2 antibodies to 

liposomes in this system due to the increased control over the number of active reaction sites 

at each MAb, Figure 12.  
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Figure 12. Schematic showing DSPE-PEG2000-Maleimide crosslinker 

location and reaction. 

A) The immunoliposome surface modification is depicted with PEG-

tethered crosslinkers and attached antibodies. B) The DSPE-PEG2000-

Maleimide crosslinker chemical structure is shown before and after 

addition of a sulfonated antibody to complete the maleimide reaction, 

forming the resulting carbon-sulfur bond. 
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 The specific GD2 binding area of 3F8 is the antigen binding fragment (Fab), and the 

constant region (Fc) contains conserved antigens not essential for the targeted ligand binding. 

The Fab region typically contains fewer free lysine groups than the Fc region, supporting the 

claim that sulfonation and subsequent crosslinking to liposomes at these sites will not usually 

affect specific binding of MAbs. Indeed, sulfonation at lower levels was not found to significantly 

affect antibody binding to its target107. 

 Incorporation of the conjugation product into a function liposome is the final stage of 

immnoliposome formation. Lipid-PEG-maleimide crosslinkers can be included with other 

liposomal materials during initial ethanol injection. However, this results in some crosslinkers 

being trapped in the liposome interior. A solution to this problem, called “post-insertion” 

involves inserting the crosslinker-modified lipids into the liposomes after they have been 

formed. 

3.4 Post-insertion of crosslinkers into liposomes. Post-insertion is the process of mixing 

micelles with liposomes to combine the two particle types into a new modified liposome. 

Micelles are single-lipid-layer spheres with hydrophilic surfaces and hydrophobic interiors, 

typically much smaller in diameter than liposomes (10-30 nm)108. During post-insertion, heat 

and agitation enables lipid micelles to fuse with the outermost leaflet, or “limiting membrane” of 

the lipid bilayer on a liposome in solution, Figure 13.   



 
 
 

41  

 

Figure 13. Immunoliposome formation by micellar post-insertion schematic. 

Immunoliposomes are formed with post-insertion in a two-step process for the anti-GD2 

immunoliposome drug delivery system. First, unmodified liposomes functionalized by co-

incubated with maleimide-bearing micelles at 60˚C for 1 hour or 65˚C for 10 minutes (top) 

inducing fusion of micelles with the limiting membrane of the liposomes. Next, sulfonated 

targeting antibodies are incubated with the liposomes after post-insertion facilitating the 

spontaneous formation of stable thioether bonds between the maleimide linker and antibody. 
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 The process for producing etoposide-loaded immunoliposomes via post-insertion is as 

follows: First, liposomes containing etoposide are produced via ethanol injection as described 

earlier. Remaining ethanol is removed via rotary evaporation. Next, micelles are formed by 

dissolving DSPE-PEG-maleimide first in ethanol followed by addition of an equal volume of 

aqueous solution. Third, the two solutions are warmed to 65°C and combined under agitation at 

300 RPM for 10 minutes. During this phase, the micelles fuse with the liposomes to produce 

PEG-maleimide decorated liposomes. Lastly, thiolated MAbs are added to the liposomal 

solution where active maleimide spontaneously reacts with the antibody sulfhydryl groups 

producing a stable carbon-sulfur bond. 

 Post-insertion can be accomplished in a relatively short time interval (10 minutes at 

65°C to 1 hour at 60°C), allowing for standardization of the amount of time maleimide is 

exposed to hydrolyzing aqueous reagents. Maleimide crosslinkers can be preserved in 

anhydrous refrigerated conditions until use just before post-insertion. This results in decreases 

in variable hydrolysis of the maleimide reactive group prior to conjugation. 

3.5 Evaluating maleimide-enabled antibody decoration. Successful post-insertion and 

subsequent antibody attachment proved difficult to assay using traditional proteomic methods. 

Minimal amounts of 3F8 were used in each synthesis due to the high cost and relative scarcity 

of the antibody in the lab. Sensitive protein analysis assays used in western blotting 

applications such as micro-BCA were attempted multiple times but were not sensitive enough 

to detect the sub-microgram amounts of MAb conjugated to the surface of immunoliposomes.  

FTIR and NMR were employed to detect the presence of successful conjugation reactions 

between the PEG-maleimide linker and the 3F8 MAb Figure 14,15.  



 
 
 

Figure 14. Verification of crosslinker

spectroscopy. 

DSPE-PEG2000-maleimide was conjugated to thiolated anti

to those used during immunoliposome formulation. Then the conjugation product as well as 

individual components were analyzed via nuclear magnetic resonance spectro

alone (top), DSPE-maleimide linker (middle), and the conjugation product of the two (bottom) 

were analyzed by nuclear magnetic resonance on a Brunker 700 MHz spectrometer. Boxed 

areas represent intensity shift peaks representing the chemica

of the immunoliposome targeting moiety. The bottom spectrum revealed characteristic intensity 

peaks for both components. 
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Verification of crosslinker-antibody coupling via nuclear magnetic resonance 

maleimide was conjugated to thiolated anti-GD2 antibodies in similar conditions 

to those used during immunoliposome formulation. Then the conjugation product as well as 

individual components were analyzed via nuclear magnetic resonance spectro

maleimide linker (middle), and the conjugation product of the two (bottom) 

were analyzed by nuclear magnetic resonance on a Brunker 700 MHz spectrometer. Boxed 

areas represent intensity shift peaks representing the chemical signature for each component 

of the immunoliposome targeting moiety. The bottom spectrum revealed characteristic intensity 

 

 

antibody coupling via nuclear magnetic resonance 

GD2 antibodies in similar conditions 

to those used during immunoliposome formulation. Then the conjugation product as well as 

individual components were analyzed via nuclear magnetic resonance spectroscopy. Antibody 

maleimide linker (middle), and the conjugation product of the two (bottom) 

were analyzed by nuclear magnetic resonance on a Brunker 700 MHz spectrometer. Boxed 

l signature for each component 

of the immunoliposome targeting moiety. The bottom spectrum revealed characteristic intensity 
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Figure 15. Verification of crosslinker-antibody coupling via fourier transformed infrared 

spectroscopy. 

Anti-GD2 antibody (A), DSPE-PEG2000-maleimide crosslinker (B), and the conjugation product 

of the antibody with the DSPE-PEG2000-maleimide crosslinker (C) were examined via Fourier 

transformed infrared spectroscopy. Boxed areas represent characteristic bond peaks of the 

represented components. Primary amines (N-H) were recognized within the antibody while 

carbonyl (C=O) and methyl (C-H) groups were detected in the DSPE-PEG2000-maleimide 

crosslinker. Peaks representing all three bond types were detected in the conjugation product. 

 

 For sample preparation, the antibody was sulfonated, purified, and combined with the 

active PEG-maleimide linker in the same chemical conditions as was previously described for 

immunoliposome formation. Excess linker was removed and the conjugated DSPE-PEG-

maleimide-3F8 product was washed multiple times by ultracentrifugation. We found that both 

NMR chemical shifts containing spectral signatures of both the linker and 3F8 antibody present 
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in the conjugation product. Moreover, FTIR revealed peaks representative of the amine bonds 

found in the antibody (NH 1602 cm-1), as well as the DSPE-mPEG2000 linker (CH 2920-2852 

cm-1, and CO 1700 cm-1); both peaks were present in the conjugation product after ultrafiltration 

to remove unconjugated linker. These data support the existence of a successfully conjugated 

lipid-linker-antibody product. 

 The effect of different amounts of DSPE-PEG-maleimide crosslinkers inserted into 

liposomes was investigated by native gel electrophoresis. Native gels lack detergents which 

unfold proteins and destroy liposomal membranes. Liposomes are immobilized due to their 

large size while free proteins are able to migrate through the gel. Hence, the detection of 

migrating proteins such as 3F8 in a native gel is indicative of unconjugated antibodies, Figure 

16, A. We created liposomes with final concentrations of 0-1 mole % DSPE-PEG-maleimide 

relative to total lipids. Next we added equal amounts of antibody to each formulation and 

analyzed the amount of unconjugated antibody by western blotting followed by quantitation of 

band intensities, Figure 16, B-C.  
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Figure 16. Native gel separation of immunoliposomes from unconjugated antibody. 

Five different immunoliposome formulations were synthesized with varying amounts of DSPE-

PEG2000-maleimide crosslinker followed by the addition of an equivalent amount of targeting 

antibody to each formulation. Unconjugated antibody was then separated and quantified by 

native gel electrophoresis. A) The schematic depicts the analysis of successful crosslinker-lipid 

conjugation in dilutions varying from 0 to 1 mole percent crosslinker of total lipids used. B) 

Western blot identification of free anti-GD2 antibody within the various formulations. Free 

antibody without liposomes was added to the far right well as a positive control. C) Bands 

intensities of the different formulations were quantified and compared to the positive control in 

lane 6. The amount of antibody absent from the gel was represented as percent of total 

antibody bound to liposomes. 
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 We found that the least amount of antibody was found migrating in the gel in the 0.5 

mole % formulation. This data suggests that the 0.5 mole % formulation contained the highest 

amount of conjugated antibody, resulting in the least amount of free antibodies running in the 

gel. This is important because efficient conjugation of the antibody to the surface of liposomes 

decreases the amount of antibody needed, and MAbs such as 3F8 are the most delicate and 

expensive component of the targeted liposome system. 

 Next analyzed the presence of intact 3F8 immunoliposomes by microscopy. Traditional 

light microscopy was inadequate for viewing individual liposomes due to their nanoscale size. 

The resolving power of an optical microscope is ultimately limited by the wavelength of visible 

light, and the immunoliposomes produced were on the order of 100-200 nm in diameter. 

However, aggregates of anti-GD2 immunoliposomes were visualized via fluorescence 

microscopy by treatment with fluorescent anti-mouse secondary antibodies, Figure 17.  



 
 
 

Figure 17. Immunofluorescence of untargeted and anti

Control untargeted liposomes (A) and anti

with fluorescent anti-mouse antibodies followed by centrifugation to remove free secondary 

antibody. Liposomes were analyzed by fluorescence microscopy with a 20x objective. 

Liposomal membranes contained lissamine

secondary antibody contained alexafluor 488 (green). IgG secondary antibody aggregates are 

represented by white arrows. Scale bar: 25 µm.

 

 Secondary antibody fluorescence was only visible in anti

not untargeted control liposomes. This data suggests that 
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Immunofluorescence of untargeted and anti-GD2 liposomes.

Control untargeted liposomes (A) and anti-GD2 targeted immunoliposomes (B) were incubated 

mouse antibodies followed by centrifugation to remove free secondary 

antibody. Liposomes were analyzed by fluorescence microscopy with a 20x objective. 

Liposomal membranes contained lissamine rhodamine (red) while the anti-mouse IgG 

secondary antibody contained alexafluor 488 (green). IgG secondary antibody aggregates are 

represented by white arrows. Scale bar: 25 µm. 

Secondary antibody fluorescence was only visible in anti-GD2 immunoliposo

not untargeted control liposomes. This data suggests that anti-GD2 antibodies were present

 

GD2 liposomes. 

argeted immunoliposomes (B) were incubated 

mouse antibodies followed by centrifugation to remove free secondary 

antibody. Liposomes were analyzed by fluorescence microscopy with a 20x objective. 

mouse IgG 

secondary antibody contained alexafluor 488 (green). IgG secondary antibody aggregates are 

GD2 immunoliposomes and 

GD2 antibodies were present in 
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the liposomal formulation. However, colocalization with liposome fluorescence was not clear. 

For the visualization of individual immunoliposomes, TEM analysis was invaluable.  

Anti-mouse IgG-gold particles (with reactivity against the murine anti-GD2 MAbs) were 

incubated with anti-GD2 immunoliposomes on TEM-grade carbon grids followed by washing 

steps and negative-staining with an electron-dense ammonium molybdate solution, Figures 18. 
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Figure 18. Transmission electron microscopic analysis of immunogold labeled control 

and GD2 targeted liposomes. 

Liposomes without antibody decoration or anti-GD2 immunoliposomes were placed on carbon 

grids followed by staining with equal amounts of anti-mouse IgG-gold. Samples were washed 

multiple times before negative staining and analysis. High magnification pictures were taken 

(230,000 x, scale bar = 100 nm) 

 

 TEM analysis revealed gold particles located along the liposome membranes 

suggesting that liposomes were in fact surface labeled with anti-GD2 antibodies. Gold particles 

were not visualized in similarly treated samples containing control liposomes without anti-GD2 

antibodies. 
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 Immunoliposomes decorated with antibodies to a tumor associated antigen are 

expected to bind tumor cells expressing the antigen with significantly enhanced efficacy 

compared to controls without antigen binding abilities. We next sought to demonstrate active 

targeting of anti-GD2 immunoliposomes to tumors of interest. GD2 expression in tumor cells 

was expected in most neuroblastoma cell lines, but it was unclear from the literature to what 

extend the ganglioside was produced in individual cell lines. Prior to targeting analysis, we first 

verified expression of the GD2 ganglioside on an array of cancer cell lines.  

3.6 Immunoliposome synthesis and characterization conclusions. We created actively-

targeted immunoliposomes by inserting crosslinker-bound lipid micelles into preformed 

liposomes followed by the addition of sulfonated targeting MAbs. We hypothesized that 

successful conjugation could be demonstrated by chemical analysis via NMR and FTIR as well 

as fluorescence and electron microscopy techniques. We discovered characteristic chemical 

shift peaks of the conjugation products themselves via NMR. Moreover, FTIR revealed 

absorption peaks of characteristic bonds in the individual components of the conjugation 

product. These data collectively suggest that the maleimide reaction occurred joining DSPE-

mPEG2000-Maleimide together with the 3F8 MAb.   

The final immunoliposomes product was characterized by DLS analysis for size and 

polydispersity as well as immunogold TEM. Complete immunoliposomes were found to have an 

average size of 128.1 nm (+/- 1.6) with a polydispersity of 0.116. While the size and 

polydispersity values of the final immunoliposome product displayed an upward trend 

compared to the size and polydispersity of blank liposomes, the values were not significantly 

different between the complete formulation and the blank liposomes. This suggests that the 

liposomes are not significantly altered during the post-insertion process with respect to 

liposome diameter and monodispersity.  
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Immunoreactive aggregates were visible in final anti-GD2 etoposide immunoliposomes 

but not control liposomes when viewed via fluorescence microscopy, and TEM images depicted 

similar immunoreactivity with anti-GD2 immunoliposomes and anti-mouse IgG gold antibodies. 

These imaging studies were important because they provide visual evidence of the assembled 

drug delivery system and enable qualitative assessment of liposomal structural properties. We 

concluded that the drug loaded liposomes displayed the attached antibodies at the liposome 

surface, as demonstrated with immunogold labeling and TEM analysis. Further characterization 

of the complete immunoliposome system was conducted with regard to targeting and drug 

delivery efficacy. 
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Section II: Ganglioside Expression and Nanoparticle Targeting 

Rationale: Gangliosides found in healthy tissue serve the purpose of cell-cell recognition as 

well as modulation of cell signal transduction events109. The number and position of sialic acid 

groups linked to the sugar chain are the differentiating features of the more than 60 known 

gangliosides34. Gangliosides are believed to coalesce in lipid rafts which are microdomains on 

the plasma membrane rich in glycosphingolipids and protein receptors, and this association 

can stabilize specific signaling molecules necessary for cell differentiation during 

development61. Gangliosides are predominantly found in the membranes of nervous system 

cells in both the central nervous system (CNS) and peripheral nervous system (PNS), where 

they make up approximately 6% of all phospholipids89. Interestingly, tumors of neural crest 

origin are also found to have high ganglioside expression, particularly the ganglioside GD2. 

Further investigation of GD2 expression revealed that multiple cancer types, including 

melanoma, osteosarcoma, as well as some adenocarcinomas express GD2 gangliosides; 

although, the consistency and degree of GD2 expression remains unclear61, 110. Our studies 

examined the levels of GD2 expression across multiple cancer cell types to elucidate 

differences among GD2 expressing tumors. 

 GD2 expression in multiple tumor types and lack of restricted expression in most 

healthy tissues enables anti-GD2 antibodies such as the MAb 3F8 to specifically target tumor 

tissue. The 3F8 antibody is utilized for characterization of GD2 expression in cells 

experimentally as well as intravenously administered as an immunotherapeutic for children with 

high grade neuroblastoma9. Specificity of the 3F8 MAb for GD2 binding has been established in 

vitro and in vivo. Cheung et al. found that 3F8 antibodies bound GD2 exclusively without cross-

reactivity for other gangliosides such as GD1a, GT1b and GM153. High precision enabled 3F8 
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to be used independently for both quantification of GD2 on cancer cells as well as targeting for 

immunoliposomes.  
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Chapter 4: GD2 Surface Expression across Cancer Lines 

4.1 Ganglioside surface expression. Surface expression of proteins and specialized lipids 

enable cells to identify themselves for differentiation, modulate adhesion, maintain polarity, and 

manage numerous other cellular properties. Cancer cells containing copious mutations often 

overexpress specific surface proteins and lipids that may have been particular to the healthy 

cell-type from which the cancer originated. For instance, cancer types originating from neural 

crest cells, in particular neuroblastoma, typically overexpress GD2. For this reason, patients 

with high-risk neuroblastoma are often candidates for immunotherapy with anti-GD2 antibodies. 

The neural crest also progenerates smooth muscle, peripheral and enteric neurons, 

craniofacial cartilage and bone, as well as melanocytes. Consequently, multiple other cancer 

types, such as melanoma, some osteosarcomas, and other soft-tissue sarcomas have been 

found to overexpress GD261. 

4.2 Variability in GD2 expression. Despite some mention of uniform expression in tumors35, 

we challenged the idea that GD2 is uniformly overexpressed in neuroblastomas, and when 

overexpressed, we hypothesized that its expression may be variable between cell lines within 

the same cancer type111, 112. Many other cancers such as melanoma are known to express high 

levels of GD2, likely due to the neural crest origin of melanocytes. Neural crest cells also 

differentiate into diverse cell types including craniofacial bone and cartilage, peripheral and 

enteric neurons and smooth muscle109. Tumors involving these tissues have also been found to 

overexpress GD2113. We included an osteosarcoma as well as melanoma cell line in our GD2 

expression and targeting characterization in addition to the four different neuroblastoma lines 

examined. Neuroblastoma cells previously shown to express GD2, SKNAS and IMR-32 were 

included along with SY5Y cells that have been characterized to have low GD2 expression. 

HeLa cervical carcinoma cells were studied in parallel as a negative control for GD2 

quantification and targeting. 
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 To determine GD2 surface expression, we used flow cytometry and 3F8 anti-GD2 

antibodies to analyze the relative expression of GD2 between cell lines. Cells treated with 

fluorescent secondary antibodies alone served as a baseline, and GD2 expression was 

quantified as fold-increases in fluorescence intensity by flow cytometry after treatment with 

GD2-specific 3F8 MAbs followed by fluorescent secondary antibodies, Figure 19.  

 

Figure 19. Surface expression of GD2 in neuroblastoma cell lines and across cancer 

types. 

Eight cell lines from neuroblastoma, osteosarcoma, melanoma and adenocarcinoma were 

treated with anti-GD2 antibodies followed by fluorescent anti-mouse secondary antibodies or 

fluorescent secondary antibodies alone as a control and analyzed by flow cytometry. GD2 

expression is represented as fold increases in geometric means of fluorescence intensity in 

anti-GD2 antibody + secondary antibody treated cells compared to cells incubated with 

secondary antibodies alone. Values represent averages of at least three independent 

experiments with at least 10,000 counts per experiment. 
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 We found that neuroblastomas exhibited dramatically different surface expression of 

GD2 gangliosides based on 3F8 immunoreactivity, and other tumor types showed anti-GD2 

immunoreactivity at high and intermediate levels. The neuroblastoma cell lines LA-155N and 

SKNAS as well as osteosarcoma 143B showed more than a 10 fold increase in GD2-

associated fluorescence compared to control. Moderate GD2 expression was detected in IMR-

32, SH-EP (both neuroblastoma) and A375 (melanoma) cell lines. GD2-negative HeLa 

adenocarcinoma cells and SY5Y neuroblastoma cell lines each expressed little 3F8 reactivity 

suggesting low GD2 expression. These data suggest that GD2 expression varies widely across 

tumor types and between different neuroblastoma cell lines.  

 The consequence of variable levels of GD2 overexpression has an unclear impact on 

targeted therapies. We hypothesized that variability in GD2 expression across cell lines would 

result in correlated variable targeting by anti-GD2 liposomes. Variable targeting ability, poorly 

addressed in the literature, could have obvious and important implications for anti-GD2 therapy 

because cell lines with variable or low GD2 expression might have a poorer response to anti-

GD2 immunotherapy or anti-GD2 immunoliposomes than other cell lines. Therefore, liposomal 

binding and uptake of anti-GD2 liposomes to these cell lines was further investigated. 

4.3 Conclusions concerning GD2 surface expression. Gangliosides are expressed variably 

during neurodevelopment to guide differentiation of the central and peripheral nervous system. 

We hypothesized that different cancer types would heterogeneously express GD2 because 

tumors likely form from cells in variable developmental stages at different baseline GD2 

expression levels30, 114. Moreover, we hypothesized that active targeting of anti-GD2 liposomes 

to the same cell lines would result in varied active targeting correlated with levels of GD2 

expression due to the fluctuant amount of ligands available for immunoliposome binding. 

Osteosarcoma, melanoma and an array of neuroblastoma cancer cell lines were evaluated by 
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flow cytometry for GD2 expression using the GD2-specific 3F8 monoclonal antibody in 

conjunction with fluorescent secondary antibodies. 

 The neuroblastoma cell lines LA-155N and SKNAS as well as osteosarcoma 143B 

showed more than a 10 fold increase in GD2-associated fluorescence compared to control. 

This indicates that high levels of GD2 are expected to be available for anti-GD2 binding and 

targeting. Moderate GD2 expression was detected in IMR-32, SH-EP (both neuroblastoma) 

and A375 (melanoma) cell lines. GD2-negative HeLa adenocarcinoma cells and SY5Y 

neuroblastoma cell lines each expressed little 3F8 reactivity suggesting low GD2 expression. 

These data suggest that GD2 expression varies widely across tumor types and between 

different GD2 expressing neuroblastoma cell lines, in support of our hypothesis that GD2 

expression is heterogeneous across cell lines. While the molecular mechanisms behind the 

GD2 overexpression are not clear at this time, these findings may have significant importance 

for GD2-targeted therapies. 
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Chapter 5: Anti-GD2 Liposomal Targeting and Uptake 

5.1 Assessment of anti-GD2 immunoliposome targeting. Modern tracking of liposomes 

during in vitro and in vivo work is accomplished by most nanomedicine labs by the use of 

fluorescently tagged lipids72. In appropriately formulated liposomes, nonspecific diffusion of 

fluorescent lipids is reportedly low, and immediate visualization via confocal and other 

fluorescence-based analytic techniques renders traditional radiolabeling methods obsolete. For 

our in vitro studies, phospholipids conjugated to the red fluorescent molecule lissamine 

rhodamine were added in small quantities (0.2 mole %) to liposome formulations for tracking 

during cellular experiments. 

 Cells treated with liposomes were observed using confocal microscopy and flow 

cytometry. Confocal microscopy was used to analyze particle uptake by individual cancer cells 

while flow cytometry analyzed surface binding of liposomes to cancer cells populations. 

5.2 Anti-GD2 immunoliposomes bind GD2 positive cells. The anti-GD2 MAb, 3F8 has an 

established binding profile for tumor cells bearing the ganglioside GD2 115. It was our 

hypothesis that GD2 positive cancer cells incubated with fluorescent anti-GD2 

immunoliposomes would have an increased fluorescent signal on the flow cytometer compared 

to a similar experiment with untargeted liposomes. Endocytosis was inhibited in anti-GD2 

surface binding experiments by performing treatments on ice. Preventing endocytosis was 

necessary to assess surface targeting without receptor internalization and potential degradation 

of liposomes. Additionally, rates and levels of endocytosis may vary between cancer types and 

cell lines, confounding results about effectivity of targeting.  

 We first analyzed LA-155N reactivity with anti-GD2 targeted vs non-targeted fluorescent 

liposomes at total lipid concentrations of 50-200 µM, Figure 20.  



 
 
 

60  

 

Figure 20. Anti-GD2 targeted immunoliposome targeting to LA-155N cells at different 

concentrations. 

LA-155N cells were co-incubated with anti-GD2 targeted or untargeted liposomes produced 

with equivalent amounts of fluorescent lipids at 50, 100, or 200 µM lipid concentrations for 30 

minutes on ice. We evaluated the surface attachment of anti-GD2 (red) and untargeted (blue) 

fluorescently labeled liposomes to the surface of cells by flow cytometry. * = p < 0.05 

 

 We found a significant increase in fluorescence of cells incubated with 100 and 200 µM 

anti-GD2 targeted compared to untargeted liposomes, suggesting that 100 µM is sufficient for 

future targeting experiments. Additionally, we found significant differences in cell targeting 

between each of the three anti-GD2 immunoliposome treatments. These data suggest that the 

cells were not completely saturated with anti-GD2 immunoliposomes at 200 µM.  

Next, we evaluated the time course of the anti-GD2 liposome targeting experiment by 

performing incubation of LA-155N with 100 µM untargeted or anti-GD2 targeted 

immunoliposomes for 10, 20, or 30 minutes on ice, Figure 21.  
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Figure 21. Anti-GD2 targeted immunoliposome targeting to LA-155N cells at different 

time points. 

LA-155N cells were co-incubated with 10 µM anti-GD2 targeted or untargeted liposomes 

produced with equivalent amounts of fluorescent lipids for 10, 20, or 30 minutes on ice. We 

evaluated attachment of fluorescently labeled anti-GD2 immunoliposomes (red) compared to 

untargeted liposomes (blue) to the surface of cells by flow cytometry. Untreated cells were 

analyzed for background fluorescence (black). * = p < 0.05 

 

 This experiment revealed a significant enhancement in cell surface labeling by targeted 

immunoliposomes compared to untargeted liposomes in all time points. Mean cell fluorescence 

by samples treated with anti-GD2 targeted liposomes also increased significantly between the 

10 and 20 minute time points. These data suggest that detection of anti-GD2 immunoliposome 

targeting is likely best after 20 minutes of incubation on ice.  

 Targeting was also assessed in cervical carcinoma (HeLa) and breast cancer (MDA-

MB-231) cells with notably low levels of GD2 surface expression. Anti-GD2 immunoliposome or 
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control liposome binding to these cells in addition to LA-155N cells was assessed by flow 

cytometry after 20 minutes of incubation with liposomes at 100 µM, Figure 22.  
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Figure 22. GD2 expression and anti-GD2 liposome targeting in cervical, breast, and 

neuroblastoma cells. 

A) GD2 surface expression in HeLa, MDA-MB-231, and LA-155N cells was evaluated by flow 

cytometry with anti-GD2 antibodies and fluorescent secondary antibodies. B) Fluorescent 

liposome and immunoliposome formulations were incubated with each cell line for 20 minutes 

on ice followed by removal of unbound liposomes. We evaluated the surface attachment of 

fluorescently labeled targeted vs untargeted liposomes to the surface of cells by flow cytometry. 

Histogram plots represent fluorescence of untreated cells (black), cells bound by untargeted 

liposomes (blue), or cells treated with anti-GD2 targeted liposomes (red). 
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 Here, we found comparable levels of cell fluorescence for untargeted control liposomes 

and anti-GD2 targeted liposomes in the two cell lines with low GD2 expression. Conversely, 

effective anti-GD2 targeting was observed in LA-155N cells. Absent anti-GD2 targeting in the 

cell lines with low GD2 expression suggests that anti-GD2 immunoliposomes are specifically 

binding cells with high levels of surface GD2.  

 We separated the eight cell lines characterized for surface GD2 expression into two 

groups based on GD2 expression levels and evaluated anti-GD2 targeting using the flow 

cytometric technique described above. Figure 23 depicts cell fluorescence histograms after 

treatment with anti-GD2 targeted vs untargeted liposomes in high GD2 expressing 

neuroblastoma lines LA-155N, SKNAS, and IMR-32 as well as osteosarcoma 143B cells.  
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Figure 23. Comparison of targeted vs untargeted liposomal binding in cells with high 

GD2 expression. 

Untargeted “Control” liposomes and anti-GD2 “3F8” immunoliposomes produced with 

equivalent amounts of fluorescent lipids were incubated with LA-155N, 143b, SKNAS and IMR-

32 for 30 minutes on ice. Treated cells were analyzed by flow cytometry, and liposome surface 

labeling of cells was represented by fluorescence intensity plotted against cell count in each 

cell line. Cells treated with fluorescent untargeted “Control” liposomes are shown in black; cells 

treated with fluorescent anti-GD2 “3F8” immunoliposomes are represented by the red line. 

 

 Figure 24 portrays cell fluorescence after immunoliposome treatment in moderate GD2 

expressing A375 melanoma and SHEP neuroblastoma cells as well as very low GD2 
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expressing adenocarcinoma HeLa and SY5Y neuroblastoma cells. These data imply 

heterogeneous immunoliposome targeting between the different neuroblastoma cell lines and 

confirm a lack of targeting in cell lines with very low GD2 expression. 
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Figure 24. Comparison of targeted vs untargeted liposomal binding in cells with low GD2 

expression. 

Untargeted “Control” liposomes and anti-GD2 “3F8” immunoliposomes produced with 

equivalent amounts of fluorescent lipids were incubated with A375, SHEP, HELA, or SY5Y for 

30 minutes on ice. Treated cells were analyzed by flow cytometry, and liposome surface 

labeling of cells was represented by fluorescence intensity plotted against cell count in each 

cell line. Cells treated with fluorescent untargeted “Control” liposomes are shown in black; cells 

treated with fluorescent anti-GD2 “3F8” immunoliposomes are represented by the red line. 
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 Specific anti-GD2 targeting in the 8 cell lines characterized for GD2 expression was 

further investigated by the creation of additional antibody-decorated immunoliposomes to serve 

as negative controls. Immunoliposomes without specific GD2 binding antibodies were produced 

to verify that non-specific interactions of liposome-bound antibodies did not affect targeting to 

GD2 positive cells. Non-specific mouse IgG and monoclonal antibodies to the intracellular 

protein, STAM were conjugated to liposomes. These two formulations were hypothesized to 

behave similar to the untargeted liposomes. Targeting experiments with flow cytometry were 

repeated with the new controls, and thresholds were set based on the untargeted treatment 

group to determine relative fractions of cell populations labeled with fluorescent liposomes. 

LA-155N and 143B both displayed a dramatic increase in targeting with liposomal labeling the 

entire population of cells analyzed by flow cytometry (Figure 25, top two rows).  



 
 
 

Figure 25. Characterization of targeted and mis

with high GD2 expression. 

LA-155N, 143b, SKNAS and IMR

produced with equivalent amounts of fluorescent lipids and analyzed for surface labeling via 

flow cytometry. Liposome treatments included (columns from left to right): untreated cells, 

untargeted liposomes, anti-IgG immunoliposomes, anti

immunoliposomes.  Anti-IgG, anti

controls. Thresholds were set in each cell line at 5% fluorescence intensity in the untargete

liposome treatment group. Percentiles (boxes, bottom right) represent the fraction of the cell 

population above the control threshold.
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Characterization of targeted and mis-targeted immunoliposomes in cell lines 

 

nd IMR-32 cells were treated with various liposome formulations 

produced with equivalent amounts of fluorescent lipids and analyzed for surface labeling via 

flow cytometry. Liposome treatments included (columns from left to right): untreated cells, 

IgG immunoliposomes, anti-STAM immunoliposomes, or anti

IgG, anti-STAM, and untargeted liposomes represent negative 

controls. Thresholds were set in each cell line at 5% fluorescence intensity in the untargete

liposome treatment group. Percentiles (boxes, bottom right) represent the fraction of the cell 

population above the control threshold. 

 

targeted immunoliposomes in cell lines 

32 cells were treated with various liposome formulations 

produced with equivalent amounts of fluorescent lipids and analyzed for surface labeling via 

flow cytometry. Liposome treatments included (columns from left to right): untreated cells, 

STAM immunoliposomes, or anti-GD2 

STAM, and untargeted liposomes represent negative 

controls. Thresholds were set in each cell line at 5% fluorescence intensity in the untargeted 

liposome treatment group. Percentiles (boxes, bottom right) represent the fraction of the cell 
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 However, SKNAS cells that express high GD2 levels were only bound by 3F8 

liposomes in 35% of analyzed cells, similar to that of cells with moderate GD2 expression 

(Figure 26, middle row). Cells with moderate GD2 expression IMR-32, A375, and SH-EP were 

partially targeted by immunoliposomes with 22.1%, 30.7% and 35.9% positively labeled 

compared to control liposomes, respectively (Figure 26, bottom, Figure 27, top two rows).  



 
 
 

Figure 26. Characterization of targeted and mis

with low GD2 expression. 

A375, SHEP, HELA, and SY5Y cells were treated 

with equivalent amounts of fluorescent lipids and analyzed for surface labeling via flow 

cytometry. Liposome treatments included (columns from left to right): untreated cells, 

untargeted liposomes, anti-IgG immun

immunoliposomes.  Anti-IgG, anti

controls. Thresholds were set in each cell line at 5% fluorescence intensity in the untargeted 

liposome treatment group. Percentiles (boxes, bottom right) represent the fraction of the cell 

population above the control threshold.
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Characterization of targeted and mis-targeted immunoliposomes in cell lines 

 

A375, SHEP, HELA, and SY5Y cells were treated with various liposome formulations produced 

with equivalent amounts of fluorescent lipids and analyzed for surface labeling via flow 

cytometry. Liposome treatments included (columns from left to right): untreated cells, 

IgG immunoliposomes, anti-STAM immunoliposomes, or anti

IgG, anti-STAM, and untargeted liposomes represent negative 

controls. Thresholds were set in each cell line at 5% fluorescence intensity in the untargeted 

ercentiles (boxes, bottom right) represent the fraction of the cell 

population above the control threshold. 

 

targeted immunoliposomes in cell lines 

with various liposome formulations produced 

with equivalent amounts of fluorescent lipids and analyzed for surface labeling via flow 

cytometry. Liposome treatments included (columns from left to right): untreated cells, 

STAM immunoliposomes, or anti-GD2 

STAM, and untargeted liposomes represent negative 

controls. Thresholds were set in each cell line at 5% fluorescence intensity in the untargeted 

ercentiles (boxes, bottom right) represent the fraction of the cell 
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 As expected, GD2-negative cell lines HeLa and SY5Y were bound by 3F8 

immunoliposomes at levels comparable to non-specific anti-IgG liposomes (Figure 26, bottom 

two rows). Negative controls, immunoliposomes targeted to the unrelated STAM cytoplasmic 

protein, or labeled with nonspecific IgG antibodies, displayed insignificant cell binding in all cell 

lines (Figure 26-27, middle columns). 

 Flow cytometry targeting experiments with all four treatment groups were repeated 

three times each on different days, and average cell populations above the control threshold 

were quantified in Figure 27 and 28 for cells with high and low surface GD2 expression, 

respectively. 
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Figure 27. Average targeting activity of anti-GD2 and control immunoliposomes on cells 

with high GD2 expression. 

LA-155N, 143b, SKNAS and IMR-32 cells were incubated with untargeted, mistargeted anti-

IgG or anti-STAM, or anti-GD2 immunoliposomes prior to analysis via flow cytometry. 

Thresholds were set in each cell line at 5% fluorescence intensity in the untargeted liposome 

treatment group, and bars represent the average population above threshold for three 

independent flow cytometry experiments. Means between treatment groups within cell lines 

were compared by two way ANOVA for significance. * = p < 0.05 ; ** = p < 0.01 
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Figure 28. Average targeting activity of anti-GD2 and control immunoliposomes on cells 

with low GD2 expression. 

A375, SHEP, HeLa and SY5Y cells were incubated with untargeted, mistargeted anti-IgG or 

anti-STAM, or anti-GD2 immunoliposomes prior to analysis via flow cytometry. Thresholds 

were set in each cell line at 5% fluorescence intensity in the untargeted liposome treatment 

group, and bars represent the average population above threshold for three independent flow 

cytometry experiments. Means between treatment groups within cell lines were compared by 

two way ANOVA for significance.  * = p < 0.05 ; ** = p < 0.01 

 

 We found significant surface targeting cells treated with anti-GD2 liposomes in all cell 

lines except low GD2 expressing SY5Y and HeLa cells. These data support earlier findings 

suggesting that anti-GD2 liposomes specifically bind GD2 expressing cell lines.  
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 Surface targeting is followed by particle uptake in the time course of targeted drug 

delivery. We sought to understand the dominant endocytic mechanism of entry for 

immuinoliposomes with target cells. Liposome internalization was investigated via fluorescence 

and confocal microscopy. 

5.3 Anti-GD2 immunoliposome flow chamber cellular uptake. Uptake of fluorescent 

immunoliposomes into cells was observed using flow chamber slides and confocal microscopy. 

Flow chambers have a channel where media and liposome solutions can be administered with 

laminar flow over cultured cells, simulating the dynamic flow environment of the 

microvasculature. After treatment with fluorescent liposomes, cells are fixed within the chamber 

slide and analyzed at the microscope. We visualized the GD2 expressing cell line, LA-155N, 

with a DAPI nuclear stain after treatment with anti-GD2 immunoliposomes or untargeted 

liposomes. These experiments were conducted at the physiologic temperature of 37°C to allow 

cellular uptake of particles over the course of 30 minutes under flow conditions, Figure 29.  
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Figure 29. In vitro liposomal and immunoliposomal cellular uptake in flow conditions. 

LA-155N cells were exposed to untargeted liposomes (top row) or anti-GD2 (bottom row) in 

laminar flow chambers at 37˚C for 30 minutes followed by image acquisition at the confocal 

microscope. Uptake of fluorescent untargeted or anti-GD2 targeted liposomes (red) was 

examined.  Cellular nuclei were labeled with DAPI (blue). Scale bars are 50 µm and 10 µm 

(inset). 

 

 These data suggest that anti-GD2 immunoliposomes are capable of being internalized 

by target cells while in a simulated circulatory environment. 

 While internalization was evident during confocal analysis due to visualization of 

fluorescent lipids within treated cells, the method of entry into the cell was not clear. There are 

several potential pathways for the internalization of liposomes and immunoliposomes and the 

primary pathway involved in anti-GD2 immunoliposome uptake was investigated using 

pharmacologic endocytosis inhibitors. 
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5.4 Inhibition of immunoliposome endocytosis. Endocytosis is the active cellular process 

cells utilize to take in extracellular material. Immunoliposomes are suggested in the literature to 

be taken up by receptor mediated endocytosis74, 116. Although, particle endocytosis is known to 

depend on the cell type as well as particle features such as size, shape, charge and which 

receptor is being bound117. LA-155N was analyzed for anti-GD2 immunoliposome uptake by 

pre-treating cells with two different types of internalization inhibitors: dynasore and filipin, 

Figure 30, A.  
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Figure 30. Characterization of immunoliposome uptake with pharmacologic inhibition of 

endocytosis pathways in neuroblastoma cells. 

A) Both major pathways of endocytosis, clathrin or caveolin-mediated, are inhibited by 

dynasore via actions on dynamin. Filipin only inhibits caveolin-mediated endocytosis. B) 

SKNAS cells were incubated with the endocytosis inhibitor dynasore, filipin or both drugs for 30 

minutes followed by co-incubation of inhibitors and fluorescent untargeted or anti-GD2 

immunoliposomes (red) for 1 hour at 37˚C. Cells were washed, fixed, stained with DAPI (nuclei, 

blue) and imaged by fluorescence microscopy. Regions of interest were drawn around 

representative cell perimeters. C) Cytosolic fluorescent intensities were recorded from at least 

20 fields of view for each treatment group, and means were compared by one way ANOVA for 

significance. * = p < 0.05. 
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Filipin is an antifungal chemical compound found to inhibit the caveolae pathway within 

mammalian cells117. Caveolae are small membrane buds (about 50 nm) that form flask-shaped 

pits and internalize extracellular molecules. Caveolin, the fundamental protein forming 

caveolae, is known to associate with cholesterol enriched membranes and glycolipids. GD2, 

being a subtype of glycolipid, could have been involved in this type of internalization. 

Dynasore inhibits the action of the cytosolic protein, dynamin. Dynamin is required for both 

caveolar and clathrin-mediated endocytosis during the pinching off of membrane buds118. 

Clathrin endocytosis is responsible for many types of receptor-mediated endocytosis, initiated 

by a ligand binding a surface protein or lipid. Clathrin-coated vesicles are usually about 100 nm 

in diameter, much closer to typical immunoliposome diameter. We hypothesized that clathrin-

mediated endocytosis is the primary mechanism for internalization of anti-GD2 

immunoliposomes due to the size of clathrin-coated pits and clathrin involvement in receptor-

mediated endocytosis. 

We investigated immunoliposome uptake mechanisms in SKNAS cells by 

phamacoloically inhibiting endocytosis pathways using dynasore, filipin, or a combination of the 

two inhibitors, Figure 30, B. Average liposomal fluorescence intensity within cells was 

quantified by drawing regions of interest around individual cells and calculating mean 

intensities across treatment groups, Figure 30, C. These data suggest that dynasore inhibition 

restricted receptor mediated endocytosis of immunoliposomes via clathrin-coated pits while 

filipin inhibition of the caveolar pathway had no effect on liposomal uptake in accordance with 

literature on uptake of other forms of immunoliposomes119. Thus, the primary mode of 

immunoliposome internalization in target cells is likely receptor-mediated clathrin-dependent 

endocytosis.  
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5.4 Conclusions for anti-GD2 immunoliposome targeting and uptake. Immunoliposome 

targeting relies on both the stability of the immunoliposome in the vicinity of the target cell as 

well as the fidelity of binding between the cellular target ligand and targeting moiety. In our 

studies, an effective 3F8-GD2 binding was required to observe liposome-associated 

fluorescence in cells. Increased fluorescence in anti-GD2 immunoliposome treated cells 

compared to control liposomes suggests that targeted immunoliposomes would be taken up 

more efficiently and deliver more drugs to GD2 positive cells during cancer therapy. 

Alternatively, increased fluorescence in cell lines with higher GD2 overexpression treated with 

the same amount of anti-GD2 immunoliposomes would suggest that patients with GD2 

expressing tumors might have differential responses to anti-GD2 immunoliposomal therapy 

based on their levels of GD2 expression. 

 Quantitative assessment of targeting efficiency via flow cytometry revealed that GD2 

expression was positively correlated with increased amounts of 3F8 mediated liposomal 

targeting in some, but not all cell lines. LA-155N and 143B both displayed a dramatic increase 

in targeting with liposomal labeling the entire population of cells analyzed by FACS. However, 

SKNAS cells that express high GD2 levels were only bound by 3F8 liposomes in 35% of 

analyzed cells, similar to that of moderate GD2 expressors. Moderate GD2 expressors IMR-32, 

A375, and SH-EP were partially targeted by immunoliposomes with 22.1%, 30.7% and 35.9% 

positively labeled compared to control liposomes, respectively. 

 We concluded that anti-GD2 mediated targeting occur heterogeneously between cancer 

types and within different neuroblastoma cell lines, supporting our hypothesis that targeting is 

not an all-or-none phenomenon, but rather a spectrum of targeting efficacy that appears to 

correlate with GD2 expression in some, but not all cell lines. For example, cell lines with high 

GD2 expression resulted in high anti-GD2 targeting in some cell lines (LA-155N and 143B) and 
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medium levels in others (SKNAS). This alludes to the idea that the drug may have variable 

success with respect to tumor GD2 expression and other unknown factors.  
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Section III: In Vitro Efficacy and In Vivo Pilot Study 

 Rationale: Translation of anti-GD2 immunoliposomes into clinical studies requires 

exhaustive characterization of in vitro and in vivo efficacy. In particular, inhibition of tumor 

growth and tumor regression must be demonstrated in comparison to standards of care. 

Treatment with free etoposide for high grade cancer represents the primary treatment for 

comparison with etoposide immunoliposomes. 

 Despite being established drug carriers, drug-loaded liposomes and immunoliposomes 

face many hurdles to exceeding the efficacy of free drugs. Liposomes must possess the 

necessary surface chemistry and charge to allow cellular uptake, and once internalized, 

liposomes must facilitate transfer of the drug into the cellular compartment where it acts. 

Etoposide must avoid degradation in the lysosome or expulsion from the cell before reaching 

its molecular target, topoisomerase II, which is localized within the nucleus of the cell. 

 In vitro cell proliferation inhibition following treatment with etoposide liposomes 

advocates this activity, but additional investigations would be required to determine the precise 

mechanisms of cell death following treatment. The liposomal components: DPPC, cholesterol, 

and PEG chains all have established non-toxic profiles in vivo, and current studies suggest that 

3F8 anti-GD2 MAbs require compliment and circulating leukocytes to induce toxicity in target 

cells. These data suggest that etoposide is responsible for ensuing effects on cell proliferation. 

In vivo studies incorporate organ system and tumor microenvironmental effects into the 

assessment of effective therapy. In particular, the dynamic nature of circulation has multiple 

effects on targeted liposomal drug delivery. Serum proteins potentially bind and inhibit targeting 

moieties, and the MPS actively removes foreign substances from systemic circulation. While 

much more powerful than in vitro studies, in vivo results also deviate from expected results in 

humans because animals’ immune systems react to stimuli differently than a human’s. Serum 

proteins may have dissimilar drug inactivation effects, and the sheer differences in blood 
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volume and organ size between small animals and humans effect clearance and antitumor 

effects of treatment.   
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Chapter 6: In Vitro Inhibition of Cancer Cell Proliferation 

6.1 Inhibition of proliferation over time. Etoposide action on topoisomerase II in cancer cells 

results in arrest of cell growth and cell death in a dose-dependent manner. Proliferation assays 

using tetrazolium salts such as MTT or WST-1 are research standards of determining the level 

of growth arrest in vitro
120. MTT and WST-1 are tetrazolium salts that undergo reduction by 

mitochondrial oxidoreductase enzymes forming the purple insoluble chemical, formazan. 

Formazan can then be measured colorimetrically. Only living cells bear the active reducing 

enzymes, and the resulting levels of reduced salts can be correlated with cell proliferation.  

During initial testing with liposomes in proliferation studies, WST-1 was utilized because it has 

been reported to be more sensitive, and the assay has fewer steps, decreasing human error. 

Unfortunately, WST-1 results of immunoliposome treated cells were repeatedly unstable with 

unacceptably high standard deviations, and we suspected that one or more components of the 

immunoliposome complex may be interfering with the assay. Hence, we implemented the MTT 

test and found reproducible results. 

 We first evaluated the toxicity of non-drug vehicle substances prior to the use of 

etoposide. Phosphate buffered saline (PBS, < 10% v/v), dimethylsulfoxide (DMSO, < 1% v/v), 

and unloaded liposomes in PBS were incubated with SKNAS cells for 72 hours and analyzed 

for cell proliferation every 24 hours, Figure 31.  
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Figure 31. Cell proliferation effects on cells treated with empty liposomes and drug 

emulsifiers. 

To assess the effects of non-drug substances administered during drug treatments, SKNAS 

cells were incubated with 10 % v/v phosphate buffered saline (PBS, black), drug emulsifying 

agent (1% v/v DMSO, green) or liposomes without drug (10 mM unloaded liposomes, blue) in 

cell media at concentrations similar to that of experiments with liposomal etoposide and free 

etoposide. Cell proliferation was assessed via MTT assay at 24 hour time points up to 72 

hours. Values represent percent proliferation compared to untreated control cells. 

 

 We found no significant changes in proliferation between the three vehicle substances 

suggesting that the carrier substances would not interfere with subsequent studies on drug 

efficacy. Next, we evaluated etoposide-loaded immunoliposomes compared to drug alone or 

untargeted etoposide liposomes each at equal etoposide concentrations over the course of 72 

hours, Figure 32.  
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Figure 32. Cell proliferation effects on neuroblastoma cells exposed to liposomal and 

free etoposide. 

SKNAS cells were incubated with free etoposide (brown), untargeted liposomal etoposide 

(green), or within anti-GD2 immunoliposomes all at etoposide concentrations of 10 µg/mL. 

Plates were analyzed for cell proliferation by MTT assay at 24 hour time points up to 72 hours. 

Cell proliferation was displayed as percent compared to untreated control cells (black). ** = p < 

0.01 and *** = p < 0.001 

 

 Cell proliferation of cells treated with anti-GD2 targeted liposomes was observed at 

100% compared to control cell proliferation exceeding 300%. This data suggests that the 

targeted liposomes enhance the delivery and anti-proliferative action of etoposide. Next, we 

sought to determine the response of cells to increasing dosages of the different delivery 

mechanisms of etoposide.  

6.2 Anti-GD2 etoposide liposome dose escalation study. Encouraging results of anti-GD2 

liopsomal delivery of etoposide at low concentrations (10 µg/mL etoposide) justified further 

experimentation with higher concentrations of particles and etoposide. One objective measure 
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of the efficacy for a drug or drug delivery system in vitro is called the IC50. The IC50 indicates 

the amount or concentration of a substance needed to inhibit 50% of a biological function or 

activity. In the setting of etoposide treatment and tumor cell growth, the IC50 is the 

concentration of etoposide (free or within liposomes) required to inhibit proliferation to 50% 

over a given time period.  

 We evaluated the IC50 for etoposide and anti-GD2 immunoliposomal etoposide in 

neuroblastoma and osteosarcoma via MTT assay, Figure 33-34.  
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Figure 33. Dose response study on LA-155N cells exposed to liposomal and free 

etoposide. 

High GD2 expressing neuroblastoma cells (LA-155N) were seeded in multi-well plates 

and treated with free etoposide (black), liposomal etoposide (blue), or anti-GD2 

immunoliposomal etoposide at drug concentrations of 5-200 µg/mL for 24 hours followed 

by an MTT proliferation assay. Proliferation percentages were compared to the untreated 

control, and means were compared by two way ANOVA with Bonferroni posttests 

between treatment types. * = p < 0.05;   *** = p < 0.001. 
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Figure 34. Dose response study on 143B cells exposed to liposomal and free 

etoposide. 

High GD2 expressing osteosarcoma cells (134B) were seeded in multi-well plates and 

treated with free etoposide (black), liposomal etoposide (blue), or anti-GD2 

immunoliposomal etoposide at drug concentrations of 5-200 µg/mL for 24 hours 

followed by an MTT proliferation assay. Proliferation percentages were compared to the 

untreated control, and means were compared by two way ANOVA with Bonferroni 

posttests between treatment types. * = p < 0.05;   *** = p < 0.001. 
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Figure 35. Dose response study on SY5Y cells exposed to liposomal and free 

etoposide. 

Very low GD2 expressing neuroblastoma cells (SY5Y) were seeded in multi-well 

plates and treated with free etoposide (black), liposomal etoposide (blue), or anti-

GD2 immunoliposomal etoposide at drug concentrations of 5-200 µg/mL for 24 hours 

followed by an MTT proliferation assay. Proliferation percentages were compared to 

the untreated control, and means were compared by two way ANOVA with 

Bonferroni posttests between treatment types. * = p < 0.05;   ** = p < 0.01. 

 

 The osteosarcoma cell line, 143B, and one of the neuroblastoma cell lines, LA-155N 

were previously determined to exhibit high levels of GD2 at the cell surface. Conversely, the 

second neuroblastoma line, SY5Y exhibited little to no GD2 expression and served as a 
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negative control for targeting. Treatments varied in etoposide concentration from 5 to 200 

µg/mL. We hypothesized that anti-GD2 liposomal etoposide would have the higher efficacy in 

GD2 expressing cells, represented by a lower IC50, compared to free drug or untargeted 

etoposide liposomes. 

 We observed a significant enhancement of efficacy in GD2 targeted immunoliposomes 

compared to untargeted liposomes or drug alone at 50 - 200 µg/mL. The targeting advantage 

was only present in the two GD2 overexpressing cell lines. Interestingly, the GD2 negative cell 

line SY5Y had no significant improvement of IC50 in anti-GD2 immunoliposomes over 

untargeted liposomes, although liposomal etoposide encapsulation did increase toxicity at both 

100 and 200 µg/mL compared to free drug. 

 These data suggests that liposomal encapsulation of etoposide enhances efficacy at 

higher concentrations, and targeting to GD2 further enhances antitumor activity only in GD2 

expressing cells. Further testing is warranted to determine if lower dosages are required at 

longer time points.  

6.3 Anti-GD2 immunoliposome efficacy conclusions. Antitumor efficacy of the anti-GD2 

etoposide immunoliposome complex was evaluated by repeated cell proliferation assays in 

cells treated with free drug, untargeted etoposide liposomes, or anti-GD2 etoposide liposomes. 

Changes in cell proliferation were compared to untreated cells, and controls were established 

to ensure that carrier substances such as DMSO or unloaded liposomes without etoposide did 

not significantly reduce proliferation. This means that changes in proliferation after treatment 

with free drug and encapsulated drug are very likely to be due to the action of the drug itself.  

We hypothesized that anti-GD2 liposomal etoposide would have a more dramatic reduction of 

viability on GD2 positive cell lines LA-155N and 143B compared to treatment with untargeted 

etoposide liposomes or free etoposide because we observed increased amounts of targeted 

liposomes being taken up by GD2 positive cells in previous experiments. Indeed, the IC50 
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values of etoposide-loaded anti-GD2 immunoliposomes in GD2 positive cell lines LA-155N and 

143B were 37.09 µg/mL and 66.16 µg/mL whereas the IC50 for the untargeted etoposide-

loaded liposomes for LA-155N and 143B was 80.06 µg/mL and 111.9 µg/mL respectively. 

These data suggest that lower concentrations of anti-GD2 etoposide liposomes were required 

for a similar effect in cells treated with untargeted etoposide-loaded liposomes. From a clinical 

standpoint, this suggests that treatment with the anti-GD2 immunoliposomes would require a 

lower dosage than free drug or liposomal drug to have an equal effect on the tumor.  Lower 

dosages should also result in fewer off-target effects and fewer patient toxicity events. These 

data warrant further investigation in an animal model where circulatory factors and 

biodistribution can be incorporated and assessed. 

  



 
 
 

93  

Chapter 7: Pilot In Vivo Study 

7.1 In vivo pilot injections. Prior to a more involved pilot study, pilot injections of fluorescent 

immunoliposomes were performed in healthy mice to verify sufficient signal intensity for the 

IVIS imaging system. The IVIS animal imaging apparatus is capable of measuring infrared 

fluorescence as well as bioluminescence. Immunoliposomes were formulated with the infrared 

dye, DiR to facilitate in vivo imaging.  

 Liposomal injections representative of future therapeutic concentrations (100 µL at a 

concentration of 10 mM lipids) were administered to the tail vein of brown mice. Mouse fur was 

chemically removed to prevent interference with the imaging camera, and fluorescence images 

were taken at 30 minutes and 3 hours with an infrared light filter, Figure 36. 
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Figure 36. Preliminary in vivo imaging of mice injected with different formulations of 

fluorescent liposomes. 

Liposomes were formed with near infrared fluorescent lipids at 0.2, 0.5, or 1.0 mole % of 

total lipids. C57BL/6 mice were given tail vein injections of either 0.2% (B), 0.5% (C), or 

1.0% (D) fluorescent liposome formulations. Tail vein injections of saline (A) or etoposide 

(E) served as negative controls. Fluorescent images of the mice were acquired 40 minutes 

and 3 hours after injections.   
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 Fluorescent signals were observed in all mice that received successful injections, and 

the fluorescence persisted for at least 3 hours, suggesting that the imaging system and 

liposome dye were compatible and appropriate for the upcoming pilot study on antitumor 

activity. 

7.2 In vivo antitumor activity of anti-GD2 immunoliposomes. Orthotopic human xenografts 

composed of SY5Y or SKNAS were implanted into the adrenal glands of nude mice. The 

tumors were orthotopic because they often naturally occur in humans where they were 

implanted, and they were xenografts because human tumor cells were grown in mice. Nude 

mice were chosen for their ability to host the human neuroblastoma cell lines, SY5Y and 

SKNAS. Both cell lines were genetically modified to express luciferase for in vivo 

bioluminescence imaging. 

 Mice were randomly assigned to one of four treatment groups: Normal saline, free 

etoposide, untargeted liposomal etoposide, or anti-GD2 targeted liposomal etoposide. There 

were two groups of 6 and two groups of 7 for each tumor cell type. Mice received tail vein 

injections of 100 µL with 20 mg/kg/day of etoposide for drug-containing treatment groups. Mice 

were injected with saline, etoposide, untargeted or anti-GD2 targeted immunoliposomes twice 

per week and imaged for liposome fluorescence after each injection cycle. Injections of luciferin 

were given abdominally prior to imaging to produce tumor luminescence. Example images are 

shown in Figure 37.  
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Figure 37. In vivo imaging of mice bearing luciferase-expressing SKNAS orthotopic 

xenografts after injection of GD2 targeted and untargeted immunoliposomes. 

Human neuroblastoma SKNAS cells were injected into mouse adrenal glands on day 0.  

Mice received tail vein injections of nonspecific IgG-immunoliposomes or anti-GD2 

immunoliposomes at 20 mg/kg/dose etoposide 30 minutes prior to imaging. Abdominal 

luciferin injections were given immediately prior to imaging for both luminescence and 

fluorescence. 
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 In general, tumor targeting was not detected significantly more in anti-GD2 than in 

untargeted liposomes at this concentration. We also found that fluorescence due to liposomes 

persisted for days after injections, raising the possibility that fluorescent lipids were not 

immediately broken down and remained in tissue after liposomal degradation. 

 Following the third week of treatment, the mice were sacrificed, tumors were explanted 

and tumor weights were obtained, Figure 38.  

 

Figure 38. Explanted tumor weights from orthotopically implanted neuroblastoma 

xenografts in mice treated with etoposide. 

Human neuroblastoma SY5Y (blue) or SKNAS (red) cells were injected into mouse adrenal 

glands on day 0.  Treatment was begun on day 12. Mice received a total of four treatments 

cycles of 20 mg/kg/treatment of untargeted liposomal etoposide, targeted liposomal etoposide, 

free drug or saline. Mice were sacrificed on day 30 and tumors were explanted and weighed. 
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 We did not detect a significant difference between any of the treatment groups, 

including the control and free drug treatment groups. These data suggest that some component 

of the initial study setup was not optimal. Further investigation of the cell types, SKNAS and 

SY5Y, suggest that they may not be ideal for this particular animal study.  

7.3 In vivo pilot study conclusions. Neuroblastoma SY5Y and LA-155N orthotopic 

xenografts were implanted into mice in efforts to obtain preliminary in vivo data about the 

efficacy and biodistribution of anti-GD2 immunoliposomes. Tumors expressed luciferase which 

produces bioluminescence upon exposure to luciferin, and liposomes contained DiR near 

infrared dye for in vivo imaging. The study was preliminary because the relative variability 

between tumor sizes within control groups had not yet been established with the protocol we 

were using for tumor implantation. A power analysis to determine the necessary number of 

mice for an expected reduction in tumor size requires this estimate of tumor variability. A similar 

protocol evaluating the same surgical technique with a different neuroblastoma cell line found 

that with 10 mice per group, an average tumor weight reduction of 50% in treated mice 

compared to control mice was required to obtain statistically significant results with an alpha of 

0.05 and power of 0.8. We hypothesized that anti-GD2 immunoliposomes carrying etoposide 

would cause a larger decrease in tumor weights than free drug due to increased accumulation 

of immunoliposomes and loaded drug at the tumor site. We also hypothesized that tumor 

weight variability would be similar to that of the previous surgical protocol because the 

procedure and mouse model were identical while tumor cells were of the same general cancer 

type (neuroblastoma). 

 We found that tumor size variation exceeded expected levels based on the implantation 

protocol in mice of all treatment groups. This suggests that larger treatment groups would be 

necessary to produce sufficient statistical power if the expected reduction in tumor size was 

50%. Unfortunately, we did not observe a downward trend in tumor size in anti-GD2 
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immunoliposomes or drug alone, suggesting that higher treatment doses are required for the 

reduction in tumor size. An additional pilot study would be invaluable to determine the 

maximally tolerated dose to prevent excessive mouse overdose during treatment. 

Immunoliposome fluorescence was detected throughout the mice with particular intensity near 

the left flank where the tumors were implanted. The average fluorescent intensity near this 

region was higher in targeted immunoliposome-treated mice than in untargeted liposome-

treated mice; however, it is difficult to ascertain if the fluorescence was increased at the actual 

tumor site, or the underlying mouse spleen. We concluded that the anti-GD2 immunoliposomes 

can be detected in mice via in vivo imaging, and larger follow-up studies are warranted to 

assess liposome-delivered etoposide effects on tumor growth. 
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Section IV: Discussion and Future Directions 

Chapter 8: Discussion 

 Current approaches for GD2-directed therapy include immunotherapy with anti-GD2 

antibodies, antibody-toxin conjugates, and genetically modified T-cells with the capacity to 

target GD2 positive tumor cells. Clinical trials with anti-GD2 antibodies for neuroblastoma over 

the past two decades have set the stage for further anti-GD2 therapeutic strategies. Anti-GD2 

antibodies now have established safety and efficacy profiles, but limitations persist, particularly 

with acute pain toxicity and inability to treat bulky tumors56. The potency of anti-GD2 therapeis 

was accomplished by conjugating anti-GD2 antibodies to immunotoxins such as pseudomonas 

exotoxin A121. These studies reported immediate killing of GD2 positive cells in vitro, but 

concerns exist about immunogenicity of the treatment, and no GD2-targeted immunotoxins 

have reached human clinical trials122. 

 A third avenue of GD2 targeted therapy involves the genetic modification of T-cells to 

express a GD2 binding protein at their surface called a chimeric antigen receptor (CAR). T-cells 

expressing the CAR protein have been shown to release cytokines, proliferate and kill 

neuroblastoma cells123. Moreover, preliminary phase I clinical trials have found tumor response 

in half the patients tested124. This approach, while promising, carries a significant concern with 

respect to cost and preparation standards. The large-scale production of targeted, membrane-

based drug-loaded immunoliposomes represents a potential therapeutic angle that could 

mitigate the problems encountered in other anti-GD2 targeted approaches. 

 This work provides data suggesting that anti-GD2 etoposide immunoliposomes can 

target GD2-expressing tumor cells and inhibit their proliferation. Overall results with respect to 

synthesis, characterization, and biological activity of the proposed immunoliposome model are 

encouraging, although additional testing remains prior to preclinical and clinical translation. 

Furthermore, results and problems encountered in this work will allow for the accelerated 
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production and characterization of future targeted nanoparticle projects by highlighting and 

avoiding potential pitfalls. 

 Applications for liposome-formulated drugs in medicine are expanding as the benefits of 

this system for controlled systemic delivery are appreciated. Liposomal delivery methods also 

show promise for other routes of entry such as transdermal, oral, and inhalation80-82. The 

advent of targeting these formulations will result in more efficient use of pharmaceuticals and 

rescue some drugs that may have been unusable due to high side-effect profiles or low 

efficacy. Targeting of liposomal nanoparticles will also bring new challenges and potential 

problems as the dynamic human immune system responds to an influx of foreign substances 

with particular epitopes and immunoreactive molecules. Integration of targeting moieties must 

be carefully controlled. 

 Post-insertion of targeting moieties onto liposomes has proved to be very useful in the 

synthesis of targeted immunoliposomes for two key reasons. First, incorporation of PEG and 

crosslinkers to the limiting membrane reduces the loss of intraluminal space that would 

otherwise be occupied if PEG and maleimide were incorporated during initial ethanol injection. 

Second, conjugation of the targeting moiety is more controlled and less subject to hydrolysis of 

the maleimide crosslinker compared to synthesis methods without post-insertion where 

maleimide is exposed to all reagents of the ethanol injection process for longer periods of time. 

Drawbacks of the post-insertion method include the unknown quantity of unincorporated 

micelles after post-insertion. This also adds some level of uncertainty to the fraction of lipids 

carrying PEG chains; although exact levels of PEG-ylation do not appear critical because more 

than 2 mole % of total lipids within a given liposomal formulation appears to have similar effects 

on circulation time when administered systemically. 

 Maleimide conjugation during immunoliposome functionalization may occur at Fab 

binding fragment of the antibody, causing it to orient incorrectly with the Fc region facing 
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outward and potentially decreasing its ability to bind the target ligand. There are commercial 

kits available that use carbohydrate-rich regions of the Fc antibody region for conjugation. This 

conjugation strategy could result in higher binding activity of liposome-tethered MAbs, but also 

requires more specialized reagents and more complex crosslinking chemistry. Fortunately, 

effective targeting by our immunoliposomes in GD2 positive cells indicated that enough anti-

GD2 antibodies were oriented correctly to enable detectable levels of ligand binding via flow 

cytometry. 

 Scaling production of targeted liposomes for mass production must be possible for more 

elaborate animal studies and translation into clinical trials. There are multiple difficulties in 

large-scale production of a multi-component system such as anti-GD2 immunoliposomes. 

Firstly, MAbs such as 3F8 currently are expensive and produced via a multistep purification 

process. Currently, treatment with one of the top nine biological in the US costs an average of 

$200,000 per year125. High material costs limit experimentation to small-batch synthesis 

experiments for most labs. Secondly, processes such as post-insertion for large-scale 

manufacture have not been sufficiently investigated to warrant large scale use of the technique. 

However, preliminary studies suggest it is a viable strategy for attaching targeting molecules to 

liposomes at large-scale126. 

 Current drug therapy for cancers range from “classical” cytotoxic chemicals to more 

recent biological therapies including immunotherapy and monoclonal antibody based 

therapeutics. Emerging nanomedicines enhance traditional therapies while limiting weaknesses 

and off-target effects. A clinically available liposome formulation of doxorubicin provides an 

example of this enhancement by increasing circulation time and delaying the release compared 

to unencapsulated doxorubicin69. Anti-GD2 immunoliposomes carrying etoposide stably 

released their drug over 6 hours with continued release up to 12 hours compared to 

unencapsulated drug that disseminates rapidly when administered systemically. This controlled 
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release decreases the dosing required to maintain a therapeutic level of a given drug over time, 

and smaller quantities of the drug would be necessary as the liposomes accumulate at the 

target site via passive and active targeting mechanisms. The drawback to a delayed release 

profile is that adverse effects of the drug may be prolonged after the drug is discontinued.  

The same issues encountered with etoposide treatment clinically also cause difficulties 

when characterizing etoposide-loaded liposomes. In particular, poor solubility of etoposide in 

aqueous solutions complicates the quantification of etoposide release from nanoparticles into 

physiologic mediums. Problems to be expected in future applications involving etoposide 

encapsulation include the chemical decomposition of etoposide in a dissolved state as well as 

changes in etoposide stability with scaled up production. 

 Another consideration for the translation of anti-GD2 immunoliposomes into clinical use 

involves the storage of immunoliposomes prior to administration. Shelf life of clinically approved 

MAbs approaches 3 years if dried and frozen and less than 48 hours when in solution. For this 

reason, freeze-drying of the immunoliposomes must be analyzed and optimized. Freeze-drying, 

or lyophilisation, has been accomplished with immunoliposomes targeted to the breast cancer 

target, HER2, successfully, but no evidence is available supporting the successful lyophilization 

of anti-GD2 immunoliposomes carrying etoposide 127. Our experience suggests that 

lyophilization could cause precipitation of etoposide due to its poor solubility and previous 

difficulties with liposomal encapsulation. Immunoliposomes may need addition of 

cryopreservative agents such as glycerol prior to lyophilization to avoid damage to liposomal 

membranes. 

 We described the surface GD2 expression and anti-GD2 targeting liposomal targeting 

to osteosarcoma, melanoma, cervical carcinoma, and four different neuroblastoma cancer 

lines. Surface expression was valuable for correlating to targeting efficacy. However, gene 

expression and variations in GD2 expression over time and during treatment remain to be 
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investigated. Aggressive cancer cells might resist treatment by downregulation of GD2 

expression following repeated exposure to anti-GD2 therapeutics. Treatment resistance by 

GD2 downregulation may still incur some cytostatic or cytotoxic effects, as some evidence 

exists that GD2 downregulation is correlated with decreased tumor survival in vitro
128. Further 

studies of GD2 metabolism following anti-GD2 immunoliposome treatment are warranted to 

evaluate potential resistance mechanisms in GD2 positive malignancies.  

 Gangliosides such as GD2 are produced in the Golgi apparatus where they are 

regulated predominantly by the activity of the enzymes required for their synthesis, GD2 and 

GD3 synthase. The mechanisms by which tumor cells dramatically increase GD2 synthesis is 

not well understood, but may involve tumor cell adhesion and metastatic transition that 

increases GD2 synthesis or decreases its metabolism. Our studies suggest that clinical trials 

with anti-GD2 immunoliposomes would benefit from patient stratification by levels of GD2 

surface expression. Study organizers may decide to exclude patients with GD2 positive tumors 

that overexpress the ganglioside at lower levels relative to other patients with GD2 positive 

disease. Stratification by GD2 expression is likely to increase the sensitivity of the study in 

regard to tumor response and remission rates. Ongoing clinical trials of 3F8 immunotherapy, to 

our knowledge, do not stratify patients by levels of GD2 expression. Currently, 3F8 treatment 

protocols are designed for patients with high-risk neuroblastoma, including patients with bulky 

disease, refractory or relapsed disease, and bone marrow disease. The only GD2 requirement 

that is noted in clinical trial documents is “positive immunostaining with m3F8”12. Our studies 

with anti-GD2 immunoliposomes rely on 3F8 binding activity which implicates a strong 

possibility that future 3F8 clinical studies would also benefit from GD2 expression stratification. 

However, our study did not address efficacy of free 3F8 immunotherapy with respect to GD2 

expression. Further studies are warranted to address these issues. 
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 We found that GD2-targeted immunoliposome-mediated inhibition of proliferation can 

occur in multiple cancer cell lines in vitro. Efficacy in vitro provides evidence that functional 

nanocarriers are present and the drug payload retains bioactivity for the duration of our 

experiments. Recall that 3F8 exerts antitumor effects via antibody-directed cellular cytotoxicity. 

Therefore, more significant antitumor effects may be observed with anti-GD2 immunoliposomes 

in the presence of whole blood components such as complement proteins and circulating 

leukocytes. Isolated in vitro experiments lack the structural and biological complexity of animal 

bodies that can inhibit antitumor efficacy. Immunoliposomes are particularly sensitive to 

removal by the MPS in vivo. PEGylation of immunoliposomes delays MPS uptake, but the 

degree and duration of delay is less characterized than in untargeted liposomes. Additionally, 

the benefits of PEGylation vary with the type and density of targeting antibodies105. PEGylation 

may reduce observed uptake in vitro, hence we may be underestimating the efficacy that would 

occur in vivo due to increased circulation time for targeted particle uptake. 

 We synthesized and evaluated etoposide loaded anti-GD2 immunoliposomes and 

examined their targeting and potential to affect tumor proliferation in vitro. In addition to the 

expansion of studies with these particles, other liposomal formulations utilizing these methods 

could benefit from this combination of drug loading and targeting strategies. We also evaluated 

GD2 surface expression in multiple cell lines and found it to vary dramatically across tumor 

types and within neuroblstoma cell lines. This is significant due to clinical implications for 

immunotherapy and targeted nanoparticle efficacy. Moreover, neuroblastoma patients may 

benefit from quantitative GD2 expression profiling as a predictive measure of anti-GD2 therapy. 

Finally, we showed that lower concentrations of targeted etoposide anti-GD2 liposomes were 

required for an equivalent effect of etoposide alone to inhibit proliferation of multiple cancer cell 

lines. These data suggest that smaller doses of GD2 targeted liposomal etoposide may be able 

to be given to patients. This has the important effect of potentially fewer and less severe off-
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target effects, lower cost, and a larger therapeutic window if higher doses are required. The 

final effect of these advances compared to current treatments is a less toxic and more effective 

treatment strategy for tumors with high levels of ganglioside GD2 expression.  
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Chapter 9: Future Directions 

9.1 Expansion of in vivo evaluation. Future anti-GD2 immunoliposome testing in vivo would 

be altered based on lessons learned in the pilot study in mice. Two major issues in the pilot 

study involve the cell lines chosen and the primary outcome of the tumors that arose from 

those cell lines. One of the two neuroblastoma cell lines used in the pilot, SY5Y, expresses 

very little GD2 and was actually used as a negative control in targeting experiments. The other 

cell line, SKNAS, was found to express GD2 at high levels, but exhibited unexceptional anti-

GD2 liposomal targeting in vitro. The in vitro results were preliminary when the in vivo study 

was being designed, and SKNAS was a well-established cell line involved in multiple other 

projects beyond the immunoliposome study. Nonetheless, the neuroblastoma cell lines were 

not optimal cell lines for the observation of a maximum effect from the anti-GD2 

immunolioposomes.  

 In retrospect, we might have observed more dramatic anti-tumor effects in mice treated 

with anti-GD2 targeted formulations if we chose a cell line with higher levels of surface GD2 

expression. Future studies should focus on one or two cell lines with high GD2 expression and 

high GD2 targeting, such as LA-155N or 143B, where a larger antitumor effect would be 

expected. The previous pilot study also revealed a large variance in tumor sizes explanted from 

mice injected with the same number of cancer cells of the same cancer cell line. This could 

have been due to restricted volume of the adrenal medulla where cancer cells were seeded, or 

a large variance in the number of cells surviving the tumor seeding. Additional pilot studies 

could investigate the effect of seeding density and orthotopic site on variable tumor sizes; 

however, time and resource constraints would likely persuade us to repeat the study with larger 

treatment groups to account for the large tumor size variability. 

 In its entirety, the next animal study would consist of a larger, more representative pilot 

experiment to determine variability between mice with similar treatments. This would facilitate a 
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more accurate power analysis to determine the minimum number of mice needed in each 

treatment group. The second, larger part of the study would contain sufficient power so that the 

treatment of anti-GD2 etoposide-loaded liposomes, if more effective than etoposide alone or 

untargeted liposomes, would yield significant differences in tumor weights and drug 

accumulation.  

9.2 Future applications of anti-GD2 immunoliposomes. Roles of the anti-GD2 

immunoliposome platform are not limited to neuroblastoma therapy. Other drug delivery 

opportunities exist that could benefit from the targeting and drug delivery potential of anti-GD2 

targeting. For example, anti-GD2 immunoliposomes produced with the DiR infrared dye or 

other contrast agents could be administered as targeted radiological agents to delineate GD2 

positive cancer remnants after surgery or distant metastases. Liposomes have been 

successfully developed as enhanced carriers of the MRI contrast agent, gadolinium129. 

Alternatively, targeted liposomes could be combined with adjuvant immunotherapies 

such as IL-2 and GM-CSF (traditionally combined with 3F8 immunotherapy) to enhance 

antibody-mediated cellular cytotoxicity59. These immunomodulators enhance the function of 

3F8 compared to 3F8 administered alone and may induce a synergistic effect when combined 

with etoposide-loaded liposomes. The issue of antibody directed cytotoxicity that may occur 

with MAb targeted immunoliposomes is not well understood. Studies to assess this effect 

include dose response with complement and targeted liposomes in vitro for proliferation 

inhibition of tumor cells in addition to more comprehensive in vivo studies with 

immunocompetent mice capable of mounting an immune response.  

Other targets that express high levels of GD2 could also be investigated as potential 

therapeutic opportunities for GD2 immunoliposomes comtaining chemotherapeutics. Recently, 

breast cancer stem cells were found to have higher levels of GD2 expression than other breast 

cancer cells in at least one breast cancer cell line128. Cancer stem cells are a subpopulation of 
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tumor cells capable of establishing metastases and are resistant to conventional therapies 130 

131. Breast cancer cells expressing the GD2 ganglioside were found to share other proteomic 

markers of cancer stem cells, and genetic knockdown of GD2 synthesis in these cells halted 

tumor progression in vivo
128. Similar cells were identified in the bone marrow of breast cancer 

patients by an independent group132. Targeted killing of these tumor initiator cells could improve 

survival and cure rates in patients being treated for breast cancer. 

9.3 The future of multifunctional nanoparticles. Targeted therapies and multifunctional 

nanomedicines continue to become increasingly complex, and new nanoparticles incorporate 

an increasing amount of cell-like features. Several vaccines have been formulated with 

liposome carriers such as the avian retrovirus (chickenpox) vaccine133 and hepatitis A 

vaccine134. Immunoliposomes can closely resemble an enveloped virus, and as such could be 

useful for vaccine encapsulation as well as gene therapy. 

Cells are also capable of producing and expelling immunoliposome-like particles, called 

exosomes. Exosomes are lipid bilayer vesicles, about 70-100 nm in diameter produced by the 

vast majority of cell types. Cancer cell-produced exosomes are being studied for their ability to 

prepare sites for metastases135, and experimentally modified dendritic cells are being 

stimulated to release exosomes carrying genetic and protein material to improve symptoms of 

multiple sclerosis136. Exosomes produced by dendritic cells are also being investigated for 

immunotherapeutic vaccines targeted to melanoma and non-small cell lung cancer 137. Future 

applications of exosomes are diverse due to their high surface protein density and ability to 

carry both genetic and protein payloads. There may be efforts to create exosomes outside of 

cells using the necessary machinery, resulting in higher output and more simplistic exosome 

purification. One current issue with biologically derived exosomes is the relatively complex 

procedure to isolate and purify exosomes via serial ultracentrifugation and separation on 

density gradients 138. 
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Another strategy for liposome drug delivery is the application of fusogenic liposomal 

membranes 139. Some liposomes are being constructed with modified lipids that induce 

membrane fusion after encountering a lower pH 139. In this scenario, intact liposomes are 

endocytosed and fuse with the endocytic membrane as it acidifies 140. The liposome-endosome 

fusion results in release of the liposomal contents directly into the cytoplasm141. Cytoplasmic 

release of liposomal contents via pH responsive membranes or viral proteins delays drug 

degradation by lysosomes resulting in higher quantities of active drug reaching intracellular 

targets 139. Drawbacks of the strategy include uncontrolled fusion with non-pathological cells 

and decreased particle circulation time due to premature membrane fusion 140. 

9.4 The future of targeted nanomedicine development. Potential applications involving 

nanotechnology in medicine have garnered significant media attention in recent years due to 

the theoretical features nanomaterials possess. Nanomedicines have failed to keep up with the 

media hype in part due to unrealistic expectations by the public, expensive and difficult path to 

clinical approval by the FDA, and difficulties controlling solubilized nanomaterials.  True 

paradigm-shifting nanomedicines will result from the synergistic combination of all fields of 

science. In particular, advances in fields such as genetics, epigenetics, proteomics, medical 

physics, molecular biology, in silico simulation and computational biology, as well as 

micromanipulation and additive manufacturing will combine to form future nanomedicines. 

Gene therapy, artificial organs, cybernetic limbs, and implants that interface with the nervous 

system are no longer future directions, but current projects being refined for clinical approval. 

Progressive advances in these fields will eventually produce artificial cells and organelles, 

potentially creating new calls to readdress the classical definitions of life. 

 The first generation of targeted nanomedicines reaching clinical approval in the near 

future will likely be immunoliposomes due to an established toxicity profile of liposomes in 

combination with previously FDA approved MAbs as targeting moieties. Adoption of new 
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targeted therapies by physicians will depend on additional factors, including cost, differences in 

efficacy compared to traditional treatments, and reimbursement by insurance companies. 

Considerable work remains to be done prior to first-line targeted nanoparticle formulations, but 

the foundation is set, and the technology has unprecedented potential impact for human health. 
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Chapter 10: Materials and Methods 

10.1 Chemicals and lipids. Dipalmitoyl-sn-glycero-3phosphochiline (DPPC), 1,2-dioleoyl-sn-

glycero-3-phosphoethanolamine-N-(lissamine rhodamine B sulfonyl) (DOPE-Rhodamine), 1,2-

distearoyl-sn-glycero-3-phosphoethanolamine-N-[methoxy(polyethylene glycol)-2000] (DSPE-

mPEG2000) and 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-[maleimide(polyethylene 

glycol)-2000] (DSPE-mPEG200-Maleimide)  were purchased from Avanti Polar Lipids 

(Alabaster, Alabama). 3β-hydroxy-5-cholestene (cholesterol), >99% dimethyl sulphoxide 

(DMSO), thiazolyl blue tetrazolium bromide (MTT salt), L-gulatamine, tris-HCl, 40% Glycerol, 

red ponceau, and Tris buffered saline (TBS) were obtained from Sigma Aldrich (St. Louis, 

Missouri). Traut’s reagent, penicillin, streptomycin, bromophenol blue and all cell culture media 

were acquired from ThermoFisher Scientific (Waltham, Massachusetts). Etoposide (VP16, 

>99% grade purity) was obtained from Biotang (Waltham, Masschusetts). Tween 20 was 

acquired from Aurion (Rotterdam, The Netherlands). Horseradish peroxidase was purchased 

from Cell Signaling Technology (Beverely, Massachusetts). Alexa Flour 488 goat anti mouse 

IgG was purchased from Invitrogen (Carlsbad, California). Murine IgG3 monoclonal antibody 

3F8 (3F8 anti-GD2) was a kind gift from Nai-Kong Cheung (Memorial Sloan Kettering Cancer 

Center, New York, NY). All other chemicals were of analytical grade and purchased from 

Sigma Aldrich. 

 

10.2 Liposome preparation and physicochemical characterization. Liposomes were 

prepared using a modified ethanol direct injection technique previously reported.142 Briefly, 

DPPC and Cholesterol at a molar ratio of 60:40 were dissolved in 100% ethanol heated to 60°C 

under continuous stirring. 0.2 mole % of the fluorescent lipid, DOPE-Rhodamine was dissolved 

into ethanol and injected into a warm solution of PBS at a ratio of 1:9 by volume under 

continuous stirring (2000rpm). The ethanol was then removed by rotary evaporation (Buchi, 
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Switzerland). Where necessary, etoposide dissolved in DMSO (at 50mg/mL) was added to the 

ethanol phase prior to injection, thus obtaining a final concentration in the range from 1-4 

mg/mL. Entrapment efficiency and drug loading were calculated by the following formulas: 

 

Entrapment Efficiency (%) = (Quantity of drug encapsulated) / (Total quantity of drug added) × 

100% 

Drug Loading (%) = (Quantity of drug encapsulated) / (Total quantity of lipids added) × 100% 

 

Average size, size distribution, and zeta potential were analyzed using Malvern Zetasizer Nano 

ZS (Malvern, Worcestershire, UK) as previously reported.143 Briefly, liposomes were diluted 

(1:100 molar ratio) using isotonic PB buffer (pH 7.4), previously filtered (pore size 0.22 mm) 

through polypropylene membranes (Whatman Inc., Clifton, NJ, USA) to avoid multiscattering 

phenomena and loaded into size and Z-potential disposable cuvettes before analysis. 

Photocorrelation spectroscopy was applied to evaluate average size and narrow size 

distribution. The instrument was set up using the following parameters: real refractive index 

1.59, imaginary refractive index 0.0, medium refractive index 1.330, medium viscosity 1.0 mPa 

× s and medium dielectric constant 80.4. Z-potential was performed using the Doppler laser 

anemometry and hence the electrophoretic mobility. A Smoluchowsky constant F (Ka) of 1.5 

was applied to measure electrophoretic mobility of samples. 

 

10.3 Preparation of 3F8 anti-GD2 immunoliposomes. Micelles containing DSPE-mPEG2000 

and DSPE-mPEG2000-maleimide at a 99:1 molar ratio were co-dissolved in an ethanol 

solution and added drop wise into a warm PBS solution containing 2 mM EDTA at a ratio of 1:1 

v/v creating the final micellar solution. 50µL of micellar solution (10mM, pH 7.4) was added to 

the preformed liposome mixture with agitation and heating at 65°C thus allowing post insertion. 
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Meanwhile, 3F8 anti-GD2 monoclonal antibodies were sulfonated at a 1:10 molar ratio using 

Traut’s reagent and purified using Zebaspin desalting columns (ThermoFisher Scientific, 

Waltham, Massachusetts). After the liposomal solution returned to room temperature, the 

purified sulfonated antibody was added to the liposomal solution and incubated at 4°C 

overnight under constant stirring to obtain the final immunoliposomes.  

 

10.4 Transmission electron microscopy (TEM). TEM analysis was performed using a JEM 

1010 transmission electron microscope (JEOL, Inc., Peabody, Massachusetts) at a voltage of 

80kV. Liposomes underwent negative staining and placed on formvar coated carbon grids 

followed by 1 minute staining with 1% v/v ammonium molybdate (pH 7.0). Immunogold staining 

of samples was performed by blocking liposomes for 30 minutes with 5% BSA in PBS solution 

(pH 7.4), followed by 30 minute incubation with secondary goat-anti-mouse 6nm gold 

antibodies (1:25 v/v dilution) followed by three washes in water to remove salts and unbound 

immunogold.  

 

10.5 Fourier transformed infrared spectroscopy (FTIR). Bonds conjugated with DSPE-

mPEG2000-Maleimide linker and the 3F8 antibody were qualitatively identified by using the 

FTIR apparatus. Concentrated samples (10 mM) were prepared by the application of 3 µL 

followed by desiccation on the SMART ATR diamond surface on a Nicolet 6600 FTIR 

spectrophotometer. The DSPE-mPEG2000-Maelimide and 3F8 antibody were analyzed 

individually and then conjugated. Unconjugated linker was removed by Zebaspin desalting 

columns followed by Amicon centrifuge filters (Millipore, Billerica, MA) with a 30kDa molecular 

weight cutoff at 14,000 ×g for 10 minutes prior to analysis of the conjugated sample. The 

detector was used at room temperature at a 4 cm-1 resolution in absorbance mode averaging 

16 runs. Peak analysis was carried out using Omnic Spectra software. 
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10.6 Cell Culture. Neuroblastoma cell lines NBLS, LA-155N, IMR-32, SH-EP, and SH-SY5Y 

were validated by STR analysis and cultured in DMEM/F12. Adenocarcinoma cell lines HeLa 

and MDA-MB-231 were cultured in DMEM and Leibovitz L15 respectively. Malignant melanoma 

cell lines SK-MEL-28 and A375 were cultured in DMEM. Osteosarcoma cell line 143B was also 

cultured in DMEM. All media was supplied with FBS (10% v/v), penicillin G-streptomyocin 

mixture (1% v/v), and L-glutamine (1% v/v). Cell lines were cultured in incubators at 37°C and 

5% CO2. 

 

10.7 Flow cytometry analysis of GD2 expression and liposome targeting. In order to 

assess the expression of GD2 on the surface of different cell lines, 3×105 cells per treatment 

group of each line were collected. Cells were lifted using a 2 mM treatment of EDTA to retain 

surface protein structure and counted using hemocytometry. They were then re-suspended in 

3% v/v BSA in PBS solution (pH 7.4) and placed on ice for the remainder of the analysis. After 

30 minutes of blocking in 3% v/v BSA, cells were treated with primary 3F8 antibodies and 

incubated for 1 hour. Cells were then washed in BSA solution and further incubated for 30 

minutes with Alexa Fluor 488 goat anti mouse IgG. Control groups were treated with secondary 

antibody only. After final washing in PBS solution (pH 7.4), samples were analyzed by the 

Fortessa cell counter (Becton Dickinson, Bedford, MA) with excitation at 488 nm and an 

emission bandpass filter at 530 nm. 

 

10.8 Liposome targeting to cancer cells. To assess 3F8 immunoliposome targeting to the 

cell lines mentioned, 3×105 cells of each line were collected and counted as herein reported. 

The collected cells were exposed to DOPE-Rhodamine liposomes with or without targeting 

agents for 30 minutes under continuous rotation (10 rpm) at 4°C. Each treatment group was 



 
 
 

116  

washed three times with PBS solution (pH 7.4) and analyzed on the FACS Fortessa cell 

counter (Becton Dickinson, Bedford, MA) with excitation at 488nm and an emission bandpass 

filter at 530nm. 

 

10.9 Confocal imaging of liposome uptake. Optical analysis of liposome uptake was done on 

the Nikon A1 confocal laser scanning microscope (Nikon Corporation, Tokyo, Japan). Cells 

were grown on 4-well chamber slides at a seeding density of 7×104 cells per well and allowed 

to attach overnight. Cells were treated with 3F8 immunoliposomes or untargeted liposomes for 

30 minutes in cell culture conditions. Prior to imaging, cells were fixed with 4% v/v 

paraformaldehyde and mounted with Prolong Gold with DAPI. 

 

10.10 High pressure liquid chromatography quantification of drug loading. The amount of 

etoposide entrapped inside liposomes was performed using high performance liquid 

chromatography (H.P.L.C.) (Hitachi, Tokyo, Japan). Etoposide loaded liposomes were 

separated from unencapsulated etoposide by ultracentrifugation at 150,000 ×g at 4°C for 1 

hour in a Fiberlite F50L-24×1.5 rotor, followed by Amicon filtration with 30 kDa centrifuge filters 

at 14000 ×g for 10 minutes. Filtered liposomes were then diluted in methanol followed by 

injection and flow through a Zobrax Eclipse Plus C18 column (4.6mm × 150 mm, i.d. 5µm) 

(Agilent Technologies, Santa Clara, CA) at a flow rate of 0.65 mL/min. The mobile phase was 

composed of 50% v/v methanol and 50% v/v acetic acid. Absorbance was detected at 228 nm, 

and samples were run in triplicate. Results are the average of three different measurements ± 

standard deviation. 

 

10.11 Etoposide-induced proliferation inhibition. Neuroblastoma cells (cell line: LA-155N, 

SKNAS, or SY5Y) were seeded at a cell density of 7500 cells/well using 96 well cell culture 
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plates. Cells were allowed to attach overnight in the incubator after which the media was 

removed and replaced with treatment solutions. Cells were treated with 100 µL PBS, etoposide 

alone (control), untargeted etoposide liposomes, or 3F8 targeted etoposide loaded liposomes. 

All etoposide concentrations were tested at 50 µg/mL for 72 hour experiments. Cytotoxicity was 

inferred from the results of repeated MTT proliferation assays (Sigma Aldrich, St. Louis, MO). 

For 24 hour dose-response experiments, cells were treated with 100 µL PBS, etoposide alone 

(control), untargeted etoposide liposomes, or 3F8 targeted etoposide loaded liposomes at 

etoposide concentrations increasing from 0-200 µg/mL. Proliferation studies were performed 

via MTT assay (Sigma Aldrich, St. Louis, MO). MTT reduction was assessed by absorbance 

measurement at 570 nm with a reference wavelength of 690 nm according to the 

manufacturer’s instructions. IC50 calculations were performed via nonlinear regression via 

GraphPad Prism software v5.03. 

 

10.12 Endocytosis inhibition study. To assess through which pathway immunoliposomes 

were internalized, SKNAS neuroblastoma cells were cultured on chamber slides as described 

previously. The cells were washed twice with PBS and the media was replaced with culture 

medium without serum to avoid serum inactivation of inhibitors. The cells were pretreated 

Dynasore (80 µM), Filipin (10 µM), or a combination of both drugs for 30 minutes. Rhodamine-

labeled 3F8 immunoliposomes (0.1 mM) were then added for 1 hour at 37°C to allow for 

internalization. Cells were washed three times with PBS, fixed with 4% v/v paraformaldehyde 

and mounted with DAPI Prolong Gold antifade reagent (Molecular Probes, Grand Island, NY). 

Cells without inhibitors treated with and without immunoliposomes served as positive and 

negative controls, and cells were treated with fluorescent EGF to verify inhibition of clathrin-

dependent endocytosis. Twenty fields of view were captured and analyzed for mean 

fluorescent intensity of Rhodamine within individual cells delineated by regions of interest on 
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Nikon Elements software version 3.22. Intensity means were compared by one way ANOVA, 

and p-values < 0.05 were considered significant. 

 

10.13 Etoposide release study. Differences in drug release between liposomes and 

immunoliposomes were realized in a 72h release study. Particles were centrifuged in a 3.5mL 

Amicon Ultra-4 100 kDa filter at 4000xg for 30 minutes and resulting supernatant was diluted to 

reach 3.5mL volume. 1mL of colloidal particles was placed in Spectra/Por Float-A-Lyzer G2 

cellulose ester membranes (MWCO 100kD, 1mL vol) for 72 hours with samples collected at 

different time points. The receptive phase consisted of a 50mL solution of PBS (pH 7.4) and 

Tween20 (1% v/v). Study was conducted at 37°C under continuous stirring (300rpm) and 1mL 

samples withdrawn were replaced with new PBS + Tween20 solutions. Samples were analyzed 

via HPLC as previously reported.  

 

10.14 Mouse orthotopic xenografts. NCr athymic nude mice (4-6 weeks old) were 

anesthetized and the kidneys were accessed surgically according to the surgical protocol put 

forth by Shohet et al. Meanwhile, SKNAS or SY5Y cells transduced to express the luciferase 

reporter gene were trypsinized and prepared for injection into the superior pole of the kidney 

under the renal capsule (1 x 106  SKNAS or SY5Y cells per mouse per injection). Tumors were 

allowed to grow for 10 days before initation of treatment. Mice were randomly assigned to 

treatment groups for either vehicle only (saline with <1% DMSO), free etoposide, liposomal 

etoposide, or anti-GD2 liposomal etoposide. All etoposide-containing treatments were at 20 mg 

etoposide per kg of mouse per injection. Treatments were administered followed by 

bioluminescence and fluorescence imaging at the IVIS in vivo imaging system twice weekly for 

two weeks. On the third week, mice were sacrificed, and tumors were explanted and weighed. 
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